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ABSTRACT OF THE DISSERTATION 

ENERGY-EFFICIENT SELF-ORGANIZATION OF WIRELESS ACOUSTIC SENSOR 

NETWORKS FOR GROUND TARGET TRACKING 

by 

Malaka Jayathu Walpola 

Florida International University, 2009 

Miami, Florida 

Professor Jinsong Zhang, Co-Major Professor 

Professor Kang K. Yen, Co-Major Professor 

With the developments in computing and communication technologies, wireless 

sensor networks have become popular in wide range of application areas such as health, 

military, environment and habitant monitoring. Moreover, wireless acoustic sensor 

networks have been widely used for target tracking applications due to their passive 

nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, 

circular or other regular shapes are used for tracking acoustic sources. The maintaining of 

relative geometry of the acoustic sensors in the array is vital for accurate target tracking, 

which greatly reduces the flexibility of the sensor network. To overcome this limitation, 

we propose using only a single acoustic sensor at each sensor node. This design greatly 

improves the flexibility of the sensor network and makes it possible to deploy the sensor 

network in remote or hostile regions through air-drop or other stealth approaches. 

Acoustic arrays are capable of performing the target localization or generating the 

bearing estimations on their own. However, with only a single acoustic sensor, the sensor 
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nodes will not be able to generate such measurements. Thus, self-organization of sensor 

nodes into virtual arrays to perform the target localization is essential. 

We developed an energy-efficient and distributed self-organization algorithm for 

target tracking using wireless acoustic sensor networks. The major error sources of the 

localization process were studied, and an energy-aware node selection criterion was 

developed to minimize the target localization errors. Using this node selection criterion, 

the self-organization algorithm selects a near-optimal localization sensor group to 

minimize the target tracking errors. In addition, a message passing protocol was 

developed to implement the self-organization algorithm in a distributed manner. In order 

to achieve extended sensor network lifetime, energy conservation was incorporated into 

the self-organization algorithm by incorporating a sleep-wakeup management mechanism 

with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation 

results confirm that the developed self-organization algorithm provides satisfactory target 

tracking performance. Moreover, the energy saving analysis confirms the effectiveness of 

the cross layer power management scheme in achieving extended sensor network lifetime 

without degrading the target tracking performance. 
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CHAPTER I 

1. INTRODUCTION 

With the advancements in computing, signal processing and communication 

technologies, the size and cost of wireless sensor nodes have reduced greatly. 

Consequently, wireless sensor networks have become popular in a wide range of 

application areas such as health, military, environment and habitant monitoring [1][2]. 

Moreover, due to their reliability and low cost, acoustic sensor networks have become 

attractive in military applications such as ground and underwater target detection, 

classification and tracking as well as in civilian applications such as environment 

monitoring [3-5]. 

1.1 Background and Motivation 

Acoustic sensor networks have obvious advantages such as extended coverage 

and improved performance over isolated acoustic sensing devices [3]. In addition, 

acoustic sensing is completely passive, does not have line-of-sight requirements and 

acoustic signals are very hard to suppress. Thus, acoustic sensor networks have become 

popular in battlefield surveillance and situation awareness applications [1][3]. 

Acoustic source localization strategies are mainly categorized as                 

steered-beamformer based localization strategies, high-resolution spectral-estimation 

based localization strategies, time difference of arrival (TDOA) information based 

localization strategies and acoustic energy intensity based source localization strategies 

[4][6][7]. Another strategy that has gained the attention in recent times is the acoustic 

energy decay model based localization [8]. In traditional acoustic source localization 

strategies, acoustic sources are tracked using acoustic sensor arrays built in linear, 
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circular or other regular shapes with sensors of the array spatially separated to obtain the 

desired characteristics in the received acoustic signals [2][3][7][9-12]. The relative 

geometry of the acoustic sensors is vital for achieving accurate source localization. Thus, 

maintaining accurate relative positions of the acoustic sensors in the sensor array is very 

important in these sensor nodes. Therefore, usually the sensor arrays are built on strong 

and rigid frames to maintain the relative geometry of acoustic sensors. However this 

restriction significantly reduces the flexibility of the sensor network and makes it 

infeasible to be deployed in remote or hostile regions through air-drop or other stealth 

approaches. A simple solution to the above mentioned limitation is to eliminate the 

presence of acoustic sensor array and develop an acoustic sensor network where each 

node is equipped with only a single acoustic sensor. This approach allows the flexible 

and cost effective deployment of sensor nodes through air drop or gun projection to areas 

that are otherwise inaccessible to human beings. In addition, this also enables the sensor 

nodes to be very compact, robust and inexpensive. These inexpensive and robust sensor 

nodes can be densely deployed to form a target tracking sensor network. Moreover, the 

dynamically formed sensor arrays will provide greater flexibility in the tracking process, 

compared with the conventional fixed sensor arrays. These features will greatly increase 

the usability and the flexibility of wireless acoustic sensor networks for target tracking in 

various environments.  

The traditional acoustic sensor nodes with sensor arrays are capable of generating 

target location measurements themselves. However, the sensor nodes with only a single 

acoustic sensor at each sensor node cannot perform target localization. Thus, these sensor 

nodes have to organize themselves into virtual acoustic arrays that can function like 
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physical sensor array to perform the target tracking. Achieving this self-organization of 

sensor nodes is essential for this acoustic sensor network to work effectively. For 

improved tracking performance, the sensor node selection can be performed based on 

sensor source geometry to minimize the localization errors. Most of the state of art node 

selection mechanisms [6][7][9-11] use this approach in the node selection process. In 

addition, [6] analyzes the major error sources in localization measurement generation. 

Moreover, as the sensor networks are deployed in ad-hoc manner, the self-organization 

should be performed in a distributed manner. 

Typically, sensor nodes are battery powered and thus have limited power supply. 

Moreover, once the network is deployed, sensor nodes are physically inaccessible or have 

very limited accessibility. Thus, replacing or recharging the battery is generally not 

feasible [1][2][5]. Generally the lifetime of a sensor node is primarily determined by the 

lifetime of its power supply. Thus, power limitation is a major constraint in sensor 

network algorithm design, which calls for an effective power management mechanism for 

an acoustic sensor network to become practical [1-3][5][13]. The major source of power 

waste in sensor networks is the power consumed by idle listening [13]. The most 

common method for reducing the idle listening power waste is incorporating a sleep and 

wakeup management mechanism to the network management protocol. The           

energy-efficient tracking algorithms proposed in [13][14] and [15] use this approach. In 

addition to the sleep-wakeup management mechanisms, approaches such as energy aware 

node selection mechanisms, incorporating of less resource demanding algorithms and 

employing of energy aware communication mechanisms can be exploited to achieve 

extended sensor network lifetime. However, the incorporation of power management 
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mechanisms could have adverse effects on the tracking performance. In target tracking 

applications, the goal should be to achieve extended sensor network lifetime while 

maintaining satisfactory target tracking performance. In addition to the target tracking 

performance and the energy efficiency, sensor network algorithms should desirably 

possess characteristics such as scalability, robustness and communication bandwidth 

efficiency. 

1.2 Problem Statement  

Acoustic sensor networks provide attractive means for tracking ground targets 

such as tanks and military vehicles. Traditionally, acoustic target tracking is achieved 

using acoustic sensor arrays at sensor nodes. These sensor arrays are usually rigid shaped 

and maintaining of the relative positions of these sensors is pivotal for tracking accuracy. 

This constraint greatly reduces the usability of the sensor network. In order to overcome 

this limitation, a new acoustic sensor network, which only has a single acoustic sensor at 

each sensor node, can be used. However, in order to perform as well as traditional sensor 

arrays, the sensor nodes have to self-organize themselves into virtual sensor arrays to 

perform target tracking. In this research, we study the self-organization problem and 

propose an energy-efficient distributed self-organization algorithm for ground target 

tracking using acoustic sensors with only a single sensor at each sensor node. Inspired by 

the sensor source geometry based node selection mechanisms studied in [6][7][9][10] and 

[11], we develop a node selection criterion to minimize the acoustic source localization 

error. The distributed self-organization algorithm performs the node selection based on 

the developed node selection criterion and target tracking. As the node selection is based 
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on the sensor source geometry, the self-organization algorithm updates the selected 

sensor group to match the dynamics of the target. 

Energy efficiency is a major constraint in designing algorithms for resource 

limited sensor networks. The energy efficiency of the sensor network management 

protocol is studied and an energy-efficient and low latency medium access control 

(MAC) protocol with location based data forwarding mechanism [16][17] is incorporated 

into the tracking algorithm to support efficient power management. Generally, sensor 

networks are densely deployed and the interesting events such as presence of a target are 

rare in sensor networks. In addition, the sensing and communication requirements of the 

sensor networks are closely attached to these interesting events and are thus temporally 

and geographically related to these interesting events [1][2][13]. Efficient power 

management in sensor networks requires this event information as well as the network 

status and the successful estimation of the future communication requirements of the 

sensor network. However, all above information is not available in a single network 

layer. Therefore, effectiveness of cross-layer design in achieving the tradeoff between 

energy efficiency and the target tracking performance is studied and a cross-layer power 

management algorithm, which combines the event information from the application layer 

and network conditions from the MAC layer, is proposed. 

The scope of this research is limited to the tracking of a single ground target. In 

addition, it is assumed that the sensor nodes know their own locations and the sensor 

nodes are time synchronized. The sensor node self-localization and time synchronization 

are research areas of their own and are beyond the scope of this research. 
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1.3 Research Objective  

The primary objective of this research is to design an energy-efficient distributed 

self-organization algorithm to manage sensor nodes for the new wireless acoustic sensor 

network for ground target tracking. The developed algorithm will use only a single 

acoustic sensor in each sensor node rather than the traditional approach of using sensor 

arrays in the sensor nodes. The developed algorithm should be able to perform the 

distributed collaborations between the nodes of the network to perform target tracking. In 

addition, the proposed algorithm should be able to achieve effective tradeoff between 

target tracking quality and the energy efficiency in order to achieve extended network 

lifetime while maintaining satisfactory near real-time target tracking performance. 

1.4 Contributions 

Acoustic sensor networks are becoming more and more popular for target 

tracking in military applications such as battlefield surveillance and for civilian 

applications such as surveillance and habitant monitoring. Our contribution is the 

development of an energy-efficient distributed self-organization algorithm for ground 

target tracking using acoustic sensor networks with only a single acoustic sensor at each 

sensor node. 

 The distributed self-organization algorithm: A new type of sensor network with only 

a single acoustic sensor at each sensor node, which uses the bearing measurements for 

target localization, is employed for the target tracking. The distributed                   

self-organization algorithm dynamically selects a localization sensor group to 

perform the target tracking. The localization sensor group selection is performed to 

minimize the localization error based on the sensor source geometry. The localization 
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sensor group is dynamically updated to match the target dynamics. A two-step node 

selection process is employed to minimize the complexity of the node selection 

process. 

 Cross-layer power management: At the application level, energy considerations are 

incorporated into the node selection process for effective power management and the 

two-step node selection process greatly reduces the communication requirements of 

the algorithm resulting in improved energy efficiency. In addition, a location based 

message forwarding mechanism is utilized to reduce the communication complexity 

in localization sensor group selection and update processes. Most importantly, a 

cross-layer wakeup probability adjustment algorithm, which combines event 

information from the application layer and the network condition from the MAC 

layer, is employed to achieve extended sensor network lifetime. 

1.5 Dissertation Organization 

The rest of this dissertation is organized as follows: Chapter II introduces 

theoretical background of acoustic source localization and related work on             

energy-efficient target tracking and energy efficiency of sensor networks. Chapter III 

details the target localization and tracking methods employed in the proposed             

self-organization algorithm. The basis for the node selection criterion for the proposed 

self-organization algorithm is discussed in this chapter. The proposed energy-efficient 

and distributed self-organization algorithm is introduced in Chapter IV. This chapter 

includes a detailed discussion on the algorithm and the message passing protocol 

developed to accomplish the algorithm in a distributed manner. In addition, the 

incorporation of energy conservation to the developed self-organization algorithm is 
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discussed in details in this chapter. This discussion includes details on the              

energy-efficient and delay-sensitive MAC protocol [16][17] that is incorporated to the 

tracking algorithm and the novel cross layer wakeup probability adjustment scheme 

developed for efficient power management. Chapter V elaborates the implementation of 

the proposed self-organization algorithm in network simulator (ns-2, [18]) and the 

performance evaluation of the algorithm. The final conclusions and future research 

directions are presented in Chapter VI. 

 

8 



 

CHAPTER II 

2. BACKGROUND AND RELATED WORK 

In this chapter we introduce the background and the literature related to our 

research. The first section provides an introduction to the acoustic source localization 

strategies proposed in literature. In the second section, we provide a detailed literature 

review on energy-efficient target tracking in wireless sensor networks. 

2.1 Acoustic Source Localization Strategies 

Several coherent and non-coherent acoustic source localization strategies are 

proposed in literature such as the (correlation driven) time difference of arrival (TDOA) 

based localization strategy, the high-resolution spectral estimation-based localization 

strategy, the steered-beamformer based localization strategy and the received signal 

energy measurement based strategy [6-8][19-27]. This section provides an overview of 

these different strategies. 

In high-resolution spectral estimation-based localization strategy, the TDOA of 

acoustic signal at two acoustic sensors are estimated using the phase information of the 

cross-power spectrum of the received acoustic signals [6][7]. In contrast, the (correlation 

driven) TDOA based localization strategies estimate the TDOA value only using the 

correlation methods [6][7][20]. The direction of arrival (DOA) of the acoustic signal can 

be estimated with reference to the sensor locations using the calculated TDOA value. 

Conversely, beamformer based localization strategies calculate the DOA of acoustic 

signal directly using filtered, weighted and summed version of the received acoustic 

signals [6][22][23]. Once the TDOA or DOA information is available, locus of the 

acoustic source relative to the sensor nodes can be estimated using this information. 
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Multiple such loci are required for the acoustic source localization. The acoustic energy 

based localization strategies mostly employ the acoustic energy decay model based 

(distance) range estimation for localization [8]. In this approach, the intersection of the 

geographic ranges of multiple sensors (determined using the estimated distance range) is 

used for localization. However, some acoustic energy based strategies estimate the DOA 

of acoustic signal using the acoustic intensity information at different sensors and 

perform the localization using this DOA estimation [7]. 

An acoustic energy decay model based acoustic source localization method that 

employs maximum likelihood estimation with expectation maximization was proposed 

by Sheng and Hu [8]. Maximum likelihood estimation and least-squares estimation are 

widely used with beamforming for the source localization [21]. Chen et al. [22] have 

proposed a maximum likelihood source localization method for near field source 

localization. In [23], this method is extended to far field source localization. Yao et al. 

[25] introduced a blind beamforming technique that can be applied to source localization 

using randomly distributed placement unknown sensors. A beamformer based 

localization method within the particle filtering framework was proposed by Ward and 

Williamson [27]. Brandstein et al. [6][26], proposed framework for speech source 

localization using the TDOA information based localization strategy. They have 

proposed linear intersection algorithm, a closed form source localization algorithm using 

TDOA measurements. 

The received acoustic signal strength based strategies are comparatively simple 

and generally requires less communication and processing resources [7][8]. However, the 

localization accuracy of the energy based estimation strategies can degrade specially in 

10 



 

far field target localization [7][20][23]. The acoustic signal intensity based strategies 

require precise phase and amplitude matching of microphones and also are highly 

susceptible to the environment conditions [7]. The steered beamformer based localization 

strategies usually provide high quality localization performances, however accuracy of 

the method depends on the knowledge of spectral contents of the acoustic signal and the 

noise, which are typically unavailable [6]. In addition, they usually require costly antenna 

arrays [8]. Moreover, the computational demands of the strategy are very high and the 

computational optimizations available are highly ineffective for these strategies [6]. 

High-resolution spectral estimation-based localization strategies require the spatiospectral 

correlation matrix derived using the received acoustic signals. Thus, they are highly 

susceptible to the accuracy of modeling the sensor modeling errors [6]. In addition, they 

are highly sensitive to noise [7]. Robust variations of the spectral estimations are 

proposed in the literature, however they are computationally high demanding [7], 

especially for resource limited wireless sensor networks. Moreover, for wideband signals 

the computational complexity of the high-resolution spectral estimation-based 

localization strategies is high [6]. Although TDOA based strategies are resource 

demanding compared to the energy based localization strategies, they are more robust 

compared with energy based localization [6][7]. Compared with steered beamformer 

based strategies and spectral estimation-based localization strategies, the TDOA based 

strategies are less resource demanding [6][7][20]. In addition, although TDOA based 

strategies are not as robust as steered beamformer based strategies, they provide 

satisfactory localization performance with great simplicity and resource efficiency. 

Moreover, TDOA based strategies can be extended to track multiple targets [7]. 
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2.2 Related Work 

This section provides a detailed discussion on energy-efficient target tracking 

using wireless sensor networks. We first discuss the target tracking algorithms proposed 

for wireless sensor networks, primarily focusing on acoustic target tracking. The second 

part of the discussion investigates energy-efficient target tracking algorithms proposed 

for wireless sensor networks. In addition to the application level power management, 

there are several networking level power management methods proposed for wireless 

sensor networks. The third part discusses the networking level power management 

strategies for wireless sensor networks with emphasis on power management for target 

tracking applications. 

2.2.1 Target Tracking Using Wireless Sensor Networks 

Target tracking using acoustic signals has been used from very early times as far 

back as World War II. With the emergence of tiny sensor nodes with multi dimensional 

sensors and powerful communication and computing capabilities, target tracking using 

wireless sensor networks has gained wide attention from researchers. As a result, many 

algorithms have been proposed for target tracking using wireless sensor networks. 

A self-organizing protocol for energy efficient target tracking is proposed by 

Biswas and Phoha [28]. In their approach, the sensor network self-organization is 

performed through a four-phase self-organization protocol, which consists of              

self-awareness, self-reconfiguration, self-repositioning, and self-adaptation phases. These 

four phases of the protocol enable the sensor nodes to initially organize and then 

reconfigure into an energy-wise optimal subset of active nodes for target tracking. Energy 

conservation is achieved by switching off the redundant nodes, which have overlapping 
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coverage. A dynamic space time clustering algorithm [29] is used for target tracking. The 

algorithm performs the node clustering based on closest point of approach (CPA) 

information. Received acoustic signal strengths are used to detect CPA of a target to a 

sensor node. Then, the CPA information from itself and neighboring nodes collected in a 

predefined time window is used for the cluster formation and target tracking. 

Ekman et al. have proposed a ground target tracking algorithm using acoustic 

sensors [30] [31]. The algorithm employs particle filters and statistical data association 

for target tracking using bearing measurements obtained from acoustic sensors. In this 

algorithm, solution to the target tracking problem is given within the Bayesian recursive 

framework, where the state estimations are obtained using the particle filters. The particle 

filter is based on the classical sampling importance resampling (SIR) scheme [30]. 

However, it is redesigned to support multiple target tracking. Sequential Monte Carlo 

techniques are used to represent the solution to particle filter using samples, which 

reduces the complexity of the solution. The combination of information from sensor 

nodes is performed using a modified version of sample based joint probabilistic data 

association (JPDA) scheme. Here, the particle weights of the filter are updated using the 

posterior probabilities to provide more realistic particle weights that match the tracking 

environment. Moreover, their algorithm also supports handling of constraints on motion 

pattern of target such as terrain constraints and velocity constraints by incorporating them 

into the particle filter. 

A cluster based acoustic target tracking system is proposed by Wang et al. [32] 

for tracking impulsive acoustic targets with known acoustic signatures. The system 

architecture consists of two main self-contained subsystems, the acoustic target tracking 
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subsystem and the communication subsystem. The acoustic target tracking subsystem is 

responsible for detection and triangulation of the acoustic signal. Sensor nodes are 

organized into clusters and clusters are the primary units for localization and tracking. A 

cluster consists of a cluster head and slave sensor nodes, and each sensor node in the 

cluster collaborates in sensing and communication to perform the tracking. When an 

acoustic signal with known signature is received, slave nodes report the signal and the 

timing information to the cluster head and the cluster head performs the localization and 

reports the results to the data sink. The communication subsystem is responsible for 

reporting the tracking results to the data sink. In order to achieve effective bandwidth 

utilization and low latency, they have proposed a quality-driven redundancy suppression 

and contention resolution scheme and a multi-parent sink tree routing scheme. 

Sheng and Hu [33] have proposed a self-organization algorithm for distributive 

moving target tracking. They have used energy based source localization [8] with the 

maximum likelihood multiple-target localization [34] for the target localization in their 

tracking algorithm. In their scheme, the sensor nodes that receive signal from the same 

target dynamically form a cluster for target tracking. Sensor nodes within the cluster are 

further organized into cliques with each clique having a master sensor node and several 

slave nodes. The communication within the clique is achieved using broadcast messages 

and the master nodes communicate with each other in peer to peer fashion. The           

self-organization algorithm performs non-overlapping clustering of sensor nodes in a 

distributed manner. For this, each sensor node decides which target tracking it should 

perform depending on a cost function value. The cost function evaluates the information 

gain it can provide for each target tracking. 
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Chen et al. [35] proposed a decentralized dynamic clustering algorithm for single 

target tracking. A hierarchical sensor network is employed for target tracking in this 

approach. The hierarchical sensor network consists of a static backbone of sparsely 

placed high-capability sensor nodes and densely deployed low end sensor nodes. The 

high-capability sensor nodes become the cluster heads and the low end sensor nodes 

become slave nodes in the cluster formation. Target localization is performed using 

energy based acoustic source localization. For the cluster head election, a probabilistic 

leader volunteering procedure is employed with the use of Voronoi diagram [36]. In this 

approach, each sensor node calculates the probability of the node being closest to the 

target, using the known relative sensor node positions and the target distance estimation. 

This probability is used as the backoff timer for the leader volunteering by                 

high-capability sensor nodes. The cluster heads send out an information solicitation 

packet when they detect a target, and the slave nodes join the cluster depending on the 

probability of it being the closest to the target, which is detailed earlier. 

Extended Kalman filter based target tracking mechanism using bearing only 

measurements is proposed by Kaplan and Le [37]. The bearing measurements are 

obtained using a circular microphone array with nine microphones at each sensor node. A 

preparation compensated nonlinear least-square localization strategy is developed to 

perform the target localization using the bearing measurements from several sensor 

nodes. 

A distributed two-tier target tracking algorithm is proposed by Shi et al. [38]. The 

algorithm is mainly focused on tracking using linearly placed sensor nodes. Energy based 

acoustic source localization is employed for localization. In this two-tier approach, a 
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rough estimation is obtained in the first tier using the Viterbi algorithm [39] based 

multiple hypothesis tracking algorithm. In the second tier, a set of sensor nodes which are 

located closer to the target is selected, and maximum likelihood estimation [34] is 

performed using the measurements from the selected sensor nodes to obtain accurate 

target location estimation. 

A target tracking algorithm using joint acoustic and video sensors is presented by 

Cevher et al. [40]. A particle filter that is capable of handling multiple modalities is 

proposed and a time-delay variable is incorporated to handle the acoustic-video data 

synchronization. Yu et al. [41] proposed a neural network aided Unscented Kalman filter 

for target tracking. In this approach, the nonlinear filtering is achieved using the 

Unscented Kalman filter and the neural network is incorporated to correct the modeling 

errors caused by target maneuvering. A framework for collaborative signal processing in 

distributed sensor networks for target detection, classification and tracking is proposed by 

Li et al. [42]. This collaborative signal processing framework incorporates goal-oriented 

on demand distributed processing, information fusion, and multi-resolution processing 

capabilities. In addition, the framework is integrated with a location centric 

networking/routing algorithm [43]. A target tracking algorithm based on mobile agent 

paradigm is developed by Tseng et al. [44]. In this scheme, a master agent performs the 

tracking with the support of two slave agents. The master agent always stays in the sensor 

node that is closest to the target, and dynamically selects the slave agents. The mobile 

agent prototypes were developed using IEEE 802.11bNIC. 

16 



 

2.2.2 Energy Efficient Target Tracking Using Wireless Sensor Networks 

Power limitation is a major design constraint in developing algorithms for 

wireless sensor networks [1][12-15]. Thus, achieving energy efficiency has been a major 

goal in target tracking algorithm design for wireless sensor networks. Several approaches 

have been used for achieving energy efficiency in target tracking algorithms. Some of the 

popular techniques proposed in literature are, employing less power demanding 

processing mechanisms, reducing the communication requirements of the algorithms, 

incorporating energy considerations into node selection, performing data aggregation, 

using of energy aware routing and MAC layer protocols, and employing sleep-wakeup 

management schemes [1][12-15][45]. This section provides a detailed investigation on 

energy-efficient target tracking algorithms for wireless sensor networks. 

An energy-efficient cross layer architecture for acoustic target tracking using 

wireless sensor networks is proposed by Song and Hatzinakos [13]. They proposed a 

lightweight acoustic energy based target localization algorithm. Specifically, the target 

location is estimated as an optimal linear combination of the location information of 

participating sensor nodes. A sleep-wakeup scheme is employed for the efficient power 

management. In their model, two separate radios are used for node wakeup management 

(wakeup radio) and communication (primary radio). A cross layer architecture, where 

application layer and MAC layer interact for high protocol efficiency, is proposed. 

Initially, the first node that detects the target is selected as the leader node. Then, this 

leader node awakens and notifies all its neighboring nodes to sense the target by sending 

a message through the wakeup radio. After sensing the target acoustic signal for some 

time, each sensor node calculates a utility function based on the received signal strength. 
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The sensor node with the highest utility is selected as the new leader node. A subset of 

nodes that sensed the target, sends their utility function value and location information to 

the new leader node and the new leader node performs the localization. The number of 

nodes that participates in the localization is determined by the new leader depending on 

the quality of service, which is calculated using the improvement in localization 

accuracy. Moreover, the previous leader node sends the track history to the new leader 

node, and the new leader node generates track information using history and the 

calculated location estimation. As the nodes that do not receive a notification from a head 

node do not have to participate in tracking, they can turn off their sensing unit and the 

radio for communication unit and transform to the sleep state to conserve power. 

VigilNet, implementation of a large scale energy-efficient sensor network for 

detection, classification and tracking of targets is presented in [46-49]. In VigilNet, the 

groups of sensors that detect the target cooperate to track the target. The deadline 

partition method is employed to enforce the real-time target tracking. In addition, the 

energy conservation is achieved by employing a periodic sleep-wakeup management 

scheme. In this approach, a set of nodes is selected as sentry nodes and is kept awake for 

the monitoring of events. The other nodes are allowed to sleep until an interesting event 

is detected by these sentry nodes. In case of detecting an interesting event, the sentry 

nodes awaken other nodes in the region to perform monitoring. The tradeoff between 

energy consumption and the tracking quality is achieved by adjusting the backoff delay 

employed in sanity node selection, which will adjust the sensitivity of the sensor network. 

The energy-quality tradeoffs of target tracking using wireless sensor networks are 

studied by Gui and Mohapatra [14], and a quality of service metric is proposed to 
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evaluate the level of surveillance of the system. Moreover, a sleep-wakeup management 

scheme that operates in the surveillance state as well as in tracking state is proposed for 

improved energy-efficiency. In the surveillance state, a neighborhood cooperative 

sleeping based sleep plan for each sensor node is proposed. This schedule is an extension 

of Probing Environment and Adaptive Sleeping (PEAS, [50]) algorithm and is termed 

Probing Environment and Collaborating Adaptive Sleeping (PECAS). In this approach, 

each node periodically awakens and probes for active nodes. If no active node is found it 

stays awake for one time duration. If an active node is present, that active node will reply 

to the probe with the end time of its active duration. Then depending on the replies 

received by the probing node, it selects its sleep duration depending on the collected end 

times and enters sleep state. For the tracking state, a collaborative proactive messaging 

scheme that wakes up and shuts down the sensor nodes with spatial and temporal 

preciseness is proposed. In this scheme termed proactive wakeup, the sensor nodes that 

overhear the tracking packets but cannot sense the target keep awake expecting the target 

to enter its sensing region in the near future. Thus, the combination of two schemes for 

the two states of the sensor nodes are employed to achieve efficient power conservation 

through sleep-wakeup management. 

Xu and Lee [51] proposed a localized prediction based energy-efficient tracking 

algorithm. A hierarchical cluster architecture is employed for the network and a localized 

prediction termed duel prediction is used for the estimation and prediction of target 

movements. The sensor field is partitioned into non-overlapping logical cells, which are 

defined as areas around the sensor nodes. Each cell contains exactly one node and if the 

target is located within that cell, the tracking is performed by that particular node. In this 
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duel prediction method, the sensor node that is responsible for tracking the target as well 

as the corresponding cluster head generates target state predictions using the target 

movement information of the previous time intervals. In addition, the sensor node 

responsible for the tracking will estimate the target location using the measurements from 

current time interval. Then, it will compare the prediction and the estimated locations and 

if the prediction is not accurate according to the estimate (obtained from current 

measurements), the updated estimation will be sent to the cluster head. As most of the 

nodes in the network are not participating in the tracking process, they enter sleep state 

and conserve energy. The tracking node awakens the sensor nodes that are in the 

predicted path of the target for continuation of tracking. 

Jiang et al. [52] proposed a target moving direction based sleep scheduling 

algorithm for target tracking applications. In their approach, initially all the nodes are in 

the surveillance mode. In this mode, all the nodes follow a random and asynchronous 

sleep pattern with a fixed duty cycle. Once a target is detected, tracking is performed by 

the collaboration of sensor nodes in the tracking subarea with one node selected as the 

root node. The root node broadcasts an alert message with target state information to 

awaken the nodes in the next tracking subarea depending on the prediction of target path. 

For target path prediction, a direction-based tracking contour deciding mechanism is 

proposed. In [53], this work is extended and sleep scheduling algorithm for multiple 

target tracking (SSMTT) is proposed. In tracking multiple targets, when the paths of 

targets interfere with each other, some nodes may be eligible to track multiple targets. In 

such scenarios, the nodes need to be awakened only once and the duplicate wakeup 

broadcast messages can be eliminated to save power. SSMTT exploits this and eliminates 
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the wakeup broadcast messages or reduces the transmission power of wakeup broadcast 

messages in such scenarios, for improving power conservation. 

A cluster based dynamic energy management algorithm is proposed by Wang et 

al. [54] for tracking acoustic targets. They have employed direction of arrival (DOA) 

based target localization and a particle filter for target position prediction. In addition, a 

dynamic adaptive clustering scheme, which uses localized broadcasts for distributed 

cluster head election is proposed and combined with LEACH (Low-Energy Adaptive 

Clustering Hierarchy) [55] for the cluster generation. Moreover, an optimal intra-cluster 

routing mechanism is developed based on the Dijkstra’s algorithm. A sleep-wakeup 

management scheme is employed for the efficient power management. In this scheme, 

when there is no sensing or communication requirement, the sensor nodes follow a  

sleep-wakeup pattern with a predefined duty cycle. However, in contrast to other      

sleep-wakeup schemes, in this approach, even the sensors that participate in tracking and 

communication tasks also follow the sleep-wakeup pattern. More specifically, the sensors 

that perform tracking or data forwarding tasks stay awake for the current interval and 

then transform to sleep state. However, unlike previous case, the time interval of sleeping 

is decided depending on the target state estimation obtained using the particle filter. As 

the individual sensor nodes perform the awakening using their own timers, there is no 

requirement for wakeup message broadcasting in this mechanism. In addition, a discrete 

binary particle swarm optimization based selection mechanism is proposed for the 

selection of tracking sensor node group from available active sensor nodes. This method 

provides further energy conservation in collaborative sensing and data forwarding for 

target tracking. 
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Energy-efficient collaborative target tracking algorithm using cost-reference 

particle filtering proposed by Yu et al. [56], too uses a cluster based approach to target 

tracking. In this approach, only one cluster is responsible for tracking the target at a given 

time and the target localization is performed using energy based target localization. For 

target tracking, a set of selected cluster members that lie close to the predicted target 

location will collect the acoustic energy measurements and send them to the cluster head. 

The cluster head is responsible for selecting the set of cluster members, gathering 

measurements from them, estimating and predicting the target state, sending tracking 

information to base station, and passing the sensing and tracking operation to the next 

cluster. A new class of particle filter termed cost-reference particle filter (CRPF) is 

proposed for estimating and predicting the target location. In this CRPF, a user defined 

cost function is employed for evaluating the quality of target state. In addition, to balance 

the energy consumption at sensor nodes, an event-driven cluster reforming scheme is 

proposed. The cluster reforming process rotates the cluster head after each target 

tracking. Moreover, efficient power management is obtained by putting the idling clusters 

to sleep. When the currently active cluster head determines that target is moving away 

from it and is nearing the cluster boundary, it will send an activation message to an 

appropriate neighboring cluster head with current target state estimations and required 

algorithm parameters. Then, the new cluster head will notify its members to start sensing 

the target. 

RARE, an energy efficient target tracking protocol is proposed by Olule et al. 

[57]. Two algorithms to achieve effective power management through reducing the 

number of nodes participating in the tracking process are proposed. First, the RARE-Area 
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algorithm reduces the number of tracking nodes by selecting only the sensor nodes that 

receive sensing data of a given quality. Then, the RARE-Node algorithm acts upon the 

set of selected nodes and makes sure that the nodes with redundant information do not 

participate in the tracking process. These two steps ensure that only a subset of nodes that 

can provide quality information, participate in the tracking process, which enables the 

power conservation. 

Cao et al. [58] proposed a near-optimal sleep scheduling algorithm for        

energy-efficient sensor-network-based surveillance applications. In this work, they have 

proposed a two-level sleep scheduling scheme. In the first level, a minimal set of sensor 

nodes are selected to maintain the sensing coverage. This set is called the primary subset, 

and the other nodes in the network are put into sleep. This process is repeated with large 

duty cycles. In the second level, the nodes that belong to the primary subset are sleep 

scheduled in duty cycles at a frequency higher than the first level. In addition, they have 

proposed an iterative duty cycle adjustment scheme, which achieves the local optimum 

for a given detection delay. Moreover, a connectivity maintenance protocol is proposed to 

minimize the packet delivery delay. 

Abrams et al. [59] proposed a set K cover energy-efficient monitoring algorithm 

for wireless sensor networks. In this approach, the sensor nodes are divided into covers 

and the covers are activated in round robin fashion to maintain the monitoring, while the 

other nodes are put asleep to achieve effective power conservation. Moreover, three 

algorithms are proposed for generating the covers. In the first algorithm, each sensor 

node assigns itself to a cover randomly. In the second distributed greedy algorithm, each 

sensor node assigns itself to a cover based on neighboring information and the current 
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state of the covers. The selection of cover is targeted at maximizing the coverage of the 

cover, which has the minimal local coverage. The third centralized greedy algorithm, 

which depends on the global information, assigns the sensor nodes into the covers to 

maximize the coverage of each cover. 

An energy-efficient dynamic convoy tree-based collaboration framework is 

proposed for target tracking by Zhang and Cao [60]. The framework constructs the initial 

convey tree for target tracking when a target is first detected, and then updates the tree to 

match the target movements. When a target is first detected, sensor nodes that detect the 

target collaborate to select a root node and construct the initial convoy tree. The root node 

then collects target information from the sensor nodes in the tree and obtains a refined 

target state estimation. As the target moves, the tree is dynamically updated by removing 

the sensor nodes that are far away from the target and adding the sensor nodes that are 

close to the target. Two energy-efficient methods, namely conservative scheme and the 

prediction-based scheme are proposed for the convoy tree updating. When the convoy 

tree is updated, the tree is reconfigured to update the root node. Two tree reconfiguration 

schemes, the sequential reconfiguration and the localized reconfiguration are developed 

for energy-efficient reconfiguration of the updated convoy tree. In addition, for effective 

power management, the geographical adaptive fidelity (GAF) protocol [61] is 

incorporated to the framework. In this power management scheme, the sensor network is 

divided into grids and each grid contains a grid head. When a target is not present, only 

the grid head is kept awake, while the other nodes in the grid wakeup periodically. The 

root node of the convoy tree activates the sensor nodes in the target moving direction by 

notifying the grid heads. 
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Yang et al. [62] proposed an energy efficient distributed target tracking algorithm 

called Predict-and-Mesh. A prediction based node awakening scheme with a mesh 

process for recovering from prediction failures is used in this algorithm. Initially, the 

sensor nodes are in sleep mode and are awakened depending on the prediction of the 

target movement. Two prediction models namely, n-step prediction and collaborative 

prediction are utilized for the target movement prediction. In n-step prediction, the same 

set of nodes predicts the target for several steps and for collaborative prediction, the 

prediction information from previous set of nodes is passed onto the next set of nodes. 

The proposed mesh process enables recovering from prediction failures by awakening the 

surrounding nodes to form a mesh around the target. The energy-efficiency is achieved 

through the employed sleep-wakeup scheme. 

An energy efficient multiple target tracking scheme is proposed by Yeow et al. 

[63]. They have used cluster based network architecture, and power savings are achieved 

by making the non tracking nodes sleep and by minimizing the workload of the tracking 

nodes. In this scheme, the sensor nodes are dynamically managed using the spatial 

information obtained by predicting a target’s trajectory through experience. Target 

trajectory model is assumed to be Gauss–Markov mobility model. Moreover, the tracking 

problem is formulated as a hierarchical Markov decision process (HMDP) and is solved 

through neurodynamic programming. In addition, the sensing rate is dynamically 

adjusted depending on the estimation accuracy to further improve the power 

conservation. 

Chu et al. [12] proposed an energy-efficient sensor querying technique and a 

novel routing mechanism for sensor network applications. The key idea of their work is 
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utilizing an information utility measure for sensor node selection and dynamically guided 

data routing. In the sensor querying technique termed information-driven sensor querying 

(IDSQ), the nodes that can contribute to maximize the information gain are selected. 

They have used a cluster based approach in node selection and the cluster head selects the 

set of sensor nodes that can maximize the information gain and queries them. For routing 

the query and the reply packets, a generalization of directed diffusion routing, constrained 

anisotropic diffusion routing (CADR) is proposed. In this routing algorithm, the 

information gain and communication cost are considered in dynamic route formation. In 

[64], the IDSQ approach is formulated for target tracking applications. Extending the 

IDSQ approach to acoustic energy based localization, and acoustic beamformer based 

localization are studied in [65]. 

A novel dynamic grid-based tracking scheme for tracking mobile targets in 

energy-efficient manner is proposed by Zhou and Sen [66]. In their approach, they have 

formulated the target tracking problem as a problem of finding the sequence of optimal 

aggregation trees that minimize the energy consumption. In order to achieve this in a 

distributed manner, a virtual grid structure is employed. The sensor network field is 

divided into a grid structure and the nodes closest to the grid points are selected as the 

grid nodes. Then, each node selects the grid node within its neighborhood, which is 

closest to the target, as the aggregation node. Target localization is performed using the 

received signal strength measurements shared by the neighboring nodes. Once the 

localization is complete, the target location information is forwarded to the aggregation 

node and then to the sink. This data aggregation results in reduced communication 

overhead, which enables achieving energy-efficiency. 

26 



 

Oh et al. [67] proposed a scalable and hierarchical multiple target tracking 

algorithm based on Markov chain Monte Carlo data association [68]. The hierarchical 

sensor network consists of few super nodes with higher capabilities and average nodes. 

Each average sensor node is assigned to a tracking group headed by a super node. When 

a super node detects a target, it performs the tracking using the information from average 

nodes in its tracking group. The information from super nodes is combined in a 

hierarchical manner to achieve energy efficiency. A localized clustering algorithm and a 

direction diffusion based localization mechanism are proposed by Estrin et al. [69]. The 

clustering algorithm is capable of performing scalable hierarchical cluster architecture, 

which will result in reduced power consumption. 

A distributed, energy-efficient and light-weight framework for target tracking 

using wireless sensor networks is proposed by Lee et al. [70]. They have employed 

energy based acoustic source localization strategy with a novel localization algorithm, 

called Ratiometric Vector Iteration (RVI). This algorithm provides localization 

estimations based on distance ratio estimates from the sensed signal strength ratios. The 

localization is performed using measurements from three sensors and is iteratively 

updated until a satisfactory estimation is obtained. A received signal strength based 

backoff timer is employed for selecting the localizing nodes and the leader node. The 

leader node performs the localization using RVI algorithm and reports the estimations to 

the subscriber. In addition, the reporting frequency is dynamically adjusted considering 

the target’s movement to achieve energy-efficiency while maintaining the tracking 

quality. 
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Yu et al. [71] proposed a quality aware information collection framework for 

target tracking using wireless sensor networks. However, their approach is centralized 

and the sensor nodes are controlled by a central server. Energy based localization is 

employed for localization and localization is performed at the server. Importantly, the 

sensor nodes are dynamically controlled by the server depending on the tracking quality 

and the required tracking quality to achieve the energy conservation. A power control 

mechanism to achieve an optimal trade-off between target tracking accuracy and the 

power efficiency is proposed by Wagner and Cristescu [72]. In this approach, a hidden 

Markov model is employed for the target movement. The problem of achieving the 

energy-quality trade-off is modeled as an optimal control problem with partial 

observations of target location, and a hand-off technique is proposed to achieve energy 

efficiency. 

2.2.3 Energy Efficiency in Wireless Sensor Networks 

The power management methods discussed in the previous subsection are mainly 

targeted at target tracking wireless sensor networks. They are primarily application level 

power management protocols that may use the support from the networking layers (lying 

below) for effective power management. In addition to the power conservation methods 

employed by the target tracking applications, there are several energy-efficient 

networking protocols that are proposed for wireless sensor networks. These networking 

level power management approaches can provide power management on their own as 

well as can be incorporated for wireless sensor network applications for improved cross 

layer power management. Several such network layer and medium access control (MAC) 

layer protocols are discussed here. 
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2.2.3.1 Energy Efficiency in Network Layer 

ASCENT, an adaptive self-configuring sensor network topology for efficient 

power management is proposed by Cerpa and Estrin [73]. ASCENT incorporates a   

sleep-wakeup management scheme for power conservation. The algorithm adaptively 

selects a set of nodes to be active nodes to perform multi-hop packet routing. The other 

nodes enter sleep state and periodically check whether they should become active. More 

precisely, the sensor nodes in the network can be on one of four states, namely active, 

passive, checking and sleeping. The nodes in the passive state after some time transfer to 

sleep state, and after sleeping for some time transfer back to passive state. When an 

active node detects a higher packet loss rate, it sends out a help message, requesting 

neighboring nodes to become active. When a neighboring node in passive state receives 

this message, it transfers to the checking state. The nodes in checking state probe the 

communication for some time and decide whether they can help to improve the 

communication. If they decide that they can improve quality of communication, they 

become active. Otherwise they go back to the passive state. If the node becomes active, it 

sends out a message to announce its presence and participates in communication. Thus, 

the individual sensor nodes locally self-configure their states so that the communication 

quality is maintained while the effective power management is achieved. 

Greunen et al. [74] proposed an adaptive sleep discipline for energy conservation 

in wireless sensor networks. This approach allows the sensor nodes to sleep while 

maintaining the performance requirements of the application. In this approach, each node 

independently decides when to sleep and wakeup based on its local information. When a 

sensor node in sleep state becomes active, it announces to the neighboring nodes that it is 
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ready to forward packets. Then, it stays awake till all the waiting packets are received. In 

addition, depending on the number of packets it received and the longest waiting time of 

the packets, it dynamically adjusts its maximum sleep time to match the application 

requirements. After this, it forwards the received packets and goes to sleep for a random 

time period, which is within the adjusted maximum sleep time. Moreover, an 

opportunistic routing mechanism is employed for timely delivery of packets. This 

mechanism is a modification of geographic routing where the sender forwards the packets 

to one of the available nodes from a set of equivalent node set rather than forwarding the 

packets to a fixed node. The equivalent node set consists of the nodes that are suitable for 

forwarding the packet to the destination. 

Geographical adaptive fidelity (GAF), an energy-efficient protocol for wireless 

sensor networks is proposed by Xu et al. [61]. GAF is an add-on to ad-hoc routing 

protocols which can support the routing algorithm to attain higher energy efficiency. The 

GAF algorithm identifies the nodes that are equivalent from the routing perspective and 

makes the redundant nodes sleep to achieve extended network lifetime. In addition, the 

algorithm maintains a constant routing fidelity, which can be determined based on 

application requirements. The nodes can be in one of three states, active, sleeping or 

discovery. Initially all the nodes are in discovery state. At this state, nodes send out a 

discovery message and wait for some time. Then, the node transfers into active state and 

participates in routing activities. After spending some time on active state, the node goes 

back to the discovery state and sends out a discovery message again. The node enters the 

sleep state (from active or discovering states) if it finds out that there is a better (higher 

ranked) equivalent node that can handle the routing. The node equivalence is determined 
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using the node location and a virtual grid, where the nodes that belong to same grid are 

considered equivalent. The nodes are ranked using a scheme that can be specified by the 

application, and a simple ranking method would be to rank based on the energy left in the 

nodes. A node in the sleeping state enters the discovery state after sleeping some time. 

The sleep time and the active time of the protocol can be adaptively adjusted by the 

application depending on its requirements, thus enabling the adaptive fidelity. 

SPAN, an energy-efficient coordination algorithm for topology maintenance in ad 

hoc wireless networks is proposed by Chen et al. [75]. Contrasting to GAF [61], SPAN is 

placed below the routing layer and on top of MAC layer and is a proactive protocol. 

However, similar to GAF [61], SPAN also makes the nodes sleep periodically for 

extended network lifetime. In SPAN, each node locally decides whether to sleep or 

participate in routing, depending on how many nodes it can benefit and the amount of 

energy left in the node. The number of nodes it can benefit is measured by the number of 

nodes it can connect. The nodes that are sleeping periodically check whether there are 

any nodes that are not connected in its neighborhood and decide to participate in the 

routing process. Each node that participates in routing, periodically checks whether the 

nodes, which are connected through it can maintain the connectivity without its service. 

If it is possible, the node decides to sleep. In addition, after participating in the routing 

process for some time, a node will decide to sleep if there are other nodes that can replace 

its role. 

Sparse Topology and Energy Management (STEM), which enables effective 

power management through sleep-wakeup is proposed by Schurgers et al. [76]. In 

contrast to sleep-wakeup management mechanism discussed above that exploits the high 
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node density of sensor network, this protocol provides energy conservation at the cost of 

increased latency. In this approach, two separate radio communication links, a low power 

consuming link for wakeup management and a regular link for communication are used. 

The radio link for communication is always kept off except when transmitting or 

receiving. The low power link follows a periodic sleep-wakeup pattern. When a node 

wants to send data, it will send a beacon packet to the destination through the wakeup 

management link and establish a connection. Then, the data is sent through the 

communication link. In addition, the STEM protocol can be combined with protocols 

such as GAF [61] and SPAN [75] to further improve the power conservation.  

Zheng et al. [77] proposed asynchronous wakeup for effective power management 

in wireless sensor networks. They derived an optimal wakeup schedule and a neighbour 

discovery and schedule bookkeeping protocol. This protocol operates on the proposed 

optimal wakeup schedule to support effective power management. 

A balanced-energy sleep scheduling mechanism intended to achieve a reduced 

energy consumption as well as balanced energy consumption over the network is 

proposed by Deng et al. [78]. A static cluster based sensor network is employed and a 

cluster head managed sleep-wakeup management mechanism is proposed for the power 

conservation. The cluster head dynamically selects a set of sensor nodes to sleep for 

power conservation. The node selection is performed based on the distance from the 

sensor node to the cluster head and is expected to maximize the network lifetime by 

minimizing the energy consumption as well as balancing the energy consumption among 

nodes in the cluster. 
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Xing et al. [79] proposed minimum power configuration (MPC) approach, a cross 

layer approach to the power conservation in wireless sensor networks. In this approach, 

the power management considers combination of topology control, energy aware routing 

as well as sleep management, thus combining the information and functions from 

different networking layers to achieve effective power management. The problem of 

achieving minimum power configuration of the sensor network considering these factors 

is addressed, and minimum power configuration protocol (MPCP) is proposed. 

Developing hierarchical clusters in the network is another approach employed for 

power conservation in sensor networks. In these hierarchical clusters, the cluster 

members communicate only with their immediate cluster head and the cluster head 

aggregates the data and sends them to the cluster head of the upper level. Thus, the 

cluster members need only to communicate with its local cluster head and can use low 

transmission power for communication. In addition, as data aggregation is performed at 

each level, the amount of data transmitted is reduced without loss of obtained 

information. This reduction in data requirement also supports power conservation. A 

distributed and randomized clustering algorithm, which generates a hierarchical cluster 

architecture, is proposed by Bandyopadhyay and Coyle [80]. In their approach, the 

cluster architecture is developed in bottom up manner and at each level the participating 

sensor nodes volunteer to become cluster heads with a given probability. Data 

aggregation is performed at the cluster head at each level for improved power 

conservation. Moreover, an energy efficient clustering scheme (EECS) is proposed by Ye 

et al. [81]. Remaining energy based cluster head election mechanism using broadcast 
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messages, is proposed for the cluster head selection and request response based cluster 

formation is employed for cluster member selection, in this scheme.  

Heinzelman et al. [55][82] have proposed low-energy adaptive clustering 

hierarchy (LEACH), a protocol architecture for sensor networks that support energy 

efficiency through cluster based routing and data aggregation. The clusters are 

dynamically formed in a distributed manner by each node electing itself as a cluster head 

with a certain probability, and then announcing itself as a head. The other nodes select 

the head that is closest to them as their cluster head and joins that cluster. The cluster 

head is responsible for generating a schedule for the cluster members to send data to 

cluster head. In addition, the cluster head performs the data aggregation to eliminate the 

redundancies. Moreover, the cluster heads are rotated and clusters are regenerated 

periodically to achieve even energy consumption across the network, which results in 

extending the sensor network lifetime. 

Shah and Rabaey [83] proposed an energy aware routing algorithm designed to 

provide extended network lifetime for sensor networks. In this algorithm, the routes are 

dynamically generated as required and the route selection is based on energy left in the 

nodes along the path, as well as the energy consumption of the path. This combination 

provides energy-efficiency through the minimum energy path selection approach and the 

balancing of energy consumption at nodes by considering the energy left in the node. 

Schurgers and Srivastava [84] proposed a combination of data aggregation and uniform 

energy utilization at sensor nodes to achieve extended network lifetime. In this routing 

algorithm, the uniform energy utilization is achieved by selecting paths in a manner so 

that the data flows will select different paths. A random path selection approach, energy 
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left in the nodes based path selection approach and a stream based approach are proposed 

for this purpose. All these methods perform node selection from local information. In 

addition, data aggregation is performed at nodes where more than one data flow is 

present to achieve power conservation. Directional Source-Aware Protocol (DSAP) is 

proposed by Salhieh et al. [85]. This protocol assumes fixed network topology and 

availability of global topology information. The routing is performed using a unique 

identifier assigned to each node. This identifier is calculated by assigning a 2D or 3D 

mesh topology to the sensor network. Energy efficiency is attained through the 

elimination of route generation and power aware path selection. 

2.2.3.2 Energy Efficiency in MAC Layer 

Sensor MAC (S-MAC), energy-efficient and self-configuring MAC protocol for 

wireless sensor networks is proposed by Ye et al. [86][87]. S-MAC too uses periodic 

sleep scheduling with low duty cycle for effective power management. Each sensor node 

decides its sleep schedule independently and the neighboring nodes synchronize their 

sleep schedules through exchange of periodic synchronization messages. This 

synchronization reduces the control overhead of the protocol, which improves energy 

efficiency. In addition, the sensor nodes create virtual clusters based on the common 

sleep schedule to effectively support adaptive wakeup depending on the traffic demands 

of the network. Moreover, S-MAC uses in-channel signaling and message passing to 

reduce overhearing unnecessary traffic and collisions, which will also support power 

conservation. 

Lu et al. [88] proposed DMAC, an adaptive energy-efficient and low-latency 

MAC protocol for wireless sensor networks. Similar to S-MAC, DMAC employs 
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synchronized sleep scheduling of nodes to achieve effective power conservation. The 

protocol is inspired by the observation that in sensor networks with a single sink, data 

delivery paths from sources to sink are in a tree structure. It is developed to deliver data 

along this tree structure. Thus, the sleep schedule of the nodes in the different levels of 

the tree are arranges in a staggered manner. In addition, the duty cycle is dynamically 

adjusted according to the traffic load, by passing the information about remaining data 

load along with the data packets. Moreover, a traffic prediction mechanism with channel 

reservation through a control packet is used to reduce channel contention and collisions. 

Timeout MAC (T-MAC) proposed by Dam and Langendoen [89] also uses 

synchronized sleep scheduling with dynamic duty cycle adjustment for power 

conservation. In this protocol, the active part of the duty cycle is dynamically ended when 

no data transmission is present. Thus, when the traffic load is low the duty cycle will be 

small and in presence of high traffic, the nodes will have large duty cycles to support the 

traffic requirements. Similar to S-MAC [87], T-MAC employs synchronization and 

virtual clustering of nodes, through synchronization messages. However, in this case, 

upon receiving the synchronization message the receiving node will adopt the combined 

schedule of both the nodes and notify the sender with its new schedule. 

Polastre et al. [90] proposed Berkeley MAC (B-MAC), another energy efficient 

MAC protocol with sleep scheduling. It combines low power operation, effective 

collision avoidance, and high channel utilization, for efficient power conservation. In 

contrast to S-MAC [87], D-MAC [88] and T-MAC [89], B-MAC uses asynchronous 

sleep scheduling and preamble messages are used for waking up nodes. An adaptive 

preamble sampling method is employed to reduce the duty cycle of sleep scheduling to 
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achieve low power operation. Collision avoidance is achieved through clear channel 

assessment and packet backoff.  

Liu et al. [91] proposed convergent MAC (CMAC), an energy efficient MAC 

protocol and a geographical data forwarding algorithm for wireless sensor networks. 

CMAC too uses low duty cycle asynchronous sleep scheduling to achieve energy 

efficiency. It incorporates aggressive RTS (ready to send) messages with double channel 

check and convergent packet forwarding to achieve this. In this protocol, when a node 

wants to send some data, it anycasts a burst of RTS messages with short fixed gaps. Upon 

receiving this packet, nodes that are eligible to forward this packet will reply with CTS 

(clear to send) message and then the data is sent to the selected forwarder. In order to 

allow low duty cycles, channel sensing mechanism called double channel check is 

employed. In this approach, rather than continuously sensing the channel, the channel is 

sensed twice with a short gap. In addition, to reduce the overhead of using the anycast 

based forwarding, after the initial path setup, the route is converged to a unicast based 

routing. For this purpose, if the forwarder selected by the anycast forwarding has a    

near-optimal routing metric, then unicast based forwarding is employed for the remaining 

data forwarding.  

Energy and rate based MAC protocol for wireless sensor networks is proposed by 

Kannan et al. [92]. This algorithm is based on S-MAC [87] and uses sleep scheduling to 

achieve power conservation. However, in contrast to above algorithms, it adjusts the duty 

cycle based on the criticality of the sensor node, and the nodes sleep only during the time 

slots allocated to them. The criticality of a sensor node is assessed based on the energy 

left in the sensor node as well as the amount of traffic flows going through the sensor 
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node. An energy-efficient MAC protocol and a geographic random data forwarding 

mechanism, (GeRaF) are proposed by Zorzi and Rao [93]. The protocol uses periodic 

sleep scheduling to achieve effective power management. The geographic random packet 

forwarding method randomly selects the best node to forward the packet based on the 

geographic information. 

Wan et al. [16][17] proposed an energy-efficient and low latency MAC protocol 

with an energy-aware anycast based data forwarding mechanism for wireless sensor 

networks. The MAC protocol employs an opportunistic sleep scheme to adaptively 

balance the energy consumption and end-to-end delay of the network. The energy aware 

anycast based data forwarding mechanism employs geographic data forwarding with 

forwarding node selection based on geographic optimality as well as on the energy left in 

the sensor nodes. We incorporate this protocol to our self-organization algorithm to 

achieve effective power management. A detailed discussion of the protocol and achieving 

of effective power management using the protocol is provided in Chapter IV. 

2.3 Summary 

In this chapter, first we briefly introduce the acoustic source localization strategies 

proposed in literature. Among the strategies discussed, the TDOA information based 

localization strategies provide a good tradeoff between the localization accuracy and the 

computational demands. In addition, the TDOA based strategies can be easily extended to 

track multiple targets. 

The second part of the chapter provides a detailed discussion on energy-efficient 

target tracking using wireless sensor networks with primary focus on acoustic target 

tracking and the energy efficient networking protocols for wireless sensor networks. It is 
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evident from this discussion that, for target tracking applications, simple localization and 

tracking methods are preferred compared to robust, resource demanding methods. 

Moreover, it is also apparent that incorporating sleep-wakeup management schemes is the 

most effective and popular power conservation methodology used in wireless sensor 

networks. In addition to sleep-wakeup management mechanisms, utilizing less resource 

demanding processing methods, reducing the communication complexity of the methods, 

localized processing and decision making, and data aggregation, are popular means used 

to achieve energy-efficiency in wireless sensor networks for target tracking applications. 

Furthermore, it is evident from the discussion that cross layer power management 

strategies have higher capability to effectively support efficient power management in 

wireless sensor networks compared to the isolated power management strategies 

employed at the different network layers. 
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CHAPTER III 

3. TARGET LOCALIZATION AND TRACKING 

This chapter provides the details of the methods used for target localization and 

tracking. First we present the target localization method used in our algorithm. The 

second section analyzes the major error sources of the localization method. This forms 

the foundation for the node selection method used in the proposed self-organization 

algorithm. The details of the Kalman filter employed by the self-organization algorithm 

for target state estimation and prediction are discussed in the last section. 

3.1 Target Localization 

Time difference of arrival (TDOA) based localization strategy provides a good 

trade-off between localization accuracy and simplicity [6][20]. Thus, TDOA based 

acoustic localization is employed in our work. In TDOA based localization, the relative 

time delay of signal arrivals at two acoustic sensors are estimated from the received 

acoustic signals. Then, the locus of the target is estimated from the obtained time delay. 

The intersection of multiple such loci is used to obtain the estimation of the target 

location [6][7]. 

3.1.1 TDOA Estimation 

Several methods [94-96] are proposed for the correlation based estimation of 

TDOA of two acoustic signals received at acoustic sensors which are located close to 

each other with sufficient separation. In these methods, the cross-correlation function of 

the two signals is calculated and filtered in some optimal sense, and the maximum is 

obtained using a peak detector [4][7][20][94-99]. The time difference value, which 

corresponds to the obtained maximum, is the TDOA estimation. 
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3.1.2 Target Localization 

Once the TDOA estimation is obtained, the locus of the target can be generated 

from the location information of the acoustic sensors and the estimated TDOA. 

Brandstein et al. [6][26] analyzed the geometric relationship between the sensors and the 

target. For a given sensor pair location and a TDOA value, the locus of the target is a 

hyperboloid centered at the sensor pair midpoint. The sensor pair baseline (line 

connecting two sensors) is the axis of symmetry. The curvature of the hyperboloid is 

determined by the TDOA value and the sensor pair baseline distance. However, under the 

far field assumption this hyperboloid can be approximated by a circular cone with its 

center at the sensor pair midpoint [6]. Sensor pair baseline is the axis of the cone. The 

TDOA value and the sensor pair baseline distance determine the aperture of the cone. 

The far field assumption states that the distance between the two sensors should be very 

small compared to that of the sensors and the target [6]. The target location can be 

calculated from three or more such loci. 

In our work, as we restrict the scope to tracking ground targets and model the 

sensor network to be deployed on the ground, the localization becomes 2D localization 

problem. For the 2D scenario, the locus is a parabola and the cone approximation 

becomes a pair of straight lines starting from sensor pair midpoint. This approximated 

locus can be represented by the sensor pair baseline and the bearing of locus with respect 

to the sensor pair baseline. The locus of the target is shown in Figure 3.1. 
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Figure 3.1 Approximated Locus of the Target with Sensor Pair Baseline 

Here, M1 and M2 are positions of the two sensors. M0 is the midpoint of M1 and 

M2. 


B  is the estimated bearing of the target related to the sensor pair baseline.  is the 

estimated TDOA value and C is the speed of sound. L is the distance between the two 

sensors, termed sensor pair baseline distance. The bearing of the locus can be estimated 

by; 
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In the case of 2D localization scenario, two loci are enough. The target 

triangulation using two such loci is shown in Figure 3.2. 
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Figure 3.2 Target Triangulation Using Two Loci 

Here, M1, M2, M3 and M4 are positions of the acoustic sensors.  and  are the 

bearing estimations from sensor pairs one and two, respectively. Distance from estimated 

target location to the sensor pair middle points are represented as d1 and d2. A is the angle 

between two bearing lines, termed bearing angle. 
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where  and are the sensor pair midpoint for the first and the second 

sensor pair, respectively. Although use of more loci may improve the performance of the 

),( 11 yx ),( 22 yx
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localization, it would increase the complexity of the node selection process. Therefore, 

we propose using only two loci for target triangulation. 

3.2 Localization Error Source Analysis 

The proposed self-organization algorithm has to select a set of sensors for the 

target localization using the localization method discussed in the previous section. In 

order to achieve accurate localization, the selection should be performed in a manner that 

minimizes the target localization error. In target tracking applications, the node selection 

is traditionally based on either to maximizing the information gain ([12][13][57]) or 

minimizing the target localization error ([9-11][100]). The node selection methods 

employed in [12][13] and [57] perform node selection based on maximizing an 

information measure, which are defined to minimize the localization accuracy while 

minimizing the resource requirements. 

Kadar [9] developed a geometry dilution of precision (GDOP) measure through 

the analysis of maximum likelihood estimation for the target localization problem. The 

GDOP measure relates the sensor bearing measurement errors to the target position 

estimation errors as a function of sensors-to-target geometry. A node selection method 

which selects the best three nodes that minimize the GDOP measure was developed in 

[100]. Torrieri [101] proposed a localization method using TDOA measurements and 

analyzed the bearing estimation error and the GDOP measure in details. Inspired by 

GDOP, Kaplan [10] developed the global node selection (GNS) method. GNS is a 

centralized method that performs node selection to minimize the expected filtered mean 

squared position error with the global knowledge of all node locations. Local node 

selection, a distributed version of the GNS was developed in [11]. All these node 
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selection methods are designed for sensor networks with a sensor array at each node, 

where a single sensor node can provide the TDOA estimation or the DOA estimation. 

However, we consider a sensor network with only a single acoustic sensor at each sensor 

node and therefore these results cannot be directly applied for the node selection. 

Therefore, inspired by above work, we developed a node selection mechanism based on 

minimizing the localization error source, which considers sensor-to-source geometry. In 

order to form the basis for node selection, the major error sources of the localization 

method and propagation of error thought the localization process are analyzed here. 

3.2.1 TDOA Estimation Error 

Error for TDOA estimation using correlation strategies is studied in detail by 

Carter [94], Weiss et al. [97][102] and Ash & Moses [4]. According to these results, the 

TDOA estimation error can be statistically bounded using Cramer-Rao lower bound 

(CRLB) under the constraint that the joint signal-to-noise ratio (SNR) is higher than a 

threshold value (SNRTH). This is the well known threshold effect in TDOA estimation 

[97]. In addition, CRLB only provides a lower bound of the root mean square (RMS) 

error variance (  ) for the TDOA estimation. According to Ash & Moses 2
D [4], the 

TDOA estimation error variance is bounded by; 

TH
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where b is the signal bandwidth in Hz, T is the signal duration in seconds, and Fc is the 

center frequency of the signal. SNR is the joint signal to noise ratio and the SNRTH is the 

threshold value of the SNR. SNR is defined in Equation 3.5 [4][97]. 
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where SNR1and SNR2 are the effective signal to noise ratios of the acoustic signals 

received at acoustic sensor one and two, respectively. The threshold value, SNRTH can be 

determined using the following equation [4][97]. 
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When SNR drops below the threshold, the TDOA estimation error dramatically increases 

[4][94][97][103]. 

In passive acoustic source localization, we do not have control over most 

parameters in Equation 3.6. In addition, as the tracking is performed in real-time, the 

signal duration (T) is limited. However, Ash & Moses [4] have observed that under the 

spherical expansion and constant background noise assumption, the SNR and the sensor 

separation distance are interrelated. Specifically the SNR (defined in Equation 3.5) 

decreases 6 dB per doubling of the separation between the sensors [4]. Thus, by keeping 

the sensor separation distance below a threshold value (LTH), the SNR can be kept above 

the required threshold value and a dramatic increase of the TDOA estimation error can be 

avoided. This maximum microphone separation distance (LTH), can be determined 

through off-line analysis and simulations. 
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3.2.2 Bearing Estimation Error 

Exact formulation of bearing estimation error would require statistics of the 

TDOA estimation. However, under the assumption that the probability density function 

of TDOA is concentrated near its mean value, standard deviation of the bearing 

estimation error can be approximated as a function of TDOA estimation error standard 

deviation [6][96] and is given by; 

 BL

C D
B sin

   ( 3.8 )

where, D  is the TDOA estimation error standard deviation, L is the sensor pair baseline 

distance, and B is the estimated bearing of the target related to the sensor pair baseline. 

The term “L sin (B)” reflects the projected length of the sensor pair base line on to an axis 

that is perpendicular to the line connecting the target and the sensor pair midpoint, and is 

termed the effective length of the sensor pair baseline. It is evident from Equation 3.8 that 

a large effective baseline length will result in smaller bearing estimation error. 

3.2.3 Triangulation Error 

Position estimation uncertainty in target triangulation using two microphone pairs 

is shown in Figure 3.3. Here, M1, M2, M3 and M4 are positions of the acoustic sensors.  

and  are the actual bearings for actual target location from midpoints of sensor pairs 

one and two, respectively. Distance from actual target location to the sensor pair 

midpoints are represented as d1 and d2. A is the actual bearing angle. 

1B

2B

1  and 2 are the 

angle between microphone pair baselines and the x axis. 1B  and 1B  represent the 

bearing estimation error standard deviations for sensor pairs one and two. The area of 
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positional uncertainty (shaded area in Figure 3.3) is considered as the variance of position 

estimation error and can be approximated by; 
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Figure 3.3 Position Estimation Uncertainty in Target Triangulation 

Equation 3.9 formulates the relationship between the target position estimation error and 

the bearing estimation error depending on the sensor-to-source geometry. According to 

this relationship, small position estimation errors can be achieved by selecting sensor 

nodes close to the target. In addition, the position estimation error can be minimized by 
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selecting the sensor pairs that have the angle between the bearing lines (A) close to 900. 

Resembling conclusions have been drawn in [9] and [10]. 

Above conclusions are illustrated by the following simple simulation results. In 

this simulation, the localization method described in Section 3.1 was employed to 

localize an acoustic source located at the origin of the x-y plane. In the first part of the 

simulation d1 and d2 were set to 100m. The first sensor pair was fixed in the field with the 

sensor pair midpoint at (-100, 0). The midpoint location of the second sensor pair was 

varied to achieve bearing angles (A) of 
2

,
3

,
6


and

6

5
. The bearing estimations were 

generated by adding random noise to the actual bearing, where 1B and 2B  were set to 

1.250. In the second part of the simulation, the bearing angle was set to 
3


 and 

2


. The 

distances d1 and d2 were set to 100m in one scenario and 200m in another. Localization 

of the target was simulated for 106 times for each setting and the estimated target 

locations were observed. The results are shown in Figure 3.4 and Figure 3.5. In addition, 

the mean and the standard deviation of the position estimation error are tabulated in Table 

3.1 and Table 3.2. The results clearly rationalize the above conclusions. 
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Figure 3.4 Effect of Bearing Angle on Triangulation Error 

Table 3.1 Position Estimation Error Statistics for Different Bearing Angles 

Bearing Angle 
6


A  

3


A  

2


A  

6

5
A  

Mean Error 5.1771 3.1102 2.7358 5.1523 

Standard 
Deviation of 

Error 
3.5331 1.7613 1.4320 3.4399 
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Figure 3.5 Effect of Distance from Sensor Pair Midpoint to Target on Triangulation Error 

Table 3.2 Position Estimation Error Statistics for Different Distances from Sensor Pair 
Midpoint to Target 

Scenario 
10021  dd  

3


A  

20021  dd

3


A  

10021  dd  

2


A  

20021  dd

2


A  

Mean Error 3.1103 6.2169 2.7365 5.4717 

Standard 
Deviation of 

Error 
1.7609 3.5146 1.4336 2.8640 
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3.3 Target Tracking 

In target tracking applications, different approaches have been employed for 

measurement improving, target state estimation and prediction. Kalman filter, Extended 

Kalman filter (EKF), Un-scented Kalman Filter (UKF), Particle filter and their variations 

are some of the popular methods used for target tracking applications 

[10][11][27][30][31][41][104][105]. We employ a Kalman filter based tracking method 

for target position and speed estimation and position prediction. The details of the 

Kalman filter employed are discussed in this section.  

The measurement to the Kalman filter is the target location estimates using the 

above discussed localization method. A constant velocity dynamic model with a constant 

sampling interval ( ) is used and the acceleration is treated as process noise in the 

derivation. Position and speed of the target were selected to represent the target state. Let 

the state of the system be x(k) = [ ]T. Then, the system is described using the 

following system and measurement equations. 

..

,,, yxyx

x(k+1) = F(k+1, k) x(k) + G(k+1, k) w(k) ( 3.10)

z(k+1) = H(k+1) x(k+1) + v(k+1) ( 3.11)

where 

F(k+1, k) =  



















1000

0100

010

001




( 3.12 )
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G(k+1, k) =  
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
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( 3.13 )

H(k+1) =  







0010

0001
( 3.14)

w(k) and v(k) are zero-mean white Gaussian process noise and measurement noise with 

covariance Q(k) and R(k), respectively. Q(k) and R(k) are given by; 

Q(k) =   











2

2

0

0

ay

ax




( 3.15)

R(k) =  











2

2

0

0

y

x




( 3.16 )

2
ax ,  are the x and y components of disturbance processes variance and ,  are 

the variances of source localization errors in x and y directions. Then, with the knowledge 

of previous state estimation 

2
ay 2

x 2
y



x(k|k), the estimation error covariance matrix for the 

previous state P(k|k), and the currant measurement, the currant state of the target 



x(k+1|k+1) can be estimated by, 



x(k+1|k+1) = F(k+1, k)


x(k|k) + K(k+1)[z(k+1) - H(k+1)F(k+1, k)


x(k|k)] ( 3.17 )

The Kalman gain matrix, K(k+1) of the above equation, can be calculated using following 

equations. 

P(k+1|k) = F(k+1, k)P(k|k) FT(k+1, k) + G(k+1, k)Q(k)GT(k+1, k) ( 3.18 )

S(k+1) = H(k+1)P(k+1|k)HT(k+1) + R(k+1) ( 3.19 )
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K(k+1) = P(k+1|k) HT(k+1)S-1(k+1) ( 3.20)

The estimation error covariance matrix of the current state P(k+1|k+1), is required for the 

next state estimation and can be calculated using;  

P(k+1|k+1) = [I - K(k+1)H(k+1)]P(k+1|k) ( 3.21)

More complex system representation can easily be substituted into above system model 

to obtain more accurate results with the penalty of higher computational intensity. 
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CHAPTER IV 

4. THE ENERGY-EFFICIENT AND DISTRIBUTED                                             
SELF-ORGANIZATION ALGORITHM 

The developed energy-efficient and distributed self-organization algorithm is 

presented in this chapter. First the overview of the overall design is provided. The 

proposed energy aware node selection criterion that minimizes the localization error is 

discussed in the second section. This is followed by the details of the energy-efficient 

self-organization algorithm and the distributed message passing protocol developed to 

implement the proposed self-organization algorithm. Finally the incorporation of the 

sleep-wakeup management scheme with the cross layer wakeup probability adjustment 

and the other cross layer enhancements incorporated to the self-organization algorithm 

are discussed. 

4.1 Design Overview 

Major focus of the self-organization algorithm is to select a sensor node group for 

target localization and tracking in a distributed manner while balancing the energy 

efficiency and the target tracking performance. An overview of the design of the    

energy-efficient and distributed self-organization algorithm is provided here. 

4.1.1 System Model 

The scope of the work is to track a moving ground target using a wireless acoustic 

sensor network. Each sensor node in the network consists of a single microphone for 

sensing, a microprocessor to provide information processing capabilities, a wireless 

interface for communication and a battery for power supply. In addition, the following 

assumptions are made about the sensor network. First, it is assumed that each node knows 
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its location and all sensor nodes are time synchronized. Various sensor node               

self-localization and time synchronization methods have been proposed in the literature 

[4][109-119]. However, the self-localization and the time synchronization of the wireless 

sensor network are beyond the scope of our work. Second, it is assumed that sensor nodes 

can operate in two states, sleep state and active state. When the sensor node is in active 

state, the node is fully functional and ready to send/receive data packets. When it is in the 

sleep state, it will turn off its wireless radio interface and operate in the low power mode. 

However, a sensor node in the sleep state is still capable of capturing acoustic signals. In 

addition, it is assumed that each sensor node will have a rough estimation of the number 

of nodes that are in its one-hop neighborhood. 

4.1.2 Design Goals 

The algorithm design for wireless sensor networks is a challenging task due to the 

various limitations inherent to the sensor networks and the application domains. Resource 

limited and application specific nature of the requirements are two major constraints 

present in wireless sensor networks. Thus, the designing requires a careful consideration 

of many critical factors such as fault tolerance, scalability, hardware constraints, 

production cost, sensor network topology, environment and power consumption [1][13]. 

In particular, the proposed energy efficient distributed self-organization algorithm has 

been developed based on the following major design considerations. 

A. Power Consumption 

The sensor nodes are battery powered and thus have a limited energy supply. In 

addition, in most practical scenarios once they are deployed, the very limited accessibility 

of these sensor nodes makes battery replacement or recharging impossible. Thus, power 
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limitation is a major constraint in sensor network algorithm design, which calls for an 

effective power management mechanism for such an acoustic sensor network to become 

practical [1-3][5][13][106][107]. For target tracking applications, our design goal of the 

algorithm is to achieve extended network lifetime while maintaining satisfactory target 

tracking performance. 

B. Scalability 

Depending upon the application, the size of the sensor network may vary from a 

few nodes to thousands (or even millions) of nodes. Often, sensor networks are densely 

deployed [1][2][5][13][106]. For the developed algorithms to work in these settings, 

scalability is a major design consideration. To make the developed algorithm scalable, it 

should be distributed in nature and only rely on local information exchange for           

self-organization. Moreover, the algorithm should be able to effectively exploit the high 

node density to prolong the lifetime of the sensor network by incorporating efficient 

power management. 

C. Resource Limitations 

The individual nodes in a sensor network usually have limited processing 

capabilities, memory and communication bandwidth due to the energy and cost 

considerations [1][13]. However, they are required to generate accurate results under 

varying environment conditions. Thus, it is essential that the processing techniques used 

in sensor network applications are capable of operating with limited resources, while 

providing good quality of service. For target tracking applications, careful selection of 

target localization and tracking techniques would enable achieving the tradeoff between 

the desired tracking performance and the resource demand in the sensor nodes. In 
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addition, the communication requirements for the self-organization and target tracking 

should be minimized to support efficient operation under limited communication 

bandwidth. 

4.1.3 Overview of the Design 

The resource aware TDOA based localization method discussed in Chapter III is 

used for the target localization. To achieve localization using this method, two bearing 

estimations are required. However, as the sensor nodes contain only a single acoustic 

sensor, a single sensor node is not capable of generating a bearing estimation on its own. 

Thus, the self-organization algorithm has to select a group of sensor nodes to form a 

virtual acoustic sensor array for target localization. The selected sensor group is termed 

the localization sensor group (LSG). It consists of two sensor pairs, which independently 

generate their own bearing estimations. In each sensor pair, one node is selected to 

perform the bearing estimation and it is referred as the master sensor node. The other 

node is termed slave sensor node. In addition, one of the sensor pairs will be selected to 

perform the triangulation and target tracking, and that sensor pair is called the master 

sensor pair (MSP). The other sensor pair is termed slave sensor pair (SSP). Thus, the 

LSG consists of the master and the slave nodes of the master sensor pair, and the master 

and the slave nodes of the slave sensor pair. These four nodes are denoted as Mm, Ms, Sm, 

and Sm, respectively. The master and slave sensor pairs are denoted by Pm (Mm, Ms), Ps 

(Sm, Ss), and the localization sensor group is denoted by LSG (Pm, Ps). 

The node selection criterion for the formation of localization sensor group is 

developed based on the localization error source analysis presented in Section 3.2. In 

addition, the energy balancing is incorporated into the node selection process by 
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including energy factors in the node selection criterion. The major goals of the proposed 

node selection criterion are to accomplish near-optimal localization performance and 

extended sensor network lifetime. A two-step master and slave node search process has 

been proposed to minimize the communication requirements and computational 

complexity of selecting the localization sensor group in a distributed manner. The 

Kalman filter based tracking method discussed in Section 3.3 is applied for the target 

state estimation and prediction. Moreover, the localization sensor group is dynamically 

updated to match the dynamics of the target. 

In addition to energy aware node selection, a sleep-wakeup management scheme 

is incorporated into the algorithm for improved power management. For this purpose, an 

energy-efficient and latency sensitive MAC protocol with a location-based data 

forwarding mechanism proposed by Wan et al. [16][17] is integrated to the algorithm. 

This MAC protocol employs an opportunistic sleep management algorithm to improve 

energy conservation by reducing the energy loss from idle listening. To achieve efficient 

power management using this MAC protocol, a novel cross layer wakeup probability 

adjustment method is developed. This method combines event information from the 

application layer and network condition from the MAC layer to dynamically adjust the 

wakeup probability to achieve efficient power management while maintaining 

satisfactory target tracking performance. Moreover, a location based unicasting 

mechanism and a cross layer data packet priority assignment mechanism are introduced 

to the location based data forwarding mechanism, so that it can better support the       

self-organization algorithm. 
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4.2 Resource Aware Node Selection 

The core of the self-organization algorithm is the selection of proper localization 

sensor group based on the sensor source geometry to achieve near-optimal target 

localization performance. In addition, the maximization of the network life time should 

also be considered in the localization sensor group selection. Based on the localization 

error source analysis in Section 3.2, the localization sensor group should be selected to 

minimize the triangulation error variance defined in Equation 3.9. This can be achieved 

by performing the localization sensor group selection through a two-step selection 

process. The first step is the pairing of sensor nodes in such a way that the bearing 

estimation error (given by Equation 3.8) of the sensor pair is minimized. The second step 

is grouping the two best sensor pairs that will minimize the triangulation error, to form 

the localization sensor group. 

4.2.1 The Node Selection Criterion 

The bearing estimation accuracy depends on the TDOA estimation accuracy as 

well as the relative geometry of the target and the sensor pair. Thus, the cost functions 

that should be considered in the first step are TDOA estimation error variance (Equation 

3.4) and the bearing estimation error variance (Equation 3.8). Specifically, the bearing 

estimation depends on the effective length of the baseline and the TDOA estimation error 

variance. According to bearing estimation error analysis (Section 3.2.2), the bearing 

estimation error can be minimized by maximizing the effective baseline length of the 

sensor pair. This requires the sensor pair baseline distance to be as large as possible. 

However, according to the TDOA estimation error analysis (Section 3.2.1), a longer 

sensor pair baseline distance will result in a lower SNR (defined in Equation 3.5). The 
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decrease in the SNR will cause higher TDOA estimation error and if the SNR drops below 

the required threshold (SNRTH specified in Equation 3.6), the TDOA estimation error 

would dramatically increase. Trivially, higher TDOA estimation errors would cause 

higher bearing estimation errors. This analysis suggests contrasting requirements of 

sensor pair baseline distance for the bearing estimation error minimization. However, if 

the SNR is maintained above the required threshold value SNRTH, a dramatic increase in 

the TDOA estimation error can be avoided and in the region of SNR ≥ SNRTH, the 

increase in the TDOA estimation error due to the decrease of the SNR is comparatively 

small. According to the TDOA estimation error analysis, this can be achieved by 

maintaining the sensor pair baseline distance below the threshold distance (LTH). Thus, a 

good compromise can be achieved by maximizing the sensor pair baseline distance while 

maintaining it below the required threshold distance (LTH). In addition, the effective 

baseline length can be maximized by setting the sensor pair baseline in such a manner 

that it will face the target. This can be achieved by selecting the bearing to be close to 

90o. Moreover, in the target localization process, the target locus approximates to a 

straight line under far field condition. Thus, in order to satisfy this constraint, the distance 

from the sensors to the target should be kept above a threshold value (RFAR). This 

threshold value (RFAR) will depend on LTH and can be determined off-line once the LTH is 

determined. Therefore, combining all these requirements, the sensor pairing should be 

performed to meet the following criteria. 

1. The distance from each sensor to the estimated target location should be above the 

RFAR. 
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2. The sensor pair baseline distance should be maximized while maintaining it 

below the required threshold LTH. 

3. The bearing of the estimated target should be close to 90o. 

Once the sensor pairing is completed, the second step performs the selection of 

two best sensor pairs for the localization sensor group. According to the triangulation 

error analysis (Section 3.2.3) and Equation 3.9, the sensor pairs that are best suited should 

have small bearing estimation errors, should be close to the target, and should form a 

bearing angle close to 900 between them. In addition, to satisfy the far field condition, the 

distance from each sensor pair baseline midpoint to the estimated target location should 

be above the RFAR. Thus, the selection of two sensor pairs should be performed based on 

the following criteria. 

1. The distance from each sensor pair baseline midpoint to the estimated target 

location should be minimized, while maintaining it above the RFAR. 

2. The bearing estimation errors of the two selected sensor pairs should be minimal. 

3. The bearing angle between the two sensor pairs should be close to 90o. 

4.2.2 Node Selection with Global Information 

The two-step node selection process can be carried out to match the criteria 

specified in the previous section with availability of global node information through two 

greedy searches. In the first search, the sensors that are located further than RFAR from the 

estimated target location are paired with the best node specified by the sensor pairing 

criterion. Specifically for each such node, the node that is located within LTH from its 

location and that minimizes the cost function given by Equation 3.8 is selected from set 

of nodes that are located further than RFAR from the estimated target location. This will 
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generate the master-slave sensor pairs. The majority of the sensor pairs that are generated 

from this process will have the distance from sensor pair baseline midpoint to the 

estimated target location higher than RFAR. However, it is possible that some sensor pairs 

may not match this criterion. Although these pairs do not match the criterion, the distance 

from sensor pair baseline midpoint to the estimated target location will be very close to 

RFAR, under the condition that LTH is comparatively very small compared to RFAR. Thus, 

this tiny error is negligible. In addition, the RFAR can be adjusted to a slightly higher value 

to compensate for this error. 

The second search is carried out among the generated master-slave sensor pairs. 

In this search, the cost function specified by Equation 3.9, is evaluated for all the possible 

combinations of sensor pair groups, which consist of two sensor pairs. The sensor pair 

group that minimizes the cost function is selected as the localization sensor group. This 

process selects the optimal sensor group to match the above described sensor selection 

criteria. 

4.2.3 Resource Aware Node Selection Process 

The above discussed two-step process is highly computationally complex and 

requires global node information for both the searches. In addition, implementing this 

selection process in a distributed manner would require large amount of information 

exchange, making it highly demanding for limited communication resources. Therefore, 

this localization sensor group selection process will not have desired energy efficiency 

and scalability characteristics. However, the densely deployed nature of the wireless 

sensor network and the characteristics of the optimal localization sensor group can be 

effectively utilized to achieve a simplified localization sensor group selection process, 
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which can perform the node selection based on geographically local information. This 

would result in a suboptimal, but highly desirable localization sensor group selection 

process. 

First, to simplify the implementation and reduce the computational complexity 

and the communication demand of the localization sensor group selection process, the 

above discussed two steps are performed in reverse order. In this process, first the two 

master nodes are selected according to the above specified sensor pair selection criteria. 

For this selection, the bearing estimation error of the two sensor pairs and the sensor pair 

baseline midpoint information are required. However this information is not available as 

the master node selection is performed before master-slave sensor pair generation. 

Therefore, the following approximations are used for this process. 

1. The bearing estimation error variances of all the sensor pairs are assumed to be 

the same, and to be equal to the bearing estimation error variance of an optimal 

sensor pair. Thus, when the bearing estimation error variance is not available, it is 

estimated by, 

TH

CONSTANTD
CONSTANTbe L

C
C ,

,


  ( 4.1 )

where C is the speed of sound, CONSTANTD,  is the preset constant TDOA 

estimation error variance and LTH is the predefined maximum allowable threshold 

distance for the sensor pair baseline. 

2. In order to estimate the distance from sensor pair baseline midpoint to the target 

estimated location (d1 and d2 in Equation 3.9), the sensor pair baseline midpoints 

64 



 

are required. However, as this information is not available, the sensor pair 

baseline midpoints are approximated by the location of the master sensor nodes. 

The rationale for the first approximation is that, as the sensor network is densely 

deployed, it will be possible for each sensor node to select a nearly optimal salve node for 

any target location. The second approximation is supported by the fact that under the 

condition of far field assumption, the sensor pair baseline is much smaller compared to 

the distance from target to the sensor nodes. Thus, the approximation of microphone pair 

baseline midpoint using the master sensor location will not introduce drastic errors. After 

these approximations, the cost function for master node selection (Cgeo) will be; 




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where  and  are the distance from the estimated target location to the master sensor 

of the sensor pair.  and  are bearing estimation error cost function values of two 

sensor pairs and when this information is not available,  will be used as 

approximations for them.  is the bearing angle approximated from the lines connecting 

the two candidate master nodes and the estimated location of the target. The two nodes 

that minimize the cost function Cgeo (Equation 

1



d 2



d

1beC 2beC

CONSTANTbeC ,



A

4.2) are selected as the master nodes. 

The two optimal master sensor nodes should be very close to the estimated target 

location (see cost function Cgeo in Equation 4.2) and have to be further than RFAR away 

from the estimated target location (to satisfy the far field condition). Thus, in densely 

deployed sensor networks they will be located just outside the boundary of the circular 
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region, which is centered at the estimated target location and has a radius of RFAR. The 

area that is outside this circular region is referred as the far field in the future discussion. 

The circular boundary that separates the circular region and the far field is referred as the 

far field boundary. With this observation, the scope of the master node selection process 

can be further limited to the nodes that are located in the far field and are very close to 

the far field boundary. This will enable the search to be carried out using only the 

information of nodes present in the region close to the far field boundary, eliminating 

requirement for global information exchange. Thus, this will reduce the communication 

demands of the search process. The ideas of far field, far field boundary and the high 

probability region of master node locations are shown in the following figure. 

 

Figure 4.1 Master Node Search Area 

Once the two master sensor nodes are selected, they will independently perform 

local searches for the respective slave nodes within their own one-hop neighborhoods to 

match the criterion specified in the sensor pairing process. In this process, the sensor 
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nodes that are located within LTH from the master sensor node and in the far field are 

considered as candidate slave nodes. The cost function that will be used to evaluate the 

candidate slave nodes is given by, 










^

,

sin BL

C
C CONSTANTD

be


 

( 4.3 )

where C is the speed of sound, CONSTANTD,  is the preset constant TDOA estimation error 

variance and L is the sensor pair baseline distance. 
^

B  is the bearing approximated for the 

estimated target location related to the sensor pair baseline. This cost function is derived 

from Equation 3.8 with the assumption the deviation in TDOA estimation error is 

negligible in the region of SNR ≥ SNRTH. The candidate slave node that minimizes the 

cost function Cbe (Equation 4.3) is selected as the slave node. In addition, the sensor 

group that has the master node closer to the estimated target location will be selected as 

the master sensor pair. The two search processes are based on geographically local node 

information and have reduced computation and communication requirements. Thus this is 

more resource efficient and more desirable for distributed implementation. 

4.2.4 Incorporation of Energy Balancing into the Node Selection 

The resource aware node selection process described above does not consider the 

energy available in the nodes when selecting nodes. Therefore, in some scenarios, the 

same set of nodes may be selected for the tracking group, resulting in some of the nodes 

in the network being overused while some others are underused. This could result in 

unbalanced energy distribution in the sensor network causing a portion of network to run 

out of battery life quickly, weakening or even partitioning the wireless sensor network. 
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Thus, energy consideration is incorporated into the node selection process in order to 

achieve better balanced energy utilization over the network. Moreover, in densely 

deployed sensor networks, there will be multiple localization sensor groups, that are very 

similar (in terms of tracking quality/objective function values) to the selected             

near-optimal localization sensor group. Thus, the selection of such a group which has 

higher energy left in its nodes will not cause a dramatic degradation in the target tracking 

performance. However, it will result in better network utilization and extended network 

lifetime. 

The energy consideration is incorporated to the node selection process by 

introducing an energy element to the cost functions Cgeo (Equation 4.2) and Cbe (Equation 

4.3). With the incorporation of the energy elements, the cost functions Cgeo will be 

transformed into Cgeo,e given by, 
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where, Er,sn1 and Er,sn2 are the remaining energy of the two candidate master sensor nodes, 

Em is the full charged energy, and α is the weight factor used to adjust the importance of 

the remaining energy and localization error. 

The cost function for slave node selection Cbe (Equation 4.3) is transformed into 

Cbe,e given by,  
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where, Er is the remaining energy of the candidate slave node, Em is the full charged 

energy, and β is the weight factor used to adjust the importance of the remaining energy 
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and localization error. These new cost functions make the sensor node selection process 

energy-aware and provide a method to balance target tracking performance and sensor 

network lifetime. 

4.3 The Localization and Tracking Algorithm 

The developed energy-efficient distributed self-organization algorithm has three 

major stages, namely, the initialization stage, the target tracking stage and the localization 

sensor group update stage. In the initialization stage, a rough estimate of the target 

location is obtained, and the localization sensor group is initialized using this location 

estimation. Target localization using the selected localization sensor group is performed 

in the target tracking stage. In addition, the Kalman filter based tracking method is 

employed in this stage for the target state estimation and prediction. Updating of the 

localization sensor group according to the target dynamics is performed in the 

localization sensor group update stage. The algorithm is shown in Figure 4.2 and the 

detailed description follows. 

4.3.1 Initialization of the Localization Sensor Group 

The node selection process described in Section 4.2 requires an estimate of the 

target location to perform the node selection. Thus, the formation of the localization 

sensor group requires an initial estimation of the target location. This initial estimation is 

obtained using multiple initial localization sensor groups formed using the closest node 

selection method. 
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Figure 4.2 The Energy-Efficient and Distributed Self-Organization Algorithm 
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4.3.1.1 Initial Four Closest Nodes Localization Sensor Groups Formation 

In the closest nodes selection method, the “n” sensor nodes in the local 

neighborhood that have the highest received acoustic signal strength, which are located in 

the far field, are selected for a localization sensor group. In our work, we have selected 

the four closest nodes for an initial localization sensor group. The localization sensor 

groups are formed in the following manner. Once a node detects a target with received 

signal strength within a certain range, it decides to become a candidate for a group head. 

Then it sends out a request message for other nodes in its one-hop neighborhood to join 

its group. There will be a contention between the neighboring nodes to become the group 

heads. The contentions for the group heads are handled using a backoff scheme, where 

backoff time is calculated based on the received acoustic signal strength. In this scheme, 

each candidate group head node will backoff for some time interval before sending the 

request message to join its group. The backoff time depends on the received acoustic 

signal strength and the nodes with higher received acoustic signal strength will have a 

lower backoff time. If a candidate head node receives a join request message from 

another candidate head node during this backoff time, it will give up the head state. Once 

the request message is sent, the candidate head node waits for some time and selects the 

best three other nodes from the received replies and forms an initial four closest nodes 

(FCN) localization sensor group. When the group formation is complete, the group head 

node will notify the selected member nodes. The notification also includes the time to 

start the tracking. There would be multiple such groups formed throughout the sensor 

network. The range of the received signal strength is decided off-line and is set in a 
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manner so that these groups will be formed in the far field, close to the far field 

boundary. 

4.3.1.2 Initial Location Estimation 

When the selected sensor nodes receive the notification, they will start to track the 

target by sending the received acoustic signal to the group head node on time intervals 

defined by the head node. The head node will collect these signals and calculate the 

corresponding TDOA value estimations. The target location estimations can be achieved 

using these estimated TDOA values by the localization method discussed in Section 3.1. 

In addition, once the initial localization sensor group formation is complete, the head 

nodes will broadcast a head notification message before the tracking starts. When the 

neighboring nodes receive this message, they will broadcast it again. When a head node 

receives this message, it will add the message originating head node to its neighboring 

head list. Thus, after first couple of time intervals from initial localization sensor group 

formation, a rough estimation of the target location and information about the 

neighboring group head nodes will be available at each group head node. After this, the 

neighboring group head nodes exchange the TDOA estimations and sensor group 

location information to refine the target location estimation. 

4.3.1.3 Localization Sensor Group Formation 

Once a refined target location estimation and state prediction is obtained, head 

node of the each initial four closest nodes localization group sends out a message with the 

estimated target location and state predictions information. This message is forwarded 

along the far field boundary, which is determined using the estimated initial target 

location. The following figure illustrates the forwarding path of these messages. 
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Figure 4.3 Forwarding Path of the Initial Target Location Estimation 

When a node receives such a message it will check whether it has already 

forwarded a message from a head node with higher received acoustic signal strength. If 

so, it will discard the current message. Otherwise, it will forward the message along the 

path after adding its own node information into the message. Thus, only the message 

from the FCN group head node with highest received acoustic signal strength will travel 

the full path. The other messages will be eliminated by the nodes along the path. Then, 

finally when a message completes traversing the path along the far field boundary, the 

last node that receives the message performs the master node selection. It selects the two 

master nodes using the information contained in the message and notifies the two 

selected master nodes. The message will contain the target location estimation, target 
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state prediction and the information about the nodes in the region around the far field 

boundary, which the message traversed. With this information, the two master nodes are 

selected using the resource aware node selection process described in Section 4.2. Then, 

the two master nodes will individually perform the slave node selection step of the node 

selection process described in Section 4.2 and select and notify the two slave nodes. Once 

both the master nodes select their respective slave nodes, the localization sensor group 

initialization is complete. 

4.3.2 Target Localization and Tracking 

The localization sensor group will perform the target localization and tracking 

using the localization and tracking methods described in Section 3.1 and Section 3.3. 

4.3.2.1 TDOA Estimation 

Once the tracking process starts, each sensor node in the localization sensor group 

will record the received acoustic signal. Then, the two slave nodes will send their 

acoustic signals to the respective master nodes. Upon receiving the message, the master 

nodes will obtain an estimation of the TDOA using the received acoustic signal and its 

own acoustic signal. 

4.3.2.2 Target Localization 

After calculating the TDOA estimation, the master node of the slave sensor pair 

will send its TDOA estimation and the location information of the slave sensor pair to the 

master node of the master sensor pair. When the master node of the master sensor pair 

receives this message, it will combine this information with the TDOA estimation and the 

location information of the master sensor pair, and calculate the target location estimation 

using the localization method described in Section 3.1.  
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4.3.2.3 Target Tracking 

Once the target location estimation is obtained, this estimation is used as the 

measurement to the Kalman filter based tracking method. Using this measurement, the 

filtered current state and the predicted next state of the target are calculated. Specifically, 

the Kalman filter will generate the filtered estimate of the current target state x(k), which 

contains the location and the velocity of the target. In addition, the next target state, 

x(k+1|k) will be generated. This prediction will be used for the localization sensor group 

update to match the target dynamics. 

4.3.2.4 Localization Sensor Group Evaluation 

Since the localization accuracy is closely related to the geometry between the 

sensors and the target, the localization performance of current localization sensor group 

may degrade as the target moves. Hence, the suitability of the localization sensor group 

should be reevaluated after each tracking interval and if required, it should be updated to 

match the target movement in order to maintain satisfactory tracking performance. This 

process is carried out in the following manner. 

When the acoustic signal from the target is captured, each sensor node in the 

localization sensor group monitors the received acoustic signal strength. If the signal 

strength is above a predefined threshold, the sensor node assumes that the sensor is not 

far enough from the target and the far field assumption is violated. If a slave node detects 

that it is violating the far field condition, then it will notify the corresponding master node 

when it sends the captured acoustic signal to master node. The master node of the slave 

sensor pair notifies the detected far field condition violations in the slave group (either a 

violation notified by the slave node or its’ own violation detected based on the received 
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acoustic signal strength) to the master node of the master sensor pair. After the target 

tracking step, the master node of the master sensor pair checks whether any sensor node 

is the group has reported a far field condition violation and if so, decides to update the 

localization sensor group. This decision is based on the condition that if any node is not 

in the far field of the target, then the group is not suitable for performing the localization.  

If no far field condition violations are reported by the sensor nodes, the master 

node of the master sensor pair will check whether the current localization sensor group 

will violate the far field assumption in the next step. For this, after obtaining the next 

state prediction x(k+1|k), the distance from each sensor node in current localization 

sensor group to the predicted next location of the target is calculated. Then, if any of 

these distances is less than RFAR, the master node of the master sensor pair will predict a 

far field condition violation in the next step and decides to update the localization sensor 

group. 

 If far field condition violation is neither reported nor predicted, the master node 

of the master sensor pair will then evaluate the suitability of the localization sensor group 

for performing the localization in the next step. First, it will calculate the bearing 

estimation cost function values (Cbe,e defined in Equation 4.5) for master and slave sensor 

pairs. Then, using these values, the cost function Cgeo,e (defined in Equation 4.4) will be 

reevaluated for the current localization sensor group using the predicted next target 

location. If the cost function Cgeo,e value increases over a certain threshold (CTH) 

compared to the previous cost function value, then the master node of the master sensor 

pair will decide to update the localization sensor group. The predefined threshold value, 

CTH can be used for the balancing of the target tracking quality and the localization sensor 
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group update frequency. This is another parameter that can be adjusted to balance the 

tracking performance and the resource usage for tracking. 

4.3.3 Localization Sensor Group Update 

If the master node of the master sensor pair decides to update the localization 

sensor group, it will initiate the localization sensor group update by dismissing the 

current localization sensor group. Then, the search for the two master nodes of the next 

localization sensor group is initiated. 

4.3.3.1 Desirable Geometry Formation of Master Sensor Nodes 

According to our analysis in Section 4.2, the near-optimal localization sensor 

group will be located adjacent to the boundary of the far field. Thus, the two near-optimal 

master nodes too will be located in the same region. A possible optimal geometry 

formation of master sensor nodes is illustrated in Figure 4.4. 

A D

B C

v

R FAR

T1= (x1 , y1 )
T2 = (x2 , y2 )

Reverse side of the
target moving
direction  

Figure 4.4 Master Sensor Node Locations 
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Here, four potential sensor nodes are marked as A, B, C, and D with respect to the 

current target location T1 and future target location T2. The velocity of the target is 

denoted by v and RFAR is the threshold distance required for satisfying the far field 

condition. The four candidate master node pairs ((A, B), (B, C), (C, D) & (A, D)) are 

optimal selections with respect to the current target location T1. 

Since the sensor network is densely deployed, each of these candidate master 

node pairs is equally attainable. In addition, if we consider the criterion for the two 

master nodes selection (cost function Cgeo specified in Equation 4.2), all these candidate 

master node pairs will be optimal. Actually the positions of these nodes can be moved 

along the (circular) far field boundary as long as the relative geometry of the nodes and 

the target location are preserved. Although these candidate master node pairs can achieve 

almost the same cost function value in terms of Cgeo, they differ greatly if we consider the 

group updating in tracking a moving target. 

If we consider the candidate master node pairs (A, B) and (B, C), the baseline of 

the candidate master node pair (A, B) is perpendicular to the target moving direction and 

the baseline of the candidate master node pair (B, C) is parallel to the moving direction of 

the target. Although these two candidate master node pairs have the same Cgeo cost 

function value when the target is at position T1, the angle CBT2  will decrease rapidly 

compared to the angle . This will cause the tracking performance of the candidate 

master node pair (B, C) to degrade faster than the candidate master node pair (A, B). In 

addition, the sensor node C is in the front of the target moving direction. Thus, as the 

target moves, the distance between the sensor node C and the target will decrease and this 

can cause violation of the far field condition. In contrast, the nodes A and B are in the 

BAT2
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reverse side of the target moving direction and are less likely to cause a far field 

condition violation. Thus, it is evident that the candidate master node pair (B, C) is more 

likely to be updated frequently. This analysis is also valid for candidate master node pair 

(A, D).  

Meanwhile, if we consider the candidate master node pairs (A, B) and (C, D) the 

baseline of the candidate master node pair (C, D) is also perpendicular to the moving 

direction of the target. Even though the deviation of angle BAT2  from the desired 900 

will be lower compared to that of angle DCT2 , the difference can be considered very 

small (in the initial stages). In addition, the distance from future target location T2 to the 

sensor nodes C and D are smaller compared to that of sensor nodes A and B. Thus, it may 

seem like that the candidate master node pair (C, D) is a better choice than candidate 

master node pair (A, B). However, both the sensors of the candidate master node pair (C, 

D) are in the front of the target moving direction. Thus, it is highly possible that when the 

target moves the far field assumption condition will be violated causing frequent 

localization sensor group updates.  

According to the above analysis, the candidate master node pairs similar to (A, B) 

have the most desirable geometry formation for tracking moving target as they result in 

more stable localization sensor groups. Therefore, when selecting the master node pairs 

for next localization sensor group, focus will be given to selecting such pairs. This is 

achieved by selecting the two master sensor nodes from the reverse side of the target 

moving direction, highlighted in Figure 4.4. 
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4.3.3.2 Search for the Two Master Nodes 

The search for the two master nodes is initiated by the current master node of the 

master sensor pair. The search request message is in the direction parallel to the predicted 

moving direction of the target by the two master nodes. The rationale behind the selection 

of such a path is, since the current master and slave sensor pairs are nearly optimal for the 

current target location, if the current sensor pairs can follow the target movement, it is 

highly possible that they will remain the best sensor pairs for the predicted target 

location. Thus, the search for the best sensor pair for the predicted target location can be 

limited to the path parallel to the movement of the target. In addition, to minimize the 

effect of sub-optimality that may be present in the previous sensor group and the target 

movement prediction error, the search request message is forwarded along the outside 

border of the far field boundary of the predicted target location. This will also provide 

more flexibility in selecting the sensor pair with energy considerations. The search 

message forwarding direction or the master node of the master sensor pair is illustrated in 

Figure 4.5. Master node of the slave sensor pair will forward the request in a similar path. 

 
Figure 4.5 Localization Sensor Group Update 
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Here, Mm, Ms, Sm and Ss represent the master and slave nodes of the master and 

slave senor pairs of the current localization sensor group. RFAR is the threshold distance 

required for satisfying the far field condition. x(k) and x(k+1|k) represent the current and 

next (predicted) target states and the stars indicate the current and next (predicted) target 

locations. 

Upon receiving the search request messages, the nodes will add their own 

locations and energy usage information to the messages and forward them. Once the 

forwarding limit is reached, the last nodes that receive the messages will send the 

accumulated information present in the messages to the master node of the master sensor 

pair. Then, the master node of the master sensor pair will select the two best master nodes 

based on the resource aware node selection process described in Section 4.2 and notify 

the two selected nodes. The master sensor node that is closer to the target is designated as 

the master node of the master sensor pair. The current target state estimation and the 

details of the Kalman filter are forwarded to this node along with the notification. 

4.3.3.3 Localized Searches for the Two Slave Nodes 

The two master nodes will select the respective slave nodes from their one-hop 

neighborhoods. Thus, the two master nodes will individually perform the slave node 

selection step as described in Section 4.2, and select and notify the two slave nodes. This 

completes the localization sensor group update and after the localization sensor group 

update is completed, the new localization sensor group will take over the target tracking 

task. 
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4.4 Message Passing for Energy-Efficient and Distributed Self-Organization 

This section provides the implementation details of the energy-efficient and 

distributed self-organization algorithm. The message passing protocol developed to 

achieve the distributed self-organization is discussed in detail. Thus, the details of the 

message contents and the actions performed upon the receiving of the messages are 

elaborated in this section. In addition, the important parameters of the message passing 

algorithm are also discussed. 

4.4.1 Initialization of the Localization Sensor Group 

Initially, all the nodes are sensing the environment for possible presence of a 

target. If a node perceives the received acoustic signal strength within a certain range, it 

initializes the localization sensor group formation. The range of the signal strength is 

defined in the following manner. Signal strength expected at the far field boundary 

(RSSHigh) is the upper bound for the range. In addition, this value can be reduced slightly 

to cater for the inaccuracies caused by environmental conditions. The lower bound of the 

range (RSSLow) is the expected signal strength at a distance equal to the far field range 

distance plus the communication range of the sensor nodes. 

4.4.1.1 Initial Four Closest Nodes Localization Sensor Groups Formation 

Once a node detects a target with received signal strength within the above 

described range, it decides to become a candidate for the group head node of the four 

closest nodes group. Then, it calculates its backoff time (TBackOff) as follows. 
















LowHigh

Low
MAXBOBackOff RSSRSS

RSSRSS
TT ,  ( 4.6 )
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where TBO,MAX is the predetermined maximum backoff time value that will depend on the 

sensor node density, application requirements and the one-hop communication delay. RSS 

is the received signal strength of the node and RSSHigh and RSSLow are the limits of the 

acoustic signal strength range discussed above. Then, the node backoff for TBackOff and 

broadcasts a message to its one-hop neighborhood with a request to join its group. 

However, if a node receives an initial group join request message during its backoff time, 

it relinquishes its group head state and replies to the request it received. The format of 

this initial group join request (IGJReq) message is shown below. 

IGJReq = (Head ID; Head Location; Head Received Signal Strength; Head 

Neighboring Node Count)  

where “Head Neighboring Node Count (HeadNNC)” is the number of nodes in the     

one-hop neighborhood of the group head node, according to its knowledge. When a node 

receives initial group join request message, it first evaluates its received signal strength to 

determine whether it is below the received signal strength of the head node. If it is above 

this limit the node will simply discard the message. Else, it will check whether the 

distance between the head node and itself is less than the maximum allowable sensor 

separation distance (LTH). If it is less than LTH, the node will discard the message. 

Otherwise, it will evaluate its suitability to join the group by evaluating the cost function; 

THHead
IG L

d

RSS

RSS
C   ( 4.7 )

Here, RSS is the received signal strength of the node and d is the distance between the 

node and the group head node. RSSHead is the received signal strength of the head node. If 
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this value is above a threshold, (CIG, TH), then the node will send the reply to the group 

head node. Otherwise, it will decide to send the reply with a probability of Pr. 







 


HeadNNC

n
Pr

5.1
,1max  ( 4.8 )

where HeadNNC is obtained from the request message. n is the group size of the closest 

node group, 4 in this case. The format of the initial group join reply message (IGJRep) is 

shown below. 

IGJRep = (Node ID; Node Location; Node Received Signal Strength) 

If a group head node, that has sent the initial group join request message, receives 

a request from another head node, the receiving head node will compare the received 

signal strengths of the two nodes. If the signal strength of the receiving group head node 

is lower, then it relinquishes its group head state and replies to the request it received. 

Otherwise, the request will be discarded. 

After sending the initial group join request message, the group head node will 

wait for a predetermined time (TIGS) for the neighboring nodes to reply to the request and 

select the three nodes with highest received signal strength to complete the four closest 

nodes group. If the head node does not get enough replies, then it will relinquish its group 

head state. Once the group selection is complete, the group head node notifies its group 

members by sending initial group announcement (IGA). 

IGA = (Initial Group Nodes (Head ID, Node_1 ID, Node_2 ID, Node_3 ID); 

Tracking Start Time) 

where “Tracking Start Time” is the first time to start sending the received acoustic signal 

to head. 
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4.4.1.2 Initial Groups Discovery 

Once the initial four closest nodes group is formed, the group heads will obtain 

information about each other through flooding. To achieve this, the group heads will 

broadcast an initial group head notification message (IGHN) with time to live field set to 

a predefined time to live (TTLIGHN) value. 

IGHN = (Head ID; Head Location; Head Received Signal Strength; Time to Live) 

When a node receives this message, if it has received it earlier it will discard it. 

Otherwise it will reduce the TTL value of the message by 1 and rebroadcast it. If the 

receiving node is a group head node, then it will add the message originating head node 

to its neighboring head nodes list. 

4.4.1.3 TDOA Information Exchange for Initial Location Estimation 

The non-head nodes of the initial group will start to send the captured acoustic 

signal to the group head at the time specified by head node (TTS). They will send NIT 

number of such samples in time intervals of TS (sampling time). This initial group node 

acoustic signal message (IGNAS) has the following format. 

IGNAS = (Node ID; Capture Time; Acoustic Signal) 

When group head node receives this message, it will calculate the TDOA value for the 

sensor pair using its own acoustic signal and the received signal and store it. After all NIT 

samples are collected, it will send the location information of all the nodes in the group 

and the calculated TDOA estimations to the known neighboring head nodes. The 

message format is, 

IGTE = (Head ID; Head Location; Noad_1 Location; Noad_2 Location; Noad_3 

Location; TDOA Estimations) 
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After sending out the TDOA estimations, the head node will backoff for some fixed time 

interval (TIGE) to receive TDOA information from the other head nodes. Then it estimates 

the current location, and the next state, of the target using the TDOA information it 

receives. 

4.4.1.4 Search for Master Nodes  

In order to form the localization sensor group, all the initial group head nodes 

have to come to an agreement. Since there is no central control, this requires 

collaboration between all the group head nodes. However, all the group head nodes do 

not know about the existence of all other group head nodes. Therefore, to overcome this 

collaboration requirement, the localization sensor group is formed in the following 

manner. Once the target state estimation is obtained, each head node checks whether it is 

located in the far field of the target location estimation. If this condition is not met, that 

suggests that either estimation is inaccurate or the initial group does not satisfy the far 

field condition. Thus, the group head will discard its estimates. Otherwise, the group head 

nodes send out the initial location estimation forwarding message (ILEF) with the 

estimated target location and state prediction information along the far field boundary of 

the estimated target location. 

ILEF = (Head ID; Head Received Signal Strength; Current Target State; 

Generated Time; Kalman Filter Parameters; Time to Live; Node Details) 

The “Time to Live” (TTL) of this message is set to TTLIGTE and it can be estimated by, 
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IGTE R
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TTL

2
  ( 4.9 )

Here RFAR and RComm are far field range distance and the one-hop communication range. 

The field “Node Details” contains the node location and the energy level of each node the 

message has reached. The “Kalman Filter Parameters” field contains the prediction error 

covariance matrix (P(k+1|k)) of the Kalman filter. When a node receives this message, 

first it checks whether it received a similar message with generated time in similar range. 

If it already received such a message, it compares the received acoustic signal strengths 

of the two head nodes. If the new message has a lower received acoustic signal strength, 

then that message will be discarded. This process eliminated the estimates generated by 

the group heads other than the group head that is located closest to the target. If the 

received acoustic signal strength is higher, the node checks whether it is in the far field of 

the target estimation. If it is in the far field of the target estimation, the node adds its 

location and energy information to the “Node Details” field. Then, the node decreases the 

TTL value by one and forwards the message along the far field boundary. When, an initial 

location estimation forwarding message (ILEF) reaches TTL value of ‘0’, the node that 

receives the message will select the two master nodes from the information contained in 

the message, using the resource aware node selection process described in Section 4.2. 

The target state prediction for the next time interval (x(k+1|k)) will be used in this master 

node selection process. Then, the master node that is closer to the target estimation is 

selected as the master node of the master sensor pair (Mm) and other node is the master 

node of the slave sensor pair (Sm). Then, these two master nodes are notified through the 
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master sensor pair master node notification message (MSPMNN) and slave sensor pair 

master node notification message (SSPMNN). 

MSPMNN = (Mm ID; Sm ID; Sm Location; Current Target State; Tracking Start 

Time; Kalman Filter Parameters; Cgeo,e Value ) 

SSPMNN = (Sm ID; Mm ID; Mm Location; Current Target State; Tracking Start 

Time) 

The field “Kalman Filter Parameters” is similar to that of initial location estimation 

forwarding message (ILEF). 

4.4.1.5 Localized Search for Individual Slave Nodes 

When the master nodes receive these messages, they will broadcast a slave node 

request message (SNReq) to its one-hop neighborhood. In addition, the master node of 

the master sensor pair will store the Kalman filter parameters and the cost function value 

for future use.  

SNReq = (Master Node ID; Master Node Location; Predicted Target Location; 

Master Node Neighboring Node Count) 

When the neighboring nodes receive this message, they will check whether they are in 

the far field of the target. If not, the message will be discarded. Otherwise, they will 

calculate their bearing estimation cost function Cbe,e. If this value is above a threshold 

value (Cbe,e,TH), it will reply to the master node. Otherwise, the node will decide to reply 

with a probability Ps, 


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


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NNCNodeMaster

s
Ps ,1max  ( 4.10 )

The format of this reply message (SNRep) is, 
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SNRep = (Node ID; Node Location; Cbe,e Value) 

After sending the slave node request message, the master node will wait some time (TSNS) 

for the neighboring nodes to reply. Then it will select the node with the highest Cbe,e 

value as its slave node and notify it.  

SNNot = (Node ID; Tracking Start Time) 

4.4.2 Target Localization and Tracking 

When the selected slave nodes receive the notification messages, they will start 

tracking and sending the captured acoustic signals to the respective master nodes. This 

will begin at the tracking start time specified by master node and will be done in intervals 

of Ts (sampling time) until the localization sensor group is dismissed. The message 

format of the slave node acoustic signal (SNAS) is, 

SNAS = (Capture Time; Acoustic Signal; Slave Node Energy Level; Is Slave Node 

in Far Field) 

When the master node receives the acoustic signal from the slave node, it will estimate 

the TDOA value using that signal and its own acoustic signal. After calculating the 

TDOA value, the master node of the slave sensor pair will send the estimated TDOA 

value and the energy levels of the two nodes of the slave sensor pair, to the master node 

of the master sensor pair. In addition, this message will optionally contain the location of 

the slave node of the slave sensor pair (if this is the first target tracking of this group). 

This slave group TDOA estimation message (SGTE) will have the following format. 

SDTE = (Capture Time; TDOA Estimation; Master Node Energy Level; Slave 

Node Energy Level; Is Master Node in Far Field; Is Slave Node in Far 

Field [; Slave Node Location]) 
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The fields “Is Master Node in Far Field” and “Is Slave Node in Far Field” indicate 

whether the respective nodes received a signal strength that would indicate a violation of 

the far field assumption. 

4.4.3 Localization Sensor Group Update 

If the master node of the master sensor pair decides to update the localization 

sensor group, it will dismiss the current localization sensor group. First it will send the 

master node dismiss message (MND) to the master node of the slave sensor pair.  

MND = (Dismiss Time; Next Target State Prediction; LSGUReq Expire Time) 

The predicted next target state and expire time of the localization sensor group update 

request message (LSGUReq) are included in this message so that the master node of the 

slave sensor pair too can initiate the search process for the next master nodes. Upon 

receiving the dismiss message, the master node of the slave sensor pair will send the 

slave node dismiss message (SND) to its slave node.  

SND = (Dismiss Time) 

Also, the master node of the master sensor pair too will send the dismiss message 

to its slave node. Upon receiving the dismiss message, the slave nodes will give up their 

slave node roles. After dismissing slave nodes, each master node will independently start 

the search for the next master nodes by initiating a localization sensor group update 

request message (LSGUReq). 

LSGUReq = (Mm ID; Mm Location; Next Target State Prediction; LSGUReq 

Expire Time; Time to Live; Node Details) 

Initially, the node details will be empty. However, it will have the data format as the 

“Node Details” field and as the message passes forward in the path described in Section 
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4.3.3, the nodes will add their information to the message. The time to live value will be 

set to a threshold value (TTLLSGU), which will depend on the communication latency, far 

field range distance (RFAR), communication range of the nodes (RComm) and the real-time 

requirements of the algorithm. After initiating this message, the master node of the slave 

sensor pair will give up its role. When a node receives this message, it will check whether 

it is in the far field of the target and if so will add its information to the “Node Details” 

field. Then, it will reduce the TTL value by one and forward it along the path described 

in Section 4.3.3. When the TTL value becomes “0”, the node that receives the message 

will send the node information present in the message to the master node of the master 

sensor pair. 

LSGURep = (Node Details) 

In addition, an expire time is assigned to the LSGUReq message, so that the timeliness of 

the localization sensor group update process can be maintained. In forwarding the 

LSGUReq, each node will check whether expire time of the message has elapsed. If so, 

rather than forwarding it, the node will send the node details contained in the message to 

the master node of the master sensor pair. 

After sending the LSGUReq, the master node of the master sensor pair will 

backoff for some time (TLSGS) to receive the replies and then will select the next master 

nodes using the node information it receives from replies. In addition, the master node 

that is closest to the target is selected as the master node of the master sensor pair. The 

above described expiring of the LSGUReq message is introduced to maximize the chance 

of receiving the LSGURep (may be with partial information) before the selection is 

carried out, especially when unexpected communication delays occur. After the two 
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master nodes are selected, the current master node of the master sensor pair notifies the 

new master nodes (through MSPMNN and SSPMNN) and gives up its role. The new 

master nodes will carry out the localized search process for individual slave node 

selection (described in Section 4.4.1.5) to complete the localization sensor group update. 

4.5 Energy Conservation 

Incorporation of energy conservation mechanisms that can reduce the energy 

usage is vital for the extended lifetime of the energy limited sensor networks               

[13-16][106][107]. One approach for reducing energy usage is the selection of less power 

consuming processing and communication hardware. Although this approach can reduce 

the energy usage, it has limits on the reduction of energy usage. Thus, effective power 

management is very important in achieving extended network lifetime. Using simple 

processing algorithms, reducing the communication requirements, using energy aware 

node selection for target tracking and use of energy aware routing and MAC layer 

protocols that consider node energy levels in communication mechanisms are a few 

examples of such power management mechanisms. Another method that has attracted 

interest is exploiting the densely deployed and the event and location centric nature of 

sensor networks to improve energy efficiency by incorporating efficient sleep-wakeup 

management mechanisms. 

In the designed self-organization algorithm a simple and resource efficient 

localization method is employed for target localization. In addition, the algorithm is 

developed in a distributed manner. In order to minimize the communication 

requirements, a geographically local resource aware node selection method is employed. 

To further improve the energy conservation, a sleep-wakeup management scheme is 
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incorporated to the self-organization algorithm. The sleep-wakeup management 

mechanism is implemented using the combination of energy efficient low latency MAC 

protocol proposed by Wan et al. [16][17] and a novel cross layer wakeup adjustment 

algorithm. This section provides the details of the sleep-wakeup management mechanism. 

4.5.1 Energy Conservation Using Sleep-wakeup Management Schemes 

Wireless sensor networks are usually densely deployed and this can be effectively 

utilized for achieving energy conservation. Krishnamachari et al. [108] explained that 

phase transition phenomena are present in wireless sensor networks. Specifically, they 

pointed out that, “There are many contexts in distributed wireless networks where there is 

a critical threshold, corresponding to a minimum amount of the communication effort or 

power expenditure by individual nodes, above which a desirable global property exists 

with high probability” [108]. This provides the notion that, for successful operation of 

densely deployed wireless sensor networks only a subset of active nodes is sufficient. 

Thus, the densely deployed nature of the wireless sensor networks is exploited by many 

researchers, to reduce the energy waste by incorporating sleep-wakeup management 

mechanisms into the power management [13-16][106]. 

Moreover, interesting events such as presence of a target are rare in wireless 

sensor networks [13][106]. However, when an interesting event occurs, often the sensor 

network has to detect the event and respond to it in real-time. Therefore, in wireless 

sensor networks, the sensor nodes are often waiting in idle mode for such events to occur. 

Energy waste caused by this idle listening of sensor nodes is a major source of energy 

waste in wireless sensor networks [13]. In addition, the traffic in the sensor network is 

usually generated by such events and hence is geographically and temporarily correlated 

93 



 

to these interested events [13]. Thus, handling such events and the traffic requirements of 

the wireless sensor networks can be successfully supported using only a subset of nodes 

in the sensor network which are located in close proximity to interesting events. Thus, by 

keeping only the required set of nodes awake and making the other nodes in the network 

sleep, considerable energy savings can be achieved. In addition, the geographically and 

temporarily correlated nature of events and traffic can be considered in activating nodes 

to achieve effective power management. 

However, the power management may have adverse effects such as tracking 

inaccuracies, packet losses and increased communication latency. Thus, the successful 

power management will require support from the tracking algorithm and the underlying 

communication mechanisms (MAC and routing protocols) so that these effects can be 

either eliminated or minimized to achieve satisfactory tracking performance. Therefore, 

an energy efficient low latency MAC protocol and energy-aware anycast based message 

forwarding scheme proposed by Wan et al. [16][17], which support sleep-wakeup 

management of sensor nodes, is incorporated into the self-organization algorithm to 

further improve the energy efficiency. The details of the energy efficient MAC protocol 

and energy-aware message forwarding scheme and the proposed cross layer power 

management scheme are provided next. 

4.5.2 Energy Efficient and Latency Sensitive MAC Protocol 

Motivated by the phase transition phenomena explained by Krishnamachari et al. 

[108], the MAC layer protocol applies an opportunistic sleep scheme to achieve the 

energy efficiency. A wakeup probability is utilized to maintain the required number of 

active nodes and manage the network connectivity and the performance. Each node 
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adapts to the changes in the local network traffic conditions by dynamically adjusting the 

wakeup probability. In addition, an anycast based data forwarding mechanism is 

proposed to reduce the end-to-end communication latency. 

The MAC protocol is designed for wireless sensor networks with stationary nodes 

where multi-hop communication is employed for data delivery. In addition, it is assumed 

that the nodes are time synchronized and know their locations. An introduction to the 

major components of the protocol is provided here. More details about the MAC protocol 

and the energy saving and latency characteristics of the protocol can be found in [16] and 

[17]. 

4.5.2.1 The Opportunistic Sleep Scheme 

In the proposed sleep scheme, the channel is divided into same length time slots 

and each node maintains its own wakeup probability depending on the local network 

condition and the performance expectations. In addition, the length of the time slot can be 

changed according to the application requirements. At the beginning of the time slots, 

each node decides to enter sleep or active state depending on its own wakeup probability. 

Thus each node will follow an alternating sleep and active pattern based on its own 

wakeup probability. This idea is illustrated in the following figure (Figure is a modified 

version of Figure 3.2 of [17]).  

 
Figure 4.6 Opportunistic Sleep/Wakeup Scheme of MAC Protocol 
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The wakeup probability determines the number of active nodes in the network and 

thus, the connectivity of the network. Higher wakeup probability will result in higher 

degree of connectivity while reducing the energy conservation. Thus, the wakeup 

probability should be dynamically adjusted by the sensor nodes to maintain the desired 

connectivity requirements of the network while maximizing the energy savings. The 

wakeup probability is dynamically adjusted by individual sensor nodes based on the local 

network condition, which is heuristically determined by monitoring the local traffic 

condition of the network and the performance expectations specified by the application 

layer. In this scheme, if no suitable forwarding node is discovered, it will cause increase 

in the wakeup probability assuming that higher degree of connectivity is required. 

However, if a collision is detected or the perceived packet loss rate is less than the 

desired threshold packet loss rate, it will assume that degree of connectivity is above the 

required threshold. Thus, the wakeup probability will be reduced to achieve better power 

savings. 

4.5.2.2 The Anycast Based Data Forwarding Scheme 

In order to minimize the effect of sleep management on communication latency 

and to improve the communication reliability, an anycast based packet forwarding 

scheme is introduced in the MAC protocol. In this forwarding scheme, the best node to 

forward the packet is chosen from the nodes in the direction towards the destination node. 

The selection is based on the geographical information and the remaining energy of the 

individual nodes. 

Initially, the sender anycasts a request-to-send (RTS) message to a selected area 

which is determined by the forwarding trajectory pointing to the best direction toward the 
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destination location. The selected forwarding area and the selection of the forwarding 

node are illustrated in Figure 4.7 (Figure is a modified version of Figure 3.6 in [17]).  

3




 
Figure 4.7 Selecting Forwarders for Anycast Based Data Forwarding Scheme 

As it can be seen, the sector with central angle of π/3 and radius R 

(communication range) towards the forwarding trajectory is the selected forwarding area. 

The active nodes in this area are the candidate forwarding nodes. The RTS message 

contains the location information of the sender and destination nodes for the forwarding 

trajectory determination. Once a node receives this RTS message, first it will determine 

whether it is a candidate node by calculating the forwarding area and comparing it with 

its own location. If it is not a candidate node, it will go to sleep. The candidate nodes will 

calculate their priorities by evaluating the following cost function [17]. 

 
R

r

E

E
C r  cos

1  ( 4.11 )

Here, μ is the weighting factor which balances the energy left in node and the geographic 

optimality of selected forwarder. Er is the remaining energy of the node, E is the full 

charge energy and r and θ are shown in Figure 4.7. After calculating the cost function, 

the nodes will backoff for a certain time interval depending on the priority. Then, the 
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node with the highest priority will send its clear-to-send (CTS) message first. The other 

candidate nodes that hear this CTS message will discard their CTS messages and go to 

sleep. Once the sender receives the CTS message, it will send the packet to the selected 

forwarder and the forwarder will reply with an acknowledgement (ACK) message. This 

process will continue until the destination is reached.  

In order to further reduce the end-to-end delay and improve energy efficiency, the 

location information of the sender and the destination nodes are included in the CTS 

message. Thus, the nodes that overhear the CTS message will determine whether they 

will be in the future forwarding trajectory and if they are in the future forwarding 

trajectory, they will decide to stay awake when the current transmission is complete. 

Moreover, the ACK messages which should be sent by the selected forwarding nodes at 

the end of each forwarding step are eliminated. This is achieved by letting the RTS 

message of the current forwarding step act both as the RTS message for the current step, 

and the ACK message for the previous step. This will reduce the transmission latency and 

the control overhead of the scheme resulting in improved energy efficiency. 

4.5.3 Cross Layer Power Management 

4.5.3.1 Rationale for Cross Layer Power Management 

The adaptive adjustment of the wakeup probability from the MAC layer is mainly 

based on the local network condition, which is estimated by monitoring the presence of 

forwarding nodes, packet loss rate, and the presence of collisions in the network. Hence 

the wakeup probability adjustment is reactive to the network traffic conditions. Thus, 

when used in our target tracking application, the wakeup probability adjustment will be 
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reactive to the communication requirements of the tracking algorithm. This could 

introduce a delay to the real-time target tracking. 

Moreover, it is well known that the communication traffic patterns of the sensor 

networks are event and location centric [13]. This is especially true for the target tracking 

applications, where majority of traffic is generated by the interesting events such as 

detection of a target [13]. Thus, intuitively the combination of network condition and the 

knowledge about these events will allow a better adjustment of wakeup probability which 

will result in improved energy efficiency. In addition, the knowledge of these events will 

enable the adjusting of wakeup probability proactive to the requirements of tracking 

algorithm which will provide better communication facilities for real-time target tracking. 

However, only the application layer has the capability to identify these interesting events 

and the networking layers (MAC layer and routing layer) have the network status 

information. Therefore, a cross layer design, which combines event information from the 

application layer as well as the network condition from the MAC layer, is used in the 

proposed power management scheme of the energy-efficient distributed self-organization 

algorithm. This will enable the proactive adjustment of the wakeup probability by 

considering the event information as well as the network conditions. Moreover, as the 

wakeup probability adjustment is proactive, wakeup probability can be further reduced 

during the idling time period in order to achieve increased power savings. The proposed 

cross layer wakeup probability adjustment scheme is presented next. 

4.5.3.2 Cross Layer Wakeup Probability Adjustment Scheme 

The major design goal of the cross layer wakeup probability adjustment is to 

combine the event information from the application layer and the network conditions 
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from the MAC layer to achieve high energy efficiency while ensuring satisfactory 

tracking performance. The estimated application level requirements and the estimated 

sensor network local conditions are considered when sensor node wakeup probability is 

adjusted using this scheme. 

In the application layer, the nodes are categorized based on the likeliness of the 

node participating in the target tracking process during the next few time intervals. 

According to this assessment, the node is classified into one of the four classes, namely 

“Very Low Important”, “Low Important”, “Medium Important” and “Highly Important”. 

Following figure illustrates the category each node should be assigned depending on the 

region it is located. 

 
Figure 4.8 Sensor Node Categorization 

The distances RSR and RFAR denote the sensing range of the sensor nodes and the 

far field range threshold distance. RLow, RMed and RHigh are predetermined distance values 
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that define the regions with RLow ≤ RFAR ≤ RMed < RHigh ≤ RSR. The values of RLow, RMed 

and RHigh will depend on the sensor node density, RFAR and RSR. 

The nodes that are located close to the far field boundary and in the reverse side 

of the target moving direction are the most likely to be selected for the localization sensor 

group (within next few time intervals) and are categorized as “Highly Important”. The 

nodes that are very close to the target at the reverse side of the target moving direction 

are highly unlikely to be selected as members of the localization sensor group. However, 

they are highly likely to participate in the communication between two master nodes. 

Thus, they are placed in the “Medium Important” category. Since the nodes that are 

located in the front side of the target moving direction are undesirable for the localization 

sensor group, they are placed in the “Very Low Important” category. The other nodes are 

categorized as “Medium Important”, “Low Important” or “Very Low Important” based on 

the distance from the target, with the intuition that closer the nodes are, higher the chance 

of them participating in the tracking process. 

Above categorization assigns the node category based on the region the node is 

located. The regions are defined by the target location and moving direction. Therefore, it 

is not possible to achieve this categorization at each node independently in a distributed 

manner, as most of the nodes will not be aware of the target state estimation. Thus, the 

region each node belongs to is heuristically determined based on the received signal 

strength. Specifically, recently received acoustic signal strengths during the last few time 

intervals are stored in the application layer. Then, the change pattern of the received 

signal strengths is used to roughly estimate whether the target is approaching, leaving or 

staying stationary compared to the sensor node. In addition, the received acoustic signal 
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strengths are used to roughly estimate the distance from node to the target. Using this 

information, the category each node belongs to is determined by the following algorithm. 

 

Start Node Categorization 

if Distance > RSR or Target is Approaching then 

Category ← Very Low Important 

else if Distance > RHigh then 

Category ← Low Important 

else if Distance > RMed then 

 if Target is Leaving then 

Category ← Low Important 

else 

Category ← Medium Important 

end if 

else if Distance > RLow then 

Category ← Highly Important 

else 

Category ← Medium Important 

end if 

End Node Categorization 

A coarse estimate of the total number of nodes within the one-hop neighborhood 

of the sensor node is obtained from the MAC layer to estimate the network condition. 

The traffic information of the network was not incorporated as the traffic pattern is highly 

correlated to the target tracking events. In addition, the remaining energy of the sensor 

node is also considered in adjusting the wakeup probability. With the sensor node 

classification and the neighboring node count, the wakeup probability Pa is dynamically 

adjusted at each node using the following algorithm. 
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Start Wakeup Probability Adjustment 

if Category is Highly Important then 

if Energy Left < EVeryLow then 

Pa ← λ [ NCVH / NNC ] 

else 

Pa ← [ NCVH / NNC ] 

end if 

else if Category is Medium Important then 

if Energy Left < ELow then 

Pa ← γ [ NCComm / NNC ] 

else 

Pa ← [ NCComm / NNC ] 

end if 

else if Category is Low Important then 

if Energy Left < ELow then 

Pa ← PrVeryLow  

else 

Pa ← δ [ NCComm / NNC ] 

end if 

else 

Pa ← PrVeryLow  

end if 

 

if Pa < PrVeryLow 

Pa ← PrVeryLow  

else if Pa > PrVeryHigh 

Pa ← PrVeryHigh   

end if 

End Wakeup Probability Adjustment 
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Here, NCVH and NCComm represent the preset parameters that can be used to adjust 

the network connectivity level for high and medium important nodes. NNC represents the 

estimated neighboring node count and PrVeryLow and PrVeryHigh are the two extreme 

probability limits. The energy limits EVeryLow and ELow can be decided beforehand 

depending on the energy consumption of the sensor nodes for sensing, communication 

and idle listing tasks. Moreover, the preset weight factors λ, γ, and δ (λ, γ, δ ≤ 1) can be 

used to adjust the energy usage balancing and the target tracking quality. The 

combination of NCVH, NCComm and the NNC is used to determine the required wakeup 

probability to maintain the desired level of node connectivity, which is decided by the 

application level classification of the node and the energy left in the node. 

4.6 Cross Layer Enhancements 

The anycast based message forwarding mechanism of the MAC protocol requires 

the location of the destination for successful message delivery (for unicasting). The 

message passing protocol (Section 4.4) supports this by including node locations in the 

required messages, so that when unicast communication between two nodes is required, 

the sender will always be aware of the location of the destination node. The exceptions 

for this are the message forwarding performed in the searches for the master nodes in 

initially forming the localization sensor group and updating the localization sensor group. 

The initial location estimation forwarding message (ILEF) forwarded by a unicast 

message along the far field boundary (see Sections 4.3.1.3 and 4.4.1.4) is not aware of a 

specific destination node. Since the forwarding is based on geometry, the sender is more 

interested in a node located close to the desired destination location. Similarly, the path of 

the localization sensor group update request messages (LSGUReq) is based on the 
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geometry of moving direction of the target (see Sections 4.4.2 and 4.4.3). Thus, the 

sender (or a forwarding node) is more interested in selecting a node which is located 

close to the desired location. 

In order to obtain a destination node for above scenarios, application layer has to 

depend on the MAC layer to obtain the locations of the neighboring nodes. However, this 

neighboring node information will not be updated in real-time. In addition, with the 

sleep-wakeup management incorporated, the selected destination node can be in sleep 

state as well. Moreover, the maintaining of neighboring node locations will induce 

additional load on the MAC protocol. Therefore, in order to eliminate these undesirable 

circumstances, a location based unicasting capability is incorporated to the anycast based 

message forwarding mechanism. The location based unicasting capability enables the 

application layer to send a packet to a node selected by the desired location. The 

destination node can be specified based on the desired geographical region, specified by 

the desired location and the radius of tolerance. This will eliminate the requirement for 

the MAC layer to maintain the neighboring node location information. In addition, as the 

destination is selected from the available nodes that are located in the desired 

geographical region, the message forwarding will not be affected by the sleep-wakeup 

management scheme. Figure 4.9 illustrates the forwarding scheme and the destination 

node selection of the location based unicasting scheme. 
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Figure 4.9 Location Based Unicasting Scheme 

If there are unexpected delays in the network, overly delayed messages may not 

be useful for real-time tracking application. Therefore, forwarding these packets does not 

serve any purpose and will result in energy waste. In order to eliminate this waste, each 

message was assigned an expiration time. This expiration time is set by the application 

layer depending on the importance and timelines requirements of the message for 

successful tracking, and is included in the message header. The anycast based forwarding 

mechanism is modified to discard the messages that get delayed more than its expiration 

time. In addition, the data packets are assigned priorities by the application layer and the 

retry count of the packets is adjusted depending on the priority by the MAC layer in order 

to provide more robust communication path for the important application level packets. 

106 



 

CHAPTER V 

5. PERFORMANCE EVALUATION 

The target tracking and energy conservation performance of the proposed   

energy-efficient distributed self-organization algorithm was evaluated using ns-2 [18] 

simulations. This chapter summarizes the performance evaluation of the algorithm. The 

first section presents an overview of the implementation. The simulation results and the 

conclusions drawn from the simulation results are discussed in the second section. 

5.1 The ns-2 Implementation 

This section provides the details of the implementation of the developed          

self-organization algorithm in ns-2 distributed event simulator. In the first part of the 

performance evaluation, the target tracking performance of the algorithm was evaluated. 

The default mobile node of the ns-2 was used for this simulation, and a new application 

agent, namely the DSOAAgent was implemented. In the second part, effectiveness of the 

developed power management scheme was evaluated. For this, the routing and MAC 

layer protocols of the previous implementation were replaced by the MAC protocol 

developed by Wan et al. [16][17]. The MAC protocol includes an anycast based message 

forwarding scheme, and a sleep-wakeup management scheme. The cross layer wakeup 

probability adjustment scheme discussed in Section 4.5 and the cross layer enhancements 

discussed in Section 4.6 were implemented on top of this implementation. 

5.1.1 Overview of ns-2 

In the ns-2 software package, ns-2 stands for network simulator version 2. It is a 

discrete event simulator, which provides support for simulating network protocols over 

combinations of both wired and wireless networks. The software was initially developed 
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based on REAL network simulator ([120]) in 1989. Currently it is maintained and 

enhanced through CONSER ([121]) and SAMAN ([122]) projects with collaborations 

from other researchers [18][123]. 

The ns-2 software package is distributed under open source software license and it 

supports simulating protocols of different layers of the OSI model, such as application 

layer, transport layer, network layer, data link layer and physical layer. Moreover, the   

ns-2 distribution contains a rich set of popular network protocols, and support 

functionalities, so that the researchers can easily conduct simulations and implement new 

protocols using these features. Due to these reasons, ns-2 is very popular among 

researchers for simulating network protocols. 

The current wireless model of the ns-2 distribution is the mobility extension to  

ns-2, which was developed by Monarch project [123] of Carnegie Mellon University 

(now at Rice University) [124]. Mobile node is the major component of the ns-2 wireless 

model. The mobile node consists of following network components [124]. 

- Application agent (a traffic source, sink or a combination of both) 

- Routing agent (routing protocols such as DSDV, DSR, TORA, and AODV) 

- Link layer (LL) 

- Address resolution protocol (ARP) module (connected to link layer) 

- Interface priority queue (IFq) 

- MAC Layer (several IEEE 802.11 MAC protocol versions available) 

- Network interface (netIF) 

The radio preparation module and the antenna module are attached to the network 

interface layer of the mobile node. Several propagation models, namely free space model, 
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two-ray ground reflection model and shadowing model are implemented in the ns-2 

distribution. The network interface connects the MAC layer and the channel. Within the 

mobile node, the incoming and outgoing traffic are filtered and directed to appropriate 

agent (application/routing) using the address and port classifiers. To support energy usage 

simulations, an energy model implementation is available for mobile nodes. The energy 

model has the parameters for the power consumption at transmitting, receiving and idling 

states, and the initial energy of the mobile node [124]. 

5.1.2 Implementation of Self-Organization Algorithm in ns-2 

To evaluate the target tracking performance, the developed self-organization 

algorithm was implemented in ns-2 as a new application protocol. Specifically, the 

message passing protocol discussed in Section 4.4 was implemented in a new application 

agent (DSOAAgent) in ns-2.  

In order to perform the searches for the two master nodes, the implementation of 

the application agent required information about the neighboring nodes. It was assumed 

that the networking layer (routing layer or MAC layer) provided an interface to obtain the 

required information. In this part of the implementation, the sleep-wakeup management 

scheme was not implemented. Greedy Perimeter Stateless Routing (GPSR) [125] 

protocol was used as the routing agent and the GPSR implementation for ns-2 provided 

by Karp (available at [126]) was used. The interface to provide the neighboring node 

information to the application layer was added to the GPSR implementation. For all other 

components of the mobile node except for the application and routing agent, the 

implementations available in the ns-2 distribution were used. The following figure 
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illustrates the architecture of the mobile node with the protocols used for the simulation. 

The newly implemented and modified components are shaded in the figure. 

 

Figure 5.1 Architecture of the Mobile Node Used for the Simulation 
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5.1.2.1 Implementation of the DSOA Application Agent 

The proposed self-organization algorithm was implemented in an application 

agent named “Distributed Self Organization Algorithm” agent (DSOAAgent). An 

overview of the class diagram for the developed DSOAAgent class is shown below. 

DSOAAgent

Agent

1 1

DSOATimer

DSOASSTimer

1

1

TimerHandler

1

1

ns-2 Distribution

DSOA Package

GPSR

GPSR Package

 
Figure 5.2 Overview of the Class Diagram for DSOA Application Agent Implementation 

The DSOAAgent class was extended from the Agent class implementation 

provided in the ns-2 implementation. Thus, all the interactions with the other components 

and packet flowing (shown in Figure 5.1) were handled through the functionalities of the 

Agent class. The developed DSOAAgent class contained the implementation of the 

message passing protocol developed in Section 4.4 and the Kalman filter functionalities 

for target tracking. In addition to the contents of the messages specified in Section 4.4, a 

header section (DSOA header) was assigned to the messages. This header contained the 

message type and a unique message ID.  
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In addition, the DSOAAgent class contained the functionality required for the 

interacting with routing agent, simulating the acoustic signal receiving, and recording the 

simulation results. The implementation used two timers, namely DSOATimer and 

DSOASSTimer. Both of the timers were extended from the TimeHandler class of the   

ns-2 distribution. The DSOATimer was used for the handling of backoff timers required 

for the message passing protocol. The second timer was employed to simulate the 

receiving of the acoustic signal. An association with the GPSR agent was maintained at 

the application agent to obtain the neighboring node information from the GPSR agent. 

5.1.2.2 Modification of GPSR to Implement Interface for the Application Agent 

The GPSR implementation for ns-2 provided by Karp (available at [126]) was 

slightly modified by adding the functions required to provide neighboring node 

information to the application agent. The information was already available within the 

GPSR agent and the following two functions were added to the GPSR agent, so that 

application agent can access them. 

- int GPSR_Agent::getNeighborNodeCount() 

- int GPSR_Agent::getNeighborNode(int nodeIndex, … ) 

The first function provided the number of nodes in the one-hop neighborhood of the node 

and the second function provided access to the details of a neighboring node. 

5.1.2.3 Modifications to the ns-2 Energy Model 

In this part of the simulation, only the application level energy considerations 

were implemented. Specifically, the energy considerations were incorporated to the node 

selection process. However, the sleep-wakeup management scheme was not incorporated. 

Thus, only the application level energy usage was considered in the energy saving 
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analysis. In order to measure the effectiveness of the application level energy 

considerations, the energy model of the ns-2 mobile node was modified to consider only 

the energy consumed by the application level packets. The energy consumed by nodes in 

sending, receiving and relaying the application layer packets were considered. However, 

the communication overhead and the idle power consumption were neglected. 

5.1.3 Incorporating Energy Conservation  

In the second part of the simulation, the sleep-wakeup management scheme was 

incorporated to the algorithm. Thus, the developed DSOAAgent was integrated with the 

communication stack developed by Wan [17]. The protocol stack consists of 

implementation of four common services, namely; location management, coarse time 

synchronization, anycast data forwarding and energy management. Here, the routing 

agent was replaced by the “Dumb Routing” agent and the routing tasks were handled by 

the anycast based data forwarding scheme. The “Dumb Routing” agent acts as the 

interface between the application layer and the link layer. The location management 

provided the node location information for the anycast based data forwarding scheme. 

The Energy management coordinated the energy conservation through sleep-wakeup 

management scheme. Interactions with the application layer, anycast forwarding and 

coarse synchronization were required to determine the node state transitions and to 

dynamically adjust the wakeup probability. In addition, the node state transitions were 

performed through the energy model. The coarse synchronization handled the time 

synchronization and exchange of node information between one-hop neighbors. The 

architecture of the mobile node with the new communication stack proposed by Wan [17] 

is shown in Figure 5.3. The components with modifications are highlighted with shading. 
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Figure 5.3 Architecture of the Mobile Node after Integrating with the Communication 

5.1.3.1 Wakeup Probability Adjustment Modification 

The wakeup probability adjustment functionality of the energy management 

module was modified to implement the developed cross layer wakeup probability 

adjustment algorithm discussed in Section 4.5.3. The event information required for the 

Stack  
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wakeup probability adjustment was obtained from the association through the application 

layer. The coarse synchronization module was responsible for providing the neighboring 

node information required for wakeup probability adjustment. 

5.1.3.2 Implementation of the Cross Layer Enhancements 

The cross layer enhancements discussed in Section 4.6 were incorporated into the 

anycas

 the message forwarding scheme was modified to include additional 

condition before forwarding the packet to check for the expiration time of the packet. If 

t based data forwarding scheme of the MAC protocol. Thus, the anycast 

forwarding module of the communication stack was modified to implement these 

modifications. In implementing the location based unicasting, the forwarding scheme was 

updated and a new data packet type, namely location based unicasting packets, was 

introduced. The anycast based forwarding scheme handled this new type of data packets 

in a slightly different manner compared to regular packets. In forwarding the standard 

unicast packets, the destination node was fixed and the exact location of the destination 

node was known. Thus, the forwarding stopped when the packet reached the desired 

destination node, located at a known location. When forwarding location based 

unicasting packets, the exact destination node was unknown. However, the desired 

location of the destination was known. In this scheme, the forwarding terminated when 

the packet reached a node that was located in the desired region specified by the source 

node. The desired region was a circle centered at the desired destination location and was 

specified by the desired destination location, and the radius of tolerance. Except for the 

termination, all the other steps in the forwarding scheme were similar to the anycast 

based forwarding. 

In addition,
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the exp

 self-organization algorithm, a tracking algorithm that 

the target tracking 

perform

performance of the developed      

rganization algorithm. The simulation results obtained 

using t

iration time was specified by the application layer and had elapsed, the message 

was discarded by the forwarding scheme, rather than forwarding it. Moreover, the retry 

count of the forwarding scheme was modified based on priority of the packet, which was 

assigned by the application agent. 

5.1.4 Implementation of Tracking Using Four Closest Nodes Group 

In addition to the proposed

used the four closest nodes to track the target was implemented for 

ance comparison. In this implementation, the four sensor nodes closest to the 

target, which were located in the far field were selected to perform the target localization. 

The Kalman filtering was applied to perform the target state estimation and prediction. 

This sensor group was updated in every other sampling interval to match the predicted 

target locations. The selection of the four closest nodes was performed by a search 

process carried out along the boundary of the far field. 

5.2 Simulation Results 

This section provides a discussion on the 

energy-efficient distributed self-o

he implementation of the algorithm in ns-2 and the conclusions from the obtained 

results are presented in this section. Specifically, the target tracking quality and the 

energy conservation characteristics of the developed algorithm are discussed in this 

section. In addition, the effect of sensor node density on tracking performance and the 

effectiveness of the developed energy aware node selection criterion in selecting the  

near-optimal sensor node group are evaluated. The simulation results confirm the 
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effectiveness of the developed algorithm for target tracking using wireless acoustic 

sensor networks. 

5.2.1 Target Tracking Performance 

f the developed self-organization algorithm was 

evaluat

, tracking of a target moving inside a 1000m by 300m sensor 

field w

The target tracking quality o

ed using the DSOAAgent implemented on the ns-2 distributed event simulator. 

For this part of the simulation, the sleep-wakeup energy management scheme was not 

used. In addition, the application level energy considerations were not used in this 

simulation. The simulation settings and the results obtained are discussed next. 

5.2.1.1 Simulation Setup 

In this simulation

as simulated. 3000 sensors were randomly deployed in the sensor field in a 

uniform manner. The target was set to move at a speed of 10m/s along x direction on a 

path that was 1000m long. The sensing range of the sensor nodes was set to 300 meters. 

The communication range of the sensor nodes was set to 30 meters. The acoustic signal 

propagation process from the source to sensors was simulated by adding a random noise 

to the actual TDOA value. Specifically, the TDOA estimation between two sensor nodes 

was generated from the true TDOA value by adding random noise, which was uniformly 

distributed between 3.5ms and -3.5ms. The important parameter values of the message 

passing protocol that were used for the simulation are listed in the following table (A 

brief description of the parameters is provided here. The details of the parameters are 

available in Section 4.2 thru Section 4.4). 
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Table 5.1 Parameter Values of the Message Passing Protocol for Target Tracking 
Performance Evaluation 

Parameter Description Value 

General Parameters 

LTH Maximum allowable sensor separation distance. 30 m 

RFAR Threshold distance to satisfy the far field assumption. 100 m 

C Speed of acoustic wave propagation in air. 340 m/s 

Ts Sampling interval. 1 s 

NIT 
Number of TDOA estimation samples gathered by 
initial FCN groups before target location estimation. 

4 

CONSTANTD,  Default value for TDOA estimation error variance. 3.5 ms 

Cost Function Threshold Values 

CTH Threshold increase in bearing estimation. 0.2 

CIG,TH 
Threshold value of initial FCN group member 
evaluation cost function used to make the decision on 
sending IGJRep message. 

0.75 

Cbe,e,TH 
Threshold value of bearing estimation cost function 
used to make the decision on sending SNRep message. 

0.053 

Backoff Times 

TBO,MAX 
Maximum backoff time before sending IGJRep 
message. 

0.15 s 

TIGS Backoff time before selecting the initial FCN groups. 0.4 s 

TIGE 
Backoff time before estimating the target location using 
TDOA estimations in initial FCN groups. 

0.4 s 

TSNS Backoff time before selecting the slave node. 0.15 s 

TLSGS 
Backoff time before selecting the two master nodes for 
next LSG. 

dynamic 

Time To Live (TTL) Values 

TTLIGHN Initial TTL value for IGHN Message. 5 

TTLIGTE Initial TTL value for ILEF Message. 20 

TTLLSGU Initial TTL value for LSGUReq Message. 12 

Weight Factors for Energy Consideration at Node Selection 

α Energy factor in master node selection process. 1 

β Energy factor in slave node selection. 1 
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In the above setting, the value for TLSGS was not specified. During the simulation, 

the TLSGS was dynamically calculated by the current master node of the master sensor pair 

using the following equation. 

  TimeCurrentTTimeTrackingNextT SNSLSGS  5.2  ( 5.1 )

TLSGS was selected in such a manner so that the formation of the next localization sensor 

group can be completed in time to perform the real-time target tracking with fixed 

sampling intervals. The setting of values for other backoff timers, TBO,MAX, TIGS, TIGE, and 

TSNS require the knowledge about the per-hop communication delay of the sensor network 

and the sampling interval. With this information, the suitable values for the above 

backoff timers can be estimated through offline analysis. 

The values for LTH, RFAR, and NIT were set based on the results of simulations 

conducted in preliminary analysis. Higher value for NIT will result in more stable initial 

LSG, at the cost of increased resource usage and higher initialization delay. Sampling 

interval can also be selected using offline analysis. If the sampling interval is too large, 

the target tracking quality will be lower. However, smaller sampling intervals will require 

higher communication and computing resources for successful operation. The default 

TDOA estimation error variance was set to 3.5ms based on previous research results 

[4][20]. The threshold value CTH, can be used to control the LSG update frequency. It can 

be determined through offline analysis based on the target tracking quality requirements 

and resource limitations. In our work, it was set to 0.2 based on the preliminary 

simulation results. CIG,TH was set to 0.75 times the optimal CIG value and Cbe,e,TH was set 

to the value of Cbe,e when the value of “L sin(B)” is 0.75 times the optimal “L sin(B)” 

value, which is 30m. 
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The time to live (TTL) values of the algorithm were set offline. The values for 

TTLIGTE and TTLLSGU were set to the above values to ensure that the master node search 

messages will traverse the entire path along the far field boundary. TTLIGHN was set to 5 

using the results from preliminary analysis to make sure that the head nodes will receive 

information about the neighboring head nodes with high probability. A higher TTLIGHN 

value will increase the chances of neighboring head node discovery. However, it will 

exponentially increase the communication requirements. The energy weighting factors α 

and β can be used to adjust the optimality of the selected groups and the application level 

energy balancing. Both were set to 1 as the application level energy was not considered in 

the first simulation. However, these factors were set appropriately in the later parts of the 

performance evaluation. 

In addition to these application level settings, there were some important 

parameter settings required for the protocol stack of the ns-2 mobile node. The values 

assigned for those parameters are shown in the following table. 

Table 5.2 Mobile Node Parameter Values for Target Tracking Performance Evaluation 

Parameter Description Value 

PHY/WirelessPHY 

RXThresh_  
Reception threshold. Defines the communication 
range (30 m) of mobile node. 

0.213643 µW 

CSThresh_ 
Carrier sense threshold. Defines the interference 
range (60 m) of mobile node. 

0.0534106 µW 

EnergyModel 

energyModel Energy model used for the simulation. “none” 

The target location estimated by the Kalman filter based tracking method was 

compared with the actual target location to generate tracking errors. A single movement 

of target from start to end of the route was a single simulation round. 
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Target tracking was performed using the four closest nodes group for 

performance comparison. The sensor network parameters such as sensor node density and 

the sensor node locations, the ns-2 mobile node parameters and other general parameters 

(sensing range, communication range, far field range, etc.) were set to the exact same 

values as in the previous scenario. However, the parameters that were specific to the 

message passing protocol did not apply in this scenario. 

5.2.1.2 Results and Discussion 

Target tracking performance results obtained for the two algorithms using 20 

simulations are summarized in the following figures. The time axis represents the elapsed 

time since the start of the simulation. 

 
Figure 5.4 Mean Target Tracking Error in x Direction for Two Algorithms 
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Figure 5.5 Mean Target Tracking Error in y Direction for Two Algorithms 

 

Figure 5.6 Standard Deviation of Target Tracking Error in x Direction for Two Algorithms 
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Figure 5.7 Standard Deviation of Target Tracking Error in y Direction for Two Algorithms 

It can be seen from the above figures that the mean and the standard deviation of 

the target tracking errors in both x and y directions were lower when the proposed       

self-organization algorithm was used for the target tracking. The average of the mean, 

and the standard deviation, of the target tracking errors for the two algorithms are shown 

in the following table. 

Table 5.3 Summary of Tracking Performance Comparison for Two Algorithms (Average of 
the Mean and the Standard Deviation of Tracking Errors) 

Performance DSOA FCN 

Mean - x 3.4070 5.3162 

Mean - y 4.4688 5.7355 

STD - x 2.5690 3.8034 

STD - y 3.0509 3.6357 
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The summary of results shown above (Table 5.3) also confirms that the mean and 

the standard deviation of the tracking error were lower for the proposed self-organization 

algorithm. Therefore, it is evident from the above simulation results that the proposed 

self-organization algorithm outperforms the four closest nodes selection algorithm in 

dynamic target tracking performance. The large initial localization errors seen in the 

Figures 5.4-5.7 were caused by the measurements of the initial four closest nodes groups 

employed at the localization sensor group initialization stage of the self-organization 

algorithm. However, in the subsequent steps the combined effect of employing the 

localization sensor group and the Kalman filtering reduces the tracking errors to a 

satisfactory level. 

5.2.2 Effect of Application Level Energy Consideration 

The effect of application level energy consideration (at the node selection 

process) on the lifetime of the sensor network, and the target tracking performance, were 

evaluated using the same ns-2 implementation. 

5.2.2.1 Simulation Setup 

In this simulation, the size of the sensor field was reduced to 500m by 300m. To 

maintain the same sensor node density the number of the sensor nodes was reduced to 

1500. The sensor field size was decreased to reduce the time taken to complete the 

simulation. The path of the target was similar except for the shorter length of 500m. In 

this simulation, multiple targets that follow the same path enter the sensor filed one after 

another. The number of targets that can be tracked and the tracking quality for each target 

were recorded. 
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All the parameters except for the energy related parameters were the same as in 

the previous simulation. The modified version of the ns-2 energy model discussed in 

Section 5.1.2.3 was used in the simulation. Table 5.4 shows the parameter values of the 

ns-2 energy model, which were used for this simulation. 

Table 5.4 Energy Model Parameter Values for Analyzing the Effect of Application Level 
Energy Consideration 

Parameter Description Value 

EnergyModel 

energyModel Energy model used for the simulation. “Energy Model” 

rxPower  Power consumption in receiving state. 282 mW 

txPower Power consumption in transmission state. 282 mW 

initialEnergy Initial energy level assigned to the node.  0.25 J 

As it can be seen (from Table 5.4) a small initial energy value was set to further 

reduce the time required for simulation. In the first simulation, the application level 

energy considerations were not utilized. Thus, all the parameter values for the message 

passing protocol were unchanged. However, in the second simulation, the energy 

consideration was incorporated to the node selection process. Thus, the relevant 

parameter values were modified as shown in the following table. 

Table 5.5 Parameter Value Changes of the Message Passing Protocol for Analyzing the 
Effect of Application Level Energy Consideration 

Parameter Description Value 

Weight Factors for Energy Consideration at Node Selection 

α Energy factor in master node selection process. 0.5 

β Energy factor in slave node selection. 0.33 
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5.2.2.2 Results and Discussion 

 
Figure 5.8 Target Tracking Performance in x Direction without Application Level Energy 

Consideration 

Target tracking performance in x direction for the first simulation, where the 

application level energy considerations were not utilized, is shown in the above figure. In 

this scenario, four targets were tracked. However, it is evident from the above figure that 

the tracking of only the first two targets was successful. In the third target, the tracking 

quality degraded, resulting in poor tracking performance. The tracking errors were very 

high in the fourth target, which indicates that the sensor network was not able to track the 

fourth target. The high tracking errors were mainly caused by inability of the sensor 
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network to support the communication required for the target tracking. This was caused 

by the dying out of sensor nodes after consuming the granted initial energy. Due to the 

lack of communication support, some measurements were missed and some localization 

sensor group update steps were not completed successfully in timely manner. The net 

effects of these two factors were reflected in the poor tracking quality observed during 

tracking third and forth targets. In case of the fourth target, the measurements were not 

available after the initial steps of tracking, which was the reason for huge tracking errors. 

Tracking performance in y direction was similar and shown below. 

 
Figure 5.9 Target Tracking Performance in y Direction without Application Level Energy 

Consideration 
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Figure 5.10 Target Tracking Performance in x Direction with Application Level Energy 

Consideration 
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Figure 5.11 Target Tracking Performance in y Direction with Application Level Energy 

Consideration 

Target racking performance for the second simulation, where energy factors were 

considered in the node selection process, is shown in Figures 5.10 and 5.11. A total of 
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five targets were tracked in this scenario. Moreover, the tracking quality of the first four 

targets was satisfactory. Thus, the incorporation of energy consideration to the node 

selection process has resulted in doubling the number of targets successfully tracked 

using the network. The target tracking errors were comparatively large in case of the fifth 

target, which indicates the inability of the sensor network to track further targets. The 

reason for the degradation in tracking quality of the fifth target was the same as the 

previous scenario. 

These results confirm that incorporation of the energy consideration into the node 

selection process results in extended network lifetime. However, the incorporation of 

energy consideration into the node selection process would result in selecting a 

suboptimal localization sensor group. Under the assumption of high sensor node density, 

this group should be near-optimal and should perform very similar to the optimal 

localization sensor group. Therefore, the target tracking quality should be very similar for 

the two scenarios. The averaged mean and standard deviation (STD) of the tracking error 

magnitudes (of the successful target tracking runs) for the two parts of the simulation, 

shown in the following table demonstrate this observation. 

Table 5.6 Summary of Tracking Performance Comparison for Application Level Energy 
Consideration (Average of the Mean and the Standard Deviation of Tracking Errors) 

Performance Without considering energy With considering energy 

Mean - x 8.1656 8.7174 

Mean - y 12.6538 12.3999 

STD - x 5.9762 6.0299 

STD - y 5.9703 5.6863 

The results from targets 1 and 2 of the simulation without application level energy 

consideration and those from targets 1 thru 4 of energy aware simulation were selected 
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for the summary in Table 5.6. It can be seen from the above table that the differences in 

the mean and the standard deviation of the tracking errors for the two scenarios were very 

small. The tracking performance in x direction was slightly better in one scenario and the 

tracking performance in y direction was slightly better in the other scenario. Thus, it can 

be concluded that there was no significant difference in tracking performance between 

the two scenarios. 

5.2.3 Evaluation of the Developed Energy Conservation Scheme 

The second part of the simulation was intended towards evaluating the energy 

conservation characteristics of the developed energy-efficient and distributed              

self-organization algorithm. The effect of the sleep-wakeup management scheme 

combined with the cross layer dynamic wakeup probability adjustment algorithm was 

studied in this section. 

5.2.3.1 Simulation Setup 

A sensor field of 500m by 300m was used and 4000 sensors were randomly 

deployed in the sensor field in a uniform manner for this simulation. The target path was 

the same as in Section 5.2.2. Similar to the previous simulation, multiple targets that 

followed the same path enter the sensor field one after another with a time separation of 

50 seconds between each other. 

The complete implementation of the DSOAAgent discussed in Section 5.1 was 

used for this simulation. The parameter values for the ns-2 mobile node were the same as 

those used for simulation in Section 5.2.2. However, the complete default energy model 

was used for this simulation. Thus, the parameters shown in the following table were 

modified from the previous simulation. 
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Table 5.7 Mobile Node Parameter Value Changes for Analyzing the Effect of the Cross 
Layer Power Management 

Parameter Description Value 

EnergyModel 

initialEnergy Initial energy level assigned to the node.  1.5 J 

idlePower 
Power consumption in idle state. The sleep 
state in our simulations. 

20 mW 

In addition to the above settings, the nodes that were located in the boundary of 

the sensor network were assigned twice the energy level of the other nodes. This decision 

was taken because those nodes participate in both the intensive localization sensor group 

initialization process and the target tracking process. Thus, the sensor nodes deployed 

within 200 meters of the boundary of the sensor field (the y axis of the sensor field in this 

simulation) were assigned 3.0 J of initial energy instead of 1.5 J. 

Three separate simulations were conducted in this section. In the first simulation, 

the wakeup probability of the sleep-wakeup management scheme was set to 1. Thus, 

entire sensor network was kept awake all the time, and the sleep-wakeup management 

scheme was not utilized. In the second simulation, the sleep-wakeup management scheme 

was put into practice with a static wakeup probability. The wakeup probability of scheme 

was fixed to 0.55, which was the lowest possible wakeup probability that enabled the 

successful target tracking. The third simulation employed the sleep-wakeup management 

scheme with dynamic wakeup probability adjustment. The proposed cross layer dynamic 

wakeup probability adjustment algorithm was used for dynamically updating the wakeup 

probability. The values used for the parameters of the message passing protocol were the 

same as those used in the previous simulation. For the cross layer wakeup probability 

adjustment algorithm, the parameter values listed in Table 5.8 were used. The number of 
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targets that can be successfully tracked and the target tracking quality for each of the 

targets were recorded for all three simulations. 

Table 5.8 Parameter Values of the Cross Layer Wakeup Probability Adjustment Algorithm  

Parameter Description Value 

Threshold Distances 

RLow See Figure 4.8. 95 m 

RMed See Figure 4.8. 125 m 

RHigh See Figure 4.8. 155 m 

Extreme Probability Limits 

PrVeryLow Lowest possible wakeup probability. 0.005 

PrVeryHigh Highest assigned wakeup probability. 0.8 

Threshold Energy Limits 

EVeryLow Critically low threshold energy limit. 0.35 J 

ELow 
First low energy limit that require applying higher 
energy conservation patterns for the sensor node. 

0.5 s 

Weight Factors Used in Wakeup Probability Adjustment 

λ  
Energy saving factor for low energy highly 
important nodes. 

0.5 

γ  
Energy saving factor for low energy medium 
important nodes. 

0.2 

δ  
Energy saving factor for low energy highly 
important nodes. 

0.1 

Network Connectivity Parameters 

NCComm  Parameter to define required network connectivity. 24 

NCVH 
Parameter to define wakeup probability for highly 
important nodes. 

42 

The value of RLow was set 5% less than the value of RFAR. The values for RMed and 

RHigh were set a communication range higher than the values of RLow and RMed 

respectively. The threshold energy limits and the weighting factors can be set using 

offline analysis, depending on the desired energy saving characteristics. The values for 
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NCComm and NCVH too can be set using offline analysis, depending on desirable network 

connectivity. A good approximation for NCVH was 1.75 times the value of NCComm.  

5.2.3.2 Results and Discussion 

The simulation results obtained from the three simulations are shown in the 

following figures. The target tracking performance in x and y directions for the three 

simulations are shown in Figures 5.12, 5.13, 5.15, 5.16, 5.18 and 5.19. In addition, typical 

energy footprints of the nodes in the sensor network after successfully tracking the last 

possible target for each of the three simulations are shown in Figures 5.14, 5.17 and 5.20.  

 

Figure 5.12 x Direction Tracking Performance for No Sleep-wakeup Management Scenario 

 

Figure 5.13 y Direction Tracking Performance for No Sleep-wakeup Management Scenario 
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When the sleep-wakeup management scheme was not utilized, the sensor network 

was able to track two targets successfully. Target tracking quality for the two targets in x 

and y directions are shown in Figures 5.12 and 5.13. Tracking more targets was not 

possible as most of the sensor nodes were out of battery power. This was evident from 

Figure 5.14, which illustrates a typical energy availability of the sensor nodes after 

tracking the second target. 

 

Figure 5.14 Sensor Node Energy Availability after Tracking the Second Target for No 
Sleep-wakeup Management Scenario (*Energy Level in Joules) 

Figure 5.14 was an energy footprint of the network after tracking the second 

target, in a single run of the first simulation. It can be seen from this figure that most of 

the nodes in the sensor network, which were located either side of the target moving path 
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and outside the boundary region of the network had less than 0.25 J of energy left in 

them. The nodes in this area were the ones which were participating in the target tracking 

and communicating activities. Although all the nodes did not participate in the target 

tracking and communicating activities, all of them lost energy as they were always 

awake. The nodes which were located near the boundary of the sensor field had more 

energy left as they were given double the amount of energy compared with the other 

nodes. However, some of these nodes too had only limited amount of energy left in them. 

The reason for this high energy usage was that those nodes had to participate in intensive 

localization sensor group initialization process as well as in the target tracking process. 

 
Figure 5.15 x Direction Tracking Performance for the Fixed Wakeup Probability Scenario 
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Figure 5.16 y Direction Tracking Performance for the Fixed Wakeup Probability Scenario 

Target tracking quality for the second simulation, where the sleep-wakeup 

management scheme was employed with a static wakeup probability of 0.55, is shown in 

Figures 5.14 and 5.15. In this scenario, three targets were successfully tracked. Thus, it is 

evident that the incorporation of sleep-wakeup management scheme had resulted in 

extending the lifetime of the sensor network. Energy left in the sensor nodes after 

tracking the third target, for a single run is shown in the following figure.  
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Figure 5.17 Sensor Node Energy Availability after Tracking the Third Target for the Fixed 
Wakeup Probability Scenario (*Energy Level in Joules) 

It is evident from this figure that majority of the nodes, which were located 

alongside the path of the target in the middle of the sensor network had very low battery 

power. However, when compared to the no sleep-wakeup management scenario (Figure 

5.14), it is evident that the condition of the sensor network was better in this scenario, 

even after tracking one more target. It can be clearly seen from the two figures that the 

higher number of nodes had more than 0.5 J of energy left in them (even after tracking 

one more target) when the sleep wakeup management scheme was incorporated with a 

fixed wakeup probability. This observation further supports the notion that the          

sleep-wakeup management scheme had resulted in extending the lifetime of the sensor 
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network. It is evident from Figure 5.17 that few of the nodes which were close to the 

target path had more than 0.5 J of energy left. These energy savings were obtained due to 

the periodic sleeping of the sensor nodes. Although few of the nodes had more than 0.5 J 

of energy, the sensor network was not able to track more targets as the majority of the 

nodes, which were located around the target path, had low energy levels. 

 

Figure 5.18 x Direction Tracking Performance for the Dynamic Wakeup Probability 
Adjustment Scenario 
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Figure 5.19 y Direction Tracking Performance for the Dynamic Wakeup Probability 
Adjustment Scenario 

When the proposed dynamic wakeup probability adjustment algorithm was 

utilized with the sleep-wakeup management scheme, four targets were tracked 

successfully. Target tracking performances for the four targets are summarized in Figures 

5.18 and 5.19. Typical energy footprints of the nodes in the sensor network after 

successfully tracking the fourth target is shown in Figure 5.20. 
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Figure 5.20 Sensor Node Energy Availability after Last Target Tracking for the Dynamic 

Wakeup Probability Adjustment Scenario (*Energy Level in Joules) 

Compared with the energy availability of the two previous scenarios (shown in 

Figures 5.14 and 5.17), the condition of the sensor network was superior, when the 

dynamic wakeup probability adjustment algorithm was utilized with the sleep-wakeup 

management scheme. The number of nodes, which were critical for tracking the target 

moving in this particular path and had more than 0.5 J of energy left in them, were higher 

than both the previous scenarios. This superior condition of the sensor network was after 

tracking four targets, which was one target more than the second scenario and two targets 

more than the first scenario. Thus, the dynamic updating of the wakeup probability had 

resulted in sensor nodes sleeping higher amount of time compared to the second scenario, 
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where the sleep-wakeup scheme was utilized with a fixed wakeup probability. The 

dynamic wakeup probability adjustment algorithm was able to update the wakeup 

probability more closely to match the requirements of the tracking algorithm, which 

resulted in this improved energy savings. However, similar to the previous scenario, 

tracking of more targets was not possible due to lack sensor nodes with sufficient energy. 

In addition, it can be seen from the above tracking results that degradation in 

target tracking performance due to the incorporation of sleep-wakeup management 

scheme was not significant. The average of the mean and the standard deviation of the 

target tracking error for the three scenarios are shown in Table 5.9. 

Table 5.9 Summary of Tracking Performance Comparison for Three Power Management 
Scenarios (Average of the Mean and the Standard Deviation of Tracking Errors) 

Performance No Sleep-wakeup 
Fixed Wakeup 

Probability 
Dynamic Wakeup 

Probability 

Mean-x 2.9011 3.1055 3.8834 

Mean-y 4.1113 4.0406 4.9519 

STD-x 2.1206 2.194 2.7434 

STD-y 2.9397 2.8281 4.1153 

These results show that there was no significant degradation in target tracking 

quality when the sleep-wakeup management scheme was incorporated with a fixed 

wakeup probability. The target tracking quality had degraded slightly in x direction while 

the target tracking quality in y direction has shown a slight improvement. This indicates 

that the change in tracking quality was negligible. When the dynamic wakeup probability 

adjustment algorithm was utilized with the sleep-wakeup management scheme, there was 

a slight degradation in the target tracking quality. This degradation was mainly caused by 

the lower sensor node densities due to the nodes sleeping with a higher probability. 
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However, the degradation was not significant and the target tracking quality was 

maintained at a satisfactory level. Therefore, the results of these simulations confirm the 

effectiveness of the proposed power management scheme in achieving extended network 

lifetime without a significant degradation of the target tracking performance. 

When examining the target tracking results summarized in Figures 5.18 and 5.19, 

it can be seen that the large tracking errors were mainly present in the initial stage of the 

self-organization algorithm, where the four closest four closest nodes groups were 

employed for the target tracking. This was clearly evident in y direction tracking 

performance. When the sensor node density was lower, the number of initial four closest 

nodes groups formed was lower. As these groups depend on the neighboring groups to 

improve the target tracking performance, fewer groups resulted in higher tracking errors. 

This was the reason for the higher initial errors. Once the localization sensor group 

started the tracking, it took some time to recover from the undesirable effects of these 

large initial errors. However, as the time progressed, the target tracking quality had 

improved to a satisfactory level. 

5.2.4 The Selection of Localization Sensor Group 

The node selection process was made energy aware using several assumptions 

(Section 4.2.3). This will result in selecting a suboptimal localization sensor group for 

target tracking. However, under the assumptions made, the selected localization sensor 

group should be near-optimal. In order to verify whether the simulation results agree with 

our analysis, the details of the localization sensor groups formed during the third scenario 

of the above simulations were recorded. The localization sensor groups selected by the 

algorithm at three different target positions are shown in the following figures. 
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Figure 5.21 A Sample Localization Sensor Groups Selected at Time 11 (Group No 3) 

 

Figure 5.22 A Sample Localization Sensor Groups Selected at Time 29 (Group No 10) 
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Figure 5.23 A Sample Localization Sensor Groups Selected at Time 42 (Group No 15) 

It is evident from the above figures that the localization sensor groups were 

selected very close to the far field boundary. In addition the angles between the bearing 

lines of the selected localization sensor groups were close to 900. Moreover, the selected 

sensor pairs were always located at the reverse side of the target moving direction. These 

observations were consistent with our analysis in Section 4.2. When considering the 

pairing of the sensor nodes, it can be seen that the slave sensor nodes were selected to 

maximize the distance between the two sensor nodes, while keeping the distance below 

the required threshold (indicated by the communication range boundary in the above 

figures). In addition, it is evident that the bearing angles of the sensor pairs were close to 

900. This confirms that the selection of slave nodes was performed to maximize the 

effective sensor pair baseline lengths, as expected in our analysis. Thus, as expected, the 
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proposed energy efficient node selection criterion was capable of selecting the           

near-optimal localization sensor groups. 

5.2.5 Effect of Sensor Node Density 

Sensor node density is a very important factor that affects the target tracking 

performance of the developed self-organization algorithm. The localization sensor group 

selection process consists of searching for two master nodes and then the master nodes 

searching for their respective slave nodes. This energy aware node selection process was 

employed under the assumption that the sensor nodes were densely deployed, and results 

in selection of a sub-optimal localization sensor group. Thus, higher sensor node density 

is desirable for achieving near-optimal localization sensor groups. In addition, the higher 

sensor node density will increase the probability that the selected localization sensor 

group will be better suited for the target localization. The selection of a better localization 

sensor group will result in superior target tracking performance. In order to analyze the 

effect of sensor node on the target tracking performance, the following simulation was 

performed.  

The simulation setup for this scenario was exactly similar to the simulation setup 

used in Section 5.2.3. However, in this simulation only one target was employed in 

contrast to tracking multiple numbers of targets. In addition, the number of sensors 

deployed in the sensor field was varied to achieve different sensor node densities. The 

target tracking performances of each run were recorded and the results obtained are 

shown in the following figures. 
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Figure 5.24 Effect of Sensor Node Density on x Direction Target Tracking Performance 

 
Figure 5.25 Effect of Sensor Node Density on y Direction Target Tracking Performance 
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It can be seen from the above results that initially, the increase in sensor node 

density resulted in lower localization errors. This was consistent with our previous 

analysis. Moreover, it was evident that there exists a threshold value of (20 sensors per 

1000 square meters in this example) sensor node density, beyond which the increase in 

the sensor node density results in less significant improvement in target tracking 

performance. This was consistent with the phase transition phenomenon explained by 

Krishnamachari et al. [108]. This supports the notion that only a subset of nodes are 

required to be active in a densely deployed sensor network for the successful target 

tracking. 

However, it can be identified that when the sensor node density was further 

increased, after some threshold value (30 sensors per 1000 square meters in this example) 

the tracking performance will start to degrade. This was resulted by the degradation in the 

communication quality as a result of increased sensor node density. When the sensor 

node density increases, the contention for communication between the nodes will 

increase. This would increase the collisions in the network and would result in increased 

communication delays. 

The conclusions drawn from the above analysis further rationalize incorporation 

of sleep-wakeup management scheme to achieve energy conservation. 
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CHAPTER VI 

6. CONCLUSIONS 

This research proposes an energy-efficient distributed self-organization algorithm 

for tracking ground targets using acoustic sensor networks with a single acoustic sensor 

at each sensor node. Bearing only measurements are used for the target localization. In 

contrast to traditional bearing only measurement based target tracking algorithms, which 

employ acoustic sensor arrays at each sensor node, our algorithm uses a single acoustic 

sensor at each sensor node. Our goal was to develop a self-organization algorithm which 

can dynamically organize the sensor nodes into virtual sensor arrays to perform the 

effective target tracking. In addition, the algorithm should be energy-efficient, scalable 

and should be able to operate under limited computing and communication resources. 

The proposed solution provides two major contributions, namely the self-organization 

algorithm and the cross-layer wakeup probability adjustment algorithm. 

6.1 Self-Organization Algorithm 

The major error sources of the localization process are studied, and nodes 

selection criterions that minimize the target localization errors are identified. A resource 

aware, distributed two-step node selection scheme is developed to select the sensor nodes 

for the localization sensor group. Using this node selection scheme, the self-organization 

algorithm selects a near-optimal localization sensor group to minimize the target tracking 

errors. A Kalman filter based tracking method is employed at the localization sensor 

group. The localization sensor group is dynamically updated to match the movements of 

the target to achieve better target tracking performance. A message passing protocol is 

developed to implement the self-organization algorithm in a distributed manner. The 
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simulation results confirm that the target tracking algorithm provides satisfactory tracking 

performance. In addition, simulation results confirm the capability of the node selection 

scheme to select the near-optimal localization sensor group. 

6.2 Energy Conservation 

Energy efficiency is a major design constraint for sensor network applications and 

is pivotal for achieving extended sensor network lifetime. Thus, the energy-efficiency 

was given high priority in the design of the proposed self-organization algorithm. The 

energy considerations were incorporated into the node selection process to achieve a 

balanced energy usage throughout the sensor network, which will result in extended 

senor network life time. A sleep-wakeup management scheme was incorporated to the 

self-organization algorithm to reduce the power consumption. A novel cross layer 

wakeup probability adjustment algorithm was developed to achieve improved energy 

conservation. The algorithm dynamically adjusts the wakeup probability using the event 

information from the application layer and the network condition from the networking 

layers. The energy saving analysis confirms the effectiveness of the employed energy 

conservation mechanisms in extending lifetime of the sensor network with out degrading 

the target tracking quality. 

6.3 Future Work 

In this dissertation we have developed and evaluated an energy-efficient 

distributed self-organization algorithm for ground target tracking. Although the          

self-organization algorithm is complete, we believe there are several areas that deserve 

further considerations. 
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 Limits of the Algorithm: In this research, we have not studied the target tracking limits 

of the algorithm. The considerations such as highest sampling rate the algorithm can 

operate, and the main factors that will affect the highest sampling rate the algorithm 

can operate, would be important issues for future research. 

 Robustness of the Algorithm: Robustness of the Algorithm: Robustness is an important 

design parameter for sensor network applications. Thus, analyzing robustness of the 

algorithm and studying the techniques that could improve the robustness of the 

algorithm will be an interesting area of research.  

 Multiple Target Tracking: The current version of the self-organization algorithm is 

capable of only tracking a single target. However, the ability to track multiple targets 

will be attractive for applications such as battlefield awareness. Thus, extending the 

algorithm to track multiple targets will be an important extension to our work. 
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