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Abstract. Inferring causal effects is critically important in biomedical research as it allows us to move
from the typical paradigm of associational studies to causal inference, and can impact treatments and
therapeutics. Association patterns can be coincidental and may lead to wrong inferences in complex
systems. Microbiomes are highly complex, diverse, and dynamic environments. Microbes are key play-
ers in health and diseases. Hence knowledge of genuine causal relationships among the entities in a
microbiome, and the impact of internal and external factors on microbial abundance and interactions
are essential for understanding disease mechanisms and making treatment recommendations.

In this paper, we investigate fundamental causal inference techniques to measure the causal effects of
various entities in a microbiome. In particular, we show how to use these techniques on microbiome
datasets to study the rise and impact of antibiotic-resistance in microbiomes. Our main contributions
include the following. We introduce a novel pipeline for microbiome studies, new ideas for experimental
design under weaker assumptions, and data augmentation by context embedding. Our pipeline is robust,
different from traditional approaches, and able to predict interventional effects without any controlled
experiments. Our work shows the advantages of causal inference in identifying potential pathogenic,
beneficial, and antibiotic-resistant bacteria. We validate our results using results that were previously
published.

Keywords: Causal Inference · Intervention · Microbiome · Antibiotic resistance · Causal effects.
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2 Sazal et al.

1 Introduction

Inferring causality is the process of connecting a cause with an effect. Identifying even a single causal
relationship from data is often worth more than observing dozens of correlations in a data set. The study
of causality is not new in many areas of science, but in recent years with advances in causal calculus, data
science, and machine learning, the focus is now on how to draw causal conclusions in a data-driven way.
Given a sufficiently large and rich data set, the theoretical foundations of causality allows us to go beyond
merely discovering statistical associations in data, to infer quantitative causal relationships and to explore
“what-if” questions, thus profoundly impacting data-driven decision making in many domains. In the field
of biomedicine, inferring causal relationships could impact treatment and therapy.

Causal inference can be achieved if a causal structure is readily available based on prior knowledge
from experts (e.g., exercise reduces cholesterol). However, in most real-world situations, this is not known.
Alternatively, causal inference is also possible if extensive experimentation is possible along with the ability
to control all variables in play. In most applications, controlling all variables is impossible (e.g., setting the
abundance of bacteria A or the concentration of metabolite M in a person’s gut to specific values). If both
options are unavailable, but extensive observational data is available, then we rely on the fact that we can
test whether a causal model fits the data, even though no experimental manipulation has been carried out.
Artificial intelligence already showed huge success in many domains, for example, computer vision [60, 22,
46] and speech recognition [20]. However, causal inference has been compared to human level intelligence [38]
and recently has been successfully applied to data from education [38], economics [54], online advertising [5],
medicine and epidemiology [25, 9], social sciences [37], natural language processing [59], policy evaluation
[51], recommendation systems [4], and much more.

A microbiome is a community of microbes including bacteria, archaea, protists, fungi and viruses that
share an environmental niche [41]. Microbiomes have been referred to as a social network because of the
complex set of potential interactions between its members [15, 14], their products and their host. These
interactions take the form of cellular communications, cooperation, competition, and much more. All animals
and plants live in close association with communities of microbes [30]. These niche communities are highly
dynamic. Human bodies harbor rich communities of microbes mostly in the gastrointestinal and reproductive
tracts, and on cutaneous and mucosal surfaces such as the skin and the oral cavity [11, 40]. Bacteria (and
microbes, in general) play an essential role in human health by helping in a variety of routine processes
including digestion, immune responses, and synthesis of useful vitamins and other metabolites. Interactions
between microbes in these communities can impact the genes they express and the metabolites they produce
or utilize, and can therefore impact the health of the host or the environmental niche [13]. In a symbiotic
microbiome, many microbial taxa play a useful role leading to a healthy ecosystem. An imbalance (dysbiosis)
in the microbial community is strongly associated with a variety of human diseases [34], often by producing
harmful metabolites or by preventing the production of sufficient quantities of necessary products [2]. Thus,
inferring causal relationships among the entities of a microbiome and with their hosts are crucial for selection
of treatments and recommendation of probiotics [7].

In this paper we investigate the causal relationships between microbes and other entities of the microbiome
in subjects with Inflammatory Bowel Disease (IBD), with special emphasis on the causal effects of different
antibiotics and on the resulting rise of antibiotic resistance in different taxa in the microbiome.

Dysbiosis of the gut microbiome is associated with IBD, colorectal cancer, obesity, and much more.
However, the relationships between microbial taxa are complex and the experiments required to understand
the causal mechanisms are expensive and time-consuming, and therefore remain poorly understood. Another
major threat to public health is the rise of antibiotic resistance [56], resulting from the overuse, misuse and
abuse of antibiotics. While there is no denying the value of antibiotic treatments to combat infectious diseases
[3], the need to study antibiotic resistance as a microbial community characteristic is well recognized as a
high priority [21].

Causality in microbiomes is a recent topic of research interest. Bourrat and Fishbach et al. discussed broad
ideas about causal inference in microbiomes [6, 16]. Sanna et al. studied causality in microbiome using bidi-
rectional Mendelian randomization [45]. Sazal et al. showed how to extract directional relationships among
the taxa from oral microbiomes [48, 47]. Ramakrishnan et al. studied causal relationships in microbiomes
related to upper airway diseases [42]. This paper approaches causality in microbiomes using a data-driven
approach, drawing whenever possible from appropriate knowledgebases. The only other data-driven approach
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Causal Inference in Microbiomes Using Intervention Calculus 3

we found on microbiomes was the work of Mainali et al. [27], where the authors focused on Granger causality,
which infers causality from time series data.

2 Causal Inference

The first step in inferring causality is to learn the causal relationships (also called causal discovery or causal
search), which entails discovering the structure of the relationships. The second step is to use the structure
to infer the causal effects, i.e., the magnitude of the strength of causal relationships.

2.1 Causal Discovery

The goal of causal discovery is to establish causal relationships between the entities from observed data
or using domain knowledge. A particular type of Bayesian network (BN) is often used to encode such
relationships. A BN, sometimes called a belief network or causal network, is a Probabilistic Graphical Models
(PGMs) that represents a set of variables and their conditional dependencies via a directed acyclic graph
(DAG). A causal network is a BN where the edges correspond to direct causal relationships. In a causal
network or causal BN, the parents of each vertex are its presumed direct causes. The direct (and indirect)
causes of Xi are the variables that, when varied, will change the distribution of Xi [35].

Formally, we define causal structures (CS) (or causal Bayesian networks) as a class of PGMs [36, 24]
where each node represents one of n random variable from a set, X = {Xi, i = 1, . . . , n}, and each edge
represents a direct causal relationship. These structures are represented as a graph G = (V,E), where each
vertex in V represents a random variable from X, and E is the set of edges. Although undirected edges
are used in cases where the direction cannot be reliably determined or when both directions appear to be
valid, the graph G is often “manipulated” to be a Directed Acyclic Graph (DAG). Each random variable
Xi has an associated probability distribution. A directed edge in E between two vertices represents direct
stochastic dependencies. Therefore, if there is no edge connecting two vertices, the corresponding variables
are either marginally independent or conditionally independent (conditional on the rest of the variables, or
some subset thereof). The “local” probability distribution of a variable Xi depends only on itself and its
parents (i.e., the vertices with directed edges into the node Xi); the “global” probability distribution, P (X)
is the product of all local probabilities, i.e., a joint distribution [49], given by

P (X) =
n∏

i=1

P (Xi|Parents(Xi)). (1)

Note that the equation is simpler when the causal structure is sparser. Thus, an important step in our
pipeline is to identify all independent pairs of random variables. More importantly, we also identify as many
conditionally independent pairs as possible since these represent indirect or non-causal relationships.

All local structures in a causal structure can be classified into three sub-categories: chains, forks, and
colliders. In a chain, two variables X and Y are conditionally independent given Z, if there is only one
unidirectional path between X and Y , and Z is the set of variables that intercepts that path. In a fork,
variable Z is a “common cause” for variables X and Y ; this happens when there is no directed path between
X and Y , and they are independent conditional on Z. Finally, variable Z is a “collider” node between X
and Y , if it is the “common-effect”. In a collider, as in the fork, there is no directed path between X and
Y . However, the difference is that X and Y are unconditionally independent, but become dependent when
conditioned on Z and any descendants of Z.

In general, causal models can be very complex. A pair of variables can be connected through multiple
chains, forks, and colliders, making it non-trivial to determine the dependency between two arbitrary vari-
ables. Directional separation (or, just d-separation) is a useful concept in this context [18] because covariance
terms corresponding to d-separated variables are equal to 0. In a directed graph, G, two vertices x and y are
d-connected if and only if G has a collider-free path connecting x and y. More generally, if X,Y and Z are
disjoint sets of vertices, then X and Y are d-connected by Z if and only if G has a path P between some
vertex in X and some vertex in Y such that for every collider C on P , either C or a descendant C is in Z,
and no non-collider on P is in Z. X and Y are d-separated by Z in G if and only if they are not d-connected
by Z in G. The concept of d-separation allows for more edges to be eliminated in a causal structure.
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4 Sazal et al.

2.2 Intervention

Intervention measures the impact of an action and can be thought of as the effect of “doing/intervening.”
It helps to answer interventional questions of the type: “if a person consumes a specific antibiotic, how
will the abundance of taxon A in her gut change?” or “what is the expected abundance of B. longum if
the relative abundance of C. difficile is fixed at 0.1?” Note that a controlled experiment can potentially
answer such interventional questions, but may be either prohibitively expensive, impossible, or unethical
to perform. Causal calculus allows us to answer such interventional questions in an in silico manner. We
clarify that data collected from research studies (e.g., a microbiome study) are observational data, and
not the result of controlled interventions, which require that variables be artificially held at specific values.
Conditional expectation is given by E[Y |X = x], while intervention is given by E[Y |do(X = x)], which is the
expectation of Y if every sample in the population had variable X fixed at value x. Observational distribution
P (y|x) is different from interventional distribution P (y|do(x)). Observational distribution describes that
the distribution of Y given that variable X takes value x is observed. On the other hand, interventional
distribution of Y is what we would observe if we intervened in the data generating process by artificially
forcing the variable X to take value x, but data of other variables remain same. Pearl showed how to compute
interventions in a causal model [39]. This is done by “mutilating” the model – to achieve do(X = x), delete
all incoming edges to node X, fix its value at x, and then perform computations on the resulting network.

2.3 Intervention Calculus

Consider the n random variables X1, . . . , Xn and let paj denote the parents of Xj . Any distribution that is
generated from a causal structure can be factorized as

f (x1, . . . , xn) =
n∏

j=1

f
(
xj |paj

)
(2)

A distribution generated from a DAG with independent error terms results in a Markovian model for which
an intervention do(Xi = x) on the set of variables Xi, . . . , Xn is given by the following formula

f(x1, . . . , xn|do(Xi = x)) =

{∏n
j=1,j 6=i f(xj |paj)|xi=x, if xi = x

0, otherwise
(3)

where f(xj |paj) are pre-intervention conditional distribution. The above formula uses the causal structure to
write interventional distribution on the left-hand side in terms of pre-intervention conditional distributions
on the right hand side. It is possible to summarize the distribution generated by an intervention by its mean

E[Xn|do(Xi = x)] =

E[Xn], if Xn ∈ pai∫
E[Xn|x, pai]f(pai)dpai, if Xn /∈ pai

(4)

Assuming that the joint distribution of n random variables is Gaussian, the causal effect of Xi on Xn is
given as

C(Xi, Xn) =
∂

∂x
E[Xn|do(Xi = x)], (5)

and γ becomes constant because of linearity assumption. Since normality implies that E(Xn|pai, Xi = x) is
linear in x and pai we can express the expectation value using the following equation

E (Xn|pai, Xi = x) = γ0 + γix+ γTpai
pai, (6)

for some values γ0, γi ∈ R. The causal effect of Xi on Xn with Xn /∈ pai is denoted by C(Xi, Xn) and equals
the regression coefficient of xi above. Thus,

C(Xi, Xn) = γi, (7)

where γi is as dictated by Eq. (6).
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3 Methods and Experiments

In our novel approach, we applied intervention calculus or do-calculus to the causal network constructed from
microbiome data sets to (a) determine the causal effects of each microbial taxa on other microbial taxa, and
(b) to determine the effects of antibiotics on different microbial taxa. Our proposed method is as follows: (1)
learn a causal graph, (2) compute causal effects, (3) analyze the role of causally significant microbial taxa.

3.1 Problem Formulation

The problem formulation for causal effects among taxa is as follows: Let T = {B1, B2, . . . , Bn} be the set
of microbial taxa present in the cohort of healthy or disease samples with abundance values {b1, b2, . . . , bn}.
For two taxa {Bi, Bj} ∈ T , the causal effect of Bi on Bj is given by

C(Bi, Bj) =
∂

∂b
E[bj |do(bi = b)].

We computed causal effects for all pairs in T and ranked all taxa according to the sum of absolute values of
causal effect on all the other taxa, with the hope of identifying the most influential taxa in the microbiome.
Using the above ranking, we considered the top 30% of taxa for further analysis.

Similarly, to study the causal effects of different antibiotics on the taxa, we let T = {A1, A2, . . . , An}
be the set of antibiotics applied, and let O = {b1, b2, . . . , bn} be the set of abundances of the microbial
taxa {B1, B2, . . . , Bn} for those samples. (T is for treatment or interventional variable, O is for outcome
variable in this context.) Causal effect of an antibiotic Ai on the abundance of a microbial taxon bi is
C(Ai, bi) = ∂

∂tE[bi|do(Ai = t)]. Since causal effects can be positive or negative, we computed causal effects
for all pairs in T × O and separately ranked the pairs with positive and negative causal effects for further
analysis.

3.2 Data

We analyzed five data sets related to IBD: three from Integrative Human Microbiome Project (iHMP) [1]
and two from MicrobiomeHD database [12]. The iHMP IBD data set includes multiomics data from subjects
with Crohn’s Disease (CD), ulcerative colitis (UC), and non-IBD (i.e., healthy), all of which were used in
this study. MicrobiomeHD database includes 28 published case-control gut microbiome studies spanning ten
diseases, from which we chose data sets associated with C. difficile infections and enteric diarrhea. These
choices were made because the role of many taxa for those diseases are reasonably well established. Table 1
gives a summary of IBD related data sets. For each data set, we computed the total causal effect of each
microbial taxon on all other taxa.

Table 1. Description of IBD-related data set

Database Data Set # of Samples

Ulcerative colitis (UC) 459
iHMP Crohn’s disease (CD) 749

non-IBD (healthy) 429

Data (MicrobiomeHD) Cases Controls

EDD (Enteric diarrhea) 201 82
CDI (C. difficile infection) 93 154

To explore the effect of antibiotics on antibiotic-resistant taxa, we analyzed a dataset from Gibson et al.
[19]. It consists of 401 stool metagenomic samples from 84 premature infants that were sampled in multiple
time points. All but two infants received antibiotic therapy within the first 24 hours. Sixty-one percent of
the infants received additional antibiotic treatments (“Antibiotic” cohort) between 1–10 weeks of life. The
remaining 39 percent formed the “Control” group. Each treatment consisted of one or more antibiotics. We
considered each measurement as a separate sample from a distribution, and did not take into account the
temporal aspect of the measurement as showed in [17].
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3.3 Experiments

For each data set, we generated a causal structure by applying the PC-stable algorithm [10] and we computed
the causal effect of each microbial taxon on all other taxa. We also computed the change in causal effects in
healthy (non-IBD) versus diseased states.

To understand the causal role of microbial taxa in disease mechanisms we augmented the data set by
merging healthy and disease abundance matrices and by adding an extra node named ‘disease’; we call
this process ‘context embedding’. Context embedding is important for causal inference because in different
contexts, the same event can be interpreted differently. For the healthy state, the value of disease node is
0, and for the disease state its value is 1. Thus the disease node becomes a binary random variable. We
computed the causal effect of all taxa on disease, and vice versa.

For the antibiotic data set, as part of preprocessing, we profiled metagenomic reads against 14506 complete
bacterial, archaeal, and viral genome sequences from RefSeq v.92 using FLINT [53] framework. Reference
genomes were obtained from a repository hosted by the Kraken [58] tool. After obtaining abundance matrix,
we created a causal network using recently used antibiotics and relative abundance of bacterial taxa. We
computed causal effects of each antibiotic on each taxon and vice versa, to be used for further analysis.

4 Results and Analysis

IBD and non-IBD Data Fig. 1 shows a causal structure inferred from ulcerative colitis (UC) samples.
Fig. 2 represents a causal network combining data from non-IBD and UC samples, but with an additional
“disease” node (colored blue). Fig. 3 shows a causal network with nodes representing antibiotics and microbial
taxa. Some more networks are shown and explained in the Appendix. In each network, nodes represent
random variables for relative abundance of taxa, disease status, or antibiotic dosages. Edges represent their
conditional relationships. The size of each node is proportional to sum of relative abundance and the color
of the edges represents the sign of the correlation between the node variables. In a causal structure, directed
edges suggest potentially direct causal effect between the connected variables. The absence of an edge suggests
that there is no direct causal effect, although indirect causal effects may exist. An inferred causal structure
may contain undirected edges if the data are not enough to support an edge orientation. Those undirected
edges remain causally “uninterpretable”.

Fig. 1. Causal network from Ulcerative Colitis (UC) data. All nodes represent taxa abundance.

We looked at the distribution of causal effects for each data set as shown in Fig. 4. Most of the causal
effects are relatively small (see peak centered at 0). Approximately 30% of the causal effects are relatively
large. The top 15% (shown in green rectangle) and bottom 15% (shown in red rectangle) are zoomed in for
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Fig. 2. Causal network after introducing a “disease” node and using data from UC and non-IBD samples. Disease
node is shown as a filled blue node.

clarity. Based on sum of absolute values of causal effects we ranked the taxa as shown in Fig. 5. The hope
is that this list shows the taxa that play a significantly key role in health and/or disease.

More interesting patterns are visible if we look at the changes in total causal effects between non-IBD
(healthy) and UC taxa. Fig. 5 shows the ten taxa with the highest change in total causal effects. Green bars
indicate higher total causal effect values in healthy, while red bars indicate higher values in UC, suggesting
that the taxa on the left of the chart are potentially playing a beneficial role in health individuals while the
taxa on the right of the chart are playing a harmful role in UC. Thus, in non-IBD subjects, the bacterial
taxa B. xylanisolvens, E. eligens, B. finegoldii, B. ovatus and some species of Oscillobacter have more
causal impact on the remaining taxa than others. These claims are supported by published literature, which
show those taxa are potentially beneficial [28, 52, 32, 57]. On the other hand, in the diseased state (UC),
other taxa including R. torques, B. massiliensis, P. distasonis, and D. invisus are more impactful. Again,
the published literature supports the above claims [29, 26, 55, 33]. Thus our methods allow us to identify
potentially beneficial and pathogenic bacteria in microbiomes.

Fig. 3. Causal network with antibiotics and taxa from samples obtained during or immediately after the antibiotic
treatment. Blue nodes represent antibiotic doasges and black nodes represent taxa abundance.
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Disease networks We measured causal effects of each taxa on the specially identified “disease node”. We
sorted the absolute value of the effects as shown in Table 2. When we queried the published literature on
this topic, we discovered that barring two, all the taxa listed in Table 2 are known to be either potentially
pathogenic or beneficial, again supporting the claim that our approach helps to identify pathogenic and
beneficial bacteria in healthy and diseased patients. We also computed total causal effects of disease on
individual taxa. Most of the causal effects values are nearly zero, with values in the range of [−0.02, 0.02].
We then listed taxa with values greater than 0.01 or less than −0.01. Our findings suggest that the disease
affects some commensal bacteria to become more abundant, while shrinking the abundance of potentially
beneficial bacteria. This claim is supported by published literature as summarized in Table 3.

Table 2. Taxa with highest causal effect on the ulcerative colitis “disease” node.

Cause Effects on disease node Potential behavior

S. wadsworthensis 6.348413325 Beneficial
B. xylanisolvens 5.612681215 Beneficial
B. intestinihominis 3.645354302 Beneficial
B. ovatus 3.002307827 Beneficial
P. unclassified 2.821679346 ?
D. invisus 2.807382178 Pathogenic
B. cellulosilyticus 2.577919214 Beneficial
A. putredinis 2.131188842 Beneficial
R. torques 2.002078229 Pathogenic
P. distasonis 1.967066432 ?

Table 3. Taxa most impacted by the ulcerative colitis “disease” node

Taxa name Behavior References

B. uniformis Commensal [43]
B. ovatus Commensal [44]
E. coli Commensal [50]
A. muciniphila Beneficial [61]
P. copri Beneficial [8]
B. stercoris Beneficial [31]
A. putredinis Beneficial [23]

Antibiotics Data From the antibiotic data set, we learned a causal network and computed causal effects
of each antibiotic to each taxa. The top seven positive causal effects and top seven negative causal effects
are shown in Table 4 since all other values were close to the background noise. A positive causal effect of
an antibiotic on a taxon suggests that either the antibiotic is inappropriate for that particular taxon or the
taxon is resistant to the antibiotic. Similarly, a negative causal effect suggests that the antibiotic was effective
against the taxon.

The significance of the causal graph shown in Figure 3 is that we are able to separate the effect of each
antibiotic on a taxon. In general, doctors often administer combinations of antibiotics. In our study, 17
unique combinations of antibiotics were used to treat infants (one, two, or three types at a time). Therefore,
it is difficult to identify which particular drug is associated with the rise of antibiotic-resistant taxa, or
which antibiotic is most effective against pathogenic bacteria. Our proposed methods appear to be able to
deconvolve these effects.

As mentioned above, the top 7 positive and negative causeal effect values of antibiotics on taxa are
shown in Table 4. Except for three (out of 14) cases, our causal effect values can explain the average change
in relative abundance that was computed by the previous study of Gibson et al. [19]. In particular, if the
causal-effect of an antibiotic on taxa is positive, the average abundance of this taxa is increased and vice
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Table 4. Causal effects of antibiotics on taxa

Cause Effects Magnitude of Causal Effects Average ∆ abundance

Ticarcillin Clavulanate K.pneumoniae 0.041646824 +
Cefotaxime E.coli 0.037287043 -
Meropenem E.faecalis 0.021974783 +
Vancomycin E.coli 0.016519979 0
Gentamicin E.coli 0.01563053 +
Meropenem S.aureus 0.013329356 NA
Ampicillin E.coli 0.010371501 +
Meropenem K.pneumoniae -0.023983874 -
Cefotaxime E.faecalis -0.017125561 +
Cefotaxime K.pneumoniae -0.01689829 -
Cefotaxime E.faecium -0.015538356 -
Ticarcillin Clavulanate E.faecalis -0.009494291 -
Vancomycin E.faecalis -0.009451166 +
Ticarcillin Clavulanate S.aureus -0.009099242 NA

versa. The contradictory results may lead to new insights about antibiotic effectiveness. For example, even
though after administering Cefotaxime and Vancomycin the relative abundance of E. faecalis on average
tended to increase, our causal effect graph suggests that these antibiotics were effective against these taxa
and that some other factors may be causing their increased abundance.

5 Conclusion

Causal inference shows promising results in analyzing microbiome data, especially in the identification of
potentially pathogenic, beneficial, and antibiotic-resistant bacteria. Thus, in future, this process can allow
us to evaluate the efficacy of probiotics and prebiotics. Moreover, causal inference from purely observational
data is important to prioritize in picking wet-lab experiments for further anaysis. Intervention techniques
can be used to quantify the average causal impact of one entity on another. The next challenge is to study
the causal effect of one entity on another within a single sample.

Fig. 4. Histogram of causal effect values in UC. The top (green) and bottom (red) 15% are zoomed in for details.
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Fig. 5. Top ten causally significant taxa from non-IBD (left), UC (middle), and Top 10 changes in causal effects from
UC to non-IBD (right)
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