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ABSTRACT OF THE DISSERTATION 

RISK BASED POST CLOSURE CARE ANALYSIS FOR FLORIDA LANDFILLS 

by 

Banu Sizirici Yildiz 

Florida International University, 2009 

Miami, Florida 

Professor Berrin Tansel, Major Professor 

 Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a 

post closure period of 30 years for non hazardous wastes in landfills.  Post closure care 

(PCC) activities under Subtitle D include leachate collection and treatment, groundwater 

monitoring, inspection and maintenance of the final cover, and monitoring to ensure that 

landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC 

duration requires exploration of a performance based methodology to Florida landfills. PCC 

should be based on whether the landfill is a threat to human health or the environment. 

Historically no risk based procedure has been available to establish an early end to PCC. 

 Landfill stability depends on a number of factors that include variables that relate 

to operations both before and after the closure of a landfill cell.  Therefore, PCC 

decisions should be based on location specific factors, operational factors, design factors, 

post closure performance, end use, and risk analysis. The question of appropriate PCC 

period for Florida’s landfills requires in depth case studies focusing on the analysis of the 

performance data from closed landfills in Florida. Based on data availability, Davie Landfill 

was identified as case study site for a case by case analysis of landfill stability. The 

performance based PCC decision system developed by Geosyntec Consultants was used for 
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the assessment of site conditions to project PCC needs.  The available data for leachate and 

gas quantity and quality, ground water quality, and cap conditions were evaluated. The 

quality and quantity data for leachate and gas were analyzed to project the levels of 

pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). 

In addition, the projected amount of gas quantity was estimated. A set of contaminants 

(including metals and organics) were identified as contaminants detected in groundwater for 

health risk assessment.  These contaminants were selected based on their detection 

frequency and levels in leachate and ground water; and their historical and projected trends. 

During the evaluations a range of discrepancies and problems that related to the 

collection and documentation were encountered and possible solutions made. 

Based on the results of PCC performance integrated with risk assessment, projection 

of future PCC monitoring needs and sustainable waste management options were identified. 

According to these results, landfill gas monitoring can be terminated, leachate and 

groundwater monitoring for parameters above MCL and surveying of the cap integrity 

should be continued. The parameters which cause longer monitoring periods can be 

eliminated for the future sustainable landfills.  As a conclusion, 30 year PCC period can be 

reduced for some of the landfill components based on their potential impacts to human 

health and environment (HH&E). 
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CHAPTER 1 

INTRODUCTION 

Landfills are engineered deposit of waste onto and into land in such a way that 

pollution or harm to environment is prevented. Landfill is critical to most waste 

management strategies, because it is the simplest, cheapest and most cost-effective 

method of disposing of waste. Unfortunately, there are many examples of environmental 

pollution that have arisen as a result of landfill activities (such as leachate and gas 

migration). The Resource Conservation Recovery Act (RCRA) in 1979 has changed the 

solid waste handling approach in the United States. RCRA has created guidelines for 

siting, construction, operation and monitoring of landfills to make solid waste disposal 

safe to human health and environment during operational phase of the landfill. Also 

Subtitle D of RCRA regulates post closure of landfills. Subtitle D requires 30 years post 

closure period for non-hazardous wastes in landfills. According to solid waste facility 

regulations codified in 40 CFR §258.61(b), the length of the post-closure care period can be 

extended or shortened by the governing regulatory agency on a site-specific basis. However, 

the decision to extend or shorten the post closure care period should be based on whether the 

landfill is a threat to human health or the environment. Incorporation of risk analysis for 

assessing potential threats to human health and environment during the PCC period will 

allow more efficient management strategies for closed landfill sites. The use of a 

scientifically justifiable decision making methodology would also have significant economic 

benefits and will provide a measure of post closure care (PCC) liability for public 

understanding. PCC activities under Subtitle D include leachate collection and treatment, 

groundwater monitoring, inspection and maintenance of the final cover, and monitoring 
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to ensure that landfill gas does not migrate off site or into on-site buildings. Methodology 

for ending PCC includes performance based factors as well as end use considerations for 

potential threats to human health and the environment.  The performance based decision 

making factors for ending PCC at landfills include: 

 Quantification of pollutants originating from landfill  (i.e., leachate and landfill gas); 

 Evaluation of trends in pollutant levels and quantities at the source;  

 Prediction of pollutant levels that may be released from the site and potential 

impacts to human health and the environment; and 

 Projection of future monitoring needs. 

Detailed analyses of performance data from Davie landfill can provide scientific 

basis for the development of a decision making framework that would be suitable for 

Florida landfills.   

2.   OBJECTIVES 

The goal of this dissertation is to explore the applicability of a performance based 

methodology to Florida landfills with the potential to reduce the extent or duration of PCC 

and to develop efficient risk assessment method.  The specific objectives of the dissertation 

are: 

1. Evaluate post closure performance data from closed Florida landfill cells, 

2. Predict pollutant levels and quantities originating from closed landfill cells, 

3. Analyze potential threats to human health and the environment based on end use 

of landfills. 
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3.   THE SCOPE OF THE DISSERTATION 

Development of a systematic approach that can be used as a decision making tool 

to extend or shorten the PCC period or modify frequency of PCC activities should be 

based on whether the landfill is a threat to human health or the environment.   These 

decisions require technically sound and justifiable methods for analysis and interpretation 

of available data and information from closed landfill sites.   It is important that a set of 

measurements is developed and used appropriately to evaluate the activity in closed 

landfills in terms of their overall stability and potential threat to human health or the 

environment. 

Landfill stability depends on a number of factors that include variables that are 

related to site conditions, and design and operational parameters taking place at the site and 

the surrounding areas both before and after the closure of a landfill cell.  Therefore, PCC 

decisions should be based on location specific factors, operational factors, design factors, 

post closure performance and end use. Following is the brief explanation of the steps 

followed for this study; 

 The first step of this dissertation project  was to identify time dependent changes in a 

landfill’s structure and components. Davie Landfill (also known as Vista View Park) 

was selected as a case study landfill. The main reason for selecting this landfill is 

data availability. Davie Landfill has ample data on leachate quantity and quality, 

landfill gas, and groundwater monitoring, which plays a key role in PCC duration 

evaluation. A performance based methodology was used to evaluate the PCC 

needs of closed Davie Landfill at City of Davie in Broward County, Florida. 

According to this methodology, landfill leachate quality and quantity data, rainfall 
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 The second step of the dissertation project was to conduct a risk analysis in parallel 

with the system performance parameters to fill in the knowledge gap between design 

and operational factors and to find the effects of these factors on post closure 

environmental risks over time.  The risk assessment was conducted by using 

Framework for Risk Analysis Multimedia Environmental Systems (FRAMES) 

model to analyze the migration pathways and to estimate health risks resulting 

from the landfill. Several metals and volatile organic compounds were identified 

as potential contaminants of concern for assessment of health risks due to 

contaminated groundwater near the Davie Landfill. 

 The third step of the study was to identify the challenges which were encountered  

data collection. According to the identified challenges, some recommendations 

were made for future studies. 

 The last step of the study was to define sustainable management of solid waste 

landfills by identifying the possible solutions for eliminating waste materials that 

result in contaminants with longer periods of persistence. 
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CHAPTER 2 

BACKGROUND 

2.1   Landfill 

Landfill has been defined as “The engineered deposit of waste onto and into land 

in such a way that pollution or harm to environment is prevented and, through 

restoration, land provided which may be used for another purpose” (Westlake, 1995). 

Landfill is critical to most waste management strategies, because it is the simplest, 

cheapest and most cost-effective method of disposing of waste (Allen, 2001). 

Unfortunately, there are many examples of environmental pollution that have arisen as a 

result of landfill activities (such as leachate, gas migration) (Westlake, 1995).  

Containment refers to controlling waste, leachate, landfill gas, rain and surface 

water. Caps, covers and liners are the three basic components of a landfill containment 

system. The landfill capping system reduces the infiltration of precipitation while 

controlling leachate and gas migration (Bachus, 1995). Landfill gas, originating from the 

anaerobic biodegradation of the organic content of waste, consists mainly of methane and 

carbon dioxide, with traces of other volatile organic compounds. Pressure, concentration 

and temperature gradients that develop within the landfill result in gas emissions to the 

atmosphere and in lateral migration through the surrounding soils (Nastev, 2001).  

The landfill lining system controls and minimizes the release of leachate using a 

leachate collection system (Bachus, 1995). Leachate, as a chemical substance, takes the 

constituents of the solid waste mass through which it flows. Leachate quality is a vitally 

important consideration when leakage through the liner system is concerned because of 

the groundwater and surface water pollution (Koerner et al., 2000). High leachate 
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strength and gas generation may persist long into the future, resulting in the need for 

long-term management and monitoring of landfills and barrier systems that must function 

for very long periods of time (Benson, 2007).  Failure of one or more landfill components 

may lead to system failure (Bachus, 1995). 

2.2   Landfill Components 

This section provides role of important design and operational parameters on the 

post closure performance of closed landfills.  

2.2.1   Leachate Collection System 

Leachate is formed when water passes through the waste in the landfill cell.  As 

the liquid moves through the landfill many organic and inorganic compounds, like heavy 

metals, are transported into the leachate. The amount of leachate produced is directly 

linked to the amount of precipitation around the landfill. The amount of liquid waste in 

the landfill also affects the quantity of leachate produced. Leachate collection systems 

(LCS) are commonly constructed with layered materials. A LCS mainly consists of the 

following components as shown in Figure 1. 

 
Figure 1.   Components of leachate collection systems (adapted from Reinhart, 2000). 

Leachate Collection 
Pipe 

Protective 
Layer 

Primary  Liner 

Drainage 
Gravel 

Municipal Solid Waste

Filter 
Sand 
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Landfill liners are designed and constructed to create a barrier between the waste 

and the environment and to drain the leachate to collection and treatment facilities. This 

is done to prevent the uncontrolled release of leachate into the environment. Liners may 

be described as single, composite, or double liners.  Single liners consist of a clay liner, a 

geosynthetic clay liner, or a geomembrane. Composite liner systems consist of a 

geomembrane in combination with a clay liner and are required in municipal solid waste 

(MSW) landfills. The double liner systems consist of either two single liners, two 

composite liners, or a single and a composite liner. Double-liner systems are used in 

some municipal solid waste landfills and in all hazardous waste landfills.  

2.2.2   Gas Collection System 

Fifty percent of the municipal solid waste in the landfill site which consists of 

biodegradable organics gets broken down by bacteria for energy. This is done by aerobic 

or anaerobic fermentation. The degradable organic matter gets broken down into a 

stabilized organic residue (or compost), and water and carbon dioxide, the latter 

contributing to the composition of landfill gas.  

Landfill owner/operators are required to collect landfill gas to prevent exposure of 

humans to the gas and to avoid explosive danger. Landfill gas at the site can be collected 

in two ways: passive gas collection systems and active gas collection system. Passive gas 

collection systems facilitate collection of gas under gas pressure and concentrations 

inside the landfill. Active gas collection systems use pumps or vacuum to extract the gas 

using collection wells. Once gas is collected it can be carried to a flare or converted to 

energy. 
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2.2.3   Cap 

A cover or cap is an umbrella over the landfill to keep water out (to prevent 

leachate formation). It will generally consist of several sloped layers: clay or membrane 

liner (to prevent rain from intruding), overlain by a very permeable layer of sandy or 

gravelly soil (to promote rain runoff), overlain by topsoil in which vegetation can root (to 

stabilize the underlying layers of the cover). If the cover (cap) is not maintained, rain will 

enter the landfill resulting in buildup of leachate to the point where the bathtub overflows 

its sides and wastes enter the environment.  

2.2.4   End Use 

There are two types of end use for closed landfills shown in Table 1. 

• Passive uses such as Green Space, Wildlife or Nature Conservancy and hiking trails. 

• Active uses such as sports fields, golf courses, industrial uses and transfer stations. 

Table 1.   Land use examples of closed landfills (Waste Management 2008) 

Land Uses 

BMX Race Track, Model Airplane Field, Little League Baseball Facility, Soccer fields, 
tennis courts, boat launch, fishing area, amphitheater, sledding area (Waterford 
Township, PA,  Denver Landfill, CO) 
Salt water sailing lake, wetlands, levees, amphitheater, & wildlife refuge 
(GROWS/Tully town Landfills in Falls Township, PA, Altamont Landfill in Livermore 
CA, American Landfilli n Waynesburg, OH) 
Recreation park, wildlife refuge and butterfly garden (Kirby Canyon landfill, CA) 

Business Park and Golf Course, Ski Slopes (Chicago, IL) 

Public Works Storage Facility and Transfer Station (Naperville Landfill, IL) 

2.3   Post Closure Care Of Landfills 

  Subtitle D of RCRA requires 30 years post closure period for non-hazardous 

wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate 

collection and treatment, groundwater monitoring, inspection and maintenance of the 
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final cover, and monitoring landfill gas. According to solid waste facility regulations 

codified in 40 CFR §258.61(b), the 30 year PCC period specified by Subtitle D can be 

extended or shortened by governing regulatory agency on a site-specific basis such as 

whether the landfill is a threat to human health or the environment. Methodology for 

ending the PCC period for municipal solid waste (MSW) landfills should include 

performance based factors. The performance based decision making factors for ending PCC 

at landfills include (Morris, 2005): 

 Quantification of pollution (i.e., leachate and landfill gas); 

 Definition of trends in concentrations and quantities at the source;  

 Evaluation and prediction of the release of constituents for potential impacts to 

human health and the environment; and 

 Monitoring to confirm evaluations or predictions. 

 Landfills are engineered systems which should be developed with a scientific 

approach to designing, operating and closing in a way to optimize the post closure care 

(PCC) costs.  A closed landfill site can be reused for many purposes which serve the 

community needs (Vesilind et al., 2001; Tansel, 1998). Post closure care needs for MSW 

landfills include ground water and gas monitoring, leachate collection and treatment, gas 

recovery and management, and final cover maintenance (Vesilind et al., 2001; Reinhart et 

al., 1997).  Waste characteristics, climate, landfill design, and closure methods affect the 

rate and duration of leachate and gas production from a closed MSW landfill site.  RCRA 

rules require landfill owners to prove that they have funds to maintain their landfills after 

closure and correct any environmental problems the landfill may cause. Issues that need 

to be incorporated into the financial assurance aspects of RCRA for MSW landfills 
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should also include the duration of post closure care, the amount of funding needed for 

future long-term care, financial assurances, and mechanisms to ensure that funds will be 

available exclusively for post closure care and, if needed, ground water remediation (Lee, 

2003; Anderson, 2004; Caldwell, 2004).  In a landfill, when the moisture content of the 

waste is reduced to about 20%, rate of gas production significantly slows (Christensen et 

al., 1989). With a good cap system, it is possible to limit the moisture supply to a landfill.  

Over time, the cap system may lose its integrity due to environmental and geotechnical 

stresses.  Consequently, the cap requires periodic maintenance to prevent excessive 

amounts of moisture from entering the waste (Lee et al., 1993; Lee 2004).  The 

implication that monitoring will be discontinued after 30 years because the landfill is 

stable and no longer represents a threat to the environment requires a scientific and 

systematic approach for monitoring performance of closed landfills (Barlaz, 2004; Barlaz 

et al., 2002).  By implementing proper engineering measures during the operation of a 

landfill, the stabilization period of the MSW can be reduced significantly.  Florida’s 

climate promotes waste decomposition significantly faster than landfills located in other 

parts of the United States with dryer conditions.  Detailed analyses of performance data 

from case study landfills will allow development of a decision making framework 

suitable for Florida landfills and help quantify and compare the extent of stabilization 

being achieved over time 

2.4     Requirements for Post Closure Care (PCC)   

The Resource Conservation Recovery Act (RCRA) Subtitle D regulates waste 

disposal and handling for non-hazardous waste. Closure and post closure care 

requirements are identified in 40 CFR §258.60 and 40 CFR §258.61, respectively, in 
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Subpart F of Subtitle D. Post closure care requirements under 40 CFR §258.61 are as 

follows; 

“(a) Following closure of each MSWLF unit, the owner or operator must conduct post 

closure care. Post closure care must be conducted for 30 years, except as provided under 

paragraph (b) of this section, and consist of at least the following: 

(1) Maintaining the integrity and effectiveness of any final cover, including making 

repairs to the cover as necessary to correct the effects of settlement, subsidence, 

erosion, or other events, and preventing run-on and runoff from eroding or 

otherwise damaging the final cover; 

 (2) Maintaining and operating the leachate collection system in accordance with 

the requirements in §258.40, if applicable. The Director of an approved State may 

allow the owner or operator to stop managing leachate if the owner or operator 

demonstrates that leachate no longer poses a threat to human health and the 

environment;  

(3) Monitoring the ground water in accordance with the requirements of Subpart E 

of this part and maintaining the ground-water monitoring system, if applicable; and  

(4) Maintaining and operating the gas monitoring system in accordance with the 

Subpart C operating criteria under §258.23.  

(b) The length of the post closure care period may be:  

(1) Decreased by the Director of an approved State if the owner or operator 

demonstrates that the reduced period is sufficient to protect human health and the 

environment and this demonstration is approved by the Director of an approved 

State; or  
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(2) Increased by the Director of an approved State if the Director of an approved 

State determines that the lengthened period is necessary to protect human health 

and the environment.” 

PCC begins when the landfill is closed. During the PCC period, landfill 

owner/operators are required to monitor for leachate, landfill gas, and ground-water and 

maintain integrity of cap so that the landfill does not pose any threat to surrounding 

human health and environment (HH&E). Post closure care activities are described below. 

When the final cover is installed, repairs and maintenance may be necessary to keep the 

cover in good working order. Maintenance may include inspection, testing, and cleaning 

of leachate collection and removal system pipes, repairs of final cover, and repairs of gas 

and ground-water monitoring networks. Inspections should be made on a routine basis. 

(USEPA, 1993) 

2.4.1   Leachate Collection and Removal System (LCRS) 

Owner or operators of landfill are required to collect and remove leachate 

collected by leachate collection systems. LCRS monitoring and maintenance activities 

include maintaining and repairing  pump stations, meters, and valves, manholes, pipes, 

may be flushing  and  pressure cleaning on regular schedule (i.e., annually)  to reduce the 

accumulation of sediments, precipitation and to prevent biological fouling in leachate 

collection and removal pipes and sampling and analysis of leachate on regular basis. 

(RCRA Subtitle D, Subpart F).  

2.4.2   Groundwater Monitoring Systems 

The impact of leachate and landfill gas on groundwater should be identified by 

performing groundwater monitoring. Groundwater monitoring samples are analyzed and 
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compared to background conditions or health-based drinking water standards. (RCRA 

Subtitle D, Subpart F). 

2.4.3   Gas Monitoring System 

  Monitoring of landfill gas at the property boundary and in on-site structures, 

operation and maintenance of the landfill gas extraction system is required (if such a 

system exists). Most large modern landfills are required to operate such a system to 

comply with the New Source Performance Standards (NSPS) under the Clean Air Act 

(CAA). Gas monitoring also involves upgrades or repairs to landfill gas management 

system components; mitigation of off-site gas migration concerns. Vents should be 

checked to ensure they are not clogged by foreign matter such as rocks. If not working 

properly, the gas collection systems should be flushed and pressure-cleaned. (RCRA 

Subtitle D, Subpart F). 

2.4.4   Cover system 

Cap maintenance is performed regularly to preserve the integrity of the landfill 

final cover. Inspections are usually performed to detect eroded banks, patches of dead 

vegetation, animal burrows, subsidence and cracks on the cover. Regular mowing of 

vegetation must be performed at least twice a year. Depending of the condition on cap, 

owner/operators are required to perform repairs to maintain the cap integrity. (RCRA 

Subtitle D, Subpart F). 

2.5   Landfill Stabilization Process 

The 30 year post closure monitoring period presumes that at the end of the period, 

landfill will be stable and will no longer require intensive monitoring. The threats 

imposed by landfills after closure depend on the extent of degradation of waste occurring 
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inside the landfill. The stability of waste refers to the phase of the waste such that it poses 

no threat to HH&E. When refuse is buried in a landfill, complex biological and chemical 

reactions occur as the refuse decomposes. Landfills undergo at least four phases of 

decomposition, (1) an initial aerobic phase, (2) an anaerobic acid phase, (3) an initial 

methanogenic phase, and (4) a stable methanogenic phase (Christensen et al., 1995). 

Recently, an additional aerobic or humic phase of decomposition has been observed 

(Christensen et al., 1995; Bozkurt et al., 2000). Once the refuse is very well decomposed, 

the rate of oxygen diffusion into the landfill may exceed the rate of microbial oxygen 

depletion. Thus, over time the anaerobic landfill is hypothesized to become an aerobic 

ecosystem. As refuse is buried in landfills over many years in a series of cells and lifts, it 

is quite common for different parts of the landfill to be in different phases of 

decomposition (Kjeldsen et al., 2002). Most commonly used indicator parameters and 

their range in different phases is shown in Table 2. 

I. Initial aerobic phase: During the initial aerobic phase, oxygen present in the void 

spaces of the freshly buried refuse is rapidly consumed, resulting in the production of 

CO2 and maybe an increase in waste temperature 

II. An anaerobic acid phase: As oxygen sources are depleted, the waste becomes 

anaerobic, which supports fermentation reactions. Biodegradable compounds (i.e., 

cellulose and hemicelluloses) decompose to methane and carbon dioxide in landfills 

under anaerobic conditions. The highest BOD and COD concentrations in the leachate 

can be measured during this phase. 
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Table 2.   Leachate and gas composition at different phases (Tansel et al., 2008; Reinhart 

et al.,1997). 

Leachate/Gas 
Transition 

phase 
(0-100 days) 

Acid formation 
phase 

(100- 200 days) 

Methane 
fermentation 

phase 
(200-600 days) 

Final 
maturation 

phase 
(600- 

BOD5 100-10,900 1000-57,700 600- 3,400 4-120 
COD 480-18,000 1,500-71,100 580- 9,760 31-900 
BOD5:COD 0.23-0.87 0.4-0.8 0.17- 0.64 0.02- 0.13 
NH3-N 120-125 2-1,030 6- 430 6- 430 
TKN 180-860 14-7,970 25-82 7- 490 
pH 6.7 4.7-7.7 6.3-8.8 7.1-8.8 
Sulfate 10-458 10-3240 Absent 5-40 
ORP +40 to -80 +80 to -240 -70 to -240 +97 to +163 
Sulfide Absent 0-818 0.9 Absent 
Chloride 30-5,000 30-5,000 30-5,000 30-5,000 
Methane Absent Very low 30-60 % 0-<10 % 
Carbon dioxide 0-10 10-30 30-60 <40 
Oxygen 20 0-5 0-5 >5 
Hydrogen Absent 0-2 <0.1 0-2 

III. An initial methanogenic phase: Initial methanogenic phase occurs when 

measurable quantities of methane are produced.  During this phase the acids that 

accumulated in the acid phase are converted to methane and carbon dioxide by 

methanogenic bacteria, and the methane production rate will increase (Christensen et al, 

1989, Barlaz et al., 1989). COD and BOD concentrations decrease and the pH increases 

as acids are consumed.  

IV. A stable methanogenic phase: The methane production rate reaches its maximum, 

and decreases thereafter soluble substrate (carboxylic acids) decreases. In this phase, the 

rate of CH4 production is dependent on the rate of cellulose and hemicellulose 

hydrolysis. The BOD: COD ratio will be below 0.1 in this phase. Leachate and gas 

characteristics can help in phase identification of MSW.  
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2.6    Landfill Leachate Compositions 

Contaminants found in MSW landfill leachate can be divided into four groups:  

I. Dissolved organic matter, quantified as Chemical Oxygen Demand (COD) or Total 

Organic Carbon (TOC), volatile fatty acids (that accumulate during the acid phase of the 

waste stabilization, (Christensen et al., 1989) and more refractory compounds such as 

fulvic-like and humic-like compounds. 

II. Inorganic macrocomponents: Calcium (Ca2+), magnesium (Mg2+), sodium (Na+), 

potassium (K+), ammonium (NH4
+), iron (Fe2+), manganese (Mn2+), chloride (Cl-), sulfate 

( SO4
2-) and hydrogen carbonate (HCO3

-). 

III. Heavy metals: Cadmium (Cd2+), chromium (Cr3+), copper (Cu2+), lead (Pb2+), nickel 

(Ni2+) and zinc (Zn2+). 

IV. Xenobiotic organic compounds (XOCs) originating from household or industrial 

chemicals and present in relatively low concentrations (usually less than 1 mg/l of 

individual compounds). These compounds include among others a variety of aromatic 

hydrocarbons, phenols, chlorinated aliphatics, pesticides, and plastizers (Kjeldsen et al., 

2002). 

2.7   Landfill Gas Composition  

Landfill gas (LFG) is produced as a result of microbial anaerobic decomposition 

Typical constituents of LFG on a dry volume basis are: methane (45-60%), CO2 (40-

60%), nitrogen (2-5%), and oxygen (0.1-1%); trace gases such as sulfides, disulfides and 

mercaptans (0-1 %), ammonia (0.1-1%), hydrogen (0-0.2%), and CO (0-0.2%); and other 

trace non-methane organic compounds (NMOC) such as acetone, benzene, chloroform, 

dichloromethane, and toluene which are present in concentrations of up to 600 ppmv 
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(Tchobanoglous, et al.,1993; Deipser et al., 1994). Gas production from landfills is a 

function of the nature of the waste, moisture content, pH, temperature and the presence of 

nutrients (Farquhar et al., 1973). The composition and quantity of gas change with the 

age of the landfill. During the aerobic phase the dominant gas produced is carbon 

dioxide. As conditions become anaerobic and methanogenic activities initiate, methane 

appears.  

2.8   Risk Assessment 

A risk assessment is an analysis that uses information about toxic substances at a 

site to estimate a theoretical level of risk for people who might be exposed to these 

substances. The information comes from scientific studies and environmental data from a 

site. The U.S. Environmental Protection Agency (EPA) has developed risk assessment 

procedures in order to address the public health concerns and to ensure that Superfund 

response actions limit the concentration of hazardous substances in the environment to 

avoid unacceptable risks to human health (USEPA 1986 a-f). A risk assessment provides 

a comprehensive scientific estimate of risk to persons who could be exposed to hazardous 

materials present at a site. Risk assessments may focus on chronic, long-term exposures 

and/or evaluation of acute exposures that may require an emergency response. They are 

often conducted using a triage approach, beginning with a screening-level assessment to 

determine if a more comprehensive assessment is necessary (USEPA, 1988b, 1996a, 

1999a, 2001b, 2002k).  

Quantitative risk assessment has received increased attention because of the 

recognition of both the potential threat to human health from hazardous substances and 

the potential for the releases of hazardous substances into environment (Zamuda, 1989). 
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The primary application of quantitative risk assessment in the U.S EPA Superfund 

program is to evaluate the potential risk posed at each National Priorities List (NPL) 

facility, so that the appropriate remedial alternative can be identified (Paustenbach, 

1988). The U.S EPA uses a risk based evaluation method, The Hazard Ranking System 

(HRS), to identify uncontrolled and abandoned hazardous waste sites falling under 

Superfund programs. The HRS allows the selection or rejection of a site for placement on 

the U.S EPA NPL: it is used for prioritizing sites so that those posing the greatest risks 

receive quicker response. Another application of risk assessment is in the selection of 

appropriate sites for hazardous waste facilities; sites are ranked for their appropriateness 

for stipulated purposes according the levels of risk that each potentially poses under 

different scenarios (Asante- Duah, 1993). 

2.8.1 Landfill Risk Assessment 

Risk assessment is a recent (LaGoy, 1994) and growing field of study (Tweeds, 

1996). Landfills continue to be one of the main methods of waste disposal despite their 

relatively high potential to pollute the environment. Therefore, risk assessment and 

management is an effective management tool for protecting the environment against 

landfills' hazards. On the other hand, there is no  holistic risk assessment methodology, 

and neither is holistic knowledge-based computer model, which could perform the 

process of risk assessment for landfills from start (i.e., baseline study) through to the end 

(Butta et al., 2003; Butta, 2007). 

2.8.2 Computer Aided Landfill Risk Assessment Approaches 

The development of computational methods and the ability to model systems 

more precisely enables hazards to be quantified, their effects to be simulated and risk 
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analysis to be pursued with greater accuracy, leading to a more effective risk 

management (Butta, 2007). Some computer-aided landfill risk assessment modelings are 

explained below. 

3MRA:  The Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment 

(3MRA) starts with a waste stream concentration in a waste management unit (landfill, 

waste pile, aerated tank, surface impoundment, or land application unit), estimates the 

release and transport of the chemical throughout the environment, and predicts associated 

exposure and risk. Using a feed-forward approach, 3MRA simulates multimedia (air, 

water, soil, sediments), fate and transport, multi-pathway exposure routes (food ingestion, 

water ingestion, soil ingestion, air inhalation, etc.), multi-receptor exposures (resident, 

gardener, farmer, fisher, ecological habitats and populations; all with various cohort 

considerations), and resulting risk (human cancer and non-cancer effects, ecological 

population and community effects) (Babendreier et al., 2005). 

 HELP:  The Hydrologic Evaluation of Landfill Performance (HELP) computer program 

is a quasi-two-dimensional hydrologic model of water movement across, into, through 

and out of landfills. The program was developed to conduct water balance analysis of 

landfills, cover systems, and solid waste disposal and containment facilities. As such, the 

model facilitates rapid estimation of the amounts of runoff, evapotranspiration, drainage, 

leachate collection, and liner leakage that may be expected to result from the operation of 

a wide variety of landfill designs. The primary purpose of the model is to assist in the 

comparison of design alternatives as judged by their water balances. The model, 

applicable to open, partially closed, and fully closed sites, (Schroeder et al., 1994). HELP 

program contains only some aspects of landfill risk assessment. These are mainly the 
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design features of landfill (such as liners, capping) and some of the baseline study aspects 

(such as precipitation, surface runoff), while not addressing many other RA modules and 

sub-modules. (Butta, 2007) 

GASSIM: The software GasSim, although dealing with relevant risk assessment 

modules, including gas generation, migration, impact and exposure, as the name GasSim 

suggests, is designed for assessing landfill gas and not for leachate (Butta,2007). 

CONSIM: The ConSim program is a tool for assessing the risks that are posed to 

groundwater quality by pollutants migrating from contaminated land (Whittaker et al., 

2001). 

ARAMS: Adaptable risk assessment modeling system (ARAMS) is a computer-based, 

modeling and database driven analysis system developed for the US Army for estimating 

the human and ecological health impacts and risk associated with military relevant 

compounds (MRCs) and other constituents (ERDC, 2006). 

FRAMES: Framework for Risk Analysis Multimedia Environmental Systems 

(FRAMES) is a software platform for selecting and implementing environmental 

software models for risk assessment and management problems (Evangelidis, 2003). 

FRAMES works with Multimedia Environmental Pollutant Assessment System 

(MEPAS) modules which integrates transport and exposure pathways for chemical 

releases to determine their potential impact on the environment, individuals, and 

populations (http://mepas.pnl.gov/mepas/index.stm). The system has wide applicability to 

a range environmental problems using air, groundwater, surface water, overland, and 

exposure models” (Whelan et al., 1992). 
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2.8.3   Selection of Best Approach For Landfill Risk Assessment  

After reviewing available computer-aided landfill risk assessment software, the 

most suitable program for landfill risk assessment was tried to identify based on the 

results of decision tree shown in Table 3. 

Table 3.   Decision tree for best approach of  landfill risk assessment.  

 

Program Advantage Disadvantage Suitability 

3MRA Covers risk assessment of 
landfill.  

Available for free. 

Does not include complete 
set of exposure routes.  

Complicated. 

Yes 

HELP Covers landfill design by 
modeling. 

Available for free 

Does not cover risk 
assessment. 

No 

GASSIM Covers assessment of risk 
resulted by landfill gas.  

Designed for a risk 
assessment of landfill gas.  

Commercially available 

No 

CONSIM Covers assessment of risk 
resulted by GW pollution 
by contaminated  land. 

Designed  for a risk 
assessment of GW pollution  

Commercially available 

No 

ARAMS Covers health impacts of 
contaminated media. 

Available for free 

Relies on another computer 
program (FRAMES).  

Does not have geology, 
hydrology section, etc.  

No 

FRAMES Covers risk assessment of 
contaminated media. 

Available for free. 

Does not present an overall 
risk assessment methodology 
for landfill  

Yes 

According to decision tree the most suitable risk assessment programs were 

3MRA and FRAMES models. Between these two models, 3MRA was more complicated 

and does not cover exposure routes to calculate health risk.  Therefore FRAMES model 

was chosen to analyze health effect of parameters resulted from landfill to surrounding 

area.  
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CHAPTER 3 

METHODOLOGY 

Development of a systematic approach which can be used as a decision making 

tool to extend or shorten the PCC period or modify frequency of PCC activities should be 

based on whether the landfill is a threat to human health or the environment.   These 

decisions require technically sound and justifiable methods for analysis and interpretation 

of available data and information from closed landfill sites.   It is important that a set of 

measurements is developed and used appropriately to evaluate the activity in closed 

landfills in terms of their overall stability and potential threat to human health or the 

environment. The general approach for development of a PCC period decision is 

presented in Figure 2. 

 

Figure 2.  General approach and methodology for PCC period decision. 

Landfill stability depends on a number of factors which include variables that are 

related to site conditions, and design and operational parameters taking place at the site and 
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the surrounding areas both before and after the closure of a landfill cell.  Therefore, PCC 

decisions should be based on location specific factors, operational factors, design factors, 

post closure performance, end use, and economic factors shown in Figure 3. 

PCC Period Performance Decision Factors

Post-closure 
performance factors
• Leachate generation
• Gas generation
• Cap integrity
• Settling
• Ground water quality
• Surface water quality
•Age of LF
• Frequency of inspections
• Other

Post-closure 
performance factors
• Leachate generation
• Gas generation
• Cap integrity
• Settling
• Ground water quality
• Surface water quality
•Age of LF
• Frequency of inspections
• Other

Operational factors
• Fill materials
• Rate of filling
• Moisture addition
• Other

Operational factors
• Fill materials
• Rate of filling
• Moisture addition
• Other

Design factors
• Cap 
• Leachate collection
• Leachate monitoring
• Gas collection
• Gas monitoring
• Surface water management
• Groundwater monitoring
• Fill size (depth, area)
• Age of LF
• Other
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Figure 3.   Examples of potential decision factors for PCC period. 
 

A performance based methodology was used to evaluate the PCC needs for closed 

Davie Landfill at City of Davie in Broward County. The data used for the Davie Landfill 

were provided by Broward County Waste and Recycling Services Solid Waste Operations 

Division. According to this methodology, landfill leachate quality and quantity data, rainfall 

data, landfill gas composition and quantity data, groundwater quality monitoring data, and 

cap integrity were evaluated to forecast the level of stability of the case study landfills. The 

purpose of the risk analysis is to analyze the migration pathways and to estimate health risks 

resulting from the landfill.  The risk assessment was conducted by using Framework for 

Risk Analysis Multimedia Environmental Systems (FRAMES) model. For each landfill, 
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several metals and volatile organic compounds were identified as potential contaminants of 

concern for assessment of health risks due to contaminated groundwater near the case study 

landfills. Figure 4 presents, the sequence of specific task followed during the project. 

 

PCC Period Assessment  Tasks

Analysis of Land Use Data

Identification of Case Study Landfills 

Analysis of Performance Data
•Leachate
•Groundwater
•Landfill Gas
•Cap

Analysis Monitoring and Care 
Requirements

Analysis of  environmental 
risks

Identification of potential 
human health and 
environmental threats

 
Figure 4.  PCC Period assessment task sequence. 

 
3.1   Performance Based Methodology 

 For this study performance based methodology was used to evaluate the case 

study landfill based on the data and information available about the site.  The approach 

and analysis details of the methodology used are described below. 

The PCC duration for modern landfills is 30 years. The duration of PCC can be 

reduced by the director of an approved State if an owner/operator of a landfill 
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demonstrates that the landfill exhibits no threat to the surrounding HH&E or can be 

increased if the director of the approved State determines that an increased PCC period is 

required for the protection of HH&E. RCRA provides flexibility in optimizing PCC 

duration of landfills, although it does not identify the criteria/methodology which can be 

used in demonstrating the status of a landfill from the point of PCC. The performance 

based methodology is designed for evaluation of post closure care (PCC) duration and 

activities for modern landfills.  The performance based PCC decision system developed by 

Geosyntec Consultants was used for the assessment of site conditions to project PCC needs 

The PCC methodology is divided into four modules and this categorization is 

based on the classification of PCC activities as directed by RCRA shown in Figure 5. 

These modules are:  

(a) Leachate module  

(b) Landfill gas module  

(c) Groundwater module and  

(d) Cap module. 

  

Figure 5.  PCC components. 
 

 To define the trends in leachate and landfill gas two different trend analysis methods 

used. These are, 

 Time Series Decomposition Method for leachate trend 

 Landfill Gas Emission Model (LandGEM) 

25 
 



3.1.1   Trend Analysis Time Series Decomposition Method 

The trend analysis of data from the case study landfill was defined by time series 

decomposition method using MINITAB 15 software. The technique gives the best results 

for the data on which clear seasonal effect can be seen. The decomposition separates the 

times series into linear trend and seasonal components, as well as error, and provide 

forecasts. It can be chosen whether the seasonal component is additive or multiplicative 

with the trend shown in Table 4. 

Table 4.  The features of Additive and Multiplicative models. 
 
Decomposition, Multiplicative Model is used 
 
 data with either no trend or constant trend,  
 data with constant seasonal pattern 
 size of seasonal pattern proportional to data 
 long range forecasting 
Forecast profile: 
straight line multiplied by seasonal pattern 
 
 

 

Decomposition, Additive Model is used 
 
 data with either no trend or constant trend,  
 data with constant seasonal pattern 
 size of seasonal pattern not proportional to 

data 
 long range forecasting 
Forecast profile: 
straight line with seasonal pattern added 
 

 
 

For the additive model, forecasts can be made by the following model 

Yt = Trend + Seasonal + Error 

For the multiplicative model, forecasts can be made by the following model 

Y = Trend x Seasonal x Error 

Where, Y is the observation at time t. 
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Decomposition involves the following steps: 

1. Smoothes the data using a centered moving average with a length equal to the 

length of the seasonal cycle. When the seasonal cycle length is an even number, a 

two-step moving average is required to synchronize the moving average correctly.  

2. Divides the moving average into (multiplicative model) or subtracts it from 

(additive model) the data to obtain what are often referred to as raw seasonal 

values.  

3. Determines the median of the raw seasonal values.  

4. Adjusts the medians of the raw seasonal values so that their average is one 

(multiplicative model) or zero (additive model). These adjusted medians 

constitute the seasonal indices. 

5. Uses the seasonal indices to seasonally adjust the data. 

6. Fits a trend line to the seasonally adjusted data using least squares regression. 

Table 5.   Methods for determining the accuracy of the time series analysis 
 

Mean Absolute Deviation
(MAD) 

Mean Squared Deviation 
(MSD) 

Mean Absolute Percentage 
Error (MAPE) 

Measures the accuracy of fitted 
time series values as a 
percentage. 

Measures the accuracy of 
fitted time series values 
in the same units as the 
data. 

More sensitive measure of 
an unusually large 
forecast error than MAD.  
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* yt : actual value , yt
1 : fitted value,  n : number of observations 
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The data can be detrended by either dividing the data by the trend component 

(multiplicative model) or subtracting the trend component from the data (additive model).  

The accuracy of the time series analysis can be expressed by mean absolute percentage 

error (MAPE), mean absolute deviation (MAD), and mean squared deviation (MSD) as 

shown in Table 5 (Minitab15 StatGuide). Smaller values generally indicate a better fitting 

model (Armstrong et al., 2004). 

3.1.2   Landfill Gas Emission Model (LandGEM) 

 The Landfill Gas Emission Model (LandGEM) is widely used in the U.S to 

estimate the quantity of LFG produced. LandGEM is based on a first-order 

decomposition rate equation for quantifying emissions rates for total landfill gas, 

methane, carbon dioxide, nonmethane organic compounds (NMOCs), and individual air 

pollutants from decomposition of landfilled waste in MSW landfills (Alexander et al., 

2005). The software provides a relatively simple approach to estimating landfill gas 

emissions. Model defaults are based on empirical data from U.S. landfills. Field test data 

can also be used in place of model defaults when available. In the absence of specific 

values of data default values are provided in LandGEM. 

3.2   Risk Analysis 

The purpose of the risk analysis is to analyze the migration pathways of pollutants 

from the site and to estimate health risks due to groundwater contamination. After 

reviewing risk assessment models, Framework for Risk Analysis Multimedia 

Environmental Systems (FRAMES) was selected to conduct the risk assessments for the 

case study landfills. Some metals and volatile organic compounds were chosen as the 

groundwater contaminants of concern and risk analysis program was run to estimate the 
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health risks due to contaminants in the groundwater resulting from case study landfill. 

Human health risks were evaluated in terms of carcinogenic and noncarcinogenic effects 

due to exposure to contaminants present in the groundwater. FRAMES aided the study in 

constructing a conceptual site model (CSM), a site that is reconstructed on screen by 

defining the site parameters that represent the real or potential flow of contamination to 

the groundwater through the soil layers. The program (FRAMES) estimated the mass of 

the constituent remaining in the groundwater; constituent fluxes from the groundwater; 

intake by ingestion, inhalation and dermal contacts; and projected health risks (Whelan et 

al., 1997). FRAMES works with Multimedia Environmental Pollutant Assessment 

System (MEPAS). MEPAS is developed by Pacific Northwest National Laboratory 

(PNNL) to assess contaminated environmental problems. MEPAS simulates the release 

of contaminants from a source; transport through the air, groundwater, surface water, 

and/or overland pathways; and transfer through food chains and exposure pathways to the 

exposed individual or population. For human health impacts, risks are computed for 

carcinogens and hazard quotients for noncarcinogens.  

3.2.1   Sensitivity Analysis/ Factorial Design 

Sensitivity analysis was performed to analyze effects of different factors on risk 

assessment. For this purpose factorial design was chosen as sensitivity method. Factorial 

designs allow for the simultaneous study of the effects that several factors may have on a 

process. When performing an experiment, varying the levels of the factors 

simultaneously rather than one at a time is efficient in terms of time and cost, and also 

allows for the study of interactions between the factors. Interactions are the driving force 

in many processes. Without the use of factorial experiments, important interactions may 
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remain undetected. In a full factorial experiment, responses are measured at all 

combinations of the factor levels, which may result in a prohibitive number of runs 

(Minitab 15 StatGuide). After running the FRAMES software to assess risk resulting 

from landfill, an experimental statistical factorial design was developed to how different 

values of variables such as Darcy velocity, thickness of soil, contaminant mass in aquifer 

and different soil types would impact the risk results. Factorial design facilitates the 

evaluation of the interactions of variables and thus assists the process of model building. 

These experimental designs provide estimates of the “effects” of the interactions, while 

assuring that such interactions are not experimental errors (Murphy et al., 1998). 3x3 

factorial design was used for the experiment. These three factors are Darcy Velocity, 

thickness beneath the landfill and mass of contaminant detected in aquifer. Low, medium 

and high values were used as levels to set up a matrix.  
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CHAPTER 4 

DAVIE LANDFILL FACILITY DESCRIPTION 

4.1 Site Location and History 

The Davie landfill is located at 4401 S.W. 142nd Avenue, Davie, Florida (Broward 

County). The site was operated as a landfill from 1964 to 1987. It is located on a 209 acre 

parcel of land as shown in Figure 6. After closing, a portion of the site (approximately 

160 acres or around 78% of the land) was converted to a park, known as Vista View Park 

which opened to the public on July 2003. The chronicle history of Davie Landfill is 

explained in Table 6. 

Davie Landfill 
 Public park 
 Residential 

neighborhood 
with some 
commercial use 

 Total: 209 acres 
 (48-acre is class 

I and 68-acre is 
class III 
landfill)   

 
Figure 6.   General location and characteristics of Davie Landfill. 

 
Table  6.   Chronicle history of Davie Landfill (Completion report, 2003). 

Event Date 

Incinerator and trash landfill (south mound) operations commence 1964 

Unlined sludge lagoon created and operations begin November 1971 
Shutdown of incinerator due to excessive particulate matter 
emissions 

June 1975 

Landfills at subject site officially close - no longer accepting waste December 1987 

Solid Waste Post Closure Permit issued by FDEP February 1995 

Broward County regional park, Vista View Park opened to the 
public  

July 12, 2003 
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4.2   Location Specific Factors 

4.2.1   Weather 

The Davie landfill is located in a humid subtropical climate. May to October is 

the rainy season, and October to May is the dry season with average precipitation of 3 

inch/month during the dry season and 8 inch/month during the rainy season.  The average 

humidity is 70% and average temperature is between 70- 82 0F. The site has also been 

affected by hurricane activity in the region. For example, in 2005, several hurricanes 

passed through Broward County (Hurricanes Wilma and Katrina) and resulted in 

significant damage and rainfall in the area.   

4.2.2   Ground Water 

The hydrogeological units that are located in the vicinity of the Davie Landfill 

Site are the Biscayne Aquifer which is a surficial aquifer and the Floridian Aquifer which 

is an artesian aquifer. The Biscayne is an unconfined aquifer, which is approximately 100 

feet thick at the site and it is the only groundwater source for potable water in Broward 

County. The Biscayne Aquifer consists of two hydraulically connected units. The upper 

Biscayne Aquifer is approximately 50 feet thick and consists of a series of interbedded 

layers of sandy limestone, limestone and sandstone. The lower Biscayne Aquifer consists 

of approximately 50 feet of sand stone that contains large solution holes, which are at 

least partially filled with sand. The hydraulic conductivity of the upper unit is estimated 

at 300 gallons per day per foot (gpd/ft) and the hydraulic conductivity of the lower unit is 

estimated at 10,000 gpd/ft.  
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4.2.3   Sensitive Receptors 

       Sensitive receptors are areas that located around the site that could be affected by 

the landfill.  The sensitive receptors around Davie Landfill are shown in Figure 7. These 

are;  

 North New River Canal / South New River Canal,  

 Camp Seminole of the South Florida Council of the Boys Scouts,  

 Imagination farms (dairy farms), and  

 A single-family residential development. 

 
Figure 7.   Sensitive receptors around the landfill area. 

 
4.3   Design Factors 

The landfill area is comprised of two mounds, the south mound (trash landfill) 

and north mound (sanitary landfill).  The south mound is unlined and accepted incinerator 

ash, yard trash, construction and demolition debris, and other trash.  The focus of this 

discussion involves only the north mound, which accepted unprocessed municipal solid 

waste. The cross section of the north mound is shown in Figure 8.  
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Figure 8.   Cross section of north mound at Davie Landfill. 
 
4.3.1   Liner System 

The south mound is unlined and the north mound is partially lined. The north 

mound is made up of 14 cells.  Cells 1-4 are located in the northwest portion of the north 

mound. Cells 5-13 are located immediately adjacent to the eastern face of cells 1-4 and 

progress to the eastern most boundary of the north mound.  Cell 14 is the southernmost 

cell of the north mound and also overlays cells 1-13 up to the final elevation. Cells 1-4 

were lined with a sprayed asphaltic liner and do not have a leachate collection system. 

 Cells 5-13 are lined with paved asphalt with a leachate collection system.  A secondary 

bentonite clay liner was installed at an elevation of 55-60 feet.  Cell 14 was constructed 

with a 60 mil HDPE liner and leachate collection system. 

4.3.2   Cap 

In general, both the sanitary and trash landfill cover systems consist of two feet of 

limerock, which was compacted in six-inch layers and covered with six inches of 

vegetative soil.  A total of 31,969 tons of lime rock was used as the landfill cover 
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material, and approximately 21,000 tons were used for Cell 14. Two lifts of material 

(each 1-foot thick), was spread and compacted. The final cover was sloped at a 2% grade 

towards the southwest corner of the sanitary landfill.  The slopes on the cover are 

relatively flat on the crown of the landfill cells, with slopes generally 1 to 3%. The 

landfill has settled approximately five feet since 1987. 

4.3.3   Groundwater 

The potentiometric surface elevation of the underlying aquifer ranges from 

approximately 4 feet in the northwest section of the landfill to approximately 2.3 feet in 

the southeast section. As a result, the groundwater flows in a southeasterly direction. The 

regional groundwater gradient is reported to be about 0.4 feet per mile. The C-l 1 canal 

has a direct effect on the groundwater flow at the Davie Landfill Site. During periods of 

high flow, the canal becomes a recharge source for the aquifer and influences 

groundwater flow in a northerly direction. During periods of low flow, the canal acts as a 

discharge area for groundwater and enhances the groundwater flow in a southerly 

direction. Therefore, fluctuations in groundwater at the Davie Landfill site are directly 

related to precipitation and pumping events in the area. 

4.3.4   Leachate System 

The leachate collection system at the site drains into a main sump, where it is 

pumped through a leachate force main to the City of Sunrise wastewater treatment plant. 

Leachate samples are analyzed biannually. 

4.3.5   Surface Water 

The Davie Landfill site is located between two drainage canals. The North New 

River Canal (L-36) is approximately 3.5 miles to the north and the South New River 
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Canal (C-l1) is approximately 0.25 mile to the south. To the east of the landfill is a north-

south drainage ditch that drains into the C-ll Canal. This shallow ditch does not receive 

surface water runoff from the landfill. All surface water runoff is channeled to one of the 

borrow lakes. Lakes 1, 2 and a pond are physically connected. The northern area of the 

site drains to Lakes 1 and 2 and the southern area drains to Lake 3 shown in Figure 9. 

Around the site, there is a perimeter berm that is designed to hold stromwater for a 25-

year, 72-hour storm event. 

 

Figure 9.   Landfill surface water. 
 
4.3.6    Landfill Gas Management System  

The landfill gas management system collects the gas produced at the landfill and 

eliminates it through an enclosed flare. The sanitary landfill gas collection and control 

system maintenance activities consist of monthly inspection of 33 gas extraction wells. 
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CHAPTER 5 

MODULE EVALUATIONS 

5.1.   Leachate Module  

The purpose of the leachate module is to determine whether the leachate 

management practices can be optimized, reduced, or discontinued. For this reason, the 

leachate module was divided into two parts: 

1. Evaluation of leachate quantity trends, and  

2. Evaluation of leachate quality and projection of future trends for the contaminants 

of concern.  

The results of the leachate module were used for the following purposes: 

a. Evaluation of the levels of the contaminants of concern over time and comparison 

with MCLs, 

b. Estimation of trends for the contaminant of concern, and 

c. Projection of future concentrations and decision to continue or discontinue the 

monitoring for contaminants of concern.  

5.1.1   Leachate Quantity Trend  

     Leachate quantity data were available from 1989 to 2008. Figures 10 and 11 show 

that leachate quantity has been decreasing gradually over time. In Figure 11, leachate 

quantity data analyzed by time series included those from January 2001 to December 

2005 (60 months).  Figure 12 compares the rainfall and leachate quantity on a yearly 

basis. Both rainfall and leachate data have downward trend. When monthly leachate and 

rainfall data are compared, the correlation between the leachate quantity and rainfall can 

be noted based on the periodic peaks (due to dry and rainy seasons) observed as shown in 
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Figure 13. The leachate quantity showed a decreasing trend over time. Leachate 

generation rates are significantly affected by meteorological conditions and the 

hydrologic properties of the cover and waste materials.   
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Figure 10.   Annual leachate generation by years. 
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Figure 11.   Time series projections of monthly leachate generation 
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Figure 12.   Yearly total leachate vs. rainfall. 
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Figure 13.   Monthly total leachate vs. monthly total rainfall. 

 
Inspection of the recent data records showed an unusual trend (After 2003 

leachate quantity suddenly increases) with no documented explanations in the reports 

available. Interviewing of the engineer responsible for the landfill site revealed that the 

meter that was used for monitoring the leachate quantity was broken and a new meter had 

been installed in 2006. Reassessment of the data by plotting the rainfall versus leachate 

quantity showed that the new meter had a different calibration scale from the previous 
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meter. Figure 14 presents the annual average rainfall versus leachate quantity. The data 

collected with the new meter showed the discrepancies in the calibration of the old and 

new meters. 

Rainfall vs. Leachate

0

2

4

6

8

0 200000 400000 600000 800000

Average leachate quantity (gal/year)

A
ve

ra
g

e 
ra

in
fa

ll 
(i

n
ch

/y
ea

r)

y = 1E-05x + 2.6246
R2 = 0.7656

y = 0.8E-05x - 0.2618
R2 = 1

(new meter)(old meter)

 

Figure 14.   Average rainfall vs. average leachate at Davie Landfill. 

5.1.2   The Fate and Transport of Leachate 

The fate and transport of leachate from landfills is an environmental concern 

(Christenson et al., 2003). All liner systems eventually lose their integrity and some 

contaminants may be released to the environment (USEPA, 1988). During waste 

degradation, landfills go through four phases: (1) an initial aerobic phase, (2) an 

anaerobic acid phase, (3) an initial methanogenic phase, and (4) a stable methanogenic 

phase (Christensen and Kjeldsen, 1995). Existing data show that the chemical 

composition of leachate is highly dependent on the degradation stage of the waste. In the 

acid phase, concentrations are higher because of raised formation of dissolved organic 

matter and release of ammonia. In the methanogenic phase, the content of dissolved 

organic matter significantly decreases and the composition of the organic matter changes. 

40 
 



The leachate contains four groups of pollutants: dissolved organic matter, inorganic 

macro components, heavy metals, and xenobiotic organic compounds (Kjeldsen et al., 

2002). Anaerobic degradation of organic wastes produces about 40 to 45 percent 

methane, 55 to 60 percent carbon dioxide, and traces of other volatile and semivolatile 

organic compounds (Committee to Assess the Performance of Engineered Barriers, 

National Research Council, 2007). Depending on the types and concentrations of 

compounds present in leachate, the extent of stability of a landfill can be projected.   

Pohland and Englebrecht (1976) reported initial increasing trend followed by a 

decreasing trend in concentrations of landfill leachate pollutants.  Statom et al., (2004) 

presented decreasing trends for temperature, conductivity, TDS, COD, TOC, ammonia, 

TKN, nitrate, chloride, sodium, fluoride, alkalinity, boron, chromium, vanadium, cobalt, 

and nickel; and increasing level for calcium and TIC, iron and manganese concentrations; 

and stable trends for pH, BOD, phosphorus, sulfate, and magnesium. Sanin et al., (2000) 

reported on the presence and biodegration of toluene, acetone, and 1,2-dichoroethane in 

decomposing MSW. The literature for degradation of organic chemicals in landfills are 

still limited, unless specific degradation rates are retrieved for a specific case, default 

values on degradation cannot be suggested (Christensen et al., 2001).  

5.1.3   Leachate Quality 

  The leachate quality was monitored twice a year (April and September). Leachate 

samples were collected biannually until 2006.  After 2006, the management decided to 

collect the leachate samples once a year. A total of 46 parameters were monitored. 

Among these parameters, 28 parameters were non-detected parameters (i.e., always 
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below the detection limit), 8 parameters were always above the Maximum Contaminant 

Level (MCL) and 10 parameters were below the MCL as presented in Table 7. 

Table 7.   Parameters of interest in leachate at Davie Landfill. 

Below MCL Above MCL 
1,4-Dichlorobenzene Chloride 
Chlorobenzene  Bicarbonate 
cis-1,2-Dichloroethylene Sodium 
Dichlorodifluoromethane Ammonium as N 
Ethylbenzene  Iron 
Methyl-tert-butyl ether (MTBE) Benzene 
Tetrachloroethene  Vinyl Chloride 
Toluene Total Dissolved Solids 
Xylenes    
Total BTEX   

 
Initially, the available data were plotted as a function of time to fit a trend line 

with regression analysis. However, a clear trend (i.e., decreasing or increasing) could not 

be identified due to significant seasonal variations in the data. The samples collected at 

the end of the dry season (April) had higher concentrations; and the samples collected at 

the end of the rainy season (September) had lower levels due to dilution by rain water.   

Similar observations on leachate quality due to seasonal effects have been reported in the 

literature.  Chu et al. (1994) observed a strong correlation between rainfall levels and 

leachate strength with high rainfall conditions correlating with lower strength and low 

rainfall correlating with higher strength of leachate quality. Akesson and Nilsson (1997) 

reported lower leachate concentrations during the wet season in a Swedish landfill test 

cell. The data were analyzed by time series decomposition method using MINITAB 15 

software. Decomposition method separates the times series into a trend component that is 

a smooth function of time that may have a simple parametric form, a seasonal component 

which represents a pattern that is repeated every year, and an error component which is 
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independent and identically distributed with mean zero. Time series decomposition 

approach is a quick and easy method of generation a range of parameters forecast 

(Worrall et al., 1998). It can be used by either selecting an additive or multiplicative 

model. The additive model assumes that amplitude of both the seasonal and irregular 

variations in data do not change as the level of the trend rises or falls. The multiplicative 

model assumes that the amplitude of both the seasonal and irregular variations increase as 

the level of the trend rises.  The data from the case study landfill showed more adequate 

fit with the multiplicative model with a linear parametric component (Tt).  Therefore, 

time series decomposition with multiplicative model was used for the trend analyses.   

5.1.3.1   Leachate Quality Trend 

Leachate monitoring data were evaluated to forecast the stability of a Davie 

landfill. The analyses of the monitoring data showed a strong correlation with the 

sampling time during the year.  The samples collected at the end of the dry season (April) 

had high concentrations; and the samples collected at the end of the rainy season 

(September) had lower levels due to dilution by rain water. Seasonality of the data was 

identified by the patterns which corresponded with the annual sampling cycles. Time 

series decomposition with multiplicative model was used for the trend analysis.  

Figure 15 presents the sodium levels in leachate from April 2001 to April 2006.  

Sodium is generally derived from dissolution of salt in the landfills (Statom et al., 2004).  

The time series model was adequate.  The only significant discrepancy between the data 

and the model was for 2002 September data.  When the data was examined, it was seen 

that the April 2002 and September 2002 data were exactly the same.  It is possible that 
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this data was not actually collected in the field.  Based on the time series forecast, sodium 

concentration would be below the MCL by the year 2011.  
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Figure 15.   Time series projection for sodium generation. 

 
 Figure 16 presents the chloride levels in leachate from April 2001 to April 2006.  

The data after 2006 were not used due to changes in the sampling period. During April 

2001 to April 2006, sampling was done twice a year (April and September). After 2006, 

the sampling frequency was changed to once a year.  The trend predicted by time series 

decomposition method was adequate.  Based on the projections, chloride concentration 

would be below the MCL by the year 2023.  Statom et al. (2004) reported chloride 

displayed a short increasing trend early in the decomposition stage and then an overall 

decreasing trend.  The major sources of chlorine in MSW are paper and plastics (U.S. 

Congress, Office of Technology Assessment, 1989). When chlorine combines with other 

available elements, it turns to chloride.  

Figure 17 presents the concentration of total dissolved solids (TDS) in leachate 

from April 2001 to April 2006.  The major contributors to TDS are sodium and chloride. 
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Since both sodium and chloride have decreasing trends, TDS is also showed a decreasing 

trend. Statom et al. (2004) also reported a declining trend for TDS in leachate. The model 

was adequate for the TDS monitoring data.  
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Figure 16.   Time series projection for chloride generation. 
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Figure 17.   Time series projection for Total Dissolved Solids generation. 

 
Figure 18 presents the iron concentrations (total concentration of iron regardless 

of species e.g. Fe+2 or Fe+3)  in leachate. The data used included those from April 2001 to 
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April 2006. The model projections show that iron levels are increasing over time.  

Projections showed a good fit for the data collected in 2007 and 2008. The oxidation-

reduction potential (Eh) and pH affect the solubility of metals.  Charlatchka and Cambier 

(2000) reported that the concentrations of zinc, manganese, and iron increased with 

increasing Eh in agricultural soils polluted with metals. Other factors affect the solubility 

of metals include the cation exchange capacity (CEC) of the waste, how CEC changes 

during MSW decomposition, and the presence of more oxidized functional groups on the 

solid humic matter in MSW and humic matter in leachate (Aulin et al., 1997; Martensson 

et al., 1999).   

Carboxylic acids can act as chelators during the waste decomposition resulting in 

dissolution of iron (Calmano et al., 1993; Bozkurt et al., 1997; Kjeldsen et al., 2002).  

Dissolved iron concentrations increase in leachate during transfer electrons to the iron on 

the mineral coatings by microorganisms while degrading the organic matter. With the 

addition of an electron, the iron is reduced to ferrous form which dissolves in water 

(Christenson et al., 2003). Statom et al. (2004) reported that after closure of a landfill iron 

concentrations first fluctuated and then significantly increased (Statom et al., 2004).  Iron 

can corrode under anaerobic conditions, especially during the acid phase when low pH 

environment causes substantial corrosion (Scully, 1990). Although, many landfills show 

slightly acidic pH environment due to the presence of adequate buffer in the waste 

(Christensen et al., 1992); anaerobic conditions provide a favorable conditions for 

corrosion of iron over time by the following reaction (Reardon, 1995; Kjeldsen et al., 

2002): 

Fe (s) + 2H2O (1)  →  Fe2+ + 2 OH- + H2 (g)  →  Fe(OH)2 (s) + H2 (g) 
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Figure 18.   Time series projection for iron generation. 

 
Figure 19 presents the pH levels of leachate from April 2001 to April 2006. The 

pH was relatively steady during the recent years and projected to be between 7.3 and 7.8 

in the future.   
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Figure 19.   Time series projection for pH. 

 
Figure 20 presents the bicarbonate levels in leachate from September 2001 to 

September 2005. The data collected in April 2006 had a very high value and it was 
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considered as an outlier. The figure shows that bicarbonate has an increasing trend. As 

the organic content of the waste is a decomposed, significant amount of bicarbonate 

forms as a byproduct of bacterial respiration (Klinck et al., 1999). The other source for 

bicarbonate is the cap system of the landfill which consists of a two-foot thick lime rock, 

a commonly found natural material in Florida. The lime rock consists of primarily 

calcium carbonate and it is the consolidated or partially consolidated form of limestone. 

The rain water slowly dissolves the limestone cap creating voids or cavities within the 

limestone cover by the following reactions (www.swfwmd.state.fl.us/sinkholes.pdf ) 

CaCO3  +  2 H2O   →   Ca(OH)2  +  H2CO3 

  H2CO3 →    H+ +  HCO3
- 
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Figure 20.   Time series projection for bicarbonate generation. 

 
Figure 21 presents the ammonia levels in leachate from April 2001 to April 2006. 

Although the time series projections indicate a decreasing trend, field data showed a 

steady trend for ammonia levels. Ammonia data did not show the typical seasonal trend 

in 2003 and 2004. Although the time series model underestimated the ammonia levels, 
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the values predicted for 2007 and 2008 were very close to the field monitoring data. The 

projection shows that ammonia concentration in leachate will be close to zero in 2014.  

According to available literature, ammonia concentrations decline with the age of the 

landfills. Pohland and Harper (1986) observed higher ammonia levels during the 

acidogenic phase because of protein breakdown, then lower levels and decreasing trend 

during of biological assimilation in the methanogenic phase (Reinhart et al., 1998).  

Kjeldsen et al. (2002) reported no decreasing trend in concentration of ammonia over 

time due to the decomposition of proteins. The only mechanism by which the ammonia 

concentration can decrease during waste decomposition is leaching since there is no 

mechanism for degradation of ammonia under methanogenic conditions (Robinson, 1995; 

Burton and Watson-Craik, 1998).  Kjeldsen et al. (2002) and Statom et al. (2004) 

observed that ammonia showed a short increasing trend early during the waste 

decomposition and then an overall decreasing trend. 
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Figure 21.   Time series projection for Ammonia as N generation. 
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Figure 22 presents the vinyl chloride levels in leachate from September 2001 to 

April 2006. Vinyl chloride did not show a typical seasonal variation. The time series 

model underestimated the vinyl chloride concentrations. The projected values indicate a 

declining trend for vinyl chloride and the predicted values for 2007 and 2008 were very 

close the field data.  
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Figure 22.   Time series projection for vinyl chloride generation. 
 

In the literature there were no definitive data on the trends of VOCs compounds  

as a function of time or state of decomposition in modern Subtitle D landfills.  Figure 23a 

presents the 1,4-dichlorobenzene  levels in leachate from September 2001 to April 2006. 

Both the field data and the time series projections show a declining trend for 1,4-

dichlorobenzene. Figure 23b presents the chlorobenzene levels in leachate from 

September 2001 to April 2006. Although projections indicate an increasing trend, field 

data showed a steady trend for chlorobenzene. Chlorobenzene is produced during 

anaerobic biodegradation of 1,4-dichlorobenzene (Lawrence, 2006; Middeldorp,1996). 
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Therefore, the declining trend of 1,4-dichlorobenzene may correspond with the increasing 

trend of chlorobenzene according to the following reaction: 

C6H4Cl2 + 2H+ + 2e-       →     C6H5Cl + H+ + Cl- 

(1,4-dichlorobenzene)      →     (chlorobenzene) 
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Figure 23.  Time series projection for a) 1,4 dichlorobenzene generation b) chlorobenzene 

generation.  

Degradation might play a significant role in the long-term fate of VOCs. The 

highly chlorinated alkenes commonly serve as the electron acceptors during anaerobic 

biodegradation (Vogel et al., 1987). The primary anaerobic process for degradation of 

chlorinated VOCs, except VC, is reductive dechlorination. Tetrachloroethene and TCE 

are the most susceptible to reductive dechlorination because they are the most oxidized 

forms of the chlorinated ethenes.  However, the more reduced degradation by-products 

such as trichloroethenes and vinyl chloride are less prone to reductive dechlorination. The 

main by-products of anaerobic biodegradation of the polychlorinated ethenes are cis-1,2-

dichloroethane and  vinyl chloride as shown in Figure 24a. A study by Ramanand et al., 
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(1993) suggested that 1,2,4-trichlorobenzene could be biodegraded to chlorobenzene with 

1,4-dichlorobenzene as the intermediate compound under anaerobic conditions. 

Middeldorp et al., (1997) showed that 1,2,4-trichlorobenzene was reductively 

dechlorinated to 1,4-dichlorobenzene, then to chlorobenzene in a methanogenic 

laboratory microcosm in which chlorobenzene contaminated sediments were enriched 

with lactate, glucose, and ethanol as presented in Figure 24b.  

 

 

 

 

(a)                                 (b) 
 

Figure 24. Anaerobic formation and biodegradation of chlorinated VOCs in MSW,  
(a) tetrachlorethane (b) 1,2,4-trichlorobenzene (adapted from Lawrance, 2006). 

 
Figure 25 presents the benzene concentrations in leachate from April 2001 to 

April 2006. The general trend for benzene levels is declining. Based on the projections, 

benzene concentration would be below the MCL by the year 2028. The source of benzene 

in leachate may be decomposition of aromatic compounds or the petroleum products 

present in the waste.   
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Figure 25.   Time series projection for benzene generation. 
 
 Figures 26 a,b,c,d present levels of toluene, ethylbenzene, xylenes, and total 

BTEX in leachate,  respectively. The projected trends for these VOCs showed a declining 

trend.  
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Figure 26.   Time series projection for a) toluene b)ethylbenzene c)xylene d) Total BTEX 
generation. 

In general, volatile organic compounds (VOCs) are relatively small compounds 

with high solubility in water, high vapor pressure, high Henry’s constant, low organic 

carbon partition coefficient( Koc), high octanol water partition coefficient (Kow), and 

low bioconcentration factor (BCF) (LaGrega, 2001).  Due to their relatively high vapor 

pressures, they do not show a persisting trend in leachate. Based on the projections, 

leachate quality would reach below MCL between 2010 (for vinyl chloride) and 2031 

(for TDS) for all the parameters monitored.  Although total BTEX is already below MCL, 

benzene levels are projected to be below MCL by the year 2030. Decreasing trends were 

observed and projected for leachate quantity, chloride, sodium , total dissolved solids, 

vinyl chloride,1,4-dichlorobenzene, chlorobenzene, xylenes, ethylbenzene, toluene, and 

total BTEX. Increasing trends were observed and projected for concentrations of  iron, 

bicarbonate, and chlorobenzene. Table 8 summarizes the projected trends of leachate 

quality parameters monitored.  
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Table 8.   Leachate quantity and quality trends and general comments. 

Trend 
Max 

Value 
Min 

Value 
Mean Comment Parameter 

Decreasing 1847 54 630 
Projections and observations 
indicate decreasing trend 

Leachate quantity 
(m3/month) 

Decreasing 2200 460 
1150.

5 
MCL will be reached in 2011. Sodium (mg/L) 

Chloride (mg/L) Decreasing 1400 600 984.3 MCL will be reached in 2023. 

Increasing 4400 1400 
2935.

4 
Projections indicate increasing 
trend. 

Iron (µg/L) 

Total Dissolved Solid 
(mg/L) 

Decreasing 5800 1300 4030 MCL will be reached in 2031. 

Increasing 13300 590 
4584.

6 
Projections indicate increasing 
trend. 

Bicarbonate (mg/L) 

Decreasing 3100 16 836.5 

Projections indicate decreasing 
trend, observations showed 
steady levels. Projected to be 
close to zero in 2014. 

Ammonia as N 
(mg/L) 

pH Steady 8 7 7.48 Relatively stable. 
Vinyl Chloride 
(µg/L) 

Decreasing 3 1 1.7 MCL will be reached in 2010. 

1,4-Dichlorobenzene 
(µg/L) 

Decreasing 12.0 1.0 6.98 Already below MCL. 

Increasing 15.0 7.3 11.1 

Already below MCL. 
Although projections indicate 
increasing trend, observations 
indicated steady trend. 

Chlorobenzene 
(µg/L) 

Decreasing 4.00 0.18 3.13 

Projections indicate decreasing 
trend, observations showed 
steady levels. Projected to 
reach MCL in 2030. 

Benzene (µg/L) 

Toluene (µg/L) Decreasing 7.6 1.0 3.39 Already below MCL. 
Ethylbenzene (µg/L) Decreasing 19.0 3.9 8.98 Already below MCL. 
Xylenes (µg/L) Decreasing 28.0 5.8 13.26 Already below MCL. 
Total BTEX (µg/L) Decreasing 51.3 18.6 30.45 Already below MCL. 

 
Anaerobic conditions in landfill provide favorable conditions for corrosion of iron 

resulting in higher concentrations over time.  Bicarbonate formation as a byproduct of 

bacterial respiration during waste decomposition and the limerock cap system of the 

landfill contribute to the increasing levels of bicarbonate in leachate.  Chlorobenzene is 

produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing 

trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The 
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source of these VOCs and other contaminants in leachate are primarily household 

cleaners and anaerobic biodegradation of  the parent compounds as shown in Table 9. 

Table 9.   Potential sources of contaminants detected in leachate. 

Contaminants Source 
Sodium Sodium is derived from dissolution of salt (Statom et al., 2004) 

The major sources of chlorine in MSW are paper and plastics. Chlorine is 
used directly to make certain products, such as PVC plastics and insulation 
and textiles. Chlorine is also used to bleach pulp for papermaking (U.S. 
Congress, Office of Technology Assessment, 1989) 

Chloride 

TDS The major contributors are sodium and chloride in leachate. 
Iron Food and beverage cans, wood-waste (Lee et al., 1991). 

When the waste is decomposed due to the high moisture content, large 
amount of bicarbonate is formed as a byproduct of bacterial respiration 
(Klinck et al., 1999). 

Bicarbonate 

Ammonia is released from the waste mainly by decomposition of protein 
(Kjeldsen et al., 2002). Under the anaerobic conditions nitrates are reduced 
to ammonia (Reinhart et al, 1998) 

Ammonium as N 

Polyvinyl chloride (PVC) food wrappings, packages, anaerobic degradation 
by product of  tetrachloroethane, (http://www.epa.gov/OGWDW/t-
voc/vinylchl.htm), 1,2-dichloroethene in landfills will eventually break down 
into vinyl chloride (http://www.atsdr.cdc.gov/toxprofiles/tp87-c1.pdf) 

Vinyl chloride 

Household cleaners (disinfectant, toilet bowl cleaner). Anaerobic 
biodegradation byproduct of 1,2,4-trichlorobenzene (Lawrence, 2006; U.S. 
Congress, Office of Technology Assessment,1989). 

1,4-
Dichlorobenzene 

Household cleaners (degreaser, destainer) (U.S. Congress, Office of 
Technology Assessment,1989). Anaerobic biodegradation by product of 1.4 
dichlorobenzene (Lawrence, 2006) 

Chlorobenzene  

Household cleaners, shoe polish (U.S. Congress, Office of Technology 
Assessment,1989), anaerobic biodegradation of tetrachloroethene (PCE) 
(Lawrence, 2006) 

cis-1,2-
Dichloroethylene 

Household cleaners, varnish, nail polish (U.S. Congress, Office of 
Technology Assessment,1989) 

Benzene 

Household cleaners, lubricating oil, brake/clutch/ hydraulic fluid, motor oil, 
paint (latex, lacquer thinners), adhesives (microfilm, plastic, leather, fabric, 
rubber), nail polish (U.S. Congress, Office of Technology Assessment, 
1989) 

Toluene 

A solvent for coatings, and in the production of synthetic rubber and 
cellulose acetate, thinner, gasoline (www.eco-usa.net/toxics/ethbenz.shtml, 
http://www.epa.gov/OGWDW/dwh/t-voc/ethylben.html) 

Ethylbenzene  

Transmission fluid, engine treatment (degreaser), paint (latex, non-latex, 
lacquer thinners), adhesives (microfilm, fabric), nail polish (U.S. Congress, 
Office of Technology Assessment,1989; 
http://www.netspeed.com.au/rdi/cas/xylene.htm ) 

Xylenes 

Total BTEX 
Benzene, toluene, ethlybenzene, and xylene compounds typical present in 
gasoline (Lawrence, 2006) 
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 Table 10 compares the accuracy of the time series projections for selected 

parameters in leachate.  The time series model in general provided an adequate forecast 

for future planning purposes.  Table 11 presents the accuracy of the projections for the 

VOC levels in leachate.  The projections for the VOCs monitored were also adequate for 

planning purposes.  The model projections for 1,4 dichlorobenzene were relatively less 

accurate in comparison to the projections for vinyl chloride and chlorobenzene. Among 

the BTEX compounds, benzene showed the most adequate fit for the time series 

projections; toluene had the highest mean absolute percentage error (MAPE), and xylene 

had the highest mean absolute deviation (MAD) and mean squared deviation (MSD).   

Table 10.  The accuracy of time series projections for selected leachate quality 
parameters. 

 
Parameter 

Mean Absolute 
Percentage Error 

(MAPE) % 

Mean Absolute 
Deviation  

(MAD) 

Mean Squared 
Deviation 

(MSD) 
Leachate quantity (m3/month) 57 219.5 89763.2 
Sodium (mg/L) 23.1 239.8 75812.5 
Chloride (mg/L) 7.72 67.46 6150.5 
Iron (µg/L) 23 533 558883 
Total Dissolved Solids (mg/L) 7 284 125589 
Bicarbonate (mg/L) 10 381 204077 
Ammonia as N (mg/L) 9.71 699 902979 
pH 

 
2.81 0.213 0.077 

 Table 11.   The accuracy of time series projections of selected VOCs in leachate. 

 
Parameter 

Mean Absolute 
Percentage Error 

(MAPE) % 

Mean Absolute 
Deviation 

(MAD) 

Mean Squared 
Deviation 

(MSD ) 
Vinyl Chloride (µg/L) 41.44 0.62 0.53 
1,4 Dichlorobenzene (µg/L) 80.08 2.22 7.63 
Chlorobenzene (µg/L) 14.23 1.49 2.75 
Benzene (µg/L) 12.09 0.39 0.20 
Toluene (µg/L) 42.14 0.88 1.50 
Ethylbenzene (µg/L) 36.36 2.60 9.51 
Xylene (µg/L) 33.15 3.31 16.61 
Total BTEX (µg/L) 21.32 5.41 50.5 
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5.2   Landfill Gas (LFG) Module  

The purpose of the Landfill Gas (LFG) Module is to evaluate whether LFG 

monitoring can be changed, optimized, reduced or discontinued. For this reason, the LFG 

module was divided into two parts: 

1. Evaluation of the LFG production trend with available data, and  

2. Comparison of the LFG trend using Landfill Gas Emissions Model (LandGEM) 

software.   

The results of the gas module were used for the following: 

1. Analysis of the landfill gas production trend overtime, 

2. Estimation of the remaining LFG potential, and 

3. Decision to optimize/reduce or discontinue the LFG monitoring.  

5.2.1   Landfill Gas Trend Analysis  

Landfill gas generated is collected by the landfill gas management system and 

eliminated through an enclosed flare. There are 33 gas extraction wells. The current 

landfill gas flow rate entering the enclosed flare is approximately 200 to 250 standard 

cubic feet per minute (scfm) with a methane concentration of approximately 40% to 50%. 

The north mound generates enough gas to operate the flare approximately 1 to 1.5 hours 

per day. Gas pressure, gas composition, oxygen concentration and gas temperature at 

each gas extraction well/trench and flare are recorded on a monthly basis. The landfill gas 

data are available from 2004 to 2008. The LFG data plotted over time show that the 

amount of LFG generated  is decreasing shown in Figure 27. Figure 28 shows the 

monthly landfill gas generation trend.  The methane generation over time also showed a 

decreasing trend presented in Figure 29. 
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Figure 27.   Annual landfill gas generation trend. 

 
 

Figure 28.   Monthly landfill gas generation trend. 
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Figure 29.   Yearly methane generation trend. 
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5.2.2   Remaining Gas Generation Potential Analysis 

The Davie Landfill site is still generating LFG. Therefore, the remaining gas 

generation potential was estimated based on the decreasing trend observed for gas 

production. The estimation of remaining LFG allows optimization of monitoring 

frequency of the gas generation rate.  Calculation of the remaining LFG requires 

estimation of the total LFG generation potential of the waste. With the available data 

(2004-2008), total LFG calculation could not be calculated. LandGEM software was used 

to estimate the closest values for LFG and methane generation rates. LandGEM relies on 

several model parameters to estimate landfill emissions. These include: 

 Opening and closing date of landfill,  

 Total waste placed in landfill, 

 Methane generation rate (k),  

 Potential methane generation capacity (Lo), and 

 NMOC concentrations and methane content. 

Davie landfill accepted municipal waste from 1975 to 1987. The waste quantity 

deposited over the years is presented in Table 12. A total of 2,695,628 tons waste was 

placed in the landfill. 

Table 12.   Waste in placed to Davie Landfill during operation time 
 

Years Waste (tons) Years Waste (tons)  
1975-1979 600000 1984 300677  

1980 115122 1985 281195  
1981 241706 1986 308185  
1982 229106 1987 305000  
1983 314637    
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5.2.3   Methane Generation Rate (k) Calculations 

The methane generation rate (k) is primarily a function of four factors:  

 Moisture content of the waste mass,  

 Availability of nutrients for microorganisms that break down the waste to form 

methane and carbon dioxide, and  

 pH and temperature of the waste mass. 

(http://www.xyta.gr/support/landfilldesign/answers.aspx?answer=ec239b28) 

The USEPA developed a methodology for determining landfill gas generation 

based on a first-order degradation model as follows: 

Q = 2kLoMie
-kt  

Where; 

Q = total annual gas production rate (m3/year),  

Lo = methane generation potential (m3 methane/MG of waste),  

k = decay coefficient (year-1),  

Mi = waste in place (MG) and 

t = age of waste (year).   

(Faour et al., 2007) 

      For calculation of k, the formula can be rewritten as follows:  

lnQ = ln(2 k Lo M) - k t 

The value of k can be calculated as shown in Figure 30. 
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Figure 30.   Methane generation rate (k) calculation.  

Based on the slope of the line, k was estimated as 0.21 per year.  The higher the 

value of k, the faster the methane generation rate increases and then decays over time. 

 In the absence of specific values of data default values are provided in 

LandGEM. LandGEM default values are mentioned in Table 13. Lo and k values may 

vary depending on the mode of operation of landfills.  

Table 13.   Default Lo and k values used in LandGEM (EPA, 2005). 

Lo, m
3/megagrams k, yr-1  

CAA 170 0.05 
AP-42 100 0.04 

Bioreactor 96 0.25 

5.2.4   Potential Methane Generation Capacity (Lo) 

The potential methane generation capacity (Lo), depends on the type and 

composition of waste, the higher the cellulose contents of the waste, the higher the value 

of Lo. The value of Lo: 22 m3/Mg was estimated by using LandGEM model. 

5.2.5   Methane Content 

Methane content of LFG was found to be about 45%, based on monthly 

monitoring of the gas composition shown in Table 14.  
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Table 14.   Gas composition. 

Constituent Percentage in gas 
Methane 45% 
Oxygen 1.36% 
Carbon dioxide 30% 

 
5.2.6   Comparison of LandGEM with real data 

      LandGEM software was run to compare the estimated gas data with the actual gas 

monitoring data. The input data used for running the software are shown in Table 15. 

Table 15.   LandGEM input data. 

LANDFILL CHARACTERISTICS Value Units 

Landfill Open Year 1975  

Landfill Closure Year (with 80-year limit) 1987  

Actual Closure Year (without limit) 1987  

Have Model Calculate Closure Year? No  

Waste Design Capacity  Megagrams 

MODEL PARAMETERS   

0.21 year-1 Methane Generation Rate, k 

Potential Methane Generation Capacity, Lo 22 m3/Mg 

NMOC Concentration 4,000 ppmv as hexane

Methane Content 45 % by volume 
 

Running LandGEM software gave reasonably close values to actual field data 

collected from the landfill site as shown in Table 16.  

Table 16.   Comparison LandGEM to real data. 

Real Data 
LFG  

m3/year 

CH4 
m3/year 

LandGEM 
LFG m3/year 

CH4 
m3/year 

CH4 
%Difference 

LFG 
%Difference 

Year 

2004 370232.5 166098.8 380454.1 171204.3 3 2.7 

2005 314018.2 139673.8 308390.1 138775.5 0.6 1.8 

2006 188392.5 96618.44 249976.1 112489.3 14.1 24.6 

2007 218121.6 91035.01 202626.7 91182.03 0.2 7.6 
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Figure 31.   Total gas values (LandGEM). 

   Estimated total gas quantity and gas constituents overtime have similar decreasing 

trend which have been also observed from the actual data as shown in Figure 31. Total 

LFG (121,068,047 m3) and current LFG (120,365,178 m3) were estimated by using 

LandGEM model. 

Remaining LFG potential (LFG remain % of total) 

LFGremain is an estimation of the quantity of gas to be emitted by the landfill in the 

future, which is proportional to the remaining biodegradability of the waste. Use of 

available gas generation data (from LFG monitoring) or LandGEM is recommended for 

estimation of LFGremain. LFGremain can be estimated by the following equation.   

%Pr
Re

Total

oducedAlreadyTotal
maining LFG

LFGLFG
LFG
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where 

LFGremain    = Remaining LFG producing g potential, % 

LFGtotal                   = Total gas produced from the waste in place, m3 

LFGalreadyproduced = LFG produced till the time of evaluation, m3 

Based on the results, remaining LFG is about 0.5% which indicates very low gas 

generation potential from the landfill (which is less than the recommended (<10%) in the 

methodology for optimization of gas monitoring/collection system). Projected total LFG 

is going be 1000 m3/year after the year 2032.  

5.2.7   Discussion about Landfill Gas module 

 The estimated LFG from the landfill was based on the flared gas data.  The 

measured total LFG, methane content and potential methane generation capacity (Lo= 22 

m3/MG) is less than expected based on the literature review. On the other hand, 

calculated methane generation Rate (k= 0.21 year-1) is higher than literature values. 

According to Faour (2007), k can be higher for dry cells if the ultimate gas production is 

low. Poor capping is the most significant reason for miscalculations. According to US 

EPA’s “Compilation of air pollution emission factors, Report AP-42” (USEPA, 1995), 

researchers and practitioners have estimated the gas collection efficiencies to be typically 

in the range of 60 to 85%. 

 
5.3   Groundwater Module  

 The purpose of the Groundwater Module is to determine whether the groundwater 

monitoring program can be optimized, or continued/discontinued. The evaluations 

performed in the groundwater module are based on the outcomes of leachate module and 

65 
 



landfill gas module which impact adversely groundwater via leachate releases or 

subsurface LFG migration. The first step of the module was frequency determination of 

groundwater contaminant. The second step was comparison of the contaminant 

concentration to Maximum Contamination Levels (MCLs) recommended by federal or 

state agencies based on the EPA’s Statistical Analysis of Ground-Water Monitoring Data 

at RCRA Facilities Interim Final Guidance recommendation. And the final step was to 

identify the trend for contaminants of concern. The groundwater module was used for the 

following objectives: 

1. Evaluation of the contaminant of concern concentration overtime and comparison 

with MCLs, 

2. Estimation of trends for the contaminant of concern, and 

3. Decision to continue/discontinue monitoring of the contaminants of concern.  

      There are 22 groundwater monitoring wells in the Davie Landfill. Well locations 

and numbers are shown in Figure 32. Samples taken from different depth for each 

monitoring well (MW) are shown in Table 17. The groundwater is monitored 

semiannually (April and September). Availability of the sampling data is from April 2001 

to April 2008. Groundwater direction is southeasterly. A total of 53 parameters have been 

monitored. Among these parameters 37 parameters are non-detected parameters, 5 

parameters are always above Maximum Contaminant Level (MCL) and 11 parameters 

are below the MCL shown in Table 18. Most frequently detected contaminants are Iron, 

Ammonia as N, Total Dissolved Solid (TDS), Sodium and Turbidity and least detected 

contaminants are xylene and cadmium shown in Table 19 and Figure 33.  
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Table 17.   Depth of groundwater monitoring wells. 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

Well 
no 

Depth 
(ft) 

38 
58 
110 

22 34 
60 
91 

7 37 
59 
84 

21 35 
62 
85 

11 31 
57 
75 
100 

8 35 
59 
72 

9 36 
59 
93 

3 

 
 

 

Figure 32.   Davie Landfill groundwater well locations and landfill boundaries. 

Table 18.   Parameters of interest in groundwater. 
 

Below MCL Above MCL 
1,4-Dichlorobenzene Sodium  
Chlorobenzene  Iron  
1,2-Dichloroethylene  Total Dissolved Solids  
Methyl Chloride  Ammonium as N 
Xylenes  Vinyl Chloride  
Methyl-tert-butyl ether (MTBE) Coliform  
Arsenic   
Cadmium   
Chromium   
Zinc   
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Table 19.   Detection frequency of contaminants in groundwater.   

Compound 
Frequency 

(%) 
Chlorobenzene 18.2 
1,4-
Dichlorobenzene 7.0 
Methyl chloride 1.8 
Methyltert-Butyl 
Ether 2.7 
Xylene 0.3 
Vinyl Chloride 3.0 
1,2-
Dichloroethylene 0.9 
Ammonia as N 100.0 
Arsenic 0.9 
Cadmium 0.3 
Chromium 1.8 
Iron 100.0 
Sodium 100.0 
Zinc 31.8 
Dissolved Solid 100.0 
Coliform  20.6 
Turbidity 100.0 

 
 
Figure 33.   Detected contaminants frequency at 
Davie Landfill. 

5.3.1   Parameters above MCL  

Iron, ammonia as N, total dissolved solid (TDS), sodium and turbidity were 

always above the MCL and detected in all groundwater monitoring wells. Vinyl chloride 

has been detected only at monitoring well (MW) number 11.   

Iron: Measured iron levels were between 2-9300 µg/L in all groundwater wells. Figure 

34 presents the iron concentration for each GW monitoring well.  Iron concentrations in 

up-gradient wells were between 2000-6000 µg/L and in down-gradient wells were 

between 2000-4000 µg/L except for the monitoring well number 11. This well always 

had high concentrations and some correlation with MW 3. The presence of high 

concentrations of ferrous iron reflects reducing conditions in groundwater. Under these 

conditions, chemicals such as nitrate and possibly some chlorinated solvents are 

degraded, while some petroleum hydrocarbons persist (http://www.seagrant.umn.edu). 
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Figure 34.   Iron concentration in all groundwater monitoring wells. 
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Ammonia as N: Measured ammonia levels as N concentration were between 0-160 mg/L 

in all GW monitoring wells. Ammonia as N concentrations have been detected in MW 3 

and 11.  MW 3 is up gradient of the GW and MW 11 is down gradient of the 

southeasterly GW direction.  Ammonia is very soluble in water and is extremely toxic for 

the aquatic ecosystem, especially for fish, at concentrations ranging from 0.53 to 22.8 

mg/L shown in Figure 35. Its toxicity increases with decreasing of pH value and 

temperature (http://www.idm.gov.vn/Nguon_luc/Xuat_ban/2005/B25/b43.htm).  

Vinyl Chloride:  Vinyl chloride has been detected consistently in one down gradient 

well (MW 11) during January 1991 to April 2008 at concentrations between 0.5- 4.1 

µg/L. Vinyl chloride levels showed a steady trend as presented in Figure 36. Vinyl 

chloride is the one of priority trace compounds often detected in landfill gas (Shafi et al., 

2005).  The EPA and the National Toxicology Program (NTP) considers vinyl chloride as 

a carcinogenic compound (ATSDR 2006). In anaerobic conditions, vinyl chloride 

degradation occurs slowly.  

 

Figure 36.   Vinyl Chloride concentration in MW11-100. 
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Figure 35.   Ammonia as N  concentration in MW11-100. 
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5.3.2 Parameters below MCL – Organics 

 
      1,4-Dichlorobenzene,  chlorobenzene,  1,2-dichloroethylene,  methyl  chloride, 

xylenes and   methyl-tert-butyl ether (MTBE) were  detected in groundwater monitoring 

wells as shown in Figure 37.  The  concentrations  of  these organic compounds   never 

exceed MCL in the groundwater. The trends of these contaminants are declining both in  

leachate and groundwater.  

 
Chlorobenzene: Measured chlorobenzene levels were between 0.5 -15 µg/L in all GW 

monitoring wells. Chlorobenzene concentrations never exceeded MCL. Continuous and 

moderately high levels of chlorobenzene were seen in MW 3 and 11 as shown in Figure 

38. Chlorobenzene is slowly degrades in water (http://www.epa.gov) 

  
 

Figure 38.   Chlorobenzene concentrations at Davie Landfill. 
 

 

72 
 



 

Figure 37.   Organic parameters below MCL in GW monitoring wells.
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5.3.3    Parameters below MCL - Metals 

 Detected metal concentrations never exceeded the MCL. Detected metals for each 

well are shown in Figure 39. Besides the zinc and chromium, also cadmium, chromium, 

and arsenic were detected as groundwater contaminants.  

Chromium: Chromium was detected only in MW 3 and 11. MW 3 is located up gradient 

of MW 11.  Any contaminants detected in MW 3 have also been detected in MW 11, 

because of the southeasterly groundwater flow.  

Zinc: Figure 40 presents the zinc levels in the monitoring wells. Measured zinc 

concentration is between BDL and 60 µg/L in all wells. During the 2001- 2003 period 

zinc levels were fluctuating.  However, during the last three years, zinc concentrations 

have shown a steady trend.  

Arsenic: Arsenic was detected in MW 21 and 11. It was detected only last two years. 

When spoken to manager, it was learnt that detection limit of the measuring device was 

changed. It was calibrated to very low detection limits. 

Cadmium: Cadmium was detected in MW 11. It was detected only last year. When 

spoken to manager, it was learnt that detection limit of the measuring device for cadmium 

was changed too. It was calibrated to very low detection limits as arsenic. The 

concentration is already below MCL and less than 1 µg/L 

Since zinc, arsenic, chromium and cadmium have never been measured in 

leachate, the source of these metals could not be identified.  
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Figure 39.   Metallic parameters below MCL in GW monitoring wells. 
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Figure 40.   Zinc concentration in all GW monitoring wells. 
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5.4   Cap Module 

      The purpose of the cap module is to determine whether the landfill cap is efficient 

or not and if it can be modified. The function of the cap is to limit infiltration of water 

and to prevent escape of landfill gas from the landfill surface.  The evaluations performed 

with the cap module were based on the outcomes of the assessments of the leachate 

module, landfill gas module and landfill settlement.  The cap module was used for the 

following assessments: 

1. To identify any correlations between leachate and rainfall, 

2. To analyze LFG module outcomes to detect any gas migration, and  

3. To evaluate cover material efficiency and the extent and rate of post closure 

settlement and the stresses that settlement imposes on the integrity of the 

containment system components.  

As a result, the objectives of the cap module are the following: 

1. Assess the cap monitoring and maintenance program to decide whether the cap 

system meets the performance requirements, and 

2. Evaluate whether it is feasible to install an alternate cap which is more efficient, 

require less maintenance, and meets the post closure needs. 

      RCRA Subtitle D requirements apply to municipal solid waste landfills (MSWL) 

to be closed using engineered covers and are designed with the intent to meet the 

following performance expectations:  

1. Cover permeability with less than or equal to the permeability of the bottom 

liner/subsoil or no greater than 10-5 cm/sec,  

2. Minimize infiltration using no less than 45 cm of soil, and  
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3. Minimize erosion using no less than 15 cm of topsoil for plant growth 

(http://www.sandia.gov/caps/designs.htm).  

      The Davie Landfill cover system consists of a two-foot thick limerock cover, 

which is compacted (in six-inch layers) with six inches of vegetative cover soil as shown 

in Figure 41. Two lifts of material (1-foot thick) was spread and compacted. The final 

cover was sloped at a 2% grade towards the southwest corner of the sanitary landfill 

slopes on the cover are relatively flat on the crown of the landfill cells, with slopes 

generally 1 to 3%, with some areas that do not readily drain due to settlement.  

 

Figure 41.   Davie Landfill cover system (adapted from Alternative Landfill Cover 
Designs Considered in ALCD). 

 
5.4.1    Leachate Module Outcomes 

During the analyses of leachate data, it was observed that leachate production 

rates over the years showed significant changes in the quantities immediately after the 

land use practice of the closed landfill changed in 2003 as shown in Figure 42. When the 

leachate quantity and rainfall data were compared, it was seen that there is some 

correlation based on the peaks observed in leachate quantity and rainfall as shown in 

Figure 43. This indicates that the cap system cannot prevent the infiltration of 
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precipitation to the landfill cells. The monitoring data should be evaluated in view of the 

land use and regrading activities that took place over the years.  

 

 

Figure 42.   Leachate quantity changes after capping. 
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Figure 43.   Monthly total leachate vs. monthly total rainfall correlation for assessing cap. 
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5.4.2   Landfill Gas module Outcomes 

       Landfill gas module outcome showed us that the landfill cap is not efficient to 

prevent LFG migration. The calculated LFG from landfill is based on flared gas data.  

The measured LFG is less than expected based on literature review. Poor capping is the 

most significant reason for under calculation. According to US EPA’s “Compilation of 

air pollution emission factors, Report AP-42”, (USEPA, 1995), researchers and 

practitioners estimated collection efficiencies to typically range from 60 to 85%. 

Therefore limestone efficiency to hold LFG should be calculated to find realistic values.  

5.4.3    Cover Material Efficiency and Settlement 

        As rain falls through the atmosphere, it absorbs carbon dioxide and forms a weak 

carbonic acid and when it moves through the cover system, it reacts with living and 

decaying plant matter and becomes more acidic. The acidic water slowly dissolves the 

limestone cap and this chemical erosion eventually causes voids or cavities onto 

limestone cover (www.swfwmd.state.fl.us/hydrology/sinkholes/brochure.pdf). The end 

result of chemical erosion of limestone, followed by physical collapse or subsidence. 

Landfills have settled uniformly approximately five feet since 1987. 
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CHAPTER 6 

RISK ANALYSIS 

  The 30 year PCC period can be shortened or extended depending on whether the 

landfill presents potential threats to human health or the environment or not (Tansel et al., 

2007).  The USEPA has concluded that all landfills eventually will leak (USEPA, 1988). 

Therefore risk assessment is required as a tool to identify and define landfill hazards for 

the environment (Butta et al., 2003). The most important part of the risk assessment is  

evaluation of the connectivity between the source of a hazard (landfill) and an 

environmental receptors ( groundwater, surface water, air, etc.,) (Vose, 2000). In recent 

years, the USEPA has been applying probabilistic risk assessment approach to quantify 

modeling uncertainties (Garrick, 2002). Over the last two decades, some models have 

been developed to understand and predict environmental phenomena, including fluid-

flow patterns (e.g., groundwater, surface water, and air), contaminant migration and fate, 

human or wildlife exposures etc (Whelan et al., 1997). Environmental risk tools are based 

on models that characterize pollutant pathways in environmental systems and model the 

release of the source of a hazard to the environment (Pollard et al., 2006). Advanced 

computer programming languages and software tools are capable of producing solutions 

to risk assessment models, including environmental and public health risks and associated 

engineering problems (Koliopoulos et al., 2007). In the literature, holistic methodology is 

limited for landfill leachates to perform risk assessments (Butta et al., 2008). After 

reviewing risk assessment models such as The Multimedia, Multi-pathway, Multi-

receptor Exposure and Risk Assessment (3MRA), Hydro-geological Evaluation of 

Landfill Performance (HELP) and Framework for Risk Analysis Multimedia 

81 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFR-4R172NP-1&_user=2139759&_coverDate=12%2F31%2F2008&_alid=742003044&_rdoc=13&_orig=search&_cdi=6017&_sort=d&_docanchor=&view=c&_ct=179&_acct=C000054271&_version=1&_urlVersion=0&_userid=2139759&_fmt=full&md5=0494127aec661959ed984b3240720187#aff1#aff1
http://www.sciencedirect.com.ezproxy.fiu.edu/science?_ob=ArticleURL&_udi=B6V7X-4KGG1RW-1&_user=2139759&_coverDate=12%2F31%2F2006&_alid=761412738&_rdoc=80&_fmt=high&_orig=search&_cdi=5854&_sort=d&_docanchor=&view=c&_ct=457&_acct=C000054271&_version=1&_urlVersion=0&_userid=2139759&md5=6923deb6c8b25a1254da7062c3cfa41e#bbib50
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFR-4R172NP-1&_user=2139759&_coverDate=12%2F31%2F2008&_alid=742003044&_rdoc=13&_orig=search&_cdi=6017&_sort=d&_docanchor=&view=c&_ct=179&_acct=C000054271&_version=1&_urlVersion=0&_userid=2139759&_fmt=full&md5=0494127aec661959ed984b3240720187#aff1#aff1


Environmental Systems (FRAMES), FRAMES was selected as the method for analysis of 

risks resulting from a closed landfill. Ho et al., (2007) used FRAMES models to evaluate 

the fate and transport of contaminants of concern for mixed waste. Ho et al., (2004) also 

used this model to evaluate the long-term performance of covers at contaminated sites at 

the Monticello Mill Tailing Site in Utah. FRAMES is a software platform developed by 

the Pacific Northwest National Laboratory (PNNL) for selecting and implementing 

environmental software models for risk assessment and management problems. FRAMES 

works with Multimedia Environmental Pollutant Assessment System (MEPAS) modules 

which integrates transport and exposure pathways for chemical releases to determine 

their potential impact on the environment, individuals, and populations 

(http://mepas.pnl.gov/mepas/index.stm).  

  The purpose of this chapter is to analyze the migration pathways and to estimate 

health risks resulting from closed landfill. While examining the risk, sensitivity analysis 

was also performed to determine how different values of variables such as Darcy 

velocity, thickness of soil, contaminant mass in aquifer and different soil types would 

impact the risk results.  Development and incorporation of a risk assessment module 

during the PCC period will allow more efficient management strategies for closed landfill 

sites. 

6.1   Health Effects of Contaminants of Concern Detected in Groundwater 

Vinyl Chloride: Vinyl chloride is a product of anaerobic degradation of chlorination 

solvents such as would be expected to occur in groundwater and landfills (USEPA, 

1995a).  Vinyl chloride can migrate to groundwater. The EPA and  National Toxicology 
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Program (NTP) consider vinyl chloride to be a known human carcinogen (ATSDR 2006). 

Toxicity characteristics of vinyl chloride are shown in Table 20.  Vinyl chloride 

degradation in groundwater could vary between 3 to 5 months depending on the 

conditions (Davis, 1990; http://www.isocinfo.com/).  Based on the literature review, the 

half life for vinyl chloride was assumed to be 150 days for this study  

 Table 20.   Toxicity characteristics of vinyl chloride 

Acute toxicity Occupational inhalation exposure to high levels (e.g., 40 - 900 ppm ) 
may cause neurological effects such dizziness, headaches, or narcosis 
in workers (USEPA, 1995a). 

Chronic toxicity Oral ingestion at high levels (0.1 mg/L) may cause liver effects from 
life-time exposure (USEPA, 1995a). 

Cancer risk Based on epidemiological and animal studies, vinyl chloride is 
carcinogenic in humans when inhaled, and it is considered to be a 
human carcinogen from oral exposure (USEPA, 1995a). 

 
Cadmium: Cadmium has the potential to cause kidney, liver, bone and blood damage 

from long- term exposure at levels above the MCL. (http://www.epa.govsafewater/dwh/t-

ioc/cadmium.html) 

Xylenes:  Xylenes above the MCL cause disturbances in the central nervous system, such 

as changes in cognitive abilities, balance, and coordination as an acute effect.  Xylenes 

cause damage to the central nervous system, liver and kidneys from long-term exposures 

at levels above the MCL. 

Chromium:  Chromium above MCL causes skin irritation or ulceration from acute 

exposure. Chromium causes damage to liver, kidney circulatory and nerve tissues; 

dermatitis from long-term exposures at levels above the MCL. (EPA) 

Chlorobenzene: Chlorobenzene above MCL causes anesthetic effects and impaired liver 

and kidney function from acute exposure. Chlorobenzene has the potential to cause liver, 
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kidney and central nervous system damage from long-term exposure at levels above the 

MCL. (EPA) http://www.epa.gov/chemfact/chlor-fs.pdf 

1,2-Dichloroethene:  Lower oral doses of cis-1,2-dichloroethene affect blood chemistry, 

such as decreased numbers of red blood cells, and the liver. 

http://www.atsdr.cdc.gov/toxprofiles/tp87-c1.pdf 

1,4-Dichlorobenzene:  Acute exposure to 1,4-dichlorobenzene via inhalation in humans 

results in irritation to the eyes, skin, and throat. Chronic exposure to 1,4-dichlorobenzene 

by inhalation in humans results in effects on the liver, skin, and CNS (e.g., cerebellar 

ataxia, dysarthria, weakness in limbs, and hyporeflexia).  

(http://www.epa.gov/ttn/atw/hlthef/dich-ben.html) 

Zinc: Zinc causes adverse health effects such as loss of appetite, decreased sense of taste 

and smell, lowered ability to fight off infections, slow growth, slow wound-healing and 

skin sores. Eating or drinking too much zinc in a short period of time can lead to adverse 

health effects, such as stomach cramps, nausea and vomiting. There is no evidence that 

zinc causes cancer in humans ( http://www.idph.state.il.us/envhealth/factsheets/zinc.htm) 

Arsenic:  Exposure Dosage Effect Low Exposure – micrograms 0.1 – 10 µg. No known 

human adverse health effects. 

http://www.nab.usace.army.mil/projects/WashingtonDC/springvalley/arsenic/  

Iron: When iron exceeds the required amount, it is stored in the liver. This may damage 

this vital organ. Water soluble binary iron compounds such as FeCl2 and FeSO4 may 

cause toxic effects at concentrations exceeding 200 mg, and are lethal for adults at doses 

of 10-50 g. (http://www.lenntech.com/elements-and-water/iron-and-water.htm) 
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6.2   Susceptibility of Landfill  

 The landfill is 525 m in length and 405m in width. The sub soil is sand, and depth 

to groundwater is 1.5 m. The landfill is shown in Figure 44 with the receptors. The 

leachate collection system from the sanitary landfill drains into a main sump, where it is 

pumped to wastewater treatment plant (US Corp of Engineers 2005; 2000; USEPA 

1995b).  

 

 
 
 

Figure 44.   Landfill receptors (Google earth)  
 

6.3   Methodology  

 FRAMES was chosen as the risk assessment tool for the case study landfill. This 

model takes a holistic approach to environmental assessment of potential contaminant 

impacts as it simulates 1) the release of contaminants into the environment, 2) migration 

and fate through various environmental media (i.e., groundwater, surface water, air, and 

overland surfaces), and 3) resultant exposures and impacts.  FRAMES aids the user in 

constructing a Conceptual Site Model  a site that is reconstructed on screen by choosing 

icons that represent the real or potential flow of contamination. FRAMES' modularization 

produces several types of time-varying outputs including the following: 
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 Constituent mass remaining at source  

 Constituent fluxes from source or medium  

 Soil deposition  

 Water concentrations  

 Intake or dose  

 Hazard quotient or risk.  

 FRAMES works with Multimedia Environmental Pollutant Assessment System 

(MEPAS). MEPAS is developed by Pacific Northwest National Laboratory (PNNL) to 

assess contaminated environmental problems. MEPAS simulates the release of 

contaminants from a source; transport through the air, groundwater, surface water, and/or 

overland pathways; and transfer through food chains and exposure pathways to the 

exposed individual or population. For human health impacts, risks are computed for 

carcinogens and hazard quotients for noncarcinogens.  

 MEPAS 5.0 Source in Aquifer, Exposure pathways, Receptor intakes and Health 

Impacts modules are chosen for this study shown in Figure 45. 

 
 

Figure 45.   Selected FRAMES modules for case study landfill. 
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6.3.1   Source Term Module 

 The MEPAS Computed Source Term Release Module (CSTRM) is based on 

constantly stirred tank reactor (CSTR) model that assumes that the contamination is 

instantly distributed homogeneously throughout the defined source volume. The CSTRM 

assumes that the contaminants may be present in multiple phases (i.e., in aqueous 

solution, sorbed to solid particles, in vapor-filled pore space, or in a separate non-

aqueous-phase liquid (NAPL) that is immiscible with water and air) (Buck, 2001; Streile 

1996). In this study, source is defined in aquifer. Since the source was in aquifer, 

overland runoff loss, suspension loss, volatilization loss routes were neglected. In the 

leaching loss route parameter, Darcy velocity was known and it was selected as a value. 

Other selected parameters for this module are shown in Table 21. 

Table 21. Selected parameters for Source in Aquifer Models (Tansel et al., 2008) 

Parameter Value Units 
Time interval for simulation  1  years  
Time period for simulation  10 years  
Residual mass for simulation  0.01  fraction  
Thickness of clean overburden  0.0  m 
Thickness  1.5 m 
Length  533 m 
Width  411 m 

1.64  g/cm3  Bulk density  
Total porosity  38 %  
Effective porosity 25  %  

23.27 0C  Average air temperature  
Vinyl chloride water solubility 2670  mg/L  
Vinyl chloride concentration in GW (mass 
aqueous constituent/volume water) 

2.15 E-03 * 
 

mg/L 

Vinyl chloride decay/degradation half life in GW 150  day  
Vinyl chloride Kd’s (Estimated Value) 0.048222  ml/g 
Darcy velocity of media 0.043 cm/day 

* 2004 data vinyl chloride data was taken an example to show the entered data 
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6.3.2   Exposure Pathways Module 

 The MEPAS Exposure Pathways Module was used to calculate pollutant 

concentrations in exposure media resulting from contamination of groundwater. The 

module includes consideration of domestic water use, farm product consumption, aquatic 

food consumption, surface water recreational activities, soil contact exposure, and air 

exposures. In this study only domestic water use, plant product use and inhalation via 

volatilization from water were considered.  EPA indoor air model was used for evaluation 

of indoor air inhalation of volatile compounds. Transfer of activity through food chains 

model uses concentration ratios, bioaccumulation factors and transfer factors.  For 

waterborne contamination, exposure media concentrations are evaluated for one location 

(Strenge, 2001a; Strenge 1995).  

6.3.4   Receptor Intakes Module 

 The MEPAS Receptor Intakes Module evaluates the intake or exposure of an 

individual from consumption or contact with contaminated media. Standard EPA 

methods were used to evaluate the average daily intake rate of chemical pollutants for 

each exposure pathway, based on user defined consumption/contact rates and body 

weight such as average body weight determined 70 kg/person and groundwater and 

surface water ingestion rate were determined 1.4 L/day. EPA models were used to 

evaluate dermal contact with water. The module evaluates intakes for one age group per 

receptor definition and for all input exposure routes defined in the EPF file and 

recognized by MEPAS (Strenge, 2001b).  
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6.3.5   Health Impacts Module 

The MEPAS Health Impacts Module calculates health impacts from intake or 

exposure to chemicals.  Chemical impacts were evaluated for inhalation, ingestion, and 

dermal contact pathways as either cancer incidence or hazard index, as appropriate for the 

chemical of concern (Strenge, 2001c). Figure 46 shows used pathways and routes for risk 

calculation of contaminated groundwater under case study landfill. 

 
 

Figure 46.   Exposure Pathways. 
 
6.3.6   Estimation of exposure levels  

 The exposure pathway analysis starts with vinyl chloride concentration in 

groundwater and estimates the average daily dose to exposed individuals from contact 

with drinking water, shower and consumption of plants produced around the landfill area. 

The average daily dose is used to estimate of health impact. The average daily dose of a 

pollutant for an exposure pathway involves consideration of the rate of intake (ingestion, 

dermal absorption and inhalation), the frequency of exposure, the exposure duration, the 
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averaging time, and the body weight of individual. All those exposure formulas were 

taken from Strenge, 1995. 

6.4   Risk Assessment Results 

 The migration pathway and estimation of health risks resulting from landfill to 

residents living around the landfill area was analyzed in this chapter. The human health 

impact and risk assessment started with vinyl chloride intake from an exposure medium 

and pathways. Human health risk was evaluated in terms of cancer and non cancer effects 

for exposure to vinyl chloride, chlorobenzene, 1,4 dichlorobenzene, chromium, cadmium, 

iron, zinc, arsenic, ammonia as nitrogen, and xylene. The groundwater was assumed to be 

untreated and would not be used as a drinking water source but used for irrigation 

purposes for open lands neighboring the landfill area. Total human health risk was 

evaluated in terms of cancer and non cancer effects for exposure to selected contaminants 

as summarized in Table 22. 

Table 22.   Selected GW parameters. 

Contaminants  Concentration (2008) 

1,2 dichlorethane 1.2 ug/L 

1,4 Dichlorobenzene 3.4 ug/L 

Iron 4360 ug/L 

Ammonia 59.8 mg/L 

Arsenic 4.69 ug/L 

Cadmium 0.45 ug/L 

Chromium 1.72 ug/L 

Zinc 15 ug/L 

Chlorobenzene 10.5 ug/L 

Vinyl Chloride 2.1 ug/L 

Xylene 1.1 ug/L 
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The lifetime risk of total cancer incidence is estimated using EPA slope factors 

for chemical carcinogens for inhalation, ingestion and dermal pathways. The EPA slope 

factors give the lifetime cancer incidence risk per average daily dose. Incremental cancer 

risks were estimated as a probability, or chance, that a person would develop cancer over 

his or her lifetime as a result of exposure to the vinyl chloride from landfill. The risk of 

“one in one million” means that if one million people were exposed to the vinyl chloride 

around the landfill site for 10 years, at most one case of cancer would be expected to 

occur over lifetime as a result of their exposure. Non cancer hazard potential (hazard 

index, HI) is presented as a ratio of the predicted exposure compared to a safe level 

(reference dose). The reference dose represents a level that is believed to be safe for 

members of the general population. Exposure at this level will result in a hazard index of 

1.0. Exposures yielding an HI less than 1.0 may not result in adverse non cancer health 

effects and an HI value greater than 1.0 may not suggest a likelihood of adverse effects. 

The HI cannot be translated to a probability that adverse effects will occur and is not 

likely to be proportional to risk. A respiratory HI greater than 1.0 indicates that a 

potential may exist for adverse irritation to the respiratory system (Strenge et al., 1995). 

The non carcinogenic and carcinogenic risks were estimated according to the 

dermal, inhalation, and ingestion exposures routes using 2008 groundwater monitoring 

data. Total risk was calculated for concerned metals and volatile organic compounds 

(VOCs) determined in groundwater monitoring wells. The total risk resulted from VOCs 

has significant value (2. 2 x10-6) shown in Table 23. 
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Table 23.   Risk calculation for vinyl chloride, chlorobenzene, 1,4 dichlorobenzene,  
xylene. 

All Chemicals summation 
for Aquifer 

HI Non carcinogenic * Risk Carcinogenic 

ingestion (total) 1.18E-03 1.53E-06 
1.58E-04 1.67E-07  Leafy vegetables 
3.07E-05 2.46E-08  Other vegetables 
7.08E-06 9.50E-09  Shower 
9.87E-04 1.32E-06  Water 

Inhalation (shower) 1.04E-02 6.24E-07 
Dermal (Shower ) 8.19E-05 5.28E-08 

TOTAL 1.17E-02 2.20E-06 
 
 Hazard Index value for VOC’s is less than 1. Since the VOCs in groundwater 

have steady trend, the monitoring should be continued. Total risk resulted from metals in 

groundwater is less than EPA’s standard as shown in Table 24 (less than 10-6), since the 

concentration of metals detected in groundwater are below MCL. The risk analysis results 

showed that, metals and volatile organic compounds detected in the groundwater are not 

harmful to the residents living around the Davie Landfill. Since VOC’s detected in GW 

have steady trend, VOCs should be continued to monitor in groundwater monitoring 

wells, and monitoring frequency of metals can be reduced. 

Table 24.    Risk calculation for, arsenic, ammonia as Nitrogen, cadmium, chromium, 
iron, zinc . 

All Chemicals summation 
for Aquifer 

HI Non carcinogenic * Risk Carcinogenic 

ingestion (total) 2.543 3.177-07 
3.55E-01 1.88E-07  Leafy vegetables 
3.92E-02 1.49E-08  Other vegetables 
1.52E-02 8.13E-10  Shower 

2.132 1.14E-07  Water 
Inhalation (shower) 2.62 0 
Dermal (Shower ) 1.15E-02 0 

TOTAL 5.17 3.19E-07 
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6.5   Vinyl Cloride Risk Assessment 

Among the VOCs , vinyl chloride has significant importance due to its 

consistency in groundwater and its great reverse health effects on human health. 

Therefore vinyl chloride risk has been assessed separately. Vinyl chloride concentrations 

over years are shown in Table 25. 

Table 25.   Vinyl Chloride concentrations by years. 

Vinyl Chloride Concentration 
(µg/L) Years 

2004 2.15 
2005 2.5 
2006 2.35 
2007 2 
2008 1 

 
The non carcinogenic and carcinogenic risks were estimated according to the 

dermal, inhalation, and ingestion exposures routes using data available from 2004 to 2008 

shown in Table 26.  
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Figure 47.   Non Carcinogenic risk vs. concentration by years. 
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Figure 48.   Carcinogenic risk vs. concentration by years. 
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Figure 49.   Non Carcinogenic/Carcinogenic risk vs. concentration.  

 
Although all the hazard indices were less than 1, the estimated total cancer risk of 

exposed to vinyl chloride from landfill via groundwater were higher than USEPA 

acceptable limit (10-6). As shown in Figures 47 and 48 both carcinogenic and non 

carcinogenic risks followed a direct correlation with majored concentration levels for 

vinyl chloride. The concentration levels in groundwater reached the maximum in 2005 

which corresponded to highest risk levels estimated. The observed concentration trends 

indicate that the carcinogenic risk levels were reduced to acceptable levels by EPA. The 

estimated risks by FRAMES show linear correlation with concentration as shown in 

Figure 49.  In this case the monitoring should be continued, since the hazard from landfill 

to residents is still effective.  
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Table 26.   Risk assessment summaries for vinyl chloride. 

 

2004  2005  2006  2007  2008   

Aquifer HI Non C * Risk C HI Non C* Risk C HI Non C* Risk C HI Non C* Risk C HI Non C* Risk C 

Ingestion (total) 7.64E-04 1.37E-06 8.9E-04 1.60E-06 8.36E-04 1.5E-06 7.10E-04 1.27E-06 3.55E-04 6.4E-07 

 Leafy   
Vegetables 

4.47E-05 8.06E-08 5.2E-05 9.37E-08 4.9E-05 8.81E-08 4.17E-05 7.49E-08 2.08E-05 3.75E-08 

 Other 
Vegetables 

6.23E-06 1.12E-08 7.23E-06 1.3E-08 6.8E-06 1.22E-08 5.8E-06 1.04E-08 8.9E-07 5.21E-09 

Water 7.13E-04 1.28E-06 8.3E-04 1.5E-06 7.8E-04 1.4E-06 6.63E-04 1.19E-06 3.03E-04 5.98E-07 

Inhalation  
(shower only) 

7.02E-04 2.65E-07 8.17E-04 3.08E-07 7.7E-04 2.9E-07 6.53E-04 2.46E-07 3.27E-04 1.23E-07 

Dermal 
(shower only) 

2.57E-05 4.63E-08 3E-05 5.4E-08 2.82E-05 5.07E-08 2.4E-05 4.31E-08 1.2E-05 7.21E-08 

Total ** 1.52E-03 1.68E-06 1.74E-03 2E-06 1.63E-03 1.84E-06 1.48E-03 1.55E-06 6.94E04 7.85E-07 

 
* HI: Hazard Index 
Non C: Non Carcinogenic 
C: Carcinogenic 
** Total = ingestion (total) + inhalation (total) + dermal (total) 
Risk was calculated based on followings; 
Darcy velocity: 0.043 cm/day 
Soil type: Sand 
Thickness: 150cm. 
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6.6   Sensitivity Analysis- Factorial Design 

 Factorial analysis allows for the simultaneous study of the effects of several 

factors on a process. Conducting the study by varying the levels of the factors 

simultaneously rather than one factor at a time is more efficient in terms of time and cost, 

and also allows for the study of interactions between the factors. Interactions are the 

driving force in many processes (Minitab 15 StatGuide; Murphy et al., 1998). The 

FRAMES software was used to characterize the risks resulting from the landfill using a 

factorial analysis. A 3x3 factorial analysis was used to understand the effects of Darcy 

velocity, thickness of subsoil below the landfill (i.e., depth to groundwater), and amount 

of contaminant in the aquifer on carcinogenic and noncarcinogenic risks as well as hazard 

index.  The settings of the factorial design parameters are presented in Table 27. In 

addition, carcinogenic and noncarcinogenic risks (i.e., hazard index) for different soil 

types were evaluated to compare the results with the base line case (i.e., case study 

landfill). 

Table 27.   Factorial Design 

Parameter Level 
 
Darcy Velocity (cm/day) 

0.004 
0.003 
0.600 

 
Thickness (cm) 

150 
225 
300 

 
Mass (g) 

150 
400 
650 

Based on the factorial design plotted on the graphs, Darcy velocity showed no 

effect on the risk shown in Figure 50 and 51.  The higher concentrations of contaminants 

96 
 

javascript:BSSCPopup('../SHARED_Glossary/factorial_design_def.htm');
javascript:BSSCPopup('../SHARED_Glossary/factor_and_factor_level_def.htm');
javascript:BSSCPopup('../SHARED_Glossary/interaction_def.htm');


in aquifer resulted in the higher values of risk shown in Figure 50 and 52. Also the 

thicker the soil resulted in the lower values of risk shown in Figure 51 and 52. 

0.000000

0.000001

0.000002

0.000003

600
0.0

0.2 400
0.4 200

0.6

Risk

Mass in aquifer (g)

Darcy Velocity (cm/day)

a) 

0.0000020

0.0000015

0.0000010

Darcy Velocity (cm/day)

M
as

s 
in

 A
q

iu
if

e
r 

(g
)

0.60.50.40.30.20.1

600

500

400

300

200

 
 

b) 

  
Figure.50.    a) Surface plot b) Contour plot of risk vs. mass and Darcy velocity 

 

3000.000000

0.000001

0.000002

250

0.000003

0.0 2000.2
0.4 150

0.6

Risk

Thickness (cm)

Darcy Velocity (cm/day)

a) 

0.0000020

0.0000015

Darcy Velocity (cm/day)

T
h

ic
kn

e
ss

 (
cm

)

0.60.50.40.30.20.1

325

300

275

250

225

200

175

150

0.0000003

 
b) 

 
Figure 51.   a) Surface plot b) Contour plot of risk vs. thickness and Darcy velocity 
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Figure 52.   a) Surface plot b) Contour plot of risk vs. mass and thickness 

6.6.1 Soil Sensitivity 

 To evaluate the effect of different types of soils on estimated risks, simulations 

were conducted for five types of soil available in Florida. These included sand, sandy 

clay, sandy loam, loam, clay loam shown in Table 28. For a defined Darcy velocity of 

0.04 cm/day, soil thickness of 150 cm, and vinyl chloride mass of 330 g in aquifer; the 

corresponding risks and hazard indices were estimated.  Table 29 presents the estimated 

risks corresponding to different soil types.  The results showed that, sand is the most 

susceptible soil to risk and hazard resulting from landfill shown in Figure 53 and 54. 

After sand, sandy clay, sandy loam, loam and clay loam are susceptible soil types to risk 

respectively.   

Table 28.   Soil Composition ( based on USDA Textural Diagram) (Whelan et al., 1997) 

Soil Texture Classification % Sand % Silt % Clay 
Sand 92 2 3 

Sandy Clay 52 7 41 
Sandy Loam 65 25 10 

Loam 42 38 20 
Clay Loam 32 35 33 
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Figure 53.   Effect of different soil types on risk.  
 

5.00E-04

5.50E-04

6.00E-04

6.50E-04

7.00E-04

Sand Sandy Clay Sandy Loam Loam Clay Loam

Soil Type

H
a

za
rd

 In
d

e
x

 
 

Figure 54.   Effect of different soil types on hazard index. 
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Table 29.   Risk results for different soil types. 

 

Sand  
Sandy 
loam 

 Loam  
Clay 
Loam 

 
Sandy 
Clay 

 
 

Aquifer HI Non C* Risk C HI Non C* Risk C HI Non C* Risk C  HI Non C* Risk C  HI Non C* Risk C 

Ingestion (total) 3.50E-04 6.30E-07 3.13E-04 5.63E-07 3.00E-04 5.41E-07 2.95E-04 5.32E-07 3.19E-04 5.74E-07 

 Leafy   
Vegetables 2.03E-05 3.67E-08 1.82E-05 3.28E-08 1.75E-05 3.15E-08 1.72E-05 3.09E-08 1.86E-05 3.35E-08 

 Other 
Vegetables 2.83E-06 5.10E-09 2.53E-06 4.55E-09 2.43E-06 4.37E-09 2.39E-06 4.30E-09 2.58E-06 4.65E-09 

     Water 3.24E-04 5.84E-07 2.90E-04 5.22E-07 2.78E-04 5.01E-07 2.73E-04 4.93E-07 2.96E-04 5.32E-07 
Inhalation  
(shower only) 3.19E-04 1.21E-07 2.85E-04 1.07E-07 2.74E-04 1.03E-07 2.69E-04 1.01E-07 2.91E-04 1.10E-07 
Dermal  
(shower only) 1.17E-05 2.10E-08 1.05E-05 1.88E-08 1.00E-05 1.81E-08 9.87E-06 1.78E-08 1.07E-05 1.92E-08 

Total ** 6.80E-04 7.72E-07 6.08E-04 6.89E-07 5.84E-04 6.62E-07 5.73E-04 6.51E-07 6.21E-04 7.03E-07 
 
* HI: Hazard Index 
Non C: Non Carcinogenic 
C: Carcinogenic 
** Total = ingestion (total) + inhalation (total) + dermal (total) 
Darcy velocity: 0.043 cm/day 
Soil type: Sand 
Mass in aquifer: 330 g Vinyl Cloride 
Thickness: 150cm. 
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CHAPTER 7 

SEQUANTIAL DATA IMPROVEMENT FOR DAVIE LANDFILL 

Assessment of a landfill performance requires a systematic approach. An 

objective compliant and justifiable decision about the post closure care of a landfill 

requires comprehensive evaluation and interpretation of data and information from the 

site. One approach which can be used as a decision making tool to extend or shorten the 

PCC period is to develop a set of measures which can be used to evaluate the relative 

activity in closed landfills in terms of their overall stability and potential to be threat to 

human health or the environment (Tansel et al., 2007)  During evaluation of the post 

closure performance of case study landfill to assess the time dependent changes; a range 

of discrepancies, and problems were encountered with data handling and reporting at 

various stages of landfill development, operation & post closure activities. This chapter 

provides a summary of these challenges that related to the collection, documentation and 

analyses of data, information and knowledge from Davie landfill. A set of questions have 

been provided to be assess and verify the quality of monitoring data collected and 

documented from landfill for future practices.  

Davie Landfill has extensive history both during operation and after closure as a 

result different professional and public entities were involved in data collection and 

documentation.  The roles and responsibilities shared by different entities who had been 

involved with data collection and analyses during the design, operation, and post closure 

care of the landfills are summarized in Table 30.  With age of the landfill and extent of 

interaction among the different entities, the data quality is often deteriorates as the 

amount of data collected increases as schematically presented in Figure 55. 
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Table 30.   Roles and responsibilities of different entities  

Data Collection and 
Analysis Field Staff 

Landfill Design 
and Operation 

Regulatory 
Oversight 

Engineering Analyses 
and Reporting 

Sample Collector 
Lab Analysis 
Technician 
Data Recorder 
Data Interpreter 

Designer 
Constructor 
Operator 
Monitoring 
Personnel 

Regulator 
Stakeholders 
 

Data Collection 
Analysis 
Interpretation 
 

 

 

Figure 55.  Common trends in quantity and quality during the PCC of landfill 
 
7.1   Data Quality Assessment and Improvement  

Analysis of existing data and information from landfill may present challenges 

due to variations in data collection, analysis and reporting methodologies. Table 31 

presents the steps used in the tiered approach to compile and improve the data quality for 

the case study landfill.  Each step presented specific challenges depending on the site 

history, data collection, analysis, and documentation procedures.   

Table 31.   Data compilation and quality improvements stages. 

Tier No Scope 
1 Identification of data availability and format 
2 Preliminary assessment of data quality 
3 Review of data collection procedures and QA/QC protocols 
4 Identification of data gaps and discrepancies 
5 Analysis of time line for changes in end use and other site specific events 
6 Assessment of data collection instruments and instrument maintenance 

protocols 
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Data available in field reports and technical memoranda were compared with the 

knowledge of the technical personnel to improve the data quality as shown in Figure 56. 

Based on the challenges encountered, a set of questions have been provided to assess the 

quality of the available data and to avoid possible data analysis pitfalls.  Table 32 

presents important aspects of data availability to assess the data quality from closed 

landfills.  These check list of questions may be used as a base line to improve the quality 

of data collection and documentation for current and future practices.  A series of 

strategies were presented to validate and improve the quality of available data. 

 
 

Figure 56.   Integrated data and knowledge approach to improve data quality. 
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Table 32.   Data quality assessment check list. 
 

 

Tier  

 

Questions 

 

Concerns 

Additional sources 
for validation 

1  Are the monitoring data available (Gas, 
leachate and groundwater) 

 What is the format of available data 
(i.e., digital or paper)? 

 Are the digital data easily usable? 

 Discrepancies in 
reported data  

 

 Personal 
interviews 

 Public meetings 
 

2  Are the data needed for assessment of 
post closure performance actually 
collected? 

 Are the data collection and analysis 
methods documented in sufficient 
detail? 

 Are there assumptions made in data 
records? 

 Are assumptions made during 
processing of data recorded? 

 Are there gaps in data collection? 
 Are the maintenance and calibration 

records for data collection instruments 
documented properly? 

 Are the records for monthly average 
documented how the monthly average 
values were arrived and the locations of 
sampling/monitoring points? 

 Are there established QA/QC protocols 
for sampling data collection, and 
analysis? 

 Do detection limits of sample 
parameters vary in the records?  

 Did the ownership of the landfill sites 
change over the years?  

 Discrepancies in 
reported data  

 Data not actually 
collected 

 Data gap. 
 Changes in data 

collection procedures 
 Changes in data 

analysis procedures 
 Changes in data 

reporting procedures 
 

 Personal 
interviews 

 Public meetings 
 Statistical 

analysis 
 Extraction of 

usable data 
 Identification of 

external factors 
 Assessment of  

conditional 
instruments use  

 

3  Were the QA/QC procedures for data 
collection documented properly with 
sufficient detail? 

 Were the QA/QC protocols followed 
for data collection and analysis 
available? 

 Were deviations from the established 
QA/QC protocols recorded? 

 Were some data actually collected for 
each record? 

 Are frequencies of data collection 
activities consistent? 

 Were samples collected  identified as 
grab or composite? 

 Were procedures for measuring and/or 
calculating monthly and annual average 
flow rates consistent? 

 Discrepancies in 
reported data  

 Data not actually 
collected 

 Data gaps 
 Changes in data 

collection procedures  
 Changes in data 

analysis procedures 
 Changes in data 

reporting procedures 

 Personal 
interviews 

 Public meetings 
 Statistical 

analysis 
 Extraction of 

usable data 
 Identification of 

external factors 
 Assessment of  

conditional 
instruments use 
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4  Are the data processed for extracting 
information? 

 Is the data processing methodology 
appropriate? 

 What are the assumptions made during 
processing of data? 

 Are the assumptions justifiable? 
 Is there any other information source 

available to verify how the data were 
acquired, processed, and reported in the 
available documents 

 Discrepancies in 
reported data.  

 Data not actually 
collected 

 Data gaps 
 Changes in data 

collection procedures  
 Changes in data 

analysis procedures 
 Changes in data 

reporting procedures 
 

 Personal 
interviews 

 Public meetings 
 Statistical 

analysis 
 Extraction of 

usable data 
 Identification of 

external factors 
 Assessment of  

conditional 
instruments use  

 
5  Were there any changes in land use 

characteristics? If yes when and what 
was done? 

 Were there any surface regarding? If 
yes when and what was done? 

 Data gaps 
 Changes in data 

collection procedures  
 Changes in data 

analysis procedures 
 Changes in data 

reporting procedures 
 

 Personal 
interviews 

 Public meetings 

6  Are the data collection instruments 
maintained properly? 

 Are there hidden assumptions in 
recorded data?  

 Data gaps 
 Changes in data 

collection procedures  
 Changes in data 

analysis procedures 
 Changes in data 

reporting procedures 

 Personal 
interviews 

 Public meetings 

 
7.2   Challenges during Compilation and Analysis of Documented Data  

Analyses of performance data from Davie Landfill can allow development of a 

decision making framework and help quantify and compare the extent of stabilization 

being achieved over time.  The integrity of the data determines the value of the outcome 

from the data analyses.  The analysis of time dependent changes in the case study landfill 

presented challenges due to discrepancies in data reporting and inconsistencies in QA/QC 

protocols during data collection, reporting, and analyses. Significant challenges that were 

encountered during the analysis of data from the case study landfills are described below.  

Methodological approaches to resolve some of the challenges are also presented with 

examples.   
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Pitfall #1: Too many reports and files (first generation data) 

Increasing amounts of data and necessity of maintaining data integrity burdens the 

Closed Landfill (CLP) Program Staff (Bratsch et al., 2003). In Davie Landfill, 

groundwater contamination has been experienced over the years, described in extensive 

reports and technical memoranda (US Corp of Engineers 2005; 2000; USEPA 

1995;1994; NOAA 1984)  Most often, the reports contained repetitious representations of 

the same data in different formats without adding any significant new information.  The 

amount of documentation made it difficult to extract the usable data and information 

from the documents.  Some data were in digital format and some were not. The data and 

information stored in digital formats were not compiled in a systematic manner. Some of 

the digital data were scanned documents which made the data extraction difficult for 

future use. 

Solution: Creation of an automated system that organizes and graphically displays 

environmental monitoring data, including analytical and field measurements of ground 

and surface water, leachate, landfill gas (LFG) condensate, LFG emissions and flare 

system performance.(Bratsch et al., 2003) 

Pitfall #2: Insufficient documentation in collection/sampling procedures 

Data needs for an objective assessment of the landfill performance includes gas, 

leachate and groundwater monitoring reports. For the case study landfills, the data logs to 

extract usable data did not include detailed explanations of the data collection procedures 

and QA/QC protocols to validate usefulness of the reported information. There were 

inconsistencies in the reported data for monthly averages, annual averages, the 

description of  grab and composite sampling, detection limits of chemical analyses, 
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environmental and other conditions which might have affected the data quality and 

sample collection procedures such as   hurricanes and flooding, repairs and maintenance 

activities, changes in use of specific areas on or near the sites.   Technical problems and 

bad weather have resulted in deviations in data collection procedures.  After review of the 

reports and interviews of technical staff; the amount of meaningful, objectively 

documented, and usable data were very limited.  

Example: Missing data (gaps between years makes assessment difficult for trend for 

example Davie landfill was closed in 1987 , but gas monitoring data just starts from 

2004. Therefore the calculation of total generated landfill gas was almost impossible.  

Solution: Follow the QA/QC protocols. 

Pitfall #3:  Variations in data collection strategies and methodology 

Over the years, multiple consulting firms and different teams of engineers and 

scientists have been involved with different aspects of the landfill management and 

regulatory issues. Numerous reports and technical memoranda were generated on landfill 

design, operation and monitoring aspects. As the data have been collected and analyzed 

by different organizations, laboratories, and consultants; different sampling procedures 

and QA/QC protocols have been followed.  Most common inconsistencies and variations 

were due to changes in frequency of sampling, sampling methods, reported detection 

limits (for example there is a gap between 2005- 2008 groundwater data due to device 

detection sensitivity once it was calibrated to 10 ug/L and later it was calibrated 100 

ug/L), types of instruments and meters used, and documentation of problems.  

Solution: Follow the QA/QC protocols. Detection limit specific data review overtime. 
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Pitfall #4: Incompatibility of data used in analyses (i.e., flow and concentration data)  

One of the important challenges during data quality assessment was the processed 

data. When two (or more) data sets were used to estimate a different parameter; the 

calculated parameter presented some discrepancies with the expected values based on 

other data and information available. For example, the flow data for leachate and gas 

generation are often reported as annual and/or monthly averages. The concentration data 

for leachate and gas quality is often reported as grab samples collected from a leachate 

sump or gas wells.  When loadings estimates of nitrogen, iron, or sodium are calculated 

by multiplying flow and concentration data, leading to results that can be biased due to 

the discrepancies between the flow and concentration sampling frequencies,  locations, 

and deviations  from standard sampling procedures.  In addition large episodic events 

may reduce the representativeness for the averaged values. For example, in case study 

landfill, the data showed some correlation with rainfall events shown in Figure 57.   
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Figure 57.   Monthly total leachate vs. monthly total rainfall. 
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This implied that the leachate was diluted during the days following a rain event.  

When the leachate was sampled during these times, the monitoring data showed lower 

levels of contaminants.  To reduce the effect of dilution on leachate quality due to rain in 

the reported chemical analyses, it was decided to analyze in terms of pollutant loadings 

(i.e., Q x C) to determine the trends in leaching of different contaminants from the 

landfill. However, this created a challenge as the flow data and concentration data 

collection did not have the similar periodic cycles. The flow data for leachate was 

collected from a sump as a cumulative flow during the week.  The leachate was not 

always sampled at the same time the weekly average leachate flow was recorded.  When 

the pollutant loads in leachate were calculated as follows: 

Load (Kg/year) = Flow (cu meter/year) x concentration (Kg/cu meter) 

The estimated pollutant loads may be in biased  due to discrepancies in data collection 

cycles for flow and concentration data (i.e., monthly, weekly average; grab or composite; 

total flow, instantaneous flow). 

Solution: Try different techniques to eliminate incompatibility. Instead using pollutant 

loadings, time series analysis was used to identify trends using MINITAB 15 software.  

Pitfall #5: Changes in end use of landfill 

Changes in the end use of landfill over the years may not only affect the data 

collection protocols but also may result into changes in trends of data collected.  The end 

used changes may affect the structural integrity of the landfill in addition to changes in 

the landscaping, surface water control structures, drainage patterns, public access, and 

development and placement of small structures on the facility. Landfills settle as refuse 

decomposes, and this settlement can lead to damage to the final cover (Bredariol et al., 
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1995). During postclosure monitoring, these cracks are repaired, preventing excessive 

water infiltration. However, cracks that develop after termination of postclosure 

monitoring may not be repaired, and this could result in leachate production in excess of 

the estimates (Barlaz et al., 2002) as shown in Figure 58 at Davie Landfill. 
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Figure 58.   Leachate generation. 
 

At the Davie Landfill, after the site use characteristics changed, some changes are 

anticipated in gas and groundwater monitoring data. At this site, some of the resurfacing 

activities included  excavation and the removal of the solid waste from one area of the 

landfill,  changing the surface cover characteristics ( i.e. from the grass to concrete for the 

parking lot), filling in some of the surface water ponds, and changing surface water 

drainage characteristics. These are significant structural and geotechnical activities that 

would affect the levels of contaminants detected at the monitoring wells at and around the 

site.  

Solution: Periodic surveys and repairs on cover system 
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Pitfall #6: Erroneous data analyses and reporting 

The quality of the data collected depends on the calibration and accuracy of the 

monitoring and sampling instruments used. As instruments used or installed at the landfill 

sites get older, their reliability deteriorates. At Davie Landfill , leachate quantity 

historically showed a correlation with rainfall as shown in Figure 54. However, 

inspection of the recent data records showed an unusual trend with no documented 

explanations. Interviewing the technician responsible for the site revealed that the meter 

that was used for measuring the leachate quantity was broken and a new meter had been 

installed. Reassessment of the data by plotting the rainfall versus leachate quantity clearly 

showed that the new meter had a different calibration scale than the previous meter that 

was used. Figure 59 presents the annual average data for rainfall in relation to leachate 

quantity. The annual averages calculated using the old and new meters show the 

significance of differences in calibration of the meters on the data reported. 
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Figure 59.    Average rainfall vs. average leachate. 

 
Solution: Instrument specific data review. Carefully calibrate the new equipment. 
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Pitfall #7: Data repetition 

The quality of data assessment depends on accuracy of data collection. Data 

repetitions on measurements cause serious miscalculations. Figure 60 shows the sodium 

generation in landfill. The data were used from April 2001 to April 2006. The data fitted 

fairly well to trend except 2002 September data. When the data examined, it was seen 

that the April 2002 and September 2002 data were exactly the same. It is possible that 

this data was not actually collected in the field. 
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Figure 60.   Data repetition.  

 
Solution: Maintain the data accuracy.  

Conclusion 

Development of a systematic approach which can be used as a decision making 

tool to extend or shorten the PCC period requires technically sound and justifiable 

methods which  incorporate analysis and interpretation of available data and information 

from closed landfill sites.   One approach is to develop a set of measures (i.e., metrics) 
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which can be used to evaluate the relative activity in closed landfills in terms of their 

overall stability and potential to be threat to human health or the environment. 

Important aspects of data assessment include the following, 

 Collection of representative samples, 

 Documentation of assumption, conditions and unusual events that may have 

affected the sampling procedures,  

 Condition of instruments used for data collection,  

 Assumptions used in data processing and documentation, 

 Use and justification of appropriate parameters when two or more parameters are 

used to obtain new information (e.g., QxC). 

 Based on the changes in data collection methods and staff over the course of 

landfill development and post closure stages, a number of changes occur in data 

collection staff, procedures, documentation methods.   Development of an adequate PCC 

methodology requires analysis and interpretation of the available data and information in 

view of the timeline of events which might have affected the recorded data and 

subsequent data analyses.  

Future Research Suggestions 

During evaluation of the post closure performance of case study landfill to assess the 

time dependent changes; a range of discrepancies, and problems were encountered with 

data quality at various stages of landfill development, operation and post closure 

activities. Based on these challenges that related to the collection, documentation and 

analyses of data experienced from this case study, some solutions were provided for 
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future researchers because the integrity of the data determines the value of the outcome 

from the data analyses.  

 Challenge: Too many reports and files (first generation data) 

 Solution: Creation of an automated system that organizes and graphically 

displays environmental monitoring data, 

 Challenge: Data Gaps 

 Solution: Fill out the gaps with projections.( LandGEM software was used for 

theoretical estimates) 

 Challenge: Variations in data collection strategies and methodology 

 Solution: Follow the QA/QC protocols Detection limit specific data review 

overtime 

 Challenge: Incompatibility of data used in analyses (i.e., flow and concentration 

data) 

 Solution:  Try different techniques to eliminate incompatibility.( instead using 

pollutant loadings, time series analysis was used to identify trends using 

MINITAB 15 software.) 

 Challenge: Changes in end use of landfill 

 Solution: Periodic surveys and repairs on cover system 

 Challenge: Erroneous data analyses and reporting 

 Solution: Instrument specific data review, carefully calibrate the new equipment 

 Challenge: Data not collected 

 Solution: Maintain the data accuracy 
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CHAPTER 8 

ENVIRONMENTALLY CONSCIOUS MANAGEMENT OF WASTES 

DEPOSITED IN MUNICIPAL SOLID WASTE LANDFILLS 

 
 

The 30 year PCC period is long and not cost effective for solid waste 

management. The 30 year monitoring period can be shortened if the waste materials that 

result in to contaminants with long periods of persistence and monitoring can be 

eliminated from entering to the waste stream. In this chapter the leachate quality data 

were evaluated to forecast the leachate quality trends. Based on the trend analysis results, 

materials that cause longer monitoring periods were identified in terms of defining a 

sustainable management of solid waste landfills during the post closure period.  

Based on the historical leachate quality data, the parameters with have 

consistently high concentrations above MCL were identified as key parameters that 

define the PCC period.  The future trends of these parameters and the persistence time to 

reach their respective MCLs (the rate of disappearance) were calculated using time series 

analysis.  These parameters included chloride, TDS, iron, benzene, and vinyl chloride. 

PCC period ends for this case study landfill in 2017.  Although it ends in 10 years, 

projected trends for the problem parameters extended the PCC monitoring period 6 to 14 

years for Davie landfill. Based on the projections, chloride showed decreasing trend and 

concentration would be below the MCL by the year 2023 shown in Figure 61a. The zero 

order rate of disappearance for chloride was estimated 33.73 mg/L.year. TDS is also 

showed a decreasing trend and MCL will be reached in 2031 shown in Figure 61b. The 

zero order rate of disappearance for TDS was estimated 121.07 mg/L/year.   
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Figure 61.   Projected trends for a) vinyl chloride, b) chloride 

The general trend for benzene levels in leachate is declining and the projections 

indicate that benzene concentration in leachate would be below the MCL by the year 

2028 shown in Figure 62a. The zero order rate of disappearance for benzene was 

estimated 0.086 mg/L/year. The model projections show that iron levels are increasing 

over time shown in Figure 62b The zero order rate of increase for iron were estimated 

196.67 mg/L/year.  
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Figure 62.   Projected trends for a) TDS, b) iron 
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Based on the available data and trend analysis results the rates of disappearance of 

various parameters in leachate extended monitoring time. Among them, vinyl chloride 

has the fastest rate of disappearance (time to reach MCL is in 2010) therefore; it would 

not require long monitoring times after closure and TDS had the slowest rate of 

disappearance and TDS will persist in landfill leachate, extending the monitoring time for 

extra 14 years beyond the 30 year PCC period shown in Table 33. 

 
Table 33.  Timetable of degradation of compounds in landfill based on experimental 
research 
 

Waste 
placed 

(1975-1983) 

Available 
Data 

Times 

Time to 
reach 
MCL 

Monitoring 
time beyond 

30 years 

Rate of 
disappearance 
(mg/L/year) 

 

Characteristics 

Chloride 2001-2008 2023 6 33.73  Inorganic 

anion 

TDS 2001-2008 2031 14 121.07  

Iron 2001-2008 - - -196.67 Metal 

Vinyl 

chloride 

2001-2008 2010 - 0.099 VOC 

Benzene 2001-2008 2030 13 0.086 VOC 

Due to these problem parameters, extra monitoring needs to be done to meet the 

regulations. Since these parameters extend the monitoring time, the source of these 

parameters should be investigated and reduced at the beginning to shorten the monitoring 

period. The sources of chloride in MSW are paper and plastics. The sources for iron are 

food and beverage cans, and wood-waste leachates. The main source for TDS is sodium 

and iron. The sources for benzene are household cleaners (spot remover, degreaser, oven 
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cleaner etc.,), stain, varnish, adhesives, cosmetics (nail polish remover). . Some of these 

materials such as cans, papers are recyclable and they can be eliminated from the 

beginning with the effective recycle program. Household hazardous waste such as 

degreasers should be collected and deposited separately. The major sources for each 

parameter and possible source reduction alternatives were presented in Table 34. 

Therefore, the refuse composition of landfills can be defined at the beginning for 

environmentally conscious management of waste deposited in MSW landfills.   

Table 34.   Waste Management Options 
 

Parameters that extend 

monitoring time beyond 

30 years 

 

Source in MSW 

Environmentally conscious 

management options 

Chloride (6 years) Paper, plastics  Source separation and 

recycling 

 Use of green materials 

 Reuse 

Vinyl Chloride Plastics  Source separation and 

recycling 

 Use of green materials 

 Reuse 

TDS (14 years) Paper, salts  Source separation and 

recycling 

Benzene (13 years) Petroleum products, 

household cleaners, 

cosmetics 

 Source separation and 

special handling 

Iron (indefinite) Cans, wood waste  Source separation and 

recycling 
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CHAPTER 9 

RESULTS AND CONCLUSIONS 

The data used in the analyses for the Davie Landfill were provided by Broward 

County Waste and Recycling Services Solid Waste Operations Division.  According to 

performance based methodology, landfill leachate quality and quantity data, rainfall 

quantity data, landfill gas composition and quantity data, groundwater monitoring wells 

quality data and cap integrity were evaluated to forecast the functional stability of the 

landfill. For the leachate module, the leachate quality and quantity data were analyzed to 

identify trends. Analyses showed that leachate quantity has been decreasing overtime. 

Plotted leachate contaminant data showed significant seasonal variations. The samples 

collected at the end of the dry season (April) higher concentrations of analyzed 

parameters; and the samples collected at the end of the rainy season (August) had lower 

concentrations of analyzed parameters due to dilution by infiltrating rain water. 

Seasonality in graphs was identified by regularly spaced peaks and troughs which had a 

consistent direction and approximately the similar magnitude every season. Therefore, 

the data were analyzed by the time series decomposition method which separates the 

times series into linear and seasonal components, as well as error, for forecasting. 

Presently total of 46 parameters including 3 field parameters have been monitored in 

Davie Landfill. Among these parameters, 28 parameters are non-detected parameters 

(always below detection limit), 8 parameters are always above Maximum Contaminant 

Level (MCL), Chloride, bicarbonate, sodium, ammonium as N, iron, benzene, vinyl 

chloride and total dissolved solids), and 10 parameters are below the MCL (1,4 

dichlorobenzene, chlorobenzene, cis-1,2 dichloroethylene, dichlorodifluoromethane, 
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ethylbenzene, methyl-tert-butyl ether, tetrachloroethene, toluene,  xylene and total 

BTEX). Since there is no comparison standard for landfill leachate parameters, these 

parameters were compared with MCL standards. The parameters in leachate have showed 

decreasing trend, except for iron and bicarbonate. The purpose of the leachate module is 

to determine whether the leachate monitoring practices may be optimized, reduced or 

discontinued.  As a result of the leachate module analysis, the following suggestions were 

made:  

• Significantly reduce or discontinue the monitoring frequency for non detected 

parameters,  

• Reduce monitoring frequency for parameters consistently below MCL, 

• Continue monitoring for parameters above MCL, and 

• Refine projections of parameters above MCL as more data become available. 

For the landfill gas (LFG) module, generated LFG trend was analyzed overtime. 

Remaining LFG was calculated using Landfill Gas Emissions Model (LandGEM) to 

evaluate the LGF monitoring can be optimized. The outcomes of landfill gas module 

showed that remaining LFG generation potential is 0.5% which indicates 99.5% of LFG 

has been eliminated through gas collection system. Therefore, eliminating active LFG 

management and converting to a passive venting system is acceptable.  

 The evaluations performed in the groundwater module were based on outcomes of 

the leachate and landfill gas modules. First groundwater contaminant frequencies were 

determined and trends were found for each parameter of interest. Most frequently 

detected parameters were iron, ammonia as N, total Dissolved Solid (TDS), sodium 

turbidity and zinc and least detected parameters were xylene and metals. These 
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parameters have consistent trends. After determining vinyl chloride, chlorobenzene,  1,4 

dichlorobenzene, chromium, cadmium, iron, zinc arsenic, ammonia as nitrogen, and 

xylene as groundwater parameters, the potential human health risks associated with 

exposure those contaminants were evaluated using Framework for Risk Analysis 

Multimedia Environmental Systems (FRAMES). The simulations were conducted for 

those contaminats intake due exposure to contaminated groundwater and pathways 

(inhalation, ingestion and dermal). Human health risks were evaluated in terms of 

carcinogenic and noncarcinogenic effects.  A factorial analysis was conducted to quantify 

the effects of Darcy velocity, soil thickness (i.e. depth to groundwater), and contaminant 

mass in aquifer on estimated risks. Based on the analysis, Darcy velocity showed no 

effect on risk. The higher concentrations of contaminants in aquifer resulted in higher 

values of risk and the thicker soil layer resulted in lower values of risks. Since soil layer 

thickness had a significant effect on estimated health risks, effects of different soil types 

on estimated risks were investigated. The results showed that soil types from least 

appropriate to most appropriate for risk management were sand, sandy clay, sandy loam, 

loam and clay loam.  The model showed the changes in both carcinogenic and non 

carcinogenic risks over time. The risk analysis results showed that, although metals 

detected in the groundwater are not harmful to the residents living around the Davie 

Landfill, volatile organic compounds especially vinyl chloride monitoring should be 

continued. The estimated health risks were directly correlated to levels of vinyl chloride 

detected in groundwater. Based on groundwater module outcomes combined with risk 

assessment results, the following suggestions were made:  

121 
 



• Significantly reduce or discontinue the monitoring frequency for non detected 

parameters,  

• Reduce monitoring frequency for: methyl chloride, methyl tert-butyl ether, 

xylene,  1,2-dichloroethylene, Chromium (*), Cadmium (*), Arsenic (*), Zinc (*) 

(*) Risk assessment results showed that these parameters are not harmful for 

residents living around landfill area) 

• Continue monitoring for parameters detected above MCL and chlorobenzene,1,4-

dichlorobenzene, vinyl chloride and, 

• Refine projections of parameters above MCL limits as more data become 

available. 

Landfill cap integrity was analyzed using leachate and rainfall correlations and 

landfill gas data analysis. Based on cap module results, the condition of the cap was 

impaired. Probably the higher volume of leachate and lower volume of LFG were 

affected by the existing condition of cap.  As a result of the cap module analysis, the 

following suggestions can be made: 

• Continue to conduct periodic walk-over surveys,  

• Continue with vegetative cover maintenance, 

• Continue to periodically repair erosion damage. 

 During the evaluation of the post closure performance of Davie landfill, the time 

dependent changes; a range of discrepancies, and problems that related to the collection, 

documentation and analyses of data, information and knowledge were encountered and 

possible solutions made as followings; 
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 Create an automated system that organizes and graphically displays 

environmental monitoring data,  

 Follow the QA/QC protocols and maintain the data accuracy. 

For the sustainable waste management of future landfills,,materials that cause longer 

monitoring periods were identified. Based on the source of these materials following 

suggestion were made; 

 Materials such as cans, papers, plastics can be separated before landfilling and 

recycled.  

 Household hazardous waste such as degreasers can be separated before landfilling 

and handle specially.  

Therefore, the refuse composition of landfills can be defined at the beginning for 

environmentally conscious management of waste deposited in MSW landfills.   

Conclusions 

 The question of an appropriate PCC period for Florida’s landfills requires in-depth 

case studies focusing on the analysis of the performance data from closed landfills in 

Florida. Based on data availability, Davie Landfill was identified as case study site for a 

case-by-case analysis of landfill stability. The performance based PCC decision system 

developed by Geosyntec Consultants was benefited for the assessment of site conditions to 

project PCC needs.  

 It was observed that the monitoring data from the case study landfill had some of the 

following characteristics: 

1. Some correlation between the contaminants detected in leachate and 

groundwater depending on the groundwater flow direction, 
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2. Correlation between leachate quantity and rainfall due to seasonal effects, 

3. Changes in leachate quantity due to activities at the sites. 

 Based on the analysis performed, the following recommendations are provided: 

1.  Leachate 

• Identify trends based on historical records for leachate quality and quantitiy (i.e., 

increasing, decreasing, steady, variable), 

• Reduce or discontinue the monitoring frequency for the parameters that are below 

the detection limits,  

• Reduce monitoring frequency for parameters consistently below MCL, 

• Continue monitoring of parameters that are above MCL, and 

• Refine projections of parameters above MCL as more data become available. 

2. Groundwater 

• Identify trends for groundwater quality(i.e., increasing, decreasing, steady, 

variable), 

• Check for any correlations between leachate quality and groundwater quality, 

• Check for any potential correlation between groundwater monitoring wells due to 

groundwater flow, 

• Significantly reduce or discontinue the monitoring frequency for parameters that 

are below detection limit,  

• Reduce monitoring frequency for parameters consistently below MCL, 

• Continue monitoring for parameters detected above MCL and, 

• Refine projections of parameters above MCL limits as more data become 

available. 
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3. Cap 

• Continue to conduct periodic walk-over surveys,  

• Continue with scheduled grass mowing practice, and  

• Periodically repair erosion damage. 

4. Landfill Gas 

 Calculate the remaining landfill gas if it indicates very low generation potential 

(less than 10%) eliminate active LFG management and convert to a passive 

venting system. 

 In determining the PCC needs, the quality of the monitoring data is very important.  

The performance based analysis to determine PCC needs requires historical data to make 

projections for the parameters being monitored.  As a result of the long-term data collection 

and documentation process for closed landfills; the data analysis and identification of trends 

could be difficult due to discrepancies and inconsistencies in data collection, quality of 

instruments, changes in data reporting formats, and QA/QC protocols could be significant. 

For the future landfill management, materials that cause longer monitoring periods 

(chloride, iron etc.,) can be eliminated via sustainable solid waste management during 

landfill operations. 
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