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Abstract. Combining information from active and passive sampling of mobile animals is challenging
because active-sampling data are affected by limited detection of rare or sparse taxa, while passive-
sampling data reflect both density and movement. We propose that a model-based analysis allows infor-
mation to be combined between these methods to interpret variation in the relationship between active
estimates of density and passive measurements of catch per unit effort to yield novel information on activ-
ity rates (distance/time). We illustrate where discrepancies arise between active and passive methods and
demonstrate the model-based approach with seasonal surveys of fish assemblages in the Florida Ever-
glades, where data are derived from concurrent sampling with throw traps, an enclosure-type sampler
producing point estimates of density, and drift fences with unbaited minnow traps that measure catch per
unit effort (CPUE). We compared incidence patterns generated by active and passive sampling, used hier-
archical Bayesian modeling to quantify the detection ability of each method, characterized interspecific
and seasonal variation in the relationship between density and passively measured CPUE, and used a
predator encounter-rate model to convert variable CPUE–density relationships into ecological information
on activity rates. Activity rate information was used to compare interspecific responses to seasonal hydrol-
ogy and to quantify spatial variation in non-native fish activity. Drift fences had higher detection probabili-
ties for rare and sparse species than throw traps, causing discrepancies in the estimated spatial distribution
of non-native species from passively measured CPUE and actively measured density. Detection probability
of the passive sampler, but not the active sampler, varied seasonally with changes in water depth. The rela-
tionship between CPUE and density was sensitive to fluctuating depth, with most species not having a
proportional relationship between CPUE and density until seasonal declines in depth. Activity rate esti-
mates revealed interspecific differences in response to declining depths and identified locations and species
with high rates of activity. We propose that variation in catchability from methods that passively measure
CPUE can be sources of ecological information on activity. We also suggest that model-based combining of
data types could be a productive approach for analyzing correspondence of incidence and abundance
patterns in other applications.
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incidence; occupancy models.
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INTRODUCTION

Multi-method data sets have the potential to
increase inference about biodiversity dynamics,
but also present challenges for the data analyst.
Different sampling methods are often sensitive to
different ecological processes and vary in their
ability to detect rare species or specific life stages
(Elphick 2008, Magurran et al. 2010, Jim�enez
et al. 2016). Nonetheless, if differences in method
performance are understood and they are used
in a complementary fashion, combining observa-
tions from different sampling methods can
increase statistical power to characterize biodi-
versity, temporal trends, and population status
(King and Porter 2005, Manley et al. 2005,
Nichols et al. 2008). Data from different sam-
pling methods can be combined within models
that account for method-specific detection proba-
bilities (Nichols et al. 2008), such as hierarchical
Bayesian occupancy models (Coggins et al. 2014,
Jim�enez et al. 2016). Furthermore, aggregating
data from multiple detection methods through
an ecological model that reconciles their relation-
ships can yield emergent biological information
(Miller et al. 2015). Combining information from
complementary sampling methods can produce
novel information that cannot be gleaned from
each method considered separately or the aggre-
gation of data by linear approaches that lack an
underlying conceptual basis.

Combining information from active and pas-
sive sampling of mobile animals presents both
pitfalls and opportunities. Active sampling for
density (individuals per unit area) involves over-
coming or enclosing mobile animals and yields
counts of organisms standardized by sampling
area or volume. Examples of active-sampling
gear include enclosure samplers, quadrats, and
sweep nets. Passive measurement of catch per
unit effort (CPUE) consists of counts of organ-
isms that move into (encounter) and are retained
by sampling devices such as gill nets, Malaise
traps, sticky traps, and pitfall traps, deployed for
a standard sampling time (Southwood and
Henderson 2000). Because active measures of
density are discrete point estimates in time, the
probability of not detecting animals that are
present can bias results. This detection issue pro-
duces the veil-line effect (Preston 1948), where
rare species are not observed in a random

sampling of community members because of
inadequate effort relative to their density. By con-
tinuously sampling over longer periods of time,
passive samplers may increase the likelihood to
detect cryptic and sparse species (Ribeiro et al.
2008). CPUE derived from passive sampling is
not an estimate of abundance but provides an
index proportional to it that can inform temporal
or spatial comparisons if movement rates are
constant (Quinn and Deriso 1999). However,
detection rates from passive encounter-sampling
devices, such as camera traps and gill nets, are
related to both local density and activity pat-
terns (Rudstam et al. 1984, Hancock and Legg
2012, Burton et al. 2015). In some cases, patterns
obtained from passive samplers are related
more to variation in movement behavior of the
targeted animals than to variation of their den-
sity (He and Lodge 1990, Dorn et al. 2005, Bur-
ton et al. 2015, Miller et al. 2015). Agreement
between active and passive measures of abun-
dance can vary among locations and time peri-
ods (Rotherham et al. 2012), with the potential
for misinterpretation of changes in CPUE as
changes in abundance, when only catchability
was changing (Quinn and Deriso 1999).
The importance of catchability, the relationship

between capture rate and density, has long been
appreciated by fishery biologists conducting
stock assessments that rely on CPUE to assess
abundance trends (Hilborn and Walters 1992,
Quinn and Deriso 1999). Entomologists that col-
lect insects with passively sampled traps (Miller
et al. 2015) and wildlife biologists using trail-
camera methods (Burton et al. 2015) are also con-
fronting this challenge. More recently, concerns
over detection probability, the odds of detecting
a species that is present, in applications such as
occupancy modeling have expanded the appreci-
ation of this issue to questions of occupancy, dis-
tribution, and community dynamics (MacKenzie
et al. 2002, Rota et al. 2011, MacManamy et al.
2014). Catchability as the proportion of a popula-
tion captured per unit of sampling effort emerges
from the probabilities of a given gear-type
encountering and then capturing a particular tar-
get (Engstrom-Heg 1986). Given that detections
could be considered successful captures, this con-
ceptual model of catchability as an emergent
pattern of encounter and capture probabilities is
similar to detection probability, the probability
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per unit effort of detecting at least one individual
of a targeted taxon given that it is present in the
sampled area (Seber 1982, MacKenzie et al.
2002). Both parameters share a sensitivity to
probabilities of encounter and capture, with a
key difference being their response to increasing
abundance. As abundance increases, encounter
probability should also rise, but capture proba-
bility, and not detection probability, may
decrease because of gear saturation (Harley et al.
2001). This saturation point is where catchability
and detection probability diverge and is associ-
ated with the condition of hyperstability, where
CPUE exhibits little change over moderate to
high densities (Harley et al. 2001). A growing
body of work has called into question the prac-
tice of ignoring variation in catchability and
detection probability (Archaux et al. 2012, Ville-
gas-Rios et al. 2014, Gwinn et al. 2016), but what
is less appreciated is the possibility that variation
in catchability can itself provide ecological
information.

Obaza et al. (2011) proposed treating catches
from a passive encounter sampler as an encoun-
ter rate that could be modeled as though the trap
is a stationary sit-and-wait predator. They used
the MacKenzie and Kiorboe (1995) version of the
Gerritsen and Strickler (1977) predator encoun-
ter-rate model:

E ¼ VN þ lAN (1)

In this Eq. 1, l is the speed of the prey, A is the
search area of the predator, and V is volume
searched per unit time (A and V can be treated as
constants for a passive sampler), and N is the
density of fish. Therefore, fish speed is propor-
tional to the relative difference between the
encounter rate and population density:

ðl / E�N½ �=NÞ (2)

Obaza et al. (2011) and Hoch et al. (2015) found
that this approach yielded reasonable estimates
of movement speed (m/s) when compared to
independent estimates from the literature, but
recommended use of these values as an index of
relative speed or activity. Activity rates have
numerous implications for ecological dynamics,
such as spatiotemporal patterns of colonization
and the interaction strength between predators
and prey (Leibold et al. 2004, Navgar et al.
2008).

The objectives of this study were to compare
incidence patterns generated by active and pas-
sive sampling, quantify the detection ability of
each method, characterize how interspecific and
seasonal variation in activity changes the rela-
tionship between density and passively mea-
sured CPUE, and use a predator encounter-rate
model to convert variable CPUE–density rela-
tionships into ecological information on activity
rates. This investigation was conducted within
the context of monitoring freshwater fish in the
Florida Everglades, where fish biomass is domi-
nated by small-bodied species with an annual life
history whose spatiotemporal distribution is
shaped by the interaction between seasonal fluc-
tuations in rainfall and landscape structure (Lof-
tus and Kushlan 1987, Trexler et al. 2002, Ruetz
et al. 2005). We predicted that passive sampling
would have higher detection probabilities at low
densities than active sampling because passively
sampled gear continuously samples over longer
intervals of time than point collections by active
samplers. We also predicted that CPUE would
increase with density at a faster rate during sea-
sonal declines of water depth because seasonal
dispersal and reduced water volume would
increase encounter rates with passively sampled
gear. Using the approach of Obaza et al. (2011),
we translated variable catchability into novel
information on activity rates and used this infor-
mation to assess interspecific responses to chang-
ing water levels and identify locations with high
non-native fish activity.

METHODS

Data collection
Sampling was conducted in three surveys at

31–35 fixed sampling plots (Table 1) encompass-
ing three different regions of the Florida Ever-
glades (Everglades National Park [ENP], Water
Conservation Area 3 [WCA], and the Decom-
partmentalization Physical Model area [DPM];
Fig. 1). Surveys were conducted at the end of the
wet season (survey 1: October and November
2014), the transition between seasons (survey 2:
December 2014 and January 2015), and in the
early dry season (survey 3: February 2015).
Depending on region, the active-sampling
method consisted of 3–7 replicate collections per
plot with a 1-m2 throw trap shown to provide an
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accurate estimate of plot-level fish density (Jor-
dan et al. 1997). Fishes were passively collected
for 24 h per sample event by using three
X-shaped drift fences consisting of four plastic
ground-cloth wings extending 12 m from a cen-
tral square at 45-degree angles. Four unbaited, 3-
mm wire-mesh minnow traps, only open on one
end, were embedded on each side of the square
such that wings directed fish into trap openings
facing each of the cardinal directions (Obaza
et al. 2011, Hoch et al. 2015). Concurrent sam-
pling with 3-mm and 6.4-mm wire-mesh min-
now traps not embedded in drift fences was not
the focus of this study, but when present, detec-
tions by these gear types were used to refine esti-
mates of detection probability by identifying
plots where target species were present but not
detected by either throw traps or drift fences
(Table 1). In all analyses, fish catches were cen-
sored to only include individuals >10 mm stan-
dard length to eliminate size-related retention
issues with 3-mm minnow traps (Obaza et al.
2011, Gatto and Trexler 2019) and focus on differ-
ences arising from encounter rate and rarity.
Water depth change at each plot was estimated
over a 30-d period ending on sampling date with

Everglades Depth Estimation Network models
that integrate real-time data collection from
water gauges with models of surface elevation
(http://sofia.usgs.gov/eden/).

Detection probability and density–CPUE
relationship
Incidence (proportion of plots with at least

one specimen of a target species), detection
probabilities (probability that a target species
was present in at least one sample if known to
be present), and relationships between capture
rate and density were derived from simultane-
ous use of active measurements of density and
passive measurement of CPUE. Data for detec-
tion probabilities and incidence patterns were
aggregated by regions with the same throw trap
sampling effort (Table 1), corresponding to
marsh plots downstream (ENP) and upstream
(WCA) of the L29 levee and the DPM region
(Fig. 1). Incidence data were aggregated as the
sum of plots within each region where at least
one individual of a particular species was
detected, while detection probabilities were
aggregated from the detection history (i.e., num-
ber of detections and non-detections) of each
plot within a focal region. Incidence patterns
derived from drift fences and throw traps were
compared within each region, while regional
detection probabilities were estimated for six
species: Bluefin Killifish Lucania goodei, Eastern
Mosquitofish Gambusia holbrooki, Flagfish Jor-
danella floridae, Sailfin Molly Poecilia latipinna,
Dollar Sunfish Lepomis marginatus, and African
Jewelfish Hemichromis letourneuxi. Bluefin Killi-
fish, Eastern Mosquitofish, Flagfish, and Sailfin
Molly are among the most abundant native spe-
cies in this system and have been documented
to vary in their recovery time from hydrological
disturbance (Ruetz et al. 2005), and, along with
the Dollar Sunfish, differ in their behavioral
response to hydrological cues (Hoch et al. 2015).
African Jewelfish was included as it is a non-
native species currently undergoing rapid range
expansion within Everglades National Park
(Kline et al. 2014).
Region-specific detection probabilities for each

sampling method were estimated for each of the
six focal species with a Bayesian modeling
approach with hierarchical priors that incorpo-
rated detection histories from all three surveys.

Table 1. Number of plots sampled (Plots) and samples
collected per plot (Samples) with throw traps and
drift fences.

Survey Region Plots Throws Fences
3-mm
traps

6.4-
mm
traps

1 ENP 10 (4) 7 3 3 3
WCA 6 5 3 0 3
DPM 15 3 3 0 3

2 ENP 14 (6) 7 3 3 3
WCA 6 5 3 0 3
DPM 15 3 3 0 3

3 ENP 9 (9) 7 3 3 3
WCA 10 (10) 5 3 3 3
DPM 15 (15) 3 3 3 3

Notes: Everglades National Park (ENP), Water Conserva-
tion Area 3 (WCA), and the Decompartmentalization Physical
Model area (DPM) were regions that differed in the number
of throw trap samples (Throws) collected per plot. All sam-
ples (i.e., all four gear types) were combined to determine
which plots were occupied by target species, with occupied
plots then used to estimate detection probabilities. This
included 6.4-mm wire-mesh minnow traps (6.4 mm) that
were deployed in every plot and 3-mm wire-mesh minnow
traps (3 mm) that were deployed in a subset of ENP plots (re-
ported parenthetically in the Plots column) during the first
two surveys and all plots during the third survey.
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Fig. 1. Map of plots simultaneously sampled with drift fences and throw traps for fish abundance and occu-
pancy in the Florida Everglades. Plots were located inside Everglades National Park (ENP), Water Conservation
Area 3 (WCA), and the Decompartmentalization Physical Model Area (DPM).
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We used method-specific detection histories from
plots where species presence was confirmed by
any of the four sampling gears. In the program
OpenBUGS, each plot-specific detection proba-
bility (h) was modeled as a beta distribution
shaped by two region-wide hyperparameters,
region-scale detection probability (p), and depen-
dence of h on this region-scale probability (j):
h = beta distribution (a, b), where a = (p 9 j)
and b = [(1 – p) 9 j]. Prior belief for p was also
modeled as a beta distribution, and the j prior
was modeled with a gamma distribution. Param-
eters were first modeled with data from a single
survey, and then, parameter distributions and
priors were updated with data from subsequent
surveys. Detection probability was initially mod-
eled with flat beta and gamma priors, with the
priors of each subsequent run informed by
the previous posterior distribution. To build the
most informed priors possible, initial flat-prior
analyses were run with data from surveys with
the largest sample size (i.e., greatest number of
occupied plots). Based on subsequent sample
sizes, parameters of the informed priors were
adjusted to have mixing weight of the prior set at
0.40, allowing new survey data to have more
influence than the prior when calculating new
posterior means. Markov Chain Monte Carlo
sampling of the posterior distribution was con-
ducted with two chains that were considered to
have converged when the ratio of between- to
within-chain variance was close to 1.0 and nei-
ther chain systematically increased or decreased
(Kruschke 2011). Chains were started at an initial
value of 0.5, and based on assessments of conver-
gence, burn-in period was 10,000 iterations fol-
lowed by 40,000 further updates to generate the
reported sample of the posterior distribution.
Monte Carlo errors of the parameters were less
than 5% of sample deviation in every case; there-
fore, 40,000 updates were considered sufficient to
produce an accurate sample of the posterior dis-
tribution (Spiegelhalter et al. 2014). To assess
how species-specific seasonal changes in density
and activity rate might be associated with sea-
sonally varying detection probabilities for active
and passive gears, we estimated seasonal detec-
tion probabilities in the DPM region, where all
plots were sampled during each survey, with the
same Bayesian modeling approach used to esti-
mate regional probabilities but using flat priors.

Interspecific and seasonal variation in the rela-
tionship between density and CPUE was investi-
gated by testing the hypothesis of a proportional
relationship between density and CPUE across
multiple species and hydrologic conditions. In
the 15 plots of the DPM region, CPUE from drift
fences (N/24 h) was related to density from
throw traps (N m2) for four species whose aver-
age detection probability in this region was at
least 40%. CPUE was regressed on density with
the log-linear form of a power-curve function: Ln
(CPUE + 1) = Ln (intercept) + b Ln (density +
1). The slope of the resulting regression model, b,
is a shape parameter that measures if CPUE
either increases proportionally with density
(b = 1) or has a non-linear relationship with den-
sity (b 6¼ 1), such as might result when sampling
gear saturates at moderate to high densities
(b ˂ 1; Harley et al. 2001, Erisman et al. 2011).
Species-specific slope estimates were predicted
to change across seasonal depth conditions from
seasonal and species-specific differences in vul-
nerability and activity rates. Capture rates of
demersal species were predicted to increase with
declining water depth because of increased activ-
ity rates associated with movement away from
shrinking habitat, while capture rates of species
that are primarily active in the upper water col-
umn were predicted to increase both from
increased activity rates and from decreased dis-
tance between traps and the water surface.
Increased vulnerability and movement should
increase encounter rates with passive-sampling
gear, thereby resulting in a more proportional
relationship between CPUE and density.

Estimating activity rates
We used a model-based interpretation of varia-

tion in catchability to examine interspecific pat-
terns of activity rate and response to seasonal
changes in depth. We used these data to quantify
the relative contribution of non-native fishes to
overall fish activity and encounter rate for prey
and competitors across locations in the Ever-
glades aquatic landscape. We estimated activity
rates at each plot using Eq. 2, with predator (i.e.,
trap) search area (A) and search volume (V)
based on a previous underwater video study of
drift fence sampling (Obaza et al. 2011). Some-
times, a species was detected by drift fences but
not throw traps, and so the minimum possible
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density estimate, 0.14/m2, was added to every
density value to avoid zeros in the denominator
of the activity rate model. For species vulnerable
to capture by drift fences, this type of discrep-
ancy in detection between throw traps and drift
fences was assumed to result from relatively high
activity at low density. Seasonal activity rates in
the DPM region for two demersal species, Flag-
fish and Bluefin Killifish, were plotted against
change in depth over a 30-d period prior to sam-
pling. Based on differences between these two
species in seasonal dispersal behavior (Hoch
et al. 2015), we expected them to also differ in
the sensitivity of their activity rates to declining
depth. The products of activity rates and densi-
ties were summed for native and non-native
fishes at each sample plot in ENP and WCA and
used as an index of potential interaction rates
with these species. The constant 0.14/m2 was
added to all density values in this calculation
and 0.008 was added to all activity rates to con-
vert all rates to positive values. This index was
calculated for data collected during the dry sea-
son (i.e., third survey), a time when encounters
with potential competitors and predators may
increase because of reduced habitat volume
(Magoulick and Kobza 2003). DPM data were
excluded from this analysis because there were
few observations of non-native fishes in this
region (Fig. 2).

RESULTS

Over the course of this study, 32,530 fish were
captured, representing 27 native and seven non-
native species (Appendix S1). Using catches in
survey 3 to illustrate a pattern found in all sur-
veys, incidence of Dollar Sunfish, Marsh Killifish,
Sailfin Molly, Pike Killifish, and African Jewelfish
was higher as measured by drift fences than by
throw traps (Fig. 2). Throw traps consistently
measured higher incidences than drift fences for
Everglades Pygmy Sunfish and Least Killifish
(Fig. 2). During survey 3, five non-native species
were detected in the ENP region, with one
unique detection for throw traps (Walking Cat-
fish) and two for drift fences (Black Acara,
Mayan Cichlid; Fig. 2). Pike Killifish and African
Jewelfish were detected by both methods in
all three surveys of the ENP region. In WCA,
none of the four non-native fishes detected by

drift fence sampling were captured by throw
traps (Fig. 2). Of the four non-native species
captured by drift fences in the WCA region,
Black Acara and African Jewelfish were the only
species detected in all three surveys. The DPM
region had the fewest non-native detections, with
no non-native fishes detected during survey 2
and only single-plot detections during the other
surveys. Unlike the other regions, most of
these non-native detections were by throw traps
(Fig. 2).

Detection probability and CPUE–density
relationship
Throw trap and drift fence detection probabili-

ties overlapped over a wide range of regional
densities (Fig. 3A), except at sparse densities
(≤0.84 fish/m2) where drift fence detection proba-
bilities were generally higher than throw trap
probabilities (Fig. 3B). Detection probabilities for
Dollar Sunfish and African Jewelfish, two species
found at low local densities, were consistently
lower for throw traps than for drift fences
(Table 2). The probability of detecting Sailfin
Mollies generally overlapped between the two
sample methods, except in the ENP region where
this species had low densities and was more
readily detected with drift fences (Table 2).
Regardless of sampling method, detection proba-
bilities were high for Bluefin Killifish and Eastern
Mosquitofish, two species with high regional
densities (Table 2). Throw trap detection proba-
bilities for Flagfish were not as sensitive to low
density as they were for other species (Fig. 3)
and overlapped for both sampling methods
(Table 2).
Seasonal detection probabilities in the DPM

region generally overlapped for both sampling
methods (Table 3). Drift fence detection probabil-
ities for Eastern Mosquitofish and Sailfin Molly
during the third survey increased and had
reduced overlap with drift fence detection proba-
bilities from the first survey when depths were
increasing (Table 3). The only non-overlapping
seasonal detection probabilities between meth-
ods were for Eastern Mosquitofish sampled dur-
ing the first survey, when throw traps had higher
detection probabilities than drift fences (Table 3).
Species-specific relationships between drift

fence CPUE and throw trap density varied over
seasonal changes in water depth. Seasonal
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hydrological dynamics in the DPM during the
surveys went from slowly increasing, to a slow
decline, to a relatively fast decline (Table 4). For
most of the four investigated species, CPUE was

not correlated with density until water depths
began to seasonally decline (Table 4). Bluefin Kil-
lifish were distinct in that they were the only spe-
cies in this group whose CPUE was related to

Fig. 2. Incidence (total plots where at least one individual was detected) of fishes in the ENP, WCA, and DPM
regions as measured by throw traps (black bars) and drift fences (white bars) during survey 3. Non-native
species are identified by �.
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density only when water levels were rising.
Under these hydrologic conditions, Bluefin Killi-
fish CPUE was proportional to density (Table 4).
During the gradual depth declines of the second

survey, Sailfin Molly were the only species with a
relationship between CPUE and density. Further-
more, this was the only circumstance where
there was evidence of hyperstability (i.e., b < 1;

Fig. 3. (A) Regional detection probabilities (median probabilities with 2.5% and 97.5% credible intervals) for
throw trap (gray symbols) and drift fence (open symbols) versus mean regional density of six fishes. (B) Low
regional densities from panel A expanded to show median detection probabilities and their credibility intervals
at low end of the distribution of regional densities (left of vertical dashed line in panel A).
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Table 4), which is indicated by similar levels of
CPUE across a fairly wide range of moderate to
high densities of Sailfin Molly (Fig. 4). The most
proportional relationships between CPUE and
density of Eastern Mosquitofish, Flagfish, and
Sailfin Molly occurred during conditions with
the fastest declines in depth (Table 4, Fig. 4).

There was little evidence for saturation of passive
gear at high densities, with no evident plateau in
CPUE with increasing density. Instead, CPUE
was similar between high and moderate densities
until water levels began dropping more rapidly,
resulting in a more proportional relationship
between CPUE and density (Fig. 4).

Table 2. Species-specific posterior probabilities of detection (median, 2.5% and 95% credible interval [CI]) for
each region and sampling method (throw traps and drift fences).

Species Region

Throw trap Drift fence

Median 2.5–97.5% CI Median 2.5–97.5% CI

Flagfish ENP 0.21 0.11–0.34 0.47 0.28–0.67
Flagfish WCA 0.62 0.43–0.79 0.82 0.60–0.94
Flagfish DPM 0.53 0.35–0.70 0.68 0.49–0.83
Bluefin Killifish ENP 0.73 0.62–0.82 0.7 0.55–0.83
Bluefin Killifish WCA 0.83 0.71–0.92 0.95 0.86–0.99
Bluefin Killifish DPM 0.96 0.90–0.98 0.95 0.89–0.97
Eastern Mosquitofish ENP 0.33 0.22–0.46 0.58 0.40–0.75
Eastern Mosquitofish WCA 0.75 0.60–0.88 0.77 0.56–0.90
Eastern Mosquitofish DPM 0.87 0.77–0.93 0.68 0.55–0.79
Sailfin Molly ENP 0.08 0.02–0.22 0.54 0.23–0.83
Sailfin Molly WCA 0.53 0.31–0.74 0.85 0.59–0.97
Sailfin Molly DPM 0.64 0.50–0.76 0.56 0.42–0.70
Dollar Sunfish ENP 0.07 0.03–0.13 0.52 0.35–0.69
Dollar Sunfish WCA 0.08 0.02–0.21 0.7 0.47–0.88
Dollar Sunfish DPM 0.07 0.03–0.16 0.37 0.24–0.52
African Jewelfish ENP 0.16 0.09–0.26 0.76 0.60–0.89
African Jewelfish WCA 0 0 0.31 0.08–0.64

Table 3. Survey- and method-specific posterior probabilities of detection (median, 2.5% and 95% credible interval
[CI]) in the DPM region for four species sampled with throw traps and drift fences.

Species Survey

Throw trap Drift fence

Median 2.5–97.5% CI Median 2.5–97.5% CI

Flagfish 1 0.57 0.35–0.77 0.65 0.41–0.85
Flagfish 2 0.57 0.34–0.78 0.64 0.37–0.85
Flagfish 3 0.36 0.22–0.53 0.62 0.45–0.77
Bluefin Killifish 1 0.95 0.88–0.99 0.89 0.76–0.96
Bluefin Killifish 2 0.92 0.82–0.97 0.91 0.79–0.97
Bluefin Killifish 3 0.91 0.79–0.96 0.95 0.88–0.99
Eastern Mosquitofish 1 0.9 0.79–0.96 0.51 0.35–0.68
Eastern Mosquitofish 2 0.81 0.67–0.91 0.6 0.41–0.77
Eastern Mosquitofish 3 0.87 0.72–0.95 0.89 0.77–0.96
Sailfin Molly 1 0.69 0.51–0.84 0.49 0.30–0.68
Sailfin Molly 2 0.52 0.34–0.70 0.46 0.29–0.64
Sailfin Molly 3 0.57 0.39–0.74 0.82 0.64–0.92

Note: Survey 1 was conducted at the end of the wet season (October and November 2014), survey 2 during the
transition between seasons (December 2014 and January 2015), and survey 3 during the early dry season (February
2015).
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Estimating activity rates
Model-derived estimates of activity rates in

the DPM region revealed interspecific differ-
ences in behavioral response to changing water
depth and identified locations where non-
native fishes were a large fraction of plot-level
fish activity. Bluefin Killifish activity rates were
similar during the relatively stable depth con-
ditions of the first two surveys. During faster
rates of depth decline, activity rates greatly
increased for Flagfish while changing very lit-
tle for Bluefin Killifish (Fig. 5).

Potential contact rates of stationary prey by
mobile fishes, as measured by the products of
fish activity rates and densities, exhibited spatial
variation within and among regions, with a
higher mean index in WCA (1.17 � 0.20 SE) than
ENP (0.53 � 0.10 SE; Fig. 6). The higher index in
WCA was not from higher densities because
mean native fish density (�1 SE) overlapped
between ENP (7.82 � 1.36 N/m2) and WCA
(9.68 � 1.42 N/m2), and non-native species den-
sities were relatively low in both regions during
this study. In ENP, 2–67% of fish activity inside
sample plots was from non-native species
(Fig. 6). The majority of non-native activity was
from African Jewelfish, whose mean activity rate
was among the highest measured across the
regions (Table 5).

DISCUSSION

This study demonstrates how an ecological
model can transform nuisance variation in
CPUE–density relationships into novel ecologi-
cal information. Information content of actively
collected counts that are integrated over space is
affected by sampling effort needed to detect rare
or low density species, while encounter-rate
data from passive samplers that integrate
catches over time are influenced by both density
and movement patterns (Burton et al. 2015,
Miller et al. 2015). As movement can vary across
taxa and environmental contexts, movement-dri-
ven variation in catchability by passive samplers
complicates combining data from these two gen-
eral types of methods. This was evident in the
current study, where the relationship between
CPUE and density varied among seasons and
species, and was proportional only under partic-
ular conditions. For species too small to directly
measure movement patterns in the wild through
telemetry and other tagging methods, novel
methods are needed to assess patterns of activ-
ity related to detection and catchability. A
predator encounter-rate model provided a
framework for estimating activity rates from the
combined information of active and passive
samplers.

Table 4. Mean rates of depth change during three surveys and associated regression analyses of CPUE–density
relationships for four species sampled in 15 plots of the DPM region.

Survey
Depth change
(cm/30 d) Species N R2 p b (SE)

H0: b = 1

F p

1 0.046 � 0.027 Bluefin Killifish 15 0.38 0.01 1.065 (0.376) 0.03 0.86
Eastern Mosquitofish 15 0.03 0.53 . . . . . . . . .

Flagfish 7 0.12 0.46 . . . . . . . . .

Sailfin Molly 12 0.26 0.09 . . . . . . . . .

2 �0.067 � 0.003 Bluefin Killifish 15 0.01 0.77 . . . . . . . . .

Eastern Mosquitofish 14 0.03 0.58 . . . . . . . . .

Flagfish 7 0.51 0.07 . . . . . . . . .

Sailfin Molly 14 0.37 0.02 0.552 (0.209) 4.61 0.05
3 �0.251 � 0.007 Bluefin Killifish 15 0.04 0.46 . . . . . . . . .

Eastern Mosquitofish 15 0.27 0.05 0.552 (0.252) 3.16 0.10
Flagfish 15 0.58 0.001 0.909 (0.216) 0.18 0.68

Sailfin Molly 15 0.34 0.02 0.606 (0.236) 2.79 0.12

Notes: Depth change (mean � 1 SE cm) was change in depth over a 30-d period ending on the day fish were sampled.
Regression models tested a log-linear relationship between catch per unit effort (CPUE) measured by drift fences and throw
trap measures of density. Sample sizes (N), coefficients of determination (R2), and p-values for each regression model are pre-
sented along with hypothesis tests for a proportional relationship between CPUE and density, as quantified by the slope of the
model (b � 1 SE). Ellipses indicate no data are available because regression model was not significant.
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Active- and passive-sampling methods pro-
duced inconsistent views of fish distribution in
the Florida Everglades because of differences in
their ability to detect fishes present at low densi-
ties. Furthermore, the only sampling method to
have spatial variation in detection probability
was the active sampler because of inter-regional
variation in density of target species. Given suffi-
cient sampling effort, if rare species are active,
passive samplers, by sampling continuously over
a longer time window than point collections,
should have a higher per-unit-effort detection
probability for sparse individuals. Passive

samplers, such as camera traps and pitfall traps,
are often used to assess occupancy of rare,
mobile animals (e.g., Ribeiro et al. 2008, Blanc
et al. 2014, Burton et al. 2015). In the current
study, most fishes present at low densities had a
much higher probability of being detected by
drift fences set over a 24-h period than repeated
point collections with 1-m2 throw traps. This dif-
ference in detection probability even extended to
the Dollar Sunfish, a species that was not rare in
terms of its distribution across the sample
regions (67–85% occupancy across study area),
but where present, was not abundant, as

Fig. 4. Relationship between active measurements of density (throw traps; N/m) and passive catch per unit
effort (drift fences; N/24 h). Solid lines are predicted CPUE from significant regressions. Symbols and regression
lines are color-coded by survey (blue = survey 1, gray = survey 2, black = survey 3).
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measured by either CPUE (mean regional CPUE
(�1 SE) = 0.038 � 0.01/h; mean regional relative
CPUE = 0.11, maximum = 0.26) or density
(mean regional density (�1 SE) = 0.39 � 0.09/
m2; mean regional relative density = 0.07, maxi-
mum = 0.13). The Everglades Pygmy Sunfish
provides an informative exception to higher cap-
ture by passive than active sampling. This

species was present at low densities but detected
at more locations by throw trap than drift fence.
It also had one of the lowest activity rate esti-
mates of the study; therefore, drift fences may be
less efficient than throw traps for capturing spe-
cies with low activity rates.
Our results demonstrate that caution is needed

when interpreting passively measured CPUE as
an index of fish abundance. As with past work
on crayfish (Dorn et al. 2005), we found that fish
CPUE can be insensitive to changes in density
and, for fish, varied among seasons (see also
Obaza et al. 2011). Lack of proportionality
between CPUE and density was not driven by
gear saturation of the passive sampler because
CPUE did not plateau over the range of densities
observed in this study. Instead, we interpret the
lack of linear relationships between passive
CPUE and active measures of density as result-
ing from the influence of encounter rates with
passively fished traps on CPUE. Factors that
decrease encounter rates with passive samplers,
such as low activity rates, will also decrease the
correspondence between density and CPUE,
resulting in a form of hyperstability whereby
CPUE is not sensitive to variation in density. For

Fig. 5. Survey estimates of activity rate (m/s �1 SE)
and rate of depth change (cm/30-d �1 SE) in the DPM
region for Flagfish and Bluefin Killifish.

Fig. 6. Distribution of native and non-native fish
activity index across plots sampled during the early dry
season (survey 3). Sample plots were in Shark River
Slough (SRS) of Everglades National Park (ENP region)
and Water Conservation Area 3 (WC region). Products
of species-specific density estimates and model-derived
estimates of activity rate are summed by native (black)
and non-native (white) status for each sampled location.

Table 5. Mean (m/s � 1 SE) activity rates and sample
size (N) for all fishes captured by throw traps and
drift fences in ENP and WCA during survey 3.

Species Activity rate (m/s) N

Amia calva 0.017 2
Notropis petersoni 0.017 1
Erimyzon sucetta 0.006 � 0.01 5
Noturus gyrinus 0.018 � 0.01 5
Clarias batrachus* 0.001 1
Aphredoderus sayanus 0.02 1
Fundulus chrysotus 0.021 � 0.01 18
Fundulus confluentus 0.148 � 0.09 8
Jordanella floridae 0.096 � 0.03 15
Lucania goodei 0.06 � 0.01 19
Belonesox belizanus* 0.021 � 0.01 8
Gambusia holbrooki 0.181 � 0.06 17
Poecilia latipinna 0.181 � 0.07 10
Elassoma evergladei 0.006 � 0.01 14
Enneacanthus gloriosus 0.052 � 0.02 11
Lepomis gulosus 0.016 � 0.001 4
Lepomis marginatus 0.348 � 0.08 14
Cichlasoma bimaculatum* 0.019 � 0.001 2
Mayaheros urophthalmus* 0.025 � 0.01 6
Hemichromis letourneuxi* 0.343 � 0.10 11

Note: Non-native species are indicated by an asterisk.
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species such as Eastern Mosquitofish and Sailfin
Molly, which are primarily active in the upper
portion of the water column (Loftus and Kushlan
1987), stronger CPUE–density relationships in
the dry season may have resulted from increased
encounter rates with minnow-traps set on the
substrate. As water depth dropped, traps would
be closer to the upper portion of the water col-
umn where these species are concentrated. For
demersal species like Flagfish and Bluefin Killi-
fish (Loftus and Kushlan 1987), seasonal changes
in capture rates relative to density may be related
to their dispersal responses to fluctuating hydrol-
ogy (Hoch et al. 2015). Seasonal changes in
CPUE–density relationships were not associated
with corresponding changes in detection proba-
bilities, possibly because of greater uncertainty
and reduced power associated with vague, unin-
formed priors (Linden and Roloff 2015). There
was a general pattern of increase in drift fence
detection probability between dry-season and
wet-season surveys, but use of flat priors in our
seasonal models yielded credibility intervals that
were wide and overlapping. The Everglades
undergoes large seasonal fluctuations in habitat
availability for fishes, resulting in seasonal
changes in extent of space use and regular cycles
of dispersal and re-colonization (Ruetz et al.
2005, Parkos et al. 2015). Synchronizing passive-
sampling effort with seasonal changes in activity
levels could be a strategy for increasing catcha-
bility and providing CPUE measures more clo-
sely related to density (Chambert et al. 2012,
Villegas-Rios et al. 2014).

Passive methods may be best for detecting
sparse, active, non-native species (e.g., Britton
et al. 2011) because of the link between activity
rate and detection. Species introductions often
begin from small numbers of individuals, espe-
cially relative to other species in the recipient
community (Hudina et al. 2012, O’Connor 2014),
making them difficult to detect until the popula-
tion size has become too large to easily eradicate
(Lockwood et al. 2007). Characterizing the rate
and direction of invasive spread is also a chal-
lenge because of the paucity of data on dispersal
and occupancy at invasion fronts, where density
is likely to be low (Bahn et al. 2006) making
detection difficult (Carey 1996). In the Ever-
glades, drift fence data produced a different pic-
ture of non-native relative abundance and

occupancy than throw traps, including detecting
four non-native species inside WCA that were
undetected by throw traps. However, we noted
unique detections of non-native fishes by both
gear types, indicating that use of multiple meth-
ods provides the most effective form of monitor-
ing for biological invasions (Hoffman et al.
2016).
Treating drift fence CPUE as the encounter rate

in a foraging model permits estimation of activ-
ity levels in units usable in models of animal
movement (DeAngelis et al. 2010). Applications
of information on activity levels include investi-
gating patterns of spread, dispersal, and ecologi-
cal impact. Data on interspecific, seasonal, and
spatial patterns of dispersal have the potential to
improve models of community assembly and
dynamics (Griffen and Byers 2006). For example,
active predators and non-native species may
have larger ecological impacts than predicted
from density alone because of increased contact
with native species and high rates of spread (Sch-
midt and Schauber 2007, Mosnier et al. 2008). In
some areas of the Everglades, non-native fishes
were a substantial fraction of overall predator
activity experienced by small fishes and macroin-
vertebrates. Of the non-native fishes collected
during this study, African Jewelfish contributed
the most non-native predator activity and, there-
fore, may have the largest effect on native fauna.
Activity patterns can also be used to investigate
threshold conditions that trigger dispersal behav-
ior. For example, Flagfish and Bluefin Killifish
exhibited different patterns of activity increase
across the same range of depth changes. The
higher level of Flagfish activity relative to Bluefin
Killifish in this study conforms to previous obser-
vations that of the two, Flagfish have a more
rapid response to declining water levels and
more rapidly re-colonize re-inundated habitats
(Trexler et al. 2002, Ruetz et al. 2005, Hoch et al.
2015).

SUMMARY AND CONCLUSIONS

We used active- and passive-sampling data to
illustrate how two types of data with particular
sources of error and varying in their correspon-
dence with one another can be treated as comple-
mentary in an ecological model, producing
emergent information not available from either
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data set on its own. In the case of active- and
passive-sampling methods, the detection proba-
bilities and rates of these approaches differ in
their sensitivity to the activity patterns of targeted
species. This situation is prevalent across the wide
variety of mobile taxa surveyed with passive
measures of incidence and relative abundance
(Ribeiro et al. 2008, Villegas-Rios et al. 2014, Bur-
ton et al. 2015, Miller et al. 2015). The dynamic
relationship between these different data sources
can be interpreted through the lens of a predator–
prey encounter-rate model to provide insight into
the activity patterns affecting data correspon-
dence. We propose that variable catchability from
methods passively measuring CPUE is not only
useful for adjusting abundance estimates, but also
sources of information on behavioral variation
(Stoner 2004, Miller et al. 2015).
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