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ABSTRACT OF THE DISSERTATION

EULERIAN-LAGRANGIAN TWO PHASE DEBRIS FLOW MODEL

by
Cora E. Martinez Franklin
Florida International University, 2009
Miami, Florida

Professor Fernando Miralles-Wilhelm, Major Professor

The main objective of this work is to develop a quasi three-dimensional numerical
model to simulate stony debris flows, considering a continuum fluid phase, composed by
water and fine sediments, and a non-continuum phase including large particles, such as
pebbles and boulders. Large particles are treated in a Lagrangian frame of reference
using the Discrete Element Method, the fluid phase is based on the Eulerian approach,
using the Finite Element Method to solve the depth-averaged Navier—Stokes equations in
two horizontal dimensions. The particle’s equations of motion are in three dimensions.
The model simulates particle-particle collisions and wall-particle collisions, taking into
account that particles are immersed in a fluid. Bingham and Cross rheological models are
used for the continuum phase. Both formulations provide very stable results, even in the
range of very low shear rates. Bingham formulation is better able to simulate the stopping
stage of the fluid when applied shear stresses are low. Results of numerical simulations
have been compared with data from laboratory experiments on a flume-fan prototype.
Results show that the model is capable of simulating the motion of big particles moving

in the fluid flow, handling dense particulate flows and avoiding overlap among particles.
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An application to simulate debris flow events that occurred in Northern Venezuela in
1999 shows that the model could replicate the main boulder accumulation areas that were
surveyed by the USGS. Uniqueness of this research is the integration of mud flow and
stony debris movement in a single modeling tool that can be used for planning and

management of debris flow prone areas.
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1 INTRODUCTION

1.1 Background

Debris flow is a frequent phenomenon in mountainous regions. It occurs when
masses of poorly sorted sediments, rocks and fine material, agitated and mixed with
water, surge down slopes in response to water flow and gravitational attraction. Modeling
debris flows has gained increasing interest in recent years, due to the potential damage
that these flows can generate, particularly in urbanized alluvial fans. However,
hydrodynamic modeling of debris flow surges is much more challenging than that of
water flows, mainly due to the multi-phase character of the flow, which includes not only
water, but also a wide range of interacting solid particles, that goes from very fine
sediments such as silt and clay, to large particles such as boulders; timber and other
debris (see Figures 1 to 6). Many field observations attest to the heterogeneity of debris
flows (Pierson 1986, Iverson 1997b).

As described by Pierson (1986), a typical surge of debris flow has a steep front or
“head” with the densest slurry, the highest concentration of boulders and the greatest

depth. This is followed by a progressively more dilute and shallower tail (Figure 1).

FLOW DIRECTION =P

COARSE PARTICLES IN SUSPEMSION

P N BOULDERY
- ™ FROMT
TAIL e h HEAD
B e N e T \\ — f'lr

Figure 1. Schematic representation of a heterogeneous debris flow surge



In the dynamics of debris flow, both solid and fluid forces greatly influence the
motion of the fluid-sediment mixture. This interaction of solid and fluid forces
distinguishes debris flows from other similar environmental events, such as rock
avalanches or water flows, where only solid grain forces or fluid forces dominate the
physics, respectively. Interaction of solid and fluid forces not only distinguishes debris
flows physically but also gives them an unique destructive power. Like avalanches of
solids, debris flows can occur with little warning as a consequence of slope failure and
can exert great impulsive impact loads on objects they encounter (Figures 2 and 3). Like
water floods, debris flows are fluid enough to travel long distances on modest slopes and
to inundate vast areas (Figure 4). Large debris flows can exceed 10° m® in volume and
release more than 10'® J of potential energy, but even commonplace flows of 10° m® can
denude vegetation, clog drainage ways, damage structures, and endanger humans

(Iverson 1997b).

Figure 2. Building destroyed by debris flow; Vargas, Venezuela; December 1999
(Foto R. Garcia, 2000)



e --..:: -

Figure 3. Debris flow deposits around a building, Vargas, Venezuela; December

1999 (Foto R. Garcia, 2000)(Foto R. Garcia, 2000)

To cite particularly catastrophic example, in December 1999, the northern coastal
region of Venezuela suffered numerous debris flows, which were triggered by excess
rainfall (close to 1000 mm in 3 days).The sediment volume mobilized was estimated in
more than 2 x10” m® (Garcia and Lopez 2005), and was enough to inundate coastal
communities, to generate severe property destructions, form a new coast line and cause

close to 10000 deaths (Figures 2 to 6).

Figure 4. Buildings and houses partially buried by sediment in Caraballeda,
Vargas, Venezuela; December 1999 (Foto R. Garcia, 2000)



Figure 5. Aerial view of Carmen de Uria alluvial fan, Vargas, Venezuela;
December 1999 (Foto R. Garcia, 2000)

Figure 6. Front view of Carmen de Uria alluvial fan, Vargas, Venezuela; December
1999 (Foto R. Garcia, 2000)



Similar events happen frequently world wide, specially in the cities developed on
steep alluvial fans.

Since debris flows are very dangerous natural hazards that affect humans and
properties, the phenomenon has attracted the attention of scientists and engineers in
recent years. Reviews presented by Coussot and Meunier (1996), and Iverson (1997b),
exhaustively describe the physical aspects of debris flow motion and clearly divide
previous debris flow research into two distinct categories. The first, based upon the
pioneering work of Johnson (1965), assumes that debris flow behaves as a viscoplastic
continuum. This model describes a single-phase material that remains rigid unless
stresses exceed a threshold value: the plastic yield stress. Where stresses exceed the yield
stress, material flows like a viscous fluid.

Various rheological models have been proposed, derived from experimental
results or from theoretical considerations, such as the Bingham model (Bingham and
Green 1919); Herschel-Bulkley model (Herschel and Bulkley, 1926); Coulomb-viscous
model (Johnson 1970); biviscous model (Dent and Lang 1983); and quadratic model
(O’Brien and Julien 1985). The Bingham plastic model is the most commonly used in
practice. For slurry flows, such as silt-clay slurries, where viscous forces control the flow
behavior, this kind of model has been used with reasonable accuracy.

The second approach has focus on the mechanics of granular materials. Based
upon the findings of Bagnold (1954) and Takahashi (1978, 1980, 1981), two-phase
models have been developed by several authors, such as Takahashi (1991), Iverson
(1997a, 1997b) and Pitman and Le (2005). These models explicitly account for solid and

fluid volume fractions and mass changes respectively. They include separate solid and



fluid stress tensors, which means that a constitutive relation must be defined for each
phase. Finally, these models include a solid-fluid interaction force, which is not explicitly
present in single-phase models. Recent investigations with gravel and sand mixtures
demonstrate that this kind of grain-flow model is best applied to this type of flows
(Parsons et al. 2001).

Despite of the considerable progress over the past few years, the flow dynamics
and internal processes of debris flows are still challenging in many aspects. In particular,
there are many factors related to the movement and interaction of individual boulders and
coarse sediments that have not been fully addressed in previous works. In fact, there is a
deficit on particle oriented models in comparison with many continuum models presented
in the literature. Asmar et al. (2003) introduce the Discrete Element Method (DEM) to
simulate the motion of solid particles in conjunction with the traditional Eulerian
approach to model the liquid phase of debris flows. DEM is a numerical method to model
dry granular flows where each particle is traced individually in a Lagrangian frame of
reference by solving Newton’s equation of motion. DEM is widely used now in diverse
fields since Cundall and Strack published their first paper in 1979. However, extending
DEM into two-phase flow is not straightforward. In this case it is necessary to include the
fluid-particle momentum exchange and, when the particle volume is significant, it is
important to model the particle volume fraction in both the momentum and continuity

equations of the fluid.

1.2 Objectives
This thesis research describes the development of a quasi three-dimensional

mathematical-numerical model to simulate stony debris flows, considering a continuum



fluid phase and large sediment particles, such as boulders, as a non-continuum phase.
Large particles are treated in a Lagrangian frame of reference using DEM, and the fluid
phase composed by water and fine sediments is modeled with an Eulerian approach using
the depth-averaged Navier—Stokes in 2 dimensions. Particle’ equations of motion are

fully three-dimensional. The model includes the following features:

a) A capability to simulate the motion of big particles moving in the fluid
flow.

b) Handling of dense particulate flows avoiding overlap among particles.

C) Use of different rheological models for the continuum fluid phase.

d) Modeling of formation of particle blockages and snout effects.
e) Modeling of particle-particle collisions and wall-particle collisions, taking
into account that particles are immersed in fluid.
The model is tested with analytical results found in the literature and with laboratory
experiments. This work also illustrates the application of the model to a real mud and

debris flow event.



2 LITERATURE REVIEW

2.1 Homogeneous Models

In spite of the existence of particles, the mixture of debris flows is usually treated
in a simplified manner, as the movement of a continuum (O’Brien and Julien 1998,
Phillips and Davies 1991, Coussot and Piau 1994). For slurry flows, where the fluid
matrix is a poorly sorted mixture of clay, silt and sand, and dispersive effects of the sand-
sized sediment are minor in comparison to the cohesive properties of silt and clay, the
assumption of a homogeneous model is often appropriate. As viscous forces control the
flowing behavior of slurries, the primary assumption is that the continuous matrix is
responsible for the yield strength and viscous behavior, whereas interparticle and particle-
fluid interactions are ignored. In these cases, visco-plastic rheological models can reflect
properly the constitutive relationship of this kind of flows.

In general, the extent of debris flows is most predominant than the depth in scale,
and translation is most predominant than rotation. Therefore, it is reasonable to assume
that the governing equations, mass continuity and momentum, can be integrated along the
depth. In a fixed Cartesian coordinate system (x,),z) with z pointing upward opposite to
the direction of gravity, the governing equations can be reduced to depth-averaged

relationships in the x-y plane.
Continuity equation:

8_H+ O(uH) N OVH) _
ot ox oy

0 (1)



Momentum equations:

la_u+£a_u+la_u+a_n+5' =0 (2)
gdt gox gdy xS

la—v+la—v+18—v+a—n+5 =0 3)
got gox goy oy N

Figure 7. Free surface flow profile down a slope

where x and y are the horizontal coordinates, ¢ is the time, # is the free-surface elevation,
H is the water depth, z; is the bottom elevation; y=H+z; (see Figure 7), u and v are the
vertically averaged velocities in x and y directions respectively, g is the gravitational
acceleration and Si and Sp, are the depth integrated stress terms that depend on the
rheological model to be used (see Appendix A for derivation of these terms when two

different rheological formulations are used).



2.2 Rheological Models

Bingham and Green (1919) proposed one of the pilot rheological models for
visco-plastic materials experimenting with paint. They found the paint to be plastic and
had a finite yield stress value that must be exceeded prior to motion. Various slurry flows
commonly encountered in nature have shown to have a similar behavior and they have
been represented with reasonable accuracy by the Bingham model (Wildemuth and
Williams 1985; Mainali and Rajaratnam 1994). The material is assumed to exhibit a

linear stress-strain relationship with the applied shear stress as follows

{ 0 if z<z,
T= 4

ry+y7 if =27,

where 7 is the shear stress, 7 is the yield stress, 4 is the viscosity and y is the shear

rate.

Besides the Bingham model, there are other rheological models that can represent
with accuracy slurry flows. It has been found that yielded mud may experience shear
thinning (Wan 1982, O’Brien and Julien, 1988), i.e. its viscosity decreases gradually with
the increase of shear rate. Muds with high solid concentrations generally experience more
severe shear thinning than those with low solid concentrations, then in those cases a
Herschel-Bulkley model (Herschel and Bulkley, 1926) seems to be more appropriate in
depicting this particular behavior. The stress-strain relationship is nonlinear, commonly

showing convexity to the shear stress
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0 if z<rz,
r= ry+K;?’" if t2rz, ®)

where K and m are empirical parameters . For natural mud suspensions, m approaches
1/3 (Coussot, 1997).

For highly concentrated sediment-water mixtures, where interparticle friction is
not negligible, Johnson (1970) proposed a modification of the Bingham model. He
divided the yield strength of the Bingham model into cohesion and friction components

and developed the Coulomb-viscous model

0 if z<z,
r= ry+,u7 if =27, ©)
with
7,=7,+0,tang (7)

where the value of the rheological parameters: the cohesive yield stress 7, , the normal
stress oy, the internal friction angle @, and the viscosity x, vary with mixture properties
such as solid concentration, clay type, particle shape and size distribution.

Other rheological model that takes into account dispersive stresses was proposed
by O’Brien and Julien (1985). Using basic fluid mechanics principles to describe

hyperconcentrated flows, they postulated a quadratic model covering yield stress, viscous

stress, dispersive stress and turbulent stress as
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0 if <z,
T:z&+y7+gﬂ if t2t, ®)

where {'is the inertial shear-stress coefficient.
Later, based on laboratory experiments, O’Brien and Julien (1988) found the
viscosity and yield stress to be functions of the volumetric sediment concentration ¢ of

silts, clays, and in some cases, fine sands. The following exponential relationships were

proposed
B
p=ael 9)
_ . P
Ty =ae (10)

in which «;, £, a; and f, are empirical coefficients defined by experimentation for some
known mixtures. For water—clay mixtures the following coefficients are commonly used:
ar= 0.621x10'3, P =173, a, =0.002 and > = 34.2. Units are Pa.s for viscosity and Pa
for yield stress (O’Brien and Julien, 1988).

Many authors have proposed Bingham, Herschel-Bulkley or quadratical models to
simulate debris flow. However, all these models, as they have been proposed, assume a
critical or yield shear stress that may create instabilities in model applications. For close
to zero shear rates, these models have a viscosity discontinuity where it changes from a
finite value to infinity, that constitutes a phase change where the initially liquid fluid
becomes a solid, rendering the fluid governing equations invalid. The biviscous model

and the Cross rheological formulation do not present such as discontinuity.
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When using the Cross model the relationship between stress and shear rate is
simply

£t (1)

where . 1s the effective viscosity, a continuous variable that changes from a large value
at very low shear rates to the fluid dynamic viscosity at higher shear rates.

The general Cross model gives viscosity as a function of shear rate as (Barnes

et.al,. 1989):

My~ H
”ef —u 40 "o (12)
L+ (K )™

where p, and u, are viscosity at very low and very high shear rates, respectively, and

K3 and m are constants parameters. The effective viscosity can be conveniently defined in
terms of the Bingham fluid parameters (yield stress and dynamic viscosity) as it is
proposed by Shao and Lo (2003). Taking m as unity the effective viscosity can be

rewritten as:

u +u Ky
Uy = (13)
eff I+K 7
with K :#—Oy = pandy_ =10°pu (14)
B ¢ loo 0

y
When considering the biviscous model, as described by O’Donovan and Tanner

(1984), stress in the fluid can be described as
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{w‘ i or<r,
T= (15)

ry+,u7 if =27,

Which is a linearization of the Cross model. See Figure 8 for comparison of the

rheological models mentioned above.

T F
Quadratical
Bingham
Herschel-Bulkley
Ty
Cross Hy
/ Biviscous

L 2

Figure 8. Comparison of different flow rheological models

2.3 Non-Homogeneous Models

Grain-flow models, based on the physics of grain-grain and grain-fluid
interactions, are a different type of model to describe debris flows which are friction-
dominated grain flows and behave differently than mud-slurry flows.

When talking about granular mass flows, the word ‘“granular” highlights the

importance of momentum transport by large solid grains, mixed with less dense

14



intergranular fluid. The word “mass” implies that a finite, contiguous body of solid and
fluid moves almost in unison, and the word “flow” indicates that the grain-fluid body
deforms irreversibly as it moves downslope (Iverson and Vallance, 2001).

High volumetric grain concentrations distinguish granular mass flows from
phenomena such as slurry-mud flows. Particles that are silt-sized and smaller can be
viewed as part of the fluid (slurry), larger particles constitute the granular solids and the
concentration of these large particles partially defines the kind of flow regime, which can

be friction-dominated or collision- dominated (see Figure 9).

(@) (b)
Figure 9. Schematic cross sections of gravity driven flows down inclined planes.
(a) Friction-dominated flow (b) Collision-dominated flow.
A numerical criterion, identified by Savage (1984), distinguishes flow regimes on
the basis of a dimensionless parameter, N;, that characterizes stresses in steady, uniform

flows

pSV'zdz
=5 (16)
5oy —pf)gH
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where p; and pr are the mass densities of the solid grains and fluid, respectively, _ is

the bulk (continuum) shear rate, d is the grain diameter, g is the gravitational acceleration
and H is the flow depth. Roughly, N represents the ratio of grain collision stresses to
gravitational grain contact stresses that produce intergranular friction. On the basis of
diverse data, Savage and Hutter (1989) inferred that if Ny > 0.1, grain collision stresses
may affect flow dynamics significantly. For those flows with small values of N; (friction
dominated) Iverson and Denlinger (2001) suggest that the Coulomb (1776) friction
equation with zero cohesion is the best model for describing stresses in granular
mixtures:

T=otang (17)

where 7 is the intergranular shear stress, o is the total compressive normal stress and ¢

is the intergranular Coulomb friction angle. The Coulomb equation differs from
rheological equations typically applied in homogeneous models because it implies no
dependence of stress on shear rate. The equation predicts essentially the same
intergranular shear stress if normal stress on shear planes is the same, regardless of shear
rate. Iverson and Vallance (2001) indicate that the Coulomb equation yields good
predictions even when flow is rapid or partially liquefied by high fluid pressure.

For gravity-driven flows with a free upper surface, the compressive normal stress

on planes at depth /4 is given by:

O-:(ps_pf)csghcosg_p (18)
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where C; is grain concentration, & the angle of surface inclination and p the pore fluid

pressure. Iverson and Vallance (2001) also indicate that equation (18) is valid regardless

of whether grains contact one another statically or dynamically collide. However, it has
been demonstrated that bulk normal stresses in rapid, collision—dominated flows (Ny>0.1)

depend on shear rate, whereas this dependence is absent in slower, friction dominated
flows (Bagnold, 1954).

Bagnold’s experiments also assessed the role of viscous stresses in granular
mixtures. Bagnold distinguished contributions of grain collision and viscous stresses in

steady, uniform, shear flows on the basis of a dimensionless parameter, N, defined as:

N = (19)
O e eiE)

Bagnold’s number, Np, depends on the same properties used to calculate Savage’s
number N, but also depends on Ci, the volume fraction of granular solids, Cx, the
maximum (close-packed) value of Cy, and g, the viscosity of the intergranular fluid.

Values of N smaller than ~ 40 indicate a macroviscous regime where both normal and

shear stresses are proportional to the shear rate Values of Np larger than ~ 450 indicate a
collision-dominated flow regime, in which normal and shear stresses are both
proportional to 7}2 (Bagnold, 1954).

The term in brackets in (19) highlights the important influence of grain

concentration Cs on the stress regime. In the dense flow limit (¢ — ¢,)the term in
N
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brackets approaches , indicating that collisional stresses greatly surpass viscous stresses.

However, in highly concentrated geophysical flows with free upper surfaces, gH

generally exceeds y‘zdzvery significantly, then N,;<0.1, and Coulomb friction due to

gravitational stress may surpass all other forms of shear resistance (Iverson and
Denlinger, 2001).

Evaluation of stress regimes in debris flows in terms of N; and Np is not a
straightforward task. Debris flows have definite starting and ending points in space and
time, and their motion is clearly unsteady. Abrupt surge fronts form at the heads of most
flows, followed by thinner, tapering tails. Changes in grain concentration C;, grain-size d
and flow depth H during unsteady motion allow variations in N; and Np throughout the
extent and duration of the flow. Experimental data and field observations indicate that
high non-uniform fluid pressures commonly exists in the bodies of debris flows, but not
at surge fronts or deposit margins. Therefore, Coulomb friction generally dominates flow
resistance at surge fronts, and viscous resistance and grain collisions gain significance in
flow interiors (Iverson and Denlinger, 2001).

Lack of rate-dependent stresses implied by Coulomb friction does not eliminate
rate dependence in a mixture of Coulomb solids and fluid, provided the fluid has nonzero
viscosity. The degree of rate dependence in such mixtures depends on the degree to
which fluid pressures reduce intergranular Coulomb friction and transfer shear stresses to
the fluid phase. The conclusion is that only Coulomb friction theory is not appropriate to
model stresses in mixtures of solids and fluid, the development of a mixture theory that

takes into account fluid stresses is necessary.
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2.4 Governing Equations for the Mixture Theory

The basic mixture theory has its origins in the pioneering model of Savage and
Hutter (1989) for mass avalanches of cohesionless granules (sand, grains, rocks or snow).
They began with mass and momentum balance laws based on a Coulomb constitutive
description of dry granular material. Assuming a small depth-to-length aspect ratio in
typical flows Savage and Hutter developed a thin layer model for granular flows down
inclined planes. That work was later extended to two dimensions (Hutter et al., 1993),
and to flows over more general topography (Pudasaini & Hutter, 2003). Iverson (1997b)
and Iverson & Denlinger (2001) argue that the presence of interstitial fluid, as it is the
case of debris flows, alters the behavior of dry flows and then equations describing the
fluid phase and its constitutive behavior must be included. In this case, separate but
coupled equations must describe mass and momentum conservation for the debris flow’s
solid and fluid constituents, and the solid and fluid equations should apply at all locations
simultaneously.

The mixture theory equations of motion presented by Iverson and Denlinger

(2001) read

A2E) v (pyC,v,) =0
ot C
2(p,C))

py +V-(p,C,v,)=0 (20)

psCs(aaV; +v  Vv)=V-T +pCg+f

ov
p/.cf(a—tfwf-vv,.):v-Tf+pfcfg—f (1)
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where (20) represents the mass conservation equations and (21) the momentum

conservation equations. There, v denotes a velocity vectors and T denotes a stress
tensors. Subscript s refers to the solid phase and subscript f refers to the fluid phase. Cr
refers to volume fraction of fluid, then mass continuity equations are coupled because the
volume fractions must obey Cy + Cr=1. In the momentum equations f is a vector that

represents the interaction force per unit volume that results from momentum exchange
between the solid and fluid constituents. Momentum equations are coupled through this
force.

By adding together the solid and fluid mass conservation equations and the solid
and fluid momentum equations, Iverson derives conservation laws for the mixture which
involve depth averaging. Guided by experimental results, several approximations are then
made which include:

1) Solid velocity is approximated to the fluid velocity.

i1) The mixture stress is taken as the sum T, + Tr. Solid phase stresses obey

the Coulomb rule with no cohesion and fluid phase stresses are considered to
obey the conventional linear law of Newtonian fluids.

1i1) The viscous components of the fluid stress are often ignored compared
with the solid stress contributions.

1v) Basal pore fluid pressure obeys an advective-diffusion equation where
advection is usually neglected. The solution proposed is a time series expansion

depending on time and the depth of fluid.
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Equations (20) and (21) show explicitly the advantages of two-phase models over
single-phase models. They account for solid and fluid volume fractions, so it is possible
to follow the evolution of each phase through space and time. They include separate solid
and fluid stress tensors, which means that a constitutive relation must be defined for each
phase. Equations also include the solid-fluid interaction force, which is implicit in single-
phase models though the stress terms.

However, unfortunately, when using the solid phase velocity as an estimate of the
fluid velocity and neglecting the influence of fluid stresses, most of these advantages are
lost and the two-phase model reduces basically to a single-solid-phase model similar to
that proposed by Savage and Hutter (1989).

Recently, Pitman and Le (2005) presented a model formulation with a set of
equations describing a two-fluid model for debris flows, where velocities for both solid
and fluid phases can be determined, as well as fluid depth and fraction of solid particles
at any time and point in the space. Several forces are considered, including solid and fluid
stresses, gravity, buoyancy and drag. However, they recognize the effort required
computing solutions numerically and propose simplified models, and do not provide any
comparison with experiments to demonstrate whether the equations adequately describe
physical flows.

Despite the advantages of two-phase models over single-phase models, there are
still many aspects that remain unresolved. In particular, it is known that debris flow is
clearly unsteady, the flow regime can change in space and time from a friction dominated
regime to a collision dominated regime or simply to a viscous dominated regime. Flow in

the head behaves differently from the tail, since regimes are different, making very
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difficult to model the whole flow extent with the same constitutive law. Also, many
factors related with the movement and interaction of individual boulders and coarse
sediments cannot be addressed with continuous two-phase models. The above discussion
indicates that particle oriented models applied to the solid phase could adequately

address some of these model deficiencies and challenges.

2.5 Discrete Element Method

The Discrete Element Method (DEM) or Distinct Element Method is a numerical
method based on the Lagrangian approach to simulate the motion of granular materials at
the level of particles (elements). The principle of DEM is to track, in a time stepping
simulation, the trajectory and rotation of each element in a system to evaluate its position
and orientation, and then to calculate the interactions between the elements themselves
and also between the elements and their environment. The interactions will then
subsequently affect the elements positions.

The Distinct Element Method was developed by Cundall (1971) for the analysis
of rock mechanics problems. Then, Cundall and Strack (1979) extended the method to
general granular media and showed that DEM could be applied to simulate real granular

asse

mblies. After this important paper, DEM has been used in different fields
including chemical, civil, mechanical, environmental and aeronautical engineering,
among others. The DEM model is described in detail by Asmar et al. (2002) to model 3D

granular flows.
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However, very few studies using DEM for solid-liquid systems can be found in
the literature. In the field of debris flow, Asmar et al. (2003), and Miyazawa et al. (2003)
are two important works that propose DEM to simulate the solid phase of the flow, and
Navier-Stokes equations to simulate the fluid phase. Asmar et al. (2003) presented a
simplified mathematical model to simulate debris flows. However, the programming of
the fluid phase was not performed and an explicit procedure to solve for the fluid
unknowns, in conjunction with the tracking of solid particles, is not proposed. Miyazawa
et al. (2003) presented a one-dimensional flow formulation to simulate debris flow
through a grid type sabo dam, where DEM is applied in 3D to track movement of large
boulders. In their work it is not clear how the DEM technique is combined with the
traditional Eulerian approach to solve the equations. Other reported work proposes, but
does not implement, the Smoothed Particle Hydrodynamics method, SPH, to model the
fluid phase and DEM to model the solid phase (Clearly and Prakash, 2004).

When DEM is applied to simulate granular materials, two different methods to
calculate the particle trajectories can be used: hard-particle model and soft-particle
model. The hard-particle model works in rapid, not so dense granular flows where the
system exhibits instantaneous binary collisions. In this regime, conservation of linear and
angular momentum for each collision is applied. The soft-particle technique is used in
slow, dense granular flows where particles have enduring contacts and multiparticle
collisions occur. In these flows a dynamic analysis is performed via explicit solution of
Newton’s equation of motion for every particle. In the analysis, the particle positions are
recorded first, from these the particle interactions are determined and then the subsequent

dynamics are evaluated including all forces acting on each particle. From the equations of

23



motion accelerations are determined, which are then numerically integrated to obtain
velocities and displacements at the next time step. This soft-particle approach is
considered the most appropriate to model debris flows (Asmar et al. 2003; Miyazawa et
al. 2003; Clearly and Prakash 2004).

The linear dynamics equations of motion for the particles (in vector notation) are

as follows

NS+ F+YF, (22)

m,
Ldt

Where m is the mass of particle i, v denotes in this case velocity vector of particle

i, ZFE is the sum of the external forces (no contact forces), ZFN is the sum of the

normal contact forces and ZFT is the sum of the tangential contact forces.

The external forces acting on the particles depend on the particular case to be
modeled. When particles are submerged in a fluid these forces could include gravitational
force, buoyancy force, fluid drag force and fluid lift force. While external particle forces
can be easily added to the model, contact forces on the other hand are wholly dependent
on the choice of the contact mechanics to be used.

Two major approaches are widely used in DEM. The first approach is a detailed
methodology based on contact mechanics equations such as developed by Hertz (1882),
Mindlin (1949), and Thornton and Randall (1988). The second approach is a simplified
model that uses a conventional spring-dashpot-slider system to represent particle

interactions as shown in Figure 10.
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(@) (b)

Figure 10. Schematic representation of contact forces (a) Normal (b) Tangential

The contact forces considered in this simplified model are elastic, cohesion,
friction and damping forces. When particles are submerged in a fluid cohesion can be
neglected and consideration not only of local damping, but also of global damping in the
equations of motion could be considered.

Then, according to Figure 10

Fy=Fy+Fy (23)

F,=F,. +F,, (24)

The normal contact force Fyc represents the repulsive force between any two
particles that are in contact, it is calculated using a simple Hook’s linear spring
relationship. The normal damping force Fyp represents the dissipation of a portion of
kinetic energy during the contact. It can be defined to have a required ratio between

relative normal velocities before and after collision.
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The tangential contact force Fzc represents the friction force between particles in
contact. This force is limited by the Coulomb frictional limit at which point the surface
contact shears and the particles begin to slide over each other. Before sliding linear or
nonlinear formulations can be used, after sliding the tangential force is proportional to the
normal contact force through the coefficient of friction.

The tangential damping force Frp represents the portion of energy dissipated
during tangential contact and it can be defined to have a required ratio between relative
tangential velocities before and after collision. The calculation of this force could be
omitted if sliding occurs since damping is introduced due to friction during motion.

Once forces are evaluated, particle i motion is calculated from equation (22). The
. . dv . S .
acceleration of the particle = is computed from the net force, which is then integrated
4

for velocity and displacement.
In order to determine the orientation of the particles in space, a similar procedure
as described before is done in DEM, but in this case using the rotational equations of

motion for the particles as follows
I.—=>M (25)

where I is the moment of inertia of particle i, ® is the angular velocity and M is the

moment produced by tangential forces acting on the particle. The angular acceleration of
the particle il_m is computed from (25), which is then integrated for angular velocity and
t

angle vector.
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The time step Af is a constant value that is chosen to ensure the stability and

accuracy of the numerical simulation, particularly the integration. In DEM this critical

time for a simple elastic model is defined by

2

TCV :a)— (26)
C
m

COC = ; (27)

where @, is the natural frequency of a simple spring-mass system, k is the maximum
stiffness and m the minimum particle mass. For a stable condition the time step must be
smaller than this critical time.

Cundall (1978) suggests that 10% of critical time is probably safe for most of the

DEM problems, but 20%-50% may be used with caution for loosely packed systems.
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3 RESEARCH METHODOLOGY

3.1 Governing Equations

The flow domain is divided in computational cells with triangular base and height

H, the actual depth of fluid, as shown in Figure 11.

Figure 11. Schematic representation of debris flow with large solid particles

The fluid is assumed to be non-Newtonian and incompressible, and the vertically

averaged continuity and momentum equations in Cartesian coordinates result as follows

(see derivation in the Appendix).

Continuity:

8_H+6(uH)+8(vH) 0 (28)
ot ox oy

x-Momentum:

oA o oA F
1ouw uwaou vow on, Dx+S (29)
g@t gox goy Ox ﬁC
y-Momentum
= AT T Av F
la_v+£a_v+la_v+a_f7+ﬂ+‘s =0 (30)
got gox goy o pg I
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Similarly to equations (1) to (3), H is the water depth, # is the free-surface
elevation, u and v are the vertically averaged velocities in x and y directions respectively,
g is the gravitational acceleration and p is fluid density.

Fp represents the fluid-solid interaction force exerted on the fluid by particles
through the fluid drag force. Following the approach of Xu & Yu (1997), this force is

evaluated as

Fo—i=l 31)

where Frp is the fluid drag force on each particle i, AV is the volume of the
computational cell and » is the number of particles in the cell. In this manner, the fluid
interface force Fp in a computational cell is equal to the sum of the fluid drag forces
acting on the discrete particles into the cell. Fp, and Fp, are the components of the fluid
interface force in x and y direction respectively.

Sk and Sp, are the depth integrated stress terms that depend on the rheological
formulation used to model the slurry.

When a quadratical formulation is used, with Bingham theory and Manning’s
formula, as proposed by O’Brien and Julien in 1985, the stress terms for the fluid can be
expressed as

T — 22
3 N
y_,3uu  Nu

Jx pgH 2 43 (32)

pgH

T - 2.2
3 y+3,uv JrNv

= 33
f pgH ng2 i3 (33)
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The properties of the fluid, dynamic viscosity x and yield stress 7;, are determine
as functions of the volume sediment concentration Cv, using the relationships proposed
by O’Brien and Julien (1988) and given in equations (9) and (10). N is the Manning
roughness coefficient related with the roughness of bottom surface.

Using a quadratical formulation combined with the Cross rheological model, the

stress terms for the fluid are expressed as (see derivations in Appendix A):

u )
= + with =— 34
V=g (34)

_Hegp” N 3v

S with )= — 35
B pgH  p4/3 4 H 33)

where 5 1s the effective viscosity of the fluid defined by (13) and (14). The properties
of the fluid required to determine the effective viscosity are the dynamic viscosity & and

yield stress 7,

In reference to the solid phase, spherical particles of different sizes will be
considered. The trajectories will be tracked using Newton’s second law (22) and the

forces considered are gravity, buoyancy, fluid drag force and collision forces.

Recalling equation (22):

mi%=ZFE +Y Fy + > F,
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D 'F, 1s the sum of the external forces (no contact forces), with F; given by
F,=F, +F,, (36)

The expression to compute the net force acting on the particle due to gravitational effects

1S

4 3
F,=—R>(p- 37
53 (p pp)g (37)

where R is the particle radius and p, is the particle density.

The expression for the drag on a particle in a viscous fluid is given by

1
F,p =EﬂR2Cdp|u—v|(u—v) (38)

where C; is the drag coefficient, u is the fluid velocity vector at the location of the
particle, and v is the velocity vector of the particle.
Several expressions for the drag coefficient of a sphere in a viscous fluid are

found in the literature. One of these is the correlation given by Clift and Gauvin (1971):

C :A[1+O.15Re0'687} for 1< Re, <1000 (39)
d Rep p

where Re,, 1s the particle Reynolds number defined by
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B 2pR|u—V|
ﬂeﬁr

Re

b (40)

This expression for the drag coefficient is accurate up to Re, equal to 1000. For
higher Reynolds numbers, it is observed that the drag coefficient of a sphere becomes

constant and approximately equal to 0.44.

Figure 12 shows the correlation for the drag coefficient used in the calculations of

the particle drag force.
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Figure 12. Drag Coefficient vs particle Reynolds number

Going back to equation (22), the last two terms represent the collision forces or
contact forces among particles ZFN is the sum of the normal contact forces and ZF r

is the sum of the tangential contact forces. Based on the simplified model that uses a

spring-dashpot-slider system to represent particle interactions (Asmar et al. 2003;
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Miyazawa et al. 2003), the normal contact force and the tangential contact force are

evaluated as in (23) and (24), see Figure 10.

Fy=Fy.+Fy,

FT:FTC+FTD

The normal contact force Fyc is calculated using a Hook’s linear spring

relationship,

Fye=Ky6y (41)

where Ky is the normal contact stiffness and oy is the displacement between particles i
and j.

The displacement oy is mimicked via a computational overlap (see Figure 13), so
that oy = (R; + R; )- A, where 4; is the distance between the centers of particle i and j.

When 4; is greater than (R; + R;) particles are not in contact.

Figure 13. Schematic representation of contact between two particles
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The maximum overlap is dependent on the stiffness Ky. Typically, average
overlaps of 0.1-1.0% are desirable, requiring stiffness of the order 10°-10" N/m.

The normal damping force Fyp is also calculated using a linear relation given by
Fo,=Cyvy (42)

where vy is the normal component of the relative velocity between particles and Cy is the
normal damping coefficient. This constant Cy is chosen to give a required coefficient of
restitution S, defined as the ratio of the normal component of the relative velocities

before and after collision.
Cy =24m;K, (43)
where A is the coefficient of critical damping and is calculated as

In(f)
A=l 44
J7t +1n%(B) 49
and

m, =——— (45)

where m; and m; are masses of particle i and j respectively. Derivation of the critical
damping coefficient could be found in Nagurka and Huang, 2006.
The tangential contact force, Fr¢, represents the friction force and it is limited by

the Coulomb frictional limit, at which point the particles begin to slide over each other.
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Prior to sliding, the tangential contact force is calculated using a linear spring

relationship,

Fre=K;0, (46)

where K7 is the tangential stiffness coefficient, and Jr is the total tangential displacement
between the surfaces of particles i and j since their initial contact. This displacement is
calculated from the components of relative velocity tangent to the contact surface. Values

suggested for K7 /Ky varies from 2/3 to 1 (Cundall and Strack, 1979). When K77 exceeds

the frictional limit force s Fyc, particle sliding occurs. The sliding condition is defined as

Fre =4, Fyc (47)

where y1s the dynamic friction coefficient.

The tangential damping force Frp is not included in this model, the calculation of
this force could be neglected since once sliding occurs, damping is introduced due to
friction during motion.

In this work, the rotation of the particles is not considered. The effect of particle
rotation and the corresponding lift produced could be modeled by solving for the angular
velocity of the particles in equation (25), including the torque exerted on them by the
fluid and by the contact with other particles.

The torque exerted by the viscous fluid on solid particles is produced by fluid
shear stresses and can be expressed in terms of the velocity gradients as follows

(Sandeep, 1996):
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M. = rd’ ﬂ( v, 5Wj (48)

o oy
ou Oow
M — 3 _+_ 49
y =78 ”[az 6xj (49)
oy Ox

Since the fluid phase governing equations are depth integrated, gradients along z
direction are equal to zero in the formulation, as well as the velocity in this direction, w.
Then the first two components of the torque are not detectable by the numerical model.
Last component is the torque in direction perpendicular to the sloping surface, which is
essentially negligible.

Regarding the torque exerted by contact forces, debris flow observations say that
big boulders usually move protruding from the surface of the flow, barely in contact with
the bottom surface The Bingham fluid model shows how the yield stress of the fluid
produce a plug layer close to the surface, big boulders are supported by the strength of
this plug and buoyancy, been transported long distances without significant contact with
other bodies (Takahashi, 1991). As the flow depth is reduced, the process of boulder
deposition starts and contact forces become more relevant. It has been reported that the
lacking of rotation in the simulation of the deposition process allows the formation of
clusters more easily than in the case where rotation of particles is included, however there
is not significant difference in the final position of the particles.

. It is one of the main interests of this work to study the transportation of big solid

particles by debris flow, in order to be able to predict zones of deposition.
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3.2 Numerical Solution of the Governing Equations
3.2.1 Fluid Governing Equations
Fluid governing equations (28-30) are solved by the Galerkin Finite Element

method using three-node triangular elements. The unknown variables, u, v, and H, are

given as a function of the unknowns evaluated at the nodes (48), where the vectors U(¢),

V(t), and H () represent the variables at the nodes for each time #, and the matrix N

allows for the internal interpolation based on linear shape functions defined for triangular

elements with three nodes (49).

N 1 @

Figure 14. Finite Element Discretization

.
u(x,y,0)=[N1U(?)
V(L) =[NV () (51)
H(x,y,t) =[N1H(t)

J

[N]= [N1 N, N3J

(52)
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The spatial derivatives are expressed as

(5,10 (53)
Z—Z ~(8,10 (54)

where matrix B, and B, contain the derivative of matrix N with respect to x and y

respectively.
[B.]- ON, ON, ON, (55)
| Ox Ox  Ox
(B.]= ON, ON, ON, (56)
Tl v

The discretized governing equations can be expressed in matrix form as follows

h
MU = —Fu \ (57)
MV = —ﬁv )

where the vector of unknowns (time derivatives) multiply matrix M for each equation,
and the right hand side vector include all the other terms in the equation. Matrix M is

given by
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[M] =[NT NaA (58)

To solve (58), a four-step time stepping scheme and a selective lumping method,
is performed, as described by Garcia-Martinez et al. (2006). This scheme improves
previous finite elements models, allowing larger time steps and enhancing its capability
to simulate complex debris flow events without requiring an artificial diffusion term.

Stability leads to the following Courant-Friederich-Lewy (CFL) condition

NNV
(j 1_o)l/2
g (59)

where ¢ is the selective lumping parameter.

3.2.2 Particle Governing Equations

Forces on each solid particle are evaluated at each time step, and the acceleration
. av . . . . .
of the particle = is computed from the particle governing equation (22). Particle
4

acceleration is then integrated to find velocity and displacement as follows

t
viHAr vy (60)
dt

rt+Al‘ t

=r +%(Vt +Vt+At)A

t (61)
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Knowing the position of particles at time ¢+A4¢ contacts are identified and relative
displacements among particles are calculated.
The time step At to ensure stability and accuracy of the numerical integration is
determined by the minimum critical time, as said in previous chapter, equation (26).

The time step for the whole simulation, including fluid and solid phase, is chosen
such as equations (26) and (59) are satisfied.

The following diagram describes the complete numerical procedure more

explicitly

START

with initial
conditions

1

Solve f'u'd governing Calculation of
equations using FEM relative

/ displacements

Evaluate forces

. i | G——— Contact forces I
acting on solid Identification of

particles contacts
T Determine particle
displacements
Body forces /
Solve equations of motion Double integration

for each particle using DEM

Figure 15. Calculation cycle describing the numerical solution of the problem

40



4 MODEL VERIFICATION USING ANALYTICAL AND
EXPERIMENTAL DATA

4.1 Fluid Phase Numerical Solution Verification

The first modeling step was the implementation of different rheological models
for the simulation of mud flows. This modeling would account for the representation of
the fluid phase of the debris flow. The numerical model was run using RiverFLO-2D
software, a finite modeling system for detailed analysis of river hydrodynamics, sediment
transport and bed evolution (Garcia-Martinez et al. 2006). In the software, two
rheological quadratical formulations were implemented, the first, including Bingham
theory and Manning’s formula, as proposed by O’Brien and Julien in 1985, and the
second, combining Cross formulation and the Manning’s formula as proposed in
Martinez et al. 2006.

In order to compare with simple results, an analytical solution, proposed by
Huang and Garcia (1997), was studied and implemented in a computer program. This
implementation provided enough data for verification and testing of the new rheological

formulations proposed.

4.1.1 Analytical Solution for Bingham mudflows, Huang and Garcia
1997

Consider a 2D, unsteady, gradually varied, laminar mudflow, which originates
from a finite-volume source, on a slope at an angle of & with respect to the horizontal.

The boundary layer approximations are assumed to be valid, flow depth is small
relative to the flow length, and depth changes relatively slowly along length. Then the

equations of motion are reduced to the following form
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H
L
0
X
Figure 16. One-dimensional dam break on a sloping surface
ML (62)
ox Oy
P 8_u+u8_u+va_u :—a—p+pgSin<9+ﬁ:0 (63)
ot ox Oy ox oy
P =—pgCosf (64)
oy

Where p is fluid density, g is acceleration of gravity, p is pressure and (u,v) are

the flow velocity components in (x,y) directions respectively. The boundary conditions

are in this case:

u=v=0 at y=0 (65)

p=0, =0 at y=h (66)

Then, equations (64) and (66) indicate that pressure in the mudflow is hydrostatic

and given by:

p=pg(h—y)cosd (67)
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Huang and Garcia consider the two layer-model shown in Figure 17:

Y a

hy U,

o
A

v

Figure 17. Two layer model proposed by Huang and Garcia, 1997

The flow is divided into a plug layer, with uniform velocity U, and depth #,, and a
shear layer with varying velocity u and depth /4,. For the case of steady, uniform flow, the

velocity distribution is given by

2 (68)

and the flow rate per unit width is

Bh=h)

U — 5 69
9=U,—3 (69)

Assuming that (68) is also valid for non-uniform boundary layer flows without

committing serious errors (with U, changing with x and time f), the following depth-
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integrated momentum and continuity equations are obtained taking into account the

surface boundary condition

ok, O

v=—7+U — at y=h 70
o pox Y (70)

Continuity

oh oq h

—+—=0 with g=U | h—— (71)

ot Ox p 3

Momentum balance in the shear layer

Oh 2uU
Q(EU h )+3(§U2h j—U —S+§(3U h j —gh (sin@—%cosﬁj—ip (72)
ae\3 pP's) ax\15 ps) pla ax\3 ps s ox oh

S

Momentum balance in the plug layer

2
oU U z 73
p+i[—p+ghcos¢9}gsin9—y ( )

ot ox| 2 ph—h)

These three equations could be solved numerically to look for the unknowns 4, U,
and h,. However; studying the relative magnitudes of the terms in these equations, it is
possible to derive first-order solutions for the outer and inner regions of the flow. Refer to
Appendix B for complete derivation of these equations.

The Outer Solution (Figure 18) describes the profile back at any time ¢. The
corresponding equation (74) allows to solve for the depth of the fluid 4* at any time #*

and location x*.
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Figure 18. Outer and Inner Solution proposed by Huang and Garcia, 1997

X =GR =30 +h

Equation (74) can be expressed in dimensional form with the help of (75).

=
=
d
S
=
-~
Ryl
(=]
Nyl
<
-
(=]

(h 5h55Up9-x 5t 389/15Fr)=(_’_sa_5_3_,_ - —)

(74)

(75)

The Outer solution holds up to the shock location (x5 /). This location is

determined invoking mass conservation, giving as a result the following nonlinear

equation that can be used to solve for /.

. 1-h}
t=— ;
4h7 -3h7A-2
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Equation (74) gives then x;.
The Inner Solution (Figure 18) describes the free surface profile of the shock front

and it is found solving the following differential equation for 4;.

L P R e Y e e U

! o and (77)

o0& h

Since the right hand side of (77) is independent on¢, the location of the profile is

unknown. The right place will be given under the condition of mass conservation given

by

[, - = [z (78)

where 8* is defined as the distance from x; * to the leading edge of the shock. Equations

(77) and (78) can be expressed in dimensional form with the help of (79)

£

(hj,hsiaé: 9UiaUpiati)z(_a_Sa—.a_:_a_) (79)

A numerical procedure was implemented in order to find automatically the entire
profile of the mudflow released from a finite source, at any time ¢.

The input data includes dimensions of the mass source, H and L, or H and 6, and

the properties of the fluid: density p, viscosity x and yield stress .
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For any time 7 the procedure is as follows:

Outer solution:

1.- Using equation (76), solve for /i, (Newton-Raphson method).

2.- Using equation (74) solve for x;

3.- From x=0 to x=x; use equation (74) to determine the depth / of the fluid
(Newton-Raphson method).

Inner solution:

4.- Apply Runge-Kutta to equation (77) to determine the profile 4,. The equation
can be use in dimensional form.

5.- Apply numerical integration to find the right location for the inner solution.
Start with the profile centered with respect to x; and then iterate until the mass balance is
achieved.

Composite solution:

6.- For x < xy, determine the solution by adding the inner and outer solution and
then subtracting their common matching term /. For x > x; the solution equals the inner
solution.

The following example is given by Huang and Garcia in their work (1997). The
data presented is

0=15°, x,=56.7cm, h,=57TIcm, h,6 =0.8cm

Using these values the corresponding input data for the developed program is:

0 =15°, h, =10cm, T, = 29.7Pa, w4 =0.08Pa.s, p= 1462Kg/m3, t =0,0027s

The results obtained using the program are:
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h,=5.7Tcm, x,=57.99cm with the following free surface profile

2.685529E-3

0.04

Figure 19. Flow profile at time t =2.7 E-3 s

This solution is in very good agreement with Huang and Garcia’s results. The

program was then used to solve for other times ¢ and results are showed in the following

figures.
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Figure 20. Flow profile at time t =8.7 E-3 s
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Figure 21. Flow profile at time t =1.07 E-2 s
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2.268553E-2
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Figure 22. Flow profile at time t =2.27 E-2 s

4.1.2 Finite Element Method (FEM) Numerical Solution testing and
verification

The proposed test problem represents flow from a source of finite size, with initial
triangular shape, a dam break of mud-slide on an sloping surface, as shown in Figure 16.
The fluid is a Kaolinite suspension with C, =0.135 and the flow is considered unsteady,
gradually varied, and laminar. The empirical relationships (9) and (10) are used for the

calculation of the fluid rheological properties,

pc
p=ae 7= a,e

in which «a;, f;, a; and S, are ;= O.621X10'3, Pr=17.3, a;=0.002 and S, = 34.2.

Units are Pa.s for viscosity and Pa for yield stress (O’Brien and Julien, 1988).
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We compare the finite element numerical solution with the analytical solution
proposed by Huang and Garcia (1997). We also compare the results with experimental
data presented by Huang and Garcia in their work of 1998.

Although the example is one dimensional, we use 2D triangular elements to
discretize the channel, as shown in Figure 23. The Cross rheological model is used first in

the Finite Element Formulation.

T T A A A AT A AT A AT AT AN LY AV ATATA AT ATATATATAVAVLV T A
T Y N AR XN F Y AW AR ¥ AN AT AN 0.1m
e e P P O O A O S S O P R R P P O S PR et \ 4
0.16 m
i e
- Ll
1.6 m

i .
| »

Figure 23. Two-dimensional finite element mesh for the dam break test

The following figures show the flow profile and spreading rate for the following
conditions: #=11° and initial triangular area A=24.7cm’ (L=0.16 m).

Figures 24 and 25 show the free surface profiles for times 2.0 and 2.5 s,
respectively. As it is depicted in the plots, the numerical solution is very close to the
analytical solution, with the exception of the advancing front where the numerical
solution is not able to capture the discontinuity between the fluid and the dry channel

bottom. This smearing is a typical inaccuracy tied to numerical diffusion.
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Figure 24. Comparison of numerical and analytical solutions for time =2.0 s
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Figure 25. Comparison of numerical and analytical solutions for time =2.5 s

Figure 26 shows free surface profiles for time 2.0 s using a refined mesh. In the
new mesh (NM) elements are three times smaller than those in the old mesh (OM). In
addition, the selective lumping parameter, related with the finite element solution of the

governing equations, has been increased from 0.9 to 0.925.
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Figure 26. Free surface profiles, comparison of numerical and analytical solutions
for time 2.0 s

As depicted in the figure, the mesh refinement contributes to reduce the numerical
diffusion and improves substantially the solution in the advancing front. Increasing the
selective lumping parameter also enhances the numerical solution, making it closer to the
analytical solution. Bingham rheological formulation is compare with Cross rheological
formulation, the Bingham profile shows a steeper front that Cross profile.

Figure 27 shows the spreading rate of the flow. This relation is obtained plotting
the position of the advancing front at different times ¢. In the plot, numerical results using
FEM are compared with the Analytical Solution as well as Experimental Data given by

Huang and Garcia (1998). It is noticeable that the numerical solution using Cross
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formulation is in very good agreement with the experimental data for early stages of the

solution, where the approximate analytical solution is not as accurate.

- V4

0 s I I I I 1
0 0.2 0.4 0.6 0.8 1
X (m)
< Experimental Data = Analytical Solution
Num Sol. Cross Num. Sol. Bingham

Figure 27. Spreading relation, comparison of numerical solutions with analytical
solution and experimental data.

As time increases, the fluid velocity decreases, but the stoppage of the fluid is not
totally reached with any of the numerical solutions. However, Bingham formulation tends
to be more accurate than Cross formulation for later stages.

After a certain time, numerical solutions tends to increase and deviate from the
analytical solution. This tendency is obviously caused by the numerical treatment of the
wet-dry interface. Mesh refinement and the increment of the selective lumping parameter
are able to reduce somehow the artificial diffusion presented in the wet-dry interface, but

not to the extent that would be desirable.
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Before different methodologies were studied in order to improve the solution in
the profile front, other tests were performed to verify the effectiveness of the FEM
solution. One of them was related with the analysis of a dam break problem, similar to
the one discussed previously, but in this case over a wet slope, where a layer of fluid
exists downstream from the mud-slide. This kind of test avoids the problem of the wet
and dry interface and can focus the study in the accuracy of the FEM representation.

The analytical solution for wet-slopes is also presented by Huang and Garcia in
his work of 1997, with some useful results for comparison. The downstream layer has a
height 4, equals to n times Ay, where Ay is the so called yield depth defined by

T

hy =—— (80)
pgsind

Figure 28 is a dimensionless plot of the wave shock depth (4,/H) as a function of
the shock coordinate (xr/L), where H and L are the initial height and length of the
triangular fluid source. The results are for A=0.04, with A =h, /L, and for different values
of h,. The numerical solution, using FEM and Cross rheological model, shows an
accurate approximation of the analytical solution in all the cases, which confirms the

effectiveness of the FEM solution.
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Figure 28. Kinematic-wave shock depth plotted as function of shock coordinate

Figure 29 shows free surface profiles at time 2.3 s on a wet slope, where 4, equals

0.5hy. The FEM numerical solution, slightly smaller, is in very good agreement with the

analytical solution.

time=23s

x (m)

—— Analytical Solution —=— Numerical Solution

Figure 29. Free surface profiles on wet slope, h2= 0.5 hy. Numerical and analytical
solution for time 2.3 s.
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Similar analytical solutions were found in the literature for two-dimensional
simple dam-break problems. These solutions were also used for verification of the FEM

formulation.

h
o |
T

-]

Figure 30. Two-dimensional dam break on a horizontal surface

Figure 30 shows a circular mud dam break on a horizontal plane, presented by
Balmforth ef al. in 2006. The initial condition of the problem is h*=h/H=1 for r*=r/El,
where H and L are the initial height and radius of the circular, confined, source of fluid.

The dimensionless time t* is defined as

== (81)

where V' is a characteristic velocity given by

- PhH> cos 6

82
L (82)

with cos@= 1.
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The results are for a Bingham number (dimensionless yield stress) B=0.15, with B
defined as

z'yH
B= 7 (83)

Figure 31 shows the results given by the Cross formulation (numerical solution)
for the two-dimensional problem with initial conditions H# = 3.2 cm, R = 16 cm, Cv =
26%. Comparing the profiles it is noticeable that the spreading of the numerical solution
is larger than the analytical solution at advanced times; however, results are closer at

short times.

B=0.15
1.2

—t*=10 Anal. Sol.
——1*=40 Anal. Sol.
—t*= 1000 Anal. Sol.
——1*=10 Num. Sol.
—+—1*=40 Num. Sol.
——t*=1000 Num. Sol.

0.8 A
h* 0.6 -
04

0.2

Figure 31. Axisymmetric dam break with initial condition h*=1 for r*<1. Numerical
and analytical solutions for different times t*.

The numerical solution is stiffer than the analytical solution at early stages, but at
the time increases, the spreading of the fluid is much larger with the numerical solution.
At this stage of the research it is known that some work has to be done in order to

improve the wet and dry interface, in order to capture the discontinuity between wet
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zones and dry zones. In addition, the solid phase has to be incorporated into the code to
track the movement of large solid particles. These two issues will be assessed in the

following sections.

4.1.3 Numerical Treatment of the Wet-Dry Interface

The capability of simulate the drying and wetting of the bed is crucial when
solving mud dam-break problems. In this kind of events, most of the extension of the bed
is initially dry and it gets progressively wet as the mud flow advances down the slope.
Dry elements on sloping surfaces may cause numerical problems if handled incorrectly,
because the gravity term in the governing equations can generate unrealistic flows when
the bed surface is dry. Another major problem are the stress terms in the governing
equations, this terms are divided by the fluid depth H. Dry elements has H equal to zero,
which means that calculation over this elements will give non-defined results. In order to
avoid these serious problems dry elements should be eliminated from the FEM
calculation and the finite element mesh should be generated so that it will cover only the
region that is expected to be wet.

The wet-dry algorithm implemented in this work is an improved version from
one originally proposed by Kawahara and Umetzu (1986) and later proposed in the finite
element context by Umetzu and Matsumoto (1999). The algorithm was developed and
tested by Garcia at al. (2009) and it has been included successfully in many applications.

The wet-dry algorithm is as follows:
1.- At the beginning of each time step all elements are evaluated to see if they are

wet, partially wet, or dry. A completely dry element is defined when all nodal depths are
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less than a user-defined minimum depth or tolerance value H,;,, that can not be zero in
the case of mud-flows. A partially dry element has at least one node where depth H is less
than H,,;,. A wet element has all nodal depths higher or equal than H,,,,.

2.- If the element is completely dry the governing equations for the element

oH _ou v _, (84)
ot ot ot

These equations are discretized and solved using the finite element procedure
described before. Also, for these dry elements velocity components are zet to zero for all
nodes on the element.

3.- If an element is partially dry, the full equations are solved, but then velocities
components are set to zero for all nodes on the element.

4.- Nodal depths are not modified for any element.

4.2 Solid-Phase Numerical Solution Verification

A computer program, based on the ideas of Graham G. W. Mustoe, Colorado
School of Mines, was coded using Fortran 90 programming language to simulate the
movement of the solid particles following the algorithm described in chapter 3. Several
special cases were examined. These cases test the implementation of different force

algorithms in isolation, as free motion, single contacts and multiple contact simulations.

Tests were performed using the canal described in Figure 16, with walls at the

boundaries.
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4.2.1 Test 1: Normal elastic force, vertical

To test for the particle-base interaction, the test simulates a free falling particle
under gravity hitting the canal base. The canal is in horizontal position. Tangential forces
and damping are set to zero. The stiffness constant used varies from 10* to 10> N/m. The

particle, with radius 2.5 cm, is dropped from a height equal to 0.4 m.

Figure 32 shows the particle trajectories for two different stiffness constant, K1 =
10° and K2 = 10" N/m. The plot shows how the particle rebounds to its original height
after each contact. There is no movement in the x-y directions, momentum and energy are
conserved. Results are more accurate for the lower stiffness, this is related with the time
step used. In order to improve results for K1 a lower time step should be used to allow

more time stepts during time contact. Higher stiffness require the use of a lower time

step.
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Figure 32. Test 1, 7 position of particle with time t
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Figure 33 shows the particle velocity for the two different stiffness constant, K1 =
10° and K2 = 10* N/m. The plot shows how momentum is very well conserved after each

rebound. Cinematic of the particle is not totally satisfied probably due to accumulation of

numerical errors.
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Figure 33. Test 1, 7 velocity of particle with time t

4.2.2 Test 2: Normal elastic force, horizontal
To test for the particle-wall interaction, the test simulates a particle moving with

initial velocity in either x or y direction. Gravitational, tangential and damping forces are

set to zero.

X

Figure 34. Test 2, schematic diagram
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Figure 35 shows results for a particle with initial velocity in the y-direction. The
initial velocity used is 0.45 m/s. Particle radius is 1.0 cm and the canal is 10 cm wide.
Stiffness constant is set to K2 = 10* N/m. As can be seen, the particle rebounds
horizontally between the two walls of the canal with no loss of energy. There is no

movement in the x-z directions.
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Figure 35. Test 2, y position of particle with time t
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Figure 36. Test 2, y velocity of particle with time t
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Figure 36 shows particle y-velocity variation, there is momentum conservation

and particle cinematic is totally satisfied.

4.2.3 Test 3: Normal damping force

This test is identical to Test 1 but with the normal damping force accounted for.
The normal damping coefficient E used is 0.8, which means that velocity after the impact
must be 80% of velocity before the impact. Figure 37 shows how in this case, when the
particle rebounds, it fails to reach the original height and its height decays along time due
to damping. Figure 38 shows the decline in the normal velocity along time. Results show

that in this case the numerical solution is very close to the analytical solution.
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Figure 37. Test 3, z position of particle with time t
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Figure 38. Test 3, 7 velocity of particle with time t

4.2.4 Test4: Friction force, elastic

In this test, the elastic tangential force of the model is tested. Previous to gross

sliding, this tangential elastic force keeps the particle in equilibrium when placed over an

incline plane. No gross sliding occurs if z= Tan 6.

Figure 39. Test 4, schematic diagram

Gravitational, normal and damping forces were included together along with the

friction force to show that particles will not move under the extreme condition x = tan 6.
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Figure 40 shows how the tangential velocity changes in a harmonic manner
around the zero value, and declines over the time due to damping. Particles showed not

noticeable movement down the plane.
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Figure 40. Test 4, particle tangential velocity with time t
The following slope angles and friction coefficients were tested using tangential

linear stiffness ranging from 0.5 x 10* to 1.0 x 10*, results were very accurate for all the

range.

¢ M

6° 0.1

7° 0.12
10° 0.176
11.3° 0.2

Table 1. Test 4, slope angles tested with corresponding limit friction coefficients
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4.2.5 TestS: Friction force, gross sliding
This test is similar to test 4, but in this case y < fan @, so the particle is able to

slide over the incline plane. Solving particle equations of motion is known that

2

d = (sin® - 1, cos 9)% (85)

then, distance along the plane could be obtained numerically for different times ¢ to
ensure analytical solution is satisfied. Gravitational, normal, damping and friction force
were included. Normal stiffness constant is set to 10°, tangential stiffness constant is set
to 10*, friction coefficient is 0.1 and slope angle equals 11.5°. Results are in very good

agreement with equation (85) as shown in Figure 41.
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Figure 41. Test 5, distance traveled down the plane at time t

67



4.2.6 Test 6: Particle collisions, conservation of momentum

In this test one particle slides over the incline plane to then collide with two
particles that are at rest over the horizontal plane. The test was first performed including
gravitational and normal elastic force with no friction, then, second case includes friction

force.

Figure 42. Test 6, schematic diagram

In the first case, at the time of collision, 0.592 s, V1 = 0.98 m/s. After collision
V1=-0.938x102 m/s, V2 =0.254 m/s and V3 =0.736 m/s.

M1 =m V1 =m (0.98)

M2=m V1 +V2+V3=m(-0.938x107>+ 0.254 + 0.736) = m (0.98062)

Momentum is conserved.

In the second case, including friction with friction coefficient 0.1, collision occurs
at time 0.838 s. V1 = 0.567 m/s just before collision. After collision V1 = -0.608x10~
m/s, V2 =0.150 m/s and V3 =0.420 m/s.

M1 =m V1 =m (0.567)

M2=m V1 +V2+V3=m (-0.608x10>+ 0.150 + 0.420) = m (0.56392)

Momentum is conserved.

Further tests were carried out to check momentum conservation in all directions.

One example is shown in Figure 43 where the particle sliding over the incline plane
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collides with two particles, in this case at the same distance in x direction. The example

showed momentum conservation as well as perfect symmetry of movements on plane x-y.

4 &— 8

Figure 43. Test 6, example of momentum conservation

4.2.7 Test 7: Particle stacking, no overlap

This test simulates the free falling of five particles under gravity. The particles
rebound over the incline plane and then collide with walls or among themselves until they
reach equilibrium with velocities equal to zero. Particles, with radius 4.5 cm, are dropped
from a height equal to 0.572 m. Vertical walls are situated at x = 0 and x = 1 m. The
plane slope is 30°. Gravitational, normal, damping and friction force were included.
Normal stiffness constant is set to 10°, tangential stiffness constant is set to 104, friction
coefficient is 0.1 and restitution coefficient is 0.8. Figure 44 shows trajectory paths for all
particles. Particles collide with bottom plane, walls and other particles with maximum
overlap equal to 6 x 10* m. Equilibrium is reached with some staking as shown in Figure

45.
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Figure 44. Test 7, trajectory paths for five free falling particles on an incline plane
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Figure 45. Test 7, particle final positions
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4.2.8 Test 8: Particle terminal velocity, drag force

In this test, the drag force of the model is tested. The test simulates a free falling
particle under gravity, but in this case immersed in fluid.

A free-falling particle achieves its terminal velocity when the downward
gravitational force equals the upward drag force. This causes the net force on the particle
to be zero, resulting in no acceleration.

As the particle accelerates downwards due to gravity, the drag force acting on the
particle increases, causing the acceleration to decrease. At a particular speed, the drag
force produced will equal the particle's weight. At this point the particle ceases to
accelerate and continues falling at a constant speed called terminal velocity.

For a given particle of diameter d, the expression for terminal velocity, taking into

account gravitational, buoyancy and drag force is as follows

4gd(p -
v, = [ (86)
3C,p

In the test, the particle simulates a marble, with diameter d=2.5 cm and density
£,=2500 Kg/m®. The fluid density is p=1390 Kg/cm® and viscosity is £=0.162 Pa.s, in
case (), and p=1495.6 Kg/cm® and £=0.740 Pa.s, in case (b).

Figure 46 shows how the z-velocity of the particle in case (a) increases in
magnitude up to a constant value equal to 0.496 m/s. For this velocity, particle Reynolds

number is R., = 106.4 and the drag coefficient is C; = 1.1. Substituting the corresponding

values in equation (86) the resulting terminal velocity is V; = 0.49583 m/s. This result
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means that the terminal velocity obtained numerically is the solution of the non-linear

equation (86).
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Figure 46. Test 8, case (a), absolute value of particle z-velocity with time #

Figure 47 shows the particle terminal velocity for case (b), equal to 0.249 m/s. For
this velocity, particle Reynolds number is R., = 12.6 and the drag coefficient is Cy =

3.534. Substituting the corresponding values in equation (86) the resulting terminal

velocity is V¢ = 0.24896 m/s.

0.3 7

0.25

0.2 /-
0.15 /

0.1 /
0.05 /

0.00 0.10 0.20 0.30 0.40 0.50

time (s)

z velocity (m/s)

Figure 47. Test 8, case (b), absolute value of particle z-velocity with time ¢

After finishing these different tests it is concluded that the numerical model

developed for the simulation of solid particles is ready to be incorporated in the main
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program RiverFLO-2D. Verification of the computer program will go after using

experimental results.

4.3 Model Pre-calibration using Experimental Data

A series of experiments were carried out in a laboratory channel using
homogeneous mixtures and solid particles. The experiments were performed in a 1.9 m
long, 0.19 m wide, Plexiglas walled laboratory flume, with adjustable slope. The
downstream part of the flume was connected to a wood horizontal platform, 0.75 m long
and 0.95 m wide as shown in Figure 48. A dam-break type of flow was initiated by
releasing mixtures from a 0.40 m long reservoir situated on the upstream part of the
flume. The release of mixtures was caused by an abrupt removal of a gate situated
between the reservoir and the flume, Figure 49. The propagation of the fluid wave and
the particle trajectories were filmed by two video cameras, one on the side and one on top

of the flume.

Figure 48. Laboratory flume, Fluid Mechanics Institute, Universidad Central de

Venezuela
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Figure 49. Flume reservoir and gate, Fluid Mechanics Institute, Universidad Central
de Venezuela

Water-clay mixtures were used in all the experiments, with volume sediment
concentration from 18.0 % to 26.5 %. For preparation of the mixtures, kaolinite clay with
specific unit weight of 2.77 was used. Density of mixtures was measured in the
laboratory and rheological parameters y and 7, were determined using equations (9) and
(10) in which «;, f;, a; and f» are a; = 0.621x10’3, =173, a;=0.002 and S, =40.2.

Rheological characteristics of experimental fluids are given in Table 2.

Cv (%) | p (Kg/m3 ) | u(Pa.s) | t,(Pa)
18.5 1330 0.0152 | 3.40
23.5 1410 0.0362 | 25.34
26.5 1460 0.0608 | 84.64

Table 2. Rheological properties of experimental fluids
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4.3.1 Experiment1

In this experiment the flow of a mixture of 23.5% volume concentration was
studied. The flume bottom slope was set to 4° and the initial volume released was 6.3 L.
For ¢ = 3 s the wave practically stopped flowing as shown in Figure 50.

The propagation of the wave was recorded for different times ¢ to construct the
spreading diagram showed in Figure 51. The canal was reticulated every cm to facilitate
readings, Figure 52.

As shown in Figure 51, velocity of the front wave is practically constant up to the
vicinity of the stopping point. The frontal wave velocity decreases progressively until the

fluid stops.

Figure 50. Experiment 1, fluid stops flowing over the sloping channel

75



Figure 51 compares the experimental data with the numerical solution using
Bingham rheological formulation. Numerically, the condition of stopping the fluid is not
easy to achieve; however, it is possible to appreciate how the maximum velocity in the
fluid decreases with time and it becomes very close to zero about the time the fluid must

stop. This fact shows that velocity criteria could be used numerically to stop the fluid.
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Figure 51. Experiment 1, spreading relation

Figure 52. Experiment 1, measuring wave front position
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Figure 53. Experiment 1, free-surface longitudinal profiles and U, value at time ¢

Figures 53(a) to 53(c) show free-surface longitudinal profiles for time 3 s and

above. The figures also show how the maximum velocity value decreases progressively
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to a value very close to zero, time when it is possible to consider the fluid wave should
stop.

The final profile obtained numerically, is compared with the final profile
measured at the laboratory flume in the following figure. This very good result was
obtained implementing the wet-dry algorithm mentioned in previous chapter, using

Bingham rheological formulation and using mesh refinement.
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Figure 54. Experiment 1, final free-surface longitudinal profile

Figure 55 compares spreading relation and maximum velocity for old mesh
(element size 3 cm) with the corresponding results using the new mesh (element size 1
cm). Results show great improvement when mesh is refined. The resulting spreading

relation after refinement is more accurate than the one resulting with the old mesh.
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Figure 55. Experiment 1, spreading relation comparison, old mesh and new mesh

The following two figures compare longitudinal profiles and maximum velocity
for the two different mesh sizes. As it is depicted in the Figures 56 (a) and 56 (b), the
mesh refinement contributes to improve substantially the solution in the advancing front.
The wet-dry algorithm implemented eliminates dry elements from the calculation, then
there is a well defined interface between dry and wet elements.

However, there is a numerical tendency to form a front tail that is not real. This
front tail can be reduced decreasing the element size as well as reducing the minimum
height parameter, which makes the distinction between dry and wet elements. Best results
were found with a minimum height or height tolerance equal to 0.01 times the average

height of the fluid.
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Figure 56. Experiment 1, final free-surface longitudinal profiles and U,,,,. (a) mesh size 0.03 m (b) mesh size 0.01 m
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4.3.2 Experiment 2

The objective of this test was to study the spreading of the fluid in the fan, to
verify the 2D fluid-phase formulation. In the lab, by time # = 1.5 s the front wave of the
fluid had reached the end of the glass channel and it was entering into the horizontal

platform. By time ¢ = 2.4 s the mud stopped flowing forward, but continued flowing to

the sides as shown in Figure 57.

(a) (b)

Figure 57. Experiment 2, (a) fluid at time 2.4 s. (b) fluid at time 8.4 s.

In this case, the flume bottom slope is 9.54° and the initial volume released was
7.7 L. Figure 58 shows the spreading relation in the longitudinal direction for this
experiment. The velocity of the front wave in the numerical solution is slower than the
experimental velocity, however, the maximum velocity plot shows that by time ¢ = 2.44 s

the mud do not move forward anymore, as it was in the actual experiment.
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Figure 58. Experiment 2, spreading relation

Figure 59 shows how by the time t=7.25 s velocities along the longitudinal axis
are very close to zero. Final free-surface profiles are compared in Figure 60 at that time.

Numerical solution is in very good agreement with experimental results.
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Figure 59. Experiment 2, free-surface longitudinal profile and U, V. values at
timer="7.25s
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Figure 60. Experiment 2, free-surface longitudinal profiles at time t=7.25 s

Figure 61 shows a contour level map elaborated with height measurements done
at the lab. It can be seen that maximum height (2.5 cm) occurs in the center just at the
discharge zone of the channel. Figure 62 shows contour levels obtained numerically, in
this case units are in meters. Comparing the two figures it can be appreciated that

numerical results are very close to the experimental data.

y (cm)

x (cm)

Figure 61. Experiment 2, experimental data, contour levels
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Figure 62. Experiment 2, numerical results, contour levels. Scales in m.

The following figure shows the contour level maps overlapped. It could be

noticed the difficulty of modeling the front of the mud wave.
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Figure 63. Experiment 2, comparison of experimental and numerical contour levels
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Even though the wet-dry algorithm has clearly improved the front modeling, it is
still a numerical diffusion problem that do not allow to have a fully representation of the
front, as it is in Figure 64. This problem causes also difficulties for stopping the flow

completely.

Figure 64. Experiment 2, wave front

4.3.3 Experiment 3

In this experiment the same mixture used in experiments 1 and 2 is utilized. In
this case, the flume bottom slope is 9.54° and the initial volume released was 6.4 L. The
objective of this test was to study the spreading of the fluid in the fan and to study
particle movement into the fluid.

14 particles, D = 2.5 cm and p, = 2500 Kg/m’, were placed over a small piece of
wood inside the mud reservoir, just behind the gate as shown in Figure 65(a). By the time
the fluid was released, the piece of wood was quickly removed, so the particles could

start their movement along the channel with the fluid.
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Particles depicted clearly the velocity profile shape at early times during the
experiment; however, as the flow progressed down-stream, particles tended to move to
the channel sides. The following plots shown the sequence of the events obtained

numerically.

(a) (b)

Figure 65. Experiment 3, (a) initial position of particles, (b) final position of particles

Figure 66(a) shows the particles resembling the velocity parabolic distribution
across the channel; then, the following figures shows how particles become disorganized.
It can be noticed how particles in the center tend to move forward to reach the front of the
wave, particles in the second row displace particles in the first row to the sides and these
are then left behind because of the fluid velocity gradient. By the time the flow reached

the fan, particles moved to the sides of the flow as it is shown in Figure 65(b).
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Figure 66. Experiment 3, (a) t=0.5s,(b)t=1.6s,(c)t=2.45s,(d)=6.S5s
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At this point it is important to mention the effect of the boundary condition for
velocity on the sidewalls. Strictly speaking this condition should be a no-slip condition so
u = 0 at the wall. However, in reality, the velocity gradient near the wall is large and the
velocity near a wall quickly becomes non-zero. Therefore, in practical application of the
model the no slip condition formulated in finite elements becomes very restrictive,
basically causing unrealistic delay of the flow. Up to this simulation, the no-slip

condition has been replaced by a weaker condition, impermeabilityu,, = 0, and tangential

velocity u, =0.9(i 7). If a total slip condition is imposed, then no velocity profile

across the channel would be resembled, that is the reason of using a boundary condition
coefficient BC,oor = 0.9. This parameter was calibrated when performing simulations of
previous experiments. When working with particles this parameter is also very important,
in this case it could be seen that there exist some delay on the particles positioned close to

the walls; however, higher values for this coefficient would cause non real results, as

shown in Figure 67, when a fully slip condition is imposed u, =1.0 (i - 7).

Figure 67. Experiment 3, final position of particles, numerical sol. 100% slip
boundary condition
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Figure 68 compares final position of particles obtained numerically, using the

constant equal to 0.9, with final position of particles measured at the lab.

Figure 68. Experiment 3, final position of particles, (a) numerical sol. 75% slip
boundary condition, (b) experimental data

The plots exposed in Figure 70, show velocity transversal distribution and flow
depth for a section A situated at 2.08 m from the canal up-stream end, see Figure 69 as

reference. The plots were obtained numerically for different times .
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Figure 69. Experiment 3, final flow profile over the channel, section A located at
x=2.08
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Figure 70. Experiment 3, velocity distribution and flow depth for section A located at x=2.08 m
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The figures show how velocity u distribution is parabolic and decreases with time,
from the sides of the flow to the centerline. On the other hand, transversal velocity v
decreases with time from the centerline to the sides and distribution is anti-symmetrical,
as can be expected. The last figure shows the final depth of the fluid in that section with

velocities very close to zero.

4.3.4 Experiment 4

In this experiment a mixture of concentration 26.5% was studied. In this case, the
flume bottom slope was increased to 10.7 © and the initial volume released was 11.1 L.
The objective of this test was to study the spreading of the fluid and study particle
movement into a mixture with higher clay concentration. Figures 71 (a) and (b) show

pictures of the experiment when the flow reaches the fan.

Figure 71. Experiment 4, (a) t=20s, (b) t=40s

In this experiment, the velocity of the front wave is basically constant until
reaching 1.6 m, from this point the celerity of the wave decreases abruptly, taking about

40 s for the fluid to stop completely.
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Figure 72 shows the spreading relation in the longitudinal direction for this
experiment. This relation is compared with numerical results obtained using Bingham

rheological model and using Cross rheological model.

—— Exp. Data
—=— Bingham For.
—— Cross For.

X (m)

Figure 72. Experiment 4, spreading relation

The figure resumes what can be appreciated during all the simulations. Both
rheological formulations produce very similar results, they are not totally capable of
resembling the spreading of the flow; however, they show a final fluid extend, when
velocities in the fluid become very close to zero, very similar to the real one. Bingham
formulation shows to be more effective in decreasing the velocities along the fluid to
zero. Figure 73 shows the final profile obtained at time t=10 s using Cross formulation.
Results show that the final profile using the velocity criteria is very similar to the one
measure in the lab.

In this experiment 14 particles were placed on the fluid in a similar manner that
was done in the previous experiment. In this case, particles depicted the velocity profile

shape at early times of the experiment; and as the flow progress down-stream, particles
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tended to keep the parabolic distribution. Particles close to the walls were kept some

behind.
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Figure 73. Experiment 4, final fluid profile, numerical and experimental results

The following plots shown the results obtained numerically. Figure 74(a) shows
the particles resembling the velocity parabolic distribution across the channel; then, the
following figures show how particles progress with a similar distribution along the

channel. This fact can be appreciated in pictures shown in Figure 71.
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Figure 74. Experiment 4, (a) t=0.5s,(b)t=1.5s,(c)t=3.25,(d)=9.0 s
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Figure 75 compares final position of particles obtained numerically, using 75% of
slip boundary condition, with final position of particles measured at the lab. It can be
observed that particles on the sides are left behind in both cases, more openly in the

experimental case.

X (m)

Y(m)

Figure 75. Experiment 4, final position of particles, (a) experimental data, (b)
numerical sol. 75% slip boundary condition

4.3.5 Experiment5

In this experiment the mixture of concentration 23.5% was studied. The flume
bottom slope was set to 10.7 ® and the initial volume released was 6.8 L. The objective of
this test was to study the movement of several particles with different sizes into the fluid.
In order to do that, 20 particles, D = 2.5 cm and p, = 2500 Kg/m’, and 50 smaller
particles with D = 1.6 cm and p, = 2500 Kg/m3, were place randomly into the fluid
reservoir before the fluid was released.

Figures 76 (a) and (b) shows the flow of mud and solid particles at two different
stages of the experiment. Particles are dispersed along the fluid with a little higher

concentration at the front. Some small particles remained at the channel upper part while
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larger particles moved downwards; however, as it is depicted in figure 77, there was no

accumulation of particles in the fluid front, as it could be expected.

Figure 77. Experiment 5, final extend of the flow and particle positions

The following figures shown the results obtained numerically for experiment 5.

The same mixture and amount of fluid was used in the simulation, the same amount and
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type of particles too, however; the same initial position of particles was not possible to

resemble exactly. The particles were placed randomly in the fluid before the simulation

started, as we did in the lab. Figures 78(a) to 78(d) show the particles as they move

downstream with the fluid. Figures show some important facts:

Particles do not overlap.

Particles do not collide in such a way they can be placed out of the fluid.
Large particles reach the channel down-stream, some of them never
entered into the fan.

Some small particles remained in the channel, stuck in the fluid.

Some large particles formed a structure oriented to the left side of the fan
similar to boulder deposits frequently found in debris flow events (USGS

Report 01-0144).
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Figure 78. Experiment 5, top view, (a) t=2.0s,(b)t=2.75s,(c)t=3.45s,(d)=5.0s
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Figure 79. Experiment 5, side view, (a) t=2.0s,(b) t=2.75s,(c)t=3.45s,(d)=5.0s

Figures 79(a) to 79(d) shows the simulation from a side view.
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4.3.6 Sensitivity Analysis

The main parameters of the numerical model that must be calibrated for an
specific physical problem are: friction coefficient x; normal stiffness Ky, tangential
stiffness K7, restitution coefficient E, boundary condition coefficient BC,,.; Manning’s
roughness coefficient N, the empirical coefficients «; and f;, which define the
exponential relationship between viscosity of the fluid and volume sediment
concentration, and the empirical coefficients a, and f,, which define the exponential
relationship between the fluid yield strength and volume sediment concentration. In order
to assess the relative importance of each variable, an expression used by McCuen and
Snyder (1986) was chosen for the sensitivity analysis. The sensitivity coefficient is the
ratio of the relative output change and the relative input change. If for any input
parameter whose value is /;, an output O; is produced, and for the input parameter /, the

output is O,, the sensitivity coefficient is:

9, Iy (87)

The normalizing values O;, and I;; are the average of outputs O; and O, and the
average of inputs /; and I, respectively. The use of this sensitivity index has the
disadvantage of not taking into account the interaction between variables but, as these
authors suggested, it is a simple a preliminary way to examine the behavior of the model

variables.
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Model sensitivity was estimated in one of the experiments presented previously,
experiment 3, which allows the study of the fluid and particle dynamics. The parameters
of the model are gathered in Table 3 and Table 4. In Table 3, the distance traveled by one
of the particles along the flume is the output variable, specifically one particle situated
initially at the front row in the middle of the channel. In Table 4, the maximum extend of
the fluid measured along x-direction is the output variable.

Table 3 shows how sensitive is the model with respect to the parameters included
in the solid phase formulation, which is the reason why the total distance traveled by a
specific particle was chosen as the output variable. This table includes also the BC factor
since the particle dynamics is affected substantially by this parameter. Results in this
table show that the model is not very sensitive to the normal stiffness Ky, tangential
stiffness K7, and restitution coefficient E. There is some sensitivity to the variation of the
friction coefficient xy specifically in the particle movement along the horizontal fan.
Figure 80 shows how the movement of the particle along the channel (first 2.00 m) is not
affected by the friction coefficient, but it is affected once the particle reaches the
horizontal fan. Less friction coefficient allows the particle to travel a longer distance.

Results in Table 3 also show that the model is very sensitive to the BC factor
parameter, this factor is related with the fluid boundary condition at the channel walls,
and as it was explained previously, this condition defines the velocity profile across the
channel, reason why is very influential in the particle dynamics.

Table 4 shows how sensitive is the model with respect to the parameters included
in the fluid phase formulation; then, the maximum extend of the fluid measured along x-

direction was chosen as the output variable.
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Parameter I I; I, 0y 0; 0; S AY) IS Sminl | 1S28minl
Hr 0.1 0.01 0.2 2.34 2.54 2.28 -0.0501 | -0.0390 7.83 6.09
Kn 100000 50000 200000 2.34 2.34 2.35 0.0000 | 0.0064 0.00 1.00
Kr 10000 5000 50000 2.34 2.35 2.34 -0.0064 | 0.0000 1.00 0.00
E 0.8 0.4 1 2.34 2.31 2.35 0.0194 | 0.0192 3.03 3.00
BC factor 0.9 0.5 1 2.34 2.27 2.45 0.0531 0.4363 8.31 68.21
Table 3. Values of the model parameters considered for the model sensitivity analysis with the corresponding

sensitivity coefficient § and the ratio 15/S,,;,| where S,,;, = 0.0064

Parameter Iy I; I 0y 0, 0, S S, 1S1Sminl | 1S2Sinl
BC factor 0.9 0.5 1 2.51 2.49 2.70 | 0.0140 | 0.6929 1.17 57.74
a1 6.21E-04 | 3.10E-04 | 1.24E-03 | 2.51 2.70 2.49 | -0.1092 | -0.0120 9.10 1.00
Bi 17.3 14.3 20.3 2.51 2.52 2.48 | -0.0209 | -0.0754 1.75 6.28
az 0.002 0.001 0.004 2.51 2.70 2.25 | -0.1094 | -0.1639 9.12 13.66
B2 40.2 34.2 46.2 2.51 2.70 1.30 | -0.4522 | -4.5732 | 37.68 381.10
N 0.02 0.01 0.04 2.51 2.70 2.45 | -0.1094 | -0.0363 9.12 3.02

Table 4. Values of the model parameters considered for the model sensitivity analysis with the corresponding

sensitivity coefficient § and the ratio 15/S,,;,| where S,,;, = 0.0120
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Figure 80. Effect of the friction coefficient in particle movement

Results show that the model is very sensitive to the empirical coefficients «, and
>, which define the exponential relationship between the fluid yield strength and volume
sediment concentration. These are key parameters for the calibration process, since they
are empirical and correspond to the mixture that compound the fluid. The model shows
less sensitivity to the Manning’s coefficient, and the empirical coefficients «; and S,
which define the exponential relationship between viscosity of the fluid and volume
sediment concentration. The BC fq0r parameter is also very significant in this case,
which confirms the high sensitivity of the model with respect to this variable.

Finally, it is important to mention that all the parameters listed as initial value in

the tables are the parameters that were used for the simulation of all the experiments.
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5 MODEL PRELIMINARY APPLICATION
5.1 Venezuela’s 1999 Alluvial Fan Debris Flooding Event

Heavy rainfall from the storm of December 14 to16, 1999, triggered thousands of
shallow landslides on steep slopes of the Cerro El Avila, north of Caracas, Venezuela,
and caused flooding and massive debris flows in the channels of major drainages that
severely damaged coastal communities along the Caribbean Sea. The largest fan on this

area is that of San Julian River at Caraballeda, shown in Figure 81.

Caraballeda 3

Figure 81. Caraballeda Alluvial Fan, Vargas, Venezuela

The topography of this region of coastal Venezuela is extremely steep and rough;
highest elevations range between 6,000 and 7,000 feet and are only a mile inland from
the coast. The streams and rivers drain steep canyons, emerging on to alluvial fans before
emptying into the Caribbean Sea. The large fan of the San Julidn River at Caraballeda
was one of the most heavily damaged areas in the December 1999 event. The thickness of
sediment deposition, maximum size of transported boulders, and size of inundated area

were all notably larger in this drainage in comparison to the other close watersheds.

104



L F1a. Carabailedn s
- ‘ H Caribe : - Pta Bl Tige

]' ':]j:' ; Tanagiwarena

> ;i 5
P OCEIDENTAL -
T2 !

2 K’-—uﬂ-
. "
/‘.. L eyE

(¥ A

Figure 82. Watersheds situated along coastline, north of Caracas, Venezuela

By December 1999, Caraballeda was one of the more intensively developed
communities in the area, with many high-rise buildings and large individual multi-story
houses. San Julian River was canalized on one reach of the fan with one concrete
trapezoidal 25 m wide channel, Figure 83. During the storm, the peak volume of flow,
probably during a debris-flow surge, exceeded the channel capacity, sediment and debris
blocked two bridges over the channel, resulting in multiple stream avulsions and
subsequent flows spreading boulders and debris throughout the area.

The flow overcame the channel in several places, notably wherever sections or
lineaments of the channel changed direction. Pre-1951 topographic maps show that the
main course of the San Julidn River followed a more or less straight path across the
western part of the fan. In the events of December 1999, one of the stream avulsions

followed the pre-1951 course, as shown in Figure 84.
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San Juhan River
concrete channel

San Juhan River

Figure 83. Aerial view of San Julian river, March 1999

1.- Fan apex
2.- Avulsion zone
3.- Channel comrse

4.- Pre-1951 comse

Figure 84. Aerial view of San Julian river, December 1999
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Outside of the main channel, flows inundated the second and third stories of
several apartment buildings, causing their partial collapse, and also burying or completely
destroying many 2-story residential structures. Further down the fan, flows followed the
paths of streets and openings between houses; the depth of sediment deposits diminished,

but still exceeded one meter in several locations.

Figure 85. Buildings and houses partially buried by sediment in Caraballeda,
December 1999
Following the December 1999 events, the US Geological Survey studied the
affected area (Wieczorek et. al 2001), measuring slope, deposit thickness, and boulder
size from the fan apex to the distal end of the fan near the coastline. Data was used to
map the distribution and thickness of deposits and to draw contours of maximum boulder

size, as shown in Figures 86 and 87.
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Figure 86. Contours of maximum transported boulder size on the Caraballeda Fan,

Venezuela. From USGS , 2002

According to USGS measurements and observations, see Appendix C, boulder
size ranged from 1.0 to 6.0 m of nominal diameter, largest boulders were found in the
avulsion zone, location where more accumulation of boulders was also observed.

The thickest deposits were also in this zone, at this location, the fan slopes ranged

between 5 and 6 degrees, and the maximum thickness of deposits was 7 m. Deposits on
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slopes of 2 to 3 degrees, near the shoreline, were predominantly fine-grained and less

than 1 m thick.

Figure 87. Flooding deposit thickness on the Caraballeda Fan, Venezuela. From
USGS, 2002
5.2 Modeling procedure
The following figure shows the topography data used to define the finite element
mesh. This data was interpolated from the original cartographic information prior to the

event (Garcia, 2008).
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Figure 88. Topography Data Caraballeda Fan, Vargas, Venezuela. Legend indicates
elevations in m.

An uncertain aspect in simulating debris flows is the estimation of the
hydrograph, since the inflow sediment concentration throughout the event must also be
provided. For the San Julian debris flow event, the clear water hydrograph of generalized
cumulative rainfall for a 500 year-return period was used as input in the fan apex (Garcia.
The hydrograph shown in Figure 89 was modified, increasing the volume, by imposing
an average volume sediment concentration. Figure 90 shows the volume sediment
concentration distribution. For simplicity, it was assumed that the sediment volumetric

concentration was constant and equal to the average value of 0.3.
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Figure 89. Inflow hydrograph for a 500 year-return period. Garcia, 2008
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Figure 90. Volumetric sediment concentration distribution. Garcia, 2008

The final hydrograph used as input in the fan apex is shown in Figure 91. The plot

illustrates the input flow rate during 10 hours (simulation time), from real time t = 10 h to

real time t = 20 h and includes the volume sediment concentration.
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Figure 91. Inflow hydrograph for a 500 year-return period, including concentration

of solids equal to 0.3

A second uncertain aspect of the simulation is the input rate of solid particles, or
identically, boulders. It is assumed that during the simulation time a maximum of 1600
boulders, with different sizes, will be included in the event. The rate of input will be
variable for the different scenarios. This amount of boulders is chosen to have a
manageable running time.

The Finite Element mesh, with 22500 triangular elements, is shown in Figures 92
and 93. The element characteristic size is approximately 12 m in average. At the fan
apex a fictitious channel was extended upstream, to locate particles and allow the fluid to
entrain boulders before entering the fan area.

A Manning coefficient equal to 0.065 is considered in the whole fan area in order

to take into account the terrain irregularity. The same value was used by Garcia, 2008,
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and was found a good estimate for the area. The empirical relationships (9) and (10) were
selected for the calculation of fluid rheological properties, using the parameters for water-
clay mixtures. As a result of the volume sediment concentration, C, = 0.3, p = 1531
Kg/m’, = 0.11 Pa.s, 7,= 90.3 Pa.

Density for the particles (boulders) was p = 2600 Kg/m®, density of Gneiss

boulders, type of boulders mostly found in the area by USGS.

B . FTA, CARABAL LEDA
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Figure 92. Finite Element Mesh, San Julian simulation
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The coastline was assumed as a free boundary with the exception of two
segments, A and B in Figure 92, where the major discharges to the sea took place. In

these segments a constant depth equal to the water elevation, 2 m, was imposed.
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Figure 93. Finite Element Mesh zoomed at fan area

5.3 Model results

In this case of study 1600 particles are placed into the fan during the first three
hours of simulation at a rate of 50 particles every 6 min. The input flow rate at the fan
apex is given by the hydrograph in Figure 91. This amount of particles was selected to
ensure a manageable running time.

Figure 94 and 95 show the flooded area at time t = 1.8 h and time t = 2.2 h
respectively, being 2.2 h the time corresponding with the peak discharge in Figure 91.
Comparing these figures with the post-event aerial view shown in the background, it can
be noted that the model acceptably reproduces the extent of the area affected by the

debris flow. The simulation results show an inundation area some larger than the one
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observed in 1999 events, when comparing with the post-aerial view in Figure 85.
However, it must be taken into account that this simulation was done without modeling
the concrete canal exact dimensions and surface properties, then more severe results

could be expected.

Figure 94. Flooded area at time t =1.8 h, Legend indicates flow depth in m.
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It have been concluded in previous studies that even though the concrete canal
was totally obtruded during the event, its presence was relevant during enough time to
conduct the flood to the sea and decrease the inundation in the surrounding area.

Not counting shoreline bays and the fictitious channel at the fan apex, the
maximum flow depths take place in the avulsion zone, 5.5 m, as it can be read in Figure
95. According to the USGS report, one of the largest thicknesses of the alluvial deposits

was measured in this zone and it was in the order of 4 to 5 m.

By o

Figure 95. Flooded area at time t =2.2 h. Legend indicates flow depth in m.
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Maximum fluid depth in the urban areas was between 2 and 3 m according to
Garcia 2008, decreasing to 0.5 to 1 m in zones closer to the shoreline. Results in Figure
95 are in this range.

Figures 96 and 97 show the velocity field at time t = 1.8 h and t = 2.2 h

respectively.

Figure 96. Velocity field at time t =1.8 h. Legend indicates velocity in m/s.

. It can be seen that major velocities occurs in the fan apex, where the discharge of

the river is simulated. Velocities decrease at the urban areas, ranging from 0.5 to 3 m/s at

117



1.8 h and from 1.0 to 6 m/s at 2.2 h, time of the hydrograph maximum value. Higher
velocities develop along the concrete channel, reaching 8 m/s, and in the avulsion zone,
reaching 10 m/s. The velocities calculated by the model are in good agreement with those

estimated by USGS, which ranged from 1.3 to 13.6 m/s, see Appendix C.

2 i A i e
Figure 97. Velocity field at time t =2.2 h, Legend indi

cates velocity in m/s.
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Figure 98 shows how solid particles, boulders, are transported by the flow along
the main drainages at time t = 1.8 h. It is interesting to see how the largest boulders take
the path of the concrete channel, while smaller boulders take the pre-1951 river
alignment. According to the USGS report, the slope at zone 4, pre-1951 river orientation,
was 4.0 degrees, while zone 3, concrete channel direction, was steeper, with a slope
gradient of 5.5 to 6 degrees, then larger boulders were transported to this side. These
values of mean nominal diameter and slope steepness reflect USGS observations that for
the larger transported and deposited boulders there was a proportional relationship

between boulder size and slope steepness.
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Figure 98. Particle positions at time t =1.8 h, Legend indicates diameter in m.
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Figure 99 shows boulder positions after 6 hours of simulation in comparison
with contours of maximum boulder size given by USGS. By this time in the simulation
all boulders are already deposited. Smaller boulders continue taking the pre-1951 river
alignment, some of them reached the shoreline or entered into the sea. Larger boulders
were deposited in the avulsion zone or took right direction to the concrete channel.
None of these large boulders reached the shoreline.

According to USGS the largest boulders were found in the avulsion zone, within a
thick matrix, evidence that strongly supports transport by debris flow. At other sites, the
largest boulders were observed isolated along the concrete channel, fact that suggests that
these boulders moved sliding along the bottom of the channel in a dilute fluid until
deposition occurred (USGS Report 01-0144). There is no indication of big boulders close
to the shoreline at this site of the fan.

According to Takahashi, 1991, during the process of deposition, debris flows
deposit the boulders in order from bigger to smaller as it proceeds downstream on alluvial
fans. This process was better observed along the pre-1951 river direction and it was also
replicated in the numerical simulation.

Figure 99 (a) shows the data surveyed by USGS. USGS map show size of
boulders contoured from measurements using 0.5 meter contours. USGS measured the
size of several boulders deposited in the Caraballeda alluvial fan, recording the lengths of
the major three axes for all boulders. In terms of nominal diameter, equal to the cubic
root of the product of these dimensions, the mean nominal diameter of boulders deposited

at different stations was tabulated and is given in Appendix C.
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Figure 99. (a) Contours of maximum boulder size at the Caraballeda Fan. (b) Particle positions at time t =6.0 h,
diameter (m)
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Some of these stations are depicted in Figure 99 (a), for station S1 the mean
nominal diameter was 1 m, while some larger boulders are deposited slightly further
down the fan towards station S2, with 3.5 m nominal diameter. For comparison, boulders
deposited at station S3 and S4 had mean nominal diameter of 3 m, and boulders deposited
at station S5 had mean nominal diameter of 5 m. The final distribution of boulders
obtained numerically shows similar results as it is depicted in the map illustrated in
Figure 99 (b).

This preliminary application illustrated the capability of the model to reasonably
reproduce large scale events. The model showed to be effective in the simulation of a real
debris flow event over irregular slopes; fluid variables, velocity and depth, and final

deposition of particles where well calculated with this new numerical model.
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6 CONCLUSIONS

This thesis research describes the development of a quasi three-dimensional
mathematical-numerical model to simulate stony debris flows, considering a continuum
fluid phase and large sediment particles, such as boulders, as a non-continuum phase.

The fluid phase governing equations are the well-known shallow water equations,
where the stress terms account for the bottom friction using the Manning’s formula and
the internal friction losses are implemented through a constitutive relation. Two different
non-Newtonian constitutive relations are evaluated in this work, the Bingham rheological
model and the Cross rheological model.

The fluid phase equations are solved using the Finite Element Method and a four-
step, selective lumping, explicit time stepping scheme, that does not require simultaneous
solution of the algebraic system of equations, usually required in implicit finite element
methods.

Both formulations, Bingham and Cross, provide very stable results, even in the
range of very low shear rates. In the simulation of mud dam-break problems, Bingham
formulation is better able to simulate the stopping stage of the fluid; however, Cross
formulation is more accurate for early stages of the solution, where Bingham is not as
accurate.

The capability to simulate drying and wetting of the bed is crucial when solving
mud dam-break problems. The implementation of a wet-dry algorithm improves
noticeably the representation of the fluid frontal wave and numerical errors are
considerably reduced when dry elements are eliminated from the Finite Element Method

calculations.
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Variation of the selective lumping parameter also enhances the numerical solution
in the advancing front; values between 0.85 and 0.95 produce stable results, been 0.925
the value that provided more accurate results.

In practical applications, the no-slip boundary condition formulated in finite
elements becomes very restrictive, and may cause unrealistic delay of the flow. However,
slip boundary condition may cause other serious errors, as in the simulation of channel
flows. If a total slip condition is imposed at the channel walls, then no velocity profile
can be reproduced across the channel. The no—slip boundary condition can be replaced by

a weaker condition, such as total impermeability and partial tangential velocity. The
relationship u, =0.9(ii - 1) produced very accurate results in the simulation of the dam-

break experiments performed in this work.

The solid phase governing equations are based on the principles of the Discrete
Element Method. Particles’ trajectories are tracked using Newton’s second law and the
forces considered are gravity, buoyancy, fluid drag force and collision forces. The
acceleration of the particle is computed from the particle governing equation and it is

then numerically integrated to find velocity and displacement.

To ensure stability and accuracy of the numerical integration, it is important to
guarantee a smaller time step than the minimum critical time, or time of impact, defined
in equation (26). It was found during this work that a minimum of three time steps per
time of impact are required to ensure a stable and accurate solution.

The simulation of lab experiments served for the verification of the numerical

model and demonstrated the capability of the model of simulating the motion of discrete
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particles in the fluid flow, showing that particles do not overlap and replicating
realistically particle-particle and wall-particle collisions.

The sensitivity analysis performed showed that the model is very sensitive to the
empirical coefficients a, and [, which define the exponential relationship between the
fluid yield strength and volume sediment concentration. The BC fact0r parameter resulted
also very significant; this factor defines the tangential velocity boundary condition at the
walls. The model showed less sensitivity to the Manning’s coefficient N, and the
empirical coefficients «; and f;, which define the exponential relationship between
viscosity of the fluid and volume sediment concentration. The model showed very few
sensitivity to the parameters related with the solid phase formulation; the normal stiffness
Ky, tangential stiffness K7, and restitution coefficient £. There was some sensitivity to the
variation of the friction coefficient uy specifically in the particle movement along the
horizontal fan.

The final application to the debris flow events that occurred in Northern
Venezuela in1999 illustrated the capability of the model to reasonably reproduce large
scale events. Results showed that the model reasonably simulates the extent of the area
affected by the debris flow and demonstrated the model capability of replicating the main

boulder accumulation areas, including size distribution, surveyed by the USGS.
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7 RECOMMENDATIONS

The numerical model developed in this work for the simulation of debris flows is
based on the well-known shallow water equations. This equations are derived assuming
that extend of the fluid is much larger than its depth and assuming that slopes are
relatively small, less than 10°. This numerical model must be used under these conditions.

In this work, the rotation of the particles is not considered. The effect of particle
rotation and the corresponding lift produced could be modeled by solving for the angular
velocity of the particles in the angular equation of motion, including the torque exerted
on them by the fluid and by the contact with other particles. It is recommended to include
this effect if dynamics of particles would be study over the area of deposition,
specifically when particles leave the fluid and continue moving and interacting with other
particles.

This numerical model considers only spherical particles, it is recommended to
extend the program to work with general shapes. Theory of clusters formed with
spherical particles could be use, as described in Mustoe G. W. and M. Miyata, 2001.

Finally it is recommended to improve subroutines for detecting particle contacts
and for finding the element where the particle is located, this will decrease considerably

the solution computational time.
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APPENDICES

APPENDIX A
Derivation of fluid governing equations
Sample volume dxdydz:
dz
dy
1. Continuity: dx

apq,) opq,) apq,) A(p dxdyd:
_ X _ Y _ z __ (p dxdydz)
P4, [pqx+ Py dx +pqy pqy+ o dy +tPq ~|Pa,+ Py dz 5

q, = udxdydz
= vdxdydz

q y 3%

qZ = wdxdydz

u ov ow_

+—+ =0
ox 0Oy Oz

Depth integration:

Applying Leibnitz rule and setting bottom velocities equal to zero gives

B R PR UL A PR
H\ ox ox ) H{ oy o) H

Substituting free surface boundary condition:

OH OH OH
H)=—- H)— H)—
w(H) 3 +u( )8x +v( )6y
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ends to

OH N O(uH) N O0(VH)
ot ox oy

=0

2. x- Momentum:

Du
Fx =ma = pdxdydzE

oP arxx arxz
dedz—(P—l—&Cdxjdydz—rxxdydz—l- .t . dx dydz—rxzdxdy+ Tt . dz |dxdy
or Du
_rxydxdz+ 1y . L dy \dxdz+ p f dxdydz—l§ F i—pdxddeE
oP or, or_ Ot ou
—t—+—+ : -F, =p—+— — v+— w
a e e T Pl Fo=p— a(pu) % (o) + 2 (ouwy
or.. 0 or
a—u+ 6( )+E(w)+ﬁ(u )——ia—P i T Ol 4 7w +f —iFDY
ot Ox oy p Ox ox 0z oy x op 7
Depth integration:
H H|or or or
12+ 202y + 2y + 2wy dz=—— j —dz+if xc ,oxz g W,
0 ot Ox Oy 0z ox P Ox 0z oy
H | H
j(f )dz—— [F_ dz
0 X p O Dx

Applying Leibnitz rule and setting surface pressure and stresses equal to zero gives

O(uH) OH a(u H)y , O0H 0o(uvH) OH
-u(H)y—+——--u"(H)—+ —uU(H)YV(H)—+u(H)Yw(H) =
ot ot ox ox 8y oy
—ii(PH) ——(P H)+— (rxyH) ——7_(0)+ f.H - ! —F, H
p Ox p o p o p p

Substituting free surface boundary condition:

w(th) = L S+ <H)—
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and neglecting internal stresses 7, .and 7, so 7, (0) = 7_represents the stresses into the
fluid and in the bottom, gives:

— —2 J—
8(uH)+8(u H)+6(uvH) 10 9 (PH)- T +fH—lFxH
ot ox oy pax P P

. = 1 .
Now assume hydrostatic pressure so P ZE pgH , and substitute body force f. by

0z,
(e—-
— _2 —_—
6(uH)+8(u H)+6(uvH):_Hg6_H T, Hgﬁ—lFDvH
ot Ox oy ox p Ox )

Doing some math work it is possible to rewrite the equation as

= oAs = oA F T
l@_u+£5_u+15_u+677 + XZ =0
go gox goy ox pg  pgH

or
18_u+u6u+18u 877 “bx g o
got gox goy 8x o'y S

where S; is the depth integrated stress term that depend on the rheological formulation
used to model the slurry.

3. Stress Term
Using the quadratic model postulated by O’Brien and Julien (1985)

. 2
[ —z'y +uy+¢y
The first two terms are referred to as the Bingham shear stresses and represent the
internal resistance stresses of a Bingham fluid. The last term represents the sum of the
dispersive and turbulent shear stresses, which depend on the square of the shear rate.
When the shear stress relationship is depth integrated can be rewritten in the following
slope form:

Sﬁc:Sy+Sv+Sm’

where
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T
s =—2
Y pgH

Now, assuming a vertical parabolic distribution for velocity u:

2 z A
u(z)=3—u -2
H 2H H
ou 3u
0y = 0y = 21
7(0) az() H

Then,
u(z)
g M _3pu

v B 2
PeH pert

For the quadratic term O’Brien and Julien (1985) suggest the use of Manning formula.
The Manning formula is an empirical formula for open channel flow, or flow driven by
gravity. It was developed by the Irish engineer Robert Manning. The Manning formula
states:

V= LR;”SUZ
N

where V' is the cross-sectional average velocity (m/s), N is the Manning coefficient of
roughness, Rj, is the hydraulic radius (m), and S is the energy gradient (m/m).

The hydraulic radius is defined as the area of the cross section of the channel divided by
the length of the wetted perimeter; for example, for a rectangular channel of width » and
depth H,

R ——PH
(b+2H)

Whenb>>H, R, = H

Then, Manning formula can be rewritten to express the energy gradient as:

S :W or
Std = N24L_532
H
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The Manning coefficient of roughness &, is an empirically derived coefficient, which is
dependent on many factors, including bottom surface roughness and sinuosity. Values
typically range between 0.02 for smooth and straight rivers, to 0.075 for sinuous rivers
and creeks with excess debris on the river bottom or river banks.

Finally, for the quadratic rheological model of O’Brien and Julien, the depth integrated
stress term 1s

_ | 3ui +N21/_lz
A pgH ng2 43

When the quadratic model of O’Brian and Julien is combined with the Cross formulation,

_ . .0
= Kol 67

T
XZ

and the depth integrated stress term results

_ﬂeffy+N2L72
S pgH o pp4l3

3u uo+u Ky 2
with 7 = >—, -0 "o B g =20 —u and u =10"u.
V=0 Moy K . : M, =H Hy U
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APPENDIX B

(ol

Equations of motion are reduced to the following form

ou Ov
LY

—+—=0
ox Oy

0 8_u+u8_u+va_u :—a—p+pgSin<9+ﬁ:0
ot ox Oy ox oy

a—p:—ng0sl9

oy
Where p is fluid density, g is acceleration of gravity, p is pressure and (u,v) are

the flow velocity components in (x,)) directions respectively. The boundary conditions
are:

p=0, =0 at y=h
Then, since pressure in the mudflow is hydrostatic and given by:
p = pg(h—y)cost
Now consider the two layer-model shown in figure 2: The flow is divided into a

plug layer, with uniform velocity U, and depth 4,, and a shear layer with varying velocity
u and depth /4, For the case of steady, uniform flow the velocity distribution is given by
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u
v y >
X
Figure 2
= <y<
u Up hs_y_h
2y y*
=U | —- 0<y<h
P| h h2

and the flow rate per unit width is

(Bh=h)

_U
=" p 73

Assuming that this is also valid for non-uniform boundary layer flows without
committing serious errors (with U, changing with x and time t), the following depth-
integrated momentum and continuity equations are obtained taking into account the
surface boundary condition

V=%+U h at y=h
ot Pox
Continuity:
h
8_h+8_q:O with q=U |h--=
ot Ox P 3

Momentum balance in the shear layer:

oh 20U
5(2U h j+a(8U2h j—U S+a(2U h ) - gh (sinﬁ—ahcosﬁj— P
ar\3 ps) ax\15 ps) plar ax\3 ps s ox ph,
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Momentum balance in the plug layer:

ou U2 r
P9 —p+ghcost9 =gsint9——y
ot ox| 2 p(h—hs)

These three equations could be solve numerically to look for the unknowns 4, U,
and Ay however, studying the relative magnitudes of the terms in these equations it is
possible to derive first-order solutions for the outer and inner regions of the flow.

OUTER SOLUTION
The relative magnitudes of the terms in the equations above are evaluated by
introducing a number of scales as follows:

* * U h
(h,hs, xré‘ﬂFr) (ﬁh—_th__ U,

thlUllh,/h)

In which / = length scale in x, 4, = length scale in y, Fr = Froude number, &<< 1,
Uy = velocity scale given by

U, - pgh; sin @
3u

and A, = yield depth defined by
7, = pgh, sind
Introducing the scales into the governing equations yields to the dimensionless

form of the governing equations, when considering &/ sin@ << 1 these equations reduce
to the kinematic-wave approximations given by:

on* oq"
04
ot Ox

=0
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Substituting g* and using the chain rule, yields two ordinary differential
equations, such that

along characteristic curves

*
LI TR

ot
in the (x*¢*) plane.

To see the solution of a flow from a source of finite size, as an example, a dam
break of mud-slide problem with initial triangular shape on a slope is considered.

y

If the length scales are hy=H and [= L, the initial conditions will be:

B (x",0)=x" 0<x*<1

B (x",0)=0 —0<x*<0 or 1<x*<w

Here, L is the initial length of the soil mass; and H is the maximum depth of the
soil mass. Integrating the governing equations above with the help of these boundary
conditions gives:

X =GR =30+
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A relation that holds in the (x*, ¢*) plane only and allows to solve for the depth of
the fluid #* at any time #* and location x*. Since it is a nonlinear relation, it could be
solved by using a numerical procedure as Newton-Raphson.

The shock location is determined invoking mass conservation, since it is assumed
that the mass of fluid remains constant with time. Then

; e
o 2

gives the relation:

N L R T A

47 —3n72A- 2

Then x/* yields the time at which the flow depth just upstream of the shock is 4/,
such that

. 1-h}
t = * *
4n7 -3n7A- 2

The above solution is the first order outer approximation. This solution is valid
everywhere (red solution, figure 3), except near the shock, where the boundary layer

£

assumptions are violated, i.e., Fis not small anymore. An inner solution that is valid
X

near the shock can be found by using different variables to rescale the governing
equations.
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INNER SOLUTION
Let’s now introduce the following inner variables to rescale the governing
equations:

h‘*ah*'a *:U*yU*:[* = _9L:—:_9ia_
(1 si 5 i pi z) (l’lo ho & UO UO Uol)

Substituting these scales into the continuity equation and taking the limit ¢ - 0,
integrating over the depth, and taking into account that 4;* vanishes at the leading edge
for any time t, yields to

. Ox
Yooor

which shows that velocities near the shock change only with time. Then, in a
similar way momentum equations yield to

h, ah’* cos@=| h, ——= |sinf
Y os Y 3h

51

oh’
0"

(b =) cos@ = () —h',— A)sin @

Then, it is possible to derive a differential equation for the free surface profile
near the shock as

on |, A _\/(h_;—/l)4+4hi*}t(h;—2)2 +(h, = 2)? t

! e an &

o8 | h

which matches the outer solution correctly since A —> h; as & — —oo. This
equation can be easily solve using some numerical method as Runge-Kutta; however,
since the right hand side is independent on &, the location of the profile is unknown.
The right place will be given under the condition of mass conservation given by

j’(h; - hi*)dé: *= ?hi*df *
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where 6* is defined as the distance from x; to the leading edge of the shock.

The outer and inner solutions in the above can be expressed in dimensional forms
with the help of the scales introduced. Thus, the final solution will be given by a
composite solution given by

h.=h+h—h, x<x,

h.=h, X=X,
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APPENDIX C

The following tables include measurements of debris flow, flood deposits and boulder
size values done by USGS in 2001. USGS Report 01-0144.
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