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ABSTRACT OF THE THESIS 

ESTIMATION OF RAVINE SEDIMENT PRODUCTION AND SEDIMENT 

DYNAMICS IN THE LOWER LE SUEUR RIVER WATERSHED, MINNESOTA 

by 

Luam Amir Azmera 

Florida International University, 2009 

Miami, Florida 

Professor Fernando R. Miralles-Wilhelm, Co-Major Professor 

Professor Assefa M. Melesse, Co-Major Professor 

This study focuses on quantifying explicitly the sediment budget of deeply incised 

ravines in the lower Le Sueur River watershed, in southern Minnesota. High-rate-gully-

erosion equations along with the Universal Soil Loss Equation (USLE) were 

implemented in a numerical modeling approach that is based on a time-integration of the 

sediment balance equations.  The model estimates the rates of ravine width and depth 

change and the amount of sediment periodically flushing from the ravines. Components 

of the sediment budget of the ravines were simulated with the model and results suggest 

that the ravine walls are the major sediment source in the ravines. A sensitivity analysis 

revealed that the erodibility coefficients of the gully bed and wall, the local slope angle 

and the Manning’s coefficient are the key parameters controlling the rate of sediment 

production. Recommendations to guide further monitoring efforts in the watershed and 

increased detail modeling approaches are highlighted as a result of this modeling effort. 
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CHAPTER I. INTRODUCTION 

Background: Erosion Problems in the Le Sueur River Watershed 

Soil erosion has long been considered to accelerate over the development of human 

activity in history, particularly agriculture. Soil erosion caused by water has been one of 

the prominent processes causing reduced soil quality and reduced water-holding capacity 

of agricultural areas leading to decreased agricultural yield. Soil erosion also has off-site 

impact on larger spatial scales than the agricultural fields.  Sediment yield from 

agricultural watersheds cause sedimentation in watercourses and reservoirs, damaging 

engineering structures and rapidly increase water turbidity. Sediments are also carriers of 

pollutants such as nutrients, pathogens and toxic substances. Increased sediment loading 

to watercourses and reservoirs had resulted in poor water quality in the United States. 

According to the U.S Environmental Protection Agency (EPA)’s most recent list, there 

are about 26,000 impaired water bodies in United States. Sediment and nutrients together 

are the major concern for approximately 11,000 of these water bodies, thus the most 

common impairments are sediment related.  Soil conservation planning and development 

of effective sediment control strategies hence are the main constraints in catchment 

management planning.  

Critical to the development of such management systems is the identification of the 

potentially significant sources and quantifying the sediment yield from each source.  The 

Le Sueur River watershed in Minnesota is one example where the hydrology of the 

system had been artificially altered for agricultural purposes and its geomorphic 

characteristics continue to be naturally modified. Large amounts of sediments are being 

http://news.bbc.co.uk/1/hi/world/asia-pacific/2207602.stm�
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produced in this watershed and loading to the Le Sueur River increasing the turbidity of 

the watercourse.  The Le Sueur River is located in the south-central part of the state, 

(Figure 1). Its watershed is one of the twelve major watersheds of the Minnesota River 

Basin. According to reports of MPCA (Minnesota Pollution Control Agency), significant 

stretches of the Le Sueur and Minnesota Rivers are claimed to be turbid under the Clean 

Water Act. Recent sediment gauging efforts indicate that the Le Sueur River is the 

primary sediment contributor (24-30%) of the Minnesota River (2007). The Minnesota 

River is also one of the major tributaries of the upper Mississippi River, (Figure 1). The 

Minnesota River contributes 85-90% of suspended sediment to Lake Pepin (Kelley and 

Nater 2000). Lake Pepin is a natural impoundment 80 km downstream of the 

metropolitan area of Minneapolis - St. Paul along the Mississippi River.  Lake Pepin is an 

important recreational and commercial resource for the region. However, its impaired 

water quality has recently become a serious concern for pollution control agencies such 

as MPCA. Analyses of sediment cores in Lake Pepin indicate that sediment loads in the 

lake have increased 10-fold since the onset of European settlement in the mid -1800s 

(Engstrom et al. 1997).  

 

In the Le Sueur and Minnesota Rivers, turbidity levels are high and call for management 

actions. Understanding the location and magnitude of sediment sources is essential for 

guiding management decision to reduce sediment loading and improve water quality. A 

large-scale effort is underway to study the sediment dynamics of the Le Sueur River in an 

effort to better define the source locations and transport processes of sediment inflowing 
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to the Minnesota River. As a first step to quantifying the sediment budget of the river 

watershed, an effort has been carried out to define the potential sediment source 

locations. A study by Gran et al.(2008) shows that the major sediment sources to the Le 

Sueur River are upland-derived sediment, high bluffs, terraces and large permanent 

gullies – ravines. Figure 2 shows sediment sources on Digital Elevation Model (DEM) of 

lower Le Sueur valley. Figure 3 depicts the potential sources of sediments in the ravine-

gully system on the Le Sueur River.
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Figure 1.  Geographic location of the Le Sueur River watershed 
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Figure 2.  Sediment sources in lower Le Sueur valley LiDAR. 

Source: Gran et al. (2008) 
 

The next step in understanding the sediment dynamics of the Le Sueur River would be to 

establish an integrated sediment budget of the river watershed. Once the sediment sources 

are identified and the sediment budget components are quantified, best management 

practices can be introduced to reduce the sediment loading. This however needs a refined 

estimate of sediment produced from each source. The erosion processes in the main three 

identified sources need to be addressed individually so that the integrated sediment 

budget would give a better understanding of the sediment dynamics in the watershed. 

 

 

Upland 

Ravine 

Flood plain 
Terrace 

500 meters 

High Bluff 
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Figure 3.   Illustration landscape features in the lower knick zone of the Le Sueur. 
These features are considered as the major sediment sources in river watershed. 

 (Gran et al. 2008) 
 
 
Ravine erosion is an important soil erosion process in the Le Sueur River valley, because 

deeply incised ravines are prevalent features in this part of Minnesota. Although their 

sediment contribution is believed to be significant, scarce quantitative research on the 

area of ravine erosion has been done so far in this area. Ravine erosion is not usually 

accounted in routines schemes for predicting soil loss from watersheds. The development 

stages, rate of growth and the quantification of the sediment volume produced from 

ravines is also an important topic in erosion research, however, limited number of erosion 

and sediment transport models attempt to explicitly describe these processes. This might 

be because many previous studies dealing with soil erosion by water had concentrated on 

rill and interill erosion. For this reason, it seemed relevant to undertake a new study of 

ravine erosion with special attention to quantifying the sediment budget of ravines. 
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Permanent gullies are often defined for agricultural land in terms of channels too deep to 

easily ameliorate with ordinary farm tillage equipment, typically ranging from 0.5 to as 

much as 25–30 m depth (Soil Science Society of America 2001). Ravines the lower Le 

Sueur valley have similar geomorphic features as permanent gullies. But the ravines in 

this area seem to have a deeper and wider valley, they connect relatively larger areas in 

the landscape, and they have a vegetation cover of dense trees. There is also considerable 

erosion activity within the ravine valleys which make them a potential major sediment 

producing source in the Le Sueur River watershed. A more detailed description of the 

study ravines is given in the following sections of this thesis.  

 

Despite their minor morphological differences, the general theory of sediment dynamics 

of wide and deep permanent gullies is believed to apply to ravines. Therefore, based on 

the review of previous studies of gully erosion, this thesis provides a study of the 

sediment dynamics, and the development of a numerical model to quantify the 

components of the sediment budget of ravines. Here in after, the term gully refers to 

ravine in this thesis. 

 

The work documented in this thesis is the culmination of two years work towards a 

Master of Science and is expected to contribute towards the larger scale research that 

involves the study of sediment dynamics and development of an integrated sediment 

budget for the entire Le Sueur River watershed.  
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Research Questions 

• What are the sources  triggering erosion inside ravines? 

• What is the rate of sediment production inside the ravines? 

• How is the ravine morphology- depth, width and length changing over time? 

 

Specific Objectives and Scope of Research 

Taking into account the ravine sediment contribution, it is believed that a more accurate 

estimate of the sediment budget of the river watershed can be developed. The objective of 

this study is to first identify the main sediment sources inside ravines to help constrain 

the contribution of different sources. The second objective is to estimate rates of sediment 

production inside ravine, in an effort to quantify the contribution of ravine sediment load 

to the Le Sueur River.   The third objective is to calculate the rate of ravine growth in 

terms of its rate of change in width and depth.  

 

Thesis Outline 

Sediment production and dynamics in the Le Sueur River and in the ravines in particular 

is the focus of this research and is explained in more detail in sections I.I. - I.II. A review 

of the literature is presented in Chapter II, where a highlight of the work done on gully 

erosion research by other scholars is summarized. These include a summary of gully 

erosion measurement techniques that had evolved over time and the current state of gully 

erosion modeling. 

 



 

 9 

Chapter III outlines the research methodology used to achieve the objectives of this 

research. Data sources and field collection are described in this chapter. This chapter also 

presents further detail on the development of the numerical model, its theoretical basis, 

parameter assumptions and simplifications. It gives the highlights on the high rate gully 

erosion equations following the approach of Torri and Borselli (2003) and the USLE 

which were incorporated into a simple research model to estimate the ravine sediment 

budget. 

 

Results of this research are presented in Chapter IV. A parameter sensitivity analysis 

conducted to test the robustness of the model and assess the key model parameters is also 

presented in this chapter. The chapter also discusses the results and the model output in 

comparison to results from literature of similar study. The strengths and limitations of the 

chosen approach are discussed. Finally, conclusions drawn from this study and 

recommendations given for further research are presented in Chapters V and VI, 

respectively. 
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CHAPTER II. LITERATURE REVIEW 

Ravine erosion is an important soil erosion process on the lower Le Sueur River valley. 

Although its sediment contribution is significant, scarce quantitative research on the area 

has been done so far. There does not exist much literature on ravine erosion but research 

on gully erosion on the other has had recently gained attention. Permanent gullies are 

often defined for agricultural land in terms of channels too deep to easily ameliorate with 

ordinary farm tillage equipment, typically ranging from 0.5 to as much as 25–30 m depth 

(Soil Science Society of America 2001). Ravines in the lower Le Sueur valley are similar 

to permanent gullies but with deeper and wider valley, connecting relatively large area in 

the landscape. Previous studies of gully erosion have been reviewed in the following 

sections. 

Gully Erosion 

Gully development and the rate of erosion in gullies is a well documented topic in 

erosion research.  Most previous studies dealing with soil erosion by water had 

concentrated on rill and interill erosion. Recent studies however have given attention to 

gully erosion and consider gullies as another possible substantial source of sediments. 

According to the review by Poesen et al. (2003) and the data collected in 56 different 

catchments located in different parts of the world,  soil loss by gully erosion accounted 

from 10%  to 94% of total sediment yield caused by water. Moreover, in a review of the 

fingerprinting method of identifying the origin of sediments within catchments to 

determine the relative contribution of potential sources, the contribution of gully erosion 

accounted 80% in Australia, 90% - 98% in New South Wales, 60% – 70% in Chinese 

Loess Plateau, and 70% in an Ethiopian highland (Valentin et al. 2005).   
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In addition  to being a substantial sediment source, gullies  also aggravate water erosion 

by  increasing the connectivity in the landscape hence  promoting redistribution of 

sediment within the catchment and effective delivery of sediment from uplands to low 

lands and water courses (Poesen et al. 2003). The eroded sediment volume also increases 

with the density of active gullies within a catchment.  For example, to study the impact of 

the presence of concentrated active gullies on the specific sediment yield of a catchment, 

Poesen et al. (2003) used reservoir sedimentation data of 22 selected Spanish catchments 

and survey of gullies within a 5-km radius of the reservoir or river channels draining to 

the reservoir. The study found that for catchments with no gullies, the mean specific yield 

was 0.74 ton ha-1year-1, for those with numerous gullies it was 9.61 ton ha-1 year-1 and 

catchments with some gullies had mean specific yield of 2.97 ton ha-1 year-1.  

 

Gully Types 

The two main types of gullies are Ephemeral gully and Permanent or classical gullies. 

The Soil Science Society of America (2001) explains that the main difference between 

those two types of gullies is the ease to fill the channel by normal tillage. Ephemeral 

gullies are small channels eroded by concentrated overland flow that can be easily filled 

by normal tillage only to reform again in the same location by additional runoff events 

(Soil Science Society of America 2001). Permanent gullies on the other hand are 

permanent features in the landscape, and are often defined for agricultural land in terms 

of channels too deep to easily ameliorate with ordinary farm tillage equipment.  Poesen et 

al. (2003) summarizes some criteria used to distinguish the rills from gullies, such as “the 
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square foot criterion” Poesen (1993): a gully has a minimum cross-sectional area of 929 

cm2; Brice (1966): a minimum gully depth and width criteria of 0.3 and 0.6 meters; and 

Imeson and Kwaad (1980): a minimum gully depth criterion of 0.5 meters. However, 

there is no specific clear-cut definition to the upper limit of gullies. 

 

Gully Development 

Gully development is a threshold phenomenon which is controlled by temporal changes 

in flow hydraulics, rainfall, soil type, land use, topography, climate and weather (Poesen 

et al. 2003; Valentin et al. 2005).  Sidorchuck (1999) explains that the main causes of 

gully initiation in a landscape are anthropogenic factors: changes in land use such as 

clearing of native forests, tilling of fallow lands and associated change of hydrological 

conditions in their rainfall- runoff system.  According to Sidorchuk (1999), gully 

development has two stages. The initial stage where the gully development rate is very 

rapid and the last stage is where the gully size is near stable and reaches its maximum 

value. In the initial stage, gully morphological characteristics are not stable, the hydraulic 

erosion is predominant and rapid mass movement occurs on the gully sides and gully 

bottom.   In a second stage, the rate of gully development decreases, and the gully is 

assumed to be in its final morphological equilibrium. At this stage, sediment transport 

and sedimentation are the main erosion processes in the gully, its width increases due to 

lateral erosion and slow mass movement transforms the gully sides. The last stage 

occupies the largest part of a gully’s life time where as the initial stage accounts only 5% 

of gully’s life time. Major morphological characteristics of the gully however are formed 

during the initial stage (Sidorchuk 1999). 
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Controlling Factors 

The magnitude of gully erosion varies according to its spatial scale and temporal scale 

(Poesen et al. 2003). Soil loss from gullies highly depends on the size of the study area 

considered. For study areas ranging between 1-10 ha or more gully erosion becomes 

important and its contribution to sediment yield might be more than that of rill and interill 

erosion. Furthermore, environmental factors such as topography, soil type, land use, gully 

type, climate and weather also control gully erosion. The magnitude of gully erosion in a 

study area fluctuates depending on the time scale of the study period. The variation may 

be attributed to the changes in land use and other environmental factors during the study 

period (Poesen et al. 2003). 

 

Techniques of Measuring Gully Erosion 

Several attempts have been used in the past to estimate and monitor gully erosion. In 

early studies such as those in New South Wales, Australia, gully erosion rates 

measurements involved the use of erosion pins and ground surveys, where the study area 

would be surveyed in defined intervals of time (Crouch 1990). However, this method was 

found to be time consuming and difficult to apply to the study of large areas with high 

gully density over a long period of time.  In more recent studies, of short-term monitoring 

of gully head cut or gully wall retreat, (Vandekerckhove et al. 2001a; 2001b) regularly 

measured the distance between the edge of the gully head or wall and benchmark pins. In 

an effort to study long-term growth of valley–bottom gully Thomas et al. (2004) used 

annual surveys of the gully perimeter over 30 years and produced a three-dimensional 

surface for each topographic survey to estimate the increase in gully volume.  
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Photogrammetric techniques were also used in other gully erosion researches. In the 

studies by Betts and DeRose (1999) and Martinez-Casanovas (2003) for example, DEMs 

were constructed from sequential aerial photographs for measuring and monitoring the 

volume of sediment lost by gully erosion in a geomorphologically unstable environment. 

For medium – term scale, an analysis of high-altitude aerial photographs in combination 

with ground measurements was also used to quantify volumetric gully head retreat rates 

for permanent gullies in Spain (Vandekerckhove et al. 2003).  

 

Martinez-Casanovas et al. (1998) also applied Geographic Information System (GIS) 

techniques to analyze DEM of 25-m resolution derived from multi-date aerial 

photographs to assess erosion rates in the gully system of NE Spain. The gully system in 

this study is characterized by vertical sidewalls, and is 11 - 60 m deep and 75- 350 m 

wide. The study quantified that linear retreat rate of gully walls and maximum rate of 

channel incision was in the order of meters per year, while the average sediment 

production rate was in the order of tones ha-1 year-1.  

 

In studies carried out in small catchments in Qiaogou, China, Wu and Cheng (2005) used 

a high accuracy Global Positioning System (GPS) to measure the morphological 

parameters of gullies to investigate the short-term erosion rates of hill slope gullies, 

slope-area relationships, and thresholds of hill slope gully initiation.  

 



 

 15 

A method based on dendrochronology was also developed as an alternative to the 

traditional methods mentioned above. This method makes use of trees or parts of a tree 

affected by gully erosion revealing information on the history of the erosion process by 

datable deviations of their normal growth pattern (Vandekerckhove et al. 2001a).  

However, the authors report that methodological problems limit the application of the 

dendrochronological estimation of gully erosion. 

 

Gully Erosion and Sediment Transport Models 

The historical development of research in gully erosion modeling is reviewed by Bull and 

Kirkby (1997). In this review, an attempt has been made to trace the development of 

gully erosion models, from the first stochastic models in the 1970s to the more recent 

approaches of process-based representations of the system for understanding the theory 

behind gully initiation in the 1980s (Bull and Kirkby 1997; Kirkby and Bull 2000; Merritt 

et al. 2003). Another overview regarding a number of existing erosion and sediment 

transport catchment-scale models deserving specific mention include the review by 

Merritt et al. (2003). The literature comprehensively reviews a range of models that have 

been used to simulate aspects of erosion, sediment generation and sediment transport 

through a landscape at a catchment scale.  The models reviewed range significantly in the 

erosion process they represent, the manner in which these processes are described and the 

temporal and spatial scales of application for which they were developed (Merritt et al. 

2003). Furthermore, the review points out that, if alternate erosion sources contribute 

significantly to the generation of sediment (e.g. permanent gullies), then such processes 

need to be represented explicitly in the selected model. However, most of the catchment-
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scale erosion models don’t account for gully erosion as a process explicitly.  Table 1 

provides a summary of the reviewed catchment-scale erosion models and the processes 

they explicitly represent.  In this summary, it can be noted that only four out of the 

seventeen reviewed models incorporate routines to account for gully erosion. 

 

Table 1.  Process represented in the models reviewed after Merritt et al. (2003)  

 

 

Based on this review, four models: the AGricultural Non-Point Source Pollution model 

(AGNPS), the Chemicals, Runoff and Erosion from Agricultural Management Systems 

(CREAMS), the Hydrological Simulation Program – FORTRAN (HSPF), and the 

Sediment River Network model (SEDNET) were examined to assess if the gully erosion 

routine explicitly represents the gully sediment generation, sediment transport in gullies, 

gully growth rates and the sediment loading at the gully outlet.  Although these four 
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models are capable of estimating gully sediment yield, sediment generation and transport 

in the gully, the capabilities to simulate gully growth rates and change in gully 

dimensions over time are not included in these models. SEDNET in particular, was 

developed as a tool to help identify the major sources of sediment to a stream network, 

location of sediment entrainment and the dominant erosion process contributing sediment 

to the network at the catchment scale.  However,  its applicability to this particular study 

is substantially limited by the extensive data requirements, namely a grid of mean annual 

rainfall, soil erodibility, a grid of gully density and a description of the mean 

characteristics for each link (Merritt et al. 2003). 

 
Woodward (1999) describes the Ephemeral Gully erosion Model (EGEM) which is a 

modification of the Agricultural Research Service Ephemeral Gully Erosion Estimate 

(EGEE) to meet the Natural Resources Conservation Service (NRCS) needs. The EGEM 

has two major components: the hydrology component which uses the NRCS curve 

number, drainage area, watershed flow length, average watershed slope, and 24-hr 

rainfall and standard NRCS temporal rainfall distributions to estimate peak discharge 

rates and runoff volumes. The erosion component is a combination of empirical 

relationships and physical process equations to compute the width and depth of the 

ephemeral gully. However, this model was built on the assumption that ephemeral gullies 

typically erode to the tillage depth, limited to 18 inch or less and further work is needed 

to involve the capability to simulate erosion in branching gully systems which limits its 

application to large permanent gullies such as the ravines in the lower Le Sueur River. 
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Sidorchuck (1999) attempted to model gully erosion based on a thorough description of 

the physics involved in the process.  He introduced the concept that the gully undergoes 

through two stages as it changes its morphology. The two stages are then modeled in two 

types of gully erosion models: the dynamic models which predict the rapid changes of 

gully morphology at the initial stage of gully development, and the static models which 

calculate the final morphometric parameters of stable gullies. In the initial stage, the 

morphological characteristics of the gully are far from stable. In the second stage 

however, when averaged for several years, the depth and width of the gully don’t change 

significantly (Sidorchuk 1999); sediment transport and sedimentation are the main 

processes at the gully bottom and its width increases due to lateral erosion. The dynamic 

gully erosion model is based on the solutions of mass conservation and deformation 

equations which characterize the factors that control rate of gully incision (water flow 

velocity, depth, turbulence, temperature, soil texture and mechanics, and vegetation 

cover).  The static model represents the change in the longitudinal profile of the ravine. 

The sediment flux in the gully is defined by the equation of mass conservation and the 

change in gully bottom according to the sediment budget is estimated by the equation of 

deformation.  Both model stages are two dimensional (space-time); they attempt to 

represent the change in gully in time and distance. The models would well represent the 

sediment budget in the study ravines in the lower Le Sueur River, if sediment and water 

data of the ravines were measured along the ravine length in a set of time intervals. 

However, presently available data at the Le Sueur River has been measured at the ravine 

head and outlet only; hence the applicability of Sidorchuk’s gully erosion model is 

limited at present. 
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Another approach to modeling gully erosion is the high rate gully erosion equations 

described in the study by Torri and Borselli (2003). This study presents an approach to 

gully erosion based on a mass balance equation derived for a dynamically developing 

gully system.  This model formulation attempts to estimate the sediment budget of a gully 

using sediment generation rates of the gully wall, gully bed and sediment being deposited 

in the gully. The derived equations link gully widening rate to gully deepening rate 

during peak discharge. The model assumes a one – dimensional flow along the centerline 

of the stream channel. It also assumes a prismatic channel and doesn’t take into account 

the cross-stream variations due to variable channel cross-section features.  However, the 

model has the advantage of compatibility with currently available data in the Le Sueur 

River gullies, and can provide useful insight into the relative contribution of different 

components of the sediment budget in gullies with limited measured data. Following the 

approach of Torri and Borselli (2003), a simple numerical simulation model was 

developed in this thesis for the study area and is described further in the model 

development section in Chapter III. 
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CHAPTER III. RESEARCH METHODOLOGY 

Study Area Description 

Le Sueur River Watershed Characteristics 

The Le Sueur River is located in the south-central part of Minnesota. Its watershed is one 

of the twelve major watersheds of the Minnesota River Basin with a total area of 

approximately 2880 square kilometers. The Le Sueur River flows northward to its 

confluence with the Blue Earth River. About 5 kilometers north, the Blue Earth River 

then joins the Minnesota River at the city of Mankato, MN and flows northward to its 

confluence with the Mississippi River at the Twin Cities- Minneapolis/St. Paul. The 

drainage network of the Le Sueur River watershed is defined by the main channel of the 

river and its major tributaries: the Mapple River and the Big Cobb River and smaller 

streams. There also exists an extensive network of artificial drainage – ditches and tile 

drainage installed to aid water infiltration in the agricultural fields.  According to the 

MPCA, the Le Sueur River is the primary contributor of suspended sediments  to the 

Minnesota river (24-30%) (Minnesota Pollution Control Agency et al. 2007). 

 

A major part of the Le Sueur River watershed area has low-gradient to flat uplands. The 

study of Gran et al. (2008) shows that the lower reaches of the river and its major 

tributaries are currently incising, and the knick points are migrating upstream causing a 

high relief to the incised portion of the watershed. High bluffs border many of the outer 

bends along the main stem of the Le Sueur River. Deeply incised ravines are also 

prevalent especially towards the lower reaches of the river. 
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Agriculture is the dominant land use within the watershed of the Le Sueur River (87%) 

(Minnesota Pollution Control Agency et al. 2007). Corn and soy bean are the common 

crops. However, the poorly drained soils in the agricultural fields would make it 

impossible to grow crops without a better drainage mechanism. Farmers commonly use 

subsurface drainage tiles to minimize runoff and increase infiltration in the agricultural 

fields. Installation of the subsurface drainage network and surface ditches in the 

landscape has completely altered the hydrology of the watershed. It rapidly increased the 

vertical hydraulic conductivity of the agricultural fields to create optimum soil moisture 

for a particular crop type. It also increased the horizontal hydraulic conductivity so that 

water flows easily and more rapidly to ditches, ravines or the river.  

 

Although the artificial drainage network has allowed enhanced crop production in the 

area, approximately 89% of the wetlands were lost through drainage. The rapid 

movement of water through the watershed also increased the pollutant and sediment 

transport and loading to the water channels. Concentrated flow from several drainage 

tiles is directed into the ravines.  The concentrated flow from the tiles may not carry 

significant sediment load to the ravines when compared to surface runoff, but it possibly 

affects the sediment dynamics and production inside the ravine. 

 

Ravine Characteristics 

Ravines in the lower Le Sueur valley act as runoff and sediment pathways linking the 

uplands (agricultural fields) and the river valley bottom. The lower reaches of the Le 

Sueur River are currently incising, leading to migration of the knick point upstream, 
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(Gran et al. 2008).  In response to knick point migration, most of the ravines in the lower 

Le Sueur are changing their morphological characteristics (length, depth, width, area, and 

volume) and are periodically flushing significant sediments. Hence, through and below 

the major knick zones, ravines are believed to be not only a link but also an important 

sediment source. 

 

Observations from field research conducted during the summer of 2008 show that most 

of the bluffs along the main stem of two gauged ravines are actively eroding. Also, mass 

wasting of the steep ravine valley walls and rapid incision of the fluvial channels within 

the ravine are producing sediment. Several large fill terraces are present along the main 

stem, towards the mouth of the ravines. Recent incision through these extensive fill 

terraces may be another sediment producing source. Sediment storage in the ravines also 

occurs, behind woody debris jams as well as in locations where local base level has been 

raised by the insertion of a culvert. 

 

Data Collection 

To achieve the objectives of this study, a first task of this research consisted of field data 

collection. The collected data was mapped using GIS layers for further analysis. 

Following this, a numerical model to study the sediment transport was developed. These 

activities are described in more detail in the sections below. 
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Field Topographic Observations 

The main objective of the field work in summer 2008 was to observe erosion activities 

inside the two study ravines along the lower reaches of the Le Sueur, and collect data to 

help establish a more accurate estimate of the ravine sediment production. Two ravines 

were selected as study sites because of the availability of installed field instrumentation. 

The study sites are located about 6 kilometers south of the city of Mankato, MN and 2 

miles west of State Route-22 (SR-22). The headcut of one of the study ravines is located 

south of the County Route-90 (195th ST, CR-90) and continues southward parallel to SR-

22 to join the Le Sueur River. The second ravine starts few meters west of County Route- 

8 (Monks Ave, CR-8) continues southwards and joins the Le Sueur River. In this report 

the ravine on CR-90 is denoted as CR-90 and the second ravine as CR-8. The location of 

the study sites is depicted in Figure 4.
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Figure 4.  Geographic Location of Study  Ravines in the Lower Le Sueur Watershed 

  

Meters 
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In 2007, the field research team at the National Center for Earth-Surface Dynamics 

(NCED), St. Anthony Falls Lab at the University of Minnesota, had started to monitor the 

water discharge and water quality of the two ravines. Two ISCO auto samplers were 

installed at the outlet of the two ravines and one at a culvert a few meters downstream of 

the headcut of the ravine on CR-90. The ISCO auto samplers recorded the water-level 

every 15 minutes and took water samples during storm events. The Water Resource 

Center of Minnesota State University monitors both gages. Water quality data for storm 

events between the months of April and August 2008 was obtained from this office. A 

comparison of the suspended sediment concentration measurements taken during these 

storm events showed that a significant amount of sediment is being flushed out of these 

ravines. For the ravine on CR-90 for example, Figure 5 shows a plot of the Total 

Suspended Solids (TSS) measurements taken during the 30 storm events show that TSS 

concentrations at the mouth of the ravine are one of magnitude higher than the TSS 

measurements taken near the ravine head.  
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Figure 5.  Comparison of TSS measurements in 2008 of the upper and lower gauges 
on CR-90. 

 

Bluffs and Terraces 

The second task of the field research hence was to locate the major sources of sediment 

inside the ravines. Inside the study ravines, most of the bluffs along the main stem are 

actively eroding (Figure 6). Land sliding of the steep ravine valley walls and rapid 

incision of the fluvial channels within the ravine are also observed. There are several 

large fill terraces along the main stem, especially towards the mouth of the ravines. 

Recent incision through these extensive fill terraces may be another sediment producing 

source (Figure 7).   
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Figure 6.  Bluff along the main stem of ravine CR-90.  (about 6 meter high) 

 

Figure 7.  Old Terrace along the main stem of CR-90 
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To help map the major sources of sediment inside the ravines, a GPS was used to record 

the longitude and latitude location of bluffs and terraces. Soil samples from some of 

major bluffs and major terraces were also collected to determine the grain size 

distribution.   A comparative estimate of the geometry such as the surface area and slope 

of major bluffs, surface area and depth of major terraces were also recorded. There are 

also bluffs located inside tributaries of the ravines. The end of the tributary where it 

meets the main stream can be as small and narrow as 30 centimeters and lead to a 12 

meter high bluff at the head. The water sources for the tributaries are either from tile 

drains or concentrated overland flow.  The velocity and water depth of the stream in the 

ravines varies. At some locations, the water depth was very shallow but at others it 

reached up to knee high. 

 

Along the main stem and tributaries of ravine CR-8, 17 major bluffs were located. The 

largest of all has a surface area about 190 square meters, with sandy deposits and some 

vegetation cover.  Ravine CR-90 has relatively larger bluffs; the location and the 

geometry of 19 of these major bluffs were recorded.  The largest bluff in this ravine has a 

height of 12 meters and surface area of 240 square meters. Most bluffs in both ravines 

have a very steep surface slope and are actively eroding. 
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(A) Slumping top of ravine  

 
(B) A plunge pool at the base of the headcut. 

Figure 8. Type of failure of the ravine walls and headcut. 

The collected data such as the GPS coordinates for bluff  and terrace locations, pictures, 

estimated bluff heights and widths, terrace height and top area,  general stratigraphy and 

as well as other remarks were composed in a tabular format in spreadsheets. Using the 

coordinates and GIS, a map of major bluff and terrace locations along the two study 

ravines was produced. Figures 8 and 9 show maps of the major bluffs along with terraces, 

points of entry of overland flow, and tile drainage outlets on the periphery of CR-90. 

Figure 9 depicts typical potential sediment sources inside these systems. 

(C) Shallow Land slide of ravine wall. 
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Figure 9. Map of study ravines and their watersheds. 
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Figure 10.  Map of bluffs, terraces, and entry points of concentrated flow. The concentrated flow comes from overland flow 

from the agricultural fields and the tile drainage into the ravine.

Meters 
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Drainage Tiles 

Observations of different tile drains include metal, concrete, and plastic with slits and 

collector drains. The collector drains have a diameter of 27 - 36 inches, as depicted in 

Figure 11. They have smaller tile drains connected to them and the plastic drains with 

slits are able to collect water from the sides as it seeps through the ground. Other tile 

drains range from as small as 5 inches to as big as 14 inches. Some tile drains caused 

deep valleys in the walls of the two ravines.  This incision on the slopes might affect the 

sediment that is being contributed to the ravines. The ravine walls are being incised to 

about 1.5 meters at some locations. The incision destabilize the ravine walls and walls 

fail by slumping on the fluvial channel  

The location of control structures such as culverts and bridges along the ravines was 

recorded in GPS.  Detailed mapping of the study ravines along with the collected data is 

presented in Appendix A. 
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(A)Collector drain on the agricultural field 
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(B) A tile draining water from the collector drain in to a ravine 

Figure 11.  Drainage tiles at the head of a tributary of Ravine CR-90. 

 

Ravine Geometry Estimations 

An accurate estimate of the ravine geometry is the first step to calculating the sediment 

production and loading to the Le Sueur River. The aspects of morphology of these study 

ravines in the lower Le Sueur valley are similar to that of permanent gullies. According to 

the Soil Science Society of America (2001), permanent gullies are often defined for 

agricultural land in terms of channels too deep to easily ameliorate with ordinary farm 

tillage equipment, typically ranging from 0.5 to as much as 25–30 m depth.  When 

compared to the geometry of gullies, the ravines in the study area have deeper and wider 

valley, steep banks, eroding bluffs, large terraces and vegetation cover of dense trees. 

These ravines also connect relatively large areas in the landscape.  The total channel 
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length of the ravine along the CR – 90, for example, is approximately 3700 meters, 

measuring from the headcut to its mouth along the ravine valley including the stream 

length of its major tributaries. This ravine drains an agricultural area of about 990 acres. 

The topography surrounding the study ravines has a very gentle slope of 0% –2%.  A 

DEM at 3 meter resolution of the Le Sueur River watershed was obtained from the Blue 

Earth County.  Using GIS tools of spatial analyst and ArcHydro, topographic 

characteristics of the two ravines were derived from the LiDAR image. The area of the 

watershed, channel length, ravine surface area, and average slope were directly calculated 

in ArcGIS.  The mean width of the ravines was calculated by dividing the ravine 

planimetric area by the channel length. Similarly, the mean depth was estimated by 

dividing the ravine volume by its planimetric area. Table 2 summarizes the results from 

the calculations performed in ArcGIS.  

 

Table 2.  Summary of Ravine morphometric parameters.  

 
Description* Ravine CR-90 Ravine CR-8 

Drainage  area (acres) 994 961 

Channel Length ( m) 3760 4900 

Ravine planimetric area (acres) 56 80 

Volume ( million cubic meters) 9.26 5.79 

Mean gully top width (m)  61 66 

Mean Gully Depth (m) 41 18 

Mean gully bank slope (%) 133 55 
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Average longitudinal slope (%) 32 39.5 

Average upland Slope (%) 1.97 2.12 

Vegetation cover Dense-tree Dense-tree 

ISCO auto sampler At the ravine head and outlet At the ravine outlet* 

                                                 
* Estimations are the results of calculations in GIS. 

 
 

Numerical Model Development 

In an effort to quantify the sediment budget of deeply incised ravines in the lower Le 

Sueur River watershed (with its corresponding significance in the sediment budget of the 

Le Sueur watershed), gully-erosion equations developed by Torri and Borselli (2003) and 

the USLE model were arranged into a numerical model.   

 

In this model formulation, the sediment budget of the ravines is quantified as the 

difference between the storage of sediment and the sum of sediments loads derived from 

the agricultural fields, ravine side walls, terraces and ravine bed.  Once the gully-erosion 

equations were arranged, a 30 year survey and sediment data from gully growth-rate 

study in Iowa by Thomas et al. (2004) was used as a case study. To justify the validity of 

the assumptions and simplifications of the theoretical framework in this model, the model 

outputs were successfully compared to the data from the literature for this test case. 

Using the available sediment and water flow data for the two study ravines, the DEM of 

the area, along with reasonable assumptions of some parameters, the model was run to 

estimate the sediment budget in the study ravines of the Le Sueur River. The preliminary 
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results for the sediment measured time period of April to October 2008 are presented in 

the following sections. 

Model Description 

Theoretical Framework of the Model 

The rate of gully erosion and growth are controlled by flow parameters and soil texture. 

With the limited data available, this study aims to use as few parameters as possible, yet 

preserve the physical gully erosion process description. The equations developed by Torri 

and Borselli (2003) for high rate gully erosion use a few parameters, and hence were 

adopted in the numerical model presented in this thesis.  

 

The main channel of the ravine/gully is assumed to be prismatic with a rectangular cross-

section. Figure 12 shows the sketch of the gully cross-section, the sediment sources and 

storages. The channel has a length L, a depth D and width W.  The amount of sediment 

leaving the channel in a given time interval is ∆Qsto.   
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Figure 12.  Sketch of gully cross-section with sediment sources. 

(Torri and Borselli 2003) 

 

The sediment budget is calculated as the difference between the sediment storage and 

sediment fluxes from the agricultural fields, ravine side walls and ravine bed.  It is given 

by equation (1). 

SEDBSLOutINSTO QQQQQQQ −+++−=∆                                (1) 

where, 

INQ  = Sediment from upstream entering the gully (kg day-1) 

OUTQ  = Sediment budget. Sediment leaving the gully (kg day-1) 

LQ  = Lateral Flux. Sediment from uplands entering the gully (kg day-1) 

SQ  = Sediment flux from gully banks (kg day-1) 

BQ  = Upward flux. Sediment from gully bed (kg day-1) 
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SEDQ  = Downward flux. Sediment settling in the gully (kg day-1) 

STOQ  = Sediment storage in the flow (kg day-1) 

 

For a small time interval, the variation of sediment momentaneously suspended in water 

passing through a small segment of channel is then given as, 

SEDBSLOUTIN
STO qqqqq
t

q
−+++=

∂
∂

−
                           (2) 

The basic sediment rate equations for sediment loads from gully sides, gully bed and 

settling sediment are given by Torri and Borselli (2003) as follows: 
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where,   

W  = Mean Gully width (m) 

D = Mean Gully depth (m) 

ρ  = Soil bulk density (kg m-3) 

Sk  = Coefficient of soil erodibility of gully walls (day2meter-2) 

Bk  = Coefficient of soil erodibility of gully bed (day2meter-2) 

SEDu  = Sedimentation velocity in a turbulent flow (m s-1) 

p  = Flow aggressiveness (kg day-2)   

crp  = Critical flow aggressiveness (kg day-2)   

fe  = Efficiency coefficient – the ratio between the force exerted by flow on 

gully banks and force exerted on the gully bed (dimensionless) 

Sq  = Rate of sediment load from gully banks (kg day-1) 
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Bq  = Rate of upward flux. Sediment from gully bed (kg day-1) 

SEDq  = Rate of downward flux. Sediment settling in the gully (kg day-1) 

Lq  = Rate of lateral flux (kg day-1) 

OutINq −  = The difference between rate of sediment entering from upstream and 

leaving the gully (kg day-1) 

STOoq ,  = sediment momentaneously suspended in water passing through a small 

segment of channel (kg day-1) 

 

Equations for the other remaining sediment rates of the sediment budget are not explicitly 

given on the referenced literature. However, the rate of sediment from upstream entering 

the gully and leaving the gully can be calculated using the measured total suspended 

sediment at the ravine head and mouth. The measured TSS in mass/volume was 

multiplied by the measured water discharge in volume/time to obtain suspended sediment 

discharge in mass/time. To estimate the lateral sediment flux coming from the uplands, 

the USLE and the RUSLE models were used. The estimates however were essentially 

equivalent, hence the USLE model was adopted.  

 

The Universal Soil Loss Equation - USLE 

 The Universal Soil Loss Equation is a widely used regression model for predicting soil 

erosion. It is an empirical model used to predict soil loss due to sheet and rill erosion.  

The equation was developed from over 10,000 plot-years of runoff and soil-loss data, 

collected on experimental plots of agricultural land in 23 states by the U.S Department of 

Agriculture (Simons and Senturk 1992). Measurements of precipitation, runoff, and soil 

loss associate with 42 stations were continuously collected for a period of 5- 30 years or 
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more. Field plots of 72.6 feet long on a 9% uniform slope in bare fallow soil and tilled 

were arbitrarily selected to serve as a reference for evaluation. The model is based on the 

field data collected from these field plots and from rainfall simulation data (Simons and 

Senturk 1992).  The empirical equation of the USLE is given as follows: 

 

RKLSCPA =                             (6) 

where, 

A = Soil loss in tones per unit area per year 

R = Rainfall and runoff erosivity index for a geographic location 

K= Soil Erodibility factor 

LS = Slope steepness and length (topographic) factor  

C = Cropping and management factor  

P = Erosion-control practices such as contouring or terracing  

 

The computed soil loss A has a time period of R and soil loss dimensions of K.  It has 

units of tones per unit area per year. A more detailed descriptions of the USLE equation  

and it’s terms can be found in Smith and Wischmeier (1957) and Wischmeier and Smith 

(1978). The LS, C and P are all dimensionless. Values of each of the factors were 

estimated using field data and Agricultural Handbook No. 537 procedures and tables.   

 

The R factor depends on the frequency distributions of annual, seasonal, or annual- 

maximum storms. It is predicted on a probability basis. In the Agriculture Handbook by 

Wischmeier and Smith (1978), an isoerodent map for average annual values of the 
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rainfall erosion index is given. From the figure in the reference, R factor of 135 was used 

for the study area.  

 

The K factor, which is the soil erodibility factor,  was found to be a function of percent of 

silt, percent of course sand, soil structure, permeability of soil, and percent of organic 

matter.  The soil erodibility nomograph in Wischmeier and Smith (1978) is used to 

determine K factor for top soils or subsoil horizons. 

 

The LS – topographic factor was defined as the ratio of soil loss from any slope and 

length to soil loss from a 72.6 foot plot length at a nine percent slope, with all other 

conditions the same (Simons and Senturk 1992). The slope length is the distance from the 

point of overland flow origin to the point where either slope decreases to the extent that 

deposition begins or runoff water enters a well defined channel (Smith and Wischmeier 

1957).  The slope-effect chart was used to determine the LS value for this study, yielding 

a LS value of 0.32 in this study. 

 

The cropping- management factor C is defined as the ratio of soil loss from land cropped 

under specific conditions to corresponding loss from tilled, continuously fallow ground.  

The factor depends on type of vegetation cover, crop season and management techniques. 

Its value ranges between 0 and 1.0 approximately. Based on values used in similar studies 

a C value of 0.28 was adopted for the two study ravines. 
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The USLE predicts the gross soil loss from sheet and rill erosion per a unit area. To 

calculate the sediment yield per unit area, the USLE predictions must include the factors 

of delivery ratio and the watershed area.  The sediment yield is given by the following 

equation: 

Ws
DREY )(

=                                                              (7 ) 

where, 

   Y = Sediment yield in tones per unit area (tones per acre) 

   E = Gross soil erosion in tones 

DR = Delivery ratio  

Ws  = Area of the watershed in acres 

 

The delivery ratio DR is the ratio of sediment delivered at a downstream point in the 

watershed to erosion from the area above that point. This ratio considers deposition in 

watershed and by definition is less than unity.  The value of the delivery ratio can be 

approximated by estimating the amount of soil loss A, that will be deposited within a 

watershed depending on the nature of the land surface (Smith and Wischmeier 1957). 

 

Governing Equations of Gully Erosion Rate 

Gully Width and Depth 

To study how the gully width and gully-bottom change according to the sediment budget, 

it is important to calculate the rate of change in width and depth during peak flows. The 

equations developed by Torri and Borselli (2003) link gully widening to gully deepening 
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rates. The rate of change of gully width and depth during peak flows are expressed 

respectively as: 

D
q

t
W S

ρ
=

∂
∂       (8) 

where, 
ρ  is the soil bulk density 

D is the gully depth and  

sq is the sediment contribution from the side-walls per unit of channel length per 

unit of time 

 

The gully depth changes due to the balance between deposition on and detachment from 

the gully bed.  It is assumed that lateral sediment inputs are considered negligible with 

respect to the amount from the gully side-wall and bed during peak discharge – at the 

most important phase of concentrated erosion (Torri and Borselli 2003). The rate of gully 

depth change over time is then given by the following equation: 

 

W
qq

t
D SEDB −=
∂
∂

ρ
1

                                                          (9) 
 
 

Torri and Borselli (2003) presented an approach to gully erosion based on general 

equation derived from theoretical consideration. The derived equations link gully 

widening rate to gully deepening rate.   
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For a fast and turbulent peak flow, it is assumed that the sedimentation velocity is nearly 

zero.  Equations for SEDQ  and 
t
D
∂
∂  are then modified for turbulent flow and the rate of 

depth change is given by the following equation:  

W
D

ek
k

W
D

fs

b −=
∂
∂

2      (10) 

The ks and kb coefficients indicate soil erodibility and ef is an efficiency parameter 

defined as the ratio between the force exerted by the flow on the walls and force exerted 

on the bed.  Calculating the exact value of an efficiency coefficient is important but 

complicated.  Torri and Borselli (2003) suggest that the efficiency coefficient as a 

function of the ratio between channel width and water flow depth can be read from  a 

graph of ef  and W/h plot given by (Chow 1973). Figure 13 shows the efficiency 

coefficient graph. 

 

Figure 13.  Efficiency coefficient as a function of the ration between channel width 
and water flow depth from Chow ( 1973). 

Adopted from (Torri and Borselli 2003) 
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Torri and Borselli (2003) also suggest that using the Laplace polynomial expansion 

technique, one solution to the above equation can be given as: 

)(
4 o

fs

B
o WW

ek
kDD −=−

    (11) 

where,  

D0 and W0 are the depth and width reached before the flow starts digging the soil 

layer characterized by the erodibility kb and ks.  

It is important to note that the above equation holds during peak flow. For later erosion 

developments, the relationship between width and depth need to be modified. 

Furthermore, the flow aggressiveness p, which is any measure of flow erositivity is given 

using two of the most commonly used estimators, the stream power and flow shear stress. 

Torri and Borselli (2003) provide the equations for flow aggressiveness using the 

equations for gully bed and walls as follows: 

 

Assuming p is unit stream power,  

( ) ( )tW
gQptp A γsin

=
     (12) 

where,  

pA is water density, g is acceleration due to gravity, and γ is the local slope angle, 

assuming p is a unit stream power. 

The rate of change of gully width is then modified to be: 

( )
ρ

γ
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W
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          (13) 
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where,  

Csp is a composite parameter, it has a dimension of  [L-1] and it is given as: 

ρ
ρ gek

C AfS
sp

2
=                                                   (14) 

Assuming the term 2kspcr/ρ is small with respect to the first addendum, the above 

equation simplifies in to: 

2
0sin WQdtCW

efftsp += ∫∆γ
    (15) 

where,  

W0 is the channel width before peak discharge, and Δteff is the time interval during 

which the flow is erosive and close to peak discharge. 

These sediment load equations were solved by an iterative scheme for each time step of 

the available flow data.  

 

 

Notation Description Units 
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Input Requirements 

All parameters required by the model to simulate the sediment budget change and soil 

loss from the ravines are summarized in Table 3.  

 

Table 3.  Model input parameters 

D Initial depth of gully  meter 

W Initial width of gully meter 

Q Water Flow rate  m3 s-1 

ρ  Soil bulk density. kg m-3 

γ  Local slope angle Percent 

n  Manning’s roughness coefficient   --- 

INQ  Sediment from upstream entering the gully  kg day-1 

OUTQ  Sediment leaving the gully. kg day-1 

LQ  Sediment from uplands entering the gully.  kg day-1 

Csp Composite parameter  m-1 

Sk  Coefficient of soil erodibility of gully walls               day2m-2 

Bk  Coefficient of soil erodibility of gully bed day2m-2 

fe  Efficiency coefficient – the ratio between the 

force exerted by flow on      gully banks and 

force exerted on the gully bed. 

--- 
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Model Assumptions and Limitations 

• The model is limited to the processes of incision and widening only.  

• Lengthwise growth of the gully system is assumed to be negligible within single 

runoff event. Hence gully headcut retreat rate is not computed. 

•  Cross-stream variations induced by cross-section geometrical features such as 

constrictions or expansions or obstructions by woody debris or rocks are 

neglected. 

• The channel is assumed to be prismatic.  

• Further work is needed to involve the capability to simulate erosion in branching 

gully systems. 

 

Characterization of Coefficient of Soil Erodibility 

The coefficients of soil erodibility of both gully-wall and gully-bed are normally 

determined in the field. However, due to the lack of existing field data, an alternative 

approach was followed in which numerical estimation was done using the Meyer-Peter 

and Muller (1948) formulation for bed load transport. The Meyer-Peter and Muller 

estimates of the sediment load from the gully bed were compared with the estimates 

given by Torri and Borselli’s equation of BQ  and a Bk  value was calculated. According 

to (Meyer-Peter and Müller 1948) formulation valid for sediment diameters between 0.23 

and 28.6 mm, the bed load sediment discharge SQ  is given as: 

( )ττ
γγρ

−
−

= b
s

SQ
)(

118 21 ,   when cb ττ ≥                              (16) 

                             0=SQ ,     when cb ττ ≤                          
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bτ is the bed shear stress computed as:  

( )22
31

2

VU
h
n

b −=
γτ                                               (17) 

And cτ is the critical shear stress given as: 

msc D)(047.0 γγτ −=                                          (18) 

 

Figure 14 shows the estimation of the coefficient kb, by close matching the estimates of 

gully bed sediment load between the unit stream power formulation, equation (12) with 

the estimate using the Meyer-Peter and Muller equation (15).  

 

 

Figure 14.  Ravine  bed sediment load calculation. Using Torri and Borcelli's unit 
stream power and Meyer-Peters and Muller equations 
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To study how well the Qs estimates using the two approaches matches, a best-fit 

regression line is plotted in Figure 15. The slope of the regression line indicates the 

relative relationship between the two Qs estimates. This resulted in a “best match” that 

yields a coefficient of soil erodibility of Bk  =1.97x 10-16 day2meter-2.  Moreover, to study 

the relationship between cross-section and gully width, Torri and Borselli (2003) 

introduce a ratio R which is defined as the ratio of  sk  to Bk . If the ratio R is characterized 

by a sufficiently large standard deviation, the relation between gully cross section and 

width can be described by linear equations. R value of 1±0.35 was used in the reference; 

a ratio of 1.35 was adopted in this study hence sk  = 1.35 Bk .  

 

 

Figure 15.  Comparison of the fits of the two equations for estimating sediment load 
from gully bed. 
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Model efficiency was calculated following the approach given by Nash and Sutcliffe 

(1970). The Nash-Sutcliffe efficiency (NSE) is an indicator of model performance. NSE 

is a normalized statistic that determines the relative magnitude of the residual variance 

(“noise”) compared to the measured data variance (“information”)(Nash and Sutcliffe 

1970). NSE indicates how well the plot of observed versus simulated data fits the 1:1 line 

(Moriasi et al. 2007).  NSE is computed as shown in the equation below: 
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where, 

Yi
obs is the ith observation for the constituent being evaluated 

 Yi
sim is the ith simulated value for the constituent being evaluated 

 Yi
mean is the mean of observed data for the constituent being evaluated  

 n is the total number of observations. 

 

NSE values  range between -∞ and 1.0,  where  efficiency of 1.0 indicates a perfect match 

of the simulated value to the observed data and efficiency  values of ≤0.0 indicates that 

the mean observed value is a better predictor than the simulated value, hence 

unacceptable performance (Moriasi et al. 2007). 
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CHAPTER IV. RESULTS AND DISCUSSION 

Case Study 

Once developed, the model theoretical framework needed to be verified using a dataset 

from the literature. In this study, the dataset used in the research of Thomas et al. (2004) 

was used to build case study simulations in the model.  The study was carried out on 

valley-bottom gully in western Iowa to estimate the annual growth rate of a permanent 

gully over 30 years. The gully was mapped and surveyed several times during the 30 year 

time. Daily discharges of water and suspended sediment through the gully were also 

recorded nearly continuously for over 36 years. The flow and suspended sediment data of 

the study site in Iowa was obtained directly from the authors of this reference. Using the 

monthly average flow and TSS data, the gully erosion model was then run for a time 

period of 1964 – 2000.    

 

Application of the model yielded estimates for total soil loss from the valley bottom 

gully, change in gully width, depth and bank slope that agreed reasonably well with the 

estimations from the referenced literature. Comparison of model outputs with the 

estimates given in the referenced literature is shown in the plots presented in Figure 16. 

The modeled values were plotted against the data obtained from the literature. The mean 

gully width estimates were on an average within 99% of those reported in the literature, 

with a difference ranging between -2% to 5%. The corresponding R2 value is 0.89. The 

mean gully depth estimates have a difference of -0.4% on average and ranging between   

-17% to 13%.  Differences were larger for the gully bank slope: -5% on an average and 

raging between -5% to 15%.   
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Figure 16.  Comparison of modeled and observed (a) gully width, (b) gully depth and 
(c) bank slope. 
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For gully width, depth and bank slope simulations the Nash-Sutcliffe efficiency (NSE) 

was calculated as an indicator of performance. Agreement between model estimations of 

gully width and estimates in the referenced literature corresponds to model efficiency of 

0.94. But model efficiency was low for depth and bank slope simulations. (0.30 for gully 

depth and -0.05 for bank slope). Figures 16-19 show the results of the model application 

(Model) and comparison with field results (Data) reported in Thomas et al. (2004). 

 

 

Figure 17.  Mean gully width growth over time 
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Figure 18.  Mean gully Depth over time 

 
Figure 19.  Mean Gully bank slope over time 
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Moreover, model estimates for the total sediment yield of the gully were approximately 

equivalent to the values reported in the literature. Thomas et al., (2004) estimates that an 

average of 3.2 x 105 kg of sediment removed from the gully annually. Model estimates 

were 3.21x 105 kg of sediment per year.  

The simulated mean monthly growth rate and the mean monthly runoff have a power 

relation which is in agreement with the rates calculated in the referenced literature. 

However the relation in the model simulation is slightly different than the once calculated 

in the literature (Figure 21). 

 

 

Figure 20.  Volumetric growth of gully versus water discharge. 
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Model Estimations for Study Ravines 

 
After the model was running well for the test case in Thomas et al. (2004), the available 

sediment and flow data of the two study ravines in the Le Sueur watershed was used to 

simulate the growth rate, width and depth change of the CR-8 and CR-90 ravines. The 

results are presented in the plots of Figures 21 and 22. 

 

Ravine CR-90 
 
The simulation of the ravine width and depth change of Ravine CR-90 shows that the 

storm events during April – October 2008 had triggered a very small increase in both 

gully width and depth. Though in small magnitude, the ravine increased in width rather 

than incised. The rate of change of gully depth is mostly negative for CR-90 implying 

there is deposition or temporary sediment storage within the ravine.  

 

(A) Change in width and depth of ravine CR-90.
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(B) Estimation of Volumetric growth of ravine CR-90 

 

 
 

(C)Rate of ravine width and depth change of ravine CR-90 

Figure 21.  Model simulations for CR-90
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Ravine CR-8 

 
The change of mean width and depth of Ravine CR-8 is different than CR-90 that the 

ravine seems to be increasing in depth and width in approximately the same magnitude. 

The rate of depth change is positive for this ravine, which shows the ravine is incising. 

But in both cases the magnitudes of change is small for the measured storm events of 

summer 2008.  

 

 

 

(A) Change of width and depth of ravine CR-8 
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(B) Volumetric growth of ravine CR-8 

 
 

(C)Rate of change of ravine width and depth of Ravine CR-8 

Figure 22.  Model Simulations for ravine CR-8
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Table 4 summarizes the model estimates of sediment contribution of each sediment 

sources, and the total sediment loading of the study ravines during the period of April – 

October 2008. The sediment yield of ravines is calculated using the ravine area and the 

total sediment loading.  

Table 4.  Summary of Sediment loading and sediment contribution of sources inside   
ravines.  

 
Description Ravine CR-90 Ravine CR-8 

Drainage area (acres) 994 961 

Ravine area (acres) 56 80 

Sediment budget (kg)   

Sediment contribution from ravine walls 162,438 

53.4% 

77,478 

32.8% 

Sediment contribution from ravine bed  133,811 

44.0% 

152,963 

64.7% 

Sediment contribution from upstream 0 

0% 

0 

0% 

Sediment contribution from uplands 8,198 

2.7% 

5,916 

2.5% 

Sediment deposited in ravine 162,438 

53.4% 

77,478 

32.8% 

Total sediment loading to Le Sueur (kg) 141,997 158,871 

Ravine yield (kg/ha) 6,213 4,883 

Percentage of upland driven sediment 6% 4% 

Percentage of Ravine driven sediment 94% 96%1 

                                                 
1The sediment load estimates are for the period April – October 2008, where measurements were taken.  
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Sensitivity Analysis 

In order to assess the relative importance of each variable, a sensitivity analysis was 

conducted to study the effect that a change in the input would cause to the model output. 

The sensitivity of the model to the various parameters was evaluated by increasing and 

decreasing the input parameter values by 50%. The relative changes in total sediment 

yield associated with these perturbations are then listed in Table 5 in a decreasing order 

of their sensitivity. Quantify the degree of sensitivity of each parameter, an expression for 

sensitivity coefficient S used by McCuen and Snyder (1986) was selected for its 

simplicity and applied in this study. The sensitivity coefficient s is the ratio of the relative 

output change to the relative input change. The following equation describes the 

sensitivity ratio. 

1

12

12

12

12

−










 −









 −
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I
II

O
OOS     (20) 

where,   

2O  = Output of model using input parameter of maximum value of I2 

1O  = Output of model using input parameter of minimum value of I1 

12
O  = Average of the Out puts O1 and O2 

12
I  = Average of the Out puts I1 and I2 

 

Baffaut et al. (1997) explains that the sensitivity index obtained using the above method 

is independent of the magnitude of the input and the output, hence it can be used to 

compare the sensitivity of the model to different variables but it does not account for 

interaction between variables. This study, however, is limited to the broad assumption 
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that the parameters are independent of each other. The analysis performed using equation 

(19) is intended to provide an estimate of the sensitivity of the simulation results to the 

model parameters.  

 

Two sensitivity coefficients using both the minimum and maximum values of the input 

parameters were evaluated for each input parameter and S values are also listed in  

Table 5. (The minimum input value is assumed to be 50% of the defined value and a 

maximum value as 50% more of the defined value). 

 

Sediment derived from the gully sides was responsible for about 55% of the total 

sediment yield in this gully. Hence, parameters related to these sources have higher 

sensitivity to the model output. One of the most important parameters is the erodibility 

coefficient of the gully bed. However, this parameter is also sensitive to the manning’s 

coefficient- n as it was estimated using the Meyer-Peter and Muller equations for bed 

load transport.  
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Table 5.   Parameterization of the erosion model and sensitivity analysis of its parameters.  
Notation Description Units Initial 

value 
Sensitivity coefficient 

 
Change(%) in soil loss after 

change of 
 S50%               S-50% 50%           -50% 

n  Manning’s roughness coefficient   --- 0.04 2.52 2.06 204% -82% 

Bk  Coefficient of soil erodibility of 
gully bed 

 1.97E-16 0.95 0.93 47% -47% 

crp  Critical flow aggressiveness  1.05E+14 -0.10 -0.06 -4% 4% 

Sk  Coefficient of soil erodibility of 
gully walls 

 2.66E-16 0.00 0.00 0% 0% 

ef Efficiency coefficient  --- 0.7 0.00 0.00 0% 0% 

Ravine dimensions       
γ  Local slope angle degrees 0.31 0.91 0.91 44% -47% 

L Stream length Meter 3760 -0.05 -0.08 -2% 6% 

D Initial depth of gully  meter 40 0.00 0.00 0% 0% 

W Initial width of gully meter 60 0.00 0.00 0% 0% 

ρ  Soil bulk density. kg day1 1510 --- --- --- --- 

 Gully bank slope percent  1.33 0.00 0.00 0% 0% 

Upland Driven erosion       

LQ  
Sediment from uplands entering 
the gully. 

tones year-1 951 0.07 0.04 3% -3% 

INTSS  Sediment from upstream entering 
the gully  

mg litre-1 142.355 0.00 0.00 0% 0% 

OUTTSS  Sediment leaving the gully. mg liter-1 31.053 0.00 0.00 0% 0% 
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CHAPTER V. CONCLUSIONS 

This study has presented a numerical model for quantifying soil loss from two gauged 

study ravines in the lower Le Sueur River, Minnesota.  Despite the simplification, it was 

possible to compare the model estimations with data from literature. An investigation of a 

case study in a gully system in Iowa (Thomas et al., 2004) using the numerical model 

developed in this thesis  yielded estimates for total soil loss and rates of change of gully 

morphology that agreed reasonably well with the estimations from the referenced 

literature.  

 

The results presented in the previous chapters lead to answers to the research questions 

posed in Chapter I.  The modeling results suggest that about 94% - 96% of the sediment 

loading to the Le Sueur from the two study ravines originate inside the ravines. The 

ravines act as a link connecting the uplands (of which agriculture is the main activity) and 

the main river stem. However, the model estimates of the contribution of the sediment 

derived from the uplands and routed through the ravines are minimal when compared to 

the sediment produced from the sources inside the ravines.  

 

In this study, it was also possible to identify the sediment sources and quantify the 

sediment budget of the study ravines. Field observations showed that there are a number 

of eroding bluffs and terraces inside ravines which are the major sediment sources in the 

ravine. This was in agreement with the model estimations of the sediment budget. The 

sediment budget was calculated as the difference between the sediment storages and 

sediment fluxes from the agricultural fields, ravine side walls and ravine bed.  In ravine 
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CR-90, the major sediment source was the ravine walls, contributing 54% of the total 

sediment yield and 44% was derived from the ravine bed. For ravine CR-8, 65% of the 

total sediment yield was derived from the ravine bed and ravine bed erosion contributed 

33%.  

 

TSS data from the two monitoring gauges show extremely short-lived, very high 

sediment loads to the Le Sueur River. Direct discharge of water to ravine increases 

erosion activity inside ravine. Plunge pools are noticed at the outlet of the tile drainages 

and points of entry of overland flow. Moreover, the concentrated flow created deep 

incisions along the walls of the ravine causing amass wasting of the steep ravine valley 

walls. 

 

Furthermore, it was noted that the ravines are widening at a higher rate rather than 

incising. There were no data available to compare the rates of change of the ravine width 

and depth. However, the model was able to give an idea on how the width and depth have 

changed during the storm events of April to October 2008. 
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CHAPTER VI. RECOMMENDATIONS 

This research is expected to serve as the gateway for investigations into the ravine 

sediment contribution to the total sediment budget of the Le Sueur River watershed. This 

study focused on modeling only two of the gauged ravines in the lower reaches of the 

river, and fundamentally aimed at quantifying the sediment budget using the available 

data from the gauges.  However, there are more than 90 ravines in the river watershed 

and gauging these ravines is prohibitively expensive. Hence, the results and conclusions 

drawn from this research will be extrapolated to the ravines throughout the river 

watershed so that more accurate ravine sediment loading to the river can be accounted in 

the sediment budget of the Le Sueur River watershed. 

 

The model is limited to the processes of incision and widening only. However, 

lengthwise growth of the gully system within single runoff event should be considered to 

better understand the ravine change over time. Another assumption made in this study is 

that the ravine channel is considered to be prismatic and with uniform cross section. 

However, the cross-stream variation induced by geometrical features such as 

constrictions or expansions or obstructions by debris or rocks should also be considered 

to better represent the erosion problem in the system. The use of cross section data of the 

ravines would help verify the model estimates.  Moreover, the model needs to involve the 

capability to simulate erosion in branching gully systems. Furthermore, the present data 

available for the gauged ravines is for the last one year only. Using data of longer period 

time, in the future the model can be calibrated and validated for the study area. Testing of 

the model in a more complex environment also presents a future challenge. 



    

 69 

LIST OF REFERENCES 

Baffaut, C., Nearing, M. A., Ascough II, J. C., and Liu, B. (1997). "The WEPP 
Watershed Modell : II. Sensitivity Analysis And Discretization on Small 
Watersheds." Transaction of the ASAE, 4(4), 935-943. 

Betts, H. D., and DeRose, R. C. (1999). "Digital elevation models as a tool for 
monitoring and measuring gully erosion." International Journal of Applied Earth 
Observation and Geoinformation, 1(2), 91-101. 

Bull, L. J., and Kirkby, M. J. (1997). "Gully processes and modeling." Progress in 
Physical Geography 21(3), 354-374. 

Chow, V. T. (1973). "Open-Channel Hydraulics." McGraw-Hill, Singapore, 680. 

Crouch, R. J. (1990). "Erosion Processes and Rates for Gullies in Granitic Soils Bathurst, 
New-South-Wales, Australia." Earth Surf. Process. Landf., 15(2), 169-173. 

Engstrom, D. R., J.E.Almendinger, and J.A.Wolin. (1997). "Historical changes in 
sediment and phosphorus loading to the Upper Mississippi River." In: Final 
Research report prepared for the Metropolitan Council Environmental Services, 
St. Croix Watershed Research Station, Science Museum of Minnesota,Marine on 
St. Croix,MN. 

Gran, K. B., Belmont, P., Day, S., Jennings, C., Johnson, A., Parker, G., Perg, L., and 
Wilcock, P. R. (2008). "Geomorphic evolution of the Le Sueur River, Minnesota, 
and implications of current sediment loading." 

Kelley, D. W., and Nater, E. A. (2000). "Historical sediment flux from three watersheds 
into Lake Pepin, Minnesota, USA." Journal of Environmental Quality, 29(2), 
561-568. 

Kirkby, M. J., and Bull, L. J. (2000). "Some factors controlling gully growth in fine-
grained sediments: a model applied in southeast Spain." CATENA, 40(2), 127-
146. 

Martinez-Casanovas, J. A., Anton-Fernandez, C., and Ramos, M. C. (2003). "Sediment 
production in large gullies of the Mediterranean area (NE Spain) from high-
resolution digital elevation models and geographical information systems 
analysis." Earth Surf. Process. Landf., 28(5), 443-456. 



    

 70 

Merritt, W. S., Letcher, R. A., and Jakeman, A. J. (2003). "A review of erosion and 
sediment transport models." Environmental Modeling & Software, 18(8-9), 761-
799. 

Meyer-Peter, E., and Müller, R. (1948). "Formulas for bed-load transport." In: 
Proceedings of the 2nd Meeting of the International Association for Hydraulic 
Structures Research, Delft, Netherlands, 39-64. 

Minnesota Pollution Control Agency, Department of Agriculture Minnesota, State 
University Minnesota, Water Resources Center Manko, and Environmental 
Services MetropolitanConcil. (2007). "Summary of Surface Water Quality 
Monitoring 2000 -2005." In: State of The Minnesota River, 20. 

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., and Veith, 
T. L. (2007). "Model Evaluation Guidelines for Systematic Quantification of 
Accuracy in Watershed Simulations." Transactions of the ASABE, 50(3), 885-900. 

Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual 
models part I -- A discussion of principles." Journal of Hydrology, 10(3), 282-
290. 

Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C. (2003). "Gully erosion and 
environmental change: importance and research needs." CATENA, 50(2-4), 91-
133. 

Sidorchuk, A. (1999). "Dynamic and static models of gully erosion." CATENA, 37(3-4), 
401-414. 

Simons, D. B., and Senturk, F. (1992). "The Universal Soil Loss Equation." In: Sediment 
Transport Technology water and Sediment Dynamics, Water Resources 
Publications. Littleton, Colorado, 496 -502. 

Smith, D. D., and Wischmeier, W. H. (1957). "Factors affecting Sheet and Rill Erosion." 
Transactions of American Geophysical Union, 38, 889 - 896. 

Soil Science Society of America. (2001). "Glossary of Soil Science Terms." Madison, 
WI. 

Thomas, J. T., Iverson, N. R., Burkart, M. R., and Kramer, L. A. (2004). "Long-term 
growth of a valley-bottom gully, western Iowa." Earth SurfaceProcesses and 
Landforms, 29(8), 995-1009. 



    

 71 

Torri, D., and Borselli, L. (2003). "Equation for high-rate gully erosion." CATENA, 50(2-
4), 449-467. 

Valentin, C., Poesen, J., and Yong, L. (2005). "Gully erosion: Impacts, factors and 
control." CATENA, 63(2-3), 132-153. 

Vandekerckhove, L., Muys, B., J. Poesen, Weerdt, B. D., and Coppe´, N. (2001a). "A 
method for dendrochronological assessment of medium-term gully erosion rates." 
CATENA, 45(2), 123-161. 

Vandekerckhove, L., Poesen, J., and Govers, G. (2003). "Medium-term gully headcut 
retreat rates in Southeast Spain determined from aerial photographs and ground 
measurements." CATENA, 50(2-4), 329-352. 

Vandekerckhove, L., Poesen, J., Wijdenes, D. O., and Gyssels, G. (2001b). "Short-term 
bank gully retreat rates in Mediterranean environments." CATENA, 44(2), 133-
161. 

Wischmeier, W. H., and Smith, D. D. (1978). "Predicting rainfall erosion losses - a guide 
to conservation planning. ." In: Agriculture Handbook No 532, U.S Department of 
Agriculture, ed. 

Woodward, D. E. (1999). "Method to predict cropland ephemeral gully erosion." 
CATENA, 37(3-4), 393-399. 

Wu, Y., and Cheng, H. (2005). "Monitoring of gully erosion on the Loess Plateau of 
China using a global positioning system." CATENA, 63(2-3), 154-166. 

 

 



72 

APPENDICES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

73  
 

 

 

 

 

 

 

 

 

APPENDIX A  



 

74  
 

 
Figure A- 1.  Digital Elevation Model of Le Sueur Watershed 
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Figure A- 2.  Elevation map (DEM) of Ravine CR-8 
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Figure A- 3.  Elevation Map (DEM) of Ravine CR-90 
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Figure A- 4.  Drainage Tile Location in Ravine CR-8 
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Figure A- 5.  Drainage tile location on Ravine CR-90 
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Figure A- 6.  Bluffs in Ravine CR-8 
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Figure A- 7.  Bluffs in Ravine CR -90 
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Figure A- 8.  Overland flow entry in Ravine CR-8 
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Figure A- 9.  Concentrated flow entry points in ravine CR-90 
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Figure A- 10.  Drainage line and Culvert in Ravine CR-8 
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Figure A- 11.  Drainage Line in Ravine CR-90 
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Figure A- 12.  Location of ISCO sampler in Ravine CR-90 
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Figure A- 13.  Location of ISCO samplers in Ravine CR-90
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Table A- 1.  Tile drain data of ravines CR-8 and CR-90 collected during field survey, summer 2008 
Ravine 
Name Feature Name Date of Entry X Y Z 

Diameter 
(inches) Remarks

CR-8 Tile Drain 7/22/08 9:20 420917 4883519 305 9 Slope failure due to drain beacause there is no sigh of overlan                       
CR-8 Collector drain 7/22/08 9:20 420388 4883751 342 6.5 Walked up tributary from ravine to cron field. Initial incision ca                                         
CR-8 Tile Drain 7/22/08 9:20 420374 4883818 342 10 Tile drain across from culvert with rock cover protection
CR-8 Tile Drain/ Field Intake 7/22/08 9:20 420384 4883828 331 6 Tile drain has low flow discharge.
CR-8 Tile Drain/Field Intake 7/22/08 9:20 420349 4883678 302 6 Tile drain has low flow discharge.
CR-8 Tile Drain 7/22/08 9:20 420474 4883652 314 9 Three tile drains but only two at the bottom are actively flowing
CR-8 Field Intake 7/22/08 9:20 420376 4883401 313 5 Drain is not actively flowing and it looks as if its not even conn                 
CR-8 Tile Drain 7/22/08 9:20 420267 4883260 313 8 Tile drain is at the head of the ravine
CR-8 Tile Drain 7/22/08 9:20 420475 4883325 312 6 There are two tiles. Tile drainage has low flow with slight failur                                  
CR-8 Tile Drain 7/22/08 9:20 420475 4883325 312 4.5 Tile drainage has low flow with slight failure towards the end o                         
CR-8 Collector drain 7/23/08 10:00 420911 4882199 265 6
CR-8 Tile Drain 7/10/08 10:00 421291 4882935 314 36 Collector drain is coming in on the right side walking up stream               
CR-8 Tile Drain 7/10/08 10:00 421201 4883003 301 Culvert is next to road about 9 meters away from tip of ravine.                       
CR-8 Tile Drain 7/10/08 10:00 421220 4883112 320 Head of ravine is connected to culvert causing a deep pool at   
CR-8 Tile Drain 7/10/08 10:00 421018 4883030 316 Field intake at the head of tributary to ravine from agricultural   
CR-90 Tile Drain 6/9/08 11:00 422380 4883442 -234 6 Beginning of tributary to ravine has four tile drains coming in o                                  
CR-90 Tile Drain 6/9/08 11:00 422380 4883442 -234 11 Beginning of tributary to ravine has four tile drains coming in o                                  
CR-90 Tile Drain 6/9/08 11:00 422380 4883442 -234 6 Beginning of tributary to ravine has four tile drains coming in o                                  
CR-90 Tile Drain 6/9/08 11:00 422380 4883442 -234 9 Beginning of tributary to ravine has four tile drains coming in o                                  
CR-90 Tile Drain 6/9/08 11:00 422300 4883426 310 6 Tile drain with medium flow and discharge has created a narro                    
CR-90 Intake 6/10/08 9:10 422487 4883787 -296 9.5 Tile drain at other head of tributary stem.
CR-90 Tile Drain 6/10/08 9:10 422421 4883765 299 6 Tile drain with no flow right at a drastic change in slope and gr         
CR-90 Tile Drain 6/10/08 9:10 422293 4883879 300 6 Old metal tile drain with low flow at the head of tributary to rav   
CR-90 Tile Drain 6/10/08 9:00 422287 4883909 302 7 Old metal tile drain with low flow and signs of overland flow du      
CR-90 Tile Drain 6/10/08 9:00 422191 4883925 306 6.5 White tile drain at the head of tributary.
CR-90 Tile Drain 6/19/08 9:00 422332 4883309 316 10.5 Cement drain with cement drain debris around stream bed.
CR-90 Tile Drain 6/10/08 9:00 422373 4883903 303 6 Tile drain with rock cover above drain leading from field.
CR-90 Tile Drain 6/10/08 9:00 422334 4883983 310 12 Old metal tile drain with high flow and rock cover at the bottom        
CR-90 Tile Drain 6/19/08 9:00 422372 4883068 348 6 Tile drain with medium flow coming out side slope of ravine is                                       
CR-90 Tile Drain/ Field Intake 6/19/08 9:00 422110 4882661 302 9 Intake in soy field leading into ravine with one tile drain coming      
CR-90 Tile Drain 6/19/08 9:00 421917 4883062 306 14 Intake from agricultural field is connected to culvert from wayp                 
CR-90 Tile Drain 6/19/08 9:00 421917 4883062 306 12 Intake from agricultural field is connected to culvert from wayp                 
CR-90 Tile Drain 6/19/08 9:00 421917 4883062 306 10 Intake from agricultural field is connected to culvert from wayp                 
CR-90 Tile Drain 6/19/08 9:00 421837 4883035 312 8 Intake from agricultural field has one tile drain coming in. Corn   
CR-90 Tile Drain 6/19/08 9:00 422128 4883226 332 27 Walking up the ravine and the head is a 27 inched collector dr                                          
CR-90 Tile Drain 6/9/08 11:00 First point of the day, tile drain and field intake at edge of agric    
CR-90 Tile Drain 6/10/08 9:00 422475 4883782 -295 13 Head of tributary to ravine with brick cover and woody debris.                    
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Table A- 2.  Bluff data in Ravines CR-8 and CR-90, collected during field survey, summer 2008 
Ravine 
Name Feature Date of Entry X Y

Z 
(meters)

Height 
(meters)

Width 
(meters)

surface 
area Remarks

CR-8 Bluff 7/10/08 10:00 421035 4882937 305 5 9 45 Bluff has sandy surface deposits and pebbles on its sl
CR-8 Bluff 7/10/08 10:00 421012 4882902 306 9 Bluff valleyhas been filled with woody debris.
CR-8 Bluff 7/10/08 10:00 420873 4882848 306 4 15 60 Bluff has sandy surface deposits.
CR-8 Bluff 7/22/08 9:20 420676 4883317 295 4 10 40 Bluff is across the stream from big fill terrace. Relief is             
CR-8 Bluff 7/22/08 9:20 420676 4883237 302 8 9 72 Bluff has a high volume of vegetation.
CR-8 Bluff 7/22/08 9:20 420767 4883146 284 12 15 180 Huge bluff with visible stratigraphy levels. At 1 meter it                       
CR-8 Bluff 7/23/08 10:00 420777 4881902 222 3 Starph terrace has 1 meter of gravel and about 2 mete   
CR-8 Bluff 7/23/08 10:00 420851 4881992 286 2.5 Small bluff under terrace with river .5 meters of river d                
CR-8 Bluff 7/23/08 10:00 420853 4882073 283 8 15 120 Bluff with .5 meters of lake depoists and primary sand     
CR-8 Bluff 7/23/08 10:00 420870 4882139 284 3 13 39 Bluff is across the stream from big fill terrace. 
CR-8 Bluff 7/23/08 10:00 420860 4882174 287 3.5 10 35 Bluff with roots exposed on the overhang of its slope.                      
CR-8 Bluff 7/23/08 10:00 420911 4882199 265 3 6 18 Small bluff with a low volume of vegetation.
CR-8 Bluff 7/23/08 10:00 420835 4882361 284 3 Small bluff with a low volume of vegetation on the slop          
CR-8 Bluff 7/23/08 10:00 420824 4882405 294 7 11 77 Bluff has visible stratigtraphy levels.  There is 1 meter                             
CR-8 Bluff 7/23/08 10:00 420760 4882463 290 4 8 32 Bluff has a visible lense of till on top of sandy deposits                 
CR-8 Bluff 7/23/08 10:00 420767 4882525 281 3 Bluff with tree landsliding at the bottom laying across t                 
CR-8 Bluff 7/23/08 10:00 420762 4882611 293 13 15 195 Bluff has sandy deposits and vegetation cover over m      
CR-90 Bluff 6/10/08 9:00 422707 4882466 271 9 Bluff is the first sited walking from the mouth.  Cause o                    
CR-90 Bluff 6/16/08 10:47 422676 4882466 296 7 Second bluff from the mouth is 10 meters away from w           
CR-90 Bluff 6/16/08 10:47 422644 4882506 263 12 20 240 Bluff has sandy and  gravel surface deposits with som                           
CR-90 Bluff 6/16/08 10:47 422625 4882589 301 12 Bluff within an active tributary (fallen trees, eroding, ve                        
CR-90 Bluff 6/16/08 10:47 422594 4882554 288 8 15 120 Bluff is along path of stream after passing tributary wit        
CR-90 Bluff 6/16/08 10:47 422527 4882564 306 7 13 91 Tributary from ravine. Intial flow channel is due to ove                                                                                                
CR-90 Bluff 6/16/08 10:47 422546 4882585 280 15 12 180 The highest o have seen. Bluff has more vegetation a                           
CR-90 Bluff 6/16/08 10:47 422523 4882600 283 10 12 120 Bluff has very steep slope-80 degree angle and vegeta       
CR-90 Bluff 6/16/08 10:47 422518 4882659 272 8 Bluff has recent landsliding, even snapped property lin                             
CR-90 Bluff 6/19/08 9:00 422374 4883326 302 6 10 60 Concaved valley has about a 60 degree angled slope.
CR-90 Bluff 6/19/08 9:00 422294 4883026 324 8 6 48 Bluff is eroding backwards and this is exemplified by h    
CR-90 Bluff 6/19/08 9:00 422323 4883036 326 9 Bluff has a low amount of vegetation at the bottom and        
CR-90 Bluff 6/19/08 9:00 422358 4883046 332 7 Slightly vegetated bluff across the stream from a fill te
CR-90 Bluff 6/19/08 9:00 422382 4883324 304 6 Bluff with landsliding and bowl like structure.
CR-90 Bluff 6/19/08 9:00 422394 4882740 296 4 18 72 Bluff has a very steep slope-90 degree angle
CR-90 Bluff 6/19/08 9:00 422411 4882710 299 6 15 90 Bluff has a 70 degree angle slope

 
Table A- 3.  Terrace data in Ravines CR-8 and CR-90, collected during field survey, summer 2008 
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Ravine 
Name

Feature 
Name

Date of 
Entry X Y Z Area(m2)

Depth 
(m)

Volume
(m3) Notes

CR-90 Terrace 6/9/08 422297 4883412 307 178.61 0.00
CR-90 Terrace 6/9/08 422285 4883450 310 723.80 0.00 Area assumed as elips, it's fill terace, walking Up from culvert

CR-90 Terrace 6/9/08 422298 4883462 300 259.17 0.00
Area assumed as elips, it's fill terace.It's at the foot of  two ravines, overland 
flow at head, Extremely active

CR-90 Terrace 6/10/08 422301 4883479 303 36741.22 0.00
Area assumed as elips,It's part of the previous terrace, Extremely active, 
water flows on both sides

CR-90 Terrace 6/16/08 422754 4882224 272 81.75 0.70 57.23
Area assumed as Triangle, length of sides measured,It's part of the 
previous terrace,Extremely active,water flows on both sides

CR-90 Terrace 6/16/08 422676 4882466 296 18.58 1.00 18.58

Area assumed as a regtangle,This is when walking upstream from the 
mouth. Water looks a bit clear, not muddy,very narrow water way,Bluffs at 
the sides are falling, extremely active

CR-90 Terrace 6/16/08 422307 4883056 328 7.75 0.40 3.10 Area assumed as triangle, covered with vegetation and trees.
CR-90 Terrace 6/16/08 422323 4883036 326 7.80 0.40 3.12 Area assumed as triangle, 9 mt high bluff exists across
CR-90 Terrace 6/19/08 422393 4882985 337 53.32 0.40 21.33 Three valley paths of overland flow with extreme landsliding and debris 
CR-90 Terrace 6/19/08
CR-90 Terrace 6/19/08
CR-8 Terrace 7/22/08 420687 4883308 312 127.23 0.30 52.17 these are two terraces, 7*2 rectangular and 9m diamerter simcircle
CR-8 Terrace 7/22/08 420640 4883298 298 113.10 0.40 59.24
CR-8 Terrace 7/22/08 420658 4883253 302 32.00 1.50 62.00
CR-8 Terrace 7/22/08 420680 4883246 294 120.00 0.75 104.00
CR-8 Terrace 7/22/08 420698 4883209 281 720.00 1.00 734.00
CR-8 Terrace 7/23/08 420815 4881922 231 706.86
CR-8 Terrace 7/23/08 420852 4881956 239 224.00 1.00 224.00 table top flat, little vegetation, stephany made tree coring #1
CR-8 Terrace 7/23/08 420853 4882073 283 3.00 0.00
CR-8 Terrace 7/23/08 420881 4882165 267 376.99 0.30 113.10
CR-8 Terrace 7/23/08 420868 4882265 269 565.49 0.40 226.19 Flat top
CR-8 Terrace 7/23/08 420868 4882277 277 60.00 0.30 18.00
CR-8 Terrace 7/23/08 420825 4882356 278 628.32 0.50 314.16 lots of vegetation (tree) stephany's tree coring #5
CR-8 Terrace 7/23/08 420780 4882455 300 60.00 1.25 75.00
CR-8 Terrace 7/23/08 120.00 1.50 180.00
CR-8 Terrace 7/23/08 420746 4882550 283 4095.00 1.00 4095.00

 

 Table A- 4.  Entry points of Overland flow in Ravines CR-8 and CR-90, collected during field survey, summer 2008 
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Ravine 
Name Feature Name

Date of 
Entry X Y Z Remarks

CR-90 Overland Flow 6/9/2008 422273 4883431 -309
CR-90 Overland Flow 6/10/2008 422321 4883838 300 Overland flow has a dry path but very steep slopes , about a 70 degree 

CR-90 Overland Flow 6/16/2008 422527 4882564 306

 It has valleys in between on both sides with a channel of water flowing 
between it down to the end where it meets the flow of the mainstem. At 
my standpoint i was able to notice alot of vegetation on the walls of the 
bluff and i was only able to see one side. 

CR-90 Overland Flow 6/19/2008 422379 4883232 326

Overland flow has a narrow channel at the end of slope to stream. Very 
active and wide at the beginning. The depth of incision is 1 meter and is 14-
15 meters long. 1.5 meters deep in the middle.

CR-90 Overland Flow 6/19/2008 422357 4883210 329 Overland flow has a concaved slope.

CR-90 Overland Flow 6/19/2008 422346 4883148 330
Overland flow with farming machinery and other debris from uplands. 
Slope is very wide and not that steep-60 degree angle. 

CR-90 Overland Flow 6/19/2008 422317 4883106 329
Overland flow has a narrow channel like path. 70 degree angle slope and 
is about 2.5 meters deep.

CR-90 Overland Flow 6/19/2008 422393 4882985 337

Three valley paths of overland flow with extreme landsliding and debris 
above an old fill terrace. Water paths are dry. Waypoint 067 was taken 
inside right Bluff valley and Waypoint 068 was taken by overland flow on 

CR-90 Overland Flow 6/19/2008 421918 4883134 309
Overland flow is at the head of the tributay to the ravine but a tile is also 
coming in a few feet away.

CR- 8 Overland Flow 7/22/2008 420767 4883638 306 Overland flow is the head of tributary from field. Corn crop.
CR- 8 Overland Flow 7/22/2008 421007 4883195 305 Head of tributary has overland flow  coming from the agricultural field. 

 
 

Table A- 5.  Location of Culverts in Ravines CR-8 and CR-90, collected during field survey, summer 2008 
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Ravine 
Name

Feature 
Name Date of Entry X Y Z Remarks

CR- 8 Culvert 7/22/08 9:20 420993 4883777 261

Culvert is next to road about 9 meters away from tip of ravine. The 
head of the ravine has a lot of rock cover. This is the left tributary 
closer to the road ( highway 8)

CR- 8 Culvert 7/22/08 9:20 420382 4883803 339
Head of ravine is connected to culvert created plung pool at the 
stream bed.
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