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1Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab

Emirates, 2Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab

Emirates University, Al-Ain, United Arab Emirates, 3Department of Cellular Biology and Pharmacology, Herbert Wertheim

College of Medicine, Florida International University, Miami, FL, United States

Type I diabetes (T1D) is a T cell-driven autoimmune disease that results in the killing

of pancreatic β-cells and, consequently, loss of insulin production. Using the multiple

low-dose streptozotocin (MLD-STZ) model of experimental autoimmune diabetes, we

previously reported that pretreatment with a specific acetylcholinesterase inhibitor

(AChEI), paraoxon, prevented the development of hyperglycemia in C57BL/6 mice. This

correlated with an inhibition of T cell infiltration into the pancreatic islets and a reduction in

pro-inflammatory cytokines. The cholinergic anti-inflammatory pathway utilizes nicotinic

and muscarinic acetylcholine receptors (nAChRs and mAChRs, respectively) expressed

on a variety of cell types. In this study, we carried out a comparative analysis of the

effect of specific antagonists of nAChRs or mAChRs on the development of autoimmune

diabetes. Co-administration of mecamylamine, a non-selective antagonist of nAChRs

maintained the protective effect of AChEI on the development of hyperglycemia. In

contrast, co-administration of atropine, a non-selective antagonist of mAChRs, mitigated

AChEI-mediated protection. Mice pretreated with mecamylamine had an improved

response in glucose tolerance test (GTT) than mice pretreated with atropine. These

differential effects of nAChR and mAChR antagonists correlated with the extent of islet

cell infiltration and with the structure and functionality of the β-cells. Taken together, our

data suggest that mAChRs are essential for the protective effect of cholinergic stimulation

in autoimmune diabetes.

Keywords: cholinergic stimulation, acetylcholine, muscarinic AChR, neuroimmunology, type I diabetes

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction
of the insulin-producing β-cells in the pancreatic islets of Langerhans by autoreactive T cells.
The development of the disease starts with the β-cell destruction in individuals with genetic
pre-disposition and under specific environmental factors, followed by recruitment and activation of
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inflammatory cells (T and B cells, myeloid, and natural killer
cells) to the islets leading to insulitis (1, 2).

The vagus nerve innervates the pancreas by the
intrapancreatic parasympathetic nerve endings where the
neurotransmitter, acetylcholine (ACh) is released. ACh, in
turn, can bind to the nAChRs and mAChRs expressed on
pancreatic cells and hence play a key role in regulating
pancreatic metabolic functions including glucose homeostasis
(3). Increased vagal activity induces insulin secretion by
acting on mAChRs expressed on the pancreatic β-cells
(4–8). Although β-cells seem to express several subtypes
of muscarinic receptors (9–11), M3 mAChR is the most
abundant on these cells (12–14) and the one that mediates
insulin release (15). Mice selectively lacking M3 mAChR in
pancreatic β-cells have an impaired glucose tolerance and
a significantly reduced insulin release. In contrast, mice
overexpressing pancreatic M3 mAChR exhibit an increase
in glucose tolerance and insulin secretion (16). There is
also evidence that pancreatic β-cells functionally express
different subunits (α4, α5, α7, and β2) of nAChRs (17)
but the involvement of these receptors in β-cell function is
still controversial. While some studies reported no effect of
nAChR agonists on hyperglycemia or β-cell function (17–19),
other studies showed that the administration of specific
α7nAChR agonists reduced hyperglycemia in diabetic animal
models (20–22).

The vagus nerve also serves as a link between the

central nervous system and the immune system through the
cholinergic anti-inflammatory pathway where ACh suppresses

the release of pro-inflammatory cytokines (TNFα, IL-6,

HMGB1), attenuating the inflammatory response in sepsis
and inflammatory diseases (23–27). Specifically, the α7nAChR
has been reported to have a critical role in the inhibition of
pro-inflammatory cytokine production by macrophages as well
as in other immune mechanisms like apoptosis of T cells and
suppressive function of T regulatory cells (28). Furthermore,
the presence of a cholinergic system in non-neuronal cells,
including immunocompetent cells, has been extensively
demonstrated. These cells have choline acetyltransferase
(Chat) and acetylcholinesterase (AChE) enzymes as well
as choline transporters needed for ACh production (29).
Additionally, immune cells express both muscarinic and
nicotinic ACh receptors (26, 29–32), indicating that the
cholinergic system may be involved in the regulation of the
immune response. The α7nAChR is expressed on neutrophils,
macrophages, B and T cells, and dendritic cells as well as on
enterocytes, endothelial and microglial cells (26, 28, 33, 34),
and has been implicated in the pathogenesis of autoimmune
diseases (28).

We and others previously demonstrated that activation of
the cholinergic nervous system through the administration

Abbreviations: ACh, acetylcholine; AChE, acetylcholinesterase; AChEI,

acetylcholinesterase inhibitor; AChR, acetylcholine receptor; nAChR, nicotinic

acetylcholine receptor, mAChR, muscarinic acetylcholine receptor; MCA,

mecamylamine. An “∗” indicates a set of nAChR that contains the specified

subunit but it can contain additional unspecified subunits (35).

of specific acetylcholinesterase inhibitors (AChEI) attenuates
the development of hyperglycemia and experimental diabetes
(36, 37). In our model system, prophylactic cholinergic
stimulation induced by paraoxon, an irreversible AChEI,
prevented the incidence and development of STZ-mediated
hyperglycemia and type-1 diabetes in the multiple low-dose
streptozotocin (MLD-STZ) mouse model (36). This correlated
with a reduction in T cell infiltration into pancreatic islets,
preservation of the structure and functionality of β-cells, and
a reduction in pro-inflammatory cytokines. The present study
was designed to assess the effect of mAChRs and nAChRs
antagonists, mecamylamine hydrochloride and atropine,
respectively, on AChEI-mediated prevention of hyperglycemia
in the MLD-STZ model. Mecamylamine hydrochloride is a
non-selective antagonist of nAChRs (specially α3β4, α4β2, α3β2,
and α7) that binds non-competitively to the allosteric site of the
receptor and prevents its activation (38). At the neuromuscular
junction, mecamylamine is an open-channel blocker (39). At
low doses it is used for treatment of various neuro-psychiatric
disorders, while at higher doses is indicated for treatment of
severe hypertension (40). Atropine is a non-selective, clinically
relevant, antagonist of mAChRs that binds competitively
to the active site of the receptor without activating it, and
completely inhibits the M1, M2, M3, M4, and M5 ACh receptors.
Additionally, atropine can block nicotinic α9-containing AChRs
(α9∗nAChRs) (41). Both mecamylamine and atropine cross
the blood-brain barrier. Our results indicate that inhibition of
nAChR did not abolish the anti-diabetic effect of AChEI. In
contrast, inhibition of mAChRs largely reversed the beneficial
effect of paraoxon and was associated with increased islet cell
infiltration and β-cell damage. These findings suggest a model
in which mAChRs can influence the outcome of inflammatory
autoimmune diseases.

MATERIALS AND METHODS

Experimental Animals
C57BL/6 male mice were purchased from the Jackson Laboratory
(Bar Harbor, ME, USA) and bred in the animal facility of
the College of Medicine and Health Sciences, UAE University.
Female mice aged 8–10 weeks (weight range 20–22 g) were used
for the experiments. All studies involving animals were carried
out in accordance with, and after approval of the animal research
ethics committee of the College of Medicine and Health Sciences,
UAE University.

Chemicals
Paraoxon (Sigma, St. Louis, MO, USA), an organophosphorus
compound, is a highly specific, irreversible, inhibitor of AChE
(AChEI). The preparation for paraoxon administration has been
described in detail (42). A working solution for intraperitoneal
(i.p.) injection was prepared ex tempore in pyrogen-free saline
to a concentration of 80 nmol/ml. Each mouse received 40
nmol/day of AChEI or saline as control. Atropine sulfate (10
mg/kg) andmecamylamine hydrochloride (MCA; 2mg/kg), both
from Sigma, were injected i.p. 15min prior to paraxon injection
in a volume of 100 µl/day/mouse. These doses were chosen to be
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in the pharmacological range based on abundant evidence from
the literature (43–46). Streptozotozin (STZ; Sigma) was prepared
ex tempore in citrate buffer (pH 4.5) and used i.p. at 60mg/kg/day
per mouse.

Diabetes Induction
The protocol for diabetes induction has been described (36).
Mice received five daily doses of STZ; control mice received
citrate buffer. At different time points post-STZ administration,
blood was drawn from the tail vein to determine glucose levels
using One-Touch-ultra-strip (Lifescan, Zurich, Switzerland).
Hyperglycemia was defined as a non-fasting blood glucose level
of >200 mg/dl.

Experimental Protocol
Twenty-five age-matched mice were randomly assigned into
five groups (3–5 mice per group). Group I received daily i.p.
injection of sterile saline. Group II received daily injection of
AChEI. Group III received MCA and AChEI daily injections.
Group IV was daily injected with atropine and AChEI. All
treatments lasted for 3 weeks (5 day/week). Mice were weighed
weekly, at which time blood was collected and analyzed for
AChE activity. At the end of treatment, group I was divided
into 2 subgroups with 3–5 mice/group, A and B. Group IA
(Saline) received daily injections of citrate buffer while groups
IB (Saline+STZ), II (AChEI+STZ), III (MCA+AChEI+STZ),
and IV (Atropine+AChEI+STZ) received daily injection of
STZ for 5 consecutive days. Mice were followed for blood
glucose level for up to 60 days post-STZ administration at
which time they were sacrificed, and pancreatic tissue collected
for analysis.

AChE Activity of Red Blood Cells (RBC)
The detailed procedure for determining AChE enzyme activity
in RBC has been described (42, 47). Briefly, freshly drawn
venous blood samples were incubated with DTNB (10mM) and

ethopropazine (6mM) for 20min at 37◦C prior to addition of
acetylthiocholine. The change in the absorbance of DTNB was
measured at 436 nm. The AChE activity was calculated using
an absorption coefficient of TNB− at 436 nm (ε = 10.6 mM−1

cm1). The values were normalized to the hemoglobin (Hb)
content (determined as cyanmethemoglobin) and expressed as
mU/µM/Hb enzyme activities were expressed as percentage of
the baseline activity (100%).

Glucose Tolerance Test (GTT)
Mice were fasted for 16 h, but with free access to water.
Blood was obtained from the tail-vein and assessed for baseline
fasting glucose levels using a One-touch Ultra glucometer. Mice
were then weighed and received 2 g/kg body weight of glucose
by i.p. injection (30% glucose solution). Blood samples were
subsequently collected at 10, 20, 60, and 120min to determine
glucose levels.

Histology and Immunohistochemistry of
Pancreatic Tissue
The histological analysis of excised pancreatic tissue was
performed following a previously described protocol (48, 49).
Tissue sections were stained with haematoxylin and eosin (H&E)
and images were captured using Olympus BX51 microscope
equipped with digital camera DP26 (Tokyo, Japan). Indirect
immunostaining for insulin was performed using guinea pig
polyclonal antibody (Dako, Carpinteria, CA, USA) followed
by FITC-conjugated donkey anti-guinea pig IgG (Jackson
ImmunoResearch, West Grove, PA, USA). Slides were counter-
stained with propidium iodide (BD Biosciences, USA) and then
examined and photographed under a Nikon C1 laser scanning
confocal microscope.

Quantitative RT-PCR
qRT-PCR was carried out as previously described (50) on RNA
extracted from pancreatic tissue of each animal. After RNA

FIGURE 1 | Cholinergic pathway-induced anti-hyperglycemic effect is primarily mediated via mAChRs. Mice were pretreated with saline or paraoxon (AChEI) alone or

concurrently with atropine or mecamylamine for 3 weeks followed by STZ for five consecutive days (MLD-STZ). Blood glucose concentrations were measured at the

indicated time points. Mice with blood glucose levels >200 mg/dl were considered diabetic. Data are pooled from two independent experiments. The numbers in

parenthesis represent the total number of mice per group. For the statistical analysis, the two-way ANOVA with Tukey’s multiple comparisons post-test was used.

Asterisk denote significance between the saline/STZ group and the indicated experimental groups (*p ≤ 0.05, ***p ≤ 0.001).
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extraction and purification, cDNAwas synthesized using Taqman
reverse transcription reagents (Applied Biosystems, Foster City,
CA, USA) following manufacturer’s protocol. TaqMan primer
and probe were used to study the expression of insulin (Applied
Biosystems). Transcript levels of target gene were normalized
according to the dCq method to respective mRNA levels of the
housekeeping gene HPRT.

Statistical Analysis
Statistical significance between control and treated
groups was analyzed using the unpaired, two-tailed
Student’s t-test, using the statistical program of GraphPad
Prism version 6 software. For multiple comparisons,
we used two-way ANOVA with Tukey’s post-hoc test
(GraphPad Prism). Differences between experimental
groups were considered significant when P-values
were <0.05.

RESULTS

Cholinergic Pathway-Induced Protection Is
Mediated Primarily Via mAChRs
As reported earlier (36), MLD-STZ administration in saline-
pretreated mice induced progressive hyperglycemia that led
to the animals becoming diabetic by the second week of STZ
injection (Figure 1; Saline+STZ group). In contrast, paraoxon
pretreatment prevented the development of hyperglycemia
and diabetes in STZ-treated mice (AChEI+STZ group). When
the nAChR antagonist MCA was administered together with
paraoxon, transient elevation in blood glucose levels were
observed in 2 out of 6 mice on day 28 post STZ treatment
but these levels normalized thereafter (MCA+AChEI+STZ
group). In contrast, when the mAChR antagonist atropine
was co-administered with paraoxon, STZ treatment induced

a progressive increase in blood glucose averaging >200
mg/dl by day 28 post-STZ treatment. These elevated levels
persisted in 4 out of 6 mice in this group until the end of
the observation period (Figure 1; Atropine+AChEI+STZ
group). These results suggest that the mAChRs play
an important role in the AChEI-induced protection in
this model.

Mice in the different groups were subjected to the GTT to
evaluate their response to i.p. injected glucose (2 g/kg body
weight) following a fasting period of 16 h (Figure 2). Significantly
higher levels of blood glucose were observed in saline+STZ
group compared to saline control. In the saline control group,
the maximum glucose level was reached after 10min (268
mg/dl), sharply decreased by 20min (182 mg/dl), and gradually
normalized (102 mg/dl) by the end of the test (120min). In
contrast, STZ-treated mice reached a maximum level of 400
mg/dl after 20min and, despite slowly decreasing over time,
remained significantly elevated (237 mg/dl) at the end of the
test period.

Mice receiving paraoxon (AChEI)+STZ exhibited an almost
identical response in the IPGTT (intraperitoneal GTT) to
normal controls. Importantly, these results show that paraoxon
pretreatment not only prevented the development of diabetes but
also rendered the animals able to respond normally to high levels
of glucose.

In the experimental MCA+AChEI+STZ animal group,
blocking of nAChRs failed to alter the protective effect
of paraoxon as mice were able to control the increase
in blood glucose levels in a manner indistinguishable
from control mice. In sharp contrast, animals in the
atropine+AChEI+STZ group exhibited response kinetics
that were very similar to the saline+STZ group, indicating
that blocking of mAChRs mitigated the protection
afforded by paraoxon.

FIGURE 2 | AChEI improves glucose tolerance test (GTT). Animals were pretreated with saline or AChEI alone or concurrently with atropine or mecamylamine for 3

weeks followed by MLD-STZ. At day 56 post-STZ administration, GTT was performed and blood glucose response recorded. Data are shown as comparative

responses between saline controls, saline+STZ, AChEI+STZ, MCA+AChEI+STZ, and Atropine+AChEI+STZ treated mice. Values represent mean ± SEM of 6–10

mice per group from two independent experiments. The numbers in parenthesis represent the total number of mice per group. For the statistical analysis, the two-way

ANOVA with Tukey’s multiple comparisons post-test was used. Asterisk denote significance between the saline/STZ group and the indicated experimental groups (**p

≤ 0.01, ***p ≤ 0.001).
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FIGURE 3 | Insulin production is mostly modulated by muscarinic ACh receptors. Mice were treated with AChEI or saline for 3 weeks and then challenged with STZ.

At day 60 post STZ administration mice were sacrificed, pancreas excised, fixed, and stained with insulin-specific antibody. Light confocal micrographs of

insulin-expressing β-cells in pancreatic islets of mice treated with only saline (A,F), saline+STZ (B,G), AChEI+STZ (C,H), MCA+AChEI+STZ (D,I), and

Atropine+AChEI+STZ (E,J) are shown. Bars in the figures indicate 20µm (B,C,I,J), 32µm (A,F,G,H), and 60µm (D,E). Photos are representative of two individual

experiments (n = 4 mice/group).

Abrogation of ACh-Mediated Protection by
a Muscarinic Receptor Antagonist
Immunohistochemical analysis of insulin expression

was performed on pancreatic tissue at day 60 post-STZ
administration. Consistent with our previous findings

(36), STZ administration induced loss of insulin in the
islets of Langerhans in STZ-injected group (saline + STZ)

(Figures 3B,G) compared to normal controls (Figures 3A,F). In

contrast, paraoxon pre-treated mice (AChEI + STZ) exhibited

intact islets, well preserved from the destructive effect of STZ
on insulin producing cells (Figures 3C,H). When paraoxon

treatment was administered together with MCA to block

nAChRs (MCA+AChEI+STZ group), the protective effect
of paraoxon over the pancreatic β cells was mostly preserved

(Figures 3D,I). However, administration of paraoxon with

atropine (atropine+AChEI+STZ) led to a dramatic decrease

in insulin expression, indicating that blocking of the mAChRs
ameliorated the protective effect of AChEI on insulin production

in the islets (Figures 3E,J).
We also analyzed the insulin mRNA levels in pancreatic

tissue at day 60 post-STZ administration (Figure 4). STZ
treatment in saline group (saline+STZ) led to a 6.3-
fold reduction in the level of insulin mRNA relative to
control saline. Similar levels of insulin mRNA to the
saline control group were found in paraoxon pretreated
(AChEI+STZ) and MCA+AChEI+STZ groups. When atropine
was injected with the AChEI, a significant reduction in
the levels of insulin mRNA was observed, compared to
saline control group. It is worthy to note that although
no significant differences were obvious among the three
paraoxon treated groups, the levels of insulin mRNA were
higher in the MCA+AChEI+STZ than in AChEI+STZ and
Atropine+AChEI+STZ groups which could indicate the

FIGURE 4 | Insulin expression in pancreatic tissue. Mice were treated as

described in Figure 2 legend. At day 60 post STZ administration, pancreatic

tissue was obtained and processed for RNA extraction. mRNA expression of

pancreatic insulin was determined by qRT-PCR. The graph depicts values

from two independent experiments (n = 8–10 mice/group). Asterisks indicate

significance compared to the saline control group (*p ≤ 0.05, **p ≤ 0.01).

importance of the muscarinic ACh receptors in the production
of insulin.

Blockade of mAChRs Increases Cellular
Infiltration and Leads to Islet Destruction
Pancreatic tissue stained with hematoxylin and eosin was
analyzed at day 60 post-STZ administration. Saline control
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FIGURE 5 | Loss of islets morphology following blockade of mAChRs. H&E staining of paraffin embedded pancreata from mice sacrificed at day 60 post-STZ

administration. Five experimental groups are represented in this figure: saline (A,F), saline+STZ (B,G), AChEI+STZ (C,H), MCA+AChEI+STZ (D,I), and

Atropin+AChEI+STZ (E,J). Dashed lines delineate Langerhan’s islets and arrows indicate inflammatory infiltrates. Images are representative of two independent

experiments (n = 4 mice/group). The bar in the figures indicates 50µm (panels A–E) and 20µm (panels F–J). (K) Quantitative estimation of infiltrated islets.

H&E-stained pancreatic sections were examined to quantify the number of islets containing inflammatory cell infiltrates. The graph depicts values from two

independent experiments (n = 4 mice/group/experiment). Three sections per mouse were used for the quantification. Asterisks denote significance between the

indicated experimental groups (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). Asterisks on top of the bars indicate significance with the saline group.

mice had intact islets with no visible inflammatory infiltration
(Figures 5A,F). STZ administration to saline-pretreated mice
induced a massive infiltration of inflammatory cells that

disturbed the normal morphology of the islets (Figures 5B,G).

In contrast, paraoxon treatment prior to STZ administration
largely prevented any significant inflammatory cell infiltration

and showed intact islet morphology (Figures 5C,H). Likewise,

cotreatment of paraoxon and mecamylamine previous to STZ
administration prevented islet infiltration by inflammatory cells

and preserved their normal structure (Figures 5D,I). In contrast,

pretreatment with paraoxon and atropine led to extensive cellular
infiltration into the islets and destruction of normal morphology

(Figures 5E,J). It should be noted that in the latter group, a few

healthy islets could still be observed in some mice. These results

suggest that the presence of active mAChRs is essential to protect
β-cells against STZ-mediated destruction. It is worth noting

that mice treated with AChEI alone show no evidence of any

alterations in islet morphology or extent of cellular infiltration
(36) and, hence, this experimental group was not included in the

current study.

Next, we sought to quantitate the observed alterations in
islet morphology by determining the number of islets with
infiltrated cells (Figure 5K) in H&E stained-pancreatic sections
of each experimental group. Compared to saline controls, STZ
treatment resulted in highly infiltrated islets. Pretreatment with
AChEI led to a significant reduction (>65%) in the extent of
cellular infiltrates into the pancreatic islets, hence preserving islet
morphology. The number of islets with lymphoid infiltration
in the AChEI+MCA+STZ experimental group was comparable
to the AChEI+STZ group. However, blocking of the mAChRs
with atropine led to a significant increase in the number
of infiltrated islets to a level comparable to that observed
in the saline+STZ group, indicating the need for functional
mAChRs to avoid inflammation and, therefore, maintain healthy
insulin-producing β cells.

DISCUSSION

It is well-established that ACh regulates the endocrine function
of the pancreas and is essential to maintain glucose homeostasis.
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In rodent’s pancreas, the only source of ACh are the neural
terminals, in contrast to pancreas of humans where glucagon-
producing α-cells are able to produce ACh to modulate β-cell
function (3). It has been postulated that the development of
autoimmune diabetes (T1D) and other autoimmune diseases is
triggered by a dysfunction of the autonomic nervous system
(51–53) followed by recruitment of inflammatory cells (22).
Failure or insufficient efferent vagus nerve cholinergic output
might allow the overproduction of inflammatory cytokines and,
therefore, a dysfunctional immune and metabolic regulation that
in normal conditions would not occur (51, 52). Our previous
work demonstrated that increased cholinergic pathway activation
through a chronic administration of paraoxon, an irreversible
specific inhibitor of AChE, protected against development of
T1D in MLD-STZ mouse model (36). ACh signals through two
different types of receptor, muscarinic and nicotinic, both present
on pancreatic and immune cells. Our aim in this study was
to delineate the role of muscarinic (mAChRs) and nicotinic
(nAChRs) receptors in paraoxon-mediated protection using
two different receptor antagonists, namely mecamylamine and
atropine. Mecamylamine is a non-selective antagonist of nAChRs
that binds non-competitively to the allosteric site of the receptor
and prevents its activation. Atropine is an antagonist of mAChRs
that binds competitively to the active site of the receptor without
activating it. Both mecamylamine and atropine can also cross the
blood-brain barrier.

In this study, we demonstrate that co-treatment with AChEI
and mecamylamine did not abolish the protective effect of
AChEI on the development of STZ-mediated hyperglycemia.
In contrast, blocking of mAChRs with atropine reversed the
protective effect of paraoxon. These results correlated with the
immunohistochemical and insulin mRNA analysis of pancreatic
tissue where the concurrent administration of mecamylamine,
but not atropine, preserved insulin production in β-cells. The

fact that insulin production was decreased when mAChRs
were specifically inhibited suggests an important role for
these receptors in regulating insulin production. The results
of the GTT offer further confirmation for this conclusion.
Animals in the MCA+AChEI+STZ group, where mAChRs
were available, performed better than their counterparts treated
with atropine+AChEI+STZ, where mAChRs were blocked,
demonstrating the importance of the pancreatic islets’ cholinergic
innervation in the prevention of diabetes.

It is worth noting the existence of α9∗ nAChR, a special
member of AChRs with a mixed nicotinic and muscarinic
profile (41). Originally discovered in cochlear cells (54), α9∗

nAChRs are now known to be expressed on several cell
types including lymphoid and myeloid cells (55–57). The α9∗

nAChRs are blocked by nicotine (an agonist for the rest of the
subunits of nicotinic receptors) and by atropine, a non-selective
muscarinic receptor antagonist (41). The involvement of α9∗

nAChRs in inflammation has been highlighted by the findings
that mice genetically deficient in α9 subunit are protected
against the development of murine experimental autoimmune
encephalomyelitis, a model of multiple sclerosis (58). In the
current study, concurrent treatment with atropine plus AChEI
abrogated the latter’s protective effect against STZ-induced
hyperglycemia. This suggests the importance of muscarinic
receptors, α9∗ nAChRs or both in AChEI-mediated protection.
In contrast, administration of the general nAChRs antagonist
MCA (41, 59) had no effect on AChEI-mediated protection,
suggesting that nAChRs may not be important for the beneficial
effect. Overall, our findings suggest that muscarinic cholinergic
receptors play a predominant role in AChEI-mediated protection
in the MLD-STZ model.

STZ is known to induce apoptosis in insulin-producing β-
cells (60). Production of AChE by apoptotic cells (61, 62)
and the protective effect that AChE inhibitors exert against

FIGURE 6 | Proposed model for the effects of systemic acetylcholinesterase inhibition on pancreatic β cells and splenic lymphoid cells.
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apoptosis has been well-documented (63). Moreover, there is
evidence that ACh acts through mAChRs to protect neuronal
cells against apoptosis induced by different stimuli, including
pro-inflammaory cytokines and pro-apoptotic agents (64–66).
In our model system, paraoxon appears to counteract the
pro-apoptotic effect of STZ on β cells, hence inhibiting the
development of hyperglycemia and autoimmune diabetes (36).
The current findings implicate the mAChRs in this protection,
thus demonstrating for the first time the important role played
by these receptors in preserving β-cell function.

In summary, we have demonstrated that co-administration of
paraoxon and mAChR antagonist blocks the protective signaling
of ACh, suggesting a critical role for mAChRs in the protection
of β-cells against STZ-mediated death. It is also noteworthy
that signaling through mAChRs may act directly to stimulate
the secretion of insulin by β cells. Therefore, available evidence
suggests that signaling through mAChRs on β cells could act
via two different pathways to increase insulin secretion and
protect against apoptosis. Additionally, it is important to note
that the administration of muscarinic or nicotinic antagonists
may affect the receptors present in many different peripheral
tissues as well as the brain. The observed in vivo effects are
likely the result of the sum of multiple activities that involve
different tissues, including lymphoid cells. For example, the
cholinergic anti-inflammatory pathway, operating at the level of
the spleen through the nAChRs, may also limit the inflammatory
response in the islets. Although inflammation is considered as
a major pathogenic factor in diabetes and its complications, the
origin of this inflammation is still unclear (53). It is known that
the autonomic nervous system has a role in inflammation and
autoimmunity. The cholinergic anti-inflammatory pathway can
modulate the inflammatory response to infection and injury and
downregulate the production of inflammatory cytokines (24, 67).
In a study using NODmice, it was demonstrated that the neurons
innervating pancreatic β-cells were lost before any damage in the
islets could be detected (68). Therefore, our results are consistent
with the idea that a dysfunction of the autonomic nervous system
could be the initiating trigger in autoimmune diabetes.

We conclude that the effect of paraoxon treatment on the
development of hyperglycemia in theMLD-STZmodel is due to a
combination of factors: (a) stimulation of insulin production by

β-cells and (b) protection against STZ-induced apoptosis, both
through the mAChRs, and (c) differentiation of Th1 (T helper 1)
cells and mitigation against the development of pathogenic Th17
(T helper 17) cells (36). A diagram summarizing our findings
is shown in Figure 6. Our current experimental system could
be further probed using a combination of genetic (using M3
AChR-deficient mice) and pharmacologic (using selective M3
AChR antagonists, such as darifenacin) approaches to refine
our understanding of the role of the cholinergic pathway in
autoimmune diabetes.

ETHICS STATEMENT

All studies involving animals were carried out in accordance with,
and after approval of the animal research ethics committee of the
College of Medicine and Health Sciences, UAE University.

AUTHOR CONTRIBUTIONS

MF-C designed the study, supervised the project, analyzed data,

and wrote the final manuscript. JG performed experiments
and analyzed data. GB performed histological experiments and

analyzed data. YM and AA-M performed all molecular studies.

MQ performed biochemical assays for AChE activity and sample
processing for histological study. DL and GP contributed to the

design of the study. Ba-R designed the study, analyzed data, and

revised the final manuscript.

FUNDING

This work was funded by a grant from the Scientific Research
Council, UAE University, United Arab Emirates (NRF-21M074)
and by Sheikh Hamdan Medical Research Grants Award, United
Arab Emirates (MRG-22/2011–2012) to MF-C.

ACKNOWLEDGMENTS

We thank Dr. Khalil Ramadi (Harvard-MIT Health Sciences
and Technology Division, Massachusetts Institute of
Technology, Cambridge, MA, USA) for critical reading of
the manuscript.

REFERENCES

1. Rabinovitch A. An update on cytokines in the pathogenesis of insulin-

dependent diabetes mellitus. Diabetes Metab Rev. (1998) 14:129–51. doi: 10.

1002/(SICI)1099-0895(199806)14:2<129::AID-DMR208>3.3.CO;2-M

2. Mabley JG, Pacher P, Southan GJ, Salzman AL, Szabo C. Nicotine reduces the

incidence of type I diabetes in mice. J Pharmacol Exp Ther. (2002) 300:876–81.

doi: 10.1124/jpet.300.3.876

3. Molina J, Rodriguez-Diaz R, Fachado A, Jacques-Silva MC, Berggren PO,

Caicedo A. Control of insulin secretion by cholinergic signaling in the human

pancreatic islet. Diabetes. (2014) 63:2714–26. doi: 10.2337/db13-1371

4. Ahren B, Lundquist I. Modulation of basal insulin secretion in

the obese, hyperglycemic mouse. Metabolism. (1982) 31:172–9.

doi: 10.1016/0026-0495(82)90131-7

5. Rohner-Jeanrenaud F, Jeanrenaud B. Involvement of the

cholinergic system in insulin and glucagon oversecretion of genetic

preobesity. Endocrinology. (1985) 116:830–4. doi: 10.1210/endo-11

6-2-830

6. Fukudo S, Virnelli S, Kuhn CM, Cochrane C, Feinglos MN, Surwit

RS. Muscarinic stimulation and antagonism and glucoregulation in

nondiabetic and obese hyperglycemic mice. Diabetes. (1989) 38:1433–8.

doi: 10.2337/diabetes.38.11.1433

7. Ahren B, Simonsson E, Scheurink AJ, Mulder H, Myrsen U, Sundler F.

Dissociated insulinotropic sensitivity to glucose and carbachol in high-fat

diet-induced insulin resistance in C57BL/6J mice. Metabolism. (1997) 46:97–

106. doi: 10.1016/S0026-0495(97)90175-X

8. Edvell A, Lindstrom P. Vagotomy in young obese hyperglycemic

mice: effects on syndrome development and islet proliferation. Am

Frontiers in Immunology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 1038

https://doi.org/10.1002/(SICI)1099-0895(199806)14:2<129::AID-DMR208>3.3.CO;2-M
https://doi.org/10.1124/jpet.300.3.876
https://doi.org/10.2337/db13-1371
https://doi.org/10.1016/0026-0495(82)90131-7
https://doi.org/10.1210/endo-116-2-830
https://doi.org/10.2337/diabetes.38.11.1433
https://doi.org/10.1016/S0026-0495(97)90175-X
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fernández-Cabezudo et al. Acetylcholine Receptors in Autoimmune Diabetes

J Physiol. (1998) 274(6 Pt 1):E1034–9. doi: 10.1152/ajpendo.1998.274.

6.E1034

9. Boschero AC, Szpak-Glasman M, Carneiro EM, Bordin S, Paul I, Rojas E,

et al. Oxotremorine-m potentiation of glucose-induced insulin release from

rat islets involves M3 muscarinic receptors. Am J Physiol. (1995) 268(2 Pt

1):E336–42. doi: 10.1152/ajpendo.1995.268.2.E336

10. Tang SH, Sharp GW. Identification of muscarinic receptor subtypes in

RINm5F cells by means of polymerase chain reaction, subcloning, and DNA

sequencing. Diabetes. (1997) 46:1419–23. doi: 10.2337/diab.46.9.1419

11. Iismaa TP, Kerr EA, Wilson JR, Carpenter L, Sims N, Biden TJ. Quantitative

and functional characterization of muscarinic receptor subtypes in insulin-

secreting cell lines and rat pancreatic islets. Diabetes. (2000) 49:392–8.

doi: 10.2337/diabetes.49.3.392

12. Satin LS, Kinard TA. Neurotransmitters and their receptors in the islets of

Langerhans of the pancreas: what messages do acetylcholine, glutamate, and

GABA transmit? Endocrine. (1998) 8:213–23. doi: 10.1385/ENDO:8:3:213

13. Ahren B. Autonomic regulation of islet hormone secretion–

implications for health and disease. Diabetologia. (2000) 43:393–410.

doi: 10.1007/s001250051322

14. Gilon P, Henquin JC. Mechanisms and physiological significance of the

cholinergic control of pancreatic beta-cell function. Endocr Rev. (2001)

22:565–604. doi: 10.1210/er.22.5.565

15. Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. Muscarinic

stimulation of pancreatic insulin and glucagon release is abolished in m3

muscarinic acetylcholine receptor-deficient mice. Diabetes. (2004) 53:1714–

20. doi: 10.2337/diabetes.53.7.1714

16. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, et al. A critical role

for beta cell M3 muscarinic acetylcholine receptors in regulating insulin

release and blood glucose homeostasis in vivo. Cell Metab. (2006) 3:449–61.

doi: 10.1016/j.cmet.2006.04.009

17. Yoshikawa H, Hellstrom-Lindahl E, Grill V. Evidence for functional

nicotinic receptors on pancreatic beta cells. Metabolism. (2005) 54:247–54.

doi: 10.1016/j.metabol.2004.08.020

18. Koopman FA, Vosters JL, Roescher N, Broekstra N, Tak PP, Vervoordeldonk

MJ. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse

model. Oral Dis. (2015) 21:858–65. doi: 10.1111/odi.12354

19. Ejiri K, Taniguchi H, Ishihara K, Hara Y, Baba S. Possible involvement

of cholinergic nicotinic receptor in insulin release from isolated rat

islets. Diabetes Res Clin Pract. (1990) 8:193–9. doi: 10.1016/0168-8227(90)

90117-C

20. Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, et al. An

alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain

and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther.

(2010) 332:173–80. doi: 10.1124/jpet.109.154633

21. Ganic E, Singh T, Luan C, Fadista J, Johansson JK, Cyphert HA, et al. MafA-

controlled nicotinic receptor expression is essential for insulin secretion and

is impaired in patients with type 2 diabetes. Cell Rep. (2016) 14:1991–2002.

doi: 10.1016/j.celrep.2016.02.002

22. Gupta D, Lacayo AA, Greene SM, Leahy JL, Jetton TL. β-Cell mass restoration

by α7 nicotinic acetylcholine receptor activation. J Biol Chem. (2018)

293:20295–306. doi: 10.1074/jbc.RA118.004617

23. Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino

M, et al. Role of vagus nerve signaling in CNI-1493-mediated

suppression of acute inflammation. Auton Neurosci. (2000) 85:141–7.

doi: 10.1016/S1566-0702(00)00233-2

24. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et

al. Vagus nerve stimulation attenuates the systemic inflammatory response to

endotoxin. Nature. (2000) 405:458–62. doi: 10.1038/35013070

25. Miao FJ, Green P, Benowitz N, Levine JD. Vagal modulation of spinal

nicotine-induced inhibition of the inflammatory response mediated by

descending antinociceptive controls. Neuropharmacology. (2003) 45:605–11.

doi: 10.1016/S0028-3908(03)00224-7

26. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al.

Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of

inflammation. Nature. (2003) 421:384–8. doi: 10.1038/nature01339

27. de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a

pharmacological target for inflammation. Br J Pharmacol. (2007) 151:915–29.

doi: 10.1038/sj.bjp.0707264

28. Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity:

the lotus’ flower in tobacco. Pharmacol Res. (2018) 128:101–9.

doi: 10.1016/j.phrs.2017.10.005

29. Kawashima K, Fujii T. Expression of non-neuronal acetylcholine in

lymphocytes and its contribution to the regulation of immune function. Front

Biosci. (2004) 9:2063–85. doi: 10.2741/1390

30. Bering B, Moises HW, Muller WE. Muscarinic cholinergic receptors on intact

human lymphocytes. Properties and subclass characterization. Biol Psychiatr.

(1987) 22:1451–8. doi: 10.1016/0006-3223(87)90103-X

31. Razani-Boroujerdi S, Boyd RT, Davila-Garcia MI, Nandi JS, Mishra NC,

Singh SP, et al. T cells express alpha7-nicotinic acetylcholine receptor

subunits that require a functional TCR and leukocyte-specific protein tyrosine

kinase for nicotine-induced Ca2+ response. J Immunol. (2007) 179:2889–98.

doi: 10.4049/jimmunol.179.5.2889

32. Jin HJ, Li HT, Sui HX, Xue MQ, Wang YN, Wang JX, et al. Nicotine

stimulated bone marrow-derived dendritic cells could augment HBV specific

CTL priming by activating PI3K-Akt pathway. Immunol Lett. (2012) 146:40–

9. doi: 10.1016/j.imlet.2012.02.015

33. De Rosa MJ, Esandi Mdel C, Garelli A, Rayes D, Bouzat C. Relationship

between alpha 7 nAChR and apoptosis in human lymphocytes. J

Neuroimmunol. (2005) 160:154–61. doi: 10.1016/j.jneuroim.2004.11.010

34. Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston

J, et al. Cholinergic stimulation blocks endothelial cell activation and

leukocyte recruitment during inflammation. J Exp Med. (2005) 201:1113–

−23. doi: 10.1084/jem.20040463

35. Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg

DK, et al. International union of pharmacology. XX. Current status of

the nomenclature for nicotinic acetylcholine receptors and their subunits.

Pharmacol Rev. (1999) 51:397–401.

36. George JA, Bashir G, Qureshi MM,Mohamed YA, Azzi J, Al-Ramadi BK, et al.

Cholinergic stimulation prevents the development of autoimmune diabetes:

evidence for the modulation of Th17 effector cells via an IFNγ-dependent

mechanism. Front Immunol. (2016) 7:419. doi: 10.3389/fimmu.2016.00419

37. Hanes WM, Olofsson PS, Kwan K, Hudson LK, Chavan SS, Pavlov

VA, et al. Galantamine attenuates type 1 diabetes and inhibits anti-

insulin antibodies in nonobese diabetic mice. Mol Med. (2015) 21:702–8.

doi: 10.2119/molmed.2015.00142

38. Nickell JR, Grinevich VP, Siripurapu KB, Smith AM, Dwoskin LP. Potential

therapeutic uses of mecamylamine and its stereoisomers. Pharmacol Biochem

Behav. (2013) 108:28–43. doi: 10.1016/j.pbb.2013.04.005

39. Varanda WA, Aracava Y, Sherby SM, VanMeter WG, Eldefrawi ME,

Albuquerque EX. The acetylcholine receptor of the neuromuscular junction

recognizes mecamylamine as a noncompetitive antagonist. Mol Pharmacol.

(1985) 28:128–37.

40. Bacher I, Wu B, Shytle DR, George TP. Mecamylamine - a nicotinic

acetylcholine receptor antagonist with potential for the treatment of

neuropsychiatric disorders. Expert Opin Pharmacother. (2009) 10:2709–21.

doi: 10.1517/14656560903329102

41. Verbitsky M, Rothlin CV, Katz E, Elgoyhen AB. Mixed nicotinic-muscarinic

properties of the alpha9 nicotinic cholinergic receptor. Neuropharmacology.

(2000) 39:2515–24. doi: 10.1016/S0028-3908(00)00124-6

42. Fernandez-Cabezudo MJ, Lorke DE, Azimullah S, Mechkarska M, Hasan MY,

Petroianu GA, et al. Cholinergic stimulation of the immune system protects

against lethal infection by Salmonella enterica serovar Typhimurium.

Immunology. (2010) 130:388–98. doi: 10.1111/j.1365-2567.2009.

03238.x

43. Haghparast A, Khani A, Naderi N, Alizadeh AM, Motamedi F. Repeated

administration of nicotine attenuates the development of morphine tolerance

and dependence in mice. Pharmacol Biochem Behav. (2008) 88:385–92.

doi: 10.1016/j.pbb.2007.09.010

44. Rehni AK, Singh TG, Arora S. SU-6656, a selective Src kinase

inhibitor, attenuates mecamylamine-precipitated nicotine withdrawal

syndrome in mice. Nicotine Tob Res. (2012) 14:407–14. doi: 10.1093/ntr/

ntr228

45. Savontaus E, Fagerholm V, Rahkonen O, Scheinin M. Reduced blood

glucose levels, increased insulin levels and improved glucose tolerance in

alpha2A-adrenoceptor knockout mice. Eur J Pharmacol. (2008) 578:359–64.

doi: 10.1016/j.ejphar.2007.09.015

Frontiers in Immunology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 1038

https://doi.org/10.1152/ajpendo.1998.274.6.E1034
https://doi.org/10.1152/ajpendo.1995.268.2.E336
https://doi.org/10.2337/diab.46.9.1419
https://doi.org/10.2337/diabetes.49.3.392
https://doi.org/10.1385/ENDO:8:3:213
https://doi.org/10.1007/s001250051322
https://doi.org/10.1210/er.22.5.565
https://doi.org/10.2337/diabetes.53.7.1714
https://doi.org/10.1016/j.cmet.2006.04.009
https://doi.org/10.1016/j.metabol.2004.08.020
https://doi.org/10.1111/odi.12354
https://doi.org/10.1016/0168-8227(90)90117-C
https://doi.org/10.1124/jpet.109.154633
https://doi.org/10.1016/j.celrep.2016.02.002
https://doi.org/10.1074/jbc.RA118.004617
https://doi.org/10.1016/S1566-0702(00)00233-2
https://doi.org/10.1038/35013070
https://doi.org/10.1016/S0028-3908(03)00224-7
https://doi.org/10.1038/nature01339
https://doi.org/10.1038/sj.bjp.0707264
https://doi.org/10.1016/j.phrs.2017.10.005
https://doi.org/10.2741/1390
https://doi.org/10.1016/0006-3223(87)90103-X
https://doi.org/10.4049/jimmunol.179.5.2889
https://doi.org/10.1016/j.imlet.2012.02.015
https://doi.org/10.1016/j.jneuroim.2004.11.010
https://doi.org/10.1084/jem.20040463
https://doi.org/10.3389/fimmu.2016.00419
https://doi.org/10.2119/molmed.2015.00142
https://doi.org/10.1016/j.pbb.2013.04.005
https://doi.org/10.1517/14656560903329102
https://doi.org/10.1016/S0028-3908(00)00124-6
https://doi.org/10.1111/j.1365-2567.2009.03238.x
https://doi.org/10.1016/j.pbb.2007.09.010
https://doi.org/10.1093/ntr/ntr228
https://doi.org/10.1016/j.ejphar.2007.09.015
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fernández-Cabezudo et al. Acetylcholine Receptors in Autoimmune Diabetes

46. Sinha-Hikim I, Friedman TC, Falz M, Chalfant V, Hasan MK, Espinoza-

Derout J, et al. Nicotine plus a high-fat diet triggers cardiomyocyte apoptosis.

Cell Tissue Res. (2017) 368:159–70. doi: 10.1007/s00441-016-2536-1

47. Al-Barazie RM, Bashir GH, Qureshi MM, Mohamed YA, Al-Sbiei A, Tariq

S, et al. Cholinergic activation enhances resistance to oral salmonella

infection by modulating innate immune defense mechanisms at the

intestinal barrier. Front Immunol. (2018) 9:551. doi: 10.3389/fimmu.2018.

00551

48. al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H, Al-Salam S, Bashir

G, Chouaib S. Potent anti-tumor activity of systemically-administered

IL2-expressing Salmonella correlates with decreased angiogenesis

and enhanced tumor apoptosis. Clin Immunol. (2009) 130:89–97.

doi: 10.1016/j.clim.2008.08.021

49. Ramadi KB, Mohamed YA, Al-Sbiei A, Almarzooqi S, Bashir G, Al Dhanhani

A, et al. Acute systemic exposure to silver-based nanoparticles induces

hepatotoxicity and NLRP3-dependent inflammation. Nanotoxicology. (2016)

10:1061–74. doi: 10.3109/17435390.2016.1163743

50. Kaimala S, Mohamed YA, Nader N, Issac J, Elkord E, Chouaib S, et al.

Salmonella-mediated tumor regression involves targeting of tumor myeloid

suppressor cells causing a shift to M1-like phenotype and reduction

in suppressive capacity. Cancer Immunol Immunother. (2014) 63:587–99.

doi: 10.1007/s00262-014-1543-x

51. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med.

(2005) 257:156–66. doi: 10.1111/j.1365-2796.2004.01442.x

52. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–

linking immunity and metabolism. Nat Rev Endocrinol. (2012) 8:743–54.

doi: 10.1038/nrendo.2012.189

53. Vinik AI. The conductor of the autonomic orchestra. Front Endocrinol. (2012)

3:71. doi: 10.3389/fendo.2012.00071

54. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S.

Alpha 9: an acetylcholine receptor with novel pharmacological

properties expressed in rat cochlear hair cells. Cell. (1994) 79:705–15.

doi: 10.1016/0092-8674(94)90555-X

55. Colomer C, Olivos-Ore LA, Vincent A, McIntosh JM, Artalejo AR,

Guerineau NC. Functional characterization of alpha9-containing

cholinergic nicotinic receptors in the rat adrenal medulla: implication

in stress-induced functional plasticity. J Neurosci. (2010) 30:6732–42.

doi: 10.1523/JNEUROSCI.4997-09.2010

56. Hao J, Simard AR, Turner GH,Wu J, Whiteaker P, Lukas RJ, et al. Attenuation

of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic

receptors. ExpNeurol. (2011) 227:110–9. doi: 10.1016/j.expneurol.2010.09.020

57. Qian J, Galitovskiy V, Chernyavsky AI, Marchenko S, Grando SA. Plasticity

of the murine spleen T-cell cholinergic receptors and their role in in vitro

differentiation of naive CD4T cells toward the Th1, Th2 and Th17 lineages.

Genes Immun. (2011) 12:222–30. doi: 10.1038/gene.2010.72

58. Liu Q, Whiteaker P, Morley BJ, Shi FD, Lukas RJ. Distinctive Roles

for α7∗- and α9∗-nicotinic acetylcholine receptors in inflammatory

and autoimmune responses in the murine experimental autoimmune

encephalomyelitis model of multiple sclerosis. Front Cell Neurosci. (2017)

11:287. doi: 10.3389/fncel.2017.00287

59. Zakrzewicz A, Richter K, Agne A, Wilker S, Siebers K, Fink B, et al.

Canonical and novel non-canonical cholinergic agonists inhibit ATP-induced

release of monocytic interleukin-1β via different combinations of nicotinic

acetylcholine receptor subunits α7, α9 and α10. Front Cell Neurosci. (2017)

11:189. doi: 10.3389/fncel.2017.00189

60. Saini KS, Thompson C, Winterford CM, Walker NI, Cameron DP.

Streptozotocin at low doses induces apoptosis and at high doses causes

necrosis in a murine pancreatic beta cell line, INS-1. Biochem Mol Biol Int.

(1996) 39:1229–36. doi: 10.1080/15216549600201422

61. Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, et al. Induction of

acetylcholinesterase expression during apoptosis in various cell types. Cell

Death Differ. (2002) 9:790–800. doi: 10.1038/sj.cdd.4401034

62. Huang X, Lee B, Johnson G, Naleway J, Guzikowski A, Dai W, et al. Novel

assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect

active acetylcholinesterase (AChE) induced during apoptosis. Cell Cycle.

(2005) 4:140–7. doi: 10.4161/cc.4.1.1322

63. Francis PT, Nordberg A, Arnold SE. A preclinical view of cholinesterase

inhibitors in neuroprotection: do they provide more than symptomatic

benefits in Alzheimer’s disease? Trends Pharmacol Sci. (2005) 26:104–11.

doi: 10.1016/j.tips.2004.12.010

64. De Sarno P, Shestopal SA, Zmijewska AA, Jope RS. Anti-apoptotic effects of

muscarinic receptor activation are mediated by Rho kinase. Brain Res. (2005)

1041:112–5. doi: 10.1016/j.brainres.2005.01.081

65. Resende RR, Adhikari A. Cholinergic receptor pathways involved in

apoptosis, cell proliferation and neuronal differentiation.Cell Commun Signal.

(2009) 7:20. doi: 10.1186/1478-811X-7-20

66. Olianas MC, Dedoni S, Onali P. Protection from interferon-β-induced

neuronal apoptosis through stimulation of muscarinic acetylcholine receptors

coupled to ERK1/2 activation. Br J Pharmacol. (2016) 173:2910–28.

doi: 10.1111/bph.13570

67. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. (2009) 9:418–28.

doi: 10.1038/nri2566

68. Saravia F, Homo-Delarche F. Is innervation an early target in autoimmune

diabetes? Trends Immunol. (2003) 24:574–9. doi: 10.1016/j.it.2003.09.010

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Fernández-Cabezudo, George, Bashir, Mohamed, Al-Mansori,

Qureshi, Lorke, Petroianu and al-Ramadi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 1038

https://doi.org/10.1007/s00441-016-2536-1
https://doi.org/10.3389/fimmu.2018.00551
https://doi.org/10.1016/j.clim.2008.08.021
https://doi.org/10.3109/17435390.2016.1163743
https://doi.org/10.1007/s00262-014-1543-x
https://doi.org/10.1111/j.1365-2796.2004.01442.x
https://doi.org/10.1038/nrendo.2012.189
https://doi.org/10.3389/fendo.2012.00071
https://doi.org/10.1016/0092-8674(94)90555-X
https://doi.org/10.1523/JNEUROSCI.4997-09.2010
https://doi.org/10.1016/j.expneurol.2010.09.020
https://doi.org/10.1038/gene.2010.72
https://doi.org/10.3389/fncel.2017.00287
https://doi.org/10.3389/fncel.2017.00189
https://doi.org/10.1080/15216549600201422
https://doi.org/10.1038/sj.cdd.4401034
https://doi.org/10.4161/cc.4.1.1322
https://doi.org/10.1016/j.tips.2004.12.010
https://doi.org/10.1016/j.brainres.2005.01.081
https://doi.org/10.1186/1478-811X-7-20
https://doi.org/10.1111/bph.13570
https://doi.org/10.1038/nri2566
https://doi.org/10.1016/j.it.2003.09.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes
	Authors

	Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes
	Introduction
	Materials and Methods
	Experimental Animals
	Chemicals
	Diabetes Induction
	Experimental Protocol
	AChE Activity of Red Blood Cells (RBC)
	Glucose Tolerance Test (GTT)
	Histology and Immunohistochemistry of Pancreatic Tissue
	Quantitative RT-PCR
	Statistical Analysis

	Results
	Cholinergic Pathway-Induced Protection Is Mediated Primarily Via mAChRs
	Abrogation of ACh-Mediated Protection by a Muscarinic Receptor Antagonist
	Blockade of mAChRs Increases Cellular Infiltration and Leads to Islet Destruction

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


