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Abstract. The seasonal climate drivers of the carbon cy-

cle in tropical forests remain poorly known, although these

forests account for more carbon assimilation and storage than

any other terrestrial ecosystem. Based on a unique combina-

tion of seasonal pan-tropical data sets from 89 experimental

sites (68 include aboveground wood productivity measure-

ments and 35 litter productivity measurements), their asso-

ciated canopy photosynthetic capacity (enhanced vegetation

index, EVI) and climate, we ask how carbon assimilation

and aboveground allocation are related to climate seasonal-

ity in tropical forests and how they interact in the seasonal

carbon cycle. We found that canopy photosynthetic capacity

seasonality responds positively to precipitation when rain-

fall is < 2000 mm yr−1 (water-limited forests) and to radia-

tion otherwise (light-limited forests). On the other hand, in-

dependent of climate limitations, wood productivity and lit-

terfall are driven by seasonal variation in precipitation and

evapotranspiration, respectively. Consequently, light-limited

forests present an asynchronism between canopy photosyn-

thetic capacity and wood productivity. First-order control by

precipitation likely indicates a decrease in tropical forest pro-

ductivity in a drier climate in water-limited forest, and in cur-

rent light-limited forest with future rainfall< 2000 mm yr−1.

1 Introduction

Tropical forests have a primary role in the terrestrial car-

bon (C) cycle. They constitute 54 % of the total aboveground

biomass carbon of Earth’s forests (Liu et al., 2015) and ac-

count for half (1.19± 0.41 PgC yr−1) of the global carbon

sink of established forests (Pan et al., 2011; Baccini et al.,

www.biogeosciences.net/13/2537/2016/ Biogeosciences, 13, 2537–2562, 2016



2540 F. H. Wagner et al.: Climate seasonality limits leaf carbon assimilation

2012). Based on annual or multi-annual measurements of

forest wood productivity, changes in carbon dynamics and

functioning of the tropical trees have already been observed.

While tropical forests have been acting as a long-term, net

carbon sink, a declining trend in carbon accumulation has

been recently demonstrated for Amazonia (Brienen et al.,

2015). Furthermore, a positive change in water-use efficiency

of tropical trees due to the CO2 increase over the past 150

years has also been observed (van der Sleen et al., 2015;

Bonal et al., 2011). Currently, increasing evidence shows that

the tropical forests present a seasonality in the assimilation

and storage of carbon, associated with climate seasonality

(Wu et al., 2016; Doughty et al., 2014; Rowland et al., 2014b,

a, 2015; Wagner et al., 2014). However, the inherent problem

of these studies is that they are based on only one site or one

region, which renders it difficult to disentangle the potential

climate drivers due to collinearity between climate variables.

Moreover, the studies sometime focus on a single part of the

carbon cycle that may lead to erroneous interpretation on for-

est productivity due to interactions among the carbon cycle

components (Doughty et al., 2014). Understanding the sea-

sonal drivers of the carbon cycle in a pan-tropical context

by using the maximum information available on carbon stor-

age and assimilation is therefore needed to assess the mech-

anisms driving changes in forest carbon use and predict trop-

ical forest behaviour under future climate changes.

Despite long-term investigation of changes in forest

aboveground biomass stock and carbon fluxes, the direct ef-

fect of climate on the seasonal carbon cycle of tropical forests

remains unclear. Contrasting results have been reported de-

pending on methods used. Studies show an increase of above-

ground biomass gain in the wet season from direct measure-

ment (biological field measurements), or, from indirect mea-

surement, an increase of canopy photosynthetic capacity in

the dry season (remote sensing, flux tower network) (Wagner

et al., 2013). Several hypotheses have been proposed to ex-

plain these patterns. (i) Wood productivity, estimated from

trunk diameter increment, is mainly controlled by rainfall

and water availability and occurs preferentially during the

wet season, even if carbon accumulation in the trees could

be greater in the dry season than in the wet season, likely re-

flecting a tradeoff between maximum potential growth rate

and hydraulic safety (Rowland et al., 2014b, a; Wagner et al.,

2014). Seasonal variation in carbon allocation to the differ-

ent parts of the plant (crown, roots) also contributes to opti-

mising resource use and could explain the low synchronicity

between wood productivity and carbon accumulation in the

trees (Doughty et al., 2014, 2015; Rowland et al., 2014b).

(ii) Litterfall peaks mainly occur during dry periods in re-

sponse to two potential climate drivers: seasonal changes

in daily insolation leading to production of new leaves and

synchronous abscission of old leaves, and high evaporative

demand and low water availability, which both induce leaf

shedding in the dry season (Borchert et al., 2015; Zhang

et al., 2014; Wright and Cornejo, 1990; Chave et al., 2010;

Myneni et al., 2007; Jones et al., 2014; Bi et al., 2015);

and (iii) Photosynthesis in these tropical forested regions is

mainly limited by water and is sustained during the dry sea-

son above a threshold of 2000 mm of mean annual precipita-

tion (Restrepo-Coupe et al., 2013; Guan et al., 2015). Water

limitation is not the only known control, and other climate

variables and internal carbon allocation have been demon-

strated to drive photosynthetic capacity in tropical forests

such as irradiance, temperature and leaf dynamics. Irradiance

is directly and positively linked to plant photosynthetic ca-

pacity, carbon uptake and plant growth (Graham et al., 2003),

while temperatures above 30 ◦C drive a reduction of photo-

synthetic capacity (Lloyd and Farquhar, 2008; Doughty and

Goulden, 2008; Doughty, 2011). Recently, for non-water-

limited forests in Amazonia, Wu et al. (2016) showed that

the increase in ecosystem photosynthesis during dry periods

result from the synchronisation of new leaf growth and lit-

terfall, shifting canopy composition towards younger more

light-use efficient leaves.

Here, we determine the dependence of seasonal above-

ground wood productivity, litterfall and canopy photosyn-

thetic capacity (using the MODIS enhanced vegetation in-

dex (EVI) as a proxy) on climate across the tropics, and as-

sess their interconnections in the seasonal carbon cycle. EVI

strongly correlated with chlorophyll content and photosyn-

thetic activity (Huete et al., 2002, 2006), and we used a cor-

rected version of the index to account for sun-angle artifact

(Morton et al., 2014; Wagner et al., 2015). While positive

correlation of leaf flushing and EVI has already been re-

ported in tropical forests (Brando et al., 2010; Wagner et al.,

2013; Wu et al., 2016), Chavana-Bryant et al. (2016) have

demonstrated in a tropical forest that EVI increased with leaf

development (from youngest to the most mature cohorts),

and then declined when leaves were at old and senescent

stages. Here we assume that EVI represents the maturation

of new leaves and that the highest value of EVI represents the

highest greenness and canopy photosynthetic capacity, when

leaves are fully mature. We use a unique satellite and ground-

based combination of monthly data sets from 89 pan-tropical

experimental sites (68 include aboveground wood productiv-

ity and 35 litter productivity measurements), their associated

canopy photosynthetic capacity and climate to address the

following questions. (i) Are seasonal aboveground wood pro-

ductivity, litterfall productivity and photosynthetic capacity

all dependent on climate? (ii) Does a coherent pan-tropical

rhythm exist among these three key components of forest car-

bon fluxes? (iii) If so, is this rhythm primarily controlled by

exogenous (climate) or endogenous (ecosystem) processes?

Biogeosciences, 13, 2537–2562, 2016 www.biogeosciences.net/13/2537/2016/
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Figure 1. Geographical locations of the 89 observation sites with the field measurement types (wood productivity and/or litter productivity)

and global ecological zones (FAO, 2012). Wood productivity is available for 68 sites (54+ 14), litter productivity for 35 sites (21+ 14), and

EVI and climate for all the 89 studied sites (54+ 21+ 14).

2 Methods

2.1 Data sets

We compiled publications reporting seasonal wood produc-

tivity of tropical forests. Seasonal tree growth measurements

in 68 pantropical forest sites, representing 14 481 individu-

als, were obtained from published sources or directly from

the authors (Table 1, Fig. 1). The data set consists of repeated

seasonal measurements of tree diameter, mostly with den-

drometer bands (94.1 %), electronic point surveys (4.4 %) or

graduated tapes (1.5 %). The names of all recorded species

were checked using the Taxonomic Name Resolution Ser-

vice and corrected as necessary (Boyle et al., 2013; Chamber-

lain and Szocs, 2013). Botanical identifications were made at

the species level for 11 967 trees, at the genus level for 1613

trees, family level for 171 trees and unidentified for 730 trees.

Wood density values were taken from the Global Wood Den-

sity Database (Chave et al., 2009; Zanne et al., 2009) or from

the authors, when measured on the sample (Table 1). Direct

determination was available for 455 trees and species mean

was assumed for an additional 8671 trees. For the remaining

5355 trees, we assumed genus mean (4639), family mean

(136) or site mean (580) of wood density values as com-

puted from the global database (Zanne et al., 2009). Palms,

lianas and species from mangrove environments were ex-

cluded from the analysis. Diameter changes were converted

to biomass estimates using a tropical forest biomass allomet-

ric equation – which uses tree height (estimated in the allo-

metric equation if not available), tree diameter and wood den-

sity (Chave et al., 2014) – and then the mean monthly incre-

ment of the sample was computed for each sample. Recently,

Cuny et al. (2015) showed that stem woody biomass pro-

duction lags behind stem-girth increase by over 1 month in

temperate coniferous forests, but here we assume that stem-

girth increase represents woody biomass production as no

such information is yet available for tropical forest trees. To

detect the errors of overestimated or underestimated growth,

the increment histogram of each site was plotted. For each

suspected error, the increment trajectory of trees was then vi-

sually assessed to confirm the error. If the error was clearly

identifiable, such as an abnormal increase (or decrease) in

diameter values followed by a large decrease (or increase)

of the same amplitude resulting from typographic errors, for

example 28 whereas 2.8 was expected, the typographic error

was corrected. When the typographic error was not clearly

identifiable, the value was corrected with linear approxima-

tion with the mean increment of t+1 and t−1. In some cases

there was an identifiable increase of diameter values (or de-

crease), but not followed by a decrease (or an increase) of

the same amplitude. This pattern was associated to the repo-

sitioning of the dendrometer bands (reported in the source

data set). In this case, the increment was deleted and set to

zero and the new time series of cumulative diameter values

were computed. As the diameter values are needed to com-

pute biomass, this strategy was used to benefit of the full time

series of diameter increment even after solving the error.

Seasonal litterfall productivity measurements from a pre-

viously published meta-analysis were used for South Amer-

ica (Chave et al., 2010) (description in Table 1 of Chave et al.,

2010). In this data set, we used only monthly measurement

www.biogeosciences.net/13/2537/2016/ Biogeosciences, 13, 2537–2562, 2016
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data from old-growth forests, as some sites have plots of both

secondary and old-growth forests; flooded forests were ex-

cluded. In addition to these 23 sites, we compiled the sea-

sonal leaf/litterfall data of 12 sites where we already had

tree-growth measurements (Fig. 1 and Table 2). For these 35

sites, 26 had monthly leaf fall and 9 had monthly litterfall

data (leaf fall, twigs usually less than 2 cm in diameter, flow-

ers and fruits). The Pearson correlation coefficient between

leaf fall and litterfall for the 20 sites where both data are

available is 0.945 (Pearson test, t = 42.7597, df = 218, p

value< 0.001). Consequently, we assumed that the seasonal

pattern of litterfall is not different from the seasonal pattern

of leaf fall.

Enhanced vegetation index (EVI) was used as a proxy

for canopy photosynthetic capacity in tropical forest regions

(Huete et al., 2006; Guan et al., 2015). EVI for the 89 experi-

mental sites (Fig. 1) was obtained from the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) MCD43 product

collection 5 provided every 16 days at 500 m spatial resolu-

tion (from 4 May 2002 to 30 September 2014). Before com-

puting the mean monthly EVI per site, we did a pixel selec-

tion in five steps. (i) Selection of all the pixels in a square of

side 40 km, centred on the pixel containing each site (6561

pixels per site). This surface was selected to maximize the

quantity of valid pixels to estimate monthly site’s EVI, as,

due to persistent cloud cover in tropical forest regions, valid

observations of EVI are limited, producing incomplete time

series of EVI values for a given pixel. (ii) In this area, the pix-

els containing the same or at least 90 % of the site land cover

pixel were selected, based on MCD12Q1 for 2001–2012 at

500 m resolution (Justice et al., 1998). (iii) Thereafter, only

the pixels forested in 2000 and without loss of forest and

with tree cover above or equal to the site tree cover were

retained using global forest cover loss 2000–2012 and Data

mask based on Landsat data (Hansen et al., 2013). (iv) Only

pixels with a range of±200 m the site altitude were retained,

using NASA Shuttle Radar Topographic Mission (SRTM)

data, which were reprocessed to fill in the original no-data

holes (Jarvis et al., 2008). (v) For corrected reflectance com-

putation we used quality index from 0 (good quality) to 3 (all

magnitude inversions or 50 % or less fill-values) extracted

from MCD43A2. When required, data sets used to make the

selection were aggregated to the spatial resolution of MCD43

product (500 m) and reprojected in the MODIS sinusoidal

projection. The reflectance factors of red (0.620–0.670 µm,

MODIS band 1), NIR (0.841–0.876 µm, MODIS band 2)

and blue bands (0.459–0.479 µm, MODIS band 3) of the re-

tained pixels were modelled with the RossThick-LiSparse-

Reciprocal model parameters contained in the MCD43A1

product with view angle θv fixed at 0◦, sun zenith angle θs

at 30◦ and relative azimuth angle 8 at 0◦ and EVI was com-

puted as shown in Eq. (1):

EVI= 2.5×
NIR− red

NIR+ 6× red− 7.5× blue+ 1
. (1)

To filter the time series, EVI above or below the 95 % confi-

dence interval of the site’s EVI values were excluded. Then,

the 16-day time series were interpolated to a monthly time

step. Finally, the interannual monthly mean of EVI for each

site was computed. Further, the 1EVIwet-dry index was com-

puted for each site, that is, the differences of wet- and dry-

season EVI normalized by the mean EVI, whereas dry sea-

son is defined as months with potential evapotranspiration

above precipitation (Guan et al., 2015). For the sites where

evapotranspiration is never above precipitation, dry season

was defined as months with normalized potential evapo-

transpiration above normalized precipitation. In this study

1EVIwet-dry computed from MODIS MCD43A1 is corre-

lated with MOD13C1 (Amazonian sites: ρSpearman=0.90;

pan-tropical sites: ρSpearman = 0.86) and MAIAC (Amazo-

nian sites: ρSpearman = 0.89) products (Supplement Fig. S4).

To extract the monthly climate time series for the 89 ex-

perimental sites (Fig. 1), we used climate data sets from

three sources: the Climate Research Unit (CRU) at the Uni-

versity of East Anglia (Mitchell and Jones, 2005), the Con-

sortium for Spatial Information website (CGIAR-CSI, http:

//www.cgiar-csi.org) and from NASA (Loeb et al., 2009).

From the CRU, we used variables from the CRU-TS3.21

monthly climate global data set available at 0.5◦ resolution

from 1901 to 2012: cloud cover (cld, unit: %); precipitation

(pre, mm); daily mean, minimal and maximal temperatures

(respectively tmp, tmn and tmx, ◦C); temperature amplitude

(dtr, ◦C); vapour pressure (vap, hPa); and potential evapo-

transpiration (pet, mm). The maximum climatological water

deficit (CWD) is computed with CRU data by summing the

difference between monthly precipitation and monthly evap-

otranspiration only when this difference is negative (water

deficit) (Chave et al., 2014). From the CGIAR-CSI, we used

the Global High-Resolution Soil-Water Balance dataset, soil

water content (swc, %) (Zomer et al., 2008). Additionally,

we used monthly incoming radiation at the top of the at-

mosphere (rad, W m−2) covering the period from 2000 to

2015 at 1◦ spatial resolution from the CERES instruments on

the NASA Terra and Aqua satellites (Loeb et al., 2009) and

monthly incoming radiation at the surface (radsurf, W m−2)

from CERES SYN1deg product computed for all-sky condi-

tions, provided at 1◦ spatial resolution from 2000 to 2015.

Monthly incoming radiation at the surface (shortwave radia-

tion) refers to radiant energy with wavelengths in the visible,

near-ultraviolet, and near-infrared spectra and is produced

using MODIS data and geostationary satellite cloud proper-

ties (Kato et al., 2011). In addition to the temporal series of

climate variables, we extracted the global ecological zones

(GEZs) of the sites. These GEZs are defined by the Food and

Agriculture Organization of the United Nations (FAO) and

relies on a combination of climate and (potential) vegetation

(FAO, 2012).

Because at some sites wood productivity or litterfall mea-

surements are older than the EVI measurements (before

2002), and, for recent site measurements, climate data are

Biogeosciences, 13, 2537–2562, 2016 www.biogeosciences.net/13/2537/2016/
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not yet available (after 2012), all the data sets were averaged

monthly by site. Then, in order to remove the site effect on

the mean and the variance of the variables and to analyse only

seasonality, all the variables were centred on zero and scaled

to a variance of 1 by site. That is, for a given variable of a

site, monthly values were subtracted by their annual mean

and divided by their annual standard deviation. The obtained

normalized variable had a mean of 0 and a variance of 1, but

the time variation in the variable time-series, that is in our

case the seasonality, remained completely unchanged.

The 89 sites represent a large sample of tropical forests un-

der different tropical and subtropical climates corresponding

to six global ecological tropical zones (FAO, 2012): tropi-

cal rain forest (TAr, 41 sites), tropical moist deciduous forest

(TAwa, 23 sites), tropical dry forest (TAwb, 14 sites), tropical

mountain systems (TM, 7 sites), tropical shrubland (TBSh, 1

site) and subtropical humid forest (SCf, 3 sites).

2.2 Data analysis

2.3 Effect of stem hydration on wood productivity

Changes in tree circumference measured with dendrometers

are commonly used to characterise seasonal wood produc-

tivity. However, accelerated changes in circumference incre-

ments during the onset of the wet season can be caused by

bark swelling as stems become hydrated (Stahl et al., 2010).

Similarly, bark shrinking during dry periods can mask any

secondary growth and even lead to negative growth incre-

ments (Stahl et al., 2010; Baker et al., 2002). Stem shrink-

age during dry periods may be an important limitation of this

work (Sheil, 2003; Stahl et al., 2010), as negative monthly

growth values exist at almost all the study sites. Since the

measurements are stem radius or circumference changes

rather than wood formation, it is difficult to distinguish be-

tween true wood formation and hydrological swelling and

shrinking. Direct measurements of cambial growth, such

as pinning and micro-coring, currently represent the most

reliable techniques for monitoring seasonal wood forma-

tion; however, all these methods are highly time-consuming,

which severely restricts their applicability for collecting large

data sets (Makinen et al., 2008; Trouet et al., 2012). Never-

theless, some observations already exist to compare growth

from dendrometers and cambial growth at a seasonal scale

for the same trees. In a tropical forest in Ethiopia experienc-

ing a strong seasonality, high-resolution electronic dendrom-

eters have been combined with wood anatomy investigation

to describe cambial growth dynamics (Krepkowski et al.,

2011). These authors concluded that water scarcity during

the long dry season induced cambial dormancy (Krepkowski

et al., 2011). Furthermore, after the onset of the rainy season,

(i) bark swelling started synchronously among trees, (ii) bark

swelling was maximum after few rainy days, and (iii) ever-

green trees were able to quickly initiate wood formation. In

a laboratory experiment of trunk section desiccation, Stahl

et al. (2010) have shown a decrease in the diameter of the

trunk sections ranging from 0.08 to 1.73 % of the initial di-

ameter. This decrease was significantly correlated with the

difference in water content in the bark, but not with the dif-

ference in water content in sapwood. The variation in the di-

ameter of the trunk sections were observed when manipulat-

ing the chamber relative air humidity from 90 to 40 %. How-

ever, these values are not representative of the in situ French

Guiana climatic conditions, which is where the trunk sec-

tions have been collected and where relative humidity never

falls below 70 %. Negative increments were reported for one-

quarter of their sample with dendrometers measurements in

the field. Recently, at the same site, some authors showed

that biomass increments were highly correlated between the

first and last quantiles of trunk bark thickness and between

the first and the last quantile of trunk bark density, thereby

suggesting that secondary growth is driven by cambial activ-

ity (Wagner et al., 2013) and not by water content in bark. At

Paracou, a recent study showed a decrease or stop in the cam-

bial growth for some species during the dry season, based on

analysis of tree rings (Morel et al., 2015).

In a temperate forest, Makinen et al. (2008) simultane-

ously using dendrometer pinning and micro-coring on Nor-

way spruce and Scots pine, Makinen et al. (see Figs. 3 and

5 in 2008) showed that a lag of 2 weeks exists between the

growth measured by dendrometers, but the general pattern of

growth is highly correlated. In La Selva (Costa Rica), where

there is no month with precipitation below 100 mm, a sea-

sonal variation is reported, thereby suggesting a seasonality

only driven by cambial growth. In conclusion, swelling and

shrinking exist and could result from different biotic and abi-

otic causes, cell size, diameter, bark thickness and relative air

humidity (Stahl et al., 2010; Baker et al., 2002). To test how

swelling and shrinking affect our results, we made first a lin-

ear model of wood productivity with precipitation as a single

predictor with all the data, and then a similar linear model

discarding the first month of the wet season (first month with

precipitation> 100 mm) and the first month of the dry season

(precipitation< 100 mm). Here, we assume that swelling oc-

curs in the first month of the wet season and shrinking occurs

in the first month of the dry season, as already observed. The

removal of the first month of dry and wet seasons (defined,

respectively, as the first month with precipitation > 100 mm

and the first month with precipitation < 100 mm) did not af-

fect the results of the linear model of wood productivity as a

function of precipitation, that is, intercepts and slopes are not

significantly different in both models (overlaps of the 95 %

confidence interval of coefficients and parameters, Table 3).

2.4 Seasonality analysis

To address the first question “Are seasonal aboveground

wood productivity, litterfall productivity and photosynthetic

capacity dependent on climate?”, we analysed with linear

models the relationship between our variable of interest
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Table 3. Coefficient of the linear model of wood productivity with the precipitation; with all data mWP or after removing the first month of

the dry season and wet season (defined, respectively, as the first month with precipitation > 100 mm and the first month with precipitation

< 100 mm), mWP, -init.

Model Parameter Value 2.5 % CI* 97.5 % CI* p value R2

mWP (Intercept) −0.001 −0.05 0.05 0.982 0.433

precipitation 0.66 0.64 0.74 < 0.0001

mWP, -init (Intercept) −0.03 −0.08 0.02 0.284 0.466

precipitation 0.67 0.61 0.72 < 0.0001

*: confidence intervals of the model parameters.

(wood productivity, litterfall productivity and photosynthetic

capacity) and each climate variable at each site and at t , t−1

month and t + 1 month. These lags were chosen to account

for variations between years in the climate seasonality, as we

used in our analysis the average climate per site. For exam-

ple, if the tree diameter increments were measured during a

year with a wet-season initiation delayed by 1 month in rela-

tion to the average year, a lag of 1 month could exist in the re-

lation of the tree diameter increments and the monthly aver-

ages of precipitation used in linear models. The results were

classified for each variable as a count of sites with signifi-

cantly positive, negative or non-significant results. To enable

between-sites comparison, when the overall link was nega-

tive, the linear model was then run with the climate variable

multiplied by −1. For a given climate variable, a site with

a significant association at only one of the time lags (−1, 0

or 1) was classified as significant. This strategy enables us

to highlight the potential drivers of our variable of interest,

which are the climate variables with a constant relation with

the variable of interest in all the sites. Climate variable with

no effect, or effect due to a particular correlation with a po-

tential driver at some sites, will show changes in the sign

of the relation with the variable of interest. Then, a McNe-

mar test was run to compare the proportion of our classifica-

tion (negative, positive or no relationship) between all paired

combinations of climate variables accounting for dependence

in the data, that is, to compare not only the proportion of

positive, negative and no significant effect between two cli-

mate variables and the variable of interest but also to detect

if the sites in each of the classes (positive, negative and no

significant effect) were similar. In order to summarise all the

relations between the climate variables, a table (similar to a

correlation table) containing all paired combination p values

of the McNemar test was built. In this table a p value < 0.05

indicate that a different association between the two climate

variables and the variables of interest cannot be rejected. To

determine which climate variables explain the same part of

variance and to enable interpretation, a cluster analysis was

performed on the table of p values of the McNemar test using

Ward distance. Climate variables in the same cluster indicate

that they share a similar relation with the variable of interest.

When the climate variable with direct effect was identified,

we built a linear model to predict wood and litter productiv-

ity seasonality with climate in all sites. For EVI, two climate

variables were identified and their influence was dependent

on the site values of 1EVIwet-dry. To find the 1EVIwet-dry

threshold of main influence of each variable, the R2 of the

linear relationship EVI as a function of the climate variable

for different values of1EVIwet-dry threshold were computed.

R2 was computed for the sample above or below1EVIwet-dry

depending on the relationship of each variable to the thresh-

old. The optimal threshold of 1EVIwet-dry for climate vari-

able influence on normalized EVI was defined by a break in

the decrease ofR2 values. Optimal thresholds were then used

to define the range of 1EVIwet-dry where EVI is influenced

by one of the climate variables, the other and by both. To

find the best linear combination of variables that contains the

maximum information to predict EVI, we ran an exhaustive

screening of the candidate models with the identified climate

variables and their interactions with the 1EVIwet-dry classes

using a stepwise procedure based on the Bayesian informa-

tion criterion, BIC (Schwarz, 1978).

To address the second question “Does a coherent pan-

tropical rhythm exist among these three key components of

the forest carbon fluxes?”, we analysed the linear relation-

ship between wood, litter productivity and canopy photosyn-

thetic capacity. The non-parametric Mann-Whitney test was

used to determine the association between wood/litter pro-

ductivity and photosynthesis rhythmicity depending on site

limitations.

To address the third question – is the rhythm among these

three key components of the forest carbon controlled by ex-

ogenous (climate) or endogenous (ecosystem) processes? –

we analysed the linear relationship between1EVIwet-dry and

mean annual precipitation, as well as the relationship be-

tween 1EVIwet-dry, 1wood productivitywet-dry and 1litter

productivitywet-dry and maximum climatological water deficit

(CWD). 1EVIwet-dry, 1wood productivitywet-dry and 1litter

productivitywet-dry indices are the differences of wet- and

dry-season variable values normalized by the mean of the

variable, where the dry season is defined as months with po-

tential evapotranspiration above precipitation.
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To avoid over-representation of sites with the “same cli-

mate” (that is, to account for spatial and temporal autocor-

relation in the climate data) cross correlation (positive and

negative) were computed within sites for the monthly cli-

mate variables rad, pre, pet, dtr, tmn and tmx. The site’s an-

nual values of the same climate variables were added in the

table. After scaling and centring the table, the Euclidian dis-

tance between each site and the mean table of all other sites

(barycentre) was computed. We defined the weight of each

site as the distance to the other divided by the maximum dis-

tance to the other. This distance was used as a weight in the

linear models.

All analysis were performed in R (Team, 2014).

3 Results

3.1 Climate footprint in seasonal carbon assimilation

and storage

A direct and dominant signal of precipitation seasonality was

found in seasonality of wood productivity for 59 out of the 68

sites (86.8 %) where wood productivity data were available

(cluster of variables in Fig. 2a with temperature amplitude

(dtr), cloud cover (cld), precipitation (pre) and soil water con-

tent (swc), Sect. 2.2 and Supplement Table S1). All the vari-

ables in this cluster are wet season indicators: low temper-

ature amplitude, high precipitation, high soil water content

and high cloud cover. Two other clusters of climate variables

are apparently associated with wood productivity. However,

the climate variables that better explained wood productivity

in these two clusters, vapour pressure (vap) and mean tem-

perature (tmp), respectively, are highly correlated with pre-

cipitation in the clusters (Fig. 2a and Tables S3–S4). In spite

of this dominant signal, these are outliers in our data, that

exhibit no relationship or a negative relationship with pre-

cipitation (Appendix A1). Four of the five sites that have no

dry season (months with precipitation below 100 mm) were

amongst these outliers.

It is interesting to note that 48.0 % of the monthly wood

productivity is explained by the single variable “precipi-

tation” (model mWP in Table 4). The linear model with

monthly precipitation only (mWP) was able to reproduce the

seasonality of the majority of the sites analysed (Fig. 3a). No

monthly lag between predicted and observed seasonality was

observed for 35 sites. For 63 sites, a lag between −2 and +2

months was observed (Fig. 4a).

Canopy photosynthetic capacity, as estimated by EVI, for

the 89 experimental sites, displayed an intriguing pattern

with monthly precipitation, apparently related to the differ-

ence of 1EVIwet-dry (Fig. 5a), an indicator of the dry sea-

son evergreen state maintenance (Guan et al., 2015), com-

puted as the difference between the mean EVI of the wet sea-

son (pre≥ pet) and of the dry season (pre< pet) (Sect. 2.1).

This pattern can be explained by a change in the climate pa-

Wood productivity

+ pre     R² = 0.43

+ cld     R² = 0.42

− dtr     R² = 0.46

+ vap     R² = 0.38

+ tmn     R² = 0.30

+ swc     R² = 0.34

+ rad     R² = 0.21

− pet     R² = 0.26

+ tmp     R² = 0.32

± tmx     R² = 0.25

(a)

Litter productivity

− pre     R² = 0.28

− cld     R² = 0.34

+ dtr     R² = 0.28

− vap     R² = 0.17

− tmn     R² = 0.18

± swc     R² = 0.16

± rad     R² = 0.13

+ pet     R² = 0.21

± tmp     R² = 0.13

+ tmx     R² = 0.16

(b)

Figure 2. Dendrogram of the climate seasonality associations with

the seasonality of wood productivity (a) and litterfall (b). The global

sign and R2 of the linear relationship between wood and litter pro-

ductivity and the following climate variable is given. + indicates a

positive correlation between the climate variable and wood or lit-

ter productivity in all the sites, – a negative correlation in all the

sites, while± indicates positive correlation for a portion of the sites

while negative for the other. Climate variables in the same cluster

are highly correlated, that is, they produce the same prediction in

terms of values and effects for the same sites. Different shades of

grey indicate the relative strength of associations for each cluster

with seasonality of wood or litter productivity, black indicates the

strongest association. cld: cloud cover; pre: precipitation; rad: solar

radiation at the top of the atmosphere; tmp, tmn and tmx are re-

spectively the daily mean, minimal and maximal temperatures; dtr:

temperature amplitude; vap: vapour pressure; pet: potential evapo-

transpiration; and swc: relative soil water content.

rameters that mainly control photosynthesis, from precipita-

tion in water-limited sites (1EVIwet-dry > 0.0378, Fig. 5b)

to maximal temperature in light-limited site (1EVIwet-dry <

−0.0014, Figs. 5c and S1). Sites with mixed influence of

precipitation and temperature are found between the range

of 1EVIwet-dry [−0.0014; 0.0378] (Fig. 6 for the definition

of the thresholds). In our sample, the shift in climate con-

trol depends on the annual water availability. That is, sites

are not water-limited above 2000 mm yr−1 of mean annual

precipitation (Fig. 5d), as previously observed (Guan et al.,

2015). Rather, they are light-limited as shown by the rela-

tionship between photosynthetic capacity and maximal tem-

perature (Fig. 5c). Light-limited sites are located in Amazo-

nia, in the south of Brazil and in south-east Asia (Fig. 7).

For all the sites, maximal temperature is highly correlated

with incoming solar radiation at the surface (rPearson = 0.80,

p< 0.0001), approximating solar energy available for the

plants (Fig. 8). With the model mBICEVI (Table 4), pre-

cipitation, maximal temperatures and their thresholds ex-

plained 54.8 % of the seasonality of photosynthetic capacity

(Fig. 3c). For 39 sites, no seasonal lag between predicted and

observed seasonality of canopy photosynthetic capacity was

observed using the model mBICEVI. However, a majority of

the sites (82 sites) appeared to have a lag between −2 and

+2 months (Fig. 4c). The model failed to reproduce the sea-

sonality for seven sites (one water-limited, one light-limited

and five mixed sites).

Biogeosciences, 13, 2537–2562, 2016 www.biogeosciences.net/13/2537/2016/



F. H. Wagner et al.: Climate seasonality limits leaf carbon assimilation 2549

Table 4. Intercepts and slopes of the fitted linear models for seasonal wood production (mWP), litterfall (mlit) and EVI (mBICEVI); with the

seasonal climate variables: precipitation (pre), cloud cover (cld) and maximal temperature (tmx). Light-, water- and mixed limitation indicate

the limitation of the sites and are defined with the value of 1EVIwet-dry (Fig. 6 for the definition of the thresholds).

Model Components Coefficien (std. error) t value p value R2

Wood production (mWP)
Intercept 0.0005 (0.0249) 0.02 0.9833

0.480

Precipitation 0.6869 (0.0260) 26.40 < 0.0001

Litterfall (mlit)
Intercept 0.0000 (0.0389) 0.00 0.9999

0.317

Cloud cover −0.5685 (0.0407) −13.98 < 0.0001

EVI (mBICEVI)

Intercept 0.0000 (0.0197) 0.00 0.9999

0.548

Maximal temperature
0.7643 (0.0396) 19.28 < 0.0001

in light-limited sites

Maximal temperature
0.1683 (0.0545) 3.09 0.0020

in sites with mixed limitations

Maximal temperature
−0.1100 (0.0275) −4.00 < 0.0001

in water-limited sites

Precipitation
0.3697 (0.0545) 6.78 < 0.0001

in sites with mixed limitation

Precipitation
0.8149 (0.0275) 29.60 < 0.0001

in water-limited sites
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(c)

Figure 3. Observed vs. predicted monthly wood productivity under the model only with precipitation, mWP (a); litterfall productivity under

the model only with cloud cover, mlit (b); and EVI the model only with precipitation, maximal temperature and site limitations, mBICEVI

(c). The red dashed line is the identity line y = x. Parameters of the models are given in Table 4.

For 27 out of the 35 sites (77.1 %) where litter data were

available, litter productivity was associated with dry season

indicators (lack of precipitation, high evaporation, low soil

water content and high temperature amplitude, Fig. 2b). Sur-

prisingly, we found that cloud cover (cld), an indirect vari-

able, was the best single predictor of litterfall seasonality

(Table 4). Direct effects are observed only for potential evap-

otranspiration (pet) and temperature amplitude (dtr) (Fig. 2b

and Table S5). A second cluster of climate variables is asso-

ciated with litter productivity but a key variable in this sub-

group, minimal temperature (tmn), is correlated with cloud

cover (cld) (Table S7). Despite this dominant signal, out-

liers showing no relationship with cld exist in our data (Ap-

pendix A2). The predictive model with cloud cover as a sin-

gle variable (Table 4) explains 31.7 % of the variability and

performs well to reproduce the seasonality of litterfall pro-

ductivity (Figs. 3b and 4b).

At a pan-tropical scale, 48 % of the variability of monthly

aboveground wood productivity (Fig. 3a and Table 4) and

31.7 % of the monthly litterfall seasonality can be linearly

explained with a single climate variable (Fig. 3b). The rela-

tionship between photosynthetic capacity (EVI) and climate

is more complex; however, 54.8 % of the monthly EVI vari-

ability can be linearly explained with only two climate vari-

ables, precipitation and maximal temperature (Fig. 3c).

www.biogeosciences.net/13/2537/2016/ Biogeosciences, 13, 2537–2562, 2016
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Figure 4. Cross correlation between observations and predictions of wood production (a), litterfall (b) and EVI (c) with the linear models

parameters (Table 4). A cross correlation of zero month indicates a similar seasonal pattern in the time series of observations and predictions.
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Figure 5. Monthly associations of EVI with precipitation (a, b), maximal temperatures (c), and association of 1EVIwet-dry with mean

annual precipitation (d). In (a) colours represent the value of 1EVIwet-dry while in (b), (c) and (d) colours represent 1EVIwet-dry grouped

by the following classes : water-limited sites (1EVIwet-dry > 0.0378), sites with mixed limitations (1EVIwet-dry [−0.0014; 0.0378]) and

light-limited sites (1EVIwet-dry <−0.0014). The dashed lines in (b) and (c) represent the linear relationship between climate variable and

observed EVI for water-limited sites, sites with mixed limitations and light-limited sites. Parameters of the models are given in Table S8. The

dashed lines in (d) represents the best regression model with a breakpoint between 1EVIwet-dry and mean annual precipitation.
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Figure 6. Threshold of 1EVIwet-dry used to define “water-limited”

sites (a) and “light-limited” sites (b). Sites with 1EVIwet-dry be-

tween the two thresholds had a mixed influence of the two climate

variables and were qualified as “mixed”. The names of the classes

represent the main climate limitations deduced from the climate

control on canopy photosynthetic capacity observed in our results.

The y axis represents the R2 values of the linear models normalized

EVI as a function of normalized precipitation (a) and as a func-

tion of maximal temperature (b), respectively for the sample with

1EVIwet-dry above the threshold (a) and below the threshold (b).

Optimal threshold of 1EVIwet-dry for climate variable influence on

normalized EVI was defined by a break in the decrease of R2 val-

ues, which is represented by red dashed lines.

3.2 Decoupling wood productivity, litter productivity

and canopy photosynthetic capacity seasonality

In sites where both measurements were available, we ob-

served a negative relationship between wood productivity

and litterfall (Fig. 9, supported by linear analysis, Fig. S2).

This relationship is consistent across the tropics and constant

for all our sites (Fig. 10c), independently of the site water or

light limitations (Mann-Whitney test,U = 746, p= 0.0839).

Wood productivity and litterfall are mainly driven by only

one climate driver in our results, precipitation and cloud

cover respectively. The seasonality of these climate drivers

are coupled for all the sites, where maximum precipitation

occurs in the wet season while minimum cloud cover occurs

in the dry season.

In water-limited forests, the seasonality EVI and above-

ground wood production are synchronous for the majority of

the sites (Fig. 10a), as a consequence of their relationship

with precipitation. However, aboveground wood production

is better explained by precipitation than EVI (R2 of 0.503

and 0.451 respectively).

Conversely, in light-limited sites and forests with mixed

limitations (mixed forests), EVI is weakly coupled with the

seasonality of wood productivity (respectively p= 0.0633,

R2
= 0.017 and p= 0.0124, R2

= 0.055). Therefore, we

conclude that the relationship between EVI and wood pro-

ductivity depends on site limitations (Mann-Whitney test,

U = 874.5, p= 0.0012).

The relationship between EVI and litter production is

not constant (Fig. 10b), and also depends on site limita-

tions (Mann-Whitney test, U = 1016.5, p< 0.001). EVI is

consistently negatively associated with litterfall production

for water-limited forests (p < 0.001, R2
= 0.510), reflecting

forest “brown-down” when litterfall is maximal. Litter pro-

duction is slightly better explained by cloud cover than EVI

(R2 of 0.533 and 0.510 respectively), and they predict the

same effect for the same site (McNemar test, p = 0.999).

No significant associations are found between EVI and litter

in forests with mixed limitations (p = 0.8531, R2< 0.0001)

and in light-limited forests (p = 0.4309, R2< 0.0001).

1EVIwet-dry and 1wood productivitywet-dry are dependent

on annual water availability (Figs. 11a–b and 5d). 1wood

productivitywet-dry is close to zero and could be negative for

light-limited sites; the amplitude of the seasonality is driven

by the annual water availability. The values for 1wood

productivitywet-dry in south-east Asia are all negative. This

is consistent with the negative or null associations of wood

productivity and precipitation at these sites (Appendix A1).

1litter productivitywet-dry is poorly correlated with maxi-

mum climatological water deficit (CWD).

4 Discussion

We have found a remarkably strong climate signal in the

seasonal carbon cycle components studied across tropical

forests. While wood and litterfall production appear to be

dependent on a single major climate driver across the trop-

ics (water availability), the control of photosynthetic capacity

varies according to the increase in annual water availability,

shifting from water-only to light-only drivers.

Minimum aboveground wood production tends to occur in

the dry season. While this result is not new (Wagner et al.,

2014), here we confirm this pattern with a large database

of wood production measurements (68 sites). Months with

the lowest water availability are less favourable for cell ex-

pansion, as water stress is known to inhibit this process, as

observed in dry tropical sites (Borchert, 1999; Krepkowski

et al., 2011). This pattern is found in water-limited, mixed

and light-limited sites. At the very end of the water availabil-
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Figure 7. Locations and climate limitations of the 89 experimental sites. water-limited sites (1EVIwet-dry > 0.0378), sites with mixed

limitations (1EVIwet-dry [−0.0014; 0.0378]) and light-limited sites (1EVIwet-dry <−0.0014), (Fig. 6 for the definition of the thresholds).
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Figure 8. Association between normalized maximal temperature

from Climate Research Unit and normalized incoming solar radi-

ation at the surface from CERES. Monthly incoming solar radiation

at the surface (incident shortwave radiation) refers to radiant energy

with wavelengths in the visible, near-ultraviolet, and near-infrared

spectra and is produced using MODIS data and geostationary satel-

lite cloud properties (Kato et al., 2011). The red dashed line is the

identity line y = x.

ity gradient (wettest ones), some sites have no relationship

or a negative relationship with monthly precipitation, as ob-

served in Lambir, Malaysia (Kho et al., 2013). These sites,

three in south-east Asia and one in southern Brazil, have no

marked dry season, defined as months with precipitation be-

low 100 mm. These relationships with monthly precipitation

could reflect cambial dormancy induced by soil water satura-

tion, as observed in Amazonian floodplain forests (Schöngart

et al., 2002), and/or be related to limited light availability due

to persistent cloud cover. However, for these ultra wet sites,

the lack of field data limits the analysis of the effects of cli-

mate on the seasonality of aboveground wood production.

Maximum litterfall, for most of our sites, occurs during

the months of minimum cloud cover during the dry season.

It is known that the gradient from deciduous to evergreen

forests is related to water availability, with the evergreen state

sustained during the dry season above a mean annual pre-

cipitation threshold of approximately 2000 mm yr−1 (Guan

et al., 2015). The litterfall peak occurs when evaporative de-

mand is highest. The maintenance of litterfall seasonality

in the light-limited sites could be driven mostly by a few

large/tall canopy trees shedding leaves, mainly in response

to high evaporative demand. This can explain why litterfall

occurs in the dry season and is decoupled from EVI, a pa-

rameter that integrates the entire canopy (Fig. 10b). On the

other hand, in water-limited sites, most of the trees shed their

leaves, thereby resulting in a litterfall signal coupled with

EVI “brown-down” (Fig. 10b).

Canopy photosynthetic capacity has different climate con-

trols depending on water limitations (Fig. 5). As already

observed, in sites with mean annual precipitation below

2000 mm yr−1 (Fig. 5d), photosynthetic capacity is highly

associated with water availability (Guan et al., 2015) and

highly dependent on monthly precipitation (Fig. 5b). This

seems to confirm that longer or more intense dry seasons

can lead to a dry-season reduction in photosynthetic rates

(Guan et al., 2015). In addition to the control by water avail-

ability (Guan et al., 2015; Bowman and Prior, 2005; Hilker

et al., 2014), we demonstrated that for sites where water is

not limiting, photosynthetic capacity depends on maximal

temperatures, which reflects available solar energy or daily

insolation at the forest floor (Fig. 8). For these sites, the

EVI peak occurs at the same time as the maximal temper-

ature peak, which supports the hypothesis of the detection

of a leaf flushing signal induced by a preceding increase of

daily insolation (Borchert et al., 2015). This result is also

consistent with flux-tower-based GPP estimates in neotrop-

ical forests (Restrepo-Coupe et al., 2013; Guan et al., 2015;

Bonal et al., 2008). If the increase in EVI is a proxy of leaf

Biogeosciences, 13, 2537–2562, 2016 www.biogeosciences.net/13/2537/2016/
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Figure 9. Observations and predictions of wood productivity and litterfall seasonality in sites where both measurements were available. The

outliers in our analysis, Lambir and Caracarai, are not represented. y axis have no units as the variables were normalized.
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Figure 10. Cross-correlation between monthly EVI and wood productivity (a), EVI and litter productivity (b) and wood and litter productivity

(c) for water- and light-limited sites. The x axis indicates the time-lag to get the maximum correlation between the variables. When no

observations were available for wood and litter productivity, predictions from the climatic model were used (Table 4). To facilitate graphical

representation, cross-correlation (a) is positive, while (b) and (c) are negative. A positive cross-correlation at lag of 1 month indicates a

similar seasonal pattern in the time series with a time lag of 1 month, while a negative cross-correlation at lag 1 month indicates an opposite

seasonal pattern with a time lag of 1 month. All the water-limited and light-limited sites were represented (respectively 50 and 24 sites) as

only 4 water-limited sites in (a) and 3 in (b), and only 2 light-limited sites in (c) have no statistically significant cross-correlation.
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Figure 11. Associations between site’s 1EVIwet-dry (a), 1wood productivitywet-dry (b) and 1litter productivitywet-dry (c) with the

environmental variable maximum climatological water deficit (CWD). Dashed lines are the regression lines. 1EVIwet-dry, 1wood

productivitywet-dry and 1litter productivitywet-dry indices are the differences of mean of the wet- and dry-season of the variable normal-

ized by the annual mean, where dry season is defined as months with potential evapotranspiration above precipitation (Guan et al., 2015). For

the sites where evapotranspiration is never above precipitation, dry season is defined as months with normalized potential evapotranspiration

above normalized precipitation.

maturation, as already observed in a tropical forest of south-

ern Peru (Chavana-Bryant et al., 2016), our result supports

the satellite-based hypothesis that temporal adjustment of net

leaf flush occurs to maximize water and radiation use while

reducing drought susceptibility (Myneni et al., 2007; Jones

et al., 2014; Bi et al., 2015). However, more detailed data

on the leaves dynamics would be necessary to confirm these

assumptions.

We demonstrated that the seasonality of aboveground

wood production and litterfall are coupled, while photosyn-

thetic capacity seasonality can be decoupled from wood and

litterfall production seasonality depending on the local water

availability (Fig. 10).

Further, our results show that carbon allocation to wood is

prioritized in the wet season, independently of the site con-

ditions (water- or light-limited). This priority has also been

shown in forests impacted by droughts, where trees priori-

tised wood production by reducing autotrophic respiration

even when photosynthesis was reduced as a consequence of

water shortage (Doughty et al., 2015). However, there is still

a lack of information on a wider scale regarding how trees

prioritise the use of non-structural carbohydrates. The poten-

tial decoupling of carbon assimilation and carbon allocation

found here seems to indicate a complex and indirect mech-

anism driving carbon fluxes in the trees. Some experimental

results showed that endogenous and phenological rhythms

can define the prioritisation in carbon allocation and may be

more important drivers of the carbon cycle seasonality than

climate in tropical forests (Malhi et al., 2014; Doughty et al.,

2014; Morel et al., 2015). This corroborates other results that

indicate that growth is not limited by carbon supply in trop-

ical forests (Körner, 2003; van der Sleen et al., 2015; Wurth

et al., 2005). However, even if these results are in accordance

with our results for light-limited sites, it must be noted that

they cannot be generalized to water-limited sites, where cli-

mate constrains both photosynthetic capacity and wood pro-

ductivity.

Canopy photosynthetic capacity and aboveground wood

production appear to be predominantly driven by climate at

seasonal and annual scales, thereby suggesting exogenous

drivers (Figs. 5 and 11). However, if litterfall was driven by

climate only, its pattern would be more predictable, with a

linear relationship between annual water availability (CWD)

and 1litter productivitywet-dry such as for wood production

(Fig. 11b–c), which would translate into a massive peak in

the dry season. Even with the litterfall peak occurring mainly

in the dry season, another part of the variation seems to be

related to endogenous drivers. Such endogenous effects have

already been observed in tropical forests, for example, sea-

sonality of root production prioritised over leaf production in

a dry site in Bolivia or leaf production occurrence during wet

months in French Guiana (Doughty et al., 2014; Morel et al.,

2015). The lag between peak of litterfall in dry season and

minimum photosynthetic capacity of the canopy we observe

for light-limited sites (Fig. 10b) could reflect a mixture of bud

sets and bud breaks with a relative weak synchronism due to

the high diversity of species involved and the weakness of

the seasonal signal of solar insolation. Our results are con-

sistent with a seasonal cycle timed to the seasonality of solar

insolation, but with an additional noise due to leaf renewal

and/or net leaf abscission during the entire year unrelated

to climate variations (Borchert et al., 2015; Myneni et al.,

2007; Jones et al., 2014; Bi et al., 2015). While photosyn-

thetic capacity and wood productivity appear mostly exoge-
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nously driven, litterfall association with climate at seasonal

and annual scales suggest both exogenous and endogenous

processes. It remains the case that the unexplained variability

of photosynthetic capacity and wood productivity seasonality

could be link to endogenous drivers, but more investigations

are needed to demonstrate it.

In this study, we use EVI as an index of seasonal-

ity of canopy photosynthetic capacity based on the previ-

ously demonstrated correlation between canopy photosyn-

thetic capacity from the MODIS sensor and solar-induced

chlorophyll fluorescence (SIF) at a pan-tropical scale (Guan

et al., 2015) and from the correlation between 1EVIwet-dry

from MODIS MOD13C1, MCD43A1 and MAIAC products

(Fig. S4). Here, we show how satellite and field data can be

used to infer characteristics of tropical forests carbon cycle in

a consistent framework. To go further, it is necessary to deter-

mine the real amount of photosynthetic products in order to

describe quantitatively the seasonal carbon cycle in tropical

forests.

5 Conclusions

In summary, the seasonality of carbon assimilation and al-

location through photosynthetic capacity and aboveground

wood production is consistently and directly related to cli-

mate in tropical forested regions. Notably, we found that re-

gions without annual water limitations exhibit a decoupled

carbon assimilation and storage cycle, which highlight the

complexity of carbon allocation seasonality in the tropical

trees. Although seasonal carbon allocation to aboveground

wood production is driven by water, whether the seasonality

of photosynthetic capacity is driven by light or water depends

on the limitations of site water availability.

In a drier climate, from our results we can make the fol-

lowing assumptions. (i) In water-limited forests, the reduc-

tion of the wet period duration could lead to a time reduction

of favourable conditions for carbon assimilation and alloca-

tion. (ii) In current light-limited forests with future precipita-

tion below to the 2000 mm yr−1 threshold, the intensification

of the dry period could suppress the canopy photosynthetic

capacity increase during this high solar radiation period, re-

ducing carbon assimilation and making these forests shift to

water-limited forests. However, in light-limited forests with

future precipitation above the 2000 mm yr−1 threshold, as

cloud cover has been shown to limits net CO2 uptake and

growth of tropical forest trees (Graham et al., 2003), it re-

mains uncertain how reduction of cloud cover will affect the

productivity.
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Appendix A: Description of outliers

A1 Wood productivity outliers

Despite this dominant signal, outliers exist in our data show-

ing negative (3 sites) or no relationship (6 sites) with pre-

cipitation. Due to the correlation of climate variables at the

site scale, it is difficult to interpret each site alone; however,

some groups arose in these outlier sites. The first group, the

two sites Itatinga and Pinkwae, contains only saplings mea-

surements. The second group, the sites with no month with

precipitation below 100 mm, includes Lambir (Malaysia),

Muara Bungo (Indonesia), Pasoh (Malaysia), Flona SFP

(Brazil). The third group includes two mountain sites, Tu-

lua and Munessa. For Munessa, there is evidence of cam-

bial growth related to precipitation Krepkowski et al. (2011);

however, the sample we used comprises two species known

to have different sensitivity to rainfall. The monthly mean

of the sites’ wood productivity could be responsible for the

lack of rainfall-related pattern. Finally, for Caracarai (Brazil),

there was a lack of 6-month data encompassing the beginning

and middle of the wet season, which has been linearly inter-

polated to the month; however, due to the important sampling

effort, we initially chose to keep this data set.

A2 Litterfall productivity outliers

Only one site, BDFFP, showed no apparent relationship be-

tween litter productivity and cloud cover (Fig. S3). This site

is in a fragmented forest where fragmentation is known to af-

fect litterfall (Vasconcelos and Luizão, 2004). For the other

outlier, they all have a peak of litterfall correlated with pet or

cld (Fig. S3). Three different groups can be observed: (i) sites

which have another peak of litterfall during the year (Cueiras,

La Selva, Gran Sabana), (ii) sites with very skew litterfall

peaks followed by an important decrease in litterfall, while

the climate conditions are optimal for litterfall productivity

from the viewpoint of the linear model (Capitao Paco, Rio

Juruena and RBSF) and (iii) sites which have two peaks of

pet, but litterfall occurs only during one of them (Apiau Ro-

raima, Gran Sabana).
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Appendix: Data availability

The data and the code to reproduce the analysis and the fig-

ures are freely available upon request to the corresponding

author.

The Supplement related to this article is available online

at doi:10.5194/bg-13-2537-2016-supplement.
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