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ABSTRACT OF THE DISSERTATION 

EULERIAN-LAGRANGIAN TWO PHASE DEBRIS FLOW MODEL 

by 

Cora E. Martínez Franklin 

Florida International University, 2009 

Miami, Florida 

Professor Fernando Miralles-Wilhelm, Major Professor 

The main objective of this work is to develop a quasi three-dimensional numerical 

model to simulate stony debris flows, considering a continuum fluid phase, composed by 

water and fine sediments, and a non-continuum phase including large particles, such as 

pebbles and boulders.  Large particles are treated in a Lagrangian frame of reference 

using the Discrete Element Method, the fluid phase is based on the Eulerian approach, 

using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in 

two horizontal dimensions. The particle’s equations of motion are in three dimensions. 

The model simulates particle-particle collisions and wall-particle collisions, taking into 

account that particles are immersed in a fluid. Bingham and Cross rheological models are 

used for the continuum phase. Both formulations provide very stable results, even in the 

range of very low shear rates. Bingham formulation is better able to simulate the stopping 

stage of the fluid when applied shear stresses are low.  Results of numerical simulations 

have been compared with data from laboratory experiments on a flume-fan prototype. 

Results show that the model is capable of simulating the motion of big particles moving 

in the fluid flow, handling dense particulate flows and avoiding overlap among particles. 
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An application to simulate debris flow events that occurred in Northern Venezuela in 

1999 shows that the model could replicate the main boulder accumulation areas that were 

surveyed by the USGS. Uniqueness of this research is the integration of mud flow and 

stony debris movement in a single modeling tool that can be used for planning and 

management of debris flow prone areas. 
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1 INTRODUCTION 
 
 
1.1 Background 
 

Debris flow is a frequent phenomenon in mountainous regions. It occurs when 

masses of poorly sorted sediments, rocks and fine material, agitated and mixed with 

water, surge down slopes in response to water flow and gravitational attraction. Modeling 

debris flows has gained increasing interest in recent years,  due to the potential damage 

that these flows can generate, particularly in urbanized alluvial fans. However, 

hydrodynamic modeling of debris flow surges is much more challenging than that of 

water flows, mainly due to the multi-phase character of the flow, which includes not only 

water, but also a wide range of interacting solid particles, that goes from very fine 

sediments such as silt and clay, to large particles such as boulders; timber and other 

debris (see Figures 1 to 6). Many field observations attest to the heterogeneity of debris 

flows (Pierson 1986, Iverson 1997b). 

As described by Pierson (1986), a typical surge of debris flow has a steep front or 

“head” with the densest slurry, the highest concentration of boulders and the greatest 

depth. This is followed by a progressively more dilute and shallower tail (Figure 1). 

 

 
Figure 1. Schematic representation of a heterogeneous debris flow surge 
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In the dynamics of debris flow, both solid and fluid forces greatly influence the 

motion of the fluid-sediment mixture. This interaction of solid and fluid forces 

distinguishes debris flows from other similar environmental events, such as rock 

avalanches or water flows, where only solid grain forces or fluid forces dominate the 

physics, respectively. Interaction of solid and fluid forces not only distinguishes debris 

flows physically but also gives them an unique destructive power. Like avalanches of 

solids, debris flows can occur with little warning as a consequence of slope failure and 

can exert great impulsive impact loads on objects they encounter (Figures 2 and 3). Like 

water floods, debris flows are fluid enough to travel long distances on modest slopes and 

to inundate vast areas (Figure 4). Large debris flows can exceed 109 m3 in volume and 

release more than 1016 J of potential energy, but even commonplace flows of 103 m3 can 

denude vegetation, clog drainage ways, damage structures, and endanger humans 

(Iverson 1997b).  

 

 
Figure 2. Building destroyed by debris flow; Vargas, Venezuela; December 1999    

(Foto R. Garcia, 2000) 
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Figure 3. Debris flow deposits around a building, Vargas, Venezuela; December 
1999 (Foto R. Garcia, 2000)(Foto R. Garcia, 2000) 

 
 

To cite particularly catastrophic example, in December 1999, the northern coastal 

region of Venezuela suffered numerous debris flows, which were triggered by excess 

rainfall (close to 1000 mm in 3 days).The sediment volume mobilized was estimated in 

more than 2 x107 m3 (Garcia and Lopez 2005), and  was enough to inundate coastal 

communities, to generate severe property destructions, form a new coast line and cause  

close to 10000 deaths (Figures 2 to 6).  

 

Figure 4. Buildings and houses partially buried by sediment in Caraballeda, 
Vargas, Venezuela; December 1999  (Foto R. Garcia, 2000) 
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Figure 5. Aerial view of Carmen de Uria alluvial fan, Vargas, Venezuela; 
December 1999  (Foto R. Garcia, 2000) 

 
 

 

 

Figure 6. Front view of Carmen de Uria alluvial fan, Vargas, Venezuela; December 
1999  (Foto R. Garcia, 2000) 
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Similar events happen frequently world wide, specially in the cities developed on 

steep alluvial fans.  

Since debris flows are very dangerous natural hazards that affect humans and 

properties, the phenomenon has attracted the attention of scientists and engineers in 

recent years. Reviews presented by Coussot and Meunier (1996), and Iverson (1997b), 

exhaustively describe the physical aspects of debris flow motion and clearly divide 

previous debris flow research into two distinct categories. The first, based upon the 

pioneering work of Johnson (1965), assumes that debris flow behaves as a viscoplastic 

continuum. This model describes a single-phase material that remains rigid unless 

stresses exceed a threshold value: the plastic yield stress. Where stresses exceed the yield 

stress, material flows like a viscous fluid.  

Various rheological models have been proposed, derived from experimental 

results or from theoretical considerations, such as the Bingham model (Bingham and 

Green 1919); Herschel-Bulkley model (Herschel and Bulkley, 1926); Coulomb-viscous 

model (Johnson 1970); biviscous model (Dent and Lang 1983); and quadratic model 

(O’Brien and Julien 1985). The Bingham plastic model is the most commonly used in 

practice. For slurry flows, such as silt-clay slurries, where viscous forces control the flow 

behavior, this kind of model has been used with reasonable accuracy.  

The second approach has focus on the mechanics of granular materials. Based 

upon the findings of Bagnold (1954) and Takahashi (1978, 1980, 1981), two-phase 

models have been developed by several authors, such as Takahashi (1991), Iverson 

(1997a, 1997b) and Pitman and Le (2005). These models explicitly account for solid and 

fluid volume fractions and mass changes respectively. They include separate solid and 
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fluid stress tensors, which means that a constitutive relation must be defined for each 

phase. Finally, these models include a solid-fluid interaction force, which is not explicitly 

present in single-phase models. Recent investigations with gravel and sand mixtures 

demonstrate that this kind of grain-flow model is best applied to this type of flows 

(Parsons et al. 2001). 

Despite of the considerable progress over the past few years, the flow dynamics 

and internal processes of debris flows are still challenging in many aspects. In particular, 

there are many factors related to the movement and interaction of individual boulders and 

coarse sediments that have not been fully addressed in previous works. In fact, there is a 

deficit on particle oriented models in comparison with many continuum models presented 

in the literature. Asmar et al. (2003) introduce the Discrete Element Method (DEM) to 

simulate the motion of solid particles in conjunction with the traditional Eulerian 

approach to model the liquid phase of debris flows. DEM is a numerical method to model 

dry granular flows where each particle is traced individually in a Lagrangian frame of 

reference by solving Newton’s equation of motion. DEM is widely used now in diverse 

fields since Cundall and Strack published their first paper in 1979. However, extending 

DEM into two-phase flow is not straightforward. In this case it is necessary to include the 

fluid-particle momentum exchange and, when the particle volume is significant, it is 

important to model the particle volume fraction in both the momentum and continuity 

equations of the fluid.  

 
1.2 Objectives 
 

This thesis research describes the development of a quasi three-dimensional 

mathematical-numerical model to simulate stony debris flows, considering a continuum 
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fluid phase and large sediment particles, such as boulders, as a non-continuum phase.  

Large particles are treated in a Lagrangian frame of reference using DEM, and the fluid 

phase composed by water and fine sediments is modeled with an Eulerian approach using 

the depth-averaged Navier–Stokes in 2 dimensions. Particle’ equations of motion are 

fully three-dimensional. The model includes the following features: 

a) A capability to simulate the motion of big particles moving in the fluid 

flow. 

b) Handling of dense particulate flows avoiding overlap among particles. 

c) Use of different rheological models for the continuum fluid phase. 

d) Modeling of formation of particle blockages and snout effects. 

e) Modeling of particle-particle collisions and wall-particle collisions, taking 

into account that particles are immersed in fluid. 

The model is tested with analytical results found in the literature and with laboratory 

experiments. This work also illustrates the application of the model to a real mud and 

debris flow event. 
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2 LITERATURE REVIEW 
 

2.1 Homogeneous Models 

In spite of the existence of particles, the mixture of debris flows is usually treated 

in a simplified manner, as the movement of a continuum (O’Brien and Julien 1998, 

Phillips and Davies 1991, Coussot and Piau 1994). For slurry flows, where the fluid 

matrix is a poorly sorted mixture of clay, silt and sand, and dispersive effects of the sand-

sized sediment are minor in comparison to the cohesive properties of silt and clay, the 

assumption of a homogeneous model is often appropriate.  As viscous forces control the 

flowing behavior of slurries, the primary assumption is that the continuous matrix is 

responsible for the yield strength and viscous behavior, whereas interparticle and particle-

fluid interactions are ignored. In these cases, visco-plastic rheological models can reflect 

properly the constitutive relationship of this kind of flows. 

In general, the extent of debris flows is most predominant than the depth in scale, 

and translation is most predominant than rotation. Therefore, it is reasonable to assume 

that the governing equations, mass continuity and momentum, can be integrated along the 

depth. In a fixed Cartesian coordinate system (x,y,z) with z pointing upward opposite to 

the direction of gravity, the governing equations can be reduced to depth-averaged 

relationships in the x-y plane. 

 
Continuity equation: 
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Momentum equations:   
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Figure 7. Free surface flow profile down a slope 
 

 

where x and y are the horizontal coordinates, t is the time, η is the free-surface elevation, 

H is the water depth, zb is the bottom elevation; η=H+zb (see Figure 7), u and v are the 

vertically averaged velocities in x and y directions respectively, g is the gravitational 

acceleration and Sfx and Sfy are the depth integrated stress terms that depend on the 

rheological model to be used (see Appendix A for derivation of these terms when two 

different rheological formulations are used). 
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2.2 Rheological Models 
 

Bingham and Green (1919) proposed one of the pilot rheological models for 

visco-plastic materials experimenting with paint. They found the paint to be plastic and 

had a finite yield stress value that must be exceeded prior to motion. Various slurry flows 

commonly encountered in nature have shown to have a similar behavior and they have 

been represented with reasonable accuracy by the Bingham model (Wildemuth and 

Williams 1985; Mainali and Rajaratnam 1994). The material is assumed to exhibit a 

linear stress-strain relationship with the applied shear stress as follows 

 







≥+
<

=
y

y

ify

if
ττγµτ

ττ
τ 

0
                                                                                   (4) 

 

where τ  is the shear stress, yτ is the yield stress, µ   is the viscosity and γ  is the shear 

rate. 

Besides the Bingham model, there are other rheological models that can represent 

with accuracy slurry flows. It has been found that yielded mud may experience shear 

thinning (Wan 1982, O’Brien and Julien, 1988), i.e. its viscosity decreases gradually with 

the increase of shear rate. Muds with high solid concentrations generally experience more 

severe shear thinning than those with low solid concentrations, then in those cases a 

Herschel-Bulkley model (Herschel and Bulkley, 1926) seems to be more appropriate in 

depicting this particular behavior. The stress-strain relationship is nonlinear, commonly 

showing convexity to the shear stress  
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where Κ  and m are empirical parameters . For natural mud suspensions, m approaches 

1/3 (Coussot, 1997). 

For highly concentrated sediment-water mixtures, where interparticle friction is 

not negligible, Johnson (1970) proposed a modification of the Bingham model. He 

divided the yield strength of the Bingham model into cohesion and friction components 

and developed the Coulomb-viscous model 
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0
                                                                                   (6) 

with  

φσττ tannycy +=                                                                                                  (7) 

 

where the value of the rheological parameters: the cohesive yield stress τyc , the normal 

stress σn, the internal friction angle φ, and the viscosity µ, vary with mixture properties 

such as solid concentration, clay type, particle shape and size distribution. 

Other rheological model that takes into account dispersive stresses was proposed 

by O’Brien and Julien (1985). Using basic fluid mechanics principles to describe 

hyperconcentrated flows, they postulated a quadratic model covering yield stress, viscous 

stress, dispersive stress and turbulent stress as 
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where ζ is the  inertial shear-stress coefficient. 

Later, based on laboratory experiments, O’Brien and Julien (1988) found the 

viscosity and yield stress to be functions of the volumetric sediment concentration c  of 

silts, clays, and in some cases, fine sands. The following exponential relationships were 

proposed 

ce 1
1

β
αµ =                                                                                                             (9) 

cey
2

2
β

ατ =                                                                                                       (10) 

 

in which α1, β1, α2 and β2 are empirical coefficients defined by experimentation for some 

known mixtures. For water–clay mixtures the following coefficients are commonly used:  

α1 = 0.621x10-3,  β1 = 17.3, α2 = 0.002 and β2 = 34.2. Units are Pa.s for viscosity and Pa 

for yield stress (O’Brien and Julien, 1988). 

Many authors have proposed Bingham, Herschel-Bulkley or quadratical models to 

simulate debris flow. However, all these models, as they have been proposed, assume a 

critical or yield shear stress that may create instabilities in model applications. For close 

to zero shear rates, these models have a viscosity discontinuity where it changes from a 

finite value to infinity, that constitutes a phase change where the initially liquid fluid 

becomes a solid, rendering the fluid governing equations invalid. The biviscous model 

and the Cross rheological formulation do not present such as discontinuity. 
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When using the Cross model the relationship between stress and shear rate is 

simply  

γµτ eff=                                                                                                            (11)                                                                        

where µeff   is the effective viscosity, a continuous variable that changes from a large value 

at very low shear rates to the fluid dynamic viscosity at higher shear rates.  

The general Cross model gives viscosity as a function of shear rate as (Barnes 

et.al,. 1989): 

mKeff
B

)(1
0

γ

µµ
µµ

+

−
+∞= ∞                                                                                  (12) 

 

where ∞µµ and0  are viscosity at very low and very high shear rates, respectively, and 

KB and m are constants parameters. The effective viscosity can be conveniently defined in 

terms of the   Bingham fluid parameters (yield stress and dynamic viscosity) as it is 

proposed by Shao and Lo (2003). Taking m as unity the effective viscosity can be 

rewritten as: 

γ

γµµ
µ





B

B

K

K
eff +

+
= ∞

1
0                                                                                          (13) 

 

with  
y

K
B τ

µ
0= , µµ =∞ and µµ 3

0
10=                                                                        (14) 

When considering the biviscous model, as described by O’Donovan and Tanner 

(1984), stress in the fluid can be described as 
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Which is a linearization of the Cross model. See Figure 8 for comparison of the 

rheological models mentioned above. 

 

 

Figure 8. Comparison of different flow rheological models  
 

2.3 Non-Homogeneous Models  
 

Grain-flow models, based on the physics of grain-grain and grain-fluid 

interactions, are a different type of model to describe debris flows which are friction-

dominated grain flows and behave differently than mud-slurry flows. 

When talking about granular mass flows, the word “granular” highlights the 

importance of momentum transport by large solid grains, mixed with less dense 
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intergranular fluid. The word “mass” implies that a finite, contiguous body of solid and 

fluid moves almost in unison, and the word “flow” indicates that the grain-fluid body 

deforms irreversibly as it moves downslope (Iverson and Vallance, 2001). 

High volumetric grain concentrations distinguish granular mass flows from 

phenomena such as slurry-mud flows. Particles that are silt-sized and smaller can be 

viewed as part of the fluid (slurry), larger particles constitute the granular solids and the 

concentration of these large particles partially defines the kind of flow regime, which can 

be friction-dominated or collision- dominated (see Figure 9). 

 

 

 

 

 

                                 (a)                                                                            (b) 

Figure 9. Schematic cross sections of gravity driven flows down inclined planes.     
(a) Friction-dominated flow  (b) Collision-dominated flow. 

 

A numerical criterion, identified by Savage (1984), distinguishes flow regimes on 

the basis of a dimensionless parameter, Ns, that characterizes stresses in steady, uniform 

flows  

gHfs

ds
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ρρ

γρ
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=


                                                                                           (16)                                                                                                        
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where ρs  and ρf  are the mass densities of the solid grains and fluid, respectively, γ  is 

the bulk (continuum) shear rate, d is the grain diameter, g is the gravitational acceleration 

and H is the flow depth. Roughly, Ns represents the ratio of grain collision stresses to 

gravitational grain contact stresses that produce intergranular friction. On the basis of 

diverse data, Savage and Hutter (1989) inferred that if Ns > 0.1, grain collision stresses 

may affect flow dynamics significantly. For those flows with small values of Ns (friction 

dominated) Iverson and Denlinger (2001) suggest that the Coulomb (1776) friction 

equation with zero cohesion is the best model for describing stresses in granular 

mixtures: 

φστ tan=                                                                                                           (17) 

 

where τ  is the intergranular shear stress, σ  is the total compressive normal stress and φ 

is the intergranular Coulomb friction angle. The Coulomb equation differs from 

rheological equations typically applied in homogeneous models because it implies no 

dependence of stress on shear rate. The equation predicts essentially the same 

intergranular shear stress if normal stress on shear planes is the same, regardless of shear 

rate. Iverson and Vallance (2001) indicate that the Coulomb equation yields good 

predictions even when flow is rapid or partially liquefied by high fluid pressure. 

For gravity-driven flows with a free upper surface, the compressive normal stress 

on planes at depth h is given by: 

 

pghCsfs −−= θρρσ cos)(                                                                              (18) 
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where Cs is grain concentration, θ  the angle of surface inclination and p the pore fluid 

pressure. Iverson and Vallance (2001) also indicate that equation (18) is valid regardless 

of whether grains contact one another statically or dynamically collide. However, it has 

been demonstrated that bulk normal stresses in rapid, collision–dominated flows (Ns>0.1) 

depend on shear rate, whereas this dependence is absent in slower, friction dominated 

flows (Bagnold, 1954).  

Bagnold’s experiments also assessed the role of viscous stresses in granular 

mixtures. Bagnold distinguished contributions of grain collision and viscous stresses in 

steady, uniform, shear flows on the basis of a dimensionless parameter, NB, defined as: 
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Bagnold’s number, NB, depends on the same properties used to calculate Savage’s 

number Ns, but also depends on Cs, the volume fraction of granular solids, C*, the 

maximum (close-packed) value of Cs, and µ, the viscosity of the intergranular fluid. 

Values of NB smaller than ~ 40 indicate a macroviscous regime where both normal and 

shear stresses are proportional to the shear rate
γ. Values of NB larger than ~ 450 indicate a 

collision-dominated flow regime, in which normal and shear stresses are both 

proportional to 
2γ  (Bagnold, 1954). 

The term in brackets in (19) highlights the important influence of grain 

concentration Cs on the stress regime. In the dense flow limit )*( CsC → the term in 
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brackets approaches 
∞
, indicating that collisional stresses greatly surpass viscous stresses. 

However, in highly concentrated geophysical flows with free upper surfaces, gH 

generally exceeds 22dγ very significantly, then Ns<0.1, and Coulomb friction due to 

gravitational stress may surpass all other forms of shear resistance (Iverson and 

Denlinger, 2001). 

Evaluation of stress regimes in debris flows in terms of Ns and NB is not a 

straightforward task. Debris flows have definite starting and ending points in space and 

time, and their motion is clearly unsteady. Abrupt surge fronts form at the heads of most 

flows, followed by thinner, tapering tails. Changes in grain concentration Cs, grain-size d 

and flow depth H during unsteady motion allow variations in Ns and NB throughout the 

extent and duration of the flow. Experimental data and field observations indicate that 

high non-uniform fluid pressures commonly exists in the bodies of debris flows, but not 

at surge fronts or deposit margins. Therefore, Coulomb friction generally dominates flow 

resistance at surge fronts, and viscous resistance and grain collisions gain significance in 

flow interiors (Iverson and Denlinger, 2001). 

Lack of rate-dependent stresses implied by Coulomb friction does not eliminate 

rate dependence in a mixture of Coulomb solids and fluid, provided the fluid has nonzero 

viscosity. The degree of rate dependence in such mixtures depends on the degree to 

which fluid pressures reduce intergranular Coulomb friction and transfer shear stresses to 

the fluid phase. The conclusion is that only Coulomb friction theory is not appropriate to 

model stresses in mixtures of solids and fluid, the development of a mixture theory that 

takes into account fluid stresses is necessary.  
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2.4 Governing Equations for the Mixture Theory  
 

The basic mixture theory has its origins in the pioneering model of Savage and 

Hutter (1989) for mass avalanches of cohesionless granules (sand, grains, rocks or snow). 

They began with mass and momentum balance laws based on a Coulomb constitutive 

description of dry granular material. Assuming a small depth-to-length aspect ratio in 

typical flows Savage and Hutter developed a thin layer model for granular flows down 

inclined planes. That work was later extended to two dimensions (Hutter et al., 1993), 

and to flows over more general topography (Pudasaini & Hutter, 2003). Iverson (1997b) 

and Iverson & Denlinger (2001) argue that the presence of interstitial fluid, as it is the 

case of debris flows, alters the behavior of dry flows and then equations describing the 

fluid phase and its constitutive behavior must be included. In this case, separate but 

coupled equations must describe mass and momentum conservation for the debris flow’s 

solid and fluid constituents, and the solid and fluid equations should apply at all locations 

simultaneously. 

The mixture theory equations of motion presented by Iverson and Denlinger 

(2001) read 
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where (20) represents the mass conservation equations and (21) the momentum 

conservation equations. There, v denotes a velocity vectors and T denotes a stress 

tensors. Subscript s refers to the solid phase and subscript f refers to the fluid phase. Cf  

refers to volume fraction of fluid, then mass continuity equations are coupled because the 

volume fractions must obey Cs + Cf =1. In the momentum equations f is a vector that 

represents the interaction force per unit volume that results from momentum exchange 

between the solid and fluid constituents. Momentum equations are coupled through this 

force. 

By adding together the solid and fluid mass conservation equations and the solid 

and fluid momentum equations, Iverson derives conservation laws for the mixture which 

involve depth averaging. Guided by experimental results, several approximations are then 

made which include:  

i) Solid velocity is approximated to the fluid velocity. 

ii) The mixture stress is taken as the sum Ts + Tf . Solid phase stresses obey 

the Coulomb rule with no cohesion and fluid phase stresses are considered to 

obey the conventional linear law of Newtonian fluids. 

iii) The viscous components of the fluid stress are often ignored compared 

with the solid stress contributions. 

iv) Basal pore fluid pressure obeys an advective-diffusion equation where 

advection is usually neglected. The solution proposed is a time series expansion 

depending on time and the depth of fluid. 
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Equations (20) and (21) show explicitly the advantages of two-phase models over 

single-phase models. They account for solid and fluid volume fractions, so it is possible 

to follow the evolution of each phase through space and time. They include separate solid 

and fluid stress tensors, which means that a constitutive relation must be defined for each 

phase. Equations also include the solid-fluid interaction force, which is implicit in single-

phase models though the stress terms.  

However, unfortunately, when using the solid phase velocity as an estimate of the 

fluid velocity and neglecting the influence of fluid stresses, most of these advantages are 

lost and the two-phase model reduces basically to a single-solid-phase model similar to 

that proposed by Savage and Hutter (1989).  

Recently, Pitman and Le (2005) presented a model formulation with a set of 

equations describing a two-fluid model for debris flows, where velocities for both solid 

and fluid phases can be determined, as well as fluid depth and fraction of solid particles 

at any time and point in the space. Several forces are considered, including solid and fluid 

stresses, gravity, buoyancy and drag.  However, they recognize the effort required 

computing solutions numerically and propose simplified models, and do not provide any 

comparison with experiments to demonstrate whether the equations adequately describe 

physical flows. 

Despite the advantages of two-phase models over single-phase models, there are 

still many aspects that remain unresolved. In particular, it is known that debris flow is 

clearly unsteady, the flow regime can change in space and time from a friction dominated 

regime to a collision dominated regime or simply to a viscous dominated regime. Flow in 

the head behaves differently from the tail, since regimes are different, making very 
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difficult to model the whole flow extent with the same constitutive law. Also, many 

factors related with the movement and interaction of individual boulders and coarse 

sediments cannot be addressed with continuous two-phase models. The above discussion 

indicates  that particle oriented models applied to the solid phase could adequately 

address some of these model deficiencies and  challenges.  

 

2.5 Discrete Element Method 
 

The Discrete Element Method (DEM) or Distinct Element Method is a numerical 

method based on the Lagrangian approach to simulate the motion of granular materials at 

the level of particles (elements). The principle of DEM is to track, in a time stepping 

simulation, the trajectory and rotation of each element in a system to evaluate its position 

and orientation, and then to calculate the interactions between the elements themselves 

and also between the elements and their environment. The interactions will then 

subsequently affect the elements positions.  

The Distinct Element Method was developed by Cundall (1971) for the analysis 

of rock mechanics problems. Then, Cundall and Strack (1979) extended the method to 

general granular media and showed that DEM could be applied to simulate real granular 

asse 

 

mblies. After this important paper, DEM has been used in different fields 

including chemical, civil, mechanical, environmental and aeronautical engineering, 

among others. The DEM model is described in detail by Asmar et al. (2002) to model 3D 

granular flows. 
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However, very few studies using DEM for solid-liquid systems can be found in 

the literature. In the field of debris flow, Asmar et al. (2003), and Miyazawa et al. (2003) 

are two important works that propose DEM to simulate the solid phase of the flow, and 

Navier-Stokes equations to simulate the fluid phase. Asmar et al. (2003) presented a 

simplified mathematical model to simulate debris flows. However, the programming of 

the fluid phase was not performed and an explicit procedure to solve for the fluid 

unknowns, in conjunction with the tracking of solid particles, is not proposed. Miyazawa 

et al. (2003) presented a one-dimensional flow formulation to simulate debris flow 

through a grid type sabo dam, where DEM is applied in 3D to track movement of large 

boulders. In their work it is not clear how the DEM technique is combined with the 

traditional Eulerian approach to solve the equations. Other reported work proposes, but 

does not implement, the Smoothed Particle Hydrodynamics method, SPH, to model the 

fluid phase and DEM to model the solid phase (Clearly and Prakash, 2004). 

When DEM is applied to simulate granular materials, two different methods to 

calculate the particle trajectories can be used: hard-particle model and soft-particle 

model. The hard-particle model works in rapid, not so dense granular flows where the 

system exhibits instantaneous binary collisions. In this regime, conservation of linear and 

angular momentum for each collision is applied. The soft-particle technique is used in 

slow, dense granular flows where particles have enduring contacts and multiparticle 

collisions occur. In these flows a dynamic analysis is performed via explicit solution of 

Newton’s equation of motion for every particle. In the analysis, the particle positions are 

recorded first, from these the particle interactions are determined and then the subsequent 

dynamics are evaluated including all forces acting on each particle. From the equations of 
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motion accelerations are determined, which are then numerically integrated to obtain 

velocities and displacements at the next time step. This soft-particle approach is 

considered the most appropriate to model debris flows (Asmar et al. 2003; Miyazawa et 

al. 2003; Clearly and Prakash 2004). 

The linear dynamics equations of motion for the particles (in vector notation) are 

as follows 

 

∑∑∑ ++= TNEdt
d

im FFFv                                                                            (22) 

 

Where m is the mass of particle i, v denotes in this case velocity vector of particle 

i, ∑ EF is the sum of the external forces (no contact forces), ∑ NF  is the sum of the 

normal contact forces and ∑ TF  is the sum of the tangential contact forces.  

The external forces acting on the particles depend on the particular case to be 

modeled. When particles are submerged in a fluid these forces could include gravitational 

force, buoyancy force, fluid drag force and fluid lift force. While external particle forces 

can be easily added to the model, contact forces on the other hand are wholly dependent 

on the choice of the contact mechanics to be used.  

Two major approaches are widely used in DEM. The first approach is a detailed 

methodology based on contact mechanics equations such as developed by Hertz (1882), 

Mindlin (1949), and Thornton and Randall (1988). The second approach is a simplified 

model that uses a conventional spring-dashpot-slider system to represent particle 

interactions as shown in Figure 10. 
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Figure 10.  Schematic representation of contact forces (a) Normal (b) Tangential 
 
 

The contact forces considered in this simplified model are elastic, cohesion, 

friction and damping forces.  When particles are submerged in a fluid cohesion can be 

neglected and consideration not only of local damping, but also of global damping in the 

equations of motion could be considered. 

Then, according to Figure 10 

 

NDNCN FFF +=                                                                                                     (23) 

TDTCT FFF +=                                                                                                       (24)  

 

The normal contact force FNC represents the repulsive force between any two 

particles that are in contact, it is calculated using a simple Hook’s linear spring 

relationship. The normal damping force FND represents the dissipation of a portion of 

kinetic energy during the contact. It can be defined to have a required ratio between 

relative normal velocities before and after collision. 

j 

FNC FND 

i 

(a) 

i 

j 

FTC 

FTD 

(b) 



 

 26 

The tangential contact force FTC represents the friction force between particles in 

contact. This force is limited by the Coulomb frictional limit at which point the surface 

contact shears and the particles begin to slide over each other. Before sliding linear or 

nonlinear formulations can be used, after sliding the tangential force is proportional to the 

normal contact force through the coefficient of friction.  

The tangential damping force FTD represents the portion of energy dissipated 

during tangential contact and it can be defined to have a required ratio between relative 

tangential velocities before and after collision. The calculation of this force could be 

omitted if sliding occurs since damping is introduced due to friction during motion. 

Once forces are evaluated, particle i motion is calculated from equation (22). The 

acceleration of the particle 
dt
dv  is computed from the net force, which is then integrated 

for velocity and displacement.  

In order to determine the orientation of the particles in space, a similar procedure 

as described before is done in DEM, but in this case using the rotational equations of 

motion for the particles as follows 

 

∑= Mω
dt
d

iI                                                                                                        (25) 

 

where I is the moment of inertia of particle i, ω is the angular velocity and M is the 

moment produced by tangential forces acting on the particle. The angular acceleration of 

the particle 
dt
dω  is computed from (25), which is then integrated for angular velocity and 

angle vector. 
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The time step ∆t is a constant value that is chosen to ensure the stability and 

accuracy of the numerical simulation, particularly the integration. In DEM this critical 

time for a simple elastic model is defined by 

 

c
crT

ω
2

=                                                                                                       (26) 

k
m

c =ω                                                                                                             (27) 

 

where ωc is the natural frequency of a simple spring-mass system, k is the maximum 

stiffness and m the minimum particle mass.  For a stable condition the time step must be 

smaller than this critical time. 

 Cundall (1978) suggests that 10% of critical time is probably safe for most of the 

DEM problems, but 20%-50% may be used with caution for loosely packed systems. 
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3 RESEARCH METHODOLOGY 
 
 
3.1 Governing Equations 
 

The flow domain is divided in computational cells with triangular base and height 

H, the actual depth of fluid, as shown in Figure 11.  

 

 

 

 

 

Figure 11. Schematic representation of debris flow with large solid particles 
 
 

The fluid is assumed to be non-Newtonian and incompressible, and the vertically 

averaged continuity and momentum equations in Cartesian coordinates result as follows 

(see derivation in the Appendix). 
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Similarly to equations (1) to (3), H is the water depth, η is the free-surface 

elevation, u and v are the vertically averaged velocities in x and y directions respectively, 

g is the gravitational acceleration and ρ is fluid density.  

FD represents the fluid-solid interaction force exerted on the fluid by particles 

through the fluid drag force. Following the approach of Xu & Yu (1997), this force is 

evaluated as 

V

n

i
iFD

D ∆

∑
= = 1

F
F                                                                                                      (31) 

 

where FFD is the fluid drag force on each particle i, ∆V is the volume of the 

computational cell and n is the number of particles in the cell. In this manner, the fluid 

interface force FD in a computational cell is equal to the sum of the fluid drag forces 

acting on the discrete particles into the cell. FDx and FDy are the components of the fluid 

interface force in x and y direction respectively. 

Sfx and Sfy are the depth integrated stress terms that depend on the rheological 

formulation used to model the slurry.  

When a quadratical formulation is used, with Bingham theory and Manning’s 

formula, as proposed by O’Brien and Julien in 1985, the stress terms for the fluid can be 

expressed as 
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The properties of the fluid, dynamic viscosity µ and yield stress τy, are determine 

as functions of the volume sediment concentration Cv, using the relationships proposed 

by O’Brien and Julien (1988) and given in equations (9) and (10). N is the Manning 

roughness coefficient related with the roughness of bottom surface. 

Using a quadratical formulation combined with the Cross rheological model, the 

stress terms for the fluid are expressed as (see derivations in Appendix A): 
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where µeff  is the effective viscosity of the fluid defined by (13) and (14). The properties 

of the fluid required to determine the effective viscosity are the dynamic viscosity µ and 

yield stress τy, 

In reference to the solid phase, spherical particles of different sizes will be 

considered. The trajectories will be tracked using Newton’s second law (22) and the 

forces considered are gravity, buoyancy, fluid drag force and collision forces. 

Recalling equation (22): 
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∑ EF is the sum of the external forces (no contact forces), with FE given by 

 

FDBE FFF +=                                       (36) 

 

The expression to compute the net force acting on the particle due to gravitational effects 

is 

gF )(3
3
4

pRB ρρπ −=                                                                                        (37) 

 

where R is the particle radius and ρp is the particle density. 

The expression for the drag on a particle in a viscous fluid is given by 

 

( )vuvuF −−= ρπ dCRFD
2

2
1                  (38) 

 

where Cd is the drag coefficient, u is the fluid velocity vector at the location of the 

particle, and v is the velocity vector of the particle.  

Several expressions for the drag coefficient of a sphere in a viscous fluid are 

found in the literature. One of these is the correlation given by Clift and Gauvin (1971): 

 

 



 += 0.687

pRe15.01
pRe

24
dC         for  1<  Rep <1000                                    (39) 

 

where Rep is the particle Reynolds number defined by 
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eff

R
µ

ρ vu −
=

2
Re

p
                                                                                             (40) 

 

This expression for the drag coefficient is accurate up to Rep equal to 1000. For 

higher Reynolds numbers, it is observed that the drag coefficient of a sphere becomes 

constant and approximately equal to 0.44. 

Figure 12 shows the correlation for the drag coefficient used in the calculations of 

the particle drag force. 
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Figure 12.  Drag Coefficient vs particle Reynolds number 
 

 

Going back to equation (22), the last two terms represent the collision forces or 

contact forces among particles ∑ NF is the sum of the normal contact forces and ∑ TF  

is the sum of the tangential contact forces.  Based on the simplified model that uses a 

spring-dashpot-slider system to represent particle interactions (Asmar et al. 2003; 
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Miyazawa et al. 2003), the normal contact force and the tangential contact force are 

evaluated as in (23) and (24), see Figure 10.          

           

NDNCN FFF +=                                                                  

TDTCT FFF +=                     

 

The normal contact force FNC is calculated using a Hook’s linear spring 

relationship, 

 

NNNC K δ=F                                                                                                         (41) 

 

where KN  is the normal contact stiffness and δN is the displacement between particles i 

and j. 

The displacement δN  is mimicked via a computational overlap (see Figure 13), so 

that  δN  = (Ri + Rj )- ∆ij, where ∆ij is the distance between the centers of particle i and j. 

When ∆ij is greater than (Ri + Rj) particles are not in contact. 

                     .  

Figure 13.  Schematic representation of contact between two particles 
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The maximum overlap is dependent on the stiffness KN. Typically, average 

overlaps of 0.1-1.0% are desirable, requiring stiffness of the order 105-107 N/m. 

The normal damping force FND is also calculated using a linear relation given by 

 

NNND vC=F                                                                                                          (42) 

 

where vN is the normal component of the relative velocity between particles and CN is the 

normal damping coefficient. This constant CN is chosen to give a required coefficient of 

restitution β, defined as the ratio of the normal component of the relative velocities 

before and after collision. 

 

NijN KmC λ2=                                                                                                 (43) 

 

where λ  is the coefficient of critical damping and is calculated as 

 

)(ln
)ln(
22 βπ

βλ
+

−=                                                                                            (44) 

 

and  

ji

ji
ij mm

mm
m

+
=                                                                                                      (45) 

 

where mi and mj are masses of particle i and j respectively. Derivation of the critical 

damping coefficient could be found in Nagurka and Huang, 2006. 

The tangential contact force, FTC, represents the friction force and it is limited by 

the Coulomb frictional limit, at which point the particles begin to slide over each other. 
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Prior to sliding, the tangential contact force is calculated using a linear spring 

relationship, 

 

TTTC K δ=F                                                                                                           (46) 

 

where KT  is the tangential stiffness coefficient, and δT is the total tangential displacement 

between the surfaces of particles i and j since their initial contact. This displacement is 

calculated from the components of relative velocity tangent to the contact surface. Values 

suggested for KT /KN varies from 2/3 to 1 (Cundall and Strack, 1979). When KTδT exceeds 

the frictional limit force µf FNC, particle sliding occurs. The sliding condition is defined as 

 

NCfTC FF µ=                                                                                                        (47) 

 

where µf is the dynamic friction coefficient. 

The tangential damping force FTD is not included in this model, the calculation of 

this force could be neglected since once sliding occurs, damping is introduced due to 

friction during motion.  

In this work, the rotation of the particles is not considered. The effect of particle 

rotation and the corresponding lift produced could be modeled by solving for the angular 

velocity of the particles in equation (25), including the torque exerted on them by the 

fluid and by the contact with other particles.  

The torque exerted by the viscous fluid on solid particles is produced by fluid 

shear stresses and can be expressed in terms of the velocity gradients as follows 

(Sandeep, 1996): 
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Since the fluid phase governing equations are depth integrated, gradients along z 

direction are equal to zero in the formulation, as well as the velocity in this direction, w. 

Then the first two components of the torque are not detectable by the numerical model. 

Last component is the torque in direction perpendicular to the sloping surface, which is 

essentially negligible.  

Regarding the torque exerted by contact forces, debris flow observations say that 

big boulders usually move protruding from the surface of the flow, barely in contact with 

the bottom surface The Bingham fluid model shows how the yield stress of the fluid 

produce a plug layer close to the surface, big boulders are supported by the strength of 

this plug and buoyancy, been transported long distances without significant contact with 

other bodies (Takahashi, 1991). As the flow depth is reduced, the process of boulder 

deposition starts and contact forces become more relevant. It has been reported that the 

lacking of rotation in the simulation of the deposition process allows the formation of 

clusters more easily than in the case where rotation of particles is included, however there 

is not significant difference in the final position of the particles. 

. It is one of the main interests of this work to study the transportation of big solid 

particles by debris flow, in order to be able to predict zones of deposition.  
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3.2 Numerical Solution of the Governing Equations 
 
3.2.1 Fluid Governing Equations 
 

Fluid governing equations (28-30) are solved by the Galerkin Finite Element 

method using three-node triangular elements. The unknown variables, u, v, and H, are 

given as a function of the unknowns evaluated at the nodes (48), where the vectors )(tU


, 

)(tV


, and )(tH


 represent the variables at the nodes for each time t, and the matrix  N 

allows for the internal interpolation based on linear shape functions defined for triangular 

elements with three nodes (49). 

 

Figure 14.  Finite Element Discretization 
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The spatial derivatives are expressed as 
 

UxB
x
u 

][=
∂
∂               (53) 

 

UyB
y
u 

][=
∂
∂               (54)                                  

 
 

where matrix Bx  and By contain the derivative of matrix N with respect to x and y 

respectively.  
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The discretized governing equations can be expressed in matrix form as follows 

 

hFHM
 −=][  

uFUM
 −=][              (57) 

vFVM
 −=][                

 

where the vector of unknowns (time derivatives) multiply matrix M for each equation, 

and the right hand side vector include all the other terms in the equation. Matrix M is 

given by 
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[ ] dANTNM ∫=                                        (58) 

 

To solve (58), a four-step time stepping scheme and a selective lumping method, 

is performed, as described by Garcia-Martinez et al. (2006). This scheme improves 

previous finite elements models, allowing larger time steps and enhancing its capability 

to simulate complex debris flow events without requiring an artificial diffusion term.   

Stability leads to the following Courant-Friederich-Lewy (CFL) condition  

 

2/1)1(
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3
4 ε−








≤

∆
∆

gHx
t

            (59) 

 

where ε is the selective lumping parameter. 

 

3.2.2 Particle Governing Equations 
 

Forces on each solid particle are evaluated at each time step, and the acceleration 

of the particle 
dt
dv  is computed from the particle governing equation (22). Particle 

acceleration is then integrated to find velocity and displacement as follows 

 

t
t

dt
dttt ∆+=∆+ vvv                                     (60) 

ttttttt ∆∆+++=∆+ )(
2
1 vvrr              (61)                                           
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Knowing the position of particles at time t+∆t contacts are identified and relative 

displacements among particles are calculated. 

The time step ∆t to ensure stability and accuracy of the numerical integration is 

determined by the minimum critical time, as said in previous chapter, equation (26).  

 The time step for the whole simulation, including fluid and solid phase, is chosen 

such as equations (26) and (59) are satisfied.
 

The following diagram describes the complete numerical procedure more 

explicitly 
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Figure 15.  Calculation cycle describing the numerical solution of the problem 
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4 MODEL VERIFICATION USING ANALYTICAL AND            
EXPERIMENTAL DATA 

 
 
4.1 Fluid Phase Numerical Solution Verification 
 

The first modeling step was the implementation of different rheological models 

for the simulation of mud flows. This modeling would account for the representation of 

the fluid phase of the debris flow. The numerical model was run using RiverFLO-2D 

software, a finite modeling system for detailed analysis of river hydrodynamics, sediment 

transport and bed evolution (García-Martínez et al. 2006). In the software, two 

rheological quadratical formulations were implemented, the first, including Bingham 

theory and Manning’s formula, as proposed by O’Brien and Julien in 1985, and the 

second, combining Cross formulation and the Manning’s formula as proposed in 

Martinez et al. 2006. 

In order to compare with simple results, an analytical solution, proposed by 

Huang and Garcia (1997), was studied and implemented in a computer program. This 

implementation provided enough data for verification and testing of the new rheological 

formulations proposed. 

 

4.1.1 Analytical Solution for Bingham mudflows, Huang and Garcia                  
1997 

 
Consider a 2D, unsteady, gradually varied, laminar mudflow, which originates 

from a finite-volume source, on a slope at an angle of θ  with respect to the horizontal. 

The boundary layer approximations are assumed to be valid, flow depth is small 

relative to the flow length, and depth changes relatively slowly along length. Then the 

equations of motion are reduced to the following form 
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Figure 16.  One-dimensional dam break on a sloping surface 
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Where ρ is fluid density, g is acceleration of gravity, p is pressure and (u,v) are 

the flow velocity components in (x,y) directions respectively. The boundary conditions 

are in this case: 

 

00 === yatvu                (65) 

hyatp === 0,0 τ                          (66) 

       

Then, equations (64) and (66) indicate that pressure in the mudflow is hydrostatic 

and given by: 

θρ cos)( yhgp −=              (67) 
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Huang and Garcia consider the two layer-model shown in Figure 17: 

 

Figure 17.  Two layer model proposed by Huang and Garcia, 1997 
 

 

The flow is divided into a plug layer, with uniform velocity Up and depth hp, and a 

shear layer with varying velocity u and depth hs. For the case of steady, uniform flow, the 

velocity distribution is given by 
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and the flow rate per unit width is 

3

)3( shh
pUq

−
=                                                                                             (69) 

 

Assuming that (68) is also valid for non-uniform boundary layer flows without 

committing serious errors (with Up changing with x and time t), the following depth-
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integrated momentum and continuity equations are obtained taking into account the 

surface boundary condition 
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Momentum balance in the shear layer 
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Momentum balance in the plug layer 
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These three equations could be solved numerically to look for the unknowns h, Up 

and hs. However; studying the relative magnitudes of the terms in these equations, it is 

possible to derive first-order solutions for the outer and inner regions of the flow. Refer to 

Appendix B for complete derivation of these equations.  

The Outer Solution (Figure 18) describes the profile back at any time t. The 

corresponding equation (74) allows to solve for the depth of the fluid h* at any time t* 

and location x*.  
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Figure 18.  Outer and Inner Solution proposed by Huang and Garcia, 1997 
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Equation (74) can be expressed in dimensional form with the help of (75). 
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The Outer solution holds up to the shock location (xf, hf). This location is 

determined invoking mass conservation, giving as a result the following nonlinear 

equation that can be used to solve for hf. 
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Equation (74) gives then xf. 

The Inner Solution (Figure 18) describes the free surface profile of the shock front 

and it is found solving the following differential equation for hi. 
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Since the right hand side of (77) is independent on *ξ , the location of the profile is 

unknown. The right place will be given under the condition of mass conservation given 

by 
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where δ* is defined as the distance from xf * to the leading edge of the shock. Equations 

(77) and (78) can be expressed in dimensional form with the help of (79) 
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A numerical procedure was implemented in order to find automatically the entire 

profile of the mudflow released from a finite source, at any time t.  

The input data includes dimensions of the mass source, H and L, or H and θ, and 

the properties of the fluid: density ρ, viscosity µ and yield stress τy. 
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For any time t the procedure is as follows: 

 

Outer solution: 

1.- Using equation (76), solve for hf  (Newton-Raphson method). 

2.- Using equation (74) solve for xf. 

3.- From x=0 to x=xf  use equation (74) to determine the depth h of the fluid 

(Newton-Raphson method). 

Inner solution: 

4.- Apply Runge-Kutta to equation (77) to determine the profile hi. The equation 

can be use in dimensional form. 

5.- Apply numerical integration to find the right location for the inner solution. 

Start with the profile centered with respect to xf  and then iterate until the mass balance is 

achieved. 

Composite solution: 

6.- For x < xf , determine the solution by adding the inner and outer solution and 

then subtracting their common matching term hf.. For x > xf  the solution equals the inner 

solution. 

The following example is given by Huang and Garcia in their work (1997). The 

data presented is 

 

Using these  values the corresponding input data for the developed program is: 

stmKgsPaPacmh y
o 0027,0,/1462,.08.0,7.29,10,15 3

0 ====== ρµτθ  

The results obtained using the program are: 

cmhcmhcmx yff
o 8.0,77.5,7.56,15 ====θ
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cmxcmh ff 99.57,77.5 ==  with the following free surface profile 

 

 

Figure 19.  Flow profile at time t = 2.7 E-3 s 
 

 

This solution is in very good agreement with Huang and Garcia’s results. The 

program was then used to solve for other times t and results are showed in the following 

figures.  
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Figure 20.  Flow profile at time t = 8.7 E-3 s 
 

 

 

Figure 21.  Flow profile at time t = 1.07 E-2 s 
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Figure 22.  Flow profile at time t = 2.27 E-2 s 
 
 

4.1.2 Finite Element Method (FEM) Numerical Solution testing and              
verification  

 
The proposed test problem represents flow from a source of finite size, with initial 

triangular shape, a dam break of mud-slide on an sloping surface, as shown in Figure 16. 

The fluid is a Kaolinite suspension with Cv =0.135 and the flow is considered unsteady, 

gradually varied, and laminar. The empirical relationships (9) and (10) are used for the 

calculation of the fluid rheological properties,  

 

                    
ce 1

1
β

αµ =                                  
cey

2
2

β
ατ =                

                                                                                         

in which α1, β1, α2 and β2 are α1 = 0.621x10-3,  β1 = 17.3, α2 = 0.002 and β2 = 34.2.  

Units are Pa.s for viscosity and Pa for yield stress (O’Brien and Julien, 1988). 
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We compare the finite element numerical solution with the analytical solution 

proposed by Huang and Garcia (1997). We also compare the results with experimental 

data presented by Huang and Garcia in their work of 1998. 

Although the example is one dimensional, we use 2D triangular elements to 

discretize the channel, as shown in Figure 23. The Cross rheological model is used first in 

the Finite Element Formulation.   

 

 

 

 

 
Figure 23.  Two-dimensional finite element mesh for the dam break test 
 

 

The following figures show the flow profile and spreading rate for the following 

conditions: θ =11o and initial triangular area A=24.7cm2 (L = 0.16 m). 

Figures 24 and 25 show the free surface profiles for times 2.0 and 2.5 s, 

respectively. As it is depicted in the plots, the numerical solution is very close to the 

analytical solution, with the exception of the advancing front where the numerical 

solution is not able to capture the discontinuity between the fluid and the dry channel 

bottom. This smearing is a typical inaccuracy tied to numerical diffusion.  

 

0.1 m 
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Figure 24.  Comparison of numerical and analytical solutions for time = 2.0 s 
 
 

 

Figure 25.  Comparison of numerical and analytical solutions for time = 2.5 s 
 

 

Figure 26 shows free surface profiles for time 2.0 s using a refined mesh. In the 

new mesh (NM) elements are three times smaller than those in the old mesh (OM). In 

addition, the selective lumping parameter, related with the finite element solution of the 

governing equations, has been increased from 0.9 to 0.925. 
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Figure 26.  Free surface profiles, comparison of numerical and analytical solutions 
for time 2.0 s 

 
 
 

As depicted in the figure, the mesh refinement contributes to reduce the numerical 

diffusion and improves substantially the solution in the advancing front. Increasing the 

selective lumping parameter also enhances the numerical solution, making it closer to the 

analytical solution. Bingham rheological formulation is compare with Cross rheological 

formulation, the Bingham profile shows a steeper front that Cross profile.  

Figure 27 shows the spreading rate of the flow. This relation is obtained plotting 

the position of the advancing front at different times t. In the plot, numerical results using 

FEM are compared with the Analytical Solution as well as Experimental Data given by 

Huang and Garcia (1998). It is noticeable that the numerical solution using Cross 
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formulation is in very good agreement with the experimental data for early stages of the 

solution, where the approximate analytical solution is not as accurate.  
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Figure 27.  Spreading relation, comparison of numerical solutions with analytical 

solution and experimental data. 
 
 
 

As time increases, the fluid velocity decreases, but the stoppage of the fluid is not 

totally reached with any of the numerical solutions. However, Bingham formulation tends 

to be more accurate than Cross formulation for later stages. 

 After a certain time, numerical solutions tends to increase and deviate from the 

analytical solution. This tendency is obviously caused by the numerical treatment of the 

wet-dry interface. Mesh refinement and the increment of the selective lumping parameter 

are able to reduce somehow the artificial diffusion presented in the wet-dry interface, but 

not to the extent that would be desirable.  
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Before different methodologies were studied in order to improve the solution in 

the profile front, other tests were performed to verify the effectiveness of the FEM 

solution. One of them was related with the analysis of a dam break problem, similar to 

the one discussed previously, but in this case over a wet slope, where a layer of fluid 

exists downstream from the mud-slide.  This kind of test avoids the problem of the wet 

and dry interface and can focus the study in the accuracy of the FEM representation. 

The analytical solution for wet-slopes is also presented by Huang and Garcia in 

his work of 1997, with some useful results for comparison. The downstream layer has a 

height h2 equals to n times hy, where hy is the so called yield depth defined by 

 

θρ
τ
sing

hy y=                                                                                           (80) 

 

Figure 28 is a dimensionless plot of the wave shock depth (hf /H) as a function of 

the shock coordinate (xf /L), where H and L are the initial height and length of the 

triangular fluid source. The results are for λ=0.04, with λ  =hy /L, and for different values 

of h2. The numerical solution, using FEM and Cross rheological model, shows an 

accurate approximation of the analytical solution in all the cases, which confirms the 

effectiveness of the FEM solution. 
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Figure 28.  Kinematic-wave shock depth plotted as function of shock coordinate 
 

Figure 29 shows free surface profiles at time 2.3 s on a wet slope, where h2 equals 

0.5hy.  The FEM numerical solution, slightly smaller, is in very good agreement with the 

analytical solution. 
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Figure 29.  Free surface profiles on wet slope, h2= 0.5 hy. Numerical and analytical 
solution for time 2.3 s. 
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Similar analytical solutions were found in the literature for two-dimensional 

simple dam-break problems. These solutions were also used for verification of the FEM 

formulation.  

 

Figure 30.  Two-dimensional dam break on a horizontal surface 
 

Figure 30 shows a circular mud dam break on a horizontal plane, presented by 

Balmforth et al. in 2006. The initial condition of the problem is h*=h/H=1 for r*=r/L≤1, 

where H and L are the initial height and radius of the circular, confined, source of fluid. 

The dimensionless time t* is defined as 

 

V
tLt =*                                                                                                                  (81) 

 

where V is a characteristic velocity given by 

L
hHV

µ
θρ cos3

=                                                                                                   (82) 

 

with cosθ = 1. 
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The results are for a Bingham number (dimensionless yield stress) B=0.15, with B 

defined as 

V
H

B y

µ
τ

=                                                                           (83) 

 

Figure 31 shows the results given by the Cross formulation (numerical solution) 

for the two-dimensional problem with initial conditions H = 3.2 cm, R = 16 cm, Cv = 

26%. Comparing the profiles it is noticeable that the spreading of the numerical solution 

is larger than the analytical solution at advanced times; however, results are closer at 

short times.  
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Figure 31.  Axisymmetric dam break with initial condition h*=1 for r*<1. Numerical 
and analytical solutions for different times t*. 

 

 
The numerical solution is stiffer than the analytical solution at early stages, but at 

the time increases, the spreading of the fluid is much larger with the numerical solution.  

At this stage of the research it is known that some work has to be done in order to 

improve the wet and dry interface, in order to capture the discontinuity between wet 
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zones and dry zones. In addition, the solid phase has to be incorporated into the code to 

track the movement of large solid particles. These two issues will be assessed in the 

following sections. 

 

4.1.3 Numerical Treatment of the Wet-Dry Interface 
 

The capability of simulate the drying and wetting of the bed is crucial when 

solving mud dam-break problems. In this kind of events, most of the extension of the bed 

is initially dry and it gets progressively wet as the mud flow advances down the slope. 

Dry elements on sloping surfaces may cause numerical problems if handled incorrectly, 

because the gravity term in the governing equations can generate unrealistic flows when 

the bed surface is dry. Another major problem are the stress terms in the governing 

equations, this terms are divided by the fluid depth H. Dry elements has H equal to zero, 

which means that calculation over this elements will give non-defined results. In order to 

avoid these serious problems dry elements should be eliminated from the FEM 

calculation and the finite element mesh should be generated so that it will cover only the 

region that is expected to be wet. 

The wet-dry algorithm implemented in this work is an improved version from 

one originally proposed by Kawahara and Umetzu (1986) and later proposed in the finite 

element context by Umetzu and Matsumoto (1999). The algorithm was developed and 

tested by Garcia at al. (2009) and it has been included successfully in many applications. 

The wet-dry algorithm is as follows: 

1.- At the beginning of each time step all elements are evaluated to see if they are 

wet, partially wet, or dry. A completely dry element is defined when all nodal depths are 
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less than a user-defined minimum depth or tolerance value Hmin, that can not be zero in 

the case of mud-flows. A partially dry element has at least one node where depth H is less 

than Hmin. A wet element has all nodal depths higher or equal than Hmin. 

2.- If the element is completely dry the governing equations for the element  

 

 0=
∂
∂

=
∂
∂

=
∂

∂
t
v

t
u

t
H                 (84) 

 

These equations are discretized and solved using the finite element procedure 

described before. Also, for these dry elements velocity components are zet to zero for all 

nodes on the element. 

3.- If an element is partially dry, the full equations are solved, but then velocities 

components are set to zero for all nodes on the element. 

4.- Nodal depths are not modified for any element. 

 

4.2 Solid-Phase Numerical Solution Verification 
 

A computer program, based on the ideas of Graham G. W. Mustoe, Colorado 

School of Mines, was coded using Fortran 90 programming language to simulate the 

movement of the solid particles following the algorithm described in chapter 3. Several 

special cases were examined. These cases test the implementation of different force 

algorithms in isolation, as free motion, single contacts and multiple contact simulations.  

Tests were performed using the canal described in Figure 16, with walls at the 

boundaries. 
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4.2.1 Test 1: Normal elastic force, vertical 

To test for the particle-base interaction, the test simulates a free falling particle 

under gravity hitting the canal base. The canal is in horizontal position. Tangential forces 

and damping are set to zero. The stiffness constant used varies from 104 to 105 N/m. The 

particle, with radius 2.5 cm, is dropped from a height equal to 0.4 m.  

Figure 32 shows the particle trajectories for two different stiffness constant, K1 = 

105 and K2 = 104 N/m. The plot shows how the particle rebounds to its original height 

after each contact. There is no movement in the x-y directions, momentum and energy are 

conserved. Results are more accurate for the lower stiffness, this is related with the time 

step used. In order to improve results for K1 a lower time step should be used to allow 

more time stepts during time contact. Higher stiffness require the use of a lower time 

step. 
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Figure 32.  Test 1, z position of particle with time t  
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Figure 33 shows the particle velocity for the two different stiffness constant, K1 = 

105 and K2 = 104 N/m. The plot shows how momentum is very well conserved after each 

rebound. Cinematic of the particle is not totally satisfied probably due to accumulation of 

numerical errors. 
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Figure 33. Test 1, z velocity of particle with time t  
 
 
 
4.2.2 Test 2: Normal elastic force, horizontal 

To test for the particle-wall interaction, the test simulates a particle moving with 

initial velocity in either x or y direction. Gravitational, tangential and damping forces are 

set to zero.  

 

 

Figure 34.  Test 2, schematic diagram 

x 

y 
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Figure 35 shows results for a particle with initial velocity in the y-direction. The 

initial velocity used is 0.45 m/s. Particle radius is 1.0 cm and the canal is 10 cm wide. 

Stiffness constant is set to K2 = 104 N/m. As can be seen, the particle rebounds 

horizontally between the two walls of the canal with no loss of energy. There is no 

movement in the x-z directions. 
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Figure 35. Test 2, y position of particle with time t  
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Figure 36. Test 2, y velocity of particle with time t  
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Figure 36 shows particle y-velocity variation, there is momentum conservation 

and particle cinematic is totally satisfied. 

 

4.2.3 Test 3: Normal damping force 

This test is identical to Test 1 but with the normal damping force accounted for. 

The normal damping coefficient E used is 0.8, which means that velocity after the impact 

must be 80% of velocity before the impact. Figure 37 shows how in this case, when the 

particle rebounds, it fails to reach the original height and its height decays along time due 

to damping. Figure 38 shows the decline in the normal velocity along time. Results show 

that in this case the numerical solution is very close to the analytical solution. 
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Figure 37. Test 3, z position of particle with time t  
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Figure 38. Test 3, z velocity of particle with time t  
 
 
 
4.2.4 Test 4: Friction force, elastic 
 

In this test, the elastic tangential force of the model is tested. Previous to gross 

sliding, this tangential elastic force keeps the particle in equilibrium when placed over an 

incline plane. No gross sliding occurs if µf = Tan θ. 

 

 

 

 

Figure 39. Test 4, schematic diagram 
 

Gravitational, normal and damping forces were included together along with the 

friction force to show that particles will not move under the extreme condition µ = tan θ. 

θ 
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Figure 40 shows how the tangential velocity changes in a harmonic manner 

around the zero value, and declines over the time due to damping. Particles showed not 

noticeable movement down the plane. 
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Figure 40. Test 4, particle tangential velocity with time t 
 

 The following slope angles and friction coefficients were tested using tangential 

linear stiffness ranging from 0.5 x 104 to 1.0 x 104, results were very accurate for all the 

range.    

 

θ µf 

6o 0.1 

7 o 0.12 

10 o 0.176 

11.3 o 0.2 

  

Table 1. Test 4, slope angles tested with corresponding limit friction coefficients 
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4.2.5 Test 5: Friction force, gross sliding 
 

This test is similar to test 4, but in this case µf < tan θ , so the particle is able to 

slide over the incline plane. Solving particle equations of motion is known that  

  

2
)cos(sin

2gtd f θµθ −=                (85) 

 

then, distance along the plane could be obtained numerically for different times t to 

ensure analytical solution is satisfied. Gravitational, normal, damping and friction force 

were included. Normal stiffness constant is set to 105, tangential stiffness constant is set 

to 104, friction coefficient is 0.1 and slope angle equals 11.5o. Results are in very good 

agreement with equation (85) as shown in Figure 41. 
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Figure 41. Test 5, distance traveled down the plane at time t 
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4.2.6 Test 6: Particle collisions, conservation of momentum   
 

In this test one particle slides over the incline plane to then collide with two 

particles that are at rest over the horizontal plane. The test was first performed including 

gravitational and normal elastic force with no friction, then, second case includes friction 

force. 

 

 

 

 

Figure 42. Test 6, schematic diagram 
 

In the first case, at the time of collision, 0.592 s, V1 = 0.98 m/s. After collision 

V1 = -0.938x10-2 m/s, V2 = 0.254 m/s and V3 =0.736 m/s. 

M1 = m V1 = m (0.98)  

M2 = m V1 + V2 + V3 = m (-0.938x10-2 + 0.254 + 0.736) = m (0.98062) 

Momentum is conserved. 

In the second case, including friction with friction coefficient 0.1, collision occurs 

at time 0.838 s. V1 = 0.567 m/s just before collision. After collision V1 = -0.608x10-2 

m/s, V2 = 0.150 m/s and V3 =0.420 m/s. 

M1 = m V1 = m (0.567)  

M2 = m V1 + V2 + V3 = m (-0.608x10-2 + 0.150 + 0.420) = m (0.56392) 

Momentum is conserved. 

Further tests were carried out to check momentum conservation in all directions. 

One example is shown in Figure 43 where the particle sliding over the incline plane 

θ 
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collides with two particles, in this case at the same distance in x direction. The example 

showed momentum conservation as well as perfect symmetry of movements on plane x-y. 

 

 

 

 

Figure 43. Test 6, example of momentum conservation 
 

 

4.2.7 Test 7: Particle stacking, no overlap 

This test simulates the free falling of five particles under gravity. The particles 

rebound over the incline plane and then collide with walls or among themselves until they 

reach equilibrium with velocities equal to zero. Particles, with radius 4.5 cm, are dropped 

from a height equal to 0.572 m. Vertical walls are situated at x = 0 and x = 1 m. The 

plane slope is 30o. Gravitational, normal, damping and friction force were included. 

Normal stiffness constant is set to 105, tangential stiffness constant is set to 104, friction 

coefficient is 0.1 and restitution coefficient is 0.8. Figure 44 shows trajectory paths for all 

particles. Particles collide with bottom plane, walls and other particles with maximum 

overlap equal to 6 x 10-4 m. Equilibrium is reached with some staking as shown in Figure 

45. 

x 
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Figure 44.  Test 7, trajectory paths for five free falling particles on an incline plane 
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Figure 45. Test 7, particle final positions 
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4.2.8 Test 8: Particle terminal velocity, drag force 
 

In this test, the drag force of the model is tested. The test simulates a free falling 

particle under gravity, but in this case immersed in fluid.  

A free-falling particle achieves its terminal velocity when the downward 

gravitational force equals the upward drag force. This causes the net force on the particle 

to be zero, resulting in no acceleration. 

As the particle accelerates downwards due to gravity, the drag force acting on the 

particle increases, causing the acceleration to decrease. At a particular speed, the drag 

force produced will equal the particle's weight. At this point the particle ceases to 

accelerate and continues falling at a constant speed called terminal velocity. 

For a given particle of diameter d, the expression for terminal velocity, taking into 

account gravitational, buoyancy and drag force is as follows 

 

( )
ρ

ρρ

d

p
t C

gd
V

3
4 −

=              (86) 

In the test, the particle simulates a marble, with diameter d=2.5 cm and density 

ρp=2500 Kg/m3. The fluid density is ρ=1390 Kg/cm3 and viscosity is µ=0.162 Pa.s, in 

case (a), and ρ=1495.6 Kg/cm3 and µ=0.740 Pa.s, in case (b). 

Figure 46 shows how the z-velocity of the particle in case (a) increases in 

magnitude up to a constant value equal to 0.496 m/s. For this velocity, particle Reynolds 

number is Rep = 106.4 and the drag coefficient is Cd = 1.1. Substituting the corresponding 

values in equation (86) the resulting terminal velocity is Vt = 0.49583 m/s. This result 
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means that the terminal velocity obtained numerically is the solution of the non-linear 

equation (86).  
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Figure 46. Test 8, case (a), absolute value of particle z-velocity with time t 

 

Figure 47 shows the particle terminal velocity for case (b), equal to 0.249 m/s. For 

this velocity, particle Reynolds number is Rep = 12.6 and the drag coefficient is Cd = 

3.534. Substituting the corresponding values in equation (86) the resulting terminal 

velocity is Vt = 0.24896 m/s. 
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Figure 47. Test 8, case (b), absolute value of particle z-velocity with time t 
 
 

After finishing these different tests it is concluded that the numerical model 

developed for the simulation of solid particles is ready to be incorporated in the main 
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program RiverFLO-2D. Verification of the computer program will go after using 

experimental results. 

 
4.3 Model Pre-calibration using Experimental Data 

A series of experiments were carried out in a laboratory channel using 

homogeneous mixtures and solid particles. The experiments were performed in a 1.9 m 

long, 0.19 m wide, Plexiglas walled laboratory flume, with adjustable slope. The 

downstream part of the flume was connected to a wood horizontal platform, 0.75 m long 

and 0.95 m wide as shown in Figure 48. A dam-break type of flow was initiated by 

releasing mixtures from a 0.40 m long reservoir situated on the upstream part of the 

flume. The release of mixtures was caused by an abrupt removal of a gate situated 

between the reservoir and the flume, Figure 49. The propagation of the fluid wave and 

the particle trajectories were filmed by two video cameras, one on the side and one on top 

of the flume. 

 
Figure 48. Laboratory flume, Fluid Mechanics Institute, Universidad Central de 

Venezuela 



 

 74 

 
 
 
 

 
 

 
Figure 49. Flume reservoir and gate, Fluid Mechanics Institute, Universidad Central 

de Venezuela 
 

Water-clay mixtures were used in all the experiments, with volume sediment 

concentration from 18.0 % to 26.5 %. For preparation of the mixtures, kaolinite clay with 

specific unit weight of 2.77 was used. Density of mixtures was measured in the 

laboratory and rheological parameters µ and τy were determined using equations (9) and 

(10) in which α1, β1, α2 and β2 are α1 = 0.621x10-3,  β1 = 17.3, α2 = 0.002 and β2 = 40.2.  

Rheological characteristics of experimental fluids are given in Table 2. 

 

Cv (%) ρ (Kg/m3) µ (Pa.s) τy (Pa) 
18.5 1330 0.0152 3.40 

23.5 1410 0.0362 25.34 
26.5 1460 0.0608 84.64 

 

Table 2. Rheological properties of experimental fluids 
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4.3.1 Experiment 1 
 

In this experiment the flow of a mixture of 23.5% volume concentration was 

studied. The flume bottom slope was set to 4o and the initial volume released was 6.3 L. 

For t = 3 s the wave practically stopped flowing as shown in Figure 50. 

The propagation of the wave was recorded for different times t to construct the 

spreading diagram showed in Figure 51. The canal was reticulated every cm to facilitate 

readings, Figure 52. 

As shown in Figure 51, velocity of the front wave is practically constant up to the 

vicinity of the stopping point. The frontal wave velocity decreases progressively until the 

fluid stops. 

 
 
Figure 50. Experiment 1, fluid stops flowing over the sloping channel 
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Figure 51 compares the experimental data with the numerical solution using 

Bingham rheological formulation. Numerically, the condition of stopping the fluid is not 

easy to achieve; however, it is possible to appreciate how the maximum velocity in the 

fluid decreases with time and it becomes very close to zero about the time the fluid must 

stop. This fact shows that velocity criteria could be used numerically to stop the fluid.  
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Figure 51. Experiment 1, spreading relation 
 
 

 
Figure 52. Experiment 1, measuring wave front position 
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t = 3.0 s
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t = 3.2 s

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

X (m)

H (m(

U (m/s(

 
(b) 
 

t = 3.4 s
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(c) 
 
Figure 53. Experiment 1, free-surface longitudinal profiles and Umax value at time t 
 
 

Figures 53(a) to 53(c) show free-surface longitudinal profiles for time 3 s and 

above. The figures also show how the maximum velocity value decreases progressively 
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to a value very close to zero, time when it is possible to consider the fluid wave should 

stop. 

The final profile obtained numerically, is compared with the final profile 

measured at the laboratory flume in the following figure.  This very good result was 

obtained implementing the wet-dry algorithm mentioned in previous chapter, using 

Bingham rheological formulation and using mesh refinement. 

 

 

 

 
Final profile 
 
 
 
 
 
 
 
Figure 54. Experiment 1, final free-surface longitudinal profile 
 
 

Figure 55 compares spreading relation and maximum velocity for old mesh 

(element size 3 cm) with the corresponding results using the new mesh (element size 1 

cm). Results show great improvement when mesh is refined. The resulting spreading 

relation after refinement is more accurate than the one resulting with the old mesh. 
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Figure 55. Experiment 1, spreading relation comparison, old mesh and new mesh 
 
 
 

The following two figures compare longitudinal profiles and maximum velocity 

for the two different mesh sizes. As it is depicted in the Figures 56 (a) and 56 (b), the 

mesh refinement contributes to improve substantially the solution in the advancing front. 

The wet-dry algorithm implemented eliminates dry elements from the calculation, then 

there is a well defined interface between dry and wet elements.  

However, there is a numerical tendency to form a front tail that is not real. This 

front tail can be reduced decreasing the element size as well as reducing the minimum 

height parameter, which makes the distinction between dry and wet elements. Best results 

were found with a minimum height or height tolerance equal to 0.01 times the average 

height of the fluid. 
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t = 3.4 s
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Figure 56. Experiment 1, final free-surface longitudinal profiles and Umax. (a) mesh size 0.03 m (b) mesh size 0.01 m 
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4.3.2 Experiment 2 
 

 The objective of this test was to study the spreading of the fluid in the fan, to 

verify the 2D fluid-phase formulation. In the lab, by time t = 1.5 s the front wave of the 

fluid had reached the end of the glass channel and it was entering into the horizontal 

platform. By time t = 2.4 s the mud stopped flowing forward, but continued flowing to 

the sides as shown in Figure 57. 

 

 

(a)        (b) 

Figure 57.  Experiment 2, (a) fluid at time 2.4 s. (b) fluid at time 8.4 s. 
 
 
 

In this case, the flume bottom slope is 9.54o and the initial volume released was 

7.7 L. Figure 58 shows the spreading relation in the longitudinal direction for this 

experiment. The velocity of the front wave in the numerical solution is slower than the 

experimental velocity, however, the maximum velocity plot shows that by time t = 2.44 s 

the mud do not move forward anymore, as it was in the actual experiment. 
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Figure 58. Experiment 2, spreading relation 
 
 
 

Figure 59 shows how by the time t=7.25 s velocities along the longitudinal axis 

are very close to zero. Final free-surface profiles are compared in Figure 60 at that time. 

Numerical solution is in very good agreement with experimental results. 
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Figure 59. Experiment 2, free-surface longitudinal profile and Umax, Vmax values at 
time t = 7.25 s 
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Figure 60. Experiment 2, free-surface longitudinal profiles at time t=7.25 s 
 
 
 

Figure 61 shows a contour level map elaborated with height measurements done 

at the lab. It can be seen that maximum height (2.5 cm) occurs in the center just at the 

discharge zone of the channel. Figure 62 shows contour levels obtained numerically, in 

this case units are in meters. Comparing the two figures it can be appreciated that 

numerical results are very close to the experimental data.  
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Figure 61. Experiment 2, experimental data, contour levels 
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Figure 62. Experiment 2, numerical results, contour levels. Scales in m. 

 
 

The following figure shows the contour level maps overlapped. It could be 

noticed the difficulty of modeling the front of the mud wave.  

 

 

Figure 63. Experiment 2, comparison of experimental and numerical contour levels 
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Even though the wet-dry algorithm has clearly improved the front modeling, it is 

still a numerical diffusion problem that do not allow to have a fully representation of the 

front, as it is in Figure 64. This problem causes also difficulties for stopping the flow 

completely. 

 
 
 

 
 
Figure 64. Experiment 2, wave front 
 
 
 
4.3.3 Experiment 3 
 

In this experiment the same mixture used in experiments 1 and 2 is utilized. In 

this case, the flume bottom slope is 9.54o and the initial volume released was 6.4 L. The 

objective of this test was to study the spreading of the fluid in the fan and to study 

particle movement into the fluid. 

14 particles, D = 2.5 cm and ρp = 2500 Kg/m3, were placed over a small piece of 

wood inside the mud reservoir, just behind the gate as shown in Figure 65(a). By the time 

the fluid was released, the piece of wood was quickly removed, so the particles could 

start their movement along the channel with the fluid.   
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Particles depicted clearly the velocity profile shape at early times during the 

experiment; however, as the flow progressed down-stream, particles tended to move to 

the channel sides. The following plots shown the sequence of the events obtained 

numerically.  

 

 

 

 

 

 

                                                                                                 
 
 
(a)   (b) 
 

Figure 65. Experiment 3, (a) initial position of particles, (b) final position of particles 
 
 

Figure 66(a) shows the particles resembling the velocity parabolic distribution 

across the channel; then, the following figures shows how particles become disorganized. 

It can be noticed how particles in the center tend to move forward to reach the front of the 

wave, particles in the second row displace particles in the first row to the sides and these 

are then left behind because of the fluid velocity gradient. By the time the flow reached 

the fan, particles moved to the sides of the flow as it is shown in Figure 65(b).  
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Figure 66. Experiment 3, (a) t = 0.5 s, (b) t = 1.6 s, (c) t = 2.4 s, (d) = 6.5 s 
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At this point it is important to mention the effect of the boundary condition for 

velocity on the sidewalls. Strictly speaking this condition should be a no-slip condition so 

0=u at the wall. However, in reality, the velocity gradient near the wall is large and the 

velocity near a wall quickly becomes non-zero. Therefore, in practical application of the 

model the no slip condition formulated in finite elements becomes very restrictive, 

basically causing unrealistic delay of the flow. Up to this simulation, the no-slip 

condition has been replaced by a weaker condition, impermeability 0=Nu , and tangential 

velocity )(9.0 tuuT


⋅= . If a total slip condition is imposed, then no velocity profile 

across the channel would be resembled, that is the reason of using a boundary condition 

coefficient BCcoef = 0.9. This parameter was calibrated when performing simulations of 

previous experiments. When working with particles this parameter is also very important, 

in this case it could be seen that there exist some delay on the particles positioned close to 

the walls; however, higher values for this coefficient would cause non real results, as 

shown in Figure 67, when a fully slip condition is imposed )(0.1 tuuT


⋅= .  

 

 
 
Figure 67. Experiment 3, final position of particles, numerical sol. 100% slip 

boundary condition 
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  Figure 68 compares final position of particles obtained numerically, using the 

constant equal to 0.9, with final position of particles measured at the lab.  
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Figure 68. Experiment 3, final position of particles, (a) numerical sol. 75% slip 

boundary condition, (b) experimental data 
 

 

The plots exposed in Figure 70, show velocity transversal distribution and flow 

depth for a section A situated at 2.08 m from the canal up-stream end, see Figure 69 as 

reference. The plots were obtained numerically for different times t. 
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Figure 69. Experiment 3, final flow profile over the channel, section A located at 
x=2.08 
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Figure 70. Experiment 3, velocity distribution and flow depth for section A located at x=2.08 m 
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The figures show how velocity u distribution is parabolic and decreases with time, 

from the sides of the flow to the centerline. On the other hand, transversal velocity v 

decreases with time from the centerline to the sides and distribution is anti-symmetrical, 

as can be expected. The last figure shows the final depth of the fluid in that section with 

velocities very close to zero. 

 

 
4.3.4 Experiment 4 
 

In this experiment a mixture of concentration 26.5% was studied. In this case, the 

flume bottom slope was increased to 10.7 o and the initial volume released was 11.1 L.  

The objective of this test was to study the spreading of the fluid and study particle 

movement into a mixture with higher clay concentration. Figures 71 (a) and (b) show 

pictures of the experiment when the flow reaches the fan. 

 

         

Figure 71. Experiment 4, (a) t = 20 s, (b) t = 40 s 
 
 

In this experiment, the velocity of the front wave is basically constant until 

reaching 1.6 m, from this point the celerity of the wave decreases abruptly, taking about 

40 s for the fluid to stop completely. 
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Figure 72 shows the spreading relation in the longitudinal direction for this 

experiment. This relation is compared with numerical results obtained using Bingham 

rheological model and using Cross rheological model. 
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Figure 72. Experiment 4, spreading relation 

 

The figure resumes what can be appreciated during all the simulations. Both 

rheological formulations produce very similar results, they are not totally capable of 

resembling the spreading of the flow; however, they show a final fluid extend, when 

velocities in the fluid become very close to zero, very similar to the real one. Bingham 

formulation shows to be more effective in decreasing the velocities along the fluid to 

zero.  Figure 73 shows the final profile obtained at time t=10 s using Cross formulation. 

Results show that the final profile using the velocity criteria is very similar to the one 

measure in the lab. 

In this experiment 14 particles were placed on the fluid in a similar manner that 

was done in the previous experiment. In this case, particles depicted the velocity profile 

shape at early times of the experiment; and as the flow progress down-stream, particles 
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tended to keep the parabolic distribution. Particles close to the walls were kept some 

behind. 

 
 

Figure 73. Experiment 4, final fluid profile, numerical and experimental results 
 
 
 
The following plots shown the results obtained numerically. Figure 74(a) shows 

the particles resembling the velocity parabolic distribution across the channel; then, the 

following figures show how particles progress with a similar distribution along the 

channel. This fact can be appreciated in pictures shown in Figure 71. 
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(a) 

    (b) 

    (c) 
 

    (d) 
 

Figure 74. Experiment 4, (a) t = 0.5 s, (b) t = 1.5 s, (c) t = 3.2 s, (d) = 9.0 s 
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Figure 75 compares final position of particles obtained numerically, using 75% of 

slip boundary condition, with final position of particles measured at the lab. It can be 

observed that particles on the sides are left behind in both cases, more openly in the 

experimental case. 
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Figure 75. Experiment 4, final position of particles, (a) experimental data, (b) 
numerical sol. 75% slip boundary condition 
 

 
 
4.3.5 Experiment 5 
 

In this experiment the mixture of concentration 23.5% was studied. The flume 

bottom slope was set to 10.7 o and the initial volume released was 6.8 L.  The objective of 

this test was to study the movement of several particles with different sizes into the fluid. 

In order to do that, 20 particles, D = 2.5 cm and ρp = 2500 Kg/m3, and 50 smaller 

particles with D = 1.6 cm and ρp = 2500 Kg/m3, were place randomly into the fluid 

reservoir before the fluid was released. 

Figures 76 (a) and (b) shows the flow of mud and solid particles at two different 

stages of the experiment. Particles are dispersed along the fluid with a little higher 

concentration at the front. Some small particles remained at the channel upper part while 
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larger particles moved downwards; however, as it is depicted in figure 77, there was no 

accumulation of particles in the fluid front, as it could be expected. 

 

 

Figure 76. Experiment 5, (a) flow frontal wave, (b) flow of mud and solid particles 
 
 
 

 

Figure 77. Experiment 5, final extend of the flow and particle positions 
 

 

The following figures shown the results obtained numerically for experiment 5. 

The same mixture and amount of fluid was used in the simulation, the same amount and 
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type of particles too, however; the same initial position of particles was not possible to 

resemble exactly. The particles were placed randomly in the fluid before the simulation 

started, as we did in the lab. Figures 78(a) to 78(d) show the particles as they move 

downstream with the fluid. Figures show some important facts: 

 Particles do not overlap. 

 Particles do not collide in such a way they can be placed out of the fluid. 

 Large particles reach the channel down-stream, some of them never 

entered into the fan. 

 Some small particles remained in the channel, stuck in the fluid. 

 Some large particles formed a structure oriented to the left side of the fan 

similar to boulder deposits frequently found in debris flow events (USGS 

Report 01-0144). 
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Figure 78. Experiment 5, top view, (a) t = 2.0 s, (b) t = 2.75 s, (c) t = 3.4 s, (d) = 5.0 s 
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Figure 79. Experiment 5, side view, (a) t = 2.0 s, (b) t = 2.75 s, (c) t = 3.4 s, (d) = 5.0 s 
 
 

Figures 79(a) to 79(d) shows the simulation from a side view.  
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4.3.6 Sensitivity Analysis 
 

The main parameters of the numerical model that must be calibrated for an 

specific physical problem are: friction coefficient µf, normal stiffness KN, tangential 

stiffness KT, restitution coefficient E, boundary condition coefficient BCcoef, Manning’s 

roughness coefficient N, the empirical coefficients α1 and β1, which define the 

exponential relationship between viscosity of the fluid and volume sediment 

concentration, and the empirical coefficients α2 and β2, which define the exponential 

relationship between the fluid yield strength and volume sediment concentration. In order 

to assess the relative importance of each variable, an expression used by McCuen and 

Snyder (1986) was chosen for the sensitivity analysis. The sensitivity coefficient is the 

ratio of the relative output change and the relative input change. If for any input 

parameter whose value is I1, an output O1 is produced, and for the input parameter I2 the 

output is O2, the sensitivity coefficient is: 
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The normalizing values O12 and I12 are the average of outputs O1 and O2, and the 

average of inputs I1 and I2, respectively. The use of this sensitivity index has the 

disadvantage of not taking into account the interaction between variables but, as these 

authors suggested, it is a simple a preliminary way to examine the behavior of the model 

variables. 
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Model sensitivity was estimated in one of the experiments presented previously, 

experiment 3, which allows the study of the fluid and particle dynamics. The parameters 

of the model are gathered in Table 3 and Table 4. In Table 3, the distance traveled by one 

of the particles along the flume is the output variable, specifically one particle situated 

initially at the front row in the middle of the channel. In Table 4, the maximum extend of 

the fluid measured along x-direction is the output variable.  

Table 3 shows how sensitive is the model with respect to the parameters included 

in the solid phase formulation, which is the reason why the total distance traveled by a 

specific particle was chosen as the output variable. This table includes also the BC factor , 

since the particle dynamics is affected substantially by this parameter. Results in this 

table show that the model is not very sensitive to the normal stiffness KN, tangential 

stiffness KT, and restitution coefficient E. There is some sensitivity to the variation of the 

friction coefficient µf, specifically in the particle movement along the horizontal fan. 

Figure 80 shows how the movement of the particle along the channel (first 2.00 m) is not 

affected by the friction coefficient, but it is affected once the particle reaches the 

horizontal fan. Less friction coefficient allows the particle to travel a longer distance. 

 Results in Table 3 also show that the model is very sensitive to the BC factor 

parameter, this factor is related with the fluid boundary condition at the channel walls, 

and as it was explained previously, this condition defines the velocity profile across the 

channel, reason why is very influential in the particle dynamics. 

Table 4 shows how sensitive is the model with respect to the parameters included 

in the fluid phase formulation; then, the maximum extend of the fluid measured along x-

direction was chosen as the output variable.  
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Parameter I0 I1 I2 O0 O1 O2 S1 S2 IS1/SminI IS2/SminI 

µf 0.1 0.01 0.2 2.34 2.54 2.28 -0.0501 -0.0390 7.83 6.09 

KN 100000 50000 200000 2.34 2.34 2.35 0.0000 0.0064 0.00 1.00 

KT 10000 5000 50000 2.34 2.35 2.34 -0.0064 0.0000 1.00 0.00 

E 0.8 0.4 1 2.34 2.31 2.35 0.0194 0.0192 3.03 3.00 

BC factor 0.9 0.5 1 2.34 2.27 2.45 0.0531 0.4363 8.31 68.21 
 
Table 3. Values of the model parameters considered for the model sensitivity analysis with the corresponding 

sensitivity coefficient S and the ratio IS/SminI where Smin = 0.0064 
 
 

Parameter I0 I1 I2 O0 O1 O2 S1 S2 IS1/SminI IS2/SminI 

BC factor 0.9 0.5 1 2.51 2.49 2.70 0.0140 0.6929 1.17 57.74 

α1 6.21E-04 3.10E-04 1.24E-03 2.51 2.70 2.49 -0.1092 -0.0120 9.10 1.00 

β1 17.3 14.3 20.3 2.51 2.52 2.48 -0.0209 -0.0754 1.75 6.28 

α2 0.002 0.001 0.004 2.51 2.70 2.25 -0.1094 -0.1639 9.12 13.66 

β2 40.2 34.2 46.2 2.51 2.70 1.30 -0.4522 -4.5732 37.68 381.10 

N 0.02 0.01 0.04 2.51 2.70 2.45 -0.1094 -0.0363 9.12 3.02 
 
Table 4. Values of the model parameters considered for the model sensitivity analysis with the corresponding 

sensitivity coefficient S and the ratio IS/SminI where Smin = 0.0120 
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Figure 80.  Effect of the friction coefficient in particle movement 

 

Results show that the model is very sensitive to the empirical coefficients α2 and 

β2, which define the exponential relationship between the fluid yield strength and volume 

sediment concentration. These are key parameters for the calibration process, since they 

are empirical and correspond to the mixture that compound the fluid. The model shows 

less sensitivity to the Manning’s coefficient, and the empirical coefficients α1 and β1, 

which define the exponential relationship between viscosity of the fluid and volume 

sediment concentration. The BC factor parameter is also very significant in this case, 

which confirms the high sensitivity of the model with respect to this variable. 

Finally, it is important to mention that all the parameters listed as initial value in 

the tables are the parameters that were used for the simulation of all the experiments. 
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5 MODEL PRELIMINARY APPLICATION 
 
5.1 Venezuela’s 1999 Alluvial Fan Debris Flooding Event 
 

Heavy rainfall from the storm of December 14 to16, 1999, triggered thousands of 

shallow landslides on steep slopes of the Cerro El Avila, north of Caracas, Venezuela, 

and caused flooding and massive debris flows in the channels of major drainages that 

severely damaged coastal communities along the Caribbean Sea.  The largest fan on this 

area is that of San Julián River at Caraballeda, shown in Figure 81. 

 

Figure 81. Caraballeda Alluvial Fan, Vargas, Venezuela 
 
 

The topography of this region of coastal Venezuela is extremely steep and rough; 

highest elevations range between 6,000 and 7,000 feet and are only a mile inland from 

the coast. The streams and rivers drain steep canyons, emerging on to alluvial fans before 

emptying into the Caribbean Sea. The large fan of the San Julián River at Caraballeda 

was one of the most heavily damaged areas in the December 1999 event. The thickness of 

sediment deposition, maximum size of transported boulders, and size of inundated area 

were all notably larger in this drainage in comparison to the other close watersheds. 
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Figure 82. Watersheds situated along coastline, north of Caracas, Venezuela 
 

By December 1999, Caraballeda was one of the more intensively developed 

communities in the area, with many high-rise buildings and large individual multi-story 

houses. San Julian River was canalized on one reach of the fan with one concrete 

trapezoidal 25 m wide channel, Figure 83. During the storm, the peak volume of flow, 

probably during a debris-flow surge, exceeded the channel capacity, sediment and debris 

blocked two bridges over the channel, resulting in multiple stream avulsions and 

subsequent flows spreading boulders and debris throughout the area.   

The flow overcame the channel in several places, notably wherever sections or 

lineaments of the channel changed direction.  Pre-1951 topographic maps show that the 

main course of the San Julián River followed a more or less straight path across the 

western part of the fan. In the events of December 1999, one of the stream avulsions 

followed the pre-1951 course, as shown in Figure 84. 
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Figure 83. Aerial view of San Julian river, March 1999 
 

 

Figure 84. Aerial view of San Julian river, December 1999 
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Outside of the main channel, flows inundated the second and third stories of 

several apartment buildings, causing their partial collapse, and also burying or completely 

destroying  many 2-story residential structures. Further down the fan, flows followed the 

paths of streets and openings between houses; the depth of sediment deposits diminished, 

but still exceeded one meter in several locations. 

 

 

Figure 85. Buildings and houses partially buried by sediment in Caraballeda, 
December 1999   
 
 
Following the December 1999 events, the US Geological Survey studied the 

affected area (Wieczorek et. al 2001), measuring slope, deposit thickness, and boulder 

size from the fan apex to the distal end of the fan near the coastline. Data was used to 

map the distribution and thickness of deposits and to draw contours of maximum boulder 

size, as shown in Figures 86 and 87.  
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Figure 86. Contours of maximum transported boulder size on the Caraballeda Fan, 
Venezuela. From USGS , 2002 

 

According to USGS measurements and observations, see Appendix C, boulder 

size ranged from 1.0 to 6.0 m of nominal diameter, largest boulders were found in the 

avulsion zone, location where more accumulation of boulders was also observed.  

The thickest deposits were also in this zone,  at this location, the fan slopes ranged 

between 5 and 6 degrees, and the maximum thickness of deposits was 7 m. Deposits on 



 

 109 

slopes of 2 to 3 degrees, near the shoreline, were predominantly fine-grained and less 

than 1 m thick.  

 

 

Figure 87. Flooding deposit thickness on the Caraballeda Fan, Venezuela. From 
USGS , 2002 
 
 

5.2 Modeling procedure 
 

The following figure shows the topography data used to define the finite element 

mesh. This data was interpolated from the original cartographic information prior to the 

event (Garcia, 2008). 
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Figure 88. Topography Data Caraballeda Fan, Vargas, Venezuela. Legend indicates 

elevations in m. 
 
 

An uncertain aspect in simulating debris flows is the estimation of the 

hydrograph, since the inflow sediment concentration throughout the event must also be 

provided. For the San Julian debris flow event, the clear water hydrograph of generalized 

cumulative rainfall for a 500 year-return period was used as input in the fan apex (Garcia. 

The hydrograph shown in Figure 89 was modified, increasing the volume, by imposing 

an average volume sediment concentration. Figure 90 shows the volume sediment 

concentration distribution. For simplicity, it was assumed that the sediment volumetric 

concentration was constant and equal to the average value of 0.3. 
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Figure 89. Inflow hydrograph for a 500 year-return period. Garcia, 2008 
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Figure 90. Volumetric sediment concentration distribution. Garcia, 2008 
 
 
 

The final hydrograph used as input in the fan apex is shown in Figure 91. The plot 

illustrates the input flow rate during 10 hours (simulation time), from real time t = 10 h to 

real time t = 20 h and includes the volume sediment concentration.  
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Figure 91. Inflow hydrograph for a 500 year-return period, including concentration 
of solids equal to 0.3 

 

A second uncertain aspect of the simulation is the input rate of solid particles, or 

identically, boulders. It is assumed that during the simulation time a maximum of 1600 

boulders, with different sizes, will be included in the event. The rate of input will be 

variable for the different scenarios. This amount of boulders is chosen to have a 

manageable running time. 

The Finite Element mesh, with 22500 triangular elements, is shown in Figures 92 

and 93.  The element characteristic size is approximately 12 m in average. At the fan 

apex a fictitious channel was extended upstream, to locate particles and allow the fluid to 

entrain boulders before entering the fan area. 

A Manning coefficient equal to 0.065 is considered in the whole fan area in order 

to take into account the terrain irregularity. The same value was used by Garcia, 2008, 
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and was found a good estimate for the area. The empirical relationships (9) and (10) were 

selected for the calculation of fluid rheological properties, using the parameters for water-

clay mixtures. As a result of the volume sediment concentration, Cv = 0.3, ρ = 1531 

Kg/m3, µ = 0.11 Pa.s, τy = 90.3 Pa.  

Density for the particles (boulders) was ρ = 2600 Kg/m3, density of Gneiss 

boulders, type of boulders mostly found in the area by USGS. 

 

 
Figure 92. Finite Element Mesh, San Julian simulation 
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The coastline was assumed as a free boundary with the exception of two 

segments, A and B in Figure 92, where the major discharges to the sea took place. In 

these segments a constant depth equal to the water elevation, 2 m, was imposed. 

 

 
 
Figure 93. Finite Element Mesh zoomed at fan area 
 
 

5.3 Model results 
 

In this case of study 1600 particles are placed into the fan during the first three 

hours of simulation at a rate of 50 particles every 6 min. The input flow rate at the fan 

apex is given by the hydrograph in Figure 91. This amount of particles was selected to 

ensure a manageable running time. 

Figure 94 and 95 show the flooded area at time t = 1.8 h and time t = 2.2 h 

respectively, being 2.2 h the time corresponding with the peak discharge in Figure 91. 

Comparing these figures with the post-event aerial view shown in the background, it can 

be noted that the model acceptably reproduces the extent of the area affected by the 

debris flow. The simulation results show an inundation area some larger than the one 
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observed in 1999 events, when comparing with the post-aerial view in Figure 85. 

However, it must be taken into account that this simulation was done without modeling 

the concrete canal exact dimensions and surface properties, then more severe results 

could be expected. 

 

 

Figure 94. Flooded area at time t =1.8 h, Legend indicates flow depth in m. 
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It have been concluded in previous studies that even though the concrete canal 

was totally obtruded during the event, its presence was relevant during enough time to 

conduct the flood to the sea and decrease the inundation in the surrounding area.   

Not counting shoreline bays and the fictitious channel at the fan apex, the 

maximum flow depths take place in the avulsion zone, 5.5 m, as it can be read in Figure 

95. According to the USGS report, one of the largest thicknesses of the alluvial deposits 

was measured in this zone and it was in the order of 4 to 5 m.  

 

 
Figure 95. Flooded area at time t =2.2 h. Legend indicates flow depth in m. 
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Maximum fluid depth in the urban areas was between 2 and 3 m according to 

Garcia 2008, decreasing to 0.5 to 1 m in zones closer to the shoreline. Results in Figure 

95 are in this range. 

Figures 96 and 97 show the velocity field at time t = 1.8 h and t = 2.2 h 

respectively. 

 

Figure 96.  Velocity field at time t =1.8 h. Legend indicates velocity in m/s. 
 
 
. It can be seen that major velocities occurs in the fan apex, where the discharge of 

the river is simulated. Velocities decrease at the urban areas, ranging from 0.5 to 3 m/s at 
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1.8 h and from 1.0 to 6 m/s at 2.2 h, time of the hydrograph maximum value. Higher 

velocities develop along the concrete channel, reaching 8 m/s, and in the avulsion zone, 

reaching 10 m/s. The velocities calculated by the model are in good agreement with those 

estimated by USGS, which ranged from 1.3 to 13.6 m/s, see Appendix C. 

 
 

 
Figure 97. Velocity field at time t =2.2 h, Legend indicates velocity in m/s.  
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Figure 98 shows how solid particles, boulders, are transported by the flow along 

the main drainages at time t = 1.8 h. It is interesting to see how the largest boulders take 

the path of the concrete channel, while smaller boulders take the pre-1951 river 

alignment. According to the USGS report, the slope at zone 4, pre-1951 river orientation, 

was 4.0 degrees, while zone 3, concrete channel direction, was steeper, with a slope 

gradient of 5.5 to 6 degrees, then larger boulders were transported to this side. These 

values of mean nominal diameter and slope steepness reflect USGS observations that for 

the larger transported and deposited boulders there was a proportional relationship 

between boulder size and slope steepness. 

 

 
Figure 98.  Particle positions at time t =1.8 h, Legend indicates diameter in m. 
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Figure 99 shows boulder positions after 6 hours of simulation in comparison 

with contours of maximum boulder size given by USGS. By this time in the simulation 

all boulders are already deposited.  Smaller boulders continue taking the pre-1951 river 

alignment, some of them reached the shoreline or entered into the sea. Larger boulders 

were deposited in the avulsion zone or took right direction to the concrete channel. 

None of these large boulders reached the shoreline.  

According to USGS the largest boulders were found in the avulsion zone, within a 

thick matrix, evidence that strongly supports transport by debris flow. At other sites, the 

largest boulders were observed isolated along the concrete channel, fact that suggests that 

these boulders moved sliding along the bottom of the channel in a dilute fluid until 

deposition occurred (USGS Report 01-0144). There is no indication of big boulders close 

to the shoreline at this site of the fan. 

According to Takahashi, 1991, during the process of deposition, debris flows 

deposit the boulders in order from bigger to smaller as it proceeds downstream on alluvial 

fans. This process was better observed along the pre-1951 river direction and it was also 

replicated in the numerical simulation.  

Figure 99 (a) shows the data surveyed by USGS. USGS map show size of 

boulders contoured from measurements using 0.5 meter contours. USGS measured the 

size of several boulders deposited in the Caraballeda alluvial fan, recording the lengths of 

the major three axes for all boulders. In terms of nominal diameter, equal to the cubic 

root of the product of these dimensions, the mean nominal diameter of boulders deposited 

at different stations was tabulated and is given in Appendix C.  
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Figure 99. (a) Contours of maximum boulder size at the Caraballeda Fan. (b) Particle positions at time t =6.0 h, 

diameter (m)  
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Some of these stations are depicted in Figure 99 (a), for station S1 the mean 

nominal diameter was 1 m, while some larger boulders are deposited slightly further 

down the fan towards station S2, with 3.5 m nominal diameter. For comparison, boulders 

deposited at station S3 and S4 had mean nominal diameter of 3 m, and boulders deposited 

at station S5 had mean nominal diameter of 5 m. The final distribution of boulders 

obtained numerically shows similar results as it is depicted in the map illustrated in 

Figure 99 (b).   

This preliminary application illustrated the capability of the model to reasonably 

reproduce large scale events. The model showed to be effective in the simulation of a real 

debris flow event over irregular slopes; fluid variables, velocity and depth, and final 

deposition of particles where well calculated with this new numerical model. 
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6 CONCLUSIONS 
 

This thesis research describes the development of a quasi three-dimensional 

mathematical-numerical model to simulate stony debris flows, considering a continuum 

fluid phase and large sediment particles, such as boulders, as a non-continuum phase.   

The fluid phase governing equations are the well-known shallow water equations, 

where the stress terms account for the bottom friction using the Manning’s formula and 

the internal friction losses are implemented through a constitutive relation. Two different 

non-Newtonian constitutive relations are evaluated in this work, the Bingham rheological 

model and the Cross rheological model. 

The fluid phase equations are solved using the Finite Element Method and a four-

step, selective lumping, explicit time stepping scheme, that does not require simultaneous 

solution of the algebraic system of equations, usually required in implicit finite element 

methods.  

Both formulations, Bingham and Cross, provide very stable results, even in the 

range of very low shear rates. In the simulation of mud dam-break problems, Bingham 

formulation is better able to simulate the stopping stage of the fluid; however, Cross 

formulation is more accurate for early stages of the solution, where Bingham is not as 

accurate. 

The capability to simulate drying and wetting of the bed is crucial when solving 

mud dam-break problems. The implementation of a wet-dry algorithm improves 

noticeably the representation of the fluid frontal wave and numerical errors are 

considerably reduced when dry elements are eliminated from the Finite Element Method 

calculations. 



 

 124 

Variation of the selective lumping parameter also enhances the numerical solution 

in the advancing front; values between 0.85 and 0.95 produce stable results, been 0.925 

the value that provided more accurate results. 

In practical applications, the no-slip boundary condition formulated in finite 

elements becomes very restrictive, and may cause unrealistic delay of the flow. However, 

slip boundary condition may cause other serious errors, as in the simulation of channel 

flows. If a total slip condition is imposed at the channel walls, then no velocity profile 

can be reproduced across the channel. The no–slip boundary condition can be replaced by 

a weaker condition, such as total impermeability and partial tangential velocity. The 

relationship )(9.0 tuuT


⋅=  produced very accurate results in the simulation of the dam- 

break experiments performed in this work. 

The solid phase governing equations are based on the principles of the Discrete 

Element Method. Particles’ trajectories are tracked using Newton’s second law and the 

forces considered are gravity, buoyancy, fluid drag force and collision forces. The 

acceleration of the particle is computed from the particle governing equation and it is 

then numerically integrated to find velocity and displacement.  

To ensure stability and accuracy of the numerical integration, it is important to 

guarantee a smaller time step than the minimum critical time, or time of impact, defined 

in equation (26). It was found during this work that a minimum of three time steps per 

time of impact are required to ensure a stable and accurate solution. 

The simulation of lab experiments served for the verification of the numerical 

model and demonstrated the capability of the model of simulating the motion of discrete 
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particles in the fluid flow, showing that particles do not overlap and replicating 

realistically particle-particle and wall-particle collisions. 

The sensitivity analysis performed showed that the model is very sensitive to the 

empirical coefficients α2 and β2, which define the exponential relationship between the 

fluid yield strength and volume sediment concentration. The BC factor parameter resulted 

also very significant; this factor defines the tangential velocity boundary condition at the 

walls. The model showed less sensitivity to the Manning’s coefficient N, and the 

empirical coefficients α1 and β1, which define the exponential relationship between 

viscosity of the fluid and volume sediment concentration. The model showed very few 

sensitivity to the parameters related with the solid phase formulation; the normal stiffness 

KN, tangential stiffness KT, and restitution coefficient E. There was some sensitivity to the 

variation of the friction coefficient µf, specifically in the particle movement along the 

horizontal fan. 

The final application to the debris flow events that occurred in Northern 

Venezuela in1999 illustrated the capability of the model to reasonably reproduce large 

scale events. Results showed that the model reasonably simulates the extent of the area 

affected by the debris flow and demonstrated the model capability of replicating the main 

boulder accumulation areas, including size distribution, surveyed by the USGS. 
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7 RECOMMENDATIONS 
  

The numerical model developed in this work for the simulation of debris flows is 

based on the well-known shallow water equations. This equations are derived assuming 

that extend of the fluid is much larger than its depth and assuming that slopes are 

relatively small, less than 10o. This numerical model must be used under these conditions. 

In this work, the rotation of the particles is not considered. The effect of particle 

rotation and the corresponding lift produced could be modeled by solving for the angular 

velocity of the particles in the angular equation of motion, including the torque exerted 

on them by the fluid and by the contact with other particles. It is recommended to include 

this effect if dynamics of particles would be study over the area of deposition, 

specifically when particles leave the fluid and continue moving and interacting with other 

particles. 

This numerical model considers only spherical particles, it is recommended to 

extend the program to work with general shapes. Theory of clusters formed with 

spherical particles could be use, as described in Mustoe G. W. and M. Miyata, 2001. 

Finally it is recommended to improve subroutines for detecting particle contacts 

and for finding the element where the particle is located, this will decrease considerably 

the solution computational time. 
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APPENDICES 
 

APPENDIX A 
 
Derivation of fluid governing equations 
Sample volume dxdydz: 
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Applying Leibnitz rule and setting bottom velocities equal to zero gives 
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Substituting free surface boundary condition: 
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ends to 
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Depth integration: 
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Applying Leibnitz rule and setting surface pressure and stresses equal to zero gives 
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Substituting free surface boundary condition: 
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and neglecting internal stresses xxτ and xyτ , so xzxz ττ =)0( represents the stresses into the 
fluid and in the bottom, gives: 
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Doing some math work it is possible to rewrite the equation as 
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where  Sfx is  the depth integrated stress term that depend on the rheological formulation 
used to model the slurry. 
 
3.  Stress Term 
Using the quadratic model postulated by O’Brien and Julien (1985)  
 

2γζγµττ  ++= yxz  

 
The first two terms are referred to as the Bingham shear stresses and represent the 
internal resistance stresses of a Bingham fluid. The last term represents the sum of the 
dispersive and turbulent shear stresses, which depend on the square of the shear rate. 
When the shear stress relationship is depth integrated can be rewritten in the following 
slope form: 
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Now, assuming a vertical parabolic distribution for velocity u: 
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For the quadratic term O’Brien and Julien (1985) suggest the use of Manning formula. 
The Manning formula is an empirical formula for open channel flow, or flow driven by 
gravity. It was developed by the Irish engineer Robert Manning. The Manning formula 
states: 
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where V is the cross-sectional average velocity (m/s), N is the Manning coefficient of 
roughness, Rh is the hydraulic radius (m), and S is the energy gradient (m/m). 
The hydraulic radius is defined as the area of the cross section of the channel divided by 
the length of the wetted perimeter; for example, for a rectangular channel of width b and 
depth H,  
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When b >>H,  HRh ≈  
 
Then, Manning formula can be rewritten to express the energy gradient as: 
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The Manning coefficient of roughness N, is an empirically derived coefficient, which is 
dependent on many factors, including bottom surface roughness and sinuosity. Values 
typically range between 0.02 for smooth and straight rivers, to 0.075 for sinuous rivers 
and creeks with excess debris on the river bottom or river banks. 
Finally, for the quadratic rheological model of O’Brien and Julien, the depth integrated 
stress term is  
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When the quadratic model of O’Brian and Julien is combined with the Cross formulation,  
 

2γζγµτ  += effxz  

 
and the depth integrated stress term results 
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APPENDIX  B 
 

 

 

 

 

 

 

 
Equations of motion are reduced to the following form 
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Where ρ is fluid density, g is acceleration of gravity, p is pressure and (u,v) are 

the flow velocity components in (x,y) directions respectively. The boundary conditions 
are: 

 
 

hyatp === 0,0 τ                                               
 
Then, since pressure in the mudflow is hydrostatic and given by: 
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Now consider the two layer-model shown in figure 2: The flow is divided into a 

plug layer, with uniform velocity Up and depth hp, and a shear layer with varying velocity 
u and depth hs. For the case of steady, uniform flow the velocity distribution is given by 
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                                                                     Figure 2 
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and the flow rate per unit width is 
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Assuming that this is also valid for non-uniform boundary layer flows without 

committing serious errors (with Up changing with x and time t), the following depth-
integrated momentum and continuity equations are obtained taking into account the 
surface boundary condition 
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Momentum balance in the shear layer: 
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Momentum balance in the plug layer: 
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These three equations could be solve numerically to look for the unknowns h, Up 

and hs; however, studying the relative magnitudes of the terms in these equations it is 
possible to derive first-order solutions for the outer and inner regions of the flow. 

 
OUTER SOLUTION 

The relative magnitudes of the terms in the equations above are evaluated by 
introducing a number of scales as follows: 
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In which l = length scale in x, ho = length scale in y,  Fr = Froude number, ε << 1, 

U0 = velocity scale given by 
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and  hy = yield depth defined by 
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Introducing the scales into the governing equations yields to the dimensionless 

form of the governing equations, when considering ε / sinθ << 1 these equations reduce 
to the kinematic-wave approximations given by: 
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Substituting q* and using the chain rule, yields two ordinary differential 
equations, such that 

 

0
*

*
=

∂

∂

t

h   

 
along characteristic curves 
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in the (x*,t*) plane. 
 
To see the solution of a flow from a source of finite size, as an example, a dam 

break of mud-slide problem with initial triangular shape on a slope is considered. 
 

 
 
If the length scales are LlandHh ==0 , the initial conditions will be: 
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Here, L is the initial length of the soil mass; and H is the maximum depth of the 
soil mass. Integrating the governing equations above with the help of these boundary 
conditions gives: 
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A relation that holds in the (x*, t*) plane only and allows to solve for the depth of 
the fluid h* at any time t* and location x*. Since it is a nonlinear relation, it could be 
solved by using a numerical procedure as Newton-Raphson. 

 
The shock location is determined invoking mass conservation, since it is assumed 

that the mass of fluid remains constant with time. Then 
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Then xf* yields the time at which the flow depth just upstream of the shock is hf*, 

such that 
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The above solution is the first order outer approximation. This solution is valid 

everywhere (red solution, figure 3), except near the shock, where the boundary layer 

assumptions are violated, i.e., *

*

x
h

∂
∂ is not small anymore. An inner solution that is valid 

near the shock can be found by using different variables to rescale the governing 
equations. 
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INNER SOLUTION 
Let’s now introduce the following inner variables to rescale the governing 

equations: 
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Substituting these scales into the continuity equation and taking the limit 0→ε , 

integrating over the depth, and taking into account that hi* vanishes at the leading edge 
for any time t, yields to  
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which shows that velocities near the shock change only with time. Then, in a 

similar way momentum equations yield to 
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Then, it is possible to derive a differential equation for the free surface profile 

near the shock as 
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which matches the outer solution correctly since **

fi hh →  as −∞→*ξ . This 
equation can be easily solve using some numerical method as Runge-Kutta; however, 
since the right hand side is independent on *ξ , the location of the profile is unknown. 
The right place will be given under the condition of mass conservation given by 
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where δ* is defined as the distance from xf  to the leading edge of the shock. 
The outer and inner solutions in the above can be expressed in dimensional forms 

with the help of the scales introduced. Thus, the final solution will be given by a 
composite solution given by 
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APPENDIX C 
 
The following tables include measurements of debris flow, flood deposits and boulder 
size values done by USGS in 2001. USGS Report 01-0144. 
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