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INTRODUCTION 

The literature indicates that estrogen-mediated  
neuromechanisms enhance synaptic plasticity (Leranth 
et al. 2002), reduce apoptotic activity in cortical neu-
rons (Honda et al. 2001), and facilitate activation of 
transcription factor, cyclic adenosine monophosphate 
(cAMP) responsive element binding protein (CREB) 
(McEwen 2001). Women typically reach menopause by 
their late 40s to mid-50s and estrogen replacement 
therapy (ERT) is commonly prescribed during peri- and 
post-menopause. Also, pre-menopausal ovariectomized 
(OVX) women suffering from benign diseases are usu-
ally prescribed ERT. Women prescribed ERT are poten-
tially at risk, since there is an increased incidence of 
lobular carcinoma associated with ERT (Newcomer et 
al. 2003). Other studies indicate that ERT does not 
improve cognition during menopause, specifically epi-
sodic memory (Henderson 2009). Therefore, an alterna-
tive therapy, especially one that provides assistance 
with estrogen–mediated protein-signaling pathways 
and positively affects cognition offers far-reaching ben-
efits.

Estrogen influences several neuroanatomically-spe-
cific behavioral tasks (Simpkins et al. 1997). Estrogen 
receptor-α (ER-α) knockout mice and OVX mice per-
form poorly on hippocampal-dependent behavioral 
tasks, suggesting that estrogen and ER-α expression 
influence cognitive-behavioral performance levels 
(Fugger et al. 2000). Although ER-β is also known to 
influence behavior, ER-β signaling pathways are more 
specific to visuospatial performance (e.g., Morris 
water maze) and anxiety (Bodo and Rissman 2006). 
Co-localization of ER-α and brain derived neurotrophic 
factor (BDNF) are observed in pyramidal cells of the 
hippocampus, and estrogen influences BDNF expres-
sion (Solum and Handa 2002). Ligand binding of 
BDNF to tyrosine receptors initiates a signaling cas-
cade that results in activating CREB (Blanquet et al. 
2003), and facilitating CREB-mediated gene expres-
sion via N-methyl-D-aspartate receptor (NMDAR) 
signaling pathways (Wheeler and Cooper 2004). Rats 
with ovarian steroid deprivation (via simulating post-
partum depression) show ephemeral gene expression 
of calcium/calmodulin-dependent protein kinase II 
(CaMkII), a kinase associated with increasing synaptic 
plasticity and cognition (Suda et al. 2008).

Lithium, traditionally used to treat bipolar disor-
der, affects several molecular pathways via glycogen 
synthase kinase-3beta (GSK-3β) inhibition (Jope 
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2003) and by inositol monophosphatase inhibition 
resulting in depleting amounts of free inositol 
(Harwood 2004). Inhibition of GSK-3β is correlated 
with reduced apoptotic activity (Hongisto et al. 
2003), increased neurotrophic factor expression 
(Angelucci et al. 2003), and facilitated CREB response 
element binding (Ozaki and Chuang 1997, Grimes 
and Jope 2001). Lithium’s neuroprotective properties 
are also ascribed to increased levels of the anti-apop-
totic agent B-cell lymphoma/leukemia-2 (Bcl-2) and 
BDNF – this increase being associated with inhibi-
tion of GSK-3β and NMDAR tyrosine phosphoryla-
tion in primary rat cultures of cortical cells (Chuang 
2005). Studies also show that lithium augments 
expression of a specific CaMk isoform in rat brain 
(Rushlow et al. 2009), and that low activity of 
CaMkII is observed in the cortex of lithium-treated 
rats (Celano et al. 2003).

Both estrogen and lithium facilitate transcriptional 
properties of CREB by activating promoting factors of 
CREB and/or inhibiting negative regulators of CREB 
(Grimes and Jope 2001, McEwen 2001). We hypothe-
size that LiCl-treated OVX mice will enhance mRNA 
expression of factors important in learning, memory 
and neuroprotection in the brain (namely, ER-α, 
NMDAR critical subunit NR1, Bcl-2, BDNF and 
CaMkII-α). To test our hypothesis we treated bilater-
ally OVX (bOVX LiCl) C57BL/6J mice with 14.2 mM 
LiCl for 1 month beginning two weeks post-bOVX 
surgery. Our results show that LiCl treatment enhances 
genetic factors involved in learning, memory and neu-
roprotection. 

METHODS

Subjects, surgery and treatment

All experiments described in this study were 
approved by the Florida International University 
Institutional Animal Care and Use Committee (IACUC 
protocol #: 08-017). C57BL/6J female mice (n=20) 
were purchased from Jackson Laboratories. Animals 
were housed within a facility maintained at 20-22°C, 
60% humidity, within polycarbonate transparent cages 
(26.7×20.6×14 cm) on a 12-hour day-night cycle with 
free access to water and food. 

At 4.5 months of age, mice weighing 21.5 g – 22.5 g 
were anesthetized with ether and, aseptically, their 
ovaries were removed bilaterally (e.g. bOVX). Mice 

were positioned dorsal side up and for each surgical 
procedure, parallel to the long axis of the animal’s 
body, an incision ¾ cm in length was made ½ cm from 
the rostral edge of the bony hip. Each fallopian tube 
was located bilaterally and both ovaries were removed 
and the transection site cauterized. Treatment with 
14.2 mM LiCl in their drinking water that contained 
0.9% saline began at 5 months of age for 1 month; LiCl 
at 14.2 mM maintains lithium blood content at a sub-
therapeutic range (0.1–0.5 mM) (Sadeghipour-Roudsari 
et al. 1998). The control group (Sham) received drink-
ing water with 0.9% saline. All animals were divided 
into four groups (LiCl-treated bOVX and Sham; 
saline-treated bOVX and Sham). Sham animals 
received the incision, the fallopian tube located and 
ovaries identified, but not removed, and the incision 
site was sutured. 

Uterine and bone weight

All mice (n=20) were anesthetized with ether and 
then euthanized via cervical dislocation. Brain, uteri, 
femora and humeri were removed from each experi-
mental mouse. Each uterus was weighed and inspected 
to assure complete removal of ovaries during bOVX 
surgery. Bones were cleaned of soft tissue and dried at 
70°C for 24 h, then weighed.  

Enzyme linked immunosorbent assay (ELISA)

Prior to cervical dislocation, 500-750 μl of blood 
was drawn from the tail of each subject (n=20) to mea-
sure 17β-Estradiol (E2) level. Murine plasma was 
isolated via centrifugation at 600×g for 15 min after a 
4°C overnight storage with 6% EDTA. We performed 
the ELISA using an Estradiol EIA kit (96 well kit; 
Cayman Chemical Company, Ann Arbor, MI) accord-
ing to the manufacturer’s protocol. Briefly, murine 
plasma (100–300 µL) was purified using ethyl ether, 
organic phase was isolated and the remaining ether 
was evaporated with a gentle stream of N2 gas at room 
temperature. Purified residue was then diluted with 
EIA buffer (100–300 µL) and assayed in duplicates. 
After 1 hour incubation with estradiol EIA antiserum 
and estradiol-acetylcholinesterase tracer, the 
microplate was developed for 45 min using Ellman’s 
reagent and absorbance units measured using an ELX 
Ultra Microplate Reader (Bio-Tek Instruments Inc., 
Winooski, VT).
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Total RNA isolation and reverse transcription 
(RT)

Total RNA was isolated from brain tissue (n=12) 
using TRIzol reagent (GIBCO, Carlsbad, CA), accord-
ing to the manufacturer’s protocol. Briefly, the brain 
was removed from each subject; the cortex and hip-
pocampus from each hemisphere were isolated under a 
Leica ZOOM 200 dissecting microscope, weighed, 
and rinsed with Dulbecco’s Phosphate Buffer Saline 
(DPBS). A 1:10 mass: TRIzol reagent was added then 
homogenized with an IKA homogenizer (at speed 5 for 
10 s). Chloroform was added and centrifuged at 12 
000×g for 15 min at 4°C. After phase separation, total 
RNA (aqueous phase) was then precipitated with iso-
propanol and RNA was pelleted via centrifugation. 
Total RNA pellet was washed with 75% ethanol and 
then resuspended in DEPC-treated water. To remove 
any DNA containments we used RQ1 DNase kit 
(Promega, Madison, WI). An aliquot of samples was 
used for concentrations and purity quantification using 
absorptions at 260 nm and 280 nm. 

First strand cDNA synthesis was performed using 
SUPERSCRIPTTM III RNase H-free reverse tran-
scriptase (Invitrogen, Carlsbad, CA), according to the 
manufacturer’s protocol. Briefly, 3 µg of total RNA 
was reverse transcribed with 0.05 µg/µl of Oligo (dT)20 
at 65°C for 5 min. First strand cDNA was synthesized 
with Superscript III/RNase OUT Enzyme mix and 
incubated at 50°C for 50 min; reaction was terminated 
at 85°C for 5 min. RNase H (Invitrogen, Carlsbad, CA) 
was added once first strand was synthesized to remove 
any remaining RNA. RNase H was incubated at 37°C 
for 20 min. Samples were stored at -20°C until further 
processing.

Quantitative real-time polymerase chain 
reaction (PCR)

First strand cDNA was amplified via real time PCR 
using SYBR Green PCR master mix (ThermoScientific, 
Rockford, IL), 200-300 nM of forward and reverse 
primers using AB 7300 Real Time PCR system. 
Cycling parameters were set at: 95°C 30 s, 57–63°C 30 
s, and extension at 72°C for 30 s, for a total of 40 
cycles, followed by a final extension at 72°C for 10 
min. The specific primer pairs were: ER-α: forward 
primer, 5’-AAGGGCAGTCACAATGAACC-3; reverse 
primer, 5’-GCCAGGTCATTCTCCACATT-3’ (PCR 

efficiency = 94%); NMDAR subunit NR1: forward 
primer, 5’-ACTCCCAACGACCACTTCAC-3; reverse 
primer, 5’-GTAGACGCGCATCATCTCAA-3’ (PCR 
efficiency = 90%); Bcl-2: forward primer, 5’-AGGAG-
CAGGTGCCTACAAGA-3; reverse primer, 
5’-GCATTTTCCCACCACTGTCT-3’ (PCR efficiency 
= 101%); BDNF: forward primer, 5’-ATCCAAATAT-
GGCACAGCAA-3; reverse primer, 5’-TTCTGCCT-
GAGTTTTGATGC-3’ (PCR efficiency = 100%); 
CaMkII-α forward 5’-GGGTTTGGCTCTTGTATG-
GA-3’, reverse 5’-CTCTCCGTGCTTTTGGTCTC-3’ 
(PCR efficiency = 99%). The endogenous control was 
HPRT: forward primer, 5’-GGAGCGGTAGCACCTC-
CT-3’; reverse primer, 5’-AATCCAGCAGGTCAG-
CAAAG-3’ (PCR efficiency = 86%). All samples were 
compared with a standard curve comprised of pDNA 
generated using TOPO TA Cloning® Kit (Invitrogen, 
Carlsbad, CA). Readings were normalized by dividing 
interest gene number of mRNA copies by the house-
keeping gene (HPRT) number of copies; the output is 
this ratio. 

Statistical analysis

Data are presented as the mean ± S.E.M and statisti-
cal significance was determined by an analysis of vari-
ance (ANOVA) or a multiple analysis of variance 
(MANOVA) followed by a Fisher’s least significant 
difference (LSD) post-hoc procedure. Significant dif-
ferences were those having a P-value<0.05. 

RESULTS

E2 plasma levels

There is an obvious trend in Fig. 1, suggesting a 
rescue in lithium-treated bOVX mice E2 plasma level. 
No significant differences, however, were detected in 
plasma E2 content across treatment groups (Fig. 1; 
F3,15=0.7, P>0.5).

Uterine and bone weight 

Statistical analysis using ANOVA indicated that 
uterine weight was significantly less (F3,16=45.1, 
P<0.001) in bOVX mice (non-treated and treated) 
compared with Sham mice (non-treated and treated), 
but post-hoc testing detected no significant differences 
(P>0.8) between LiCl-treated and non-treated groups 
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(Fig. 2A). Using MANOVA, we analyzed dry bone 
weight from experimental mice and noted no signifi-
cant differences in both humeri (Fig. 2B; F3,28=2.1, 
P>0.1) or femora (Fig. 2C; F3,28=2.6 P>0.07) across 
treatment groups; however, Fisher’s LSD post-hoc test-
ing indicated significant decreases in humeri weight 
(P<0.02) for LiCl-treated bOVX mice compared with 
LiCl-treated Sham and in femora weight (P<0.02) 
when LiCl-treated bOVX mice are compared with the 
other treatment groups (Fig. 2B). 

Gene expression is enhanced by LiCl in the 
cortex of bOVX mice 

Statistical analysis using MANOVA indicated sig-
nificant differences between cortical and hippocampal 
gene expression: ER-α (Fig. 3A; F1,14=6.1, P<0.03), 
NR1 (Fig. 3B; F1,14=13.2, P<0.003), Bcl-2 (Fig. 3C; 
F1,14=36.1, P<0.001), BDNF (Fig. 3D; F1,14=20.8, 
P<0.001), and CaMkII-α (Fig. 3E; F1,14=19.2, P<0.001) 
– ER-α (Fig. 3A),  NR1 (Fig. 3B), and CaMkII-α (Fig. 
3E) mRNA were expressed higher in the cortex, while 
Bcl-2 (Fig. 3C) and BDNF (Fig. 3D) showed higher 
mRNA expression in the hippocampus. Statistical 
analysis using MANOVA also detected significant dif-
ferences for ER-α (Fig. 3A; F3,14=3.5, P<0.05) and NR1 
mRNA (Fig. 3B; F3,14=3.6, P<0.05) across treatment 
groups. Statistical analysis, however, noted no signifi-
cant differences in mRNA expression across treatment 
groups for Bcl-2 (Fig. 3C; F3,14=1.1, P>0.3), BDNF (Fig. 
3D; F3,14=1.6, P>0.2), or CaMkII-α (Fig. 3E; F3,14=3.3, 

P>0.05). No significant differences were noted for the 
interaction between brain region and treatment group 
for ER-α (F3,14=0.2, P>0.9), NR1 (F3,14=2.9, P>0.07), 
Bcl-2 (F3,14=1.0, P>0.4), and BDNF (F3,14=0.04, P>0.9), 
except for CaMkII-α (F3,14=3.7, P<0.05).

Since a significant difference was noted for brain 
region we performed a MANOVA for the hippocam-
pus and cortex, separately. No significant differences 
in the hippocampus were noted for each gene: ER-α 
(Fig. 3A; F3,7=0.9, P>0.4), NR1 (Fig. 3B; F3,7=1.5, 
P>0.4), Bcl-2 (Fig. 3C; F3,7=1.0, P>0.4), BDNF (Fig. 
3D; F3,7=0.0, P>0.7), and CaMkII-α (Fig. 3E; F3,7=0.7, 
P>0.5). Cortical mRNA, however, showed significant 
values for all genes except for NR1 (Fig. 3B; F3,7=3.8, 
P>0. 1), ER-α (Fig. 3A; F3,7=4.9, P<0.05), Bcl-2 (Fig. 
3C; F3,7=13.2, P<0.003), BDNF (Fig. 3D; F3,7=6.1, 
P<0.025), and CaMkII-α (Fig. 3E; F3,7=4.9, P<0.05). 
Fisher’s LSD post-hoc testing on cortical mRNA indi-
cated that all genes showed significant increases in 
expression (P<0.05) for LiCl-treated bOVX when 
compared with all other treatment groups (Fig. 
3A-3E).

DISCUSSION

We noted no differences in E2 plasma levels across 
treatment groups (Fig. 1; experimental mice showed 
35–40 pg/ml E2 plasma level – indicative of E2 levels 
during the proestrous cycle); however, removal of the 
ovaries resulted in uterine atrophy since we clearly 
show that uterine weight of bOVX mice was signifi-
cantly lower compared with Sham mice (Fig. 2A). The 
non-significant output of E2 plasma levels (Fig. 1) may 
be due to treatment duration and biological differences 
between our replicates. Investigations have noted that 
there is an individual-dependent variation with mood 
stabilizing drugs (Lerer and Macciardi 2002); howev-
er, extending lithium treatment for bOVX mice may 
cause a significant increase in E2 plasma levels since 
there is a noticeable trend in our current study (Fig. 1). 
Lithium is reported to increase cell proliferation and 
hyperplasia in murine uteri (Gunin et al. 2004), and 
lithium treatment increases human (Zamani et al. 
2009) and murine bone mass (Clement-Lacroix et al. 
2005). In our study, we found no alterations in E2 
plasma levels across treatment groups (Fig. 1), but 
reduced uterine weight suggested successful removal 
of ovaries (LiCl treatment caused no alterations in 
uterine weight – see Fig. 2A). We also noted that bone 
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density actually decreased in LiCl-treated bOVX mice 
(Fig. 2B and 2C). An explanation eludes us regarding 
decreased bone mass in LiCl-treated bOVX mice and 
not non-treated bOVX, since the literature reports that 
after 3.5 months post-bOVX surgery, murine bone 
mass decreases (Masuda et al. 1997). Progesterone 
also diminishes following bOVX surgery (Galeeva and 
Tuohimaa 2001). Progesterone also affects uterine 
(Murray and Stone 1989) and bone tissue (Horner 
2009). Measuring progesterone plasma levels may pro-
vide further insight, and histology on bone and uteri 
would provide a more detailed analysis on how our 
treatment parameters affect the architecture of these 
tissue types. 

Previous research from our laboratory showed 
that male C57BL/6J mice treated with 14.2 mM LiCl 
display enhanced performance in a Morris Water 
Maze and an object recognition task over a 5 month 
treatment period (C-H Volmar, personal communi-
cation). Atomic absorption spectroscopy analyses of 
these male mice showed that treatment with 14.2 mM 
LiCl in their drinking water maintained a sub-thera-
peutic level of about 0.2 mM lithium in blood sam-
ples (CH Volmar, personal communication) – we 
found higher dosages lethal to bOVX mice. Blood 
samples at therapeutic levels range between 0.6-1.5 
mM (Sadeghipour-Roudsari et al. 1998). Our present 
findings indicate that LiCl-treated bOVX mice 
showed enhanced cortical mRNA expression for 
ER-α (Fig. 3A), NR1 (Fig. 3B), Bcl-2 (Fig. 3C), 
BDNF (Fig. 3D) and CaMkII-α (Fig. 3E) compared 
with all other treatment groups. 

Our results show increased mRNA expression is 
brain region-specific (Fig. 3A–3E; occurring in the 
cortex but not the hippocampus). These findings are 
consistent with the literature that lithium modulates 
several genes (Manji et al. 2001) and that this modu-
lation is brain-region specific (Jakobsen and Wiborg 
1998). Increased gene expression only occurring in 
LiCl-treated bOVX mice may be due to the bimodal 
action of lithium. Although we noted no differences 
in plasma levels of E2 (Fig. 1), removal of ovaries 
does cause a withdrawal of circulating hormones, 
but small amounts of hormones known as neuroster-
oids are still produced in the brain (Sierra 2004). 
The bimodal action of lithium may be a plausible 
explanation of our results. Jope (1999) proposes a 
bimodal model for lithium, such that lithium regu-
lates positive and negative cell signaling mecha-
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Fig. 3A-3E
Hippocampal (grey bars) and cortical (black bars) mRNA expression for ER-α (A), NR1 (B), Bcl-2 (C), BDNF (D), and 
CaMkII-α (E) using quantitative real time PCR. Units are represented as the number of mRNA copies (y-axis) for each respec-
tive gene (ratio of gene/HPRT). *, represents significant increase compared to bOVX; #, represents significant increase com-
pared to Sham; †, represents significant increase compared to Sham+LiCl. Data are presented as the mean ± S.E.M
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nisms by stabilizing extreme and/or minimized 
levels of integral factors involved in these cell sig-
naling mechanisms. Lithium’s bimodal mechanism 
may facilitate neurosteroidal-mediated brain cell 
signaling in a hormone-deprived system (e.g., 
bOVX). Studies do indicate that the molecular 
effects of lithium vary from acute to chronic treat-
ment (Lenox and Watson 1994). 

Although no significant differences were noted, 
genetic expression did decrease for non-treated 
bOVX mice in the hippocampus compared with 
Sham mice; and there is, at least graphically, a nota-
ble rescue for hippocampal genes NR1 (Fig. 3B), 
Bcl-2 (Fig. 3C) and CaMkII-α (Fig. 3E) in LiCl-
treated bOVX mice. We currently have preliminary 
data indicating that protein levels are augmented in 
the hippocampus of LiCl-treated bOVX mice (data 
not shown). We do, however, need additional studies 
using bOVX mice with chronic versus acute lithium 
treatment and further investigations on how our 
treatment parameters affect protein levels of ER-α, 
NR1, Bcl-2, BDNF and CaMkII-α, are necessary to 
explain the neuroanatomical discrepancies noted in 
the current study.  

CONCLUSION

Studies have shown that ERT reduces the develop-
ment of neurodegenerative diseases and improves 
cognition (Garcia-Segura et al. 2001, Wise 2002), 
however, the latter has been recently challenged 
(Henderson 2009). It seems that risks associated with 
ERT outweigh its benefits, since ERT also increases 
incidences of breast cancer (Newcomer et al. 2003). 
Selective estrogen receptor modulators (SERMs) pro-
vide an alternative to ERT but studies show that 
SERMs do not improve cognitive functioning (Natale 
et al. 2004, Palmer et al. 2008). Post-menopausal and 
OVX pre-menopausal women may also suffer from 
cognitive decline if estrogen withdrawal is not imme-
diately remedied (Sherwin 2005). Estrogen is essential 
for normal brain function by facilitating factors 
involved in learning, memory and neuroprotection. 
An alternative therapy that mimics the beneficial 
aspects of estrogen, without the harmful effects will 
serve as a better treatment for women with depleted 
ovarian steroids. The current study indicates that in 
bOVX mice, lithium enhances brain region-specific 
genetic factors that are involved in learning and mem-

ory (Fig. 3A–3E). Our data provides insight into 
potential positive clinical implications for lithium and 
how it may have beneficial promise for post-meno-
pausal women or pre-menopausal OVX women. We 
believe that this study should serve to drive further 
investigations into lithium’s potential benefits as an 
estrogen-mediated signaling modulator in an ovarian 
steroidal-deprived system. 
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