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Abstract

Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly
to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost
the power of their signals only at times of high social activity, either as night approaches or in response to social encounters.
Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and
during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-
gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary
peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal
amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking
of ion channels, a process that directly modifies an ongoing behavior in real time.
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Introduction

Electric fish generate electric organ discharges (EODs) by the

simultaneous action potentials (APs) of excitable cells (electrocytes)

in the electric organ. These nocturnally active fish detect

distortions of the EOD to locate objects around themselves and

communicate by broadcasting their EODs to conspecifics. Larger

amplitude EODs allow an individual to broadcast its signal further

to sense its surroundings and communicate with conspecifics. On

the other hand, EODs can be energetically costly to produce [1]

and some EODs may attract electroreceptive predators [2,3,4],

making high-amplitude EODs particularly costly and dangerous.

Increasing EOD amplitude only during periods of feeding and

social encounters might be a way for these animals to balance the

benefits of high-amplitude EODs against the energetic costs and

predation risks associated with high signal amplitudes.

Two broad classes of electric fish are defined by the rate and

regularity of their EODs. Pulse-type fish emit EODs at low-rate

irregular intervals and can accelerate or decelerate their EOD rates,

potentially saving energy and reducing predation risk by slowing

their discharge rate. Wave-type fish constantly emit EODS at a high

frequency, limiting their ability to regulate energy expenditure by

reducing the discharge rate. One pulse-type species, Brachyhypopomus

pinnicaudatus, not only modulates the discharge rate but increases

EOD amplitude up to 25% during the night when socially active,

decreasing EOD amplitude to baseline during the day [5].

Waveform modulation is mediated by circulating melanocortin

peptides such as adrenocorticotropic hormone (ACTH) [6,7]. We

chose to study the cellular mechanisms of ion channel regulation in

the wave-type gymnotiform fish Sternopygus macrurus (Figure 1)

because this fish emits a simple EOD waveform and the ion currents

responsible for generating its EOD are known [8], enabling us to

determine the exact ionic mechanisms of EOD amplitude

regulation and estimate their energetic costs. Moreover, we

reasoned that EOD modulation would be greater in a wave fish

because modulation of EOD amplitude is the only means for these

animals to reduce the energetic cost of the EOD.

We hypothesized that changes in EOD amplitude are mediated

by trafficking additional ion channels into the electrocyte’s active

membranes. Trafficking pre-synthesized molecules into the plasma

membranes of excitable cells allows animals to remodel excitable

cells within minutes [9]. Rapid trafficking of voltage-dependent ion

channels has been demonstrated in vitro for cardiac and neuronal

cells [9,10,11,12,13], but it is less clear how such processes

contribute to adaptive behavior of the whole animal. Here we

demonstrate in S. macrurus that rapid, controllable trafficking of ion

channels is responsive to environmental cues and modifies electrical

signaling behavior in real time, allowing S. macrurus to increase EOD

amplitude during periods of activity or social interaction.

Results

Diurnal Fluctuations in Sternopygus EOD Amplitude Are
Large

We recorded calibrated EODs noninvasively from free-

swimming S. macrurus and found that EOD amplitude varies
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diurnally (Figure 2B and 2C), increasing by 39%65.5% from the

daily minimum to the nighttime maximum. Social encounters with

conspecifics that allowed electrical but not physical interaction

produced similar increases in EOD amplitude (Figure 2D). As

predicted, this wave species shows an approximately 2-fold larger

modulation in its EOD amplitude than the previously studied

pulse gymnotiform species, Brachyhypomus pinnicaudatus.

Because EOD pulse characteristics are shaped directly by the

electrocyte APs [14], we hypothesized that increases in EOD

amplitude induced by encroaching darkness or social interaction

reflect increases in the amplitude of APs in individual electrocytes.

Using standard two-electrode current-clamp procedures, we

recorded APs from electrocytes in the isolated electric organ

harvested during daytime (11:00–13:30 h) or nighttime (20:00–

23:30 h). In three fish we harvested the electric organ first during

the day, and then at least 36 h later took a second piece of electric

organ at night. Three additional fish were sampled in reverse

order. With each piece of electric organ we recorded APs from at

least four electrocytes within 45 min of tissue harvest. Electrocyte

AP amplitude was higher and input resistance was lower in

electrocytes taken from fish at night (Figure 3).

Melanocortin peptide hormones act directly on the electric

organ to modulate the EOD waveform in the pulse-type

gymnotiform B. pinnicaudatus [7] and plasma levels of the pituitary

melanocortin peptide ACTH follow a diurnal rhythm in teleost

fish [15], suggesting that melanocortin peptides underlie circadian

and social modulations of EOD amplitude in S. macrurus. We

attempted without success to determine plasma ACTH levels by

radioimmunoassay, likely due to interference from binding

globulins. Limited availability of experimental animals precluded

our development of a reliable ACTH assay in this species. We

Figure 1. Generation of the EOD. (A) The EOD is produced by the coordinated APs of the electric organ cells, called electrocytes. A medullary
pacemaker nucleus controls the electrocyte APs via spinal electromotor neurons which innervate the electrocytes. (B) Electrocytes are innervated on
the posterior end of the cell, where the spinal nerve forms a large cholinergic synapse. The electrically excitable region of the cell membrane,
populated by Na+ and K+ channels, is localized to the posterior most region of the cell, extending approximately 150 mm toward the anterior of the
cell. The remainder of the cell membrane is electrically passive. APs in the electrocytes cause current to move along the rostral-caudal body axis and
out into the surrounding water. (C) A section of electric organ from the tail, with skin removed to expose the electrocytes, which are densely packed
within the electric organ. A single electrocyte is outlined in red. (D) The EOD waveform recorded from S. macrurus is a sinusoidal wave emitted at a
steady frequency by each fish. The EOD frequency among fish has a range of approximately 70 to 150 Hz.
doi:10.1371/journal.pbio.1000203.g001

Author Summary

Excitable cells, such as neurons and muscle cells, control
behavior by generating action potentials, electrical signals
that propagate along the cell membrane. Action potentials
are generated when the cell allows charged molecules
(ions) such as sodium and potassium to move across the
membrane through specialized proteins called ion chan-
nels. By changing the number of ion channels in the
plasma membrane, excitable cells can rapidly remodel
their functional characteristics, potentially causing changes
in behavior. To gain an understanding of how environ-
mental events cause the remodeling of excitable cell
membranes and the resulting behavioral adaptations, we
studied the electric communication/navigation signals of
an electric fish, Sternopygus macrurus. High amplitude
signals facilitate communication and electrolocation, but
are energetically costly and more detectable by those
predators that can detect electrical signals. We found that
Sternopygus increase signal amplitude at night, when they
are active, and increase signal amplitude rapidly during
social encounters. Electrocytes, the cells that produce the
signal, rapidly boost the signal amplitude when they allow
more sodium to cross the cell membrane, thereby
generating larger action potentials. To increase sodium
currents during the action potential, electrocytes rapidly
insert additional sodium channels into the cell membrane
in response to hormones released into circulation by the
pituitary. By adding new ion channels to the electrocyte
membrane only during periods of activity or social
encounters and removing these channels during inactive
periods, these animals can save energy and reduce
predation risks associated with communication.

Regulation of Ion Channel Trafficking
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therefore tested the effects of exogenous ACTH and found that

midday intramuscular injections of ACTH (30 nM/g) rapidly

increased EOD amplitude by 38.7%65.3% SEM (Figure 4A and

4B), while saline injections at this time point had little or no effect,

increasing amplitude by only 8.4%61.5%. Injection of ACTH

also caused a small but reliable increase in the EOD pulse width

(Figure 4C). EOD rate, regulated by pacemaker neurons in the

medulla, was unaffected by saline or ACTH injections (t = 0.54,

df = 14, p.0.5).

Melanocortin Peptides Increase Na+ and Inward
Rectifying K+ Currents

We next evaluated the effects of ACTH on the electrocyte AP in

vitro. APs were recorded in normal saline and at 5 min intervals

following bath application of 100 nM ACTH or saline. After

20 min of exposure to ACTH, AP amplitude increased by

24.5%65.3% while AP amplitude in saline controls declined by

2.16%62.5% (Figure 4D and 4E). The effects of ACTH on AP

amplitude were rapid—ACTH increased AP amplitude measur-

ably after only 5 min (Figure 4F). ACTH also increased AP

duration by 20.3%67.2%, while saline exposure increased AP

duration by only 3.9%63.2% (Figure 4E). Input resistance in

ACTH-treated cells did not change relative to saline controls

(t = 0.18, df = 9, p = 0.86).

Electrocytes of S. macrurus have three voltage-gated ion currents:

an inactivating Tetrodotoxin (TTX)-sensitive Na+ current (INa), a

classical delayed rectifier potassium current (IKDR), and an inward

rectifier potassium current (IKIR) [8]. We used two-electrode

voltage clamp to further analyze how ACTH increases AP (and

thereby EOD) amplitude. Changes in AP amplitude in this species

are due to changes in the properties of INa. IKDR activates with a

time-constant of 4.660.3 ms [16], too slowly to play a role in

shaping the AP upstroke or peak amplitude and, more conclusively,

we found that AP amplitude is not affected by blocking IKDR with

60 mM tetraethylammonium (TEA). AP amplitude in seven cells

was the same at baseline (97.0610.6 mV) and after 15 min

treatment with TEA (99.2616.8 mV; t = 0.75, df = 6, p = 0.48).

Figure 2. Circadian and social cues increase EOD amplitude. (A)
Experimental tank used to record calibrated EODs of free-swimming
fish. EODs were digitized from nichrome recording electrodes at the
ends of the tank only when circuitry detected that the fish was centered
within an unglazed ceramic tube, equidistant from the recording
electrodes at the ends of the tank. ADC, analog-to-digital-converter. (B)
EOD amplitudes of a representative fish recorded approximately every
60 s over 3 d. Signal amplitude shows a clear day-night rhythm
increasing to maximum during lights-out and decreasing to a minimum
at midday. Inset: superimposed EOD waveforms taken from the same
fish at nighttime maximum and daytime minimum. (C) EOD amplitudes
were significantly higher at nighttime peak than at daytime minimum
(n = 8, t = 3.91, df = 7, p,0.01). Bars show means, and error bars indicate
SEM. (D) Adding a second fish into the center compartment for 1 h at

midday (arrowheads) caused transient increases in EOD amplitudes of
four fish. All voltages are referenced to a point 10 cm from the center of
a 5 cm calibration dipole [38].
doi:10.1371/journal.pbio.1000203.g002

Figure 3. Electrocyte AP amplitude is higher at night. (A) AP
amplitude (measured from resting potential to AP peak) is higher in
electrocytes harvested at night than in those taken during the day
(t = 3.39, df = 48, p,0.01). (B) Night-harvested electrocytes have lower
input resistances than those sampled during the day (t = 2.676, df = 43,
p,0.05).
doi:10.1371/journal.pbio.1000203.g003

Regulation of Ion Channel Trafficking
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Figure 4. ACTH increases EOD amplitude in vivo and electrocyte AP amplitude in vitro. (A) Injections of ACTH increased EOD amplitude
whereas saline injections have little or no effect. Plots show EODs recorded from two fish that received counterbalanced injections of saline or ACTH
at midday. Inset: superimposed representative EOD waveforms taken at baseline and 1 h after ACTH injection. (B, C) Percentage increase in EOD
amplitude and half width following injections of saline or ACTH injections. Bars show means, and error bars indicate SEM. (D) Representative traces of
APs recorded at baseline and after 20 min exposure to saline (control) or ACTH. (E) In cells exposed to ACTH, AP amplitude and half width increased
compared to saline controls. Both experimental and control cells showed slight but similar increases in input resistance (unpublished data). Asterisks
indicate conditions different from saline control (unpaired t test, p,0.05). (F) Time course of ACTH-induced increase in AP amplitude.
doi:10.1371/journal.pbio.1000203.g004

Regulation of Ion Channel Trafficking
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Treatment with ACTH strongly boosted the Na+ current

amplitude by 66.6%611.7% while saline controls decreased it by

15.7%63.3% (Figure 5). The effect of ACTH on INa amplitude

was as rapid as for the whole cell AP, with marked amplitude

increase apparent after 5 min, the first time point sampled. In

contrast, ACTH had no effect on voltage dependence (Figure 5) or

inactivation kinetics of INa; percentage change in inactivation tau

after 20 min was 25.4%63.0% in control cells and 0.0%62.5%

in ACTH-treated cells, a nonsignificant difference (t = 1.79,

df = 18, p = 0.10).

We then investigated the signal transduction pathway by which

ACTH increases the magnitude of INa. Melanocortin peptides,

including ACTH, initiate their actions via membrane-bound

melanocortin receptors, all of which are coupled positively to

adenylate cyclase and elevate intracellular cAMP when activated in

other systems [17]. We found previously that the membrane-

permeant cAMP analog 8-Br-cAMP increases EOD, AP, and INa

amplitude by activating of the PKA pathway [14,18]. Thus,

melanocortins released from the pituitary likely serve as the signal

from the brain to the periphery that initiates the cAMP cascade that

regulates electrocyte INa in S. macrurus. To test this hypothesis we

pretreated cells with 30 mM H89, a cell permeable PKA inhibitor

that blocks PKA activation, and then added ACTH (100 nM). H89

pretreatment blocked the ability of ACTH to boost INa amplitude,

indicating that the observed ACTH effects on electrocyte INa (and

thereby AP amplitude) are mediated via PKA (Figure 5B).

Neither ACTH (100 nM) nor 8-Br-cAMP (1 mM) affected the

delayed rectifier (Figure 6D), which is the outward current seen at

230 mV to 0 mV on the IV curves (Figure 6B). However, ACTH

and 8-Br-cAMP increased the peak amplitude of the inward

rectifier at 280 mV and 290 mV (Figure 6B and 6C). The effects

of ACTH and of 8-Br-cAMP were blocked by H89 (30 mM),

verifying that they act via PKA.

No treatment-related effects were seen on resistance, threshold

of activation for any of the three currents, membrane voltage of

peak INa or peak IKIR, recovery from inactivation of INa, steady

state inactivation of INa, inactivation time-constant of INa, or

activation time-constant of IKDR.

It was hypothesized previously that increasing IKIR decreases

resting membrane resistance and the internal resistance of the

electric organ such that each EOD produces a stronger electric field

in the surrounding water [14]. However, because IKIR is active

below the threshold for INa activation and AP initiation, it now

seems unlikely that changes in IKIR affect the AP waveform. Rather

our voltage-clamp data confirm that ACTH-induced increases in

AP amplitude and duration result entirely from increases in INa

magnitude, a change mediated by the cAMP/PKA pathway.

Rapid Increases in EOD Amplitude Are Due to Hormonal
Enhancement of Constitutive Trafficking of Na+ Channels

Because PKA induces no changes in kinetic or voltage-

dependent properties of INa [19] and IKIR (unpublished data),

we hypothesized that melanocortins increase INa and IKIR by

increasing the number of channels active in the cell membrane.

One mechanism would be to increase trafficking of preformed

channels from a vesicular reservoir into the plasma membrane. To

evaluate this hypothesis we applied compounds that disrupt ion

channel processing and insertion at different stages in the protein

synthesis-exocytosis pathway. Chloroquine (CQ) interferes with

vesicle recycling [20], membrane fusion events [21], and Na+

channel trafficking [10,22,23]. N-ethylmaleimide (NEM) is widely

used to disrupt vesicle docking and recycling. In contrast to CQ

and NEM, which primarily disrupt vesicle trafficking at the plasma

membrane, Brefeldin A (BFA) interferes with earlier protein

processing by disrupting transport of proteins from the endoplas-

mic reticulum to the Golgi apparatus and also slows the recycling

of endocytosed proteins [24].

We pretreated electrocytes for 30 min with either 50 mM CQ,

100 mM NEM, or 150 mM BFA, followed by the addition of

100 nM ACTH for 30 min. All three compounds reduced INa

amplitude (Figure 7A–7C), with CQ causing an especially

pronounced reduction in INa (to 29.09%61.07% of baseline).

Both CQ and NEM blocked the effects of ACTH (Figure 7). In

contrast, BFA did not block the ACTH-induced increase in INa

amplitude (Figure 7), indicating that ACTH works downstream of

protein processing, so the mechanism of ACTH action cannot be

synthesis of new Na+ channels.

Reduction of INa by CQ and NEM could result from

interference with the trafficking of either Na+ channels or

melanocortin receptors. We discriminated between these possibil-

ities by pretreating cells with CQ or NEM before activating PKA

directly with 8-Br-cAMP. Both CQ (n = 4) and NEM (n = 4)

prevented the PKA-induced INa increase (unpublished data),

supporting our conclusion that these compounds act downstream

of the ACTH receptor, i.e., on Na+ channels.

Figure 5. ACTH increases INa magnitude via the cAMP/PKA
pathway. (A) Sodium currents recorded before and after 20 min
exposure to saline or ACTH. Sodium currents were pharmacologically
isolated by blocking potassium currents with 60 mM TEA. (B) Sodium
current increases after 20 min exposure to ACTH. The PKA blocker H89
has no effect alone, but pretreatment with H89 blocked the ACTH-
induced increase in Na+ current magnitude (n = 5 per condition, ANOVA
F[3, 16] = 9.348, p,0.001). (C) Normalized Na+ I-V curves for cells before
and after 20 min saline-control treatment. (D) Normalized Na+ I-V curves
for cells before and after 20 min exposure to ACTH. Voltage of peak INa
was unchanged in both control and ACTH-treated cells (paired t-test,
df = 4, p.0.3 for both saline and ACTH).
doi:10.1371/journal.pbio.1000203.g005
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Control cells in normal saline show a gradual decrease in INa

[19] and we observed similar rundown in the present experiments

(Figures 5B and 8A). This rundown was increased by CQ, NEM,

and BFA (Figure 8A), with CQ causing the largest decrease in

peak current. Given the extreme and rapid attenuation of INa

magnitude by CQ, we tested the capacity of cells to respond to

ACTH after CQ washout. After pretreatment with CQ, we

exposed cells to CQ and ACTH for 30 min, followed by 60 min

treatment with ACTH alone (Figure 8B). During the final ACTH

treatment, INa increased over the course of 60 min, indicating

that the effects of CQ are reversible. However, the increase in INa

during ACTH treatment could have resulted either from CQ

washout or the combined washout of CQ and the presence of

ACTH. We therefore tested whether the increased INa during

ACTH treatment resulted only from the washout of CQ. Four

cells were exposed first to CQ for 60 min, then a 60 min saline

washout, followed by a 60 min application of ACTH. CQ reduced

INa to 17.4%63.7% of its baseline magnitude after 60 min

(Figure 8C). After 60 min of saline washout, INa magnitude

recovered only to 23.7%65.8% of baseline, a nonsignificant

recovery. In contrast, after 60 min of ACTH exposure, INa

recovered to 63.3%614.8% of its baseline value, indicating that

washout of CQ alone is not sufficient for recovery of INa, and that

the presence of ACTH is necessary for this recovery.

Neither CQ nor NEM inhibited IKDR (Figure 9C and 9D),

providing strong evidence that these compounds do not cause a

nonspecific decline in cell function. CQ pretreatment reduced

peak IKIR, while NEM did not significantly inhibit IKIR

(Figure 9B). Both compounds blocked the ACTH-induced

enhancement of IKIR (Figure 9A and 9B), suggesting that ACTH

also enhances IKIR by up-regulating vesicular trafficking and that

CQ and NEM block the effects of ACTH by inhibiting this

process.

In a final experiment, we supplemented our pharmacological

data supporting ACTH-induced channel trafficking with addi-

tional evidence that ACTH leads to the insertion of new Na+

channels into the membrane. We took advantage of the fact that

electrocyte INa normally inactivates with a single time-constant

(tfast) (Figure 10). We applied a high-affinity sea-anemone toxin

(ATX-II), which binds to extracellular loops [25] of voltage-gated

Na+ channels in the membrane, slowing INa inactivation. After

exposure to saturating concentrations of ATX-II, electrocyte INa

inactivated with a single slower time-constant (tslow) (Figure 10).

Following rapid washout of unbound ATX-II from the bath, INa

inactivated with a dual time-constant, reflecting the relative

contributions of channels with and without bound toxin.

Immediately after ATX-II washout, approximately 25% of INa

inactivation was accounted for by tfast when tslow is constrained to

the value derived by single-exponential fit following ATX-II

saturation. After additional exposure to normal saline or saline

with ACTH for 20 min, tfast accounted for 52.4%610.9% of INa

inactivation in saline controls, whereas tfast accounted for

80.8%613.6% of INa inactivation in ACTH-treated cells

(Figure 10). The increased recovery of tfast in ACTH-treated cells

strongly suggests the presence of new channels without bound

toxin and supports the conclusion that ACTH treatment works by

increasing the rate of channel insertion into the membrane, rather

than by slowing endocytosis of membrane-bound channels.

Increase in Na+ Channel Number Is Metabolically Costly
Our experiments establish that S. macrurus increases its EOD

amplitude to a greater extent than the gymnotiform pulse fish B.

pinnicaudatus, and that boosting the EOD results entirely from

increases in the number of Na+ channels present in the electrocyte

membrane. Given the potential role of EOD amplitude modula-

tion in regulating energy consumption by the electric organ, we

estimated the metabolic cost of increased EOD amplitude by

measuring the increase in total Na+ influx during electrocyte AP

Figure 6. ACTH increases the inward rectifier potassium
current (IKIR) via a cAMP/PKA pathway; the delayed rectifier
current (IKDR) is stable across all conditions. (A) Representative
family of electrocyte potassium currents recorded with INa blocked by
1 mM TTX. To generate the IV curves in Panel B, current amplitude was
measured at steady state (open square in A). (B) Normalized IV curves at
baseline and after 20 min exposure to saline (control) or ACTH. (C) Both
ACTH and the cAMP analog 8-Br-cAMP increase the magnitude of IKIR.
The PKA blocker H89 had no effect alone, but pretreatment with H89
blocked the ACTH- and 8-Br-cAMP-induced increase in IKIR magnitude.
Asterisks indicate conditions different from saline controls (ANOVA
F[5, 34] = 16.22, p,0.0001; pairwise comparisons by Tukey’s HSD). (D) The
delayed rectifier was stable across all experimental conditions (ANOVA
F[5, 34] ,1, p.0.5).
doi:10.1371/journal.pbio.1000203.g006

Regulation of Ion Channel Trafficking
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modulations. One molecule of ATP must be expended to pump

three Na+ ions out of the cell; therefore any increase in Na+

movement into the cell will cause a proportional increase in

energetic use by the Na+/K+ ATPase. We considered only

changes in Na+ influx because the inward rectifier current

inactivates well below AP threshold and the delayed rectifier

activates too slowly to affect AP waveform [8].

Total Na+ charge movement, measured as the time integral of

the peak Na+ current in voltage clamp, increased by 43%66%

after ACTH treatment and decreased by 28%617% in controls, a

difference of 71% (Figure 11A). We also computed the area under

the AP as an alternate estimate of Na+ charge movement during

the AP. Treatment with ACTH led to a 61%616% increase in AP

area, compared to a decrease of 4.5%65% in saline controls

(Figure 11B), a difference of 65%. These values likely represent the

lower limit of increased Na+ movement and energy demand by the

electrocyte—trials with larger S. macrurus in another study (P.

Stoddard, unpublished data) show that melanocortins can increase

total EOD area by as much as 340%, indicating a significant

potential for energy expenditure or conservation by dynamic

regulation of EOD amplitude.

We estimated increased Na+ charge movement under physio-

logical conditions by comparing the time integral of the AP

waveform in day- versus night-harvested electrocytes. Electrocyte

AP area increased from 355667 mV*ms during the day to

466687 mV*ms at night, an increase of 31.3% (Figure 11C).

Even by this conservative estimate based on measurements in

electrocytes removed from circulating melanocortin peptides, the

nighttime increase in EOD amplitude would require a 31%

increase in ATP expenditure on active transport to remove the

accumulated Na+ from the electrocyte.

Discussion

The EOD amplitude of the wave-type electric fish S. macrurus

varies with a diurnal rhythm and in response to social encounters.

We found that changes in electrocyte AP amplitude underlie the

diurnal enhancements of EOD amplitude seen in vivo, and that

the melanocortin peptide ACTH increases EOD amplitude in vivo

and electrocyte AP amplitude in vitro. This pattern of EOD

amplitude enhancement parallels that observed in pulse-type fish

but occurs on a larger scale, consistent with our reasoning that

Figure 7. Disrupting vesicular trafficking prevents the ACTH-induced increase in INa. (A–C) CQ and NEM prevented the ACTH-induced
increase in INa magnitude, whereas BFA did not prevent the ACTH-induced current enhancement. Potassium currents were blocked in all conditions
with 60 mM TEA. I-V curves depict normalized INa at baseline and after 30 min exposure to CQ, NEM, or BFA, then 30 min after addition of ACTH.
Insets: summary of peak INa at baseline and after 30 min exposure to CQ, NEM, or BFA, then 30 min after addition of ACTH. Asterisks indicate
conditions significantly different from other conditions by Tukey’s HSD following significant omnibus repeated measures ANOVA (for CQ
F[2,4,8] = 17.13, p,0.01; NEM F[2,4,8] = 17.28, p,0.01; BFA F[2,5,10] = 16.16, p,0.001).
doi:10.1371/journal.pbio.1000203.g007
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wave fish stand to conserve more energy by EOD amplitude

modulation than pulse fish. Our most important results show that

ACTH activates the cAMP/PKA pathway within the electrocyte

to up-regulate two distinct ionic currents, a Na+ current and an

inward rectifier K+ current, by inducing trafficking of channel

proteins into the electrocyte membrane. The delayed rectifier

potassium current, on the other hand, is not regulated by this

mechanism (Figure 12).

Control of cell surface channel number through regulated

exocytosis occurs most commonly in situations where channels are

constitutively cycled into and out of the plasma membrane [9].

When the rates of exocytosis and endocytosis are in equilibrium

the number of surface proteins remains relatively constant.

Increasing the rate of exocytosis relative to the rate of endocytosis

will increase the number of surface proteins while decreasing the

relative rate of exocytosis will reduce the number of surface

proteins. Our data suggest that both of the melanocortin-regulated

ion channels (INa and IKIR) are constitutively cycled into and out

of the plasma membrane. Both currents show steady rundown in

normal saline. We believe that this rundown results from

decreased rates of exocytosis after the electrocytes are removed

from circulating endogenous melanocortin hormones. The

resulting gradual decrease in residual PKA activity would slow

the rate of exocytosis relative to endocytosis, thus decreasing the

presence of Na+ and inward rectifier channels in the plasma

membrane. This rundown is accelerated by compounds that block

exocytosis of new channels into the electrocyte membrane

independent of residual PKA activity, further decreasing the rate

of exocytosis relative to endocytosis.

Constitutive cycling of ion channels is energetically costly, as

both endocytosis and exocytosis require hydrolysis of ATP or

GTP. The principal advantage of constitutive channel cycling is

speed: by altering the rate of endocytosis or exocytosis the number

of channels present in the membrane can be rapidly changed

without delays associated with synthesizing channel proteins de

novo. Moreover, the energetic costs of constitutive channel cycling

are minimal compared to the energy used by the Na+/K+ ATPase

to remove Na+ that enters the cell during APs [26]. Electrocytes in

S. macrurus fire round-the-clock at rates of 70–150 Hz, with whole-

cell Na+ currents of several mA [8] placing extremely high demand

on ATP-dependent ion transporters. We estimate that energetic

demands of the EOD are increased by at least 30% during periods

of EOD amplitude enhancement, and by as much as 340%.

Accordingly, S. macrurus stands to conserve more energy through

reductions in EOD amplitude during periods of inactivity than is

expended by the constitutive cycling of channels in the electrocyte.

The costs associated with constitutive cycling are therefore a small

price to pay for the energetic savings associated with circadian

reductions in EOD amplitude and the ability to quickly increase

EOD amplitude in response to environmental events.

While increasing electrocyte INa has a clear role in boosting

EOD amplitude, the function of dynamically regulating IKIR is

less obvious. One possibility is that the increased Na+ influx leads

to enhanced activity of Na+/K+ ATPase, accelerating active

transport of K+ into the electrocyte. In this circumstance,

upregulation of the inward rectifier conductance, a tonic K+

conductance active at resting potential, would facilitate passive

diffusion of excess K+ out of the electrocyte.

Cardiac myocytes, which also must maintain a steady rate of

APs, express Na+ channels (NaV1.5) that undergo constitutive

cycling, regulated by G-protein coupled receptors and cAMP/

PKA. Early findings that cardiac Na+ current is increased by b-

endorphin [27] and a G-protein/PKA pathway [28] were followed

by the discovery that PKA upregulates trafficking of NaV1.5 into

the plasma membrane [22,29]. This regulation requires the

presence of phosphorylation sites and endoplasmic reticulum

retention motifs on an intracellular loop of the channel protein

[30]. The similar regulation of Na+ channel trafficking in cardiac

myocytes and electrocytes raises the possibility that regulated

constitutive cycling is a general feature of excitable membranes

Figure 8. Rundown of sodium current and washout of CQ
effect. (A) Decrease in peak Na+ current following 30 min exposure to
Saline, CQ, NEM, and BFA. (B) Washing out CQ while maintaining ACTH
in the bath saline led to increased INa magnitude (n = 4). (C) Washing
out CQ with normal saline for 60 min did not produce recovery of INa,
but subsequent addition of ACTH increased INa magnitude (n = 4).
doi:10.1371/journal.pbio.1000203.g008
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Figure 9. Disrupting vesicular trafficking prevents the ACTH-induced increase in the inward rectifier potassium current (IKIR) but
has no effect on the delayed rectifier current (IKDR). (A,B) CQ and NEM prevented the ACTH-induced increase in IKIR magnitude. I-V curves
depict normalized steady-state IK at baseline and after 30 min exposure to CQ or NEM, then 30 minutes after addition of ACTH. Potassium currents
are isolated in all conditions by blocking INa with 1 mM TTX. The apparent increase in DR current with NEM treatment plus ACTH is not statistically
significant when compared at individual membrane voltages. Insets: summary of peak IKIR at baseline and after 30 min exposure to CQ or NEM, then
30 min after addition of ACTH. Both compounds produced a decrease in current magnitude. Asterisks indicate conditions significantly different from
baseline by Tukey’s HSD following significant omnibus repeated measures ANOVA (for CQ F[2,4,8] = 26.6, p,0.001; NEM F[2,5,10] = 6.00, p,0.05). (C) The
magnitude of IKDR at peak current is not changed by CQ or CQ with ACTH (F[2,4,8] = 2.76, p.0.1). (D) The magnitude of IKDR at peak current was not
changed in the presence of NEM or NEM with ACTH (F[2,5,10] = 0.12, p.0.8).
doi:10.1371/journal.pbio.1000203.g009
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that must maintain constant activity while retaining flexibility in

their pattern or extent of excitability.

A novel finding of the present study is the PKA-regulated

trafficking of both INa and IKIR in electrocytes. An important

question for further investigation is what mechanisms are involved

in co-regulating the trafficking of two molecularly distinct ion

channels within the cell. Data on the trafficking of cardiac Na+

channels suggest that phosphorylation of the channel proteins

could be responsible for increased channel exocytosis in electro-

cytes. However, phosphorylation of vesicle-associated proteins

[31] and the SNARE complex proteins [32] also can change the

rates of vesicle docking and exocytosis. We do not yet know which

phosphorylation events regulate channel trafficking in electrocytes.

It is possible that regulation of Na+ channel and inward rectifier

channel trafficking are modulated by different phosphorylation

events, or a single phosphorylation event could control the fate of

both channel types. Critical for addressing these questions will be

experiments to determine the functional phosphorylation sites, and

Figure 10. ACTH promotes recovery of fast INa inactivation following ATX-II treatment. (A) Schematic experimental timeline indicating
points of INa measurement represented in Panels B–E. Color-coded arrowheads correspond to the colors of representative traces shown in B–D. (B)
Representative peak magnitude INa traces at baseline, after ATX-II saturation, and after washout of ATX-II followed by 20 min exposure to saline (top)
or ACTH (bottom). Potassium currents were blocked in all conditions by addition of 60 mM TEA. (C) Same traces as in (B), but current amplitudes are
normalized to baseline to facilitate direct comparison of the inactivation phase in each current. (D) Current traces following 20 min treatment with
saline or ACTH treatment taken from Panel B. Black lines represent the best possible single exponential fit using the slow inactivation time-constant
from the corresponding ATX-treated traces. The slow time-constant better accounts for inactivation in the saline treated cell. (E) After washout of
ATX-II, tfast accounts for approximately 25% of INa inactivation in all cells prior to 20 min exposure to saline or ACTH. After the 20 min experimental
manipulation, the fast component of INa inactivation shows greater recovery in cells treated with ACTH than in saline controls (F[3,12] = 7.612, p,0.01;
pairwise comparison significantly different p,0.01 by Tukey’s HSD).
doi:10.1371/journal.pbio.1000203.g010
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the subcellular localization of Na+ and inward rectifier channels.

Sodium and inward rectifier channels could be loaded into the

same vesicles, such that upregulating exocytosis of this single

pathway inserts both channels into the membrane. Alternatively

Na+ and inward rectifier channels could be loaded into separate

vesicles, and PKA then independently increases the exocytosis rate

of both vesicle populations.

Taken together, our results show that S. macrurus maintains a

circadian rhythm in EOD amplitude and responds to environ-

mental events in a matter of minutes by increasing EOD

amplitude. This modulation of an ongoing behavior is a direct

function of the rapid trafficking of ion channels, demonstrating in

a vertebrate system a clear relationship between ion channel

trafficking and behavior. Such ‘‘behavior to molecules to

behavior’’ accounts have been worked out in a small number of

invertebrate preparations such as Drosophila [33], C. elegans [34],

and Aplysia [35], but similar successes with vertebrate behavior

have proven more difficult [c.f., 36]. The experiments in this study

demonstrate how an electric fish tracks behaviorally relevant

environmental cues and regulates ion channel trafficking in real

time to boost power of the electric signal at times of highest social

activity. Power of the EOD waveform is perfectly proportional to

energy consumed by electrolocation, and electric signals use a

significant fraction of the energy budget [1]. Thus the ability to

restrict EOD intensification to periods of activity and times of

social encounters can significantly reduce overall energetic

expenditure on communication.

Materials and Methods

Animals
Fish were wild caught Sternopygus macrurus (gold-lined knife fish)

from tropical South America, obtained from Segrest Farms

(Gibsonton, FL, USA) and ranging in size from 20 to 30 cm.

Figure 11. Increased Na+ influx during the enhanced electro-
cyte AP. (A) Total Na+ charge movement during peak INa recorded in
voltage clamp increases by 43%66% after treatment with ACTH but
decreases by 28%617% in control cells (t = 4.68, df = 9, p,0.01). (B)
Treatment with ACTH increases area under the AP by 61%616%,
compared to a 5%65% decrease in controls (t = 4.20, df = 13, p,0.001).
(C) Area under the AP is greater in electrocytes harvested at night than
in day-harvested electrocytes (t = 2.55, df = 10, p,0.05).
doi:10.1371/journal.pbio.1000203.g011

Figure 12. Mechanisms controlling ion channel trafficking in S. macrurus electrocytes. Ion channel proteins are synthesized in the
endoplasmic reticulum and then further processed and inserted into vesicles in the Golgi apparatus. Delayed rectifier potassium channels undergo
exocytosis to the cell surface without subsequent endocytosis. Inward rectifier channels and Na+ channels are constitutively cycled into and out of
the membrane. This process is accelerated when the melanocortin peptide hormone ACTH activates a G-protein coupled melanocortin receptor. The
receptor initiates a signaling cascade that elevates cAMP and activates PKA. PKA then upregulates the exocytosis of channels into the membrane
increasing the number of Na+ and inward rectifier channels present in the electrocyte membrane, thereby increasing the magnitude of both
conductances. For simplicity we have illustrated Na+ and inward rectifier channels as being in the same vesicles, although we do not know whether
they are in the same or different vesicles.
doi:10.1371/journal.pbio.1000203.g012
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After acclimation to lab temperature and aquarium water, the fish

were housed in communal 300-l tanks at 28uC61uC with water

conductivity of 600–800 mS/cm. At least 4 wk before they were

used in experiments, fish were removed from the communal tanks

and housed individually in 20-l aquaria.

All methods were approved by the Institutional Animal Care

and Use Committees of Florida International University and The

University of Texas, and complied with the guidelines given in the

Public Health Service Guide for the Care and Use of Laboratory

Animals.

Solutions and Reagents
We obtained all reagents from Sigma (St. Louis, MO, USA),

except for TTX, which was purchased from Biomol (Plymouth

Meeting, PA, USA), and the sea anemone toxin ATX-II, which

was purchased from Alomone Labs (Jerusalem, Israel). The

normal saline for in vivo injections and in vitro physiology

contained (in mM): 114 NaCl, 2 KCl, 4 CaCl2N2H20, 2

MgCl2N6H20, 2 HEPES, 6 glucose; pH to 7.2 with NaOH. Some

experimental conditions required modifications to the normal

saline, detailed below where appropriate.

EOD Recordings and Injections In Vivo
Our automated system for recording calibrated EODs from

freely swimming fish and procedures for injecting fish are described

in detail elsewhere [37]. The essential features of this system are a

300-l aquarium divided into three sections, with the outer two

sections joined by an unglazed ceramic tube (Figure 2A). Fish in the

tank can swim between the two outer sections only by passing

through the central tube. Short (2 cm) nichrome electrodes attached

to the tube are connected to custom-developed circuitry that detects

when the fish is centered within the tube. EODs are amplified and

digitized from a different pair of longer (10 cm) nichrome recording

electrodes at opposite ends of the tank only when the fish-detecting

circuitry signals that the fish is centered in the ceramic tube

equidistant from the recording electrodes. For in vivo EOD

recordings, fish were placed in the automated measurement tank,

which is located in a light- and temperature-controlled room on a

12L:12D light cycle. We recorded EODs round the clock at

intervals of ,1 min for several days as to assess day-night variation

in EOD waveform. Social challenges were accomplished by

introducing a second fish into the central compartment of the

recording aquarium for 1 h at midday (see Figure 2). The fish could

interact electrically and chemically, but not physically.

Injections of ACTH were administered after at least 2 d of

baseline EOD recordings. We injected fish (1 ml/g intramuscular)

at midday with 30 mM ACTH in normal saline, or with normal

saline as a control condition. Each fish served as its own control so

a second injection was given the next day. Four fish received

ACTH injections followed by saline injection and four fish

received the opposite order of injections. The order of saline versus

ACTH injection had no effect on the response to ACTH injection

(t = 0.13, df = 6, p.0.8) or saline injection (t = 0.23, df = 6, p.0.8).

Electrophysiology
Procedures for recording from the electric organ have been

described previously [14,18]. In brief, we harvested a 2.5–3.0 cm

section of the tail, removed the overlying skin, and pinned the

exposed electric organ in a Sylgard recording dish containing

normal saline with curare (5 mg/l) added to prevent spontaneous

contractions from any tail muscles that might be present in the

section. Temperature of the preparation was stable at room

temperature (24uC61uC) or maintained at 24.5uC60.5uC using a

TC2-bip bipolar temperature controller with HI–55D heater

under the recording dish and HPRE2 Pre–heater (Cell Micro-

Controls, Virginia Beach, VA, USA).

Electrophysiological recordings were made with the Axoclamp

2B or Axoclamp 900 amplifier, controlled by a Digidata 1320A or

1440 DMA interface using pCLAMP 8 or pCLAMP 10 software

(Molecular Devices, Sunnyvale, CA, USA). Sampling rate was at

least 20 kHz for all experiments. A two-electrode configuration

was used in both current-clamp and voltage-clamp experiments.

Microelectrodes were pulled from thin-wall borosilicate glass and

had resistances of 0.9–1.2 MV when filled with 3 M KCl. The

bath ground consisted of a chlorided silver wire inserted into a

3 M KCl agar bridge. To depolarize the cell for recording APs,

current steps were delivered through a X100 headstage (Axon

HS2A, X100 MGU) and membrane voltage recorded through a

X1 headstage (HS-2 X1L). In voltage-clamp mode, current was

injected using a X10 headstage. Electrodes were placed within the

region of the electrocyte’s voltage-gated ion channels, the most

posterior portion of the cell with a grounded shield placed between

the electrodes to prevent capacitive coupling. To improve the

space clamp in some voltage-clamp experiments, NaCl in the

saline was replaced with sodium methylsulfate at 93.2 mM. The

pH was adjusted to 7.2 with 1 M NaOH, bringing the Na+

concentration to ,114 mM. In these cases, baseline recordings for

amplitude comparisons were taken after the switch to the sodium

methylsulfate saline and all drugs were bath applied in the

methylsulfate saline.

For current clamp experiments, we delivered 25 ms current steps

from 2200 nA to 2000 nA in 100 nA intervals. In some large cells

for which this protocol was not sufficient to elicit APs, we delivered

current steps from 2400 to 4,000 nA in 200 nA intervals to elicit

APs. The current clamp protocol was repeated at 5 min intervals.

Baseline recordings were made in normal saline before superfusing

with additional normal saline as a control, or with a test solution of

100 nM ACTH dissolved in normal saline. We calculated input

resistance from the steady-state voltage responses to 200 nA

hyperpolarizing and depolarizing currents steps.

In voltage-clamp experiments, we held the cells at resting potential

(285 to 295 mV) and stepped the potential from 2110 to +60 mV

in 5 or 10 mV increments, although exceptionally large currents in

some cells necessitated reducing the number of depolarizing steps to

avoid saturating the amplifier. Sodium currents (INa) were isolated

by adding 50 mM TEA to the saline, and potassium currents were

isolated by addition of 1 mM TTX. In the presence of 1 mM TTX,

the electrocyte displays only a classical delayed rectifier potassium

current (IKDR), and an inward rectifier potassium current (IKIR).

These potassium currents can be separated based on different gating

properties. The inward rectifier is open at voltages more

hyperpolarized than 250 mV and inactivated above this membrane

potential, while IKDR activates above 240 mV [8].

In all voltage-clamp experiments, test compounds were

dissolved in the recording saline and bath-perfused into the

recording chamber. For experiments where we recorded INa in

the presence of BFA, CQ, or NEM, we compensated for the

addition of 50 mM TEA with an equimolar reduction in Na+ to

prevent osmotic stress on the cells and facilitate voltage clamp of

the Na+ currents.

Data Treatment
EODs recorded in vivo were analyzed using custom software

developed in MATLAB (Mathworks, Natick, MA, USA). Ampli-

tude of the EOD was measured peak-to-peak and EOD half-width

was measured as the pulse duration at 50% of peak amplitude.

Current clamp data were analyzed with MATLAB. AP amplitude

was measured from the membrane potential at AP peak to the
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minimum membrane potential between the AP peak and the end

of the current step. We took the maximum AP amplitude

measured during each set of current clamp steps. Duration of

the AP was measured as the spike width at half amplitude. Input

resistance was measured by taking the inverse of the slope from a

straight-line fit to the voltage-current plots for the two hyperpo-

larizing current steps and the first two depolarizing current steps.

Voltage-clamp data were analyzed with Clampfit 8 or 10

(Molecular Devices). For Na+ currents, the leak was estimated at

the end of the 25 ms test pulse when INa was fully inactivated. In

the presence of TEA, in this region of the trace, only a steady state

linear leak current remains. The leak was then subtracted from the

raw current traces to yield isolated INa traces from which current

measurements were made to generate IV curves. All amplitude

and inactivation time-constant comparisons were made at the peak

Na+ current. We estimated inactivation tau by fitting exponential

decay functions to the current trace from the first inflection point

after the peak in the current curve to the point at which the

current declined to 10% of its peak value. In S. macrurus

electrocytes, INa inactivates with a single time-constant, except

during our final experiment when the sea anemone toxin ATX-II

introduced a second, slow time-constant. Inactivation tau of INa

was therefore estimated by fitting the appropriate region of the

trace with a standard single-exponential decay function:

I(t)~AFast � e{t=tFastzC

or a two-term standard exponential function:

I(t)~AFast � e{t=tFastzASlow � e{t=tSlowzC

where I(t) is the current at time t, AFast and ASlow are the

proportions of current inactivating with the time-constants tfast

and tslow, and C is the non-inactivating component of the current

at steady state. For the double-exponential fits, we constrained

tslow to the value derived from the single exponential fit of

inactivation following ATX-II saturation.

There are two potassium currents in the electrocyte: a non-

inactivating delayed rectifier IKDR that activates starting at

240 mV after a slight delay and an inward rectifier IKIR that is

inactivated above 250 mV [8]. Passive leak was estimated from

recordings above 240 mV, measuring the region of the trace

before activation of the delayed rectifier. The linear leak current

was then subtracted from the traces and the IV curves were

generated from the leak-corrected traces. Maximum amplitude for

IKIR was taken at the peak for this current, which is readily

apparent from the IV curves, and IKDR amplitude was measured

at 0 mV. Activation tau for IKDR was estimated by fitting the trace

with an exponential power function:

I~
X2

i~1

Ai(1{e{t=ti )2zC

t-tests were used when only two groups were compared while

comparisons between three or more groups were made using one-

way ANOVA with repeated measures. Significant omnibus

ANOVAs were further analyzed with post hoc pairwise compar-

isons using Tukey’s or Bonferonni correction to maintain

experiment-wise alpha at 0.05. All statistical analyses were

performed with MATLAB or Prism 5 (GraphPad, San Diego,

CA, USA). Group data are reported as mean6SEM.
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