
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

HWCOM Faculty Publications Herbert Wertheim College of Medicine 

10-20-2016 

T cells suppress memory-dependent rapid mucous cell T cells suppress memory-dependent rapid mucous cell 

metaplasia in mouse airways metaplasia in mouse airways 

Hitendra S. Chand 

Y. A. Mebratu 

M. Montera 

Y. Tesfaigzi 

Follow this and additional works at: https://digitalcommons.fiu.edu/com_facpub 

 Part of the Medicine and Health Sciences Commons 

This work is brought to you for free and open access by the Herbert Wertheim College of Medicine at FIU Digital 
Commons. It has been accepted for inclusion in HWCOM Faculty Publications by an authorized administrator of 
FIU Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/com_facpub
https://digitalcommons.fiu.edu/com
https://digitalcommons.fiu.edu/com_facpub?utm_source=digitalcommons.fiu.edu%2Fcom_facpub%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.fiu.edu%2Fcom_facpub%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


RESEARCH Open Access

T cells suppress memory-dependent rapid
mucous cell metaplasia in mouse airways
Hitendra S. Chand1,2*, Yohannes A. Mebratu1, Marena Montera1 and Yohannes Tesfaigzi1

Abstract

Background: Airway epithelial cells (AECs) are crucial for mucosal and adaptive immunity but whether these cells
respond in a memory-dependent manner is poorly studied. Previously, we have reported that LPS intratracheal
instillation in rodents causes extensive neutrophilic inflammation and airway epithelial cell hyperplasia accompanied
by mucous cell metaplasia (MCM). And the resolution process required a period of 40 d for the inflammation to
subside and the lung epithelia to resemble the non-exposed condition. Therefore, the present study investigated
the memory-dependent response of airway epithelial cells to a secondary LPS challenge after the initial
inflammation was resolved.

Methods: Airway epithelial and mucous cells were assessed in response to a secondary LPS challenge in F344/N
rats, and in C57BL/6 wild-type (Foxn1WT) and T cell-deficient athymic (Foxn1nu) mice that were instilled with LPS
or saline 40 d earlier. Epithelial expression of TLR4, EGFR, and phosphorylated-ERK1/2 (pERK) were also analyzed.

Results: LPS-pretreated F344/N rats responded with elevated numbers of AECs after saline challenge and with
3-4-fold increased MCM following the LPS challenge in LPS- compared with saline-pretreated rats. LPS-pretreated
rats showed 5-fold higher number of AECs expressing TLR4 apically than saline-pretreated rats. Also, the expression
of EGFR was increased in LPS-pretreated rats along with the number of AECs with active or nuclear pERK, and the
levels were further increased upon LPS challenge. LPS-pretreated Foxn1nu compared with Foxn1WT mice showed
increased MCM and elevated levels of TLR4, EGFR, and nuclear pERK at 40 d after LPS instillation. LPS challenge
further augmented MCM rapidly in Foxn1nu compared with Foxn1WT mice.

Conclusion: Together, these data suggest that AECs preserve an ‘innate memory’ that drives a rapid mucous
phenotype via spatiotemporal regulation of TLR4 and EGFR. Further, T cells may suppress the sustained elevated
expression of TLR4 and EGFR and thereby the hyperactive epithelial response.

Keywords: Mucous cell metaplasia, Epithelial memory, LPS, T cells, Toll-like receptor 4, Epidermal growth factor
receptor

Background
Airway epithelial cells (AECs) preserve a near-sterile
microenvironment via mucociliary clearance mechanisms
and more importantly, by an adaptive mucosal immune
response [1–4]. The conducting airway epithelium
consists of basal, ciliated, club (or Clara) and mucous
(or goblet) cells [4–6]. In smaller airways, primarily
club cells differentiate into mucous cells as an innate

immune response to airway injury also referred to as
mucous cell metaplasia (MCM) [4, 5, 7–9]; however
other epithelial cells can also differentiate into mucous
cells [6, 10] . While mucous cell differentiation is vital to
pulmonary health, dysregulation can lead to aberrant
mucin secretion and obstruction of airways as observed in
chronic respiratory diseases [4, 11]. The most abundant
mucins secreted by airway epithelial cells (AECs) are
MUC5AC and MUC5B, which in combination with other
proteins, lipids and glycosylated factors form a mucous
layer [12–14]. The airway surface mucous layer not only
serves as a barrier but also traps inhaled particles for
mucociliary clearance [4, 11, 14]. Several inflammatory
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factors and toxicants activate the EGFR/ERK pathway and
induce MUC5AC and MUC5B expression to alter innate
immune responses [4, 11, 13, 15, 16].
The ambient air is contaminated with various organic

or inorganic compounds including lipopolysaccharide
(LPS), a component of gram-negative bacteria. Our
previous studies showed that intratracheal instillation
of 1000 μg LPS in rats causes extensive neutrophilic
inflammation and epithelial cell hyperplasia accompanied
by MCM [7, 17]. The resolution process for this extensive
inflammation required a period of 40 d for the inflamma-
tion to subside and the lung epithelia to resemble the
non-exposed condition [17].
The airway epithelium has evolved several regulatory

mechanisms to control hyperreactive inflammatory
responses to minimize deleterious effects. Lymphocytes,
monocytes, macrophages, and dendritic cells possess
‘dynamic cellular programing’ or ‘memory’ to adjust the
immune response to secondary challenges [18–22].
Various animal studies have highlighted the important
role of adaptive T cells, both CD4 and CD8 T lympho-
cytes, and macrophages in regulating immune responses
to previously encountered insults [23–26]. However,
only few reports have reported on epithelial cell ‘innate-
programming’ or ‘memory’ responses [27, 28]. Therefore,
the present study was designed to investigate the response
of airway epithelium to a secondary LPS challenge.
Possible interaction of T cells and AECs in regulating
memory responses was investigated by using T cell-
sufficient and -deficient mice.

Methods
Laboratory animals
All animal studies were carried out using protocols and
the facilities pre-approved by the Institutional Animal
Care and Use Committee (IACUC) under the approved
protocol number FY06-021. Specific pathogen-free
F344/NCrR male rats of 6–8 weeks of age were obtained
from NCI (Frederick, MD) and C57BL/6 J wild-type
(Foxn1WT) and the T-cell deficient congenic athymic
nude (Foxn1nu) mice were purchased from the Jackson
Laboratory.

LPS instillation
F344/N rats were instilled intratracheally with 1000 μg
and Foxn1nu and Foxn1WT C57BL/6 J mice were
instilled intranasally with 100 μg LPS (Pseudomonas
aeruginosa serotype 10, lot 31 K4122, 3,000,000 LPS
units (EU)/mg, Sigma, St. Louis, MO) or with saline
as described previously [17, 29]. Forty days later, rats
were instilled with saline (0) or 1, 10, or 100 μg LPS
(Fig. 1) when all of the inflammatory responses are
resolved [17]. The LPS-pretreated (L) rats were designated
as L/0, L/1, L/10, and L/100; and the saline-pretreated (S)

rats designated as S/0, S/1, S/10, and S/100. Mice were
challenged with saline (0) or 100 μg LPS and were
designated as S/0, and S/100 or L/0, and L/100, respec-
tively. Animals were sacrificed 24 h post-instillation,
and lung tissues were processed and analyzed.

Histochemical staining and analysis
Histochemical staining with Alcian Blue (Richard-Allan
Scientific) and hematoxylin and eosin (AB-H&E) was
carried out as described previously [30]. Airway epithelial
cell and mucous cell numbers per mm basal lamina (BL)
were measured using the VisioMorph system (Visiopham
A/S, Horsholm, Denmark). In all cases, quantification and
morphometry was carried out by a person unaware of
slide identity. For all of the epithelial cell responses in-vivo
we analyzed the large-diameter generation 5 conducting
airway along the main axial pathway as described before
[7]. Generation 5 was chosen for all of the analyses
because those airway regions are predominantly comprise
of secretory and ciliated cells. Furthermore, the instilled
LPS readily reaches the cells at generation 5, which allows
for consistent results. Unless otherwise mentioned,
5-6 animals were used per group.

Immunofluorescent staining
Lung sections were processed and immunostained as
described previously [31]. Sections were probed with
anti-Scgb1a1 (Santa Cruz Biotech, CA), anti-Muc5ac
(Millipore, CA), and anti-phospho ERK1/2 (Cell Signaling,
CA) and the immunopositive cell numbers as well as the
mean fluorescence intensity (MFI) were quantified using
the NIH ImageJ software.

Statistical analysis
Grouped results were expressed as means ± SEM and
were analyzed using either one-way or two-way analysis
of variance. The data were compared with that of S/0 or
L/0 groups unless otherwise indicated. In the event that
significant main effects were detected (P < 0.05), Fisher's
least significant difference test was used to differentiate
between groups.

Fig. 1 Experimental design for testing the effect of LPS challenge on
LPS-pretreated rats. F344/N rats were challenged intratracheally with
1000 μg LPS (L) or saline (S) on d1 and rechallenged with 0, 1, 10 or
100 μg LPS on d40, and the necropsy (Nx) was performed on d41
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Results
Rapid and enhanced mucous cell metaplasia following
LPS challenge
Although mucous cell (MC) numbers per mm basal
lamina (BL) did not reach statistical significance, L/0
compared to S/0 rats displayed increased MCs per mm
BL (Fig. 2a and b), and this difference was magnified in
L/1, L/10, and L/100 rats compared to their respective
S/1, S/10, and S/100 controls (Fig. 2b). The stored muco-
substances quantified as mucus density (Vs) per mm2 BL
was also augmented in LPS- compared to saline-
pretreated rats by 8–10-fold (Fig. 2c). The total epithe-
lial cells per mm BL was significantly increased in L/0
compared to S/0 rats, and no further increase was ob-
served in L/1, L/10, and L/100 rats (Fig. 2d).
The number of Scgb1A1-positive club cells between

saline- or LPS-pretreated rats remained unchanged;
however, the number of Muc5AC-positive mucous cells
in L/100 compared with S/100 controls were signifi-
cantly increased (Fig. 2e) while Scgb1A1 expression was
markedly reduced upon LPS challenge. Thus, LPS
pretreatment in rats caused a rapid increase in mucus-
secretory cells.

Elevated apical expression of TLR4 and EGFR and nuclear
phosphorylated-ERK1/2
TLR4 mediates LPS-induced responses [32–34], and the
integrated signal transduction via EGFR drives mucous

gene expression and MCM [35, 36]. Therefore we ana-
lyzed TLR4 and EGFR expression in the AECs of S/0,
L/0, S/100, and L/100 rats. EGFR was detected on the
basal and intraepithelial junctions of AECs in S/0 rats
and slightly more abundant in the apical region of L/0
rats; however, the number of AECs expressing TLR4
apically was 5-fold higher in L/0 than S/0 rats (Fig. 3a,
upper panels). The LPS challenge increased the number of
cells with apical TLR4 expression in both S/100 and L/100
rats (Fig. 3a, lower panels). The integrated TLR-4/EGFR
signaling culminates in the activation of ERK1/2 and
NF-κB [37, 38], and accordingly, a 2-fold increase in the
number of AECs with phosphorylated-ERK1/2 (pERK)
was detected in L/100 compared with S/100 rats (Fig. 3b)
with no discernable change in the NF-κB p65 levels
(personal observation). These data suggest that airway
epithelial cells have a stronger TLR4/EGFR signal at
40 d after initial exposure.

Rapid mucous cell metaplasia in LPS-pretreated Foxn1nu

mice lacking T lymphocytes
In order to investigate the role of of T cells in epithelial
memory to LPS we analyzed the T cell-deficient athymic
nude (Foxn1nu) C57BL/6 mice in comparison with T
cell-sufficient euthymic wild-type (Foxn1WT) C57BL/6
mice. The number of MCs/mm BL was 2-fold higher in L/
0 Foxn1nu than L/0 Foxn1WT mice, and the LPS challenge
caused a rapid increase in MCM independent of the

Fig. 2 LPS-induced mucous cell metaplasia and mucous production is augmented in LPS-pretreated F344/N rats. a Representative photomicrographs of
axial airway sections from rats instilled with 0, 1, 10 or 100 μg LPS as secondary challenge following the saline (S/0, S/1, S/10 or S/100) or LPS
(L/0, L/1, L/10 or L/100) pretreatment, and stained with Alcian Blue (AB) for acidic mucins and counterstained with hematoxylin and eosin (AB/H&E).
b Quantification of the number of AB+ mucous cells analyzed per mm basal lamina (BL). c Densitometric quantification of the volume of intraepithelial
stored mucosubstances (Vs) analyzed per mm2 of BL. d Quantification of the number of total airway epithelial cells per mm BL. e Representative
micrographs of axial airway sections from S/100 and L/100 rats. The sections show Scgb1A1 (green) and Muc5AC (red) positivity with DAPI-stained (blue)
nuclei. Error bar indicates mean ± SEM (n= 5–6 per group). * P< 0.05, ** P< 0.01, *** P< 0.001 compared to S/0 or L/0 group unless otherwise indicated
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genotype. However, MCs/mm BL were significantly higher
in L/100 than S/100 mice of both genotypes (Fig. 4a and b).
The total epithelial cell were higher in all mice following
the LPS challenge but the L/100 Foxn1nu and L/100
Foxn1WT mice had significantly higher AECs compared to
S/100 Foxn1nu and S/100 Foxn1WT mice (Fig. 4c).
Among the S/100 mice, Muc5ac expression was

significantly increased and Scgb1a1 levels reduced in
Foxn1nu than in Foxn1WT mice (Fig. 4d, e and f). Within
the secretory cell populations, there was no difference in
the number of Scgb1a1-positive club cells (ranging
between 73 to 79 %) but the number of Muc5ac-positive
cells were higher in Foxn1nu (55.6 ± 2.8 %) than Foxn1WT

(71.9 ± 1.7 %) mice (Fig. 4e). However, LPS challenge
increased the number of Muc5ac-positive cells especially
in L/100 compared with S/100 mice in both genotypes
(Fig. 4d and e). The expression levels of Scgb1a1 as
measured by MFI was reduced 2-fold in the L/100
groups in both genotypes but Muc5ac MFI was
increased greater than 4-fold (Fig. 4f ).

LPS pretreatment augments TLR4, EGFR, and nuclear
pERK levels in mice lacking T cells
Similar to rats, TLR4 and EGFR were expressed on basal
and intraepithelial junctions of AECs in S/0 Foxn1WT

mice (Fig. 5a, upper panels). However, in S/0 Foxn1nu

mice expression was apical and increased (Fig. 5a, upper
panels). LPS-pretreatment augmented the apical expres-
sion of TLR4 and EGFR in both L/0 mice but more
prominently in Foxn1nu than in Foxn1WT mice (Fig. 5a,
lower panels). The number of AECs with nuclear pERK
was similar among S/0 Foxn1WT and Foxn1nu mice
(Fig. 5b, lower panels). However, a 2-fold higher number
of AECs with nuclear pERK was detected in L/0 Foxn1nu

mice than in L/0 Foxn1WT mice (Fig. 5b, lower panels).
This difference was no longer observed after the LPS
challenge as all mice showed significantly higher num-
ber of AECs with nuclear pERK (Additional file 1:
Figure S1).

Discussion
The present study shows that airway epithelial cells that
have been previously primed with LPS respond to subse-
quent LPS challenge with a rapid increase in MCM and
epithelial cell hyperplasia (ECH). This memory response
may be due to a sustained spatiotemporal localization of
TLR4 and EGFR that initiate a rapid mucus expression
via ERK1/2 activation.
Innate memory-based responses have been described

in several immune cell populations including monocytes,

Fig. 3 Elevated expression of TLR4, EGFR and phosphorylated-ERK1/2 (pERK) in LPS-pretreated F344/N rats following the second LPS challenge. a
Quantification of the AECs with apically localized TLR4 and EGFR in S/0, S/100, L/0 and L/100 rats. Representative micrographs of axial airways from S/0,
S/100, L0 and L/100 rats with airways stained with DAPI (blue) nuclei, TLR4 (red), EGFR (green) and a merged image. b Quantification of the AECs with
nuclear phosphorylated-ERK1/2 (p-ERK) in S/0, S/100, L/0 and L/100 rats. Representative micrographs of axial airways stained for pERK (green) and DAPI-
stained (blue) nuclei are shown. Error bar indicates mean ± SEM (n = 5–6 per group). * P < 0.05, ** P < 0.01 compared to S/0 unless otherwise indicated
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macrophages and NK cells [39–41]. Recent seminal
studies have highlighted the role of memory-based or
‘trained’ immune responses as summarized recently by
Netea et al. [42]. These trained responses are adaptive
and beneficial because mice primed with microbial
ligands or PRRs are protected against subsequent lethal
infection [39, 43, 44]. These trained responses have been
mechanistically attributed to the transcriptional and
epigenetic reprogramming that involved histone modifi-
cations but DNA methylation, microRNA and/or long
noncoding RNA could also be implicated [39, 45]. Future
studies will investigate the molecular basis of reprogram-
ming in AECs that resulted in the observed augmented
memory-based or trained responses.
Airway epithelial responses including MCM, ECH, and

nuclear localization of pERK were elevated in L/0 rats
compared with L/0 wild-type mice. This disparity could
be due to differences in epithelial cell types present in
the conducting airway epithelium. At airway generation
5, the site for all quantifications in the current study,
serous cells are present in rats but absent in mice [7].
Further, mice in general respond with minimal mucous
cell metaplasia in response to many insults possibly
due to a more resistant genotype that results in less
sustained activation of the signaling pathways and tran-
scription factors compared to rats [31]. This was also
evident by the dose of LPS used for challenge because
1 μg LPS caused MCM in LPS-pretreated rats (L/1)

but had no discernible airway epithelial changes in mice
irrespective of the LPS priming (personal observation).
As was previously reported [8, 9], Muc5ac-positive
mucous cells differentiate from the Scgb1a1-positive
club cells. Consistent with these observations, a marked
suppression of Scgb1a1 expression was observed by
us following the LPS challenge in all rodents.
T cells affect the generation of mucous cell metaplasia

in response to various challenges [23, 46]. Based on the
threshold and type of insult, the immunologic tolerance
dominates the primary response and is generally driven
in part by T cells, specifically by resident memory (Tm)
and regulatory (Treg) T cells [23, 47, 48]. Therefore, to
isolate the epithelial memory responses from that of T
cells we analyzed the secondary response in the absence
of T cells. Moreover the memory-based immune
responses have also been previously demonstrated as
lymphocyte-independent mechanism using athymic and
Rag1-deficient mice [39, 49]. We found that athymic
Foxn1nu mice responded with enhanced MCM in
response to LPS or saline challenge compared to Foxn1WT

mice. Higher apical expression of TLR4 and EGFR in
Foxn1nu mice that rapidly activates ERK1/2 phospho-
rylation and nuclear localization may be involved in this
process. Validation of these findings by in situ hybridization
or q-PCR from microdissected airway cells would require
more comprehensive kinetic (several time-point) analyses
to adequately match the observed changes at protein levels.

Fig. 4 LPS-induced mucous cell metaplasia is augmented in LPS-pretreated athymic mice compared to euthymic mice. a Representative
photomicrographs of axial airway sections stained with AB/H&E from S/0, S/100, L0 and L/100 Foxn1WT mice compared with respective
Foxn1nu mice. Quantification of the number of mucous cells (b) and the number of airway epithelial cells (c) analyzed per mm BL.
d Representative micrographs of axial airway sections showing Scgb1a1 (green) and Muc5ac (red) positivity with DAPI-stained nuclei
(blue) in S/100 and L/100 Foxn1WT and Foxn1nu mice. e Quantification of the number of Scgb1a1- and Muc5ac-positive cells in S/100 and
L/100 Foxn1WT and Foxn1nu mice. f Mean florescence intensity (MFI) of Scgb1a1- and Muc5ac-positive cells in S/100 and L/100 Foxn1WT

and Foxn1nu mice. Error bar indicates mean ± SEM (n = 6 per group). * P < 0.05, ** P < 0.01 compared to S/0 unless otherwise indicated
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The L/0 Foxn1nu mice showed higher number of
mucous cells even when instilled with saline as a
secondary challenge (Fig. 4b) with a corresponding
increased TLR4 expression compared to L/0 Foxn1WT

mice (Fig. 5a). We believe that these mice are more
responsive to saline challenge and, therefore, showed
increased mucous cell numbers and TLR4 expression.
Form our previous studies, we have not observed
differences in mucous cells at baseline, and we assume
that 40 d after LPS challenge all mucous cells were
resolved also in Foxn1nu mice as in wild-type mice. Other
studies have also documented that following a primary
LPS exposure there were no discernible differences
reported in athymic mice lacking T lymphocytes com-
pared to euthymic wild-type mice [50]. Our previous
studies were focused on the kinetics of LPS response
in rats, and the T cells along with other immune cells
returned back to normal levels by day 40 [17].
Treg or Tm cells may suppress TLR4 and EGFR expres-

sion in AECs to establish a tolerogenic homeostasis in
airway mucosa [23, 47, 48]. Future studies will investi-
gate which T cell sub-population contributes to the
suppression of apical TLR4 and EGFR expression on

AECs. In vitro studies using air-liquid interface cultures
of AECs will also help determine if this memory-response
in AECs requires a signal from T cells to suppress
LPS-induced TLR4 expression.
The number of AECs was increased in LPS-pretreated

rats one day after saline challenge. Because all inflamma-
tion was resolved by day 40 with epithelial cell numbers
returning the levels found in naïve rats by day 30 [17],
this rapid increase in ECH by saline instillation suggests
that LPS-primed airway epithelial cells can proliferate
rapidly. Whether the observed ‘innate memory’ that
was established in response to LPS instillation may
also respond to a secondary challenge by insults other
than LPS will be investigated in the future. TLR4 is
one of the pattern-recognition receptors (PRRs) that
regulate maladaptive immune response to LPS [51].
LPS responsiveness is fine-tuned by the levels of TLR4
present on the cell surface which in turn is determined
by the amount of TLR4 trafficking between the Golgi
and the plasma membrane, and the TLR4 internalized
into endosomes [52]. Dysregulation of TLR4 expression or
localization at the epithelial interface results in impaired
host response to LPS as observed in cystic fibrosis [51].

Fig. 5 Expression of apical TLR4 and EGFR, and nuclear phosphorylated-ERK1/2 is augmented in LPS-pretreated athymic mice. a Quantification
of the number of AECs with apical TLR4 and EGFR and representative micrographs of axial airways from S/0 and L/0 Foxn1WT and Foxn1nu mice.
The panels are stained for DAPI (blue) nuclei, TLR4 (red), EGFR (green) and a merged image. b Quantification of the number of AECs with nuclear
pERK in Foxn1WT and Foxn1nu mice. Representative micrographs of axial airways stained for pERK (green) and DAPI-stained (blue) nuclei from
S/0 and L/0 Foxn1WT and Foxn1nu mice are shown. Error bar indicates mean ± SEM (n = 6 per group). * P < 0.05, ** P < 0.01 compared to Foxn1WT

S/0 unless otherwise indicated
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TLR4 integrates its signaling with EGFR and helps
regulate the proliferative responses [53–55]. Interestingly,
in athymic Foxn1nu mice, the levels of TLR4 and EGFR
were augmented with some AECs showing nuclear pERK
in LPS-pretreated mice even in the absence of LPS
challenge. Therefore, EGFR and ERK1/2, the known
inducers of MCM [35–38] could be responsible for
the ‘memory’ in airway epithelial cells.
Mucous cell metaplasia is a reversible adaptive response

that increases mucous secretions to help clear the airways
through mucociliary clearance. However, whether these
metaplastic cells retain a memory to a prior exposure has
not been previously investigated. We and others have
reported that the hyperplastic epithelial cells undergo
apoptosis during the resolution process [17, 56–58].
Whether some of the hyperplastic cells remain following
the resolution process and serve as ‘memory’ cells remains
to be investigated. In addition, AECs secrete mucous and
inflammatory factors, and interact with other epithelial
and mucosal immune cells in an autocrine and a paracrine
manner. The mucus layer helps trap inhaled toxicants and
dilutes local inflammatory factors or chemoattractants to
suppress the effect on other epithelial and immune cells.
Thus, the intricate and tightly regulated crosstalk between
immune and epithelial cells may be required to adjust a
tolerant versus a hyperreactive epithelium. The reported
suppressive role of T cells on the hyperactive mucous
response could also help understand the pulmonary
responses to inhaled toxicants that result in chronic
mucous hypersecretion in certain susceptible and immuno-
compromised population.

Conclusions
The findings suggest that airway epithelial cells preserve
an ‘innate memory’ to previous LPS exposure via a
sustained expression of TLR4 and EGFR that help
potentiate a rapid mucous response following a secondary
challenge. This memory-based or ‘trained’ response of
AECs was suppressed by T lymphocytes because there
was further augmented mucous response in athymic mice.
This airway epithelial and T cells nexus may play a role
in aberrant mucous cell differentiation and mucin
hypersecretion observed in chronic airway diseases.

Additional file

Additional file 1: Figure S1. Quantification of AECs with nuclear pERK
in Foxn1WT and Foxn1nu mice following LPS challenge. Representative
micrographs of axial airways stained for pERK (green) and DAPI-stained
(blue) nuclei from S/100 and L/100 Foxn1WT and Foxn1nu mice. Error bar
indicates mean ± SEM (n = 6 per group). * P < 0.05. (DOCX 1546 kb)
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