Alginate-regulating genes are identified in the clinical cystic fibrosis isolate of Pseudomonas aeruginosa PA2192

Brett Colbert
Department of Biological Sciences, Florida International University, bcolbert@fiu.edu

Hansi Kumari
Herbert Wertheim College of Medicine, Florida International University, hkmari@fiu.edu

Ana Pinon
Department of Biological Sciences, Florida International University

Lior Frey
Department of Biological Sciences, Florida International University, lfrey@fiu.edu

Sundar Pandey
Department of Biological Sciences, Florida International University, spande@fiu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.fiu.edu/com_facpub

Recommended Citation
Colbert, Brett; Kumari, Hansi; Pinon, Ana; Frey, Lior; Pandey, Sundar; and Mathee, Kalai, "Alginate-regulating genes are identified in the clinical cystic fibrosis isolate of Pseudomonas aeruginosa PA2192" (2018). HWCOM Faculty Publications. 189.
https://digitalcommons.fiu.edu/com_facpub/189

This work is brought to you for free and open access by the Herbert Wertheim College of Medicine at FIU Digital Commons. It has been accepted for inclusion in HWCOM Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Alginate-regulating genes are identified in the clinical cystic fibrosis isolate of Pseudomonas aeruginosa PA2192

Brett Colbert¹, Hansi Kumari², Ana Piñon¹, Lior Frey¹, Sundar Pandey¹, and Kalai Mathee²*

¹ Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA
² Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, FL, USA

*Corresponding Author:
Kalai Mathee, Ph.D.
Department of Human and Molecular Genetics
Herbert Wertheim College of Medicine
Florida International University
Miami, FL 33199
Tel. No: 305 348 0628, Fax: 305 348 2913, Email: matheelabfor65roses@gmail.com

Running Title: Alginate Regulation in Pseudomonas aeruginosa PA2192

Key Words: Sigma factor, anti-sigma factor, cystic fibrosis
ABSTRACT

Cystic fibrosis (CF) is a genetic disorder that leads to a buildup of mucus in the lungs ideal for bacterial colonization. When Pseudomonas aeruginosa enters the CF lung, it undergoes a conversion from nonmucoid to mucoid; colonization by a mucoid strain of P. aeruginosa greatly increases mortality. The mucoid phenotype is due to the production of alginate. The regulator of alginate production is the AlgT/U sigma factor. The observed phenotypic conversion is due to a mutation in the mucA gene coding for an anti-sigma factor, MucA, which sequesters AlgT/U. This mucoid phenotype is unstable when the strains are removed from the lung as they acquire second-site mutations. This in vitro reversion phenomenon is utilized to identify novel genes regulating alginate production. Previously, second-site mutations were mapped to algT/U, algO, and mucP, demonstrating their role in alginate regulation. Most of these studies were performed using a non-CF isolate. It was hypothesized that second site mutations in a clinical strain would be mapped to the same genes. In this study, a clinical, hyper-mucoid P. aeruginosa strain PA2192 was used to study the reversion phenomenon. This study found that PA2192 has a novel mucA mutation which was named them mucA180 allele. Twelve colonies were sub-cultured for two weeks without aeration at room temperature in order to obtain nonmucoid suppressors of alginate production (sap). Only 41 sap mutants were stable for more than 48 hours — a reversion frequency of 3.9% as compared to ~90% in laboratory strains showing that PA2192 has a stable mucoid phenotype. This
phenotype was restored in 28 of the 41 sap mutants when complemented with plasmids harboring \textit{algT/U}. Four of the sap mutants are complemented by \textit{algO}. Sequence analyses of the \textit{algT/U} mutants have found no mutations in the coding region or promoter leading to the hypothesis that there is another, as yet unidentified mechanism of alginate regulation in this clinical strain.
INTRODUCTION

Cystic fibrosis (CF) is the most common cause of death due to genetic disorder (1). CF is an autosomal recessive disorder caused by a mutation in the cystic fibrosis transmembrane conductance regulator (cftr) gene (2-4). The most common CF mutation (~90%) is the ΔF508 which is the deletion of three nucleotides leading to the loss of a phenylalanine in the 508 position, and thus, a defective protein (3). A wide range of other mutations are possible that lead to either impaired function or total loss of activity (5).

Ordinarily, CFTR functions as anion transporter (6). When mutated, normal anion flow is restricted (7) and mucus accumulates in the CF lung; resulting pulmonary failure is the foremost killer of CF patients (8, 9). The mucus buildup provides a breeding ground for many pathogenic bacterial species especially S. aureus, H. influenzae, Pseudomonas aeruginosa, and Burkholderia cenocepacia (10); the relative population of each species fluctuates over the life of the individual (11). The pathogen that rises to prominence over the life of a CF patient and is the leading cause of mortality is P. aeruginosa (11, 12).

P. aeruginosa expresses a multitude of virulence factors (13). The major contributor to P. aeruginosa virulence in patients with CF is its ability to change from the standard, non-mucoid form to the mucoid form (14, 15). Mucoid P. aeruginosa is considered highly virulent because patients show poor clinical outcome despite having a heightened immune response (14, 15). The mucoid
phenotype is a result of the production of a complex polysaccharide called alginate (16).

Alginate protects *P. aeruginosa* from phagocytosis, antibiotics, oxygen radicals, and the host immune response (17-23) Leid et al., 2005). The importance of alginate in the virulence of *P. aeruginosa* has also been demonstrated in mouse models (24, 25). In mice, an alginate-overproducing strain causes aggressive polymorphonuclear leukocyte (PMN) infiltration- similar to human infection- and causes inefficient pulmonary clearance. A protracted lung infection has the potential to spread to other organs such as the spleen. These properties suggest that alginate is an important virulence factor.

Alginate biosynthesis comes at a high metabolic cost, and thus is tightly regulated (Figure 1) by an intricate system of periplasmic and inner membrane proteins (26-29). The primary regulatory unit of alginate production is a five-gene operon containing *algT/U-mucA-mucB-mucC-mucD* (30). The first gene of this operon, *algT/U*, codes for a sigma factor able to bind to RNA polymerase (RNAP), guiding it to transcribe the genes necessary for alginate production (31, 32).

Under normal circumstances, *P. aeruginosa* is non-mucoid, as is the case with the prototypic reference strain, PAO1 (33). Upon colonizing the CF lung, *P. aeruginosa* must confront the host immune system and antibiotics. The typical response is to convert to a mucoid phenotype by producing alginate. This is commonly accomplished by mutating mucA which codes for the anti-sigma factor to AlgT/U
Ordinarily, MucA sequesters AlgT/U to the inner membrane, preventing it from directing RNAP; however, when mucA is mutated, AlgT/U is left free to guide RNAP (Figure 1) to transcribe the genes needed for alginate biosynthesis (27, 35).

The most common mucA mutation (~85%) found in clinical, mucoid strains of P. aeruginosa is the mucA22 allele which is the deletion of a single G in a string of five Gs resulting in a frameshift mutation and premature stop codon (34, 35).

Since alginate production is metabolically expensive, mucoid strains revert to a non-mucoid phenotype when isolated from the lung and cultured in vitro (Figure 2), especially when grown at low oxygen levels (36). The isolates maintain the original mucA mutation but revert to Alg by mutating at another gene, a second site crucial to alginate biosynthesis (32, 37). This has proven to be a highly advantageous phenomenon when it comes to determining novel genes involved in alginate regulation. Several studies have utilized this in vitro reversion phenomenon to map second-site mutations to genes coding for the sigma factor AlgT/U (31, 32, 37), a putative periplasmic protease AlgO (37, 38), and an inner membrane protease MucP (Delgado et al., submitted).

The study by DeVries et al., (1994) used the mucoid CF isolate FRD1, but the great caveat tied to many of these other studies is that they were carried out in a laboratory-generated strain, PDO300 (22). This form is an isogenic derivative of PAO1 with the addition of the mucA22 allele in order to imitate clinical isolates.
The potential issue with using PDO300 is that laboratory strains cannot faithfully mirror the real-world pathogenesis of a clinical isolate (39).

The present study was undertaken to map the location of second-site mutations in a clinical isolate. The strain utilized is *P. aeruginosa* 2192 which was isolated from a CF patient in Boston who passed away from the infection (40). *P. aeruginosa* 2192 produces about 60% more alginate than PDO300 (Delgado et al., submitted) and is far more stable in its mucoid phenotype (this study). We hypothesized that the non-mucoid revertants of *P. aeruginosa* 2192 would harbor second-site mutations in *algT/U*, *algO*, and *mucP* while maintaining the original *mucA* mutation. This would demonstrate the role of these genes in *P. aeruginosa* 2192 alginate regulation.
MATERIALS AND METHODS

Bacterial Strains

The *P. aeruginosa* and *Escherichia coli* strains used in this study are listed in Table 1. The *E. coli* strains were grown on Luria-Bertani (LB) media supplemented with tetracycline (Tc) at 20 μg/ml and ampicillin (Ap) at 50 μg/ml. *Pseudomonas aeruginosa* strains were grown on LB or LB/PIA plates, which is a 1:1 mixture of LB and *Pseudomonas* isolation agar. These were supplemented with Tc at 100 μg/ml or carbenicillin (Cb) at 150 μg/ml when appropriate.

Isolation of sap mutants

The parent strain used to isolate suppressor of alginate production (*sap*) mutants was *P. aeruginosa* 2192, a hypermucoid, clinical CF isolate possessing a *mucA* mutation (Mathee *et al.*, 2008, Delgado *et al.*, Submitted). *P. aeruginosa* 2192 was plated and grown overnight on LB/agar plates. Twelve mucoid colonies were selected and inoculated into separate tubes containing 5 ml of LB nutrient broth. These were serially cultured at 25°C without aeration for two weeks. Dilutions of each of the 12 cultures were plated daily for single colonies. The 127 *sap* mutant colonies were frozen in 1:1 culture/skim milk at -80°C for further analysis (Table 1). At the end of two weeks, all *sap* mutants were re-streaked on to LB/PIA plates and incubated at 37°C for 24 hours followed by 25°C for 24 more hours. Only the 41 *sap* mutants that maintained a non-mucoid phenotype after 48 hours during this secondary screening were used in subsequent analyses.
Complementation assays

Complementation of the sap mutants was accomplished by a modified tri-parental mating protocol (41) developed during this study. The donor E. coli strain containing the plasmid of interest was crossed on an LB plate with the two helper E. coli strains, pRK600 and pRK2013 (Table 1), and the recipient, in this case, the sap mutants. The following day, the mating conglomeration was homogenized in LB broth, diluted, and plated on selective media (LB/PIA supplemented by Tc 100 μg/ml or Cb 150 μg/ml). Colonies were checked for a mucoid or non-mucoid phenotype at 24 and 48 hours. Each of the sap mutants was complemented with pCD100 (Tc resistant) which contains the algT/U-mucA22-mucB-mucC-mucD operon (37). Those that saw a reversion to a mucoid phenotype were then complemented by pJG293 (Tc resistant) which contains algT/U alone (37). The remaining sap mutants that were not complemented by algT/U were conjugated with a plasmid containing algO (pAlgO), and another harboring mucP (pMucP).

Genomic DNA isolation

Genomic DNA was isolated from each of the sap mutants following a standard phenol-chloroform protocol (42). Briefly, 1 ml of an overnight culture was pelleted and mixed with lysozyme and proteinase K. After incubation at 37°C for 30 minutes, a 1:1 mixture of phenol:chloroform was added and vortexed to homogeneity. After centrifugation, the top layer containing the genomic DNA was removed and mixed with ethanol to precipitate the DNA and pelleted by
centrifugation at 16,000 xg for two minutes. The ethanol was decanted and the DNA was resuspended in water and stored at -20°C.

PCR amplification

Primers for polymerase chain reaction (PCR) were designed for *algT/U, mucA, algO, and mucP* (Table 2; Integrated DNA Technologies Inc., Coralville, IA). Each set of primers was designed to fall about 100 bp up and downstream of the gene so that subsequent DNA sequencing would not cut off the beginning and end of each gene.

The *mucA* gene of each of the sap mutants as well as the gene identified in the complementation assay as containing a potential mutation were PCR amplified for sequencing. Two and a half microliters of genomic DNA was mixed with 1 μl of each primer (Table 2), 5 μl of buffer xII, 0.5 μl of HiFi Taq polymerase (Invitrogen, Carlsbad, CA) and the volume was made up to 50 μl with water. The mixture was amplified in the thermocycler with the following program: 95°C for 5 min; 95°C 30 sec, 61°C for 30 sec, 72°C for a time dependent on the amplicon size (1 min/kb) repeated for 30 cycles; 72°C for 10 min; hold at 4°C for further analysis. Products were run on a 2% agarose gel to verify amplification. PCR products were then cleaned according to a kit and standard protocol (Promega, Madison, WI).
DNA sequencing

Samples were sent to GeneWiz Inc. (Plainsfield, NJ) for sequencing. The mucA gene and the complementing genes of each sap mutants were sequenced. Samples were prepared according to the company’s requirements. Each tube sent out was premixed with 5 μl of 5 μM primer (forward and reverse separately) and 40 ng of the PCR product.

Sequence analysis

Sequences were aligned using NCBI Blast, ClustalΩ, T-Coffee, LaserGene software, and Boxshade against the P. aeruginosa 2192 wildtype sequence (43, 44) to check for mutations (45-48).
RESULTS

Isolation of sap mutants

The clinical isolate *P. aeruginosa* 2192 was grown for two weeks at 25°C without aeration. A total of 1058 colonies were analyzed during that period. Of these, 127 (12%) were nonmucoid and considered sap mutants. These were then plated on PIA media and allowed to grow for 48 hours to verify stability. Only 41 (3.8%) retained the Alg phenotype. Of these, 39 sap mutants produce alginate when the cells are at high density on a plate and they remain completely nonmucoid when they are single colonies. Two, sap8 and sap20, remain completely nonmucoid indefinitely, whether in a dense community or single colony.

Complementation assays

Each of the sap mutants was complemented with genes previously identified as common second-site mutations (32, 37). Twenty-eight sap mutants (68%) were complemented by pCD100 containing the whole *algT/U* operon. These were also complemented by pJG293 containing *algT/U* alone (Table 1).

The mucoid phenotype was restored in 11 sap mutants (17%) when complemented by *mucP*. Similarly, *algO* successfully complemented four (10%) of the mutants that were also complemented by *mucP*.

Two sap mutants, sap8 and sap20, were not complemented by any of the previously identified genes. When pCD100 (37) was introduced, the two mutants
failed to grow. In the presence of pJG293 (37), the strains grew and were nonmucoid.

Sequencing mucA

P. aeruginosa 2192 contains a mutation in the anti-sigma factor *mucA* which results in constitutive alginate production. To determine the exact mutation, the *mucA* of *P. aeruginosa* 2192 was aligned with PAO1, the common reference strain which has no mutation, and PDO300, the laboratory-generated strain containing a *mucA*22 allele. *P. aeruginosa* 2192 was seen to have A343G resulting in a silent mutation, and G539T leading to a stop codon at the 180th position of the protein (Figure 4). The *mucA* genes of 10 of the sap mutants were aligned to *P. aeruginosa* 2192 and shown to possess the original mutations (Figure 4).

Analysis of algT/U, algO, mucP in *P. aeruginosa* 2192 and sap mutants

algT/U: Alignment has shown that the *algT/U* ORF and promoter sequence is conserved between PAO1 and *P. aeruginosa* 2192 (data not shown). The sap mutants are also mutation free.

algO: The *P. aeruginosa* 2192 *algO* sequence shows nine SNPs which all result in silent mutations. The sap mutants are yet to be sequenced.

mucP: mucP of *P. aeruginosa* 2192 has two SNPs relative to PAO1; one relays a silent mutation, and the other a change of an alanine to a valine in the 313. This change is to an amino acid of similar functional group, and thus it is hypothesized
that the function is conserved. The sap mutants have not been sequenced as of yet.
DISCUSSION

Laboratory generated strains have been immensely useful in scientific research and have driven the depth of our knowledge to where it is today. However, laboratory strains, such as PDO300, will always fall short of perfectly mimicking the real-world pathogenesis of clinical isolates (39). This project has certainly confirmed the importance of utilizing a strain isolated directly from the lungs of a patient who passed away from the infection. It has also made the research eminently personal. The present study was designed to confirm the conclusions about alginate regulation drawn from studies using PDO300, as well as investigate the novelty and peculiarity of *P. aeruginosa* 2192.

P. aeruginosa 2912 shows a hyperstable mucoid phenotype

Non-mucoid variants of *P. aeruginosa* 2192 were isolated in the same way as previous studies that utilized PDO300 as the parent strain (37). Studies using PDO300 saw a 90% reversion to sap mutants after just 48 hours of culturing at 25°C without aeration (37). In contrast, PA2192 took two weeks under the same conditions to yield even a 3.8% reversion that could be utilized in further analyses. This extended time needed to isolate non-mucoid variants is unique to *P. aeruginosa* 2192 when compared with another clinical strain as well. One study obtained mutants from FRD1, a CF isolate, in 24 hours under the same conditions (32). When compared with the PDO300 and FRD1 studies, *P. aeruginosa* 2192 has a hyperstable mucoid phenotype since it took seven and fourteen times longer
before any non-mucoid colony was isolated. It remains to be seen what the
contributing factors to this hyperstability are, including the chemical makeup of
P. aeruginosa 2192 alginate when compared with PDO300. It is interesting to
speculate that the hyperstability is directly related to the clinical virulence of *P.
aeruginosa* 2192.

P. aeruginosa 2192 possesses a novel *mucA* mutation

Sequence analysis of *mucA* shows that PA2192 does not have the common
*mucA*22 allele (22) (Figure 4). Instead, it has a previously undocumented *mucA*
mutation, which has been named the *mucA*180 allele. Alginate production is
frequently accomplished in clinical isolates by mutating the *mucA* anti-sigma
factor (34). The most common mutation is the *mucA*22 allele possessed by ~85%
of mucoid *P. aeruginosa* strains (34, 35). It was in this light that PDO300 was
constructed from PAO1 with the *mucA*22 allele to imitate clinical, mucoid strains
(22). The majority of *mucA* mutations are toward the 3’ end of the sequence (24,
49, 50). This results in an altered or truncated C-terminus of MucA that is the end
that protrudes from the inner membrane into the periplasm (Figure 4) and
interacts with MucB; as a result, MucB binding is reduced or inhibited altogether
(50-52). Without MucB binding, MucA is destabilized, and the AlgT/U sigma factor
is released resulting in alginate production (50).

It is hypothesized that MucA180 also has a reduced interaction with MucB due to
protein truncation. Further experimentation with a yeast two-hybrid system is
required to demonstrate this. It could be accomplished by designing a MucA180 bait protein and a MucB fish protein. When compared to wildtype MucA, the MucA180 two-hybrid system should show reduced transcription of the reporter gene.

P. aeruginosa 2192 algT/U shows no mutation

The *mucA* sequence alignment of the non-mucoid variants revealed that they maintain the *mucA*180 allele. Thus, the loss of alginate production is not the result of a true reversion that has restored the function of MucA, but is due to a second-site mutation, as was hypothesized.

Complementation assays have shown that a majority (68%) of the second-site mutations may be mapped to *algT/U*. Interestingly, no mutation was detected in the *algT/U* open reading frame (ORF) or in the promoter region upstream of the ORF. This suggests that there may be a novel mechanism of alginate regulation in *P. aeruginosa* 2192 that is bypassed when AlgT/U is overexpressed. Further studies will investigate this possibility. This does not rule out the possibility that this set of revertants may harbor an entirely novel mutation.

mucP and algO are involved in *P. aeruginosa* 2192 alginate regulation

This study also found that *mucP* was able to restore the Alg⁺ phenotype of 17% of the non-mucoid variants, indicating that second-site mutations in *mucP* were the
second most common mode of alginate repression in *P. aeruginosa* 2192. The third most common second-site mutation in alginate suppression is in *algO* (10%). Moreover, all the non-mucoid variants that were complemented by *algO* were also complemented by *mucP*, suggesting that *algO* mutations can be bypassed in *P. aeruginosa* 2192 by increasing the *mucP* copy number as previously demonstrated (Delgado et al., 2018, Submitted). The exact function of AlgO has not been elaborated as yet but presumed to be a periplasmic protease (37). The *mucP* and *algO* genes in the sap mutants are being sequenced to confirm the mutations and find the exact region of the proteins that is mutated.

Uncomplemented non-mucoid variants possess novel second-site mutations

Two of the non-mucoid variants of *P. aeruginosa* 2192 (*sap2192-8* and *sap2192-20*; Table 1) were not complemented by any of the genes previously identified as liable to second-site mutations. Interestingly, these two also remain completely nonmucoid indefinitely while the others begin producing alginate after 48 hours. This indicates that these possess mutations in one or more novel genes that previously have not been identified as involved in alginate regulation. The *mucA* of these mutants did not possess true reversions and restoration of function. The mutants will be complemented with a previously constructed *P. aeruginosa* cosmid library (37) to identify any novel mutations elsewhere on the chromosome. These two mutants prove fatal when the *algT/U* operon was introduced on pCD100. It is hypothesized that either these two do not take up the plasmid for
some reason, and thus are killed on the selective media, or the novel mutation, which is yet to be identified, will be able to explain this highly unusual phenomenon.

Conclusion

Care for CF patients over the last thirty years has dramatically improved. Life expectancy has risen from 18 years in the 1980’s to nearly 50 today (9). P. aeruginosa, a ubiquitous bacterium, is devastatingly efficient as a CF pathogen (53). The most indicative factor pointing towards poor patient outcome is the production of alginate by the colonizing strain (54). As of yet, there is no effective anti-alginate therapy. Understanding all variables of P. aeruginosa alginate regulation and synthesis is inseparable from combating this deadly pathogen. The present study sought to contribute to this end by investigating regulatory genes involved in the mucoid to non-mucoid reversion of the clinical strain P. aeruginosa 2192.

Acknowledgements

We thank members of the Mathee lab for their valuable insights. This research was supported by NIH-National Institute of Allergy and Infectious Diseases (NIAID) 1R15AI111210 (to KM and HK), and NIH-National Institute of General Medical Sciences (NIGMS) T34 GM08368 (to LF). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

There are no conflicts of interest.

Ethical Statement

Not applicable.

Table 1: Strains and primers generated and used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Phenotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap2192-1</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BCO1; This study</td>
</tr>
<tr>
<td>sap2192-2</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC02; This study</td>
</tr>
<tr>
<td>sap2192-3</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC03; This study</td>
</tr>
<tr>
<td>sap2192-4</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC04; This study</td>
</tr>
<tr>
<td>sap2192-5</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC05; This study</td>
</tr>
<tr>
<td>sap2192-6</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC06; This study</td>
</tr>
<tr>
<td>sap2192-7</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC07; This study</td>
</tr>
<tr>
<td>sap2192-8</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC08; This study</td>
</tr>
<tr>
<td>sap2192-9</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC09; This study</td>
</tr>
<tr>
<td>sap2192-10</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC10; This study</td>
</tr>
<tr>
<td>sap2192-11</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC11; This study</td>
</tr>
<tr>
<td>sap2192-12</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC12; This study</td>
</tr>
<tr>
<td>sap2192-13</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC13; This study</td>
</tr>
<tr>
<td>sap2192-14</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC14; This study</td>
</tr>
<tr>
<td>sap2192-15</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC15; This study</td>
</tr>
<tr>
<td>sap2192-16</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC16; This study</td>
</tr>
<tr>
<td>sap2192-17</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC17; This study</td>
</tr>
<tr>
<td>sap2192-18</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC18; This study</td>
</tr>
<tr>
<td>sap2192-19</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC19; This study</td>
</tr>
<tr>
<td>sap2192-20</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC20; This study</td>
</tr>
<tr>
<td>sap2192-21</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC21; This study</td>
</tr>
<tr>
<td>sap2192-22</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC22; This study</td>
</tr>
<tr>
<td>sap2192-23</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC23; This study</td>
</tr>
<tr>
<td>sap2192-24</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC24; This study</td>
</tr>
<tr>
<td>sap2192-25</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC25; This study</td>
</tr>
<tr>
<td>sap2192-26</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC26; This study</td>
</tr>
<tr>
<td>sap2192-27</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC27; This study</td>
</tr>
<tr>
<td>sap2192-28</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC28; This study</td>
</tr>
<tr>
<td>sap2192-29</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC29; This study</td>
</tr>
<tr>
<td>sap2192-30</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC30; This study</td>
</tr>
<tr>
<td>sap2192-31</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC31; This study</td>
</tr>
<tr>
<td>sap2192-32</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC32; This study</td>
</tr>
<tr>
<td>sap2192-33</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC33; This study</td>
</tr>
<tr>
<td>sap2192-34</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC34; This study</td>
</tr>
<tr>
<td>sap2192-35</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC35; This study</td>
</tr>
<tr>
<td>sap2192-36</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC36; This study</td>
</tr>
<tr>
<td>sap2192-37</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC37; This study</td>
</tr>
<tr>
<td>sap2192-38</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC38; This study</td>
</tr>
<tr>
<td>sap2192-39</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC39; This study</td>
</tr>
<tr>
<td>sap2192-40</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC40; This study</td>
</tr>
<tr>
<td>sap2192-41</td>
<td>mucA180</td>
<td>Alg⁻</td>
<td>BC41; This study</td>
</tr>
<tr>
<td>PAO1</td>
<td>Prototypic strain</td>
<td>Alg⁻</td>
<td>BC42; Holloway & Morgan 1986</td>
</tr>
<tr>
<td>PA2192</td>
<td>Clinical isolate; mucA180</td>
<td>Alg⁺</td>
<td>BC43; Mathee et al. 2008</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Resistance</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRK600</td>
<td>pRK600</td>
<td>Cm<sup>R</sup> (mating helper)</td>
<td>BC44; Heeb et al. 2000</td>
</tr>
<tr>
<td>pRK2013</td>
<td>pRK2013</td>
<td>Km<sup>R</sup> (mating helper)</td>
<td>BC45; Figurski & Helinski 1979</td>
</tr>
<tr>
<td>pCD100</td>
<td>pRK404; algTmucAmucBmucCmucD</td>
<td>Tc<sup>R</sup></td>
<td>BC46; Sautter et al. 2012</td>
</tr>
<tr>
<td>pJG293</td>
<td>pRK404; algT/U</td>
<td>Tc<sup>R</sup></td>
<td>BC47; Sautter et al. 2012</td>
</tr>
<tr>
<td>pAlgO</td>
<td>pMF54; algO</td>
<td>Ap<sup>R</sup></td>
<td>BC48; Caballos submitted</td>
</tr>
<tr>
<td>pMucP</td>
<td>pMF54; mucP</td>
<td>Ap<sup>R</sup></td>
<td>BC49; Caballos submitted</td>
</tr>
</tbody>
</table>
Primer Sequence (5' to 3')

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
<th>Amplicon (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlgT Fw</td>
<td>TGTTGATAATGTTGGCTCATGCCCGCATTTTC</td>
<td>1183</td>
</tr>
<tr>
<td>AlgT Rv</td>
<td>AGCGATATCCAGCTTCGGCAGGGTAG</td>
<td></td>
</tr>
<tr>
<td>MucA Fw</td>
<td>AGGACGTAGCGCAGGAAGGCTTATC</td>
<td>1221</td>
</tr>
<tr>
<td>MucA Rv</td>
<td>AAGCTGCCATTGCGCTCGTAGACGAAG</td>
<td></td>
</tr>
<tr>
<td>AlgO Fw</td>
<td>TTCTGCAACAGGTCCGGCGCGGTGGAG</td>
<td>2738</td>
</tr>
<tr>
<td>AlgO Rv</td>
<td>ACTCCGGGGAGACGGTGGAGAAACGACATG</td>
<td></td>
</tr>
<tr>
<td>MucP Fw</td>
<td>AGCGTGATCCACTCGATGGTGAC</td>
<td>2212</td>
</tr>
<tr>
<td>MucP Rv</td>
<td>GAGCAGGTCTTCTTGAAATCGCTTTG</td>
<td></td>
</tr>
<tr>
<td>AlgT Seq Fw</td>
<td>ATATCAGAAAGACTCGTGA</td>
<td>Seq. only</td>
</tr>
<tr>
<td>AlgT Seq Rv</td>
<td>CATCCGCTTCGTATCCAT</td>
<td></td>
</tr>
</tbody>
</table>

N.B.: Colored boxes group the sap mutants that came from the same parent colony during the isolation process.
Figure Legends

Figure 1: The *Pseudomonas aeruginosa* alginate regulation pathway. Alginate production is controlled by the sigma factor AlgT/U which is ordinarily bound to the inner membrane by the anti-sigma factor MucA to prevent interaction with RNAP. AlgT/U must be freed from MucA to begin alginate production. When stress is sensed MucE misfolds (1) and induces periplasmic cleavage of MucA by AlgW (2). MucA is also cleaved by MucP (3) on the cytoplasmic end to release AlgT/U. AlgT/U is now free to interact with RNAP and initiate alginate biosynthesis by transcribing the *algD* operon. When MucA is mutated, it is unable to sequester AlgT/U and a mucoid phenotype ensues. Proteins marked with a red star are under investigation in this study. Adapted from Pandey *et al.*, 2016 (27).

Figure 2: The *P. aeruginosa* *in vitro* reversion phenomenon. Many clinical isolates are mucoid when removed from the lung due to *mucA* mutations. When cultured *in vitro*, they cease producing alginate and become non-mucoid. *mucA* has been seen to remain mutated, and so the reversion is due to second-site mutations in other alginate-regulating genes.

Figure 4: The alignment of MucA. A. *mucA* DNA alignment between PAO1, PDO300 (*mucA22*), PA2192, and a sap mutants displaying the differences in *mucA* mutations. Ten sap mutants all had the same sequence. PAO1 contains no
Figures

Figure 1

mutations and is presented as a reference. **B.** Alignment of the respective MucA proteins. **C.** Model of the differences in the MucA protein. MucA22 and MucA180 both have a truncated C-terminus in the periplasm. As a result, MucB cannot bind and the protein loses stability, releasing AlgT/U and bestowing the mucoid phenotype.
in vitro

Second-site mutations

mucoid
Alg+

non-mucoid
Alg−
A.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>337</th>
<th>426</th>
<th>534</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAO1_mucA</td>
<td>ATGAGTC..... CCGCAAATGCG..... GGGGGCGCCGCAGG..... TACAGAG..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO300_mucA</td>
<td>ATGAGTC..... CCGCAAATGCG..... GGGGCAGCGCCGCAGG..... TACAGAG..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA2192_mucA</td>
<td>ATGAGTC..... CCGCAAGATGCG..... GGGGGCGCCGCAGG..... TACATAAG..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sap1_mucA</td>
<td>ATGAGTC..... CCGCAAGATGCG..... GGGGGCGCCGCAGG..... TACATAAG..</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Silent mucA22 Stop

B.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>139</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAO1_MucA</td>
<td>MSREA... SEEQGAPQVITNSSSDTRWHEQRLPIYLRQHVQQSAVSGTESALPYARAASLENR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO300_MucA22</td>
<td>MSREA... SEEQGRRR--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA2192_MucA</td>
<td>MSREA... SEEQGAPQVITNSSSDTRWHEQRLPIYLRQHVQQSAVSGT---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sap1_MucA</td>
<td>MSREA... SEEQGAPVITNSSSDTRWHEQRLPIYLRQHVQQSAVSGT---------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4

Periplasm

Cytoplasm

PAO1

PD0300

PA2192

MucB

AlgT/U

MucA

MucA22

MucA180

Inner Membrane