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Abstract 
 
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact 

global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the 

climate-regulating properties of forests.  Using both tower-based and remotely-sensed data sets, 

we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can 

significantly alter surface albedo, and the associated radiative forcing either offsets or enhances 

the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years.  In the 

examined cases, the radiative forcing from albedo change is on the same order of magnitude as 

the CO2 forcing.  The net radiative forcing resulting from these two factors leads to a local 

heating effect in a hurricane-damaged mangrove forest in the sub-tropics, and a cooling effect 

following wildfire and mountain pine beetle attack in boreal forests with winter snow.   Although 

natural forest disturbances currently represent less than half of gross forest cover loss, that area 

will likely increase in the future under climate change, making it imperative to represent these 

processes accurately in global climate models. 



 

 

Introduction 

Terrestrial disturbances are primary regulators of the global carbon cycle (Running, 

2008), and can switch entire ecosystems from carbon sinks to sources (Luysseart et al., 2008).  

Increasing evidence suggests major natural forest disturbances are increasing in frequency and/or 

intensity under climate change, including fire (Westerling et al., 2006), insect outbreaks (Raffa et 

al., 2008), and landfalling hurricanes (Bender et al., 2010).  Over the last decade, these three 

disturbances destroyed approximately 2-4 million hectares of forest annually in the U.S. alone 

(Forest Service, 2008, Schwind, 2008, Zeng et al., 2009).  In British Columbia the extent of 

forest mortality caused by mountain pine beetle has reached unprecedented levels.  In 2007 the 

affected area surpassed 10 million hectares (Westfall &  Ebata, 2009).  A warming and drying in 

the region associated with climate change has allowed the beetle to expand its range to these 

exceptional limits (Carroll et al., 2003).  Warming climate has also contributed to increasing the 

size and frequency of wildfires (Kasischke &  Turetsky, 2006).  Over the last 50 years, an 

average 2 million hectares of boreal forest have burned each year in North America (Stocks et 

al., 2002).  A recent estimate indicates that over the last 150 years, landfalling hurricanes have 

released an average 25 Tg of carbon per year in the United State alone (Zeng et al., 2009).  This 

is enough carbon to offset 9-18% of the annual U.S. forest carbon sink.  Hurricane Katrina 

destroyed an estimated 105 Tg of biomass when it made landfall on the U.S. Gulf coast in 2005 

(Chambers et al., 2007).   

However, little is known about the impacts of these forest disturbances on albedo, and 

therefore it is unclear whether these disturbances will generate reinforcing climate feedbacks 

(Adams et al., 2010, Dale et al., 2001, Running, 2008).  Disturbances that decrease surface 

albedo (reflectivity) have the potential to create a positive (heating) radiative forcing by 



 

 

increasing the amount of solar radiation absorbed in the climate system.  In the case of fire in 

boreal forests, the increase in surface albedo following fire can offset the heating associated with 

the carbon released to the atmosphere (Randerson et al., 2006).   This occurs under snowy 

conditions because open (i.e. burned) spaces, relative to forested space, create relatively 

homogenous snowy surfaces that have a very high albedo.  Forests, in contrast, have structures 

such as foliage and braches that create and trap multiple reflections of incoming solar radiation 

and decrease albedo.  The low albedo of boreal forests creates a relative radiative forcing 

equivalent to that provided by its sequestered carbon (Anderson et al., 2011, Bala et al., 2007, 

Betts, 2000, Bonan, 2008, Bonan et al., 1992).  Albedo effects can outweigh the climate benefits 

of carbon sequestration in boreal and semi-arid forests, depending on integration time or duration 

of disturbance recovery (Betts, 2000, Rotenberg &  Yakir, 2010).   

Here we quantify the radiative forcing associated with perturbations to atmospheric CO2 

(ΔFCO2) and surface albedo (ΔFα) to weigh the climate effects (e.g., Betts, 2000, Randerson et 

al., 2006, Rotenberg &  Yakir, 2010) of major natural disturbance mechanisms from hurricane, 

wildfire and beetle attack.   



 

 

Methods 

We apply the concept of radiative forcing (Hansen et al., 1997) to quantify the per-unit 

area climate impacts of forest disturbance from perturbations to surface albedo and the 

concomitant efflux of CO2 associated with such disturbances in subsequent years.  We define the 

net radiative forcing (ΔFnet) as the sum of two quantities: First, the shortwave radiative forcing 

(ΔFα) is the mean annual change in reflected shortwave radiation at the top of the atmosphere 

resulting from changes in surface albedo.  Second, radiative forcing caused by perturbations to 

atmospheric CO2 from disturbance (ΔFCO2) was calculated from measured and modeled changes 

in net ecosystem carbon balance (NECB).  For both quantities, the disturbed state is compared to 

the undisturbed state at an annual time step, and the net effect is determined over multiple years 

following several disturbance events.  Instantaneous radiative forcings for albedo and CO2 are 

evaluated in the absence of feedbacks, such as changes to cloudiness resulting from other 

potential biogeophysical impacts like perturbations to roughness or evapotranspiration.  To 

define the impact of various types of disturbance on surface albedo, we analyzed both AmeriFlux 

micrometeorological tower observations (Law et al., 2002) and MODIS broadband albedo 

(Schaaf et al., 2002).  Three case studies are presented, including 1) defoliation and mortality of 

a sub-tropical mangrove canopy by hurricane, 2) forest mortality from mountain pine beetle, and 

3) stand replacing fire in boreal forests.  

 

Albedo radiative forcing 

Albedo perturbation from forest disturbance was evaluated by comparing measurements 

of albedo in disturbed and undisturbed forests using both tower-based and remotely-sensed 

datasets.  Tower data were available for case studies of hurricane defoliation of a mangrove 



 

 

forest and wildfire in boreal forest.  For those sites, daily values of albedo were calculated from 

tower-measured daily sums of half-hourly incoming and outgoing (reflected) shortwave 

radiation.  Half-hourly values were excluded when the solar elevation angle (θ) did not exceed a 

minimum threshold (θmin), which was set to approximately the local midday winter solstice value 

for each site, and therefore varied by latitude.  Values of θmin were 40° and 10° for the mangrove 

and boreal sites, respectively.  The radiometer manufacturer (model CNR1 or CM3, Kipp & 

Zonen, Delft, Netherlands) specifies an accuracy of 10% for daily sums of radiation.  This 

corresponds to an uncertainty of approximately 0.015 in daily albedo measurements, and thus 

applies to all of our reported tower-measured albedo values. 

Where tower data were not available, MODIS (MCD43A) broadband shortwave blue-sky 

albedo data (Schaaf et al., 2002) were extracted using the MODIS subsetting tool (ORNL 

DAAC, 2011) for 6.25 km2 areas (25 pixels) of interest for all available years (2000-2010).  Only 

data that passed the quality control filters and were associated with the vegetation type of the 

center pixel were included.   An aerosol optical depth of 0.2 was used in the calculation of blue 

sky albedo.  The accuracy of the MODIS Collection 5 shortwave albedo has been reported as 

0.05 but is generally less than 0.03 (Roman et al., 2009, Wang et al., 2010).  For each site, gaps 

in the 8-day MODIS albedo time series were filled by averaging values linearly interpolated 

across gaps with values taken from the 10-year ensemble average for that site, which has the 

benefit of constraining the local information provided by the interpolation with phenological and 

climatological information included in the ensemble average.  This helps reduce interpolation 

errors from the discontinuities caused at the edges of snowy periods, where the albedo changes 

abruptly.  The error associated with this technique was calculated by randomly creating and then 

filling a set of artificial gaps of the same length as the actual gaps.  The bias error (BE) and root 



 

 

mean squared error (RMSE) were calculated by comparing the artificially filled and original time 

series.  Results of 1000 simulations for each case (Table 1) show that the gap filling attributes 

negligible bias in all cases and only a significant RMSE in one case (boreal fire), where the large 

difference in summer and winter albedo make the gap filling more sensitive to error.  Resulting 

potential errors in radiative forcing at the annual scale range from 0.05 to 0.59 W m-2 and are 

incorporated in reported ranges of uncertainty.  For the radiative forcing calculations, the 8-day 

MODIS values were averaged to monthly resolution.   

The top-of-the-atmosphere (TOA) radiative forcing caused by the measured perturbations 

to surface albedo was calculated using the radiative kernel technique (Shell et al., 2008, Soden et 

al., 2008).  The radiative kernel represents changes to TOA fluxes caused by incremental 

changes in monthly average surface albedo from present-day values at 2.5° resolution.   It 

essentially represents a climatology of the sensitivity of TOA net shortwave radiation to 

incremental changes in albedo at the surface, neglecting feedbacks.  The kernel used here was 

produced using the offline radiative transfer model of the National Center for Atmospheric 

Research (NCAR) Community Atmospheric Model version 3 (Collins et al., 2006) as described 

in (Shell et al., 2008), but with an incremental albedo increase of 0.01 rather than 0.001.  

Relative to calculations of surface radiative forcing, using values of insolation measured at the 

surface, the TOA calculations with the kernel account for the attenuation of the upwelling beam 

by clouds and aerosols.   It also accounts for spatial variability in incoming radiation.  For 

example, annual average daily insolation measured at the surface was 18.4, 12.9, and 10.6 MJ m-

2 day-1 for the Florida, Manitoba, and British Columbia sites, respectively, presented in this 

study.  The radiative forcing is then calculated at a monthly time step from perturbations in forest 

albedo caused by the disturbance relative to an undisturbed control stand.  We report ranges of 



 

 

uncertainty in the radiative forcing that include 10% for accuracy in albedo measurements and an 

additional 10% associated with the radiative kernel technique. 

CO2 Radiative Forcing 

To model the radiative forcing associated with the release of terrestrial carbon to the 

atmosphere due to disturbance, the concept of net ecosystem carbon balance (NECB) was 

employed .  NECB has been defined as the net carbon balance of an ecosystem, and includes net 

ecosystem exchange with the atmosphere (NEE) as well as lateral transport of carbon from 

disturbances and anthropogenic activities (Chapin et al., 2006).  Integrating NECB over larger 

spatial and temporal domains produces estimates of net biome productivity (NBP; Schulze &  

Heimann, 1998).  Here we are interested in the source of CO2 to the atmosphere from changes to 

NECB (δNECB) resulting from a disturbance.   δNECB represents the difference between the 

disturbed and undisturbed NECB, all else being equal, and is defined explicitly below for each of 

three case studies.  The input of CO2 to the global atmosphere in year t (δCO2t) was calculated 

from annual δNECBt using Eqn (1), where Mc is the molecular mass of carbon, Ma is the 

molecular mass of dry air, and ma is the mass of the atmosphere.   

aC

ta
t mM

NBPM
CO

δδ =2       ( 1 ) 

The input of atmospheric CO2 was drawn down in each year by terrestrial and ocean uptake by 

applying a response function developed with the Bern 2.5 Carbon Cycle model (Joos et al., 

2001) and used in the IPCC radiative forcing calculations for atmospheric CO2 (Forster et al., 

2007).  Following uptake by biota and the oceans, the radiative forcing (ΔFCO2) associated with 

the resulting CO2 perturbation (ΔCO2) was calculated at an annual time step calculated using a 



 

 

well known parameterization (Eqn 2.; Myhre et al., 1998), where CO2* is the reference CO2 

concentration. 

*
2

2ln35.5
CO

CO
RF

∂×=       ( 2 ) 

  The reported radiative forcing represents that associated with the CO2 perturbation from 

1 m2 of disturbed forest, mixed in the global atmosphere and then attributed to that 1 m2, after 

uptake by the oceans and terrestrial biota.  Therefore to convert the radiative forcings (both CO2 

and albedo) for comparison with global radiative forcings, they should be divided by the area of 

the earth.  Ranges of uncertainty in ΔFCO2 are calculated from the reported uncertainty in δNECB 

and an additional 10 % associated with the radiative forcing parameterization (Myhre et al., 

1998).  Where temporal trends are discussed, model statistics from least squares regression 

models are reported to indicate the statistical significance of those trends. 

 

Hurricane defoliation of mangroves 

Since 2004 an AmeriFlux micrometeorological tower (25°21'46"N, 81°4'40"W) has 

operated near Shark River at the eastern edge of the Florida Everglades.  Using the eddy 

covariance technique, the tower measures meteorological variables and determines turbulent heat 

and CO2 fluxes (Barr et al., 2010).  The tower site is only 30 km from where the eye of hurricane 

Wilma made landfall on October 24, 2005.  After achieving the lowest recorded central pressure 

of any hurricane in history, Wilma landed as a category 3 hurricane with sustained winds of 190 

km hr-1 (Pasch et al., 2006).  The mangrove tower data record contains a 442-day gap associated 

with the destruction and eventual redeployment of the tower and instrumentation.  As such, 

MODIS albedo was used to provide a continuous record both before and after the hurricane. Data 

from a 6.25 km2 area adjacent to the tower site were extracted for all available years (2000-2010) 



 

 

and the change in albedo caused by the hurricane was defined relative to monthly albedo values 

averaged over the pre-hurricane period (2000-2005).    

Strictly speaking, NECB in this tidally driven mangrove forest is composed of temporal 

summations of net ecosystem exchange (-ΣNEE) and lateral fluxes of dissolved inorganic (DIC), 

dissolved organic (DOC), and particulate (PC) carbon entering or exiting the ecosystem (Chapin 

et al., 2006).   The δNECB is then: 

δNECB = –ΣNEEdisturbed + -ΣNEEundisturbed + δFDIC + δFDOC + δFPC 

where F represents lateral fluxes of carbon constituents with a positive sign convention for 

carbon entering the ecosystem.  Fluxes of DIC, DOC, and PC (FDIC, FDOC, and FPC, respectively), 

exported to the estuary may represent between 25% and 70% of –ΣNEE based on regional and 

global estimates for mangroves while the remainder of –ΣNEE is stored in biomass or soil 

carbon (Barr et al., 2010).  Though carbon leaves the flux footprint of the tower as DIC, DOC, 

and PC, some fraction is consumed or buried within the surrounding estuary and therefore 

remains sequestered.  Without detailed estimates of lateral carbon fluxes, perturbations in these 

fluxes resulting from disturbance, and estimates of the amount of carbon remaining sequestered, 

our best estimate of δNECB excludes δFDIC, δFDOC, and δFPC.  The quantity -ΣNEEundisturbed 

(1175±141 gC m2 year-1) was determined as the average of annual gap-filled NEE during 2004-

2005 before the hurricane disturbance (Barr et al., 2010).  During the period following the 

hurricane in 2007-2010, -ΣNEEdisturbed was the measured annual sum of -NEE (Barr et al., 2011).   

During 2006, eddy covariance (EC) estimates of NEE were only available during November and 

December, after the tower was rebuilt.  For 2006 only, -ΣNEE was determined as the difference 

between modeled gross primary production (GPP) and ecosystem respiration (RE) rates.  GPP 8-

day estimates were determined from a vegetation photosynthesis model (Xiao et al., 2004), 



 

 

which was trained using EC-derived GPP from the tower site from periods before (2004-05) and 

after (2007-09) hurricane disturbance.  Drivers of modeled GPP (GPPmod) included a green 

vegetation index derived from MODIS reflectance products as well as local climate data, 

including air temperature, photosynthetically active irradiance, and surface water salinity levels 

measured near the tower site.  Monthly RE was determined as the sum of expected respiration in 

an undisturbed mangrove forest (RE undist) and respiration contributed by the decomposition of 

coarse woody debris (RCWD) resulting from tree mortality.  Monthly RE undist was modeled using 

Eqn. 2 with linear coefficients determined from least squares regression of monthly EC-derived 

GPP and RE during 2004-05.   

bGPPmR undistE += mod      ( 2 ) 

Monthly RCWD equaled the carbon content from the decomposition of dead trees.  Cumulative 

tree mortality was measured at quarterly intervals in three circular plots adjacent to the tower 

(Smith et al., 2009) starting November 2005.  Decomposition rates of the coarse woody debris 

pool were assumed to follow the exponential decay function of Romero et al., (2005).  Their 

model includes rate constants for both labile and refractory biomass fractions of wood in three 

species of mangroves (Rhizophora mangle L., Avicennia germinans, and Laguncularia 

racemosa) on site.  On an annual basis, modeled -ΣNEE was 7% to 32% higher than EC-derived 

-ΣNEE during 2007 to 2009.  Modeled GPP was within 3% of EC-derived GPP estimates, 

suggesting an underestimate of RE. Underestimates may have resulted from exclusion of root 

decomposition of the dead trees and increased soil respiration rates resulting from increased 

irradiance penetration to the surface and higher soil temperatures following hurricane 

disturbance (Barr et al., 2011).  To account for these and any other potential biases, the -ΣNEE 

estimate for 2006 was taken as the average of bias-corrected -ΣNEE estimates (average of -



 

 

ΣNEE2006/1.07 and -ΣNEE2006/1.32).  Given that model uncertainties in -ΣNEE for 2006 were 

expected to be larger than those during years when -ΣNEE was determined from EC data, an 

additional constraint was applied to -ΣNEE during the first full year of recovery in 2006.  The -

ΣNEE (± uncertainty) during 2007 and subsequent years of recovery should equal or exceed the -

ΣNEE estimate for 2006.   This constraint was based on both higher RE and lower or equal GPP 

rates during the first full year of recovery compared to those rates in subsequent years.  Mortality 

rates of mature trees reached 20% before 2007 and reached a maximum of 30% by mid-year 

2009 (Barr et al., 2011).  Based on the exponential decay function of Romero et al. (2005), 

RCWD, and therefore its contribution to RE, would have been highest during November 2005 to 

December 2006 when the pool of labile biomass of dead wood was at a maximum.  Model 

estimates of GPP were also lower during the first half of 2006 as a result of reduced green 

vegetation cover compared to later periods. 

 

Mountain Pine Beetle 

Mountain pine beetle (MBP) has impacted millions of hectares of pine forests in western 

North America in the last decade (Raffa et al., 2008).  In British Columbia (B.C.), the outbreak 

has reached epidemic proportions (Kurz et al., 2008), with significant infestations also extending 

southward into the United States along the Cascade and Rocky Mountain ranges into 

Washington, Oregon, Idaho, Montana, Wyoming, and Colorado.  Here we develop two case 

studies to quantify the impact of mortality in lodgepole pine stands from mountain pine beetle 

infestation in British Columbia and Oregon.  In British Columbia, some of the earliest beetle 

infestations of the recent epidemic occurred in Northern Tweedsmuir and Entiako Provincial 

Parks starting in 1994 (Garbutt, 1994).  Aerial surveys in 1999 (Cichowski et al., 2001) revealed 



 

 

the attack in those areas was severe (30-100% infestation) with some areas already experiencing 

dead, or grey-attacked trees.  Using a combination of those surveys and contemporary 

LANDSAT imagery we have identified four beetle attacked stands in that region that have not 

burned or been salvaged as of 2010 (Table 1).  To isolate the beetle effect on albedo from 

interannual variability in snow pack, a nearby control stand was identified with little or no beetle 

attack.  Due to the ubiquity of attack in mature lodgepole stands in the region, the unattacked 

stand necessarily contains a significant proportion of subalpine fir and spruce in addition to 

lodgepole pine, and occurs at slightly higher elevation (1300 vs 1000 meters).  MODIS blue sky 

broadband albedo data were extracted for 6.25 km2 areas for each of the four beetle-attacked 

sites and the control site.  To improve statistics, the time series of albedo at the four attacked 

sites were averaged together and an average year of attack of 1996 was assumed.  

As a replicate of the albedo analysis in British Columbia we also identified an MPB-

attacked stand in Oregon, approximately 1,000 km south of the B.C. sites.  U.S. Forest Service 

aerial survey data (Forest Service, 2010) were used to identify a beetle infested lodgepole pine 

stand in the central Oregon Cascades where red attack was first detected in 1996.  MODIS blue 

sky albedo data were extracted for an attacked and adjacent control site (Table 1), from which 

the albedo perturbation from beetles was defined.   

The effect of beetle mortality on productivity in lodgepole pine forests of British Columbia 

has been reported by Kurz et al., (2008).  For the current outbreak, they report NBP from 2000-

2006 based on forest inventory data, and develop model projections for 2007-2020.  A baseline 

control NBP was reported that incorporated regional rates of harvest and fire in the absence of 

beetles, and a beetle case included the additional effect of beetle, but not additional harvest (Kurz 

et al., 2008).  Here we define the net effect of the beetles (δNECB) as the difference between the 



 

 

reported NBP values for the beetle and control cases, to remove the effects of harvest and fire.  

Mean annual δNECB began at -0.7±2 gC m-2 year-1 in the first year and increased to a max of -

54±22 gC m-2 year-1 at 10 years since attack.  Mean annual δNECB over the first 14 years was -

33±16 gC m-2 year-1. 

 

Boreal fire 

A mesonet of six tower sites in Manitoba, Canada, that represent a chronosequence of 

coniferous forest sites with mean stand ages ranging from 11 to 159 years since fire, provided 

measurements of radiation, heat, and carbon dioxide fluxes between 2001-2005 (Amiro et al., 

2006, Goulden et al., 2006, McMillan &  Goulden, 2008).  The sites, which range in vegetation 

cover from early successional herbs to mid-aged jack pine and mature black spruce, experience 

similar climate and have similar soil types and drainages (Goulden et al., 2006), providing an 

unprecedented opportunity to study carbon and energy cycling in the boreal forests, including 

patterns of albedo after fire (Amiro et al., 2006, Goulden et al., 2006, McMillan &  Goulden, 

2008).  Here we extend beyond previous albedo analyses by averaging all the available data from 

2001-2005 to produce monthly, seasonal, and annual site means of albedo.  To fill the albedo 

record in the first 10 years following fire, we extracted MODIS albedo for a burn that occurred in 

1998 and an adjacent control stand in the same ecoregion as the mesonet, 100 km to its northeast 

(Table 1).  The fire was identified using the Canadian Large Fire Database (Stocks et al., 2002).  

Seasonal and annual means of albedo from MODIS and the tower chronosequence were 

combined and fit with exponential functions to provide continuous estimates of boreal albedo for 

years 2-159 after fire.  The agreement between the tower and MODIS data is excellent, which is 

consistent with a formal evaluation that included these sites (Wang et al., 2010).  The radiative 



 

 

forcing was calculated from albedo perturbations relative to the MODIS control stand for the 

MODIS data, and from the oldest site in the chronosequence (159 years) for the other tower sites.  

To produce continuous values of ΔFα, the combined time series of annual radiative forcing was 

modeled with a two-term exponential function (R2=0.90, p<0.001). 

Biometric and eddy covariance measurements of carbon stocks and fluxes were also 

measured at the tower mesonet (Goulden et al., 2011).  For those sites δNECB was defined as 

δNECB = NECBdisturbed-NECBundisturbed,  where NECBdisturbed was determined from NEP in the 

first 100 years following fire, but includes the pyrogenic flux in year one.  That is, in year one 

NECBdisturbed = NEP – Ld, where Ld is the pyrogenic flux due to the combustion of forest 

biomass.  NEP was measured using the eddy covariance technique (Goulden et al., 2011).  

Annual NEP data for the seven sites were fit with a 4-parameter lognormal function that was 

used to model NEP at an annual time step (Figure 1).  To be consistent with an average fire 

return interval of approximately 80 years in this region (Harden et al., 2000, Manies et al., 2005), 

pyrogenic carbon emissions were calculated for the 74-year stand by applying combustion 

factors (Campbell et al., 2007) to measurements of four carbon pools, including live vascular, 

live moss, forest floor (dead moss, leaf litter, fine debris and partially decomposed organic 

material above the mineral soil), and coarse woody debris (Goulden et al., 2010).  The resulting 

estimate is a pyrogenic flux of 1720 ± 370 gC m-2 from the fire at time zero, where the range is 

based on the uncertainty in both the carbon stock measurements and the emission factors.  This 

falls within the range of 1235 ± 410 gC m-2 reported as the 1959-1999 average for this ecoregion 

(Amiro et al., 2001) and estimates from other northern coniferous forests of 1900 ± 250 gC m-2 

and 1246 gC m-2 (Campbell et al., 2007, Randerson et al., 2006), respectively.  Given a mean 



 

 

stand age of 74 years at the time of fire, NECBundisturbed was estimated as NEP from years 74-174 

from the extrapolated model fit to measured NEP. 

 

Results 

Case Studies 

Hurricane defoliation of mangroves 

In the Florida Everglades, Hurricane Wilma partially defoliated at least 270,000 ha of 

coastal mangrove forest.  MODIS imagery indicates a reduction in the enhanced vegetation index 

(EVI), an indicator of canopy light interception, of as much as 80% in some areas (Figure 2).  

Removal of the mangrove foliage and damage to the canopy exposed the dark, moist underlying 

surface (Figure 3), resulting in a reduction in mean annual albedo from 0.11 to 0.09 in the year 

after the hurricane (Figure 4).  Due to high levels of insolation, this translates to ΔFα = 3.6±0.5 

W m-2 in the first year (Figure 5A).  Albedo recovered towards pre-hurricane values in the first 

three years following Hurricane Wilma, and has remained unchanged during the last two years.  

The reduction in albedo remains statistically significant five years following the hurricane 

(Student’s t-test, p<0.001).  At the same time, the damage to the canopy also caused a large 

reduction in gross photosynthesis (GPP) and an increase in ecosystem respiration (Barr et al., 

2011).  In the first five years following the hurricane, the average δNECB was -344±54 gC m-2 

year-1.  As CO2 emission from the disturbance accumulates in the atmosphere, the radiative 

forcing associated with δNECB (ΔFCO2) increases.  Over the five years following the hurricane 

the sum of the two positive (heating) forcings results in an average net radiative forcing of 

5.3±1.0 W m-2 that is still increasing with time (Figure 5A), where the albedo forcing accounted 

for 45% of the total forcing.   



 

 

Mountain Pine Beetle 

Mortality in forests attacked by insects was thought to have only a small effect on albedo 

(Running, 2008).  Here we find that that defoliation caused by the beetles only marginally affects 

summer albedo, but significantly increases winter albedo. In both British Columbia and Oregon 

the winter albedo had already increased by 0.06 at four years following attack (Figure 6), 

suggesting that the dead trees had already shed their needles, exposing the underlying snow.  

Winter albedo in coniferous forests experiencing snow is particularly sensitive to the degree of 

canopy cover, because less foliage exposes underlying snow and increases albedo (Amiro et al., 

2006, McMillan &  Goulden, 2008).  In B.C., the winter albedo perturbation then decreased until 

nine years after attack, before increasing to another local maximum of 0.08 at eleven years.  The 

albedo perturbation in Oregon followed the same general pattern, such that the winter values at 

both sites could be described by a periodic Fourier function (Figure 6; R2 = 0.76, p<0.001).  The 

resulting radiative forcing at the B.C. site (Fig. 5B) started at -1.9±0.3 W m-2 at year 4 and then 

oscillated, reaching a local minimum at 8 years, with another local maximum of -2.4±0.4 W m-2 

at year 11.  The radiative forcing in years 1-3 was assumed to decrease linearly to zero at time 

zero.   

The average CO2 radiative forcing associated with (δNECB) averaged over the 14-year 

study period was 0.49±0.15 W m-2 for the MPB study (Figure 5B).  Thus, the magnitude of 

ΔFα exceeded ΔFCO2 and opposed it in sign over the 14 year period, and the resulting mean net 

forcing was -0.98±0.3 W m-2 (cooling effect).    

 



 

 

Boreal fire 

For the wildfire cases, results of the MODIS analysis show that albedo was initially 

elevated (compared to mature stands) in all seasons two years after fire, and then further 

increased with time for the next ten years (Figure 7).  Tower data from the mesonet agree well 

with MODIS data for the year of overlap (year 11) and then indicate an exponential decay of 

albedo in all seasons towards mature boreal values over the next 100 years (McMillan &  

Goulden, 2008).  Model fits to the data shown in Figure 7 are provided in an appendix online.  

This results in an annual radiative forcing that increases until approximately 10-20 years 

following fire, and then decreases exponentially with time (Figure 5C).  In the first twenty years 

following fire, NEP and δNECB were negative (Figure 1), creating a large relative source of CO2 

to the atmosphere.  The resulting radiative forcing, ΔFCO2, peaked at year 10 (Figure 5C) and 

then decreased to become negative following year 65.  This occurs because δNECB remains 

positive while NEP in the mid-successional stage exceeds that of late successional undisturbed 

stands (Luysseart et al., 2008).  Subsequently, large opposing values of ΔFCO2 and ΔFα mostly 

balanced in the first 50 years, with ΔFCO2 dominating in the first 10 years due to the initial large 

pyrogenic pulse of CO2.  The average ΔFnet over the first 50 years was 0.59±3.8 W m-2 (warming 

effect) and -2.4±1.0 W m-2 (cooling effect) in the next 50 years.  The average net radiative 

forcing over 100 years was -0.9±2.4 W m-2. 

 



 

 

Discussion 

In each of our case studies, the albedo change associated with a stand-altering forest 

disturbance caused a radiative forcing on the same order of magnitude as the concomitant CO2 

forcing.  The mangrove/hurricane case provided the only example in which the CO2 and albedo 

forcings were both positive, resulting in a large net heating.  With both beetle attack and fire, 

where snow is present, the removal of the canopy greatly increases albedo, creating a cooling 

radiative forcing relative to the CO2 forcing.  We hypothesize that the albedo radiative forcing 

(whether positive or negative) will be significant relative to the CO2 radiative forcing in most 

stand-altering forest disturbances, as the albedo of underlying soil or early successional species 

(e.g. grasses) is rarely the same as the forest albedo.  This is especially important in high latitude 

or elevation sites that experience snow because of the well-documented snow-masking effect of 

forests (Betts &  Ball, 1997, Mcfadden &  Ragotzki, 1967).  Furthermore, in colder 

environments, where succession tends to proceed slower, the recovery to pre-disturbance albedo 

is slower, extending the longevity of the radiative forcing.  In our boreal fire example, the albedo 

radiative forcing persisted for approximately 100 years, while in contrast, the subtropical 

mangrove forest recovered half of its albedo perturbation in only three years.  At the time of 

writing, at five years since hurricane, both albedo and -ΣNEE are still suppressed in the 

mangroves, such that the radiative forcing is still non-zero.  The duration of those forcings can 

only be determined by continuing to monitor these processes into the future.   

The decrease in albedo in the mangroves may be relatively unique, as even in other 

tropical environments, albedo tends to increase following deforestation because of the quick 

establishment of grasses, which have a higher albedo than forest.  Evidence from the tropics 

suggests that following clearing, pasture albedo, when left to return to forest, can return to pre-



 

 

disturbance tropical forest values in approximately 30 years (Giambelluca, 2002), well before the 

carbon stocks.  These examples also highlight the complexity in determining the net climate 

effect of forest disturbances, as the albedo and carbon components can recover at different rates.  

This occurs because the radiative properties of the canopy (i.e., albedo) depend on canopy 

geometry, which may have controls in addition to the ecological controls governing succession 

and recovery of carbon stocks (e.g. competition for light, water, and nutrients).  In mangroves, 

the quick, but partial recovery of albedo was not matched by recovery in -ΣNEE.  This is likely 

related to the early recovery of foliage and growth of epicormic sprouts, which partially close the 

canopy and affect albedo.   However, leaf area index and density of photosynthetically active 

vegetation has likely not been restored to pre-disturbance conditions as evidenced by reduced 

enhanced vegetation index (EVI) in the 2.5 km by 2.5 km grid centered on the tower site (Barr et 

al., 2011). In addition, higher respiratory fluxes have persisted during the 5 years following the 

storm as the result of several factors including decomposition of storm-generated coarse woody 

debris, statically unstable conditions which characterized the canopy air mass, and higher post-

storm soil temperatures, especially during dry seasons when water levels are seasonally low. 

The beetle case illustrates another level of complexity, where the disturbance is not as 

discrete or as complete as other disturbances, such as severe fire.  This results in a disturbance in 

albedo and carbon stocks that amplifies for some time before transitioning into recovery.  The 

net effect to carbon stocks (and albedo, we hypothesize) depends on the death, decay, and fall of 

trees over several years, balanced with the release of understory and surviving trees made 

possible by the increasing availability of resources, such as light (Waring &  Pitman, 1985).  

Estimates of NEP show that the loss of productivity from dead trees may be balanced by the 

release of surviving trees in the first few years following attack (Brown et al., 2010).  MPB-



 

 

killed trees lose nearly all their needles by 4 years after attack (Safranyik et al., 2006).  We find 

that this significantly increases winter (and annual) albedo.  Following that, albedo actually 

decreased for a few years.  We hypothesize that this may reflect the initial release of surviving 

and understory trees. After about 9 years, albedo began to increase again, perhaps as fine 

branches, and the smallest snags began to fall.  This is again followed by a decrease in albedo.  

We hypothesize that this may be followed by one final increase in albedo that would be 

associated with the fall of the remaining larger snags, which could open the canopy to its barest 

state.   In Oregon, MPB-killed lodgepole pine trees in unthinned forests were found to begin to 

fall five years following death (Mitchell &  Preisler, 1998), where 50% were down by 9 years, 

and 90% by 14 years.  Significant blowdown has not yet been observed in our study areas around 

Eutsuk Lake, and is expected to occur soon, in years 15-20 following attack (Dave Coates, 

personal communication).  Albedo radiative forcing will likely reach peak negative values at that 

time.  MPB-killed lodgepole tend to break and fall from the base (Mitchell &  Preisler, 1998), so 

that the process is partially controlled by the decay rate at the base, which will be a function of 

moisture and temperature, among other variables.  The other major control of snag fall rate is the 

experienced wind speed, which for any given snag can be a function of local weather and 

climatology, elevation, aspect, stand density etc.  This may lead to a large degree of variability in 

the timing of snag fall, and our case study should be viewed as one example.  Continued 

measurements and monitoring will be required to determine the duration and net impact of the 

beetle epidemic.  At the landscape scale, the most important control on the albedo perturbation is 

likely the severity of attack, which varies from just a few attacked trees, to near complete stand 

replacement.  This is also the most important predictor of the impact to carbon stocks, where 

recovery relative to unattacked stands can take decades.  Measurements and simulations from 



 

 

MBP-attacked lodgepole stands from the current epidemic in Idaho indicate recovery of attacked 

carbon stocks can take anywhere from 56-185 years, depending mostly on the severity of attack 

(Pfeifer et al., 2011). 

Our post-boreal fire analysis supports previous findings that summer albedo tends to 

increase with time starting two years after fire as early successional herbs, shrubs, and deciduous 

seedlings begin to reestablish (Amiro et al., 2006, Lyons et al., 2008, McMillan &  Goulden, 

2008, Randerson et al., 2006).  The greatest increase in albedo occurs in winter (Amiro et al., 

2006, Liu &  Randerson, 2008, Liu et al., 2005, Randerson et al., 2006), where the loss of 

canopy creates a much more reflective surface for lying snow (Betts &  Ball, 1997).  This 

mechanism also increases albedo in spring and fall (Liu et al., 2005, Lyons et al., 2008, 

Randerson et al., 2006) which represent the transition period for snow cover, making albedo 

during these times especially sensitive to interannual variability in snowfall (Liu et al., 2005).  In 

our analysis, winter albedo increased with time in the first ten years following fire.  As with the 

beetle case, we hypothesize that this increase in time may result from the fall of standing dead 

snags.  The time it takes for half of dead snags to fall (i.e., half life) has been reported as 5-15 

years after fire in smaller fire-killed coniferous trees in western North America (Russell et al., 

2006).  Thus, the progression of seasonal albedo with time during recovery not only depends on 

the rate of reestablishment during succession, but also the loss of standing dead snags and 

branches following fire. 

Addressing multiple disturbances across very different biomes necessitated employing a 

variety of measurement and modeling techniques within this work.  We have attempted to 

quantify and highlight the uncertainties in these techniques throughout.  To the best of our 

knowledge, no systematic biases have been imputed from the diversity of methodologies.  The 



 

 

greatest shortcoming of this work may be the duration of beetle and hurricane cases studies, 

which do not capture the full recovery of the ecosystems to pre-disturbance levels of albedo or 

NECB.   Continued measurement and monitoring will be required of ongoing work to determine 

the duration and net climate impact of these disturbances. 

 

Conclusions 

This analysis shows that, in terms of radiative forcing, albedo perturbations from natural 

forest disturbances can impact climate as much as the associated relative source of CO2 to the 

atmosphere.  Depending on the disturbance, the net of these two forcings can be positive 

(heating) or negative (cooling) when averaged over the measurement period.   That is, the albedo 

effect can either enhance or reduce the positive radiative forcing from CO2 efflux, depending on 

the albedo of the underlying soil and early successional vegetation type, as well as the climate 

zone.  Defining the net impact of a disturbance requires integration of fluxes and albedo over 

long timeframes, on the order of 100 years.  Generally, in places that experience snow, removal 

of forest canopy via disturbance will lead to an increase in albedo.  The magnitude of that 

increase depends on the severity of disturbance, preexisting stand density, snow amount, and 

radiation environment (e.g., latitude).  However, albedo can also decrease after a disturbance, as 

demonstrated by our hurricane-defoliated mangrove case.  The rate of recovery of albedo 

depends on the complex controls governing the ecological processes of succession, which also 

determine the recovery of carbon stocks.  However, albedo and carbon stocks are not exactly 

coupled during succession, highlighting the complexity of representing these processes in global 

climate models. These processes vary greatly across ecoregions, and representing them properly 

will require continued use of carbon flux measurements, biometry, and remote sensing.  



 

 

Improving our understanding of these processes is particularly crucial with regard to global scale 

prognostic climate modeling, since natural disturbances are expected to increase under a 

changing climate.  This study adds to a now considerable body of work suggesting that albedo 

needs to be incorporated into carbon/climate management decisions. 

 
Acknowledgments  
This research was supported by AmeriFlux [the Office of Science (BER), U.S. Department of 
Energy (DOE; DE-FG02-04ER63917 and DE-FG02-04ER63911)].   Thanks to Robert Kennedy 
and Travis Woolley for help identifying fires and beetle disturbances in Oregon, Tara Hudiburg 
for inventory data analysis, Werner Kurz and Graham Stinson for Canadian NBP data, and John 
Campbell, Jeff Masek, Feng Gao, and Andres Schmidt for helpful discussions.  Thanks to 
Deborah Cichowski, Arthur Stock, Cathy Middleton, and Tim Ebata for help identifying beetle 
disturbances in B.C. 
 
 



 

 

References 
Adams HD, Macalady AK, Breshears DD et al. (2010) Climate-Induced Tree Mortality: Earth 

System Consequences. EOS Transactions, 91, 153-154. 
Amiro BD, Orchansky AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal 

forest energy balance. Agricultural and Forest Meteorology, 140, 41-50. 
Amiro BD, Todd JB, Wotton BM et al. (2001) Direct carbon emissions from Canadian forest 

fires, 1959-1999. Canadian Journal of Forest Research-Revue Canadienne De 
Recherche Forestiere, 31, 512-525. 

Anderson RG, Canadell JG, Randerson JT et al. (2011) Biophysical considerations in forestry for 
climate protection. Frontiers in Ecology and the Environment, 9, 174-182. 

Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined 
climate and carbon-cycle effects of large-scale deforestation. PNAS, 104, 6550-6555. 

Barr JG, Engel V, Fuentes JD, Zieman JC, O'halloran TL, Smith TJ, Anderson GH (2010) 
Controls on mangrove forest-atmosphere carbon dioxide exchanges in western 
Everglades National Park. Journal of Geophysical Research-Biogeosciences, 115, -. 

Barr JG, Engel V, Smith TJ, Fuentes JD (2011) Hurricane disturbance and recovery of energy 
balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades 
(in revision). Agricultural and Forest Meteorology. 

Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) 
Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic 
Hurricanes. Science, 327, 454-458. 

Betts AK, Ball JH (1997) Albedo over the boreal forest. Journal of Geophysical Research-
Atmospheres, 102, 28901-28909. 

Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in 
surface albedo. Nature, 408, 187-190. 

Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of 
forests. Science, 320, 1444-1449. 

Bonan GB, Pollard D, Thompson SL (1992) Effects of Boreal Forest Vegetation on Global 
Climate. Nature, 359, 716-718. 

Brown M, Black TA, Nesic Z et al. (2010) Impact of mountain pine beetle on the net ecosystem 
production of lodgepole pine stands in British Columbia. Agricultural and Forest 
Meteorology, 150, 254-264. 

Campbell J, Donato D, Azuma D, Law B (2007) Pyrogenic carbon emission from a large 
wildfire in Oregon, United States. Journal of Geophysical Research-Biogeosciences, 112. 

Carroll AL, Taylor SW, Régnière J, Safranyik L (2003) Effects of climate change on range 
expansion by the mountain pine beetle in British Columbia.  pp Page. 

Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina's 
Carbon Footprint on U.S. Gulf Coast Forests. Science, 318, 1107. 

Chapin FSI, Woodwell GM, Randerson JT et al. (2006) Reconciling Carbon-cycle Concepts, 
Terminology, and Methods. Ecosystems, 9, 1041-1050. 

Cichowski D, Lawson B, Williston P et al. (2001) North Tweedsmuir Provincial Park Strategic 
Vegetation Management Study. Prepared for BC Parks, Smithers, BC 142p. 

Collins WD, Bitz CM, Blackmon ML et al. (2006) The Community Climate System Model 
version 3 (CCSM3). Journal of Climate, 19, 2122-2143. 

Dale VH, Joyce LA, Mcnulty S et al. (2001) Climate change and forest disturbances. BioScience, 
51, 723 - 733. 



 

 

Forest Service USDA (2008) Major Forest Insect and Disease Conditions in the United States: 
2008 update.   

Forest Service USDA (2010)  Forest Health Protection (FHP) aerial survey data and maps. 
Forster P, Ramaswamy V, Artaxo P et al. (2007) Changes in atmospheric constituents and 

radiative forcing Climate Change 2007: The Physical Science Basis (Contribution of 
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change) ed S Solomon et al. Cambridge University Press: New York, NY, USA. 

Garbutt R (1994) Mountain pine beetle and Western Basalm Bark Beetle in Tweedsmuir 
Provincial Park Prince Rupert Forest region. Canadian Forest Service, FIDS Pest Report 
94-13, 4. 

Giambelluca TW (2002) Hydrology of altered tropical forest. Hydrological Processes, 16, 1665-
1669. 

Goulden ML, Mcmillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-
Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest 
succession. Global Change Biology, 17, 855-871. 

Goulden ML, Winston GC, Mcmillan AMS, Litvak ME, Read EL, Rocha AV, Elliot JR (2006) 
An eddy covariance mesonet to measure the effect of forest age on land-atmosphere 
exchange. Global Change Biology, 12, 1-17. 

Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. Journal of 
Geophysical Research-Atmospheres, 102, 6831-6864. 

Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O'neill KP, Kasischke ES (2000) 
The role of fire in the boreal carbon budget. Global Change Biology, 6, 174-184. 

Joos F, Prentice IC, Sitch S et al. (2001) Global warming feedbacks on terrestrial carbon uptake 
under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. 
Global Biogeochemical Cycles, 15, 891-908. 

Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American 
boreal region-Spatial and temporal patterns of burning across Canada and Alaska (vol 33, 
art no L09703, 2006). Geophysical Research Letters, 33, -. 

Kurz WA, Dymond CC, Stinson G et al. (2008) Mountain pine beetle and forest carbon feedback 
to climate change. Nature, 452, 987-990. 

Law BE, Falge E, Gu L et al. (2002) Environmental controls over carbon dioxide and water 
vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-
120. 

Liu HP, Randerson JT (2008) Interannual variability of surface energy exchange depends on 
stand age in a boreal forest fire chronosequence. Journal of Geophysical Research-
Biogeosciences, 113, -. 

Liu HP, Randerson JT, Lindfors J, Chapin FS (2005) Changes in the surface energy budget after 
fire in boreal ecosystems of interior Alaska: An annual perspective. Journal of 
Geophysical Research-Atmospheres, 110, -. 

Luysseart S, Schulze ED, Boerner A et al. (2008) Old-growth forests as global carbon sinks. 
Nature, 455, 213-215. 

Lyons EA, Jin YF, Randerson JT (2008) Changes in surface albedo after fire in boreal forest 
ecosystems of interior Alaska assessed using MODIS satellite observations. Journal of 
Geophysical Research-Biogeosciences, 113, -. 

Manies KL, Harden JW, Bond-Lamberty BP, O'neill KP (2005) Woody debris along an upland 
chronosequence in boreal Manitoba and its impact on long-term carbon storage. 



 

 

Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 35, 
472-482. 

Mcfadden JD, Ragotzki.Ra (1967) Climatological Significance of Albedo in Central Canada. 
Journal of Geophysical Research, 72, 1135-&. 

Mcmillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of 
boreal forests. Global Biogeochemical Cycles, 22, -. 

Mitchell RG, Preisler HK (1998) Fall rate of lodgepole pine killed by the mountain pine beetle in 
central Oregon. Western journal of applied forestry (USA). 

Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to 
well mixed greenhouse gases. Geophysical Research Letters, 25, 2715-2718. 

Pasch RJ, Blake ES, Cobb Iii HD, Roberts DP (2006) Tropical Cyclone Report Hurricane Wilma 
15-25 October 2005. National Weather Service. National Hurricane Center. Tropical 
Prediction Center. Online at http://www. nhc. noaa. gov. 

Pfeifer EM, Hicke JA, Meddens AJH (2011) Observations and modeling of aboveground tree 
carbon stocks and fluxes following a bark beetle outbreak in the western United States. 
Global Change Biology, 17, 339-350. 

Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) 
Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the 
dynamics of bark beetle eruptions. BioScience, 58, 501-517. 

Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate 
warming. Science, 314, 1130-1132. 

Roman MO, Schaaf CB, Woodcock CE et al. (2009) The MODIS (Collection V005) 
BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. 
Remote Sensing of Environment, 113, 2476-2498. 

Romero LM, Smith TJ, Fourqurean JW (2005) Changes in mass and nutrient content of wood 
during decomposition in a south Florida mangrove forest. Journal of Ecology, 93, 618-
631. 

Rotenberg E, Yakir D (2010) Contribution of Semi-Arid Forests to the Climate System. Science, 
327, 451-454. 

Running SW (2008) Ecosystem Disturbance, Carbon, and Climate. Science, 321, 652-653. 
Russell RE, Saab VA, Dudley JG, Rotella JJ (2006) Snag longevity in relation to wildfire and 

postfire salvage logging. Forest Ecology and Management, 232, 179-187. 
Safranyik L, Carroll AL, Wilson B (2006) The biology and epidemiology of the mountain pine 

beetle in lodgepole pine forests. The mountain pine beetle: a synthesis of biology, 
management and impacts on lodgepole pine, 3-66. 

Schaaf CB, Gao F, Strahler AH et al. (2002) First operational BRDF, albedo nadir reflectance 
products from MODIS. Remote Sensing of Environment, 83, 135-148. 

Schulze E, Heimann H (1998) Carbon and water exchange of terrestrial systems. Asian change in 
the context of global climate change: impact of natural and anthropogenic changes in 
Asia on global biogeochemistry, 145. 

Schwind B (2008) Monitoring trends in burn severity: report on the Pacific Northwest and 
Pacific Southwest fires—1984 to 2005. In: Online at: 
http://www.mtbs.gov/projectreports.htm. pp Page. 

Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate 
feedbacks in NCAR's Community Atmospheric Model. Journal of Climate, 21, 2269-
2282. 



 

 

Smith T, Anderson G, Balentine K, Tiling G, Ward G, Whelan K (2009) Cumulative impacts of 
hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and 
vegetation. Wetlands, 29, 24-34. 

Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate 
feedbacks using radiative kernels. Journal of Climate, 21, 3504-3520. 

Stocks BJ, Mason JA, Todd JB et al. (2002) Large forest fires in Canada, 1959–1997. Journal of 
Geophysical Research, 107, 8149. 

Wang K, Liang S, Schaaf CL, Strahler AH (2010) Evaluation of Moderate Resolution Imaging 
Spectroradiometer land surface visible and shortwave albedo products at FLUXNET 
sites. Journal of Geophysical Research (Atmospheres), 115, 17107. 

Waring RH, Pitman GB (1985) Modifying Lodgepole Pine Stands to Change Susceptibility to 
Mountain Pine-Beetle Attack. Ecology, 66, 889-897. 

Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring 
increases western U.S. forest wildfire activity. Science, 313, 940-943. 

Westfall J, Ebata T (2009) Summary of forest health conditions in British Columbia-2008. 
British Columbia Ministry of Forests, Forest Practices Branch, Victoria, BC, Canada. 

Xiao XM, Zhang QY, Braswell B et al. (2004) Modeling gross primary production of temperate 
deciduous broadleaf forest using satellite images and climate data. Remote Sensing of 
Environment, 91, 256-270. 

Zeng HC, Chambers JQ, Negron-Juarez RI, Hurtt GC, Baker DB, Powell MD (2009) Impacts of 
tropical cyclones on US forest tree mortality and carbon flux from 1851 to 2000. 
Proceedings of the National Academy of Sciences of the United States of America, 106, 
7888-7892. 

 
 



 

 

Tables 
 

N gaps BE RMSE RF error (std) (W m-2) elevation (m) lat lon
Florida both 15 -9.73e-007 +/-  4.94e-005 0.0011 +/-  0.0002 0.05 0 25.39 -81.13
Manitoba control 17 -6.14e-006 +/-  1.74e-004 0.0036 +/-  0.0012 0.1 250 56.37 -96.80
Manitoba fire 64 -1.75e-005 +/-  9.59e-004 0.0191 +/-  0.0035 0.59 200 56.36 96.37
Oregon control 86 -1.80e-005 +/-  3.29e-004 0.0064 +/-  0.0011 0.28 1600 44.00 -121.82
Oregon beetles 84 -8.48e-006 +/-  4.64e-004 0.0093 +/-  0.0019 0.41 1500 43.93 -121.76
B.C. control 16 -1.38e-005 +/-  3.08e-004 0.0061 +/-  0.0011 0.17 1300 53.08 -125.01
B.C. beetles 6 -1.06e-006 +/-  2.42e-004 0.0053 +/-  0.0014 0.16 900 53.19 -126.37

Gapfilling error analysis

 
 
Table 1.  Location, elevation, and statistics describing the error associated with gapfilling the 
MODIS time series of 8-day shortwave broadband albedo.  Statistics include bias error (BE), 
root mean squared error (RMSE), and the average error imputed to the annual calculation of 
radiative forcing as calculated from the error statistics and 1000 Monte Carlo simulations. 
 



 

 

Figure Legends 
 
Figure 1.  Mean annual NEP as measured with eddy covariance across the boreal 
chronosequence (Goulden et al., 2010) with 25th and 75th percentile confidence intervals of a 4-
parameter lognormal fit (R2 = 0.88, p<0.07).  The model fit is used to predict NEP at an annual 
time scale.  The ecosystem is a carbon source for approximately the first 11 years following fire. 
 
Figure 2. Difference in MODIS enhanced vegetation index (EVI) from before and after hurricane 
Wilma, expressed as percent change.  Three 16-day EVI scenes from November and December 
were averaged before Wilma in 2004 and after in 2005 to produce the difference.  The inset 
shows southern Florida with the area of EVI analysis indicated by a white box.  Visible imagery 
used in fair use, ©2011 Google, imagery © 2011 TerraMetrics. 
 
Figure 3. (A) View of the understory and boardwalk leading to the tower at the mangrove site 
before the hurricane shows a closed canopy.  (B) After the hurricane the canopy was nearly 
completely removed, exposing the dark, damp soil. 
 
Figure 4.  Time series of MODIS 8-day shortwave broadband albedo (hollow circles) with 
annual moving average (solid line, left axis), and annual tower-measured and modeled -ΣNEE 
with uncertainty estimates (squares with error bars, right axis).  The value of -ΣNEE in 2006 is 
shown as a hollow square to indicate that the value was modeled rather than measured, as in 
other years.  The impact of defoliation from Hurricane Wilma is visible as a significant reduction 
in both albedo and -ΣNEE. 
 
Figure 5. Top of the atmosphere radiative forcing resulting from changes to albedo (data as red 
symbols; model fit as red line) and net biome productivity (δNECB, green line) and the net of 
those two processes (dashed blue line) for (A) hurricane damage to a mangrove forest, (B) 
lodgepole pine mortality from mountain pine beetle, (C) stand replacing fire in coniferous forests 
in and Manitoba, Canada (squares=MODIS; circles=towers).  Values of ΔFnet averaged over the 
period indicated in each panel are included.  The radiative forcing from albedo changes and CO2 
release are on the same order of magnitude, and can either oppose in sign to reduce the net 
forcing (e.g., B,C), or combine constructively to enhance it (e.g., A). 
 
Figure 6.  Time series of the perturbation of MODIS albedo in summer (JJAS) and winter 
(NDJF), as a function of years since mountain pine beetle attack in lodgepole pine stands in 
British Columbia (B.C.) and Oregon (OR).  Albedo is greatly enhanced in winter after the dead 
trees drop their needles.  The albedo perturbation changes with time as the degree of canopy 
openness is controlled by the balance of the release of surviving trees and fall of standing dead 
branches and snags. Error bars are shown on the B.C. winter values to indicate the reported 
accuracy of MODIS albedo data. 
 
Figure 7.  Annual and seasonally-averaged albedo as a function of years since fire (stand age) for 
summer (JJAS), winter (JFMD), and spring/fall (AMON).  Data from years 2-11 since fire are 
MODIS data, and years 11-159 are tower data from the boreal chronosequence. Model fits are 
two-term exponential functions (see supporting information online).  Error bars on the annual 
albedo means indicate confidence intervals of 0.03 for MODIS data and 0.015 for tower data. 
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