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ABSTRACT OF THE DISSERTATION

EFFICIENT STORAGE AND DOMAIN-SPECIFIC INFORMATION DISCOVERY

ON SEMISTRUCTURED DOCUMENTS

by

Fernando Farfán

Florida International University, 2009

Miami, Florida

Professor Evangelos Christidis, Major Professor

The increasing amount of available semistructured data demands efficient mechanisms

to store, process, and search an enormous corpus of data to encourage its global adop-

tion. Current techniques to store semistructured documents either map them to relational

databases, or use a combination of flat files and indexes. These two approaches result in a

mismatch between the tree-structure of semistructured data and the access characteristics

of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods

has slowed down the large-scale adoption of XML into actual system implementations.

The recent development of lazy parsing techniques is a majorstep towards improving

this situation, but lazy parsers still have significant drawbacks that undermine the massive

adoption of XML.

Once the processing (storage and parsing) issues for semistructured data have been

addressed, another key challenge to leverage semistructured data is to perform effective

information discovery on such data. Previous works have addressed this problem in a

generic (i.e. domain independent) way, but this process canbe improved if knowledge

about the specific domain is taken into consideration.

This dissertation had two general goals: The first goal was todevise novel techniques

to efficiently store and process semistructured documents.This goal had two specific

aims: We proposed a method for storing semistructured documents that maps the physical

vi



characteristics of the documents to the geometrical layoutof hard drives. We developed a

Double-Lazy Parser for semistructured documents which introduces lazy behavior in both

the pre-parsing and progressive parsing phases of the standard Document Object Model’s

parsing mechanism.

The second goal was to construct a user-friendly and efficient engine for performing

Information Discovery over domain-specific semistructured documents. This goal also

had two aims: We presented a framework that exploits the domain-specific knowledge to

improve the quality of the information discovery process byincorporating domain ontolo-

gies. We also proposed meaningful evaluation metrics to compare the results of search

systems over semistructured documents.
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CHAPTER 1

INTRODUCTION

Semistructured data models have become popular and widely adopted as an effective

means to encode and exchange documents in heterogeneous environments. An increasing

number of applications manage large amounts of semistructured data [PGMW95]. Such

applications include Bioinformatics suffix-tree-based sequence alignments [DKF+99],

genomics data analysis [Rok07], multi-resolution video [FJS96], clinical data [DAB+06],

XML Databases, and even directory-file hierarchies in general-purpose systems. More-

over, hundreds of application languages have based their specification in semistructured

formats. Some examples include Medical Markup Language (MML) [MML08], Geo-

graphic Information Systems Markup Language (GML) [GML08], Open Document For-

mat (ODF) [ope08, oox08], Health Level 7 [HL708a], and Scalable Vector Graphics

(SVG) [SVG08].

To support and further encompass this wide adoption of semistructured data formats,

specifically represented by the eXtensible Markup LanguageXML [BPSM+06], efficient

mechanisms to store, parse, and search such documents are necessary. These three phases

constitute a line of work that needs to be optimized to ensurethe highest performance and

quality in processing semistructured documents. Figure 1.1 shows these three phases. A

large amount of research has been driven to improve these three processing phases. But

there is still room for improvement.

Current approaches to store semistructured data either mapthe data to an underlying

relational database system (e.g., [BFRS02a, DFS99, MH04, RFHR, STZ+]), or use the

abstraction provided by a general-purpose object storage manager [CDF+94], or use a

combination of flat files and indexes (e.g., [AGM+90, Gal07, JAKC+02, KM06, Xal07,

XT07]). These storage schemes, however, ignore the mismatch between the structure

and navigational primitives of semistructured data and theaccess characteristics of disk
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Figure 1.1: Three phases to work with semistructured documents.

drives. In particular, semistructured data have a tree (or graph) structure with tree-type

operations. Relational databases, on the other hand, storestructured tables that are opti-

mized for row-based access, and flat files are unstructured, optimized for sequential ac-

cess. Further complicating this mismatch, the underlying storage device, i.e. disk drives,

store information in circular tracks that are accessed withmechanical seek and rotational

overhead. These current solutions result in sub-optimal accesses to semistructured data.

Given the abundance of semistructured data today, there is an immediate need for re-

examining the current storage and access machinery. In thisthesis, I explore strategies

to optimize the storage, processing, and retrieval of semistructured data on disk drives by

explicitly accounting for the mismatch between the structure of the data and the disk drive

characteristics.

A key step in the massive adoption of semistructured data is the optimization of its

processing mechanisms. The importance of efficient XML parsing methods has been

underscored by Nicola and John [NJ03]; they showed that the parsing process when using

the Document Object Model (DOM) [DOM08] is processor and memory consuming,

particularly needing main memory as much as five times the size of the original document.

Lazy XML parsing has been proposed (e.g., [xer08]) to improve the performance of the

parsing process by avoiding the loading of unnecessary elements. This is a significant

improvement. However, it still requires initial preprocessing phases during which the

2



whole document has to be processed. It is necessary to develop new techniques that

exploit the physical layout of semistructured documents inorder to further optimize the

parsing process on semistructured documents.

Although a vast corpus of work [CKKS05, FG01, CMKS03, CMM+03, GSBS03,

HPB03, HP06, LYJ04, XP05] has addressed the problem of quality Information Retrieval

(IR) on semistructured data, a series of challenges arise when the search process is per-

formed over domain-specific documents. The definition and structure of queries, search

algorithms, and results should embrace and resemble as muchknowledge about the spe-

cific nature of the documents as possible.

This thesis presents new techniques to improve the performance and quality of the

three phases presented in Figure 1.1, summarized in the following aims:

i Exploit the physical organization and layout of semistructured documents to obtain

a more efficient storage mechanism,

ii Efficiently parse and process semistructured documents by skipping unnecessary

data,

iii Perform domain-specific Information Discovery by studying the semantics of the

structure and the content of the documents for various domains, and

iv Design meaningful evaluation metrics for search systemsthat deal explicitly with

collections of semistructured documents.

The rest of this thesis is organized as follows. The next chapter presents the research

significance of this dissertation. Chapter 3 presents the data models and background

considerations used in the rest of the chapters. The first part of the thesis discusses the

efficient storage of semistructured data and is found in Chapter 4. The second part treats

the efficient parsing of semistructured documents and is found in Chapter 5. The third part

discusses challenges and techniques to provide domain-specific information discovery on
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semistructured documents and is developed in Chapters 6, 7 and 8. The conclusions to

the dissertation are found in Chapter 9.

In each chapter we motivate the need for the work and present relevant background

material. We then present the theoretical model and our research approach to solve the

specific problems. We then show the experimental analysis ofthe introduced techniques.

The related work for the research is presented next, followed by the chapter’s conclusions.
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CHAPTER 2

RESEARCH SIGNIFICANCE

The significance of this research is as follows:

1. Semistructured documents have been adopted in many environments. From large

database installations to myriads of languages and dialects based on the Extensible

Markup Language (XML), semistructured documents can be found everywhere.

However, the current technologies to store, process and search this type of data

have not reached an optimal level of performance.

2. Current approaches to store semistructured data either map the data to an underly-

ing relational database system, use the abstraction provided by a general-purpose

object storage manager, or use a combination of flat files and indices. Since these

approaches retrofit existing storage mechanisms to work with semistructured data,

their scope is restricted to the underlying mechanisms which are predominantly

optimized for sequential accesses resulting in a mismatch between the structure

and navigational primitives of semistructured data and theaccess characteristics

of disk drives. Given the growing amount of semistructured data, there is a need

for re-examining the current storage and access machinery that support them, and

to design strategies to optimize the storage and retrieval of semistructured data on

disk drives by explicitly accounting for the mismatch between the structure of the

data and the disk drive storage and access characteristics.

3. The widespread use of semistructured documents, and in particular XML, requires

efficient parsing techniques. The importance of efficient methods for parsing XML

documents was underscored by Nicola and John [NJ03]; they showed that the pars-

ing process is processor and memory consuming, particularly needing main mem-

ory as much as five times the size of the original document. This prohibitive re-
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quirement makes imperative to develop more efficient mechanisms for parsing and

processing.

4. As semistructured documents become more popular and widespread, so does the

need for efficient and high-quality tools for searching and discovering information

over these document corpora. Although several efforts havebeen made to optimize

search systems for semistructured documents and XML repositories, it is possible

to improve the quality of these systems by integrating into the search process the

knowledge of the particular domain. While previous solutions exploit the struc-

tural and syntactical features of XML, we need to exploit semantic features, user

preferences, and other domain knowledge that is captured and referenced by the

documents.
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CHAPTER 3

BACKGROUND

In this chapter we establish some notation and initial definitions that will be of interest

for the rest of the dissertation. We present the formal definition of semistructured data,

and the current methods to storing and accessing this type ofdocuments.

3.1 Semistructured Data

We view a semi-structured document as a labeled treeT , where each nodev has alabel

λ(v), which is atag namefor non-leaf nodes and avaluefor leaf nodes. Also, non-leaf

nodesv have an optional setA(v) of attributes, where each attributea ∈ A(v) has a name

and a value. Note that our layout technique can also be applied to documents with cycles

(e.g., ID-IDREF edges for XML documents).

root

Book [title =
“XML Databases”, year=2002 ]

Chapter [title=
“XML Introduction” ]

Chapter [title=
“Semistructured Data” ]

Chapter [title=
“Implementation

Issues” ]

Section [title=
“Concurrency” ]

Section [title=
“Converting to

XML”]

Chapter [title=
“Conclusions” ]

Chapter [title=
“Overview” ]

Section [title=
“Hard Disks” ]

Section [title=
“Main Memory” ]

Section [title=
“Conclusions” ]

Chapter [title=
“Introduction” ]

Chapter [title=
“XPath” ]

Chapter [title=
“Conclusions ”]

Section [title=
“Discussion” ]

Section [title=
“Open Issues” ]

Book [title =
“Storage Principles”, year=2001 ]

Book [title =
“XML Queries”, year= 2002 ]

Figure 3.1: A sample semi-structured document.

Figure 3.1 shows an example of a semi-structured document (in this case an XML

document) and Figure 3.2 shows the corresponding tree structure, created by replacing

the labels with node IDs in the semi-structured tree of Figure 3.1.
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Figure 3.2: Tree structure for the XML document in Figure 3.1.

3.2 Access Model for Semistructured Data

Current-day file systems stored semi-structured data (say an XML document) sequentially

on the disk. This is equivalent to placing the tree in depth-first order. To ensure a fair

comparison of our storage method to the default layout, a physical pointer is added from

each node to its first child and its right sibling, thereby allowing the possibility to skip

the entire subtree of a node to access its right sibling. Thisoptimization is used for the

default strategy in all the experimental results we report.

For XML data, which we use as a case-study for evaluating our approach, XPath

queries form the core navigation component of XML query processing systems. For

evaluating XPath queries, we adopt the “standard” XPath evaluation strategy [GKP02]

shown in Listing 3.1. Intuitively, this strategy processesan XPath queryQ in a depth-

first manner on the XML document, one step ofQ (Q.first) at a time, and stores the

intermediate results in a setS. In [BFHR06] we explain how optimizing XPath also leads

to optimized XQuery.

Current implementations of XML parsers create an in-memorydocument tree struc-

ture that is populated (on-demand in some implementations [NSL02]) by retrieving cor-

responding sections of the disk-resident XML document. XMLstores typically handle

documents that are both smaller (i.e., tens of KB) as well as much larger size (several
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Listing 3.1: Standard XPath evaluation strategy [GKP02].

1 procedure processLocationStep(n, Q.tail)
2 node set S ← apply Q.first to n0;
3 if Q.tail not empty then
4 begin
5 for each node n in S do
6 processLocationStep(n, Q.tail);
7 end
8 end
9 end procedure

GB). Consequently, trivial solutions such as loading the entire XML document in mem-

ory prior to parsing are not deemed practical.

3.3 Disk Drive Modeling

We base our disk drive modeling on the work of [RW94b]. In their model,seek, rotation,

andtransfer times, combine the following features:

• A seek timethat is linear with the distance, using the single-cylinderand full-stroke

seek times published in the disk drive specification.

• No head-settle effects or head-switching costs.

• A rotational delaydrawn from a uniform distribution over the interval[0, rotation

time).

• A fixed controller overhead.

• A transfer timelinear with the length of the request [RW94b].

The average random access timetrand, is a function of the average seek time and

rotational delay and is given by:

trand = seekT ime
(

C
3

)

+ 1
2
Trot (3.1)
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whereseekT ime is a disk specific function computing the seek time given the number of

tracks to seek [RW94b] and is given by:

seekT ime(d) =











α + β ·
√
d; if d < C

3

γ + δ · d; otherwise
(3.2)

whered is the seek distance in cylinders,C is the total cylinder count, andα, β, γ andδ

are disk specific parameters.
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CHAPTER 4

EFFICIENT STORAGE OF SEMISTRUCTURED DATA ON DISK DRIVES

4.1 Motivation

An increasing number of applications manage large amounts of semistructured data.

Common applications that use semistructured data today include Bioinformatics sequence

search and alignment [DKF+99], genomic data analysis [Rok07], multi-resolution video

storage [FJS96], clinical data systems [CDA07], XML databases, and more [PGMW95].

Given that a semi-structure such as a tree provides a more intuitive way of managing

large amounts of data, the trend of storing data in such formats is likely to strengthen in

the future.

Current approaches to store semistructured data either mapthe data to an underly-

ing relational database system (e.g., [BFRS02b, DFS99, MH04, RFHR, STZ+]), use the

abstraction provided by a general-purpose object storage manager [CDF+94], or use a

combination of flat files and indices (e.g., XALAN [Xal07], XT[XT07], Galax [Gal07],

BLAST [AGM+90], Timber [JAKC+02] and Natix [KM06]). Since these approaches

retrofit existing storage mechanisms to work with semistructured data, their scope is re-

stricted to the underlying mechanisms, which are predominantly optimized for sequential

accesses. Consequently, these approaches may result in a mismatch between the struc-

ture and navigational primitives of semistructured data and the access characteristics of

disk drives. In particular, semistructured data have atree (or graph) structure with tree-

type operations. Relational databases, on the other hand, store structured tables that are

optimized for row-based access, and flat files are unstructured, optimized for sequen-

tial access. Further complicating this mismatch, the underlying storage device,i.e. disk

drives, store information in circular tracks that are accessed with mechanical seek and
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rotational overhead. Given the growing amount of semistructured data, there is a need for

re-examining the current storage and access machinery thatsupport them.

In this chapter, we explore strategies to optimize the storage and retrieval of semistruc-

tured data on disk drives by explicitly accounting for the mismatch between the structure

of the data and the disk drive storage and access characteristics. In particular, this chap-

ter presents algorithms that given the physical characteristics of a disk drive (number of

tracks, sectors per track and rotational speed.), place semistructured data on the disk drive

in a way that facilitates navigation of the data by reducing access overheads. Such low-

level control of data layout is made possible using information provided by standard disk

profiling tools [WGPW95, TADP99, DRC+04].

The proposed technique first addresses the problem of grouping nodes of semistruc-

tured data trees so that they can be mapped to disk blocks. This chapter presents the de-

velopment and experimental evaluation of grouping strategies, which are compared with

the Enhanced Kundu Misra (EKM) grouping strategy [KM06]. Second, the proposed on-

disk layout strategy for node groups optimizes common tree navigation operations such as

parent-to-child and node-to-next-sibling traversals. These on-disk layout strategies make

use of semi-sequential disk access technique [SSS+04] that allows the reduction and even

elimination of rotational delay overhead during disk accesses.

Given that this approach requires circumventing the prevalent logical block abstrac-

tion, applying this layout strategy to a general purpose storagesystem is not straightfor-

ward.1 The goal of these techniques is simply to expose the merits and demerits of this

approach. Through experiments we show that our proposed approach is superior for a

dedicated single-user storage system with standard caching and prefetching capabilities

– for instance, a specialized system for analysis of biological data (suffix trees) [BH06].

1Prior research has made a similar argument in favor of fine-grained data layout by
circumventing the logical block abstraction, for the case of tabular data [SSS+04].
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Based on this study, we believe that our approach provides a fresh perspective on the

problem of storing semistructured data that is worth the attention and research time of the

community.

To evaluate the proposed native data layout techniques, we used the Extensible Markup

Language (XML) as a case study. XML is becoming increasinglypopular due to its abil-

ity to represent arbitrary semistructured data. It is the defacto data representation format

for many modern applications, including Geographic Information Systems Markup Lan-

guage (GML) [GML08], Medical Markup Language (MML) [MML08], Health Level

HL7 [HL708a], Clinical Document Architecture (CDA) [DAB+06] used to represent

Electronic Health Records (EHRs), Open Document Format (ODF) [ODS08, oox08], and

Scalable Vector Graphics (SVG) [SVG08] used to describe two-dimensional graphics and

graphical applications. Despite the widespread use of XML,the challenge of optimizing

access to XML data stores is a key challenge also identified inthe latest report [AAB+05]

on the future directions on database research, published every few years by the database

research community.

Table 4.1: Query classification of popular XML benchmarks.

Benchmark Workload Document Total # Non-deep- # Deep-
size queries focused focused

TPoX Financial app 2 - 25 KB 11 4 7
XMach-1 E-commerce app 2 - 100 KB 7 4 3
XMark Auction Website 10MB - 10 GB 20 13 7
XPathMark Education app 10MB - 10GB 54 20 34
XOO7 Web app 4MB - 1GB 23 4 19
XBench Publications DB 1KB - 10 GB 17 11 6
MemBeR Synthetic 11 MB 7 0 7
MBench Synthetic 50MB - 50GB 37 37 0
Total 176 93 83

Recent surveys of popular XML benchmarks [AM06, BR03, NLB+01] show that all
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queries to XML data can be classified into deep-focused and non deep-focused queries.

In Table 4.1, we summarize the key XML benchmarks available in the public domain.

These benchmarks are further described on Section 4.7.

This collection of well-accepted and standardized XML benchmarks demonstrate:

i. that XML document sizes can be fairly large running sometimes into tens of giga-

bytes; this combined with the fact that XML parsers can consume as much as 5X

the amount of main memory during parsing as the original sizeof the XML doc-

ument [NJ03] implies that secondary storage accesses must be optimized if at all

possible, and

ii. that the non deep-focused queries, form at least half of the total queries suggested

within these popular XML benchmarks ; this implies that optimizing accesses to

the non-deep-focused query class is at least as important asoptimizing for the deep-

focused class. Further, in the event that a workload generates both classes of queries

with similar frequency, the storage system could conceivably store data using both

the traditional approach and tree-based approach with the caveat that this approach

requires more consideration for write-dominant workloadsthat can incur an unac-

ceptable amount of overhead for maintaining consistency.

For evaluating our native layout proposals, we employ XPathqueries [XPa07] ob-

tained from the XPathMark benchmark for the evaluation. We examine the relative perfor-

mance of native layout against thedefaultapproach, which stores XML files sequentially.

To do so, we augmented an existing XML parsing engine to implement the grouping

techniques that we propose. To evaluate disk I/O performance, we use an instrumented

DiskSim disk simulator [BGC03] and replayed the block access traces generated by XML

query processing engines. Our evaluation also addresses I/O performance in the presence

of query parallelism as would be typical for server environments. Summarizing, these
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experiments reveal that while the default sequential layout provides superior performance

for thedeep-focusedclass of XML queries (or access patterns retrieving entire subtrees

of semistructured data), the proposed native layout techniques outperform the default for

all other query access patterns.

The rest of the chapter is organized as follows. Section 4.2 presents the architecture

of a native semistructured storage system. In Section 4.3, we present native data-layout

strategies for semistructured data on disk drives. In Section 4.4, we present strategies for

organizing and grouping nodes in the tree so that they can be mapped to disk blocks. In

Section 4.5 we conduct a theoretical analysis of the performance impact of data layout. In

Section 4.6, we evaluate the proposed approach for the case of XML data by comparing it

against the default sequential layout. We survey related work in Section 4.7. We conclude

and discuss future directions in Section 4.8.

4.2 System Architecture

In this section, we propose an architecture for building a native semi-structured storage

system which allows the use of our layout techniques with minimal changes to the current

storage stack. A detailed description of the data and accessmodel abstractions considered

for this architecture can be found in Section 3.1.

4.2.1 Modifying the Storage Stack

Modern disk drives provide a high-level logical block abstraction to the operating system,

which does not export information about the physical data layout, performance charac-

teristics, and internal operation of the disk drive. We propose a modified storage stack

inside the operating system that will facilitate native data layout strategies by including

mechanisms to effect low-level data layout.
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Figure 4.1: Storage stack modification.

The lowest levels of the current storage stack (shown in Figure 4.1(a)) form the stor-

age subsystem, which exports a logical block I/O interface.The dominant storage mech-

anisms, i.e., databases and file systems, form the middle layer that accesses data on the

storage device(s) using the logical block interface while also providing high-level APIs

for applications. These storage mechanisms are optimized for relational data and sequen-

tial files respectively.

The proposed storage stack (Figure 4.1(b)) builds a native Semi-Structured Storage

(SSS) engine on top of the block I/O interface to provide native storage and access sup-

port for semi-structured data. The SSS engine employs disk profiling to perform native

data layout on a reserved contiguous area (partition) of thedisk drive. Storage access

modules (e.g. file system, database engine) need to be minimally modified to use the

SSS interface in order to efficiently store and retrieve semi-structured data, or bypass it

for non-semi-structured data. We chose not to build-in native support into an existing file

system or existing DBMS, because we believe that the SSS engine as well as its inter-
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face can be made generic enough to work with any storage access module. Existing file

and database systems can then be extended with native layoutsupport for semi-structured

data via the SSS engine. While the proposed approach call forsignificant changes to the

operating system storage management, it is important to point out that applications retain

their original interface to the operating system and remaintransparent to the underlying

mechanisms.

4.3 Semi-structured Data Layout

In this section, we present disk layout strategies for semi-structured data. First, we in-

troduce a basic tree-structured placement strategy, a simple strategy which illustrates the

basic ideas of our approach. Next, we present an improved andoptimized variant of the

basic strategy, which addresses the shortcomings of the basic strategy. Finally, we dis-

cuss some practical challenges that must be addressed when implementing the proposed

placement strategies.

4.3.1 Basic Tree-structured Placement

A key limitation of the default storage method is that it is optimized only for accessing the

semi-structured data tree in depth-first order since it places the data file sequentially on

disk. For example, for the semistructured document in Figure 3.1 and its tree in Figure 3.2,

the nodes would be stored sequentially in alphabetical order. We refer to this henceforth as

the default layout and use it for comparison purposes in Section 4.6. If this file is accessed

in strictly depth-first order, such a placement scheme wouldbe optimal. However, typical

tree navigation during the answering of queries displays the following characteristics: (a)

nodes are accessed along any path from the root to a leaf of thetree, and (b) siblings are

often accessed together, without accessing their descendants. The default layout of the
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nodes would result in random accesses (and therefore poor I/O performance) for both the

above accesses, except for the leftmost path or traversals along leaf levels.

Based on the above observations, we design our basic layout strategy,tree-structured

placement. To simplify the presentation of the algorithm we assume that each node in

the tree occupies an entire disk block. This assumption is relaxed in Section 4.4 where

we discuss in detail the grouping methods that can be employed to minimize internal

fragmentation within disk blocks while maintaining the tree structure of the file.

In the basic tree-structured placement, nodes are placed onthe disk starting from the

outermost available track (we choose the outermost track due to its higher bandwidth,

favoring the more frequently accessed higher levels of the tree). In particular, we first

place the root nodev on the block with the smallest logical-block-number (LBN),on the

outermost available track of the disk. Second, we place its children sequentially on the

nextfreetrack such that accessing the first childu of v after accessingv results in asemi-

sequential access[SSS+04]. This is accomplished by choosing a block foru rotationally

skewed fromv such that when accessingu after accessingv, the rotational delay incurred

is zero. Further, accessing a non-first child from a parent node involves a semi-sequential

access to reach the first child and a short rotational-delay based on the child index. The

children of the first-child of the root node are then placed onthe next available track, once

again at a rotationally-optimal point relative to their parent. Next, the grandchildren of

the first child of the root are placed following a similar approach, and so on.

As described above, the basic tree structured layout chooses parent nodes to place

their respective children in depth-first order (DFO). We also experimented with breadth-

first-ordering (BFO) in choosing parents, but found DFO to consistently outperform in

the experiments due to its significantly shorter seek times during parent-child traversals.

Intuitively, this can be visualized in Figure 3.2 where we present the DFO numbering

for parent nodes (above each node); notice the localizationof the numbers within each
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Figure 4.2: Basic tree-structured placement strategy.

subtree. The BFO ordering, on the other hand, scatters numbering over the entire tree,

resulting in large seek times for parent-child traversals.

Example 4.3.1 Figure 4.2 shows the layout of the tree of Figure 3.2 on a disk platter. To

simplify presentation, we assume that the disk has a single platter with a single surface

(and consequently a single disk head). Furthermore, we assume that the rotational skew

between tracks is the seek-distance× quarter-rotation. The root node A is placed on

the outermost track, track 0. Its first child B is placed on thefirst available free track

closest to A, i.e., track 1. The block on which B is placed is rotationally skewed by a

quarter-rotation relative to A as a consequence of our assumption. Accessing B after A

would require only seeking to the next track. The remaining children of node A, i.e. I, and

N, are placed sequentially next to the first child B. The asterisked blocks in each track

immediately before the first-child represent the rotational skew between a parent and its

first-child. The remaining nodes are placed following a similar approach to complete the

placement of the tree.

Listing 4.1 outlines the procedure for tree-structured placement. Notice that the leaf
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Listing 4.1: Basic Placement Algorithm

1 procedure PlaceInDisk(Tree T)
2 begin
3 PlaceInTrack(GetFirstFreeTrack(), 0, Root(T))
4 while there are more nodes
5 begin
6 n← GetNextNode()
7 t← GetFirstFreeTrack()
8 L← empty
9 L← Add(Children(n))

10 lbnF irstChild← FindSemiSequential(n.lbn, T)
11 Place(t, lbnF irstChild, L)
12 end
13 end

nodes of the treeT shown in Figure 3.2 are not numbered in the ordering and henceare

not returned bygetNextNode(), which is when the placement algorithm terminates.

4.3.2 Optimized Tree-structured Placement

The basic layout strategy, as is obvious in Figure 4.2, results in severe external fragmenta-

tion of disk space (internal fragmentation within a disk block is discussed in Section 4.4),

which also increases the average seek time of I/O operations. We now describe an opti-

mization of the basic tree-structured layout strategy thatreduces external fragmentation

as well as random seek times drastically.

The key idea in theoptimized tree-structured placementis the use ofnon-freetracks

for placing the children for a given parent node. The optimized placement strategy is less

restrictive than the basic tree-structured placement strategy in two specific ways: (1) it

allows placing children on anon-freetrack, and (2) it does not require the first-child to be

placed at the rotationally-optimalblock, but rather allows placing the first-child anywhere

within a rotationally-optimaltrack-regionas defined next.
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We define atrack-regionas a contiguous list ofNtr disk-blocks along a track. The

blocks within a track-region, therefore, are also sequential in the logical address space

(LBN space) of the disk. Given a parent nodeu and a target trackt, we define the

rotationally-optimal track-regionfor u on trackt as the track-region of sizeNtr blocks

starting from the block where the disk head lands when seeking to trackt starting from

u. In Figure 4.3, two rotationally-optimal track-regions (Ntr=6) for parent node ‘S’ are

marked using the# symbol. To place the children nodes for nodeu, a set ofcandidate

rotationally-optimal track-regions are chosen close tou, which can lie on either side of

the parent track. The optimized placement algorithm chooses the track-region closest to

u with sufficient free space to house the children ofu. Other than this variation, the opti-

mized tree-structured placement algorithm proceeds to place the tree similar to the basic

placement algorithm.

In the above placement description, the choice of the rotationally-optimal track-region

size (Ntr) is a critical factor. Increasing the track-region size gives the placement algo-

rithm more opportunity to reduce fragmentation and consequently reduce random-seek

overhead between node accesses, but it also increases the average rotational delay in-

curred during parent-to-child node-traversals. This is animportant trade-off to be consid-

ered when choosingNtr. In our experiments, we chooseNtr as a quarter of the track-size.

Figure 4.3 shows the layout of the tree in Figure 3.2 on a hard disk (platter) using the

optimized strategy. Again, we assume that the platter rotates in the clockwise direction.

The assumptions of track skew are also the same as for the basic strategy. In the optimized

placement, since a single track can contain the children of several nodes, the external

fragmentation (shown in Section 4.6) is drastically reduced compared to the basic tree-

structured placement.

The PlaceInTrack method in Listing 4.2 outlines the logic for optimized tree-

structured placement. Line 1 places the root node of the treeT on the outermost track.
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Figure 4.3: Optimized Strategy.

Lines 2-7 place the children of thenextnode (which is the root node in the first iteration)

on the rotationally-optimal track-region (returned byFindRotTrackRegion). The

next node is returned bygetNextNode(), which returns a non-leaf node of the XML

tree based on the chosen ordering scheme. The above process is repeated until all the

nodes are placed on the disk. The auxiliary methodGetTrack(LBN) returns the track

for LBN; the auxiliary methodFreeTrackRegionStart(LBN, int, tracks)

recieves as parameters a parent LBN, its number of children,and the number of tracks to

skip, and returns the LBN for the first child if all children can be placed in the candidate

tracks rotationally-optimal track-region. Otherwise returns NULL. Candidate tracks are

the two tracks situated at parentTrack +/- tracksToSkip respectively.

Notice that the leaf nodes ofT are not numbered in the ordering and hence are not

returned bygetNextNode(). ThefindRotTrackRegion(LBN parent,int

nchildren) auxiliary method checks for availability of space in the rotationally opti-

mal track-regions in tracks on either side of the parent’s track, starting from the closest

track. It returns the LBN for placing the first-child of theparent node. The remaining

children are placed incrementally following the first child. Thedirection identifier

specifies where the target track lies with respect to the parent. If the direction has
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Listing 4.2: Optimized Placement Algorithm

1 procedure <Track, LBN> FindRotTrackReg(LBN parent, int n)
2 begin
3 tracksToSkip← 1
4 parentTrack ← GetTrack(parent)
5 while true
6 begin
7 lbnF irstChild← FreeTrackRegionStart(parent, n,

tracksToSkip)
8 if lbnF irstChild not NULL
9 begin

10 return <GetTrack(lbnF irstChild), lbnF irstChild >
11 end
12 end
13 tracksToSkip++
14 end
15

16 procedure PlaceInDisk(Tree T)
17 begin
18 PlaceInTrack(getFirstFreeTrack(), 0, root(tree))
19 while there are more nodes
20 begin
21 n← GetNextNode()
22 L← empty
23 L← add(children(n))
24 < lbnF irstChild >← FindRotTrackReg(n.lbn, L.size())
25 Place(target, lbnF irstChild, L)
26 end
27 end
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a negative value, the target track is less than the parent track. Likewise, a positive value

indicates that the target track is greater than the parent track.

4.3.3 Implementation Issues

In implementing the strategies presented above, several practical issues must be consid-

ered. First, the above placement scheme assumes that a single, contiguous partition, large

enough to accommodate the semi-structured data is available. This assumption is realistic

for both file systems and database systems since they typically allocate a large contiguous

disk partition and can reserve a fraction of this space for storing semi-structured data.

Second, after a tree node is read from the disk drive, a non-negligible CPU think

time is typically required before the next I/O request is issued. We address this issue

as follows. If the next request is for a sibling node (stored sequentially in our approach),

then on-disk pre-fetching mechanisms ensure that this nodeis pre-fetched into the on-disk

cache. However, if the next request is for a child node (stored semi-sequentially), then

during computation time, the disk would have already rotated by an amount proportional

to the CPU think time and hence no semi-sequential access would be possible. To address

this, we skew the first child by an additional rotational delay equivalent to95th percentile

of a sample from the think time distribution. This ensures that in most cases, the semi-

sequential nature of child node accesses will be preserved.

Third, the proposed strategy would work well when processing a single query at a

time. However, if there are multiple queries issued concurrently by different processes

or users, then the resulting interleaving I/Os are likely todegrade sequential or semi-

sequential accesses to random ones. This problem is prominent even in traditional re-

lational database and filesystem accesses. Techniques at the disk scheduling layer such

asanticipatory scheduling[ID01], which group together requests from a single process
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and minimize the effects of multiple interleaved I/O request streams, address this issue

well. We evaluate the impact of query parallelism (in Section 4.6) with anticipatory I/O

scheduling to demonstrate the effectiveness of native layout strategies in the simulated

environment.

Finally, existing storage interfaces are restrictive which makes it non-trivial to obtain

profiling information or control data layout. While the needfor more expressive storage

interfaces has been brought up repeatedly in the storage research community(e.g., [Gan01,

KPH98, RGF98]), for the time-being, we can circumvent this restriction by employing

disk profiling and control tools. Profiled information includes: rotational time, seek time,

track and cylinder skew times, sizes of read cache and write buffer along with pre-fetching

and buffering techniques, logical to physical block mappings, and access time prediction.

This profiled information enable fine-grained control for disk drives, tailored specifically

for semi-structured data.

4.4 Supernode Trees

So far, we assumed that each node in the semi-structured datatree occupies an entire disk

block. This assumption, however, is not realistic; in practice, the tree nodes are of variable

size, ranging from a fraction of a disk block to multiple diskblocks.

In this section, we first lay the foundation for grouping nodes in a semi-structured

data treeT to form supernodeswhere each supernode occupies an entire disk block.

Next, we describe how to organize the supernodes into a supernode tree structureTS. The

placement strategies of Section 4.3 are then applied on the supernode tree instead of the

node tree.

25



4.4.1 Grouping Nodes into Supernodes

To reduce the internal fragmentation, it is desirable to group the maximum number of

nodes into a supernode. It is also important to group adjacent nodes ofT in the same

supernode, so that navigating among these nodes requires only one disk access. If the size

of a node is larger than the size of a disk block, it is stored using multiple supernodes,

which are then stored in consecutive disk blocks.2

To elucidate the following grouping techniques, we assume that all nodes have the

same size, and one supernode can contain at most five nodes.
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Figure 4.4: Grouping strategies for creating supernodes.

2An alternative strategy to avoid breaking the tree-structure of the rest nodes would
be to store a pointer to a Binary Large Object (BLOB) and use anobject storage man-
ager [CDF+94] to manage BLOBs.
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Sequential grouping.Nodes are added to a supernode starting from the root node using

a depth-first (and left-to-right) traversal. The only difference is that a single node is not

split nodes across disk blocks, unless the size of the node isgreater than the size of a

disk block. Figure 4.4(a) illustrates this grouping strategy for the tree presented earlier in

Figure 3.2.

Tree-preserving grouping. The tree-preserving grouping proceeds as in the sequential

grouping except it ensures that cycles of supernodes do not form in the grouped tree. At

each step, before adding a nodev to a supernodeS, the following additional conditions

are checked:

(i) the parent node ofv is in S, or

(ii) the parent node ofv is in the parent supernode ofS.

If any of these conditions hold, then we addv to S. If neither holds, then by addingv to

S a cycle of supernodes in the original treeT would be created. To avoid that, we close

S and addv to a new supernode. This strategy aims at preserving the tree-structure of the

original treeT in the supernode tree. Figure 4.4(b) illustrates this grouping strategy for

the tree of Figure 3.2.

Enhanced Kundu Misra grouping. We also implement a grouping technique developed

independently at the same time by Kanne and Moerkotte [KM06]called the Enhanced

Kundu Misra (EKM) grouping, an extension to the original Kundu-Misra grouping algo-

rithm [KM77]. The EKM strategy operates in a bottom-up fashion and aims at reducing

the number of node groups while preserving the original treestructure, thereby increasing

navigations between nodes within the same group. It operates by converting the n-ary tree

into a binary tree representation, obtaining a layered partitioning that helps reducing the

number of supernodes while preserving the connectedness. Figure 4.4(c) illustrates this

grouping strategy for the tree of Figure 3.2.
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4.4.2 Building Supernode Trees

The organization of the supernodes into a supernode tree,TS, determines the placement

of the supernodes on the disk drive according to the algorithms presented in Section 4.3.

Hence, it is desirable to preserve the tree-structure ofT in TS. That is, if a parent-child

pair of nodes inT is split to different supernodes, then it is preferable to split it to two

adjacent supernodes inTS. Based on the grouping strategies described above, we consider

four supernode tree organization strategies:

1. Thesequential supernode list, which corresponds to the default placement strategy,

uses sequential grouping to form supernodes. It is merely a linked-list of supernodes in

the order in which the supernodes were formed. Figure 4.5(a)shows the formation of

this list.

2. The tree-preserving supernode tree, which corresponds to thetree-preserving3 tree-

structured4 placementto be introduced in Section 4.6, uses the tree-preserving grouping

to form supernodes. The supernode tree is formed by adding edges between two supern-

odesSi, Sj if there is an edge between two nodesvi ∈ Si, vj ∈ Sj in T . Notice that due

to the nature of tree-preserving grouping no cycles can occur. Figure 4.5(b) shows the

formation of this tree.

3. Thesequential supernode tree, which corresponds to thesequential tree-structured

placement algorithmin Section 4.6, uses the sequential grouping to form supernodes.

Then, the supernode tree is created by adding edges between pairs of supernodesSi, Sj

if there is an edge between two nodesvi ∈ Si, vj ∈ Sj in T and adding the edge will not

create a cycle. Figure 4.5(c) shows the formation of this tree.

4. TheEKM supernode treebuilds a tree on the EKM supernodes. Again no cycles exist

due to the nature of EKM grouping. Figure 4.5(d) shows the formation of this tree.

3with respect to grouping
4with respect to placement algorithm
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Figure 4.5: Supernode Trees.

4.5 Theoretical Analysis

In this section, we present a quantitative model to analyze the access times for the de-

fault and the optimized tree-structured placement strategies. Table 4.2 summarizes the

description of each parameter used in this analysis.

First we compute the random, sequential and semi-sequential access times, following

the equations and models described in Section 3.3. For the barracuda disk, chosen as

the base disk configuration in the experiments (and also further described in Table 4.7),

the rotational latency is given byTrot = 8.33 ms andα = 1.83, β = 0.17, γ = 2.85

andδ = 0.0035. For an XML document of size 50MB occupies 129188 blocks or 325

cylinders after grouping with the tree-preserving grouping strategy (Table 4.4). Thus,

substituting these values in the above Equation 3.1, the random access time for the area

occupied by this document is given bytrand = 5.99 ms.

The average sequential access timetseq from one block to the next is a very small

29



Table 4.2: Disk Drive Parameter Description

Tdefault: Average access time in default placement
Ttree: Average access time in tree-structured placement
tseq: Average access time for sequential access
trand: Average access time for random access
tsemi−seq: Average access time for semi-sequential access
a1: Access is from parent to first child
a2: Access is from a parent node to non-first child
a3: Access is from a non-leaf node to its right sibling
a4: Access is from a leaf node to its right sibling
a5: All other accesses (that is,P5 = (1− (

∑4
i=1 Pi))

Pi: Probability that accessai occurs;1 ≤ i ≤ 5
tdefault(ai): Average time forai in default placement
ttree(ai): Average time forai in tree-structured placement
C: Number of Cylinders
Trot: Rotational Period
Tnt: Time taken to transfer one block of data

value, approaching zero. Hence,

tseq = 0 (4.1)

For the tree-structured placement, the access between a parent and its first child is

semi-sequential, and from a node to its right sibling is sequential. The average time for

semi-sequential accesstsemi−seq given by:

tsemi−seq(v) = seekT ime (s(v)) (4.2)

wheres(v) is the number of tracks to be seeked during a semi-sequentialaccess. When

T is a complete tree with heightd and degreef , the averages(v) is given by:

s(v) =
f d−2(d− 2− f/(1− f)) + 2 + f/(1− f)

2n′
(4.3)

wheren′ is the number of internal nodes given byn′ = (1−fd−1)
(1−f)

To understand this equation, let’s assume that the root is atdepth 1 and the leaves at

depthd. If there are two edgesu1 − v1 andu2 − v2 whereu1 andu2 are on the same

30



level andv1 andv2 are theirlth respectively, thenDFO(v1)−DFO(u1) = DFO(v2)−

DFO(u2). Thus, the distance in tracks fromv1 to its childu1 and fromv2 to u2 are the

same. In the above relation,DFO(x) is the corresponding number in the DFO ordering.

The numbers above the internal nodes in the tree shown in Figure 3.2 illustrate the DFO

ordering.

To calculate the averages(v) for the nodesv of levelk + 1, we need to find the size

of the subtree rooted atv which is

1 + f + · · ·+ f d−k−1 =
(1− f d−k)

(1− f)
(4.4)

The average ofs(v) for the nodes v of levelk + 1 is the averages(v) of any set of

siblings at levelk + 1. That is,

( f+(1−fd−k)
(1−f)(1+···+(f−1))

)

f
=

( f+(1−fd−k)
(1−f)(f−1)f/2

)

f
=

(f d−k + 1)

2
(4.5)

Hence, for levelk it is (fd−k−1+1)
2

.

For an average fanout of 10 and a depth of 5 in an XML tree,s(v) from Equation 4.3

is 1.83. Thus, theseekT ime(s(v)) is α + β ·
√
1.83 = 2.26.

Equation 4.2 assumes perfect semi-sequential time, which is achieved by the tree-

structured algorithm (Algorithm 4.1). However, in the caseof the optimized tree-structured

algorithm (Algorithm 4.2),tsemi−seq(v) depends on the number of track-regions per-track,

k. Hence,

tsemi−seq(v) = seekT ime (s(v)) +
1

2k
Trot (4.6)

Since the first-child is placed anywhere within a rotationally-optimal track-region

rather than rotationally optimal sector, accessing the first child may involve anywhere

between 0 to1
k
Trot rotational delay after the seek operation. This additionalrotational

delay during the semi-sequential access is1
2k
Trot on an average. When a track is divided

in 8 track regions,k =8 and for the barracuda disk,s(v) is calculated above and is 1.83
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ms. Substituting these values in Equation 4.6, the average semi-sequential time is given

by tsemi−seq(v) = 2.79 ms, a significant reduction of 53.4 % from an average random

access time of 5.99 ms.

Next, we discuss the time needed for each of the five basic access types of Table 4.2.

When the first child is accessed from its parent (a1), a sequential access occurs in the

default placement, whereas a semi-sequential access occurs in the tree-structured place-

ment. When a non-first child is read from its parent (a2), it is a random access in the

default placement, whereas for the tree-structured placement, it is the sum of the semi-

sequential time and the average sibling index (f/2, wheref is the tree fanout) timesTnt

(time required to transfer data from one node). When the access is from a non-leaf node to

its right sibling (a3) it is a random access in the default placement, and a sequential access

in the tree-structured placement. When from a leaf-node we access its right sibling (a4),

it is a sequential access in either placement strategy. In all other cases (a5), such as when

moving up the tree, for both placements a random access will be performed. Table 4.3

summarizes the access times in the default and the tree-structured storage for everyai.

Table 4.3: Average access times in default and tree-structured placement for each access
typeai.

Access typeai Description tdefault(ai) ttree(ai)
a1 Parent to first child tseq tsemi−seq

a2 Parent to non-first child trand tsemi−seq +
f
2
(Tnt)

a3 Non-leaf node to right sibling trand tseq
a4 Leaf node to right sibling tseq tseq
a5 All other accesses trand trand

The average access times in default and tree-structured storage are computed by Equa-

tions 4.7 and 4.8 respectively.

Tdefault =

5
∑

i=1

Pi · tdefault(ai) (4.7)
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Ttree =

5
∑

i=1

Pi · ttree(ai) (4.8)

Tree-structured placement is better whenTtree < Tdefault.

While this is not realistic (and necessarily subjective to the query as demonstrated

extensively later in Table 4.6), if we did assume that a queryexhibits all the access types

shown in Table 4.3, with each access type occurring equally frequently, the average I/O

times for the default and the tree placement can be obtained by substituting their values

in Equations 4.7 and 4.8 as:

Tdefault =
1

5
· tseq +

1

5
· trand +

1

5
· trand +

1

5
· tseq +

1

5
· trand

= 3.594 ms, and

Ttree =
1

5
· tsemi−seq +

1

5
· (tsemi−seq +

f

2
(Tnt)) +

1

5
· tseq +

1

5
· tseq +

1

5
· trand

= 2.344 ms

where the transfer timeTnt = 0.03 ms.

4.6 Evaluation Case Study: EXtensible Markup Language (XML)

In this section, we experimentally evaluate the grouping and native layout strategies for

placing XML data on disk drives.

We used the DiskSim [BGC03] disk simulator for our evaluations, instrumenting it to

provide the additional interface:

<LBN> findSemiSequential( LBN parent, int cyl, int track )

which given a parent LBN, returns an LBNX on<cyl,track>, such that access from the

parent LBN toX is semi-sequential.

The optimized-tree placement in Algorithm 4.2 uses this interface to find semi-sequential

LBA for subsequent nodes in the tree that has to be placed on the disk. The optimized
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tree-structured and the default placement algorithms wereimplemented in C and inte-

grated with the instrumented DiskSim code. The grouping algorithms were implemented

as a separate module.

4.6.1 Data Set and Queries

We generated XML files (each file corresponds to an XML tree) ofvarious sizes using the

XMark generator [SWK+02b] with different scaling factors fromf = 0.01 to f = 1.00,

corresponding to file sizes ranging from 1MB to 100MB. The limit of 100MB for the max-

imum file size is due to the memory constraints in currently available open-source XML

parsing engine implementations. These engines create the navigation tree data structures

for the entire tree in memory during parsing, while at the same time consuming as much

memory as five times the original document size [NJ03].

Earlier in Table 4.1, we presented the document sizes used byseveral popular bench-

marks typically used to evaluate XML query optimizations, storage, indexing and so on.

As mentioned earlier in Section 4.2, trivial solutions thatload the entire document in

memory are not practical for large (several gigabyte sized)XML documents. Although

the XML documents we experiment with are small relative to the size of the disk, these

serve as examples to illustrate therelativeeffectiveness of native layout when compared

to the existing approaches. It should additionally be notedthat the on-disk buffer is small

(1-8MB) for the disks we use, substantially smaller relative to the size of the documents,

and is not in any significant way capable of influencing the I/Oaccess patterns apart from

on-disk readahead.

We implemented the three grouping strategies –sequential, tree-preserving,andEKM

– described in Section 4.4, computing and storing the information about the supernode

that would contain each XML node. We also implemented extensions to the DiskSim
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Table 4.4: XML Tree and Supernode Tree Parameters

XMark Tree #Nodes B/node # Supernodes x1000 B/supernode (Avg)
factor (MB) x1000 (Avg) TP Seq. EKM TP Seq. EKM

0.01 1.7 17.1 25.2 2.5 2.1 2.1 343.8 418 412.3
0.05 8.3 59.6 25.8 12.8 10.6 10.7 373.2 450.8 447.5
0.10 16.8 167.8 25.8 26.0 21.4 21.6 345.3 418.7 414.9
0.50 83.7 832.9 26.1 129.2 106.6 114.8 345.3 418.5 414.6
1.00 168.7 1666.3 26.1 259.6 214.3 216.1 345.3 418.2 414.7

disk simulator [BGC03] that allowed us to simulate the native layout strategy described

in Section 4.3. We then used the supernode information to store them on disks simulated

by DiskSim.

Table 4.4 provides information about the XML trees used and the corresponding su-

pernode trees formed. The number of supernodes in the sequential grouping is the low-

est since it groups the nodes to form supernodes without any restrictions. EKM does a

bottom-up grouping of the tree and reduces the number of resulting supernodes by re-

ducing the problem of finding supernodes for arbitrary treesto the simpler problem of

finding supernodes for flat trees (trees in which all nodes butthe root are leaves) [KM06].

Tree-preserving grouping avoids cycles by placing restrictions on the nodes being added

to the supernode. This in turn reduces the number of nodes persupernode and subse-

quently increases the number of supernodes. The average nodes/supernode is six for the

tree-preserving grouping and is 8 for Sequential and EKM grouping.

For the query workload, we adopted performance-sensitive queries from the XPath-

Mark benchmark [Fra04], but omitted the ones that check for features supported by XPath

(e.g.,Q18: /comment()). To compute reliable results we added more queries with similar

properties of depth, number of conditions and selectivity.The query workload is summa-

rized in Table 4.5.

To contrast the relative advantages of using our native strategies with those of the
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Table 4.5: XPath queries for the deep-focused (D) and the nondeep-focused (N) classes.

# Deep-focused Query
D1 /site/closed auctions/closed auction/annotation/description/parlist/

listitem/text/keyword
D2 /site/people/person/watches
D3 /site/open auctions/open auction/annotation/description/text/keyword
D4 /site/people/person/address/country
D5 /site/regions/australia/item/description/text/emph
D6 /site/people/person/ ∗ /business
D7 /site/closed auctions/closed auction/ ∗ /description
D8 /site/regions/ ∗ /item/description/text
D9 /site/closed auctions//itemref
# Non deep-focused Query
N1 /site/open auctions/open auction
N2 /site/closed auctions
N3 /site/regions/australia
N4 /site/closed auctions/closed auction
N5 /site/regions/ ∗ /item
N6 /site/ ∗ /australia
N7 /site/open auctions/open auction[@id =′ open auction0′]/bidder
N8 /site/regions/asia/item[@id =′ item4′]/mailbox/mail/from
N9 /site/open auctions/open auction[@id = ”open auction0”]//keyword
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default sequential layout, we classify XPath queries into two categories:deep-focused

queriesandnon deep-focused queries. A subset of each class is shown in Table 4.5. The

former class describes the special class of XPath queries that navigate entire subtrees of

the tree (queriesD1, . . . , D9 in Table 4.5). The latter class, non deep-focused queries

N1, . . . , N9 in Table 4.5, represents all queries that do not belong to theformer class.

As we shall demonstrate, the default layout primarily addresses the class of deep-focused

queries and is sub-optimal for all other queries. Notice that only the supernode-granularity

navigation matters for overall I/O performance, and not thenode-granularity navigation.

Hence, queries likeD2, which do not access leaf nodes, are included in the first category

since they access supernode leaves; thewatchessubtree is very small and fits in less than

one supernode.

4.6.2 Tree Navigation Performance

We conducted experiments that compare the I/O times for answering XML queries for

four different layout strategies, corresponding to the supernode tree organizations of Sec-

tion 4.4: default(Section 3.1),tree-preserving tree-structured(TP-TS),sequential tree-

structured(Seq-TS), andEKM tree-structured(EKM-TS) layout strategy.

To consider caching effects in our experiments, we assumed that all nodes along the

path from the root to a single leaf node would be cached in mainmemory, either in the op-

erating system VFS or a custom application level cache. Thisis a reasonable assumption

for XML trees, which are typically short even when their total size is large, due to large

fan-out. Consequently, we ignore repeated accesses to nodes (such as parent, ancestor

nodes) during the depth first traversal of the XML tree. Such caching reduces the number

of random accesses equally in all three placement strategies, since the navigation of nodes

for answering a query is exactly the same regardless of the layout strategy.
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Figure 4.6: Total I/O times in logarithmic scale for variousplacement strategies.
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Figure 4.7: Normalized total I/O times for various placement strategies.
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Table 4.6: Navigational patterns for the two XPath query classes forf = 0.5.
ai’s are defined in Table 4.2.

Default Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 9046 0 0 0 1982 N1 1098 0 0 0 4775

D2 7211 0 0 0 55 N2 0 0 0 0 5

D3 12744 0 0 0 1895 N3 0 0 0 0 10

D4 7211 0 0 0 55 N4 1387 0 0 0 3053

D5 1823 0 0 0 759 N5 1322 0 0 0 9323

D6 7315 0 0 0 4 N6 9324 0 0 0 8418

D7 2765 0 0 0 2814 N7 1098 0 0 0 4775

D8 11937 0 0 0 9654 N8 121 0 0 0 870

D9 16166 0 0 0 5 N9 1098 0 0 0 4775

TP-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 4438 1182 1799 1114 5117 N1 1 1 71 5513 1

D2 3250 3 333 1801 3251 N2 0 1 0 4 0

D3 6171 1729 2428 902 7897 N3 0 1 0 9 0

D4 3287 3 333 1764 3288 N4 0 2 42 3762 0

D5 659 319 507 169 976 N5 0 6 42 10065 5

D6 5218 1 371 3 5049 N6 4 2 485 14647 4

D7 1344 2665 42 71 3758 N7 1 1 71 5513 1

D8 4071 4831 1360 2164 8896 N8 0 2 2 937 1

D9 8213 1 4657 4 7199 N9 1 1 71 5513 1

Seq-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 6856 1073 1768 219 1112 N1 1074 859 5 24 3911

D2 6714 47 47 0 458 N2 0 1 0 0 4

D3 9582 458 2347 123 2129 N3 0 1 0 0 9

D4 6714 47 47 0 458 N4 1347 777 2 7 2307

D5 1149 175 487 33 738 N5 1305 2576 0 103 6661

D6 6765 1 95 0 458 N6 8771 1719 83 47 7122

D7 2620 1098 2 44 1815 N7 1074 859 5 24 3911

D8 9193 3364 1385 715 6934 N8 120 227 0 6 638

D9 10564 1 4602 0 1004 N9 1074 859 5 24 3911

EKM-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 2126 4153 1795 1319 5521 N1 0 2 88 2305 1

D2 2040 1117 3342 1983 3156 N2 0 1 0 0 0

D3 3259 5042 3838 731 7981 N3 0 1 0 4 0

D4 2040 1117 3342 1983 3156 N4 0 2 151 1495 0

D5 445 1106 395 287 1414 N5 0 6 89 3588 5

D6 2242 1129 3347 1924 3306 N6 0 6 3584 6174 4

D7 803 2000 151 1237 2801 N7 1 2 88 2304 2

D8 2730 9672 913 3323 12399 N8 0 2 12 327 1

D9 3180 2581 6116 0 4029 N9 1 2 88 2304 1
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Total I/O time

Figure 4.6 shows (in logarithmic scale) the I/O times for each query, for the two classes

of queries, deep-focused (Di) and non deep-focused (Ni), for an XMark file with scaling

factorf = 0.5. We executed five simulation runs for each column shown in thegraph.

For the first run, the start LBA for the placement of the root node was0. For all the

subsequent runs, it varied with increments of250 (> track size). Thus, the start LBA was

varied over the range0 − 1250. The confidence interval, for a confidence level of 95%,

for all the five runs was found to be< ± 10.96. The results shown in the graph are for

the start LBA 0.

For the deep-focused class of queries, the default placement strategy performs con-

sistently better than the others, since it can retrieve entire subtrees more efficiently. For

the non-deep-focused query class, the performance of the default placement strategy is

consistently worse than the tree-structured variants (TP-TS, Seq-TS, and EKM-TS). For

this query-class, a large number of accesses are non-sequential for the default placement,

since complete sub-tree accesses are few.

Figure 4.7 shows the relative performance with the normalized total I/O time to reduce

the impact of the large variance across queries. Each value is scaled relative to the max-

imum value for the experiment. To better demonstrate the relative distribution of seek,

rotational delay, and transfer time components, the total normalized I/O time is further

split to show these I/O access time components. It can be seenthat the average rota-

tional delays for the tree-structured placement strategies (in the case of non-deep-focused

queries) are substantially lower relative to the default strategy. However, this is not the

case for the deep-focused class where the default strategy outperforms in all respects.

To better understand and explain the graphs of Figure 4.6 andFigure 4.7, we counted

the different types of accesses in the supernode tree (each access translates to a disk

I/O operation) for answering the XPath queries for both the deep-focused and non deep-
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focused classes. Table 4.6 shows the numbers of supernodes accesses for the five basic

types of tree accesses,a1 througha5, defined in Table 4.3. As an example, observe that

for the TP-TS placement, QueryD1 requires 4438a1 accesses, the parent-to-first-child

type accesses.

We can make some general observations from Table 4.6. First,the default placement

causes all the accesses to be either of typea1 ora5, since only parent-to-first-child sequen-

tial accesses are possible for this layout. Second, the deep-focused queries are dominated

by a1 anda5 type accesses, while the non-deep-focused queries are dominated bya3 and

a4 accesses (except in the case of default placement). This enables the non-deep-focused

queries to exploit native layout, since all the accesses to siblings are sequential, as op-

posed to the large number of random accesses the deep-focused queries require. Observe

further that the EKM and TP-TS placement strategies increase the number of accesses

from parent to non-first child, thus utilizing the semi-sequential and sequential access op-

timization to a larger extent. For the deep-focused queries, on the other hand, the default

placement erforms the best both because the number of sequential accesses for his place-

ment is the highest and number of random accesses is lowest (in most cases) among all

placement techniques.

In Figure 4.7 (b), we see a somewhat unexpected outcome that the seek times reduce

for queriesN2 andN3 for TP-TS, Seq-TS and EKM placement. An answer can be found

in the access patterns of these queries (Table 4.6). ForN2 andN3, all accesses for the

default placement are of typea5, which are random accesses, where as for the TP-TS and

EKM placement, they are either semi-sequential or sequential accesses, leading to the ob-

served difference in seek overhead. Further, the Seq-TS hasa slightly lower performance

relative to these two because of the increase in the number ofrandom accesses for this

placement. Note that although the number of random accessesin Seq-TS is relatively

higher, it is still lower than the default placement and hence it performs better than the
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default placement.

The above discussion serves to reinforce the arguments we made earlier when dis-

cussing Figure 4.6. In summary, the EKM-TS placement strategy performs better overall

due to its lower internal fragmentation and tree-structurepreservation property; it results

in I/O times which are 3X-127X better than the default strategy. Between the remain-

ing strategies, TP-TS performs better on an average, since it better preserves the original

tree-structure.

Sensitivity to drive characteristics

To evaluate the effect of drive characteristics, we conducted a sensitivity study of I/O

access time for representative disk-drive models. The drive models chosen, shown in

Table 4.7, were the Seagate Barracuda, Seagate Cheetah 9LP,Seagate Cheetah 4LP, and

the HP C3323A as representative of four performance classesof disk drives:base, fast

rotating and fast seeking, fast rotating,andslow rotatingrespectively. A disk block is of

size 512 bytes.

Table 4.7: Characteristics of experimented disk drives.

Disk Disk Size
RPM

Stroke Transfer Sectors
Cylinders

model type [GB] [ms] [MBps] / track
Barracuda Base 2.0 7200 16.679 10-15 119-186 5172
Cheetah 9LP Fast disk 9.1 10045 10.627 19-28.9 167-254 6962
Cheetah 4LP Fast rot. 4.5 10033 16.107 15-22.1 131-195 6581
HP C3323A Slow rot. 1.0 5400 18.11 4.0-6.6 72-120 2982

Figure 4.8 shows the average (across queries in a query-class) total I/O times (in log-

arithmic scale) for the two query classes for an XMark file with f = 0.5 with the var-

ious hard disk models. For the special class of deep-focusedqueries (Figure 4.8(a)),

the default placement strategy performs better than the other strategies benefiting from
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Figure 4.8: Sensitivity of query I/O times to changing disk drive characteristics (logarith-
mic scale).
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Figure 4.9: Sensitivity of seek and rotational delay components of I/O access times to
changing disk drive characteristics.
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optimized sub-tree retrievals. However, for all other queries (Figure 4.8(b)), the tree-

structured placement strategies perform better for all disk models, offering as much as

7X-34X reduction in average I/O time for answering queries.This underscores the im-

portance of native layout strategies for XML data.

We break down the gains further in Figure 4.9 into the relative reduction in seek and

rotational delay components for each of the drives by normalizing the I/O times at each

disk drive using the maximum value as reference.. Notice forthe non-deep-focused query

class (Figure 4.9(b)), the average rotational-delays are substantially reduced relative to the

default layout.

Effect of Query Interleaving

One concern with a native layout targeted to a optimize a specific access pattern is the im-

pact of multi-processing in the system. For instance, a server is likely to execute multiple

XPath queries simultaneously; optimizing individual query executions may not neces-

sary translate to overall performance improvement when thecorresponding I/O request

sequences are interleaved. As elaborated in Section 4.3, this issue in its more general

form (i.e., multi-process blocking I/O performance) has been addressed earlier with an-

ticipatory I/O scheduling [ID01]. Consequently, we expectthat XML servers would be

configured with I/O schedulers that include an anticipationcore.

To evaluate the performance of our grouping and placement techniques under multi-

ple simultaneous XPath queries, we interleaved a subset of deep-focused and non-deep-

focused queries stated in Table 4.5. The interleaved queries belonged to either the disjoint

set of queries which accessed disparate portions of the treeor intersecting queries whose

access paths overlapped. The ordering of the I/Os after interleaving were based on antic-

ipatory scheduling. We simulate the behavior of the anticipatory I/O scheduler assuming

that each query is serviced within an independent thread andissues synchronous I/O re-
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quests. The behavior of the non-work-conserving anticipatory scheduler would result in

optimizing the schedule of successive I/O operations resulting from the same query, in

spite of them being issued synchronously, as long as other queries in the system access

disjoint portions of the XML tree. When there is an overlap ofsubtrees between two

queries, their I/Os must interleave.

Table 4.8: Query Interleaving for Multi-User Simulations.

Disjoint Deep-focused Non-deep-focused
Queries Queries Queries

δ1 D1 +D4 N1 +N4

δ2 D4 +D8 N4 +N8

δ3 D5 +D7 N5 +N7

δ4 D1 +D4 +D5 N1 +N4 +N5

δ5 D4 +D5 +D7 N4 +N5 +N7

δ6 D4 +D5 +D9 N4 +N5 +N9

Intersecting Deep-focused Non-deep-focused
Queries Queries Queries

π1 D1 +D7 N1 +N6

π2 D2 +D4 N5 +N6

π3 D5 +D8 N7 +N9

π4 D4 +D6 N1 +N6 +N7

π5 D1 +D7 +D9 N6 +N7 +N9

π6 D2 +D4 +D6 N5 +N6 +N8

For the choice of queries, we selected bothdisjoint queries, which traverse different

subtrees of the document, as well asintersecting queries, that access common subtrees,

which navigate common sub-trees of the document. Table 4.8 shows the selected queries

that were interleaved in each of these categories, whereδi refers to disjoint queries andπi

represents intersecting queries.

Figure 4.10 shows the total I/O time (in logarithmic scale) for the execution of in-

terleaved deep-focused and non-deep-focused XPath queries. The results for the deep-
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focused queries from Figure 4.10 (a), show that like in single query execution, the default

strategy performs better for multiple interleaved queriesthan the other strategies.

Similarly, the behavior with the the non-deep-focused interleaved queries mostly mimic

their single query counterparts. The native layout strategies provide much better execution

times for both the disjoint and intersecting queries, as shown in Figure 4.10 (b). More-

over, the EKM-TS performs better the most consistently across the interleaved query

executions. The breadth-first grouping approach of this placement strategy causes the

I/Os corresponding to the upper levels of the XML tree to be read in parallel. For lower

tree levels, the anticipatory scheduler which ensures thatthe I/O sequences generated by

the individual query threads are grouped successfully. Finally, the default placement per-

forms consistently worse for the disjoint queries, since the I/O sequences generated by

individual query threads are executed almost sequentially.

4.6.3 Fragmentation

We now measure the internal and external fragmentation incurred by the grouping and

placement algorithms respectively.

Internal Fragmentation: Figure 4.11 (a) shows the internal fragmentation of disk block

space with the three grouping algorithms,sequential, tree-preserving, andEKM. As ex-

pected, the sequential grouping algorithm has little internal fragmentation as it can freely

add nodes to a supernode as long as adding the next node does not violate the block-

size restriction. Supernodes are not occupied completely if its the remaining space is

smaller than the size of the next XML node. The tree-preserving grouping places further

restrictions on grouping for preserving the XML tree-structure in supernodes and incurs

additional internal fragmentation (as much as 55%). We argue that considering the fact

that current disk drives are bound more by I/O access time than by I/O capacity, trading
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Figure 4.10: Total I/O times in logarithmic scale for interleaved XPath queries.
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capacity for improving access is acceptable. The internal fragmentation with EKM is very

close to that for sequential grouping. The EKM algorithm hasthe flexibility that allows

selecting any of a node’s many subtrees as partition, thereby obtaining a more optimal

result for this procedure. Our tree-preserving grouping algorithms lack this flexibility,

and can only add the next node to the current supernode in an in-order fashion.

External Fragmentation: Figure 4.11 (b) shows the external fragmentation results for

the data placement strategies. The default strategy incurszero external fragmentation as it

places the supernode list sequentially on the disk. TP-TS and Seq-TS incur external frag-

mentation of less than 28%, while that of the EKM-TS is higherat around 32%. However,

we once again contend that these numbers are acceptable, following the arguments men-

tioned above. EKM-TS incurs the highest external fragmentation, because in EKM-TS,

the fanout of nodes is less in the top levels (closest to root)of the tree and is higher in the

lower levels, unlike the other strategies. If the fanout of atree is higher at a greater depth,

it is more difficult to find contiguous free space to place all the children on the partially

occupied tracks using the optimized placement strategy. Consequently the children are

placed on new tracks, thereby increasing the external fragmentation. Furthermore, for a

native storage solution that is well integrated into the existing file or database system, it

is relatively easy to utilize fragmented free space.

4.7 Related Work on Storing Semistructured Data

Storage of semi-structured data has received attention in the last few years because of its

growing popularity. Most work has focused on storing semi-structured data in relational

DBMSs or in flat files with indexes. The former approach (e.g.,[BBM+01, DAYF, STZ+,

NNP00, DFS99, MAG+97]) has been the most popular due to the success and maturityof

the relational DBMSs. The latter approach (e.g., [KBNK02, LM01]) is based on storing
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the data as a flat file and building separate indexes on top. These strategies do not use

native layout of semi-structured data and are limited to thegeneric optimization strategies

built into relational databases and file systems.

The problem of native storage of semi-structured data has been addressed in Natix

[KM99, KBM05] and in System RX [BCJ+05], where the tree-structured data is split

into pages and each page is stored in a disk block, thereby reducing the number of read

accesses while traversing the tree. OrientStore [MLLA03] uses schema information to

make a storage plan for the semi-structured data. The above studies however view a disk

drive as a list of pages and do not take into account the physical characteristics of its

operation whereas we investigate how to exploit detailed information about the disk drive

and use this information to minimize overheads such as seek-time and rotational-delay.

Given the restrictive block IO interface, the clear case fora more expressive interface

has been made before [Gan01]. Systems such as [GNA+, HSW+04, SPP+03] use intel-

ligence from upper layers of the storage stack inside storage devices to improve overall

IO performance. Our work, if deployed, can use such systems,to incorporate storage

techniques for semi-structured data into disk firmware.

Recent work by [SSP+05] uses the idea of semi-sequential access for efficient storage

of multi-dimensional data. This work is significantly different from our work in that un-

like semi-structured data, multi-dimensional data is structured with access patterns along

data dimensions and can afford efficient layout based on fixedattribute cardinality. Also,

with semi-structured data, grouping multiple data elements to be stored on a disk block is

non-trivial due to the variable size of the data elements.

Atropos [SSS+04] exploits the physical properties of disk drives and usessemi-sequential

accesses to store relational databases. Our work targets XML data that has a tree struc-

ture, quite different from the relational tables. We also show that a naive application

of the semi-sequential access paradigm to XML tree structures leads to large seek times
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and severe space fragmentation. Our optimized layout strategy reduces such overhead

significantly. To the best of our knowledge, there is no existing work tackling the prob-

lem of laying out XML data, accounting for low-level hard drive storage and operation

semantics.

XML Benchmarks : The Transaction Processing over XML (TPoX) benchmark [NKS07]

evaluates the performance of XML stores, XML databases, andindexes, by generating a

mix of XQueries for various financial transactions on the generated XML documents.

XMach-1 [BR01, BR03], XOO7 [BDL+], XMark [SWK+02a] and XPathMark [Fra04]

are typically used to evaluate query optimizations in XML. XMach-1 is based on an

E-commerce website while XMark generates queries for an E-commerce website with

information on bids, items, brokers and customers. XPathMark [Fra04] is an XPath

based benchmark for XMark and generates an educational document that represents the

English alphabet. The XBench [YOK03] benchmark is an application oriented bench-

mark for XML databases. Finally, the Michigan (MBench) [RPJ+03] and the Mem-

Ber [AMM05, MMM06] Benchmarks are both micro-benchmarks that generate synthetic

workloads wherein document structure can be finely controlled (varying their depth and

fan-out) so as to be able to reproduce the access patterns of avariety of different real-

world workloads.

4.8 Conclusions

In this chapter, we have taken a first step towards building native storage systems for semi-

structured data, a problem which has been largely unexplored. We presented on-disk data

layout techniques for semi-structured data that explicitly account for the structural mis-

match between the semi-structured data and disk drives and reduce disk access overhead.

These layout techniques are based on node-grouping algorithms for semi-structured data
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that reduce the number of disk I/O operations required when accessing the data. We

have suggested directions for addressing the challenges that would arise in integrating the

proposed layout techniques in existing storage systems.

Summary of Experimental Findings and Lessons Learned

We conducted an evaluation of the native layout techniques using XML as a case-

study. All experiments were performed on XPathMark benchmark queries with an instru-

mented DiskSim simulator. Our experiments revealed that:

• For the specific class ofdeep-focusedqueries, which result in access patterns re-

trieving entire sub-trees, the existing file system layout mechanism (i.e., sequential

layout of the tree in depth-first-order) offers significantly better performance than

native layout (5X-54X across the query set). For such queries, we believe that

sequential layout is the right choice.

• For all other query classes, which we group asnon-deep-focused, native layout

taking into account tree navigation primitives, offers as much as 3X-127X perfor-

mance improvement across the range of XPathMark queries that we experimented

with, representing a large improvement. A sensitivity study across a range of disk

models, representing drives of varying performance, suggest that average I/O per-

formance improvement across the non-deep-focused query set of 7X-34X.

• Of the various native layout techniques we considered, the EKM-TS provided con-

sistently better performance, barring a few cases. The above findings were largely

preserved when we experimented with multiple simultaneousquery executions with

the anticipatory I/O scheduler. This scheduler naturally carries forward the benefits

of native layout into the I/O schedule.

• Native layout strategies, however, can result in substantial fragmentation of disk

space. Our initial estimates reveal total fragmentation (internal+external) of as
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much as 50% for the best-performing EKM-TS layout technique. This fragmented

space can be reclaimed with clever file system or database system implementations

to store non semi-structured data. Even if that were not feasible, we believe an ad-

ditional 50% of space overhead for several magnitudes of I/Obandwidth increase

could be acceptable in many settings.

Our findings in this study serve to more closely examine and evaluate layout tech-

niques based on the nature and distribution of queries (i.e., access patterns). Further,

based on our findings in this study, it can be inferred that a single layout technique is

unlikely to be optimal for navigating semi-structured data; the optimality of any layout

technique closely depends on the nature of the workload. A prudent choice of the under-

lying data layout strategy can drastically improve I/O access times if knowledge of the

access patterns (e.g., query workload) is available beforehand.
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CHAPTER 5

EFFICIENT PARSING OF SEMISTRUCTURED DOCUMENTS

5.1 Motivation

XML has become the de facto standard format for data representation and exchange in do-

mains ranging from the Web to desktop applications. Examples of XML-based document

types include Geographic Information Systems Markup Language (GML) [GML08], Med-

ical Markup Language (MML) [MML08], HL7 [HL708a], and Open Document Format

(ODF) [ope08, oox08]. This widespread use of XML requires efficient parsing tech-

niques. The importance of efficient XML parsing methods was underscored by Nicola

and John [NJ03]; they showed that the parsing process is processor and memory con-

suming, particularly needing main memory as much as five times the size of the original

document.

There are two popular XML parsing APIs, DOM [DOM08] and SAX [sax08]. SAX

reads the whole document and generates a sequence of events according to the nest-

ing of the elements, and hence it is not possible to skip reading parts of the document

as this would change the semantics of the API. On the other hand, DOM allows users

to explicitly navigate in the XML document using methods like getFirstChild(),

getNextSibling(), and so on. DOM is the most popular interface to traverse XML

documents because of its ease of use. Unfortunately, its implementation is inefficient

since entire subtrees cannot be skipped when a method likegetNextSibling() is

invoked. This also leads to frequent “Out of memory” exceptions. In contrast to SAX,

parsing a document using DOM could potentially avoid reading the whole document as

the sequence of navigation methods may only request to access a small subset of the

document. In this work we focus on parsing using a DOM-like interface.
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Lazy XML parsing has been proposed (e.g., [xer08]) to improve the performance

of the parsing process by avoiding the loading of unnecessary elements. This approach

substitutes the traditional eager evaluation with a lazy evaluation as used by functional

programming languages [Abr90]. The architecture shown in Figure 5.1, based on the

terminology of [NSL02], consists of two stages. First, a preprocessing stage extracts a

virtual document tree, which stores only node types, hierarchical structure information

and references to the data associated with each node. After this structure is obtained, a

progressive parsing engine refines this virtual tree on demand, which grows as needed, ex-

panding the original virtual nodes into complete nodes withvalues, attributes, and textual

information.

Figure 5.1: Lazy XML Parser Architecture. A pre-parsing phase extracts a virtual docu-
ment tree and a progressive parsing engine refines this virtual tree on demand.

Clearly, the lazy parsing technique is a significant improvement. However, it still suf-

fers from the high initial cost of pre-parsing (Figure 5.1) where the whole document must

be read before the lazy/progressive parsing starts. The pre-parsing stage is inevitable due

to the lack of internal physical pointers (or something equivalent) within the XML docu-

ment. We propose a method to (a) insert such internal physical pointers in the document,

and (b) exploit them to optimize the parsing method and specially the pre-parsing stage.

In particular, our approach is calleddouble-Lazy Parsing (2LP)because both stages in

Figure 5.1 are lazy, in contrast to previous work where only the second stage is lazy. The
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pre-parsing phase will lazily process only the subtrees of the XML document that are

necessary to satisfy the navigation request.

We address two key issues in inserting such physical pointers. First, we need to decide

how we can implement the pointers given the current W3C XML standard specification

[BPSM+06]. Second, we need to decide where to add the pointers, considering the in-

curred overhead adding pointers on every node can cause the size of the file to double.

Also, following a pointer would typically require a random disk access, and hence exces-

sive use of such pointers must be avoided.

Regarding the first issue, we emulate physical pointers, by partitioning the original

XML document into several fragments (subtrees) which are then interlinked using the

XML Inclusion [xin08] feature. A drawback of this approach is that the XML document

is split into a set of smaller XML documents/files1. However, we shall argue and demon-

strate in the rest of this chapter that the performance gainsfar outweigh this drawback.

Regarding the second issue, we investigate in detail the tradeoff decisions to be made

with respect to fragment size, and propose an optimal configuration that can be applied in

general cases.

We also propose a method to manage the parsing of large XML documents under

limited main memory configurations. This approach allows 2LP to scale to large XML

documents, even when the total size of the document surpasses the available amount

main memory. This is not possible with current parsers, which report “Out of memory”

exceptions under such condition.

This chapter makes the following contributions:

1. We develop a framework to allow efficient XML parsing, which improves the pre-

1Unfortunately, the XML standard does not support an alternative physical pointer
construct (XPointer [xpo08] is logical and not physical) due to the complication this
would incur during cross-platform document exchange. If such a feature becomes avail-
able in the future, it could be used instead of the described partitioning approach.
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parsing time as well as the memory requirements of parsing. Our framework is

based on the idea of placing internal physical pointers within the document. Such

pointers are currently realized using the XML Inclusion feature.

2. We present algorithms to perform double-Lazy XML Parsing(2LP) for DOM-like

navigation, given internal physical pointers. We have implemented 2LP as a back-

ward compatible modification of the Apache Xerces2 Java Parser [xer08].

3. We present algorithms to add internal physical pointer tothe XML document by

partitioning it into subtrees given an optimal partition size. We show how the the-

oretically optimal partition size can be computed assumingknowledge of the navi-

gation patterns on complete XML trees and knowing the hard disk characteristics.

4. We efficiently manage the main memory consumption of our XML parser, making

it possible to parse and navigate large documents under conditions in which other

approaches fail.

5. We study our partitioning and parsing algorithms both theoretically and experimen-

tally. Experiments on various XML navigation patterns, including XPath, confirm

our theoretical results and show consistent and often dramatic improvement in the

parsing times.

The rest of this chapter is organized as follows: Section 5.2presents the system frame-

work and the overview of our approach. We describe our double-Lazy parsing techniques

in Section 5.3. Section 5.4 presents techniques for partitioning the original document

into smaller subtrees. An approach to parse using a limited amount of main memory

is presented in Section 5.5. The implementation of all thesetechniques is discussed in

Section 5.6. Our experiments are discussed in Section 5.7. We present related work in

Section 5.9. Finally, Section 5.8 discusses our conclusions.
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5.2 System Framework and Overview of Approach

In this section we present the data and query models and the global overview of our

approach.

5.2.1 Data and Query Models

XML data: We view an XML document as described in Section 3.1. For simplicity in the

presentation we assume that there are no ID-IDREF edges (which would make the tree a

graph). However, our framework can support ID-IDREF edges by including the partition

id, in addition to the attribute id, in the IDREF attributes.Figure 5.2 shows a sample

XML tree, extracted in a similar way to Figures 3.1 and 3.2. Weannotate each node with

its size and the size of its subtree (in parenthesis). To simplify the discussions in the rest

of this chapter, we assume that these sizes are in numbers of disk blocks. Similarly, the

number in the parenthesis represents the size (in blocks again) of the subtree rooted at the

node.

Figure 5.2: Sample XML tree. We annotate each node with its size and the size of its
subtree (in parenthesis).

We clarify that this work is not aiming at improving the performance of XML database

systems [Gal07, Xal07, XT07, JAKC+02, Nat06], where indexes [GW97, Gru02] and
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other optimizations are possible, but at improving the efficiency of using XML as a format

to store documents for general applications as motivated inSection 5.1.

XML navigation patterns: We consider two types of XML navigation patterns in our

experiments. The first type is a simpleroot-to-leaf traversal, in which a path is traversed

from the root of the XML document to any of its leaves. We use this simple yet common

and useful pattern to model the theoretical behavior of our approach.

Second, we use XPath queries. We use XPath and not XQuery because our work

tackles the problem of efficient parsing for the purpose of efficiently navigating the XML

data, which is XPath’s role. However, our results for XPath carry to XQuery as well, since

XQuery queries are typically evaluated by combining the results of the involved XPath

queries. Again, we adopt the “standard” XPath evaluation strategy [GKP02], as shown in

Algorithm 3.1 in Section 3.2.

5.2.2 Disk Drive Modeling

We utilize the disk drive characteristics and models presented in Section 3.3 to obtain

the transfer time and random access time for the set of hard disk drives that use for our

theoretical model and experimental section. Table 5.1 presents the disk drivetransfer

time(ttransf ) andrandom access time(trand), required to transfer and access a disk block

respectively, for the four hard drive disks we utilize for our theoretical model and experi-

mental section. The values presented in this table were gathered from the manufacturers

data sheets [Hit09, Max09, Qua09, Sea09].

Notice that according to their model definition, the typicalseek times are the average

seek, track-to-track seek, and full stroke. We also consider the analysis of the average

seek distance, utilizing one third of the full stroke as the average distance seek.
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Table 5.1: Hard Drive Modeling Parameters

Disk Model

Maxtor Quantum Seagate Hitachi
6L020J1 Fireball+ Cheetah UltraStar
[Max09] KX27.3 15K.4 10K300

[Qua09] [Sea09] [Hit09]
Formatted capacity (GB) 20.0 27.3 36.7 73.4
Heads 1 16 2 3
Rotational Speed (RPM) 7200 7200 15000 10025
Stroke (ms) 17.8 15 7.9 10
Transfer (MBps) 54.2 66.6 200 134.375
Block count 40,132,503 54,600,000 71,687,372 143,374,804
Cylinders 16 383 16 383 50 864 65 494
Avg. seek 8.5 8.5 3.5 4.3
Track switch 0.8 0.8 0.2 0.4
Full Stroke 17.8 15 7.9 10

The equations in Table 5.2 describe the Gamma function that models the head posi-

tioning effects as stated in [RW94b], approximating the measured seek-time profile for

the different disk drives.

Table 5.2: Gamma Function: Seek Curve Modeling

seek distance γ (ms)
< 1/3 Cylinders a+ b ·

√
distance

≥ 1/3 Cylinders c + d · distance

As stated in Table 5.2 the average seek distance will be less than one third of the

cylinders, we use the first equation to calculateγ. Table 5.3 summarizes the values for the

four parametersa, b, c andd, as well as the Gamma function value and the final Transfer

Time and Random Access Time.
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Table 5.3: Gamma Values, Transfer and Random-access Time

Maxtor Quantum Seagate Hitachi
Disk Model 6L020J1 Fireball+ Cheetah UltraStar

KX27.3 15K.4 10K300
a 0.694374 0.694374 0.174460 0.373425
b 0.105626 0.105626 0.025540 0.026575
c 3.850000 5.250000 1.300000 1.450000
d 0.000851 0.000595 0.000130 0.000131
γ(1/3 cylinders) 1.275209 1.192346 0.359615 0.528011
ttransf 0.009446 0.007688 0.002560 0.003810
trand 5.441876 5.359013 2.359615 3.520530

5.2.3 Overview of Approach

Our approach for parsing XML documents consists of two stages. First, the document

is partitioned into a set of smaller XML files, which are then interlinked using XInclude

[xin08] pointers. The optimal size of a partition is computed using a formula which

considers the random versus sequential access characteristics of a hard disk. The second

stage involves the parsing of a partitioned document. The key goal is to read a minimal set

of partitions in order to perform the sequence of navigationcommands. 2LP loads (pre-

parses using the terminology of Figure 5.1) the partitions in a lazy manner, that is, only

when they are absolutely necessary for the navigation sequence. In the case of DOM, we

maintain an overall DOM treeD(T ) which is initially the DOM tree of the root partition

P0 of T . ThenD(T ) is augmented with the DOM treesD(Pi) of the loaded partitionsPi.

Further, to control memory usage, our approach also performs lazy unloading of inac-

tive partitions (discussed in Section 5.3) if the total amount of main memory used by the

DOM tree exceeds a threshold. Thus, in addition to a fast pre-parsing stage, our method

also allows DOM-based parsing with limited memory resources. Note that previous lazy

parsing techniques can also implement the proposed technique for optimizing memory

usage, but to a smaller extent since the virtual document tree must be stored in memory
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at all times.

5.3 2LP on Partitioned XML Documents

Let T be the original XML document, andP0, . . . Pn be the partitions to whichT was

split during the partitioning stage, explained in Section 5.4. P0 is the root partition, since

it contains the root element of T. Figure 5.3 shows an exampleof a partitioned XML tree.

All the partitions are connected by XInclude elements, containing the Uniform Resource

Identifier (URI) to the partition file. The XInclude elementsare represented in the figure

by nodesb′, f ′ andj′, as explained in Section 5.4.1.

Figure 5.3: Partitioned XML Tree after partitioning the tree in Figure 5.2.

Note that by creating a partition (e.g.,P2), the key result is that we facilitate skipping

the subtree rooted at this partition. That is, by creating partition P2 we can directly access

noden from nodef ′.

The XML representation of two of the partitions in Figure 5.3is shown in Listing 5.1.

PartitionP0 corresponds to the root partition since it contains the rootof the original XML
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Listing 5.1: XML Documents after partitioning.

1 <!-- p0.xml -->
2 <Catalog>
3 <xi:include href="p1.xml"
4 xmlns:xi="http://www.w3.org/2001/XInclude" />
5 <xi:include href="p2.xml"
6 xmlns:xi="http://www.w3.org/2001/XInclude" />
7 <Book title="XML Queries" year="2002">
8 <xi:include href="p4.xml"
9 xmlns:xi="http://www.w3.org/2001/XInclude" />

10 </Book>
11 </Catalog>
12

13 <!-- p1.xml -->
14 <Book title="XML Databases" year="2002">
15 <Chapter title="XML Introduction">
16 <Section title="SGML" />
17 </Chapter>
18 <Chapter title="Semistructured Data" />
19 </Book>

document. The subtree rooted at the firstBook element was partitioned and theBook

element has been replaced by the XInclude pointer to the XML document of PartitionP1.

This additional element added to the tree upon partitioningwill hold the reference to the

root of the partition’s subtree. We explain this aspect in detail in Section 5.4.

Listing 5.2 describes the process of loading (pre-parsing)a partition. After loading

a partition, progressive parsing occurs as needed. TheloadPartition() method

replaces, in the working DOM tree, the XInclude pointer elemente with the DOM tree of

the partition thate points to.

To ensure the double-lazy processing of the partitions, we need to decide when it is

absolutely necessary for a partition to be loaded. Intuitively, a partition must be loaded

when a navigation method (e.g.,getFirstChild()) cannot be executed without do-

ing so, that is, the return value of the method cannot be computed otherwise.
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Listing 5.2: Load Partition algorithm.

1 procedure loadPartition(XIncludeElement e)
2 begin
3 newPartitionRoot← preParse(e.getAttribute("href"));
4 replace(e, newPartitionRoot); /* replace e by
5 newPartitionRoot in the node tree */
6 end

Similarly, we also need to decide which partitions to unloadand when to do so in

order to accommodate new partitions that need to be loaded, given that the available

system memory is limited. We address unloading of partitions in detail in Section 5.5.

We now present the 2LP versions of the key DOM methods that maytrigger the load-

ing of a partition:getFirstChild(),getTextContent()andgetNodeName().

Note that thegetNextSibling() method cannot trigger a partition loading, because

even if the sibling node is an XInclude pointer, we do not haveto load the partition before

the user asks for the details of the returned node (e.g., using getNodeName() shown

below).

Figure 5.3 presents thegetFirstChild()method with the logic to decide whether

a partition has to be loaded. The original method only returns thefirstChildmember

of the current object (“this”). In our modification, the loading is performed if the current

node is an XInclude element, and it will assign the root element of the loaded partition

to the firstChild member variable. Thus, instead of returning directly the first child of the

XInclude node, we return the first child of the root element ofthe partition.

Example 3.1 Consider the partitioned XML document depicted in Figure 5.3. Let’s

also consider the root-to-leaf navigation patterna→f→j→k. We start by parsing and

traversing the root partition, labeledP0. The first node-step,a, is satisfied in partitionP0,

but to satisfy the second node-step,f , we need to follow the XInclude pointer to partition

P2, while completely skipping the processing ofP1. After pre-parsing partitionP2, we

66



Listing 5.3: ModifiedgetFirstChild() method to handle the lazy loading of parti-
tions.

1 Node getFirstChild() {
2 if this.isXIncludeElement() {
3 loadPartition(this);
4 }
5 return firstChild;
6 }

progressively parse it to reachf . We need to satisfy the last two node-steps by following

the pointer to partitionP3, pre-parsing it to then progressively parse the desired nodes.

In this example, we omitted the traversal of partitionsP1 andP4. 2

Example 3.2 Let’s consider the XML document in Listing 5.1 and the XPath query

/Catalog/Book[@title=‘‘Storage Principles’’]/Chapter.

The careful reader can verify that this query requires loading all the partitions, even when

we lazily process the document.2

Note that in Example 3.2 we had to load partitionP1 just to read an attribute of its

root element. To save such unnecessary partition loadings we extend the attributes of

the XInclude element to contain additional information about the root element of the

partition. This may save the loading of a partition when onlyinformation about its root

node is required. Thus, the partition will be loaded only if the information needed by the

navigation is not included in the pointer element. The data duplication to implement this

idea is minimal, as shown in Section 5.7.2, since internal XML nodes typically are very

small.

Table 5.4 summarizes the differentinclusion levelsbased on the data from the par-

tition’s root element that is duplicated in the corresponding XInclude element. The

names of the attributes used to store this data in the XInclude element are also displayed.

For the TAGATR level, we use a single attribute whose value will resemble a query
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string (as used in World Wide Web forms) of the formfield1 = value1&field2 =

value2&field3 = value3. . . [BL08].

Table 5.4: Attributes Stored for Different Inclusion Levels

Inclusion Level Data to Include Attribute Name
NONE None N/A
TAG Tag(Default) xiPartitionTag
TAG ATR Tag + Attributes xiPartitionAtr
TAG ATR TXT Tag + Attributes + Text xiPartitionTxt

Example 3.2 (continued) If we extend the XInclude elements depicted in Listing 5.1 ac-

cording to Inclusion level TAGATR and execute the same XPath query, we will find the

necessary information about the tag names and attribute values in the XInclude pointer

elements. Thus, partitionsP1 andP4 will not be processed at all, since the attribute val-

ues added to the XInclude pointer can help us discriminate which “Chapter” elements

satisfy the attribute condition without loading the partition. 2

In addition to thegetFirstChild()method presented above, which is unaffected

by the inclusion level, we now show how other key navigation methods of DOM need to

be modified for the 2LP. Figure 5.4 presents two navigation routines that have been mod-

ified to allow the double-lazy processing of XML partitions with different inclusion lev-

els. Similar to thegetFirstChild() method, these two methods return (originally)

just the corresponding member variable of the object. By modifying them, the methods

will lazily include the corresponding partition if and onlyif this is needed to satisfy the

navigation pattern and if the desired information is not included in the XInclude pointer

element. If the inclusion is performed, the root element of the partition is assigned to cur-

rent object (“this”) and its member variables (name and text forgetNodeName() and

getTextContent() respectively) are returned. Similar modifications are performed

for the other DOM methods that can potentially trigger the loading of a partition.
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Listing 5.4: Key Modified Document Object Model Navigation Methods.

1 String getNodeName()
2 if(this.isXIncludeElement()) {
3 /* Check for tag information in XInclude element */
4 if(inclusionLevel != NONE) {
5 name = this.getAttribute("xiPartitionTag");
6 /* The xiPartitionTag attribute inside the

XInclude
7 * element stores the tag name of the root element
8 * of the partition */
9 } else {

10 /* Make ‘‘this’’ point at the root element of the
11 * loaded partition, and update ‘‘name’’ variable

*/
12 loadPartition(this);
13 }
14 }
15 return name;
16 }
17

18 String getTextContent(){
19 if(this.isXIncludeElement()){
20 if(inclusionLevel == TAG_ATR_TXT) {
21 text = this.getAttribute("xiPartitionTxt");
22 } else {
23 /* Make ‘‘this’’ point at the root element of the
24 * loaded partition, and update ‘‘name’’ variable

*/
25 loadPartition(this);
26 }
27 }
28 return text;
29 }
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5.4 Partitioning the XML File

Our main goal when partitioning XML documents is to minimizethe 2LP parsing time

needed for navigating the document.

In what follows, we first describe (in Section 5.4.1) how to partition an XML docu-

ment by selecting subtrees of an optimal size. Then in Section 5.4.2 we make a theoretical

analysis to obtain the optimal partition or subtree size, based in simplified navigation pat-

terns.

5.4.1 Partitioning Algorithm

The key criterion to partition the original document is the number of blocks that each

partition will span across the hard disk drive (i.e., the partition size). This size criterion

is independent of the particular tree-structure (or schemaif one exists) and the query

patterns, and is shown to lead to efficient partitioning schemes (Section 5.7). The rationale

behind this is that disk I/O performance is dictated by the average size of I/O requests

when accesses are random [DR03].

The key idea of the algorithm is a bottom-up traversal of the XML tree, where nodes

are added to a partition until the size threshold (in number of blocks) is reached. We show

how the optimal partition size is calculated in Section 5.4.2.

Since we are using XInclude to simulate the physical pointers, we need to comply

with the XInclude definition and hence provide partitions that are themselves well-formed

XML documents. This means that our partitions need to have exactly one root element.

Thus, the partitioning algorithm must include entire subtrees when creating a new parti-

tion. This constraint leads to having a few very large partitions since every XML docu-

ment typically has very few nodes with very high fanout (e.g., open auctions node in

XMark [Fra04]). However, as we shall show in Section 5.7, this does not degrade the
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Listing 5.5: Partitioning Algorithm.

1 int partitionTree(Node n, int threshold){
2 /* Returns the size in bytes of the node n, including
3 attribute names and values and text section */
4 size = getSize(n);
5 for(Node c : n.getChildren()) {
6 size = size + partitionTree(c);
7 }
8 if(size >= threshold && !isRoot(n)) {
9 createPartition(n);

10 /* Recalculates the size after creating partition */
11 size = getSize(n);
12 }
13 return size;
14 }
15

16 void createPartition(Node n) {
17 x = createNewXMLFile();
18 /* Replace subtree rooted at n in current XML document
19 by an XInclude element pointing at file x */
20 addXIncludePtr(n, x);
21 /* Move the subtree rooted at n to file x */
22 moveSubtree(n, x);
23 }

parsing performance since these partitions typically needto be completely navigated by

XPath queries.

Figure 5.5 describes the basic tree partitioning algorithm. The partitionTree(

T.root, threshold ) method will recursively traverseT in a bottom-up fashion, calculate

the size of each subtree, and if this size exceeds the threshold, then thecreatePartition()

method is called for this subtree. ThecreatePartition() method will move the entire

subtree to a new XML document and a new XInclude element will replace its root node in the

original XML file to reference the new partitioned subtree. Also, depending on the inclusion

level flag, specific information of the partition’s root element will be added to the newly created

XInclude element.
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Listing 5.1 shows the resulting partitioned XML tree for theXML tree of Figure 5.2 with a

threshold of 10 blocks per partition. Nodeb′ is the XInclude element which points to the partition

rooted at node b. The same holds for nodesf ′, j′, o′.

Example 4.1 Consider the XML document in Figure 5.2. When we executepartitionTree(

a, 10 ), the depth-first traversal of the tree rooted ata begins. The traversal will descend

until it reaches the leftmost branch, and from there it will begin the bottom-up search for the

subtree whose size in blocks is larger or equal to the specified threshold. Hence, we first create

a new partition for the subtree rooted at nodeb, replacing this node with an XInclude pointer

to the newly created partition. We assume in this case that weare using the default inclusion

level (NONE), and thus an extra block is used by the pointer tomaintain the data. We continue

the navigation and create another partition with the subtree rooted at nodej, repeating the same

steps; we further create the new partitions rooted at nodesf ando. 2

5.4.2 Estimating the Optimal Partition Size

To obtain an appropriate value for the partition size, we conduct the following analysis for the root-

to-leaf navigation pattern described in Section 5.2.1. In particular, we calculate the average access

time to navigate from the root to each of the leaves of the XML document. While performing a

similar analysis for general XPath patterns is infeasible due to the complexity and variety of the

navigation patterns, we show, in Section 5.7, that using thetheoretically obtained partition sizes

leads to good results for general XPath queries as well.

We assume, for sake of simplicity, that our tree is complete and each node ofT occupies a

single disk block2. Therefore, the XML treeT , which hasN nodes and degreed, has height

h = logdN . As we shall see in the evaluation section, the simplifying assumptions used in our

theoretical model do not significantly impact the key results; the theoretically optimal is found to

be very close to the experimentally computed optimal size.

2Later on, we shall show that in spite of these simplifying assumptions, the experi-
mentally obtained optimal partition sizes closely match our theoretical estimates.
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Cost with no partitions: When the XML document is not partitioned (and hence 2LP is notappli-

cable), the average cost of a root-to-leaf traversal is given by the following equation. Note that for

simplicity we assume the document is parsed from scratch every time a navigation pattern occurs.

CostnoPart
root−leaf = trand +N · ttransf (5.1)

wheretrand is the random access time needed to reach the root of the tree and ttransf is the

time required to transfer one block of data for the specific disk drive. Note that the whole tree must

be read (pre-parsed in Figure 5.1) to create the intermediate structure used to later progressively

parse the document. No cost is assigned to the progressive parsing phase since the document has

been already loaded in memory during pre-parsing.

Cost with partitions: Let us assume that the tree will be segmented into equally sized partitions,

and we can describe each partition as having:

x: Number of nodes in partition

h′ = logdx: Height of the partition

In this case, the average cost for a root-to-leaf traversal is given by the following equation:

CostPart
root−leaf = ( # partitions accessed) × (trand + x · ttransf )

wheretrandx · ttransf is the cost to pre-parse and load a partition. The number of partitions along

a root-to-leaf traversal is h/h’. Hence we have the following equation:

CostPart
root−leaf = h

h′ (trand + x · ttransf )

Observe that the ratio of heights can be simplified using logarithmic properties, and is inde-

pendent of d. As a result, we obtain:

CostPart
root−leaf =

lnN

lnx
(trand + x · ttransf ) (5.2)

Based on (5.2), we model the optimal cost of the partition size for four different hard disk

drives, described in Table 5.5. A detailed description of our hard disk drive model and how we

calculate the data transfer and random access times is included in Section 5.2.2.
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Table 5.5: Disk Drive Characteristics

Disk Model Size (GB) ttransf (ms) trand (ms)
Maxtor D740X 20.0 0.009446 5.441876
Fireball Plus 27.3 0.007688 5.359013
Cheetah 15K.4 36.7 0.002560 2.359615
Hitachi Ultrastar 73.4 0.003810 3.520530

Figure 5.4 presents the timesCostPart
root−leaf for the four different disk drives presented in

Table 5.5 for varying partition sizesx. The optimal partition size is the value ofx that minimizes

the time.

Figure 5.4: Effect of varying the partition sizes on the average root-to-leaf navigation
access time.

The un-partitioned costCostnoPart
root−leaf is equal to the time for the maximum partition size,

where the whole document fits in a single partition.

5.5 Management of Limited Main Memory

As mentioned earlier, the DOM representation of an XML document can span up to five times its

size in main memory. This fact combined to the increasing size of XML documents causes current

XML parsers to often fail with an “Out of Memory” exception.
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Listing 5.6: Modified Load partition Algorithm with Partition Unloading mechanism.

1 void loadPartition(XIncludeElement e) {
2 newPartitionRoot = preParse(e.getAttribute("href"));
3 /* replace e by newPartitionRoot in the DOM tree */
4 replace(e, newPartitionRoot);
5 registerPartition(this, e);
6 while(size(T) > memory_threshold) {
7 unloadPartition(getPartitionToUnload(T));
8 }
9 }

We have created and implemented a mechanism tounload inactive partitionsfrom the overall

DOM tree. A partitionP is considered as inactive if the path from the root of the DOM tree to the

point of the current navigation sequence does not include any element fromP .

To achieve the unloading of inactive partitions, we add a data structure that stores the infor-

mation about the root element of the partition, the path of the partition document in the file system

as well as a pointer to such root element. Every time a partition is loaded, all the metadata and the

pointer are stored for further analysis. Also, after each partition is loaded, the system checks for

the size of the overall DOM tree to decide whether one or more partitions have to be unloaded.

Listing 5.6 presents a modified version of theloadPartition() method presented in

Listing 5.2. This new version adds the logic for unloading partitions to restrict the total amount

of main memory used by the overall DOM tree to a fixed threshold. Every time a new partition is

loaded, the method checks for the overall memory utilization and unload suitable partitions until

the memory usage is below the threshold. Three auxiliary methods are added to handle the logic:

registerPartition(): This method receives as parameters the current element at which the partition

has been added as well as the metadata of the partition. It stores the filename of the partition

document in the file system and all the necessary informationto recreate the XInclude pointer

when the partition has to be unloaded.

getPartitionToUnload(): It analyzes the information stored by theregisterPartition()

method and decides which partition has to be unloaded. We implemented two variants of this

method to implement theFirst-in, First-out (FIFO) and Least Recently Used (LRU)[SGG06]
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strategies, as used in the context of virtual memory page replacement. TheFIFO strategy picks

the oldest partition, taking the one at the head of the partition queue. When a partition is loaded,

we insert it at the tail of the queue. Notice that the root partition, P0, will never be unloaded,

since it contains the root of the original XML document and weneed to maintain that information

accessible at all times. TheLRU strategy discards the least recently used partitions; it requires

keeping track of what was used when, which is more expensive thanFIFO.

unloadPartition(): Once thegetPartitionToUnload() method selects a partition, this

method removes the underlying subtree from the overall DOM tree and reconstructs the XInclude

pointer using the metadata stored by theregisterPartition()method.

5.6 System Implementation

In this section, we describe the architecture and implementation of the two key components of our

system: the XML Partitioner and the 2LP parser.

The system architecture is shown in Figure 5.5. The XML Partitioner takes a source XML

document and partitions it based on a threshold determined using the model presented in the

previous section. The 2LP Parser can also parse un-partitioned XML documents.

The 2LP parser was implemented by modifying the Xerces2 JavaParser, allowing it to handle

the XInclude-defined partitions, but also preserving its backward compatibility. Figure 5.6 shows

a simplified class diagram in Unified Modeling Language (UML)notation [BD03, Gro08], for

the classes involved in our modification. The top layer is theW3C DOM Interface, followed by

the Xerces2 Java Parser which is the implementation of such interface. The shadowed classes are

the ones modified from the open-source package. The bottom layer is our own package, which

encapsulates the modifications required to handle the partitioning and inclusion mechanisms.

Below, we describe the key ideas behind the modified and newlyadded classes in the imple-

mentation.

ElementImpl: This class was modified to handle inclusion behavior on thegetNodeName()

andgetAttributes()methods. Depending on the inclusion level, these methods may answer
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Figure 5.5: XML Partitioning and 2LP Architecture.

Figure 5.6: XML Partitioning and 2LP Class Diagram.
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a query with local information or require an inclusion to import a new partition and answer the

query.

PartitionMgr: ThePartitionMgr class is attached to theCoreDocumentImpl class in the

Xerces package, to manage the orchestration of traversal and inclusion. Every time a new partition

is required, theXIncludeHandler will process the specified URI and a newPartition

object will be created. It also manages the unloading mechanism.

XIncludeHandler: This class handles directly the inclusion operations when invoked from the

ParentNode andElementImpl objects in the Xerces package. This class works as a replace-

ment to the default XInclude processor provided by the Xerces parser. In order to achieve this, we

turn off the XInclude feature, and let our package handle these pointers.

Partition: This class is an abstraction to represent a partition processed by theXIncludeHandler

class. Notice that all the user-level interaction is still performed via the DOM Interface, guaran-

teeing the backward compatibility desired as a design goal.We have made our XML Inclusion

feature backward compatible, so another XML document that has XInclude pointers in it will

be treated in the same way by our double lazy parser, and any partitioned document joined by

XInclude pointers will be handled by any Xerces parser in a correct way.

5.7 Experiments

In this section, we evaluate our XML Partitioning and 2LP schemas. First, we experiment with

optimal size of partitions based on the theoretical model proposed in Section 5.4.2. Second, we

measure the performance of our techniques with two navigation patterns, root-to-leaf patterns

and XPath queries, as presented in Section 5.2.1. Third, we evaluate the impact of our memory

management optimization by unloading unnecessary partitions, as presented in Section 5.5.

Our framework was developed in Java using JDK 5.0. We modifiedthe Xerces2 Java Parser

2.9.1 [xer08]. The experiments were performed on a 2.0GHz Pentium IV workstation with 512MB

of memory running Linux. The workstation has a 20GB Maxtor D740X disk.
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5.7.1 Evaluation of the Theoretical Model

We generated XML files of various sizes using the XMark generator [SWK+02b]. We applied the

partitioning algorithm to these documents, with several partition sizes (in blocks) to compare our

theoretical model described in Section 5.4.2 against experimental results performing the same type

of root-to-leaf navigation patterns described in Section 5.2. Note that throughout the experiments

the 2LP parser is used for partitioned documents and the Xerces for un-partitioned.

Figure 5.7 shows the average time to traverse all the root-to-leaf paths for an XML docu-

ment with XMark factor 0.5 (50MB), running on a Maxtor D740X hard drive as described in

Section 5.4.2. The theoretical curves are based on the modelpresented in Section 5.4.2. Notice

that the scale is logarithmic and the patterns of the graphs are similar, with a slight deviation in

the experimental graph. We believe that the gap between the theoretical and experimental graphs

is caused because the theoretical model does not take into account the processing time needed to

navigate these paths and the effect of paging due to the limited amount of memory, but only the

primary I/O time involved in reading the partition for the XML file. From the graph, we can infer

the optimal size of the partition to be 2680 disk blocks, which is approximately one Megabyte.

Figure 5.7: Average Traversal Time for Partition Sizes.

Next we compare the optimal partition size (obtained experimentally) for various document

sizes (by varying the XMark factor) with the theoretical optimum. Figure 5.8 shows these results
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for the same hard drive, where again the theoretical and experimental values are close. For the first

two XMark factors, the experimental optimal values are considerably smaller than the theoretical

prediction. This is due to the fact that for the case of small files, having smaller partitions will ben-

efit the performance of the navigation patterns, since it is more likely that the partitions (stored in

the same directory) are contiguously placed on disk. The filesystem can efficiently (sequentially)

retrieve all the partitions from the disk.

Figure 5.8: Optimal Size of Partitions.

5.7.2 Performance Evaluation

We now present the evaluation of our approach using two typesof navigation patterns, root-to-

leaf traversals and XPath queries. As explained in Section 5.4.2, the comparisons assume that

the XML document has not been already parsed before a query ornavigation pattern, that is, we

measure both the pre-parsing and progressive parsing timesof Figure 5.1. We measure three time

components in the total execution time:

Pre-Parsing:The Xerces parser uses its deferred expansion node feature by initially creating only

a simple data structure that represents the document’s branching and layout. This phase requires

scanning the whole document to retrieve this structure. Forun-partitioned documents, it means

that the first time we load the file, the whole document has to betraversed and processed; for
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partitioned documents, every time we process a new partition, it is pre-parsed to create the logical

structure in memory.

Progressive Parsing:As the navigation advances, this initial layout built in thepre-parsing phase

is refined, and all the information about the nodes is added tothe skeleton. This phase is performed

only on the visited nodes and will have the same behavior in both un-partitioned and partitioned

documents.

Inclusion: This phase is introduced by the 2LP components, and capturesthe time required to

include and import the new partition into the working document. This component does not apply

to un-partitioned documents.

Root-to-leaf traversal cost:Figure 5.9 shows the average access cost in milliseconds forthe root-

to-leaf access patterns, comparing the performance for different XMark factors. To compute the

average time, we sampled 10% of the leaves of each document, adding each tenth leaf into the

sample, and performed. root-to-leaf traversals for each sampled leaf. A traversal in this case

results in a sequence of parent-to-first-child and sibling-to-next-sibling operations in order to reach

the desired leaf. These experiments were performed with thetheoretical optimal partition size and

the NONE inclusion level (the inclusion level does not impact the simple root-to-leaf traversals).

Figure 5.9: Root-To-Leaf Access Cost.

XPath query cost: Our second experiment executes a set of XPath queries over the XML data.

The queries are shown in Table 5.6. We have included the performance queries from XPath-
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Mark [Fra04], that is, the ones that test the execution time and not specific XPath functional

aspects. We added more queries to have more reliable results.

Table 5.6: XPath Queries

# Query
Q1 /site/closed auctions/closed auction/annotation/description/parlist/

listitem/text/keyword
Q2 /site/people/person/watches
Q3 /site/open auctions/open auction/annotation/description/text/keyword
Q4 /site/people/person/address/country
Q5 /site/regions/australia/item/description/tex/emph
Q6 /site/people/person/ ∗ /business
Q7 /site/closed auctions/closed auction/ ∗ /description
Q8 /site/regions/ ∗ /item/description/text
Q9 /site/open auctions/openauction
Q10 /site/closed auctions
Q11 /site/regions/australia
Q12 /site/closed auctions/closedauction
Q13 /site/regions/ ∗ /item
Q14 /site/ ∗ /australia
Q15 /site/open auctions/open auction[@id =′ openauction0′]/bidder
Q16 /site/regions/asia/item[@id =′ item4′]/mailbox/mail/from
Q17 //keyword
Q18 /site/closed auctions//itemref

For this set of experiments, we used several XML document sizes corresponding to various

XMark factors. Once again, we use the theoretically optimalpartition size for partitioning the

XML documents. We used the default inclusion level (TAG) forthese experiments.

Figures 5.10 and 5.11 show the performance of such queries for XMark factors of 0.5 and 1

(100MB) respectively. Figure 5.12 shows the average valuesfor the same experiment over three

datasets with XMark factors 0.500, 0.750 and 1.000. We see how for un-partitioned files, the pre-

parsing time is always similar, since the whole document hasto be processed to load the initial

layout. For partitioned files, only the required partitionsare processed, leading to significant

reduction in the pre-parsing phase in most of the cases. We can observe that the partitioned

documents perform consistently better than the un-partitioned ones. We have some cases in which
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the performance of the partitioned documents is almost equal to the performance of the original

files. These cases, such asQ3, Q9, Q14 andQ15, need to traverse most sections of the tree,

requiring the inclusion of most partitions.

Figure 5.10: XPath Query Performance for XMark Factor = 0.5 using the performance
XPath queries from XPathMark.

In the cases ofQ9, Q14 andQ17, theopen auctions partition is loaded which has a size of

15MB (due to the fact that each partition must be a well-formed XML document, as explained in

Section 5.4.1). Pre-parsing and progressively parsing this large partition penalizes these queries

and they almost match the execution time of the un-partitioned version. However, in a typical

scenario, such large partitions must be completely accessed anyways, except for the rare case

when a navigation pattern specifies a child at a particular position (e.g.,1000th child).

The inclusion time component varies correspondingly to thesize of the partitions that have to

be included into the working document. We see then that the inclusion component forQ3,Q9,Q14

andQ15 is large, but again this is caused by the large size of theopen auctions partition required

to satisfy all these four queries. For these same queries we found large segments of time consumed

by the Inclusion operation. The reason is that we rely on theDocument.importNode()

method provided by the DOM model which traverses the whole imported XML tree and updates
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Figure 5.11: XPath Query Performance for XMark Factor = 1 using the performance
XPath queries from XPathMark..

Figure 5.12: Average XPath Query Performance for XMark factors from 0.050 to 1.000,
using the performance XPath queries from XPath-Mark.
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the owner document for every single node. Even when the tree is already in memory, this operation

is CPU intensive, delaying the process of including the new partition.

Inclusion Levels:We now experiment with the inclusion levels described in Section 5.3. Initially,

we observe the increase of space required by the partitions given the distinct inclusion levels,

compared against the original unpartitioned document. We partitioned a document with XMark

Factor = 0.5.

Figure 5.13 presents the results of this experiment, showing low space overhead even when

the full information of the partition root is added to the XInclude element. Compared to the size of

the original size and to the size of the partitioned file with inclusion level NONE, we can say that

practically no overhead exists. We can see how the third inclusion level has the same overhead as

the second one. This is due to the fact that most of the nodes that contain text are leaf nodes, and

none of the internal nodes that were chosen to root a new partition contain text values.

Figure 5.13: Space Overhead for Inclusion Levels.

Figure 5.14 shows the average query execution time performance when XPath queries are exe-

cuted over partitioned documents with different Inclusionlevels. We picked several XPath queries

that represent different categories of queries and different axes. Given the practically inexistent

space overhead discussed above, adding information about the root element of the partition in the

XInclude physical pointer can give us a significant percentage of gain. In particular, the TAGATR

level is generally the best choice.
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Figure 5.14: Execution Time with Inclusion Levels.

5.7.3 Partition Unloading

In this section we evaluate the performance of 2LP when the amount of main memory designated

to store the DOM tree is limited and hence, the partition unloading mechanism is required. We

simulated this by introducing atotal memory threshold factorMT , which takes into account the

DOM overhead claimed by [NJ03] which concludes that a DOM document can expand in main

memory up to three or five times the size of the XML file. This factor models the limited number

of Megabytes that can be allocated by the DOM document at any given moment.

For this experiment, we repeated the execution of our performance evaluation XPath queries,

but this time adding the Partition Unloading mechanism to our 2LP. The XPath queries from Table

3 were executed sequentially, without resetting the DOM tree to the initial partitionP0, this with

the objective of having several partitions loaded before each query was executed. To simulate

theTotal Memory ThresholdMT , we set the Java Virtual Machine’s maximum java heap size to

450MB, and used our partitioned XML document for xmark factor = 1.0.

Figure 5.15 shows the total amount of main memory allocated by 2LP after each query is

executed. The JVM Memory Limit resembles thetotal memory threshold factorMT , as lim-

ited by the JVM maximum heap size. We measured the performance of 2LP without Unloading

mechanism as well as the behavior of the unloading mechanismfollowing two strategies:First-

In-First-Out (FIFO)andLeast-Recently-Used (LRU), both as used in the context of main memory
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page replacement. Both strategies restrict the loaded partitions according toMT , replacing the

appropriate partition as dictated by each strategy.

Figure 5.15: Loaded Partitions after Sequential Query Executions.

The execution of 2LP without Unloading followed a behavior as shown in Figure 5.11, where

at a point after the execution ofQ14, the application crashed with an “Out of Memory” exception,

not being able to perform the total execution of our query load. Using a lazy parser like Xerces on

the unpartitioned document leads to the same behavior. Thiswas due to the fact thatQ14 uses a

wildcard and requires almost the whole tree to be loaded intomain memory. In contrast, bothFIFO

andLRU approaches for the unloading strategy were able to manage the critical point of loading

several partitions during queryQ14, working properly until the last query was executed even under

the main memory limitations. We can see that our unloading approach has the potential to scale

better to parse large documents under limited memory conditions, whereas current approaches

including Xerces will raise “Out of Memory” exceptions.

Both FIFO andLRU strategies lead to similar behaviors, with slight differences in the order

in which the partitions are unloaded as shown for queriesQ7 andQ12; in Q7 a larger partition is

unloaded by theFIFO strategy, whereasLRU unloads a smaller one. Similarly, forQ12, theLRU

strategy selects a large partition to unload, while the partitions unloaded byFIFO are not as large.

Figure 5.16 compares the execution time of the XPath querieswhen the 2LP utilizes the Un-

loading Mechanism. The figure contains the execution times for 2LP with no Unloading Mech-
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anism, as well as bothFIFO andLRU strategies. The execution of the queries was performed

sequentially as explained before, and this caused the first two queries to perform similarly under

the three conditions, since the same partitions have to be loaded in the same order to solve the

query. For the execution of queryQ3, the size of the overall DOM tree has surpassed the memory

threshold and hence one partition has to be unloaded, meaning a penalty in the total execution

time. QueriesQ4 andQ6 show a similar performance for the three variants, since allthe partitions

that are needed to solve these queries are already loaded into memory in these specific moments,

not needing to parse any new partitions. Also none of the currently loaded partitions were un-

loaded by these queries. In the case of queriesQ14 andQ17, the maximum memory threshold

was reached several times during the query execution, giventhe large number of partitions re-

quired to be parsed by the 2LP. This causes a lot of partitionsto be unloaded during the query

execution, drastically penalizing the total execution time. QueriesQ3 andQ9 need to navigate the

open auctions subtree, requiring a larger amount of processing time giventhe large size of such

subtree.

Figure 5.16: Execution Time with Unloading Mechanism.

Figure 5.17 shows the number of partitions that are loaded, re-loaded and unloaded during the

execution of each XPath query. A loaded partition means thatit has been parsed for the first time
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by the 2LP. An unloaded partition is one that has been chosen by the Unloading Mechanism to

be discarded. A re-loaded partition is one that has been previously discarded but it is needed to

satisfy the query and hence is parsed again.

Figure 5.17: Loaded, Re-Loaded and Unloaded Partitions.

Again we can see how the performance of queriesQ1, Q2, Q3 andQ4 is similar; the same

partitions have to be loaded and unloaded for these cases. Asobserved in Figure 5.16, the execu-

tion of queriesQ4 andQ6 do not require the parsing of any new partitions, since all the necessary

partitions are already in main memory. The performance of queriesQ14 andQ17 is also related

to the behavior in the previous figure. The wild cards and descendant operators require a large

number of partitions to be parsed and with this, a large number of partitions to be unloaded as

well.

We can also see that both theFIFO andLRU strategies behave similarly in terms of re-loaded

partitions. In terms of total execution time,LRU is penalized by the reordering of the partitions in

the internal data structures of the strategy.
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5.8 Related Work on Parsing of Semistructured Documents

Nicola and John [NJ03] have identified the XML parsing process as a bottleneck to enterprise

applications. Their study compares XML parsing in several application domains to similar ap-

plications that use relational databases as their back-end. Operations such as shredding XML

documents into relational entities, XPath expression evaluation and XSLT [xsl08, XSL07] pro-

cessing are often determined by the performance of the underlying XML parser [NJ03], limiting

the massive adoption of native XML databases into large-scale enterprise applications.

Noga, Schott, and Löwe [NSL02] present the idea of Lazy Parsing as presented in the Sec-

tion 5.1. The virtual document tree can potentially be stored on disk to avoid the pre-parsing

stage; however, the virtual document tree has to still be read from disk. Schott and Noga apply

these ideas to the XSL transformations [SN03]. Kenji and Hiroyuki [KH05] have also proposed

a lazy XML parsing technique applied to XSLT stylesheets, constructing a pruned XML tree by

statically identifying the nodes that will be referred during the transformation process.

Lu et al. [LCP06] present a parallel approach to XML parsing,which initially pre-parses

the document to extract the structure of the XML tree to then perform a parallel full parse. This

parallel parsing is achieved by assigning the parsing of each segment of the document to a different

thread that can exploit the multi-core capabilities of contemporary CPU’s. Their pre-parsing phase

is more relaxed than the one proposed by [NSL02] and that we use throughout our work; this

relaxed pre-parsing only extracts the tree shape without additional information, and is used to

decide where to partition the tree to assign the parsing sub-tasks to the threads. This partitioning

scheme differs from ours since it is performed after the pre-parsing phase is executed, whereas

ours is performed a priori, with the objective of optimizingsuch pre-parsing stage.

There have been efforts in developing XML pull parsers [xpu08] for both SAX and DOM

interfaces. Also, [xpp08] presents a new API built just one level on top of the XML tokenizer,

hence claiming to be the simplest, quickest, and most efficient engine for processing XML.

Huang et al. [HCL05, HCLL06] present a pre-filtering framework to improve the efficiency

of XPath processing over large XML documents with the existing DOM and SAX models. Their

framework utilizes an inverted index and a tiny search engine that locates the useful fragments
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that may be candidates to satisfy the input XPath query, and only these fragments are submitted

to the XML parser. In contrast to our approach which is minimally invasive and is compatible

with current XML parsers and standards, they use specialized proprietary storage and processing

mechanisms.

Van Lunteren et al. [vLEB+04] propose a programmable state machine technique that provides

high performance in combination with low storage requirements and fast incremental updates.

A related technique has been proposed by Green, Miklau, Onizuka and Suciu [GMOS02], to

lazily convert an XPath query into a Deterministic Finite Automata (DFA). After this conversion

is performed, they submit the XML document to the DFA in orderto solve the query. They

propose a lazy construction opposed to an eager creation, since constructing the DFA with the

latter technique can lead to an exponential growth in the size of the DFA.

Kiselyov [Kis01] presents techniques to use functional programming to construct better XML

Parsers.

Kanne and Moerkotte [KM06] have worked on tree partitioningalgorithms, but their tech-

niques are more oriented to low-level disk placement, mapping each partition to a single block on

the disk drive to be further exploited by native XML data stores like Natix [Nat06].

Several works have been proposed in the area of XML compression. Some of these works [FLMM06,

LS00] require the document to be decompressed before any query or navigation can be performed

over the XML data. Some others, consideredquery-friendly[BLM05], only require a small subset

of the document to be de-compressed. Some recent works [TH02, WLS07, DRR08] can support

navigation in the compressed document. SDOM [DRR08] proposes a succinct way of represent-

ing XML documents in order to reduce their memory fingerprintand allow efficient navigation.

However, SDOM still incurs the pre-parsing cost. Furthermore, their representation is not back-

wards compatible with current XML parsers. [LS00, TH02, WLS07, BLM05, FLMM06] have

similar limitations. These XML compression and parsing techniques could be viewed as comple-

mentary to our work since we mainly optimize the pre-parsingstage with a slight optimization of

the progressive parsing stage and they mainly optimize the latter one.
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5.9 Conclusions

Lazy XML parsing is a significant improvement to the performance of XML parsing but to achieve

higher levels of performance there is a need to optimize the pre-parsing phase during which the

whole document is read. In this chapter, we address this problem by enabling laziness in the pre-

parsing phase as well. To do so, we have proposed a mechanism to add physical pointers in an

XML document by partitioning the original document and linking the partitions with XInclude

pointers. We have also proposed 2LP, an efficient parsing algorithm for such documents, that

implements pre-parsing laziness. Additionally, we implemented a dynamic partition unloading

mechanism that can enables parsing in memory-limited systems, allowing us to parse and nav-

igate large documents under conditions wherein other parsers typically fail. To aid partitioning

decisions, we have proposed a theoretical model for the processing of partitioned documents and

presented methods to compute optimal partition sizes. We have experimentally showed that 2LP

outperforms other deferred evaluation techniques such as Xerces Java Parser.
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CHAPTER 6

CHALLENGES FOR INFORMATION DISCOVERY ON ELECTRONIC HEALTH

RECORDS

6.1 Motivation

The National Health Information Network (NHIN) and its data-sharing building blocks, RHIOs

(Regional Health Information Organizations), are encouraging the widespread adoption of elec-

tronic medical records for all hospitals within the next fiveyears. In addition, The Department

of Health and Human Services (HHS) has recently increased funding and placed pressure on the

healthcare industry to improve the technology involving the exchange of medical information.

Many standards and protocols have been introduced that willaid in the process of unifying the

electronic medical record into a single architecture. A keycomponent of this effort is the adop-

tion and standardization ofElectronic Medical Records (EMR). To date, there has been little or no

effort to define methods or approaches to rapidly search suchdocuments and return meaningful

results.

One of the most promising standards for EMR manipulation andexchange is Health Level

7’s Clinical Document Architecture (CDA) [CDA07], which leverages a semi-structured format

(Extensible Markup Language, or XML), dictionaries, and ontologies to specify the structure and

semantics of EMRs for the purpose of Electronic Data Interchange (EDI). This HL-7 architecture

has been adopted worldwide.

The definition and adoption of this standard presents new challenges to related computer sci-

ence disciplines like data management, data mining and information retrieval. In this chapter we

study the problem of facilitatinginformation discoveryon a corpus of CDA documents, i.e., given

a question (query) and a set of CDA EMRs, find the entities (typically subtrees) that are “good”

for the query, and rank them according to their “goodness” with respect to the query. The suc-

cess of Web search engines has shown that keyword queries area useful and intuitive information

discovery approach. Therefore, we focus in keyword queriesin this chapter. Other types of infor-
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mation discovery queries on EMRs not studied here include numeric conditions, aggregation and

statistics, classification and clustering (the last two arecloser to the data mining discipline).

As an example, consider the usual scenario where a doctor wants to check possible conflicts

or complications between two drugs. Keyword query “drug-A drug-B death” could be submitted

to discover cases where a patient who took both drugs died. Note that the word “death” can be

specified in many different elements of a CDA document, and also synonyms or related terms

like “mortality” can be used instead. The latter can be tackled by leveraging appropriate medical

ontologies like SNOMED Clinical Terminology (SNOMED CT) [SNO08] as discussed below.

To study the challenges and requirements of information discovery on EMRs we have built

a diverse research team consisting of computer scientists,medical research doctors and a partner

from the medical informatics industry. The medical doctorsprovided the domain knowledge re-

garding the types of queries and answers that are of interestas well as the possible applications

of such an information discovery system. Furthermore, theyenumerated the different critical di-

mensions in searching EMRs, like time, location, and type ofstakeholder. These dimensions have

not been considered in systems for searching general XML documents; however, ignoring these

dimensions would significantly limit the use of an EMR information discovery engine.

The key ranking criteria found in current systems as well as the bibliography [Sal89, BYRN99,

GSBS03] are (a) relevance, (b) quality (authority) and (c) specificity. Relevance to the query has

the obvious meaning, while quality represents the query-independent importance of a result. For

example, a medication is more important than the name of an insurance company for a clinical

researcher. Specificity determines how focused a result is to the query. For example, returning a

department of a hospital when the query is only relevant to a particular doctor of this department

is worse than returning this doctor object.

It is challenging to define the information discovery semantics for CDA documents such

that the three aforementioned key ranking criteria are considered, given the hierarchical structure

and specific semantics of CDA, and the common references to outside entities like dictionaries,

ontologies, separate text, or multimedia patient data. Medical dictionaries and ontologies typi-

cally used in CDA are SNOMED CT [SNO08], Logical ObservationIdentifiers Links and Codes
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(LOINC) [Log06] and RxNorm [RxN07]. We also study how previous work on information dis-

covery on XML data [AYBS04, AYCD06, CKKS05, CMM+03, FG01, GSBS03, HGP03, HP06,

LYJ04, XQu07, XP05] can be leveraged, and what limitations might exist in this unique domain.

We note that our study does not address the importantprivacy issuesinvolved in accessing

patient information, as required by the United States Health Insurance Portability and Account-

ability Act (HIPAA) [Hea08]. We envision two possible scenarios. The simplest scenario is

that each division of an institution deploys the information discovery engine on its own corpus

of EMRs and provides authentication-controlled access to the division’s practitioners. The more

complex scenario, which is out of the scope of this study, is to provide information discovery on

a set of interconnected federated databases where elaborate access control mechanisms must be

employed [BGBJ05].

The rest of this chapter is organized as follows: Section 6.2presents a background exposition

of current clinical information standards and a brief survey on information discovery on XML data.

Section 6.3 addresses the challenges that we have identifiedto execute information discovery on a

corpus of EMR documents. Section 6.4 presents additional related work. Our concluding remarks

are presented in Section 6.5.

6.2 Background

In this section we review key standards used to represent clinical data and EMRs and present

previous work on information discovery on general XML documents. In particular, Section 6.2.1

introduces some popular clinical information representation standards as well as clinical ontolo-

gies, whereas Section 6.2.2 presents the Clinical DocumentArchitecture (CDA), which will be

the focus of this chapter. Given that CDA is represented in XML, Section 6.2.3 presents a brief

survey on information discovery on general XML documents.
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6.2.1 Clinical Information Models, Dictionaries and Ontologies

The work in [Her02, KOG+01] described Medical Informatics as the broad term representing

the core theories, concepts and techniques of Information applications in health. We describe

the key standards, dictionaries and ontologies that are currently used in CDA. In particular, we

first present theReference Information Model (RIM)[HL708b], the model from which the CDA

documents derive their meaning. Three popular clinical dictionaries/ontologies referred to in CDA

documents are presented - theSystematized Nomenclature of Human and Veterinary Medicine

(SNOMED)[SNO08], theLogical Observation Identifiers Names and Codes (LOINC)[Log06]

andRxNorm[RxN07].

Health Level Seven (HL7):Health Level Seven (HL7) [HL708a] is a not-for-profit organization

that provides standards for interoperability in the healthcare industry, mainly focused on clinical

and administrative data. HL7 is an American National Standards Institute (ANSI) -accredited

Standards Developing Organization (SDO) that includes providers, vendors, payers, consultants,

government groups and other entities interested in developing clinical and administrative standards

for healthcare.

HL7 standards specify a series of flexible standards to facilitate the communication between

heterogeneous systems and vendors, allowing information to be shared and processed in a uni-

form and consistent manner. During the years, HL7 has developed Conceptual Standards (i.e.

HL7 RIM), Document Standards (i.e. HL7 CDA), Application Standards (i.e. HL7 CCOW) and

Messaging Standards (i.e. HL7 v2.x and v3.0). These standards define the language, structure and

data types that participate in the integration of heterogeneous systems [Cal08].

Reference Information Model (RIM): The HL7 Reference Information Model (RIM) is the

grammatical specification of HL7 messages, constituting the building blocks of the language enti-

ties and the relationships among them. RIM can be represented as a network of classes, expressed

using a notation similar to the Unified Modeling Language (UML) [Uni07]. Its structure can be

summarized into six “core” classes and a set of relations between them, as depicted in Figure 6.1.

We include a brief description of each class as follows:

The Act class represents all the actions and happenings –analogousto a verb– to be doc-
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umented through the healthcare process, capturing all the events that have happened in the past,

that are currently happening or that are expected to happen in the future. The terms ‘Act’, ‘Action’,

and ‘Activity’ are all used interchangeably [HL708b].

TheEntityclass represents any physical thing or being –analogous to nouns– that takes part or

is of interest in the health care and that is capable of participating in an Act. Although it instantiates

any physical thing or group of physical things (including living subjects and organisms), it does

not include the roles that things can play or the acts that things can perform.

TheRoleclass ties an entity to the acts that it plays or provides, specifying how a particular

entity participates in a particular act. Each role is playedby one entity, but one entity in a particular

role can participate in an act in several ways.

TheRoleLinkclass specifies the connections and dependencies that existbetween two different

and individual Role objects. The Participation class specifies a relationship between a particular

Role instance and a particular Act instance. At the same time, it connects the Entity playing the

Role, to the specified Act, thus expressing the context for the Act in terms of who performed it.

TheActRelationshipclass associates a pair of Act objects,representing a connection from one

Act to another one. Such relationships include “Act to Act” associations, as well as “Source/Tar-

get” associations between the objects. [HL708b] states that “ActRelationship on the same source

Act are called the “outbound” act relationships of that Act.ActRelationships on the same target

Act are called the “inbound” relationships of that “Act”. Table 6.1 presents some examples to each

core class of the RIM model.

Each Act may be related to any number of Participations, in Roles, played by Entities, at

the same time that each Act may be related to other Acts via theActRelationship class. The

Act, Role and Entity classes may also be specialized into other classes. As an example, the

Entity class specializes into the class Living Subject, which itself has a specialization class called

Person. Person then inherits the attributes of both Entity and Living Subject. CDA documents

(Section 6.2.2) use the semantic definitions from the HL7 RIM, using the HL7 Version 3 Data

Types [HL707b] to define the clinical content of the documents.

Since HL7 mainly focuses on information interchange, RIM also provides a set of classes to
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Table 6.1: RIM Core Classes Examples

Core Class Example

Act
Clinical observation
Assessment of health condition

Entity
Person
Chemical substance

Role
Patient
Employee

RoleLink Manager has authority over Analyst (Using role link for “direct
authority”).

Participation
Surgeon
Author

ActRelationship Theophylline mitigates asthma (Using ActRelationship of type
“mitigates”).

define a communication infrastructure, including Message Control and Infrastructure (structured

documents and components) [HL708b, HL707a].

Participation ActEntity Role

ActRelationshipRoleLink

player playedRole

source

outboundLink

target

inboundLink

source

outboundRelationship

target

inboundRelationship

<Green>

<Red>

<Red><Blue>

<Yellow>

<Yellow>

Figure 6.1: RIM Core Class Diagram.

Systematized Nomenclature of Medicine (SNOMED): The International Systematized Nomen-

clature of Human and Veterinary Medicine (SNOMED) was created more than 20 years ago as the

conjunction of SNOMED RT and the United Kingdom’s Clinical Terms Version 3, and has grown

up into a comprehensive set of over 150,000 records in twelvedifferent chapters or axes. These

concepts are organized into anatomy (topology), morphology (pathologic structure), normal and

abnormal functions, symptoms and signs of disease, chemicals, drugs, enzymes and other body

proteins, living organisms, physical agents, spatial relationships, occupations, social contexts, dis-

eases/diagnoses and procedures [SNO08]. Within the disease/diagnosis axis, many disease con-
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cepts have cross-references to other concepts in the terminology that are essential characteristics

of the disease. These form a useful basis for further formalization and development of a reference

terminology [Spa97].

Figure 6.2: Partial SNOMED ontology for the term “Asthma”

SNOMED has created and is committed to spreading the adoption and implementation of

SNOMED Clinical Terms (SNOMED CT). SNOMED CT is a universal health care terminology

and infrastructure, whose objective is making health care knowledge usable wherever and when-

ever it is needed. It provides a common language that enablesa consistent way of capturing, shar-

ing and aggregating health data across specialties and sites of care. The SNOMED CT structure

is concept-based; each concept represents a unit of meaning, having one or more human language

terms that can be used to describe the concept. Every concepthas inter-relationships with other

concepts that provide logical computer readable definitions, including hierarchical relationships

and clinical attributes. Figures 6.2 and 6.3 show sub graphsof the SNOMED CT ontology graph.
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Figure 6.3: Partial SNOMED ontology for the term “Theophylline”

At the moment, SNOMED CT contains more than 325,000 concepts, with 800,000 terms in

English, 350,000 in Spanish and 150,000 in German. Also, there are 1,200,000 relationships

connecting these terms and concepts.

SNOMED CT terms are routinely referenced in CDA documents bytheir numeric codes, that is,

the SNOMED CT vocabulary is referenced as an external domainaccording to HL7 V3 processes.

Logical Observation Identifiers Names and Codes (LOINC): LOINC is a voluntary effort

housed in the Regenstrief Institute, associated with Indiana University. It was initiated in 1994 by

the Regenstrief Institute and developed by Regenstrief andthe LOINC committee as a response to

the demand for electronic movement of clinical data. LOINC facilitates the exchange and pooling

of results, such as blood hemoglobin, serum potassium, or vital signs, for clinical care, outcomes

management, and research. Currently, most laboratories and other diagnostic services use HL7 to

send their results electronically from their reporting systems to their care systems. However, most

laboratories and other diagnostic care services identify tests in these messages by means of their

internal and idiosyncratic code values. Thus, the care system cannot fully “understand” and prop-

erly file the results they receive unless they either adopt the producer’s laboratory codes (which is

impossible if they receive results from multiple sources),or invest in the work to map each result

producer’s code system to their internal code system. LOINCcodes are universal identifiers for

laboratory and other clinical observations that solve thisproblem.
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The LOINC laboratory terms set provides a standard set of universal names and codes for

identifying individual laboratory and clinical results. LOINC codes allow users to merge clinical

results from many sources into one database for patient care, clinical research, or management.

The LOINC database currently contains about 41,000 terms, which include 31,000 observational

terms related to laboratory testing.

Each record in the LOINC database identifies a clinical observation and contains a formal 6-

part name, a unique name for tests, identifying code with check digits, synonyms, and other useful

information.

Currently, LOINC codes are being used in the United States bylaboratories and federal agen-

cies and are part of the Health Insurance Portability and Accountability Act [Hea08] Attachment

Proposal [MHS+03]. Internationally, LOINC has been adopted in Switzerland, Hong Kong, Aus-

tralia, Canada and Germany. Similar to SNOMED CT, LOINC is used by CDA documents as a

vocabulary domain, encoding CDA components into a standarddatabase of terms.

RxNorm: RxNorm [RxN07] is a standardized nomenclature for clinicaldrugs produced by the

National Library of Medicine. A clinical drug is a pharmaceutical product administered to a

patient with a therapeutic or diagnostic intent. The definition of a clinical drug combines its ingre-

dients, strengths, and form. The form refers to the physicalform in which the drug is administered

in a prescription or order. For example, two possible definitions of clinical drugs are: (a)Ac-

etaminophen 500 MG Oral Tablet, for a generic drug name, and (b)Acetaminophen 500 MG Oral

Tablet [Tylenol], for a branded drug name [RxN07].

The purpose of RxNorm is to standardize the information exchange both between systems

within the same organization and between different organizations, allowing various systems using

different drug nomenclature to share data efficiently. It isintended to cover all prescription med-

ications approved for use in the United States. RxNorm is conformed by concepts, collections of

names identical in meaning at a specified level of abstraction. Each concept can be mapped to

different string values in different systems, all naming things that are the same. It also provides a

linkage to terms from other vocabularies (i.e., the conceptOrtho-Novum 7/7/7 21 Tabletsis a term

from the SNOMED vocabulary; it is not within RxNorm at all, except as it is related to RxNorm
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within the RXNREL table [RxN07]).

6.2.2 Clinical Document Architecture

The Clinical Document Architecture (CDA) is an XML-based document markup standard that

specifies the structure and semantics of clinical documents, such as discharge summaries and

progress notes, for the purpose of exchange. It is an American National Standards (ANSI) ap-

proved HL7 standard, intended to become the de facto electronic medical record.

According to the developers of CDA version 2.0 [CDA07], the main characteristics of the

CDA standard are:

a. Persistence:The clinical documents exist in an unaltered state for a timeperiod defined by

local and regulatory requirements.

b. Stewardship: A clinical document is maintained by an organization entrusted with its care.

c. Authentication: The clinical records are intended to be legally authenticated.

d. Context: The clinical document specifies its own default context.

e. Wholeness:Authentication of a clinical document applies to the whole instance and the

full context. Also, it is a complete and persistent set of information including text, images,

sound and other multimedia content.

f. Human readability: A clinical document is human readable.

Some projects already implementing CDA are: Continuity of Care Record (USA) [AST07],

SCIPHOX (Germany) [SCI07], MedEmed (Canada) [OBJ03], PICNIC (Denmark) [PIC07], e-

Claims Supporting Document Architecture (Canada), HealthInformation Summaries (New Zealand),

Aluetietojaerjestelmae (Finland) [IV02] and Dalhousie Discharge Summary System (Canada).

Figure 6.4 [DAB+06] shows a fragment of the CDA’s Object Model that represents the se-

mantic constructs of the RIM, depicting the connection froma document section to a portion of

the CDA clinical statement model with nested CDA entries.

102



Figure 6.4: Fragment of CDA Object Model.

The colors in Figure 6.4 identify these classes with the coreclasses of RIM as depicted

in [DAB+06] (Red for Act specializations, blue for Participations,green for Entities, yellow for

Roles and pink for Relationships). As described in [DAB+06], an Act can have zero to many Ac-

tRelationships to other Acts, and can have zero to many Participations, each played by an Entity

in some Role. A Role relates two Entities; the Entity playingthe Role is represented by a solid

line and the Entity who recognizes the role is represented with a dashed line. Thus, in Figure 6.4,

a “legalAuthenticator” is a Participant of a “ClinicalDocument” Act and is played by a “Person”

Entity in an “AssignedEntity” Role that is recognized by an “Organization” Entity [DAB+06].

The “Component” class is an ActRelationship that may link the “ClinicalDocument” to the

body choice (“NonXMLBody” or “StructuredBody”) or the “StructuredBody” to each nested

“Section”. The “StructuredBody” contains one or more Section components, each of which con-

tains a human readable title and a “narrative block”, the human readable content that has to be

populated by the document originator and rendered by the recipient. Each section can also contain

any number of CDA entries and external references. The CDA narrative block is wrapped by the

“text” element within the “Section” element, and provides aslot for the human readable content

needing to be rendered. Within a document section, the narrative block represents content to be

rendered, whereas CDA entries represent structured content provided for a computer. CDA en-
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tries encode content present in the narrative block of the same section. The example shows two

“Observation” CDA entries, although several other CDA entries are defined.

Figure 6.4 shows, at the right of the Section class, the EntryRelationship, which leads to

the clinical statement portion. Each Entry represents structured content intended for computer

processing such as decision support applications. Also, the clinicalStatement class contains spe-

cializations of the Act class (in this case Observation, SubstanceAdministration, Supply and Pro-

cedure) that will be included in the formal representation [DAB+06].

CDA external references always occur within the context of aCDA entry, and are wrapped by

the “reference” element. External references refer to things that exist outside the CDA document

- such as some other image, some other procedure, or some other observation (which is wrapped

by the “ExternalObservation” element). The CDA entry that wraps the external reference can be

used to encode the specific portions of the external reference that are addressed in the narrative

block.

Listing 9.1 in the Appendix depicts a sample CDA documentD1, which is wrapped by the

“ClinicalDocument” element, as it appears in line 2 of this figure. The CDA header (lines 3-

29) identifies and classifies the document, and provides information about authentication of the

record as well as the participants (patient and involved providers). Figure 6.5 depicts the tree

representation ofD1.

The CDA body (lines 31-82), which is wrapped by the “StructuredBody” element, is the core

of the document and contains the clinical report. It can be either an unstructured segment or

an XML fragment. We focus this study in the structured XML definition of the clinical report,

which is the one providing the most opportunity for high-quality information discovery. Tradi-

tional Information Retrieval (IR) approaches [Sal89, BYRN99] can be applied to the unstructured

scenario.

6.2.3 Information Discovery on General XML Documents

XML has emerged as the de facto standard format to represent and exchange data through the

World Wide Web and other heterogeneous environments, spanning a wide variety of domains and
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applications. The increased popularity of XML repositories and XML documents in general must

be accompanied by effective ways to retrieve the information stored in this format. In this section

we present an overview of previous work on searching XML documents. This corpus of work will

be viewed as the starting point to present the challenges of information discovery on CDA XML

documents in Section 6.3.

Limitations of Traditional Information Retrieval (IR) Met hods: The traditional and popular

text-based search engines cannot deal effectively with XMLdocuments due to a series of lim-

itations. First, text-based search engines do not exploit the XML tags and nested hierarchical

structure of the XML documents. Second, the whole XML document is treated as an integral unit

and is returned as a whole, which is unacceptable given the possibly large sizes of XML docu-

ments –in contrast we would like to be able to return parts of an XML document. A third drawback

is the keyword proximity concept in XML, which can be measured in terms of containment edges,

in contrast to the traditional keyword proximity search in text and HTML documents. That is, two

keywords that may appear physically proximal in the XML file may be distant or unrelated in the

tree-structured XML document and vice versa.

Previous Work on Searching XML documents: XRANK [GSBS03] computes rankings at

the granularity of an element, considering element-to-element links in addition to document-to-

document links. XRANK ranks the XML elements by generalizing the PageRank algorithm [BP98],

combining the ranking of elements with keyword proximity.

XSEarch [CMKS03] ranks the results taking into consideration both the degrees of the seman-

tic relationship and the relevance of the keyword. XSEarch also adds the power of distinguishing

between tag names and textual content. They also disallow results where the same tag name ap-

pears more than once in nodes of a vertical result path. Cohenet al. [CKKS05] present an extended

framework to specify the semantic relationship of XML elements, providing a variety of intercon-

nection semantics based on the XML schema, improving the quality of the ranking of XSEarch.

XIRQL [FG01] utilizes a different strategy to compute its ranking, defining index units, specific

entity types that can be indexed and used for tf-idf computation.

Schema-free XQuery [LYJ04] refines the work of XSEarch by utilizing meaningful lowest
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common ancestors instead of the concept of interconnected nodes, skimming some unrelated, “too

inclusive” elements that are not supposed to be returned. Cohen et al. [CKKS05] improve even

further this approach by including the schema into the framework and discovering interconnection

information. Xu and Papakonstantinou [XP05] define a resultas a “smallest” tree, that is, a subtree

that does not contain any subtree that also contains all keywords. Hristidis et al. [HP06] group

structurally similar tree-results to avoid overwhelming the user.

Previous works define a query answer in several different ways. XRANK, XIRQL and TeX-

Query [AYBS04] define an answer to be a document fragment (generally a subtree) –the most spe-

cific fragment of the XML document is typically the highest ranked answer. In contrast, XSEarch

defines the result to a query to be a sequence of XML nodes and null values forming a path that

connects the elements that contain the keywords or that satisfy the query predicates. On the other

hand, Carmel et al. [CMM+03] utilize XML Fragments as the syntax to specify the query but

their query answers consist of entire documents, not fragments. Pradhan [Pra06] present a flexible

algebraic approach for defining results’ properties in the query, in addition to a list of keywords.

XKeyword [HGP03] operates on an XML graph (with ID-IDREF edges) and returns a subtree

of minimum size that contains all query keywords. The World Wide Web Consortium has proposed

syntactic and semantic extensions to XQuery and XPath [AYBS04, XQu07] to support full-text

search capabilities. Amer-Yahia et al. [AYCD06] present anAlgebra to support such an extension.

6.3 Challenges of Information Discovery on CDA Documents

In this section we present a series of challenges that have tobe addressed to effectively perform

information discovery on a corpus of CDA documents. For simplicity we focus on plain key-

word queries, although the same challenges are valid for semi-structured queries as well –a semi-

structured query is a query where partial information aboutthe structure of the results is provided.

For example, specify that we are only interested in “code” elements under “Observation” elements.

We discuss why the general work on information discovery on XML documents (Section 6.2.3)

is not adequate to provide quality information discovery onCDA XML documents. The key
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reasons are the complex and domain-specific semantics and the frequent references to external

information sources like dictionaries and ontologies.

We use DocumentD1 depicted in Figure 9.1 as our running example, along with theplain

keyword queries of Table 6.2.

Table 6.2: CDA Document Queries

Id Keyword Query

q1 “Asthma Theophylline”
q2 “Substance Theophylline”
q3 “Respiratory Theophylline”
q4 “Temperature”

6.3.1 Structure and Scope of Results

In contrast to traditional Web search where whole HTML documents are returned as query re-

sults, in the case of XML documents and particularly CDA documents, we need to define what

a meaningful query result is. Previous work has studied different approaches to define the struc-

ture of results. A corpus of works [AYBS04, FG01, GSBS03] consider a whole subtree as re-

sult, that is, a result is unambiguously defined by the lowestcommon ancestor (LCA) node of

the keyword nodes. We refer to this approach assubtree-as-result. For example, XRANK fa-

vors deeply nested elements, returning the deepest node containing the keywords as the most

specific one, having more context information. In contrast,a path as the result is proposed

by [ACD02, BNH+02, HP02, CMKS03, HPB03]; where a minimal path of XML nodes isre-

turned that collectively contain all the query keywords. Note that we use the term “path” loosely

to differentiate it from the subtree-as-result approach, because it can be a collection of meeting

paths (a tree) for more than two query keywords. We refer to this approach aspath-as-result.

Example: To illustrate this challenge we execute queryq1 on documentD1. For the path-as-

result approach there are two candidate results depicted inFigures 6.6 (a) and (b) because of

the two appearances of the keyword “Theophylline” in lines 50 and 54. For the subtree-as-result

approach, only the subtree rooted at the XML node of line 33 isa possible result.
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It is unclear whether the subtree-as-result or the path-as-result is a better fit for searching CDA

documents. The discussion on minimal information unit below sheds more light to this aspect.

Another issue is thescopeof a result, in particular, whether results spanning acrossEMRs

should be produced. For instance, two query keywords may be found on two EMRs authored by

the same doctor (the doctor becomes the connection element as discussed in Section 6.3.10. If

the query is “drug-A drug-B death” then clearly two-EMR results are not useful since if different

patients took the two drugs no correlation between the drugscan be drawn. On the other hand, if

the query is “rare-disease-A rare-disease-B” then it may beuseful to find a doctor who has treated

two patients that have had one disease each. A simple solution to this dilemma is to allow the user

to explicitly specify if cross-EMR results are allowed.

section
(33)

entry
(36)

Observation
(37)

entry
(48)

SubstanceAdministration
(49)

text
(50)

value
[Asthma]

(39)

content
[Theophylline]

(50)

(a) Path connecting
“Asthma” in line 39 and
“Theophylline” in line 50

section
(33)

entry
(36)

Observation
(37)

entry
(48)

SubstanceAdministration
(49)

consumable
(51)

manufacturedProduct
(52)

manufacturedLabeledDrug
(53)

value
[Asthma]

(39)

code
[Theophylline]

(54)

(b) Path connecting
“Asthma” in line 39 and
“Theophylline” in line 54

Figure 6.6: Atomic path results for Queryq1. The highlighted nodes match the terms.

Finally, doctors would like to be able to specify the results’ schema in some cases, which in

turn limits the types of elements searched for the query keywords.
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6.3.2 Minimal Information Unit (MIU)

It is challenging to define the granularity of a piece of information in a way that it is self-contained

and meaningful, but at the same time specific. For example, inDocumentD1 returning the “value”

element of line 45 without the preceding “code” element is not meaningful for the user. Hence, the

“value” element is not an appropriate MIU, whereas the enclosing “Observation” element could

be.

Furthermore, for some queries it is required to include intothe result some elements that do

not contribute in connecting the query keywords or are part of the MIU of such a connecting node.

For instance, the “patientPatient” element should be included in the result ofq1 if a practitioner

submits the query, but not if a researcher does. Such personalization issues are further discussed

in Section 6.3.14.

Another issue is the static definition of MIU. In XKeyword [HPB03], a “target object” is the

equivalent of an MIU and they are defined statically on the schema by a domain expert. Xu et

al. [XLWS06] also define MIUs in a static manner. Such static MIU definitions are not adequate

for CDA information discovery, as the following scenario explains. For the query “Body height”

a reasonable result is the “Observation” element in lines 77-81. On the other hand, for the query

“1.77” this same element is not meaningful since obviously the user knows that “1.77” is a height

value, but the patient who has this height is probably of moreinterest. Hence, there is a need to

dynamically specify MIUs.

Example: The tight semantic relationship between the nodes in the subtree rooted at the element

“SubstanceAdministration” in line 49 of Figure 9.1 can leadthe system expert to consider this

subtree as a MIU. In this case, the single result of queryq1 on DocumentD1 for the path-as-result

approach is the one shown in Figure 6.7. If, in contrast, every element in the tree is considered a

minimal information unit, then the two paths depicted in Figure 6.6 are the results for this query.
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(52)
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MIU Definition

Figure 6.7: Result forq1 usingSubstanceAdministrationas Minimal Information Unit

6.3.3 Semantics of Node and Edge Types

It is challenging to incorporate the rich semantic information available for the clinical domain, and

particularly for the elements of a CDA document, in the results’ ranking process. At the most ba-

sic, a domain expert statically assigns a weight to each nodeand edge type, as in BANKS [BNH+02].

In addition to that, we can assign a relevance to whole paths on the schema as explained below.

Furthermore, it is desirable that the degrees of semantic association are adjusted dynamically ex-

ploiting relevance feedback [SB97] and learning [Mit97] techniques.

The equivalent of a schema for a CDA document is the CDA Release 2 Object Model (Fig-

ure 6.4), showing the connection from a document section to aportion of the CDA clinical state-

ment model [DAB+06]. Edge and node weights can be specified on this Object Model. For

example, the relationship between a substance and the patient it was prescribed to may be more

relevant than the relationship between the substance and the doctor who prepared the EMR.

As mentioned above, assigning relevance degrees to whole paths instead of single edges can

improve the ranking quality. For example, the path “SubstanceAdministration→ consumable

→ manufacturedProduct → manufacturedLabeledDrug → code” could have a higher or

equal weight than “SubstanceAdministration → consumable → manufacturedProduct”.
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phylline” in line 54

Figure 6.8: Path Results toq2.

This is particularly important for cases where a syntactically long path corresponds to a seman-

tically tight association. For instance, the path “SubstanceAdministration→ consumable→

manufacturedProduct→manufacturedLabeledDrug→ code” in lines 49-57 of Figure 9.1

has four edges, but intuitively this sequence of elements will typically appear as an indivisible

unit. Hence, this path may be viewed as a single edge for the purpose of ranking. In general, the

information discovery algorithm must neutralize the effect of the schema design decisions of CDA

by considering a semantic instead of a syntactic distance.

Example: Consider queryq2 executed overD1. We can see with this query the need to in-

dex and query the XML tags in addition to the values; in this case the keyword “Substance”

matches the tag “SubstanceAdministration” in line 49. Figure 6.6 shows two possible results to

q2. Even though the first result only involves two edges (whereas the second involves four), it could

be that the second result is ranked higher if the path “SubstanceAdministration→consuma

ble→manufacturedProduct→manufacturedLabeledDrug→code” is viewed as a single edge.
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6.3.4 Access to Dictionaries and Ontologies

CDA documents routinely contain references to external dictionary and ontology sources through

numeric codes. As an example, documentD1 includes references to LOINC [Log06] and SNOMED

CT [SNO08] in lines 34 and 38 respectively. Hence, it is no longer enough to answer a query con-

sidering the CDA document in isolation, as is done by all previous work on information discovery

on XML documents (Section 6.2.3). In this setting, the querykeywords may refer to text in the

CDA document or an ontology that is connected to the CDA document through a code reference.

For example, the query keyword “appendicitis” may not be present in the document but its code

might be present, so we need to go to the ontology and search for the query keyword there.

On a high level, it would be desirable to view the data graph (the CDA document) along with

the ontology graph (e.g., SNOMED) as a single “merged graph”. An approach to achieve that is

the following:

a. View a code node in a CDA document and the corresponding ontology node as a single

node, that is, collapse these two nodes. Equivalently, add an edge with infinite weight

between them (assuming higher weight denotes higher association).

b. For free text nodes (with no code)v of the CDA document we add an edge betweenv and

each ontology nodeu with weight equal to the IR similarity between the content ofv and

u. Only the edges with weight greater than the specified threshold are finally created.

This second technique can be omitted if we assume that the author of the CDA document

is including the ontology/dictionary codes where appropriate and there are matching ontology

entities for all real entities in the CDA document.

An alternative technique has been described to incorporateontology information in the query

processing [HHP06]. Designed to enable keyword search on data graphs with authority flow

semantics, the ObjectRank authority flow algorithm [BHP04]is executed on the ontology graph

to rank the ontology nodes with respect to the query, and thenuses the terms of the top-ranked

ontology nodes to expand the original query.
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Example: Queryq3 executed onD1 would have an empty result (for AND semantics) if the on-

tologies/dictionaries were not text searched. However, ifthe intuition discussed above is applied,

the same results as inq1 are valid, since the query term “respiratory” is associatedto the term

“Asthma” in D1 through relationships of the SNOMED ontology, as shown in Figure 6.2.

Note that it is challenging to rank results produced by exploiting ontological relationships as

discussed in Section 6.3.5.

Performance:The solutions proposed to exploit ontology/dictionary information incur challeng-

ing performance issues. Two high-level techniques that canbe employed to realize the above

query semantics are:

a. Search all ontologies for the query keywords, find adequately associated codes, and then

search the CDA documents for these codes.

b. Start searching the documents and for each ontology code encountered, lookup the key-

words in the corresponding ontology.

Furthermore, it is challenging to develop efficient pre-computation and runtime algorithms to

facilitate the expensive in terms of execution semantics ofthe merged data and ontologies graph

discussed above.

Another performance challenge arises due to the size of the ontologies. As mentioned in

Section 6.2.1, SNOMED CT contains more that 235,000 concepts and 1,200,000 relationships

between them. This corresponds to more than 2GB of compressed data, which will play a role in

deciding which execution approach will be more efficient.

6.3.5 Different Types of Relations in Ontology

We need to assign an appropriate value to each of the relations present in the ontologies. SNOMED

CT, for example, has four different types of relationships:

1. Defining characteristics,

2. Qualifying characteristics,
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3. Historical relationships and

4. Other relationships.

Figures 6.2 and 6.3 include relations such as “May be”, “Finding site of” and “Has finding

site” in addition to the most common “Is a” relationship. Stricter and stronger relations in the

ontology should intuitively have a higher weight.

Furthermore, we need to take into consideration the direction of the edges. For instance,

following “Is A” edges specializes and restricts the searchon the one direction, but generalize in

the other direction, with the risk of returning imprecise terms.

We must also consider the number of incoming and outgoing edges that each node has. For ex-

ample, some SNOMED CT concepts such as “Duplicate concept” or “Invalid concept” participate

in historical relationships and possess a large incoming degree. Navigating these historical rela-

tionships to concepts with such large in-degrees may not be beneficial to the information discovery

process.

A possible approach to measure the degree of association between nodes of an ontology graph

is to execute ObjectRank [BHP04] on the ontology graph, as described by Hwang et al. [HHP06].

In particular, for queryq3 we can place the nodes containing the keyword “Respiratory”in the

base set and then execute ObjectRank. If the node containingthe term “Asthma” (line 39 ofD1)

ends up having a higher score than the node containing the term “Bronchitis” (line 45 ofD1), then

the “Asthma” node will be preferred. This process can be further improved by assigning different

authority transfer bounds [BHP04] to various edge (relationship) types of the ontology according

to their semantic association.

Example: As an example we execute queryq3 on D1. We can see in the ontology graph of

Figure 6.2 that “Asthmatic Bronchitis” and “Asthma” are both related to “Respiratory”, but

“Asthmatic Bronchitis” is two “Is A” edges away from “Respiratory”, whereas “Asthma” is only

one edge away. Hence a result containing “Theophiline” and “Asthma” (line 39) would be better

than one containing “Theophyline” and “Bronchitis” (line 45).
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6.3.6 Arbitrary Levels of Nesting

We can find an arbitrary number of levels of nesting and recursion in the definition of components

and sections, as exemplified in the pathcomponent→ section→ component→ section in lines

58-63 of Figure 9.1.

Taking into consideration the semantics of the document, the interconnection relationship rule

of XSEarch [CMKS03], where the same tag may not appear twice in internal nodes of a result

path, cannot be applied since the same tag can appear twice ina vertical path (top-to-bottom). In

particular, the rule of XSEarch assumes that a vertical pathmay not contain the same tag twice,

since elements with the same tag name are typically in the same level of the tree. This is clearly

not true for CDA documents.

Hence, the XSEarch interconnection relationship should bemodified considering semantic in-

formation of the surrounding elements. For instance, if we assume that a “component” element

represents a hospitalization, then if two keywords with thesame tag appear in different compo-

nents of the same section, the XSEarch rule can be applied, but not if they are in two different

sections of same component.

6.3.7 Handling ID-IDREF Edges

CDA entries can include pointers to “content” elements of the CDA Narrative Block; similarly,

“renderMultiMedia” elements of the CDA Narrative Block canpoint out to CDA entries. The

“content” element can contain an optional ID attribute to identify it, and it can serve as the target

for a reference. The “originalText” component of a RIM attribute can then refer to this identifier,

indicating the original text. As an example we can find an ID attribute in line 50 of Figure 9.1. A

reference to this element is found in the “originalText” element of line 40.

These edge types have been ignored for results computation by previous search strategies like

XRANK, which only utilizes the hyperlinks (ID-IDREFs) for score calculation. That is, results

are always subtrees ignoring the ID-IDREF edges. We want to exploit these edges in producing

the results. A consequence of this issue is the fact that the result can be a graph (with cycles)
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and not a tree. In this case, we need to decide whether we breakthe cycles to return a tree as

the answer, since a tree is typically easier to present and reason about. Also, similar to XRANK,

ID-IDREF and containment edges could be assigned differentweights.

section
(33)

entry
(36)

Observation
(37)

entry
(48)

SubstanceAdministration
(49)

text
(50)

value
[Asthma]

(39)

content
[Theophylline]

(50)ID/IDREF

Figure 6.9: Result to Queryq1 considering ID/IDREFS.

Example: We execute queryq1 on the sample documentD1. We obtain the two path results

depicted in Figure 6.6, but if we include the ID-IDREF hyperlink between elements in lines 40 and

50 of Figure 9.1 we obtain the graph depicted in Figure 6.9, containing a cycle.

In case we decide the best solution is to break the cycles, thenext issue is to decide the best

edge to remove. The simplest possibility is to eliminate thehyperlink and preserve a path as the

one shown in Figure 6.6(a). Alternatively, the weights and directions of the edges may be taken

into account.

6.3.8 Free Text Embedded in CDA Document

In some cases, plain text descriptions are added to certain sections to enrich the information about

the record or to express a real life property not codified in dictionaries or ontologies. As a first

measure, traditional text-based Information Retrieval techniques [Sal89, BYRN99] should be in-

cluded in the architecture to support such cases.

Another technique to address the coexistence of semi-structured and unstructured data is pre-

sented in [HGP03], where IR and proximity rankings are combined.

In addition to embedded plain text, HTML fragments can also be included to the CDA docu-

ment, resulting in a mix of semantic mappings. For instance,line 50 in Figure 9.1 describes the
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Listing 6.1: Free text occurence of keywords on queryq4.

50 <text><content ID="m1">Theophylline</content>20 mg every
other day, alternating with 18 mg every other day.

Stop if temperature is above 103F.</text>

Listing 6.2: Embeded HTML fragment is the result of queryq4.

69 <th>Temperature</th>

full-text description of the dosage for a substance. Due to the complex nature of this description,

there is no single entity in the ontology to accurately matchit.

Example: To exemplify this challenge we execute queryq4 on our sample documentD1. List-

ings 6.1 and 6.2 show two possible results for this query assuming each element is a MIU. List-

ing 6.1 presents a free-text entry containing the keyword “Temperature”, whereas Listing 6.2

depicts an HTML fragment also containing the keyword. Without additional semantic informa-

tion, these results cannot be ranked based on their structure; appropriate IR techniques should be

applied to solve this challenge. For instance, the second result may be ranked higher since it has

a smaller document length (DL).

6.3.9 Special Treatment of Time and Location Attributes

After discussing with medical researchers and practitioners, we found that time and location are

critical attributes in most queries. For instance, for the query “drug-A drug-B” the doctor is

probably looking for any conflict between these drugs, and hence the time distance between the

prescriptions of these drugs for a patient is a critical piece of information. Location is also im-

portant since two patients located in nearby beds in the hospital should be viewed as associated

because infections tend to transmit to neighboring beds. Clearly, it is challenging to standardize

the representation of such location information within an EMR.

Furthermore, time and location can lead to the definition of metrics similar to the inverse

document frequency (idf) in Information Retrieval [Sal89]. For instance, asthma is more common
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in summer; hence a patient who has asthma in winter should be ranked higher for the query

“asthma”. Similarly, a patient who has the flu in a town where no one else has it should be ranked

higher for the query “flu”. These associations are too complex since time can be used to define

time, distance, or periodicity. Similarly, location relationships can be specified either within a

hospital or across towns.

Finally, there should be a way to specify time intervals in the query, possibly using a calendar

interface, and then use the specified time window as an answers filter. Specifying the time-distance

between the keywords can also be useful. For instance, the query “newborn heart block” which is

often needed at Miami Childrens Hospital, should not returna patient who got a heart block when

he was 60 years old but the word “newborn” appeared in his EMR in a description field of her

birth day.

6.3.10 Identity Reconciliation and Value Edges

A single real-life entity (e.g., a medication or a doctor) isduplicated every time it is used in a CDA.

Hence, associating two records of the same author, or two patients with the same medication is

hard. In contrast, in previous work on searching XML documents, a real-life entity is typically

represented by a single XML element, which is linked using ID-IDREF edges where needed. For

instance, in XKeyword two articles of the same author have anIDREF to the same author element.

The problem of reference reconciliation has been tackled both in the context of structured

databases [DHM05, HS95, MNU00, MW03, SB02, TKM02, Win95] and in the context of free

text document collections [ML95, MW03, NC01, ZAR02]. However, focusing on the domain of

CDA documents allows manually specifying rules by a domain expert on what types of elements

are good candidates for referencing identical real-life objects, in case these elements have identical

or similar values.

In particular, we can identify on the schema the elements that have the property that the same

value probably means the same real-life entity, so that “value edges” can be added accordingly.

Such elements may be the “assignedAuthor”, the “patientPatient”, the “manufacturedLabeled-

Drug” and so on. On the other hand, no “value edge” should be added between two “title” ele-
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ments. E.g., two patients who both have “Physical Examination” value on the “title” element (line

61 in Figure 9.1) are not related in any way.

As another example, if two medications have the same SNODEM code, they should be asso-

ciated. However, if a drug and its generic have different SNOMED codes, such associations are

hard to establish.

Another challenge involves the use of multiple possibly overlapping ontologies across the cor-

pus of CDA documents. For instance, different codes are usedfor the term ”Asthma” in SNOMED

CT and LOINC (195967001 and 45669-9 respectively). Ontology mapping techniques can be

leveraged [DHM05, HS95, ML95, MNU00, MW03, NC01, SB02, TKM02, Win95, ZAR02] (for

more details on such techniques see Section 6.4). Furthermore, we can probabilistically extend

these initial mappings using “meta-rules” like the following [MNJ04]: if two conceptsC1 andC ′
1

match, and there is a relationshipq betweenC1 andC2 in OntologyO and a matching relationship

q′ betweenC ′
1 andC ′

2 in OntologyO′, then we can increase the probability of match betweenC2

andC ′
2. Hence, code elements in a single or multiple CDA documents that refer to the same or

similar real-life entities will be associated through a “value edge”.

6.3.11 EMR Document-as-Query

An alternative query type to the plain keyword query is usinga whole (or part of) EMR (CDA)

document as the query. This approach can be used in order to find similar CDA documents, that is,

CDA documents of patients with similar history, demographic information, treatments, and so on.

The user should be able to customize and personalize such an information discovery tool to fit her

needs. For instance, a researcher may not consider the physicians (author of CDA document) name

when matching CDA documents, and could specify that a generic medication should be viewed

as identical to the non-generic equivalent. Previous work on document content similarity [And00]

and XML document structural similarity [NJ02] can be leveraged to solve this problem. The

latter corpus of works is based on the concept of tree edit distance. The best known algorithm for

computing tree edit distance between two ordered trees is byZhang and Shasha [ZS89] with the

time complexity of roughlyO(n4) wheren is the number of the nodes in a tree. Chakaravarthy at
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al. [CGRM06] match pieces of unstructured documents to structured entities, whereas we want to

match a structured document to other structured or unstructured documents.

Furthermore, such document-as-query queries can be used tolocate medical literature rele-

vant to the current patient. In this scenario, the EMR application could have a button named

“relevant literature” that invokes an information discovery algorithm on PubMed or other medical

sources. Price et al. [PHOE02] present a first attempt towards this direction, where they extract

all MeSH terms (MeSH refers to the U.S. National Library of Medicine’s controlled vocabulary

used for indexing articles for MEDLINE/PubMed) from an EMR (not specific to CDA) and then

query MEDLINE using these terms. The structured format of CDA documents can potentially

allow more elaborate searching algorithms where multiple terms that are structurally correlated

can construct a single and more focused query on medical literature sources.

6.3.12 Handle Negative Statements

A substantial fraction of the clinical observations entered into patient records are expressed by

means of negation. Elkin et al. [EBB+05] found SNOMED-CT to provide coverage for 14,792

concepts in 41 health records from Johns Hopkins University, of which 1,823 (12.3%) were iden-

tified as negative by human review. This is because negative findings are as important as positive

ones for accurate medical decision making. It is common in a medical document to list all the

diagnoses that have been ruled out, e.g., state that “the patient does not have hypertension, gout,

or diabetes”. This creates a major problem when searching medical documents. Today, one has

to examine the terms preceding a diagnosis to determine if this diagnosis was excluded or not.

Ceusters and Smith [CS05] propose new ontological relationships to express “negative findings”.

It is challenging to handle such negative statements for an information discovery query in a way

that the user can specify whether negated concepts should beexcluded or not from the search

process.
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6.3.13 Handle Extension Elements

Locally defined markup can be used to extend CDA when local semantics have no corresponding

representation in the CDA specification. Such user- or institution-defined element types are hard to

incorporate to the global semantic information, since it isnot possible to define general structural

requirements for the results, as in XSEarch [CMKS03] and thework of Xu and Papakonstanti-

nou [XP05].

6.3.14 Personalization

The information discovery engine should provide personalized results depending on the prefer-

ences of each individual user. For example, for different doctors, different entities and relation-

ships in the CDA components are more important. For some healthcare providers, the medication

may be more relevant than the observation, or the medicationmay be more relevant than the doctor

name. Also the relationships in ontologies may be viewed differently.

Furthermore, depending on whether a user is a nurse, a pharmacist, a technician or a physician,

the system could automatically assign different weights onedges and nodes of the CDA Object

Model (Figure 6.4) to facilitate the information needs of the users.

6.3.15 Confidentiality of Records

The level of confidentiality of the medical record is indicated by theconfidentialityCodeelement

in the header section of the record, taking the values “normal”, “restricted” and “very restricted”.

The value of this element, shown in line 4 of Figure 9.1, may dictate at what level we may return

results for an executed query. IfconfidentialityCodeis set to “restricted” but no personal info

is contained in the result, then the result could be output. Otherwise, the credentials of the user

should also be taken into consideration to validate whetherthe user has the right privileges to

obtain the query results.

122



As mentioned in Section 6.2.1, LOINC codes are already part of HIPAA [Hea08], complying

with the confidentiality standards imposed by the Federal Government on the Insurance and Health

Care Industries.

6.4 Related Work on Information Discovery on Electronic Health

Records

This section reviews some research areas that are related tothe problem we are introducing in this

chapter, in addition to the XML information discovery techniques reviewed in Section 6.2.3: the

testing and evaluation of IR techniques on XML, the problem of automatic ontology mapping, and

the limitations of medical ontologies.

To test and evaluate IR techniques on XML documents, the INitiative for the Evaluation of

XML Retrieval (INEX) [INi09, FGKL02] was created in 2002 to provide the infrastructure and

means to evaluate the retrieval methods and techniques and to compare results, specifically pro-

viding a large XML test collection and appropriate scoring methods, for the evaluation of content-

oriented XML retrieval systems. For INEX 2007, the test collection consists of more than 650,000

XML-encoded articles from the Wikipedia project, compiling 4.6 Gigabytes of textual informa-

tion. These documents are organized in topics, with relevance assessments defined for each topic.

A series of content-only (CO) and content-and-structure (CAS) queries is defined for each topic.

The CO queries resemble those used in the Text REtrieval Conference (TREC) [Tex07].

Even when representing the same domain, information sources may be of heterogeneous se-

mantics, resulting in a necessary mapping between ontologies and schemata in order to compose

the information and enable interoperation. This has been a research topic in recent years, provid-

ing strategies to compose different and heterogeneous sources, aiming to reduce the impreciseness

and errors in such mappings. A large number of articles are listed at [Ont07]. ONION [WD01]

and Prompt [NM03] use a combination of interactive specifications of mappings and heuristics to

propose potential mappings. GLUE [DMDH02] employs machine-learning techniques to discover

the mappings. OMEN [MNJ04] exploits schema-level information by using a set of meta-rules.
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In recent years, one of the hottest research directions in medical informatics has been to ad-

dress the biomedical terminology problem. Ontologies and description logics have been chosen

to tackle this challenge, proving to be an adequate solution. But it has also been shown that de-

scription logics alone cannot prevent incorrect representations of the medical terminology, since

frequently they are not accompanied of the proper theory to describe them. The inappropriate

adoption of the UMLS Metathesaurus [UML07] has been specifically criticized and questioned

in [CSF03], which cites these three problems: (1) There is a wide range of granularity of terms in

different vocabularies. (2) The Metathesaurus itself has no unifying hierarchy, so you cannot take

advantage of hierarchical relations. (3) There may be otherfeatures of vocabularies that get lost in

their ‘homogenization’ upon being entered into the Metathesaurus. Hahn et al. [HRS99] recognize

the value of biomedical terminologies as the starting pointfor an engineering-oriented definition

of medical ontologies, in which the reviewing of concept consistency and hierarchy concludes

with the inclusion of missing terms and the correction of misclassified concepts. A new approach

has been proposed by [SAL+07], in which they introduce a new level of abstraction to represent

a match between a text fragment and an ontology; they facilitate the discovery of medical knowl-

edge by adding semantic annotations (with domain knowledgefrom the ontology) to the syntactic

parse trees from the processed documents.

6.5 Concluding Remarks

We have introduced the problem of Information Discovery on Electronic Medical Records (EMR),

enumerating a series of challenges that must be addressed toprovide a quality information discov-

ery service on EMRs, specifically on Clinical Document Architecture (CDA) documents. The

challenges are related to the semantics of the architecture, the XML definitions of CDA docu-

ments, and the convergence of the narrative structure associated with ontologies and dictionaries.

More research is needed to address the ability of keyword searches to return meaningful results on

CDA documents containing time-dependent relationships. Guidance is also needed in determin-

ing how ontologies can be best used in CDA documents to improve keyword search effectiveness
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and minimize information discovery times. We hope that thiswork will spur new research on this

topic, which can have a dramatic impact on the quality of healthcare.
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CHAPTER 7

ONTOLOGY-AWARE SEARCH OF ELECTRONIC HEALTH RECORDS

7.1 Motivation

The National Health Information Network (NHIN) and its data-sharing building blocks, RHIOs

(Regional Health Information Organizations), are encouraging the widespread adoption of Elec-

tronic Medical Records (EMR) for all hospitals within five years. A key component of this effort

is the standardization of EMR. To date, there has been littleor no effort to define methods or

approaches to search such documents effectively.

One of the most promising standards for EMR manipulation andexchange is Health Level

7’s [HL708a] Clinical Document Architecture (CDA) [CDA07], which leverages a semi-structured

(XML) format, and ontologies to specify the structure and semantics of EMRs for the purpose of

Electronic Data Interchange (EDI).

In this chapter we present the XOntoRank system, which addresses the problem of facilitating

ontology-aware information discovery within a corpus of XML-based EMR documents. By infor-

mation discovery [PB99, HP02] we mean the extraction of relevant pieces of data from a database

given a user query. Information discovery can be viewed as anextension of traditional Informa-

tion Retrieval (IR), which ranks the relevance of unstructured documents given a keyword query.

Hence, given a question (query) and a set of EMRs, we need to find the entities (typically subtrees)

that match the query, and rank them according to their “goodness” with respect to the query. The

success of Web search engines has shown that keyword queriesare a useful and intuitive approach

to information discovery. Therefore, we focus on keyword queries in this paper.

A large corpus of work (e.g. [FG01, GSBS03, CMKS03, HPB03]) addresses keyword search

of XML documents, where the query keywords are matched to XMLnodes and a minimal tree

containing these nodes is returned. A variety of ranking techniques are used, ranging from the

size of the result-trees to adaptations of Information Retrieval (IR) scoring. Investigators have

explored ontologies (e.g. [KK05, STW05]) for XML querying;we compare them to our work in

Section 7.7.
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For example, consider the query“Bronchial Structure Theophylline”and a CDA document

such as the one in Figure 9.1 in the Appendix, which is explained in detail in Section 6.2. The

phrase“Bronchial Structure” does not appear in this document. Hence, most traditional XML-

based keyword search systems will not return any results. However, this document contains an

ontological reference to an“Asthma” concept defined in SNOMED (in Line 39, Figure 9.1).

The SNOMED ontology further defines a“finding-site-of” relationship between“Asthma” and

“Bronchial Structure” (as shown in Figure 6.2 in Section 6.2). Hence, based on the definitions in

the ontology, a result tree connecting the“Asthma” node of Line 39 and the“Theophylline” node

of Line 50 can be created as output.

The use of ontological definitions allows us to perform semantic search on the XML docu-

ments. We no longer require an exact match between keywords in the query and in the document,

but we can make use of the domain ontology to infer a semantic relationship between keywords

in the query and terms in the document. This allows returningmore results than would otherwise

be returned with an exact-match requirement. This paper makes the following contributions:

1. Introduce the problem of ontology-aware keyword search among XML-based EMR docu-

ments, which can be extended to general XML documents.

2. Define the semantics of what constitutes a result and how the results are ranked for the

problem of ontology-aware keyword search within the EMR. Weleverage previous work

related to searching XML data.

3. Develop a set of techniques to compute the degree of association between ontological con-

cepts that take into account both taxonomicis-a links as well as more general semantic

relationships between concepts. This is a core component ofour ranking framework.

4. Create and experimentally evaluate algorithms to answerefficiently ontology-aware key-

word queries in EMRs. These algorithms were tested with realEMR data acquired from a

local hospital.
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We note that our study does not address the important privacyissues involved in access-

ing patient information, as required by HIPAA [Hea08]. The policies and principles described

in [LAE+04] could work as a starting point in achieving Hippocratic information discovery.

The rest of this chapter is organized as follows: Section 7.2defines the problem and its se-

mantics. Alternative approaches to compute the semantic relevance of an ontological concept to

a keyword are presented in Section 7.3. In Section 7.4 we present the architecture. Section 7.5

presents the algorithms to implement the approaches of Section 7.3. Section 7.6 presents the ex-

perimental evaluation of XOntoRank. Section 7.7 presents previous work and we conclude in

Section 9.

Notice that the relevant background for this chapter can be found in Section 6.2.

7.2 Problem Definition and Semantics

XML data: Our data collection is a setD = {T1, . . . , Tn} of XML documents. We view an XML

document as a labeled treeT . Each nodev ∈ T has:

a. A textual descriptionv.text, which is the concatenation of its tag name, attribute names

and values, and text content, and

b. An optional ontological referencev.onto, which typically consists of an integer codev.onto.system

for the referenced ontological system (e.g., SNOMED) and aninteger codev.onto.concept

for the specific concept (e.g.,“Asthma”).

Nodes with ontological reference are calledcode nodes. The set of ontological systems refer-

enced by nodes inD is called ontological systems collectionO = {O1, . . . , Os}.

For instance, the node of Line 39 in Figure 9.1 hasv.text=“value xsi:type=“CD” code=“195967001”

codeSystem=“2.16.840.1.113883.6.96” codeSystemName=“SNOMED CT” displayName=“Asthma”,

v.onto.system = 2.16.840.1.113883.6.96, andv.onto.concept = 195967001. Note that some

attribute values like code strings are not included inv.text since these are unlikely to be used in a

query keyword or in ontology reference words from. An expertspecifies the attributes that should

not be included in the textual description.
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In the algorithms presented in this paper we ignore ID-IDREFedges as well as inter-document

references, since we build on tree search algorithms. However, the techniques we use to incorpo-

rate ontological information are straightforwardly applicable to graph search algorithms as well

(i. e. when ID-IDREF edges are considered [HPB03]).

Keyword Search: A keyword queryQ is a set{w1, . . . , wm} of keywords. Previous work, which

ignores ontological references, has generally defined the results as subtrees of the XML documents

that contain all query keywords (see Section 7.7 for an overview of related work). In this work

we adopt the result semantics of XRANK [GSBS03], which is a popular representative of this

class of works, and extend it to account for ontological references. Any other system could be

extended in a similar way. The key extension is that instead of requiring keywords to be contained

in the nodes of the result subtree, we require that the resultsubtree has nodesassociatedwith

every query keyword. LetNS(v,w) (Node Score), whose computation is explained later, be the

association degree of a nodev with respect to a keywordw which is directly contained inv or is

associated tov through an ontology. The result ofQ for a documentT ∈ D is defined as follows.

Let R0 = {v|v ∈ T ∧ ∀w ∈ Q∃u ∈ (Desc(v) ∪ v)(NS(u,w) > 0)} be the set of elements

that are, themselves or through their descendant nodes, associated to all query keywords ofQ.

Desc(v) is the set of descendants ofv in T .

The result of the queryQ is defined as:

Result(Q) = {v|∀w ∈ Q,∃u ∈ (Desc(v)∪ v)(NS(u,w) > 0∧¬∃t ∈ Desc(v)(t ∈ R0))}

(7.1)

Intuitively, a resultv is an element that has sub-elements associated with each of the query

keywords, but no sub-element is associated with all keywords. Note thatResult(Q) is a subset of

R0. The latter condition ensures we do not generate non-specific results.

For instance, if queryq=[“asthma”, “medication”] is executed on the document of Fig-

ure 9.1, we get the XML fragment depicted in Figure 7.1, beingthe most specific sub-element

in the CDA document that contains both terms in the query. Note that in the case, both terms

are actually contained in the XML fragment. In general, though, the terms need not be in the

fragment, but may be associated with nodes in the fragment through the ontology.
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Listing 7.1: XML Fragment representing the answer to queryq=[“asthma”, “medica-
tions”]

<Observation>
<code code="84100007" codeSystem="

2.16.840.1.113883.6.96"
codeSystemName="SNOMED CT" displayName="

Medications"/>
<value xsi:type="CD" code="195967001" codeSystem=

"2.16.840.1.113883.6.96" codeSystemName="SNOMED CT
"

displayName="Asthma">
<originalText>

<reference value="m1"/>
</originalText>

</value>
</Observation>

Score of results: As mentioned above,NS(v,w) is non-zero if a nodev directly containsw or

is associated tow through an ontological system. This score is propagated to other nodes of the

XML document as follows. Thepropagated scorePS(v,w, u) of an elementv with respect to

keywordw, assuming that a sub-elementu of v hasNS(u,w) > 0, is

PS(v,w, u) = decayl ·NS(u,w) (7.2)

wherel = distance(v, u) is the number of containment edges betweenv andu. Decay is set

between0 and1 to account for the specificity of a result.

Given that multiple sub-elements ofv may be associated withw, we use the following formula

for the overall score ofv givenw

Score(v,w) = maxu∈Desc(v)∪vPS(v,w, u) (7.3)

Other monotonic aggregation functions are also possible. The score of a result elementv for

Q is

Score(v,Q) =
∑

w∈Q

Score(v,w) (7.4)

Again other monotonic aggregation functions are possible.
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Association degree of node to keyword:The association degreeNS(v,w) of nodev ∈ T ,

T ∈ D with respect to a keywordw, given documents collectionD and an ontological systems

collectionO is a combination of its IR score with respect tow and its ontological association to

w.

NS(v,w) = max







IRS(v.text, w),

OSv.onto.system(CN(v.onto), w)






(7.5)

whereIRS(d,w) is the IR score of a documentd given keywordw within the collectionD. D is

an implicit input toIRS(·) since popular IR functions [Sal89, RW94a, Sin01] use the document

frequency (df ) which is computed overD. We view each XML element as a document to apply

the IR function. In our experiments we use the BM25 [RW94a] function.

OSv.onto.system(u,w) is the association degree (OntoScore) of a node (concept)u ∈ Oi, where

Oi is specified byv.onto.system, to keywordw, and is computed by exploiting the relationships

in Oi, as explained in detail in Section 7.3.

CN(v.onto) returns the concept node with codev.onto.concept in the ontological system

specified byv.onto.system. For instance, consider the document of Figure 9.1 shown in the

Appendix, and the ontological system of Figure 6.2 in Section 6.2. CN(v.onto) for the code

elementv of Line 39 in Figure 9.1 will return the concept node“Asthma” identified with the code

195967001 in Figure 6.2 in Section 6.2.IRS(·) andOS(·) are normalized to[0, 1].

The intuition of (7.5) is that a nodev may be associated with a keywordw either through its

textual descriptionv.text or through its ontological referencev.onto. We then pick the strongest

one. TheOS(·) term of a non-code node is0. Again, alternative monotonic aggregation functions

are possible.

For instance, for the keywordw=“Asthma” assuming nodev of Line 39 in Figure 9.1 has

IRS(v.text, w) = 0.3 and its related SNOMED node u hasOSSNOMED(u,w) = 0.5, its

NS(v,w) would be0.5.
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7.3 Semantic Relevance of Ontological Concepts to Keywords

A key component of XOntoRank is the derivation of semantic relevance of a conceptv in the

ontology to a query keywordw. Since nodes in an XML document may refer to concepts in the

ontology, this derivation essentially quantifies the semantic relevance of an XML element to a

query keyword based on terminological definitions in the ontology.

The Semantic Web community has developed various mechanisms to determine semantic sim-

ilarity of concepts in an ontology (see Section 7.7 for a description of Related Work). However,

most existing measures do not use relationship informationbetween concepts in a general manner.

The main advantage of ontologies like SNOMED over simpler taxonomies is that they describe

various kinds of relationships between concepts, which canbe used to calculate relevance mea-

sures.

We view the ontology as a graph, where the nodes in the graph represent concepts, and edges

represent relationships between concepts. Our approach for calculating the semantic relevance of

a concept to a query keyword is inspired by the idea of authority flow. Initially, each concept in

the ontology is granted a certain authority based on how strongly it is related tow, as measured

by its IR score. Authority then flows from these concepts to other concepts in the ontology based

on certain rules. Note that the authority flow occurs in a recursive fashion and hence, it can affect

descendants and not only direct children of the involved elements.

In this section, we examine various strategies for directing the flow of authority, based on

different views of the ontology. For simplicity of presentation we consider a single ontologyO0

and omit theO0 subscript atOS(). We use the overloaded functionOS(v,w, x) to represent the

relevance of conceptv to keywordw due to the occurrence ofw in another nodex in the ontology.

It is:

OS(v,w) = maxx∈O0
(OS(v,w, x)) (7.6)

Other monotonic aggregation functions are possible.
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7.3.1 View Ontology as Undirected, Unlabeled Graph

This strategy treats the ontology as an undirected graph, with no distinction among the different

kinds of relationships between concepts. Based on this view, we defineOS(v,w, x) as:

OS(v,w, x) = IRS(x,w) · decayl (7.7)

wherel = distance(v, x) and0 ≤ decay ≤ 1.

7.3.2 View Ontology as Taxonomy

This strategy only considers the taxonomic portion of the ontology, i.e. we only consideris-a

links between concepts for calculatingOntoScore. Theis-a links form a Directed Acyclic Graph

(DAG), since cycles are not permitted based on subclass relationships. OS(v,w, x) is computed

recursively using (7.6) and the following two cases:

i x is a superclass ofv, i.e., there is a path fromv to x in the DAG formed by theis-a links.

In this case,

OS(v,w, x) = IRS(x,w)

The intuition behind this definition is that sincex is a superclass ofv, any query forx is

completely and logically satisfied byv. For example, letv be“Asthma”, w be“Bronchus”

andx be “Disorder of Bronchus” (“DOB” ) in the ontology fragment of Figure 6.2. It is

OS(“Asthma”, “Bronchus”, “DOB”) = IRS(“DOB”, “Bronchus”) . An extreme case of

this rule is whenx is the same asv. In this case,OS(v,w, v) = IRS(v,w).

ii x is a direct subclass ofv, i.e. there is anis-a link from x to v. In this case,

OS(v,w, x) = IRS(x,w) · (1/n)

wheren is the number of subclasses ofv. The intuition behind this definition is that sincex

is a subclass ofv, any query forx is partially satisfied byv. Our heuristic for calculating the
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extent of the partial satisfaction is based on the number of subclasses ofv, similarly to the

authority flow distribution in [BHP04]. For example, letv be“Disorder of Bronchus”, w be

“Asthma” andx be“Asthma” in Figure 6.2. In the actual ontology, the concept“Asthma”

has 26 direct subclasses. Hence, in this case,OS(“Disorder of Bronchus”, “Asthma”,

“Asthma”) = IRS(“Asthma”, “Asthma”) *(1/26).

7.3.3 Including the Relationships between Concepts

To handle different kinds of relationships, we interpret concepts and relationships in SNOMED

using description logics [Baa03]. Many biomedical ontologies, including SNOMED, belong to

a category of Descriptions Logics calledEL+ [BLS06]. Concepts in this logic are defined as

follows:

C ::= A|T |C ⊓D|∃r.C (7.8)

whereA ranges over atomic concept names

T is the top concept

r ranges over relationship names

C,D are concept names

⊓ is the concept intersection operator

The ∃r.C construct is an existential quantification operator that declares the existence of a

relationship (or role) to a conceptC. We can also view∃r.C as a concept where every instance of

the concept is related by roler to an instance of a conceptC. We call such a concept anexistential

role restriction, since it describes a constraint or restriction on the values of a relationship. (7.8)

describes the different ways in which a concept can be definedin theEL+ logic. TheEL+ logic

also defines subclass (or concept inclusion) relationshipsbetween concepts asC ⊑ D.

Some examples ofEL+ expressions from Figure 6.2 are:
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Disorder of Thorax⊑ Finding of Region of Thorax

Asthma Attack⊑ Asthma

⊓ ∃Finding-site-of.Bronchial Structure

Consider the last statement, which says that“Asthma Attack” is a concept that is a subclass of

Asthma and that has afinding-site-ofrelationship to the“Bronchial Structure” concept. In other

words, any instance of“Asthma Attack” (e.g. the“Asthma Attack suffered by”a specific patient)

is also an instance of“Asthma” and is found in some instance of“Bronchial Structure”.

This description logic view allows us to describe every concept as a subclass of a set of atomic

concepts or existential role restrictions. Hence, we can reduce a graph with different kinds of

relationships into one that has only subclass oris-a relationships.

For example, consider an ontology graph fragment depicted in Figure 7.1. A description logic

view of this ontology would appear as shown in Figure 7.2. Thedotted links between concepts

representis-a links, meant to indicate the relationship between a conceptX and a∃r.X for any

role r.

Figure 7.1: Sample Ontology Fragment.

We now calculateOS(v,w, x) in this logically transformed ontology graph using an extension

of the strategy of Section 7.3.2. In particular, if there is a“dotted link” betweenx andv, i.e. one

of x or v is of the formC, and the other is of the form∃r.C, then,

OS(v, x,w) = OS(x,w) · α (7.9)
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Figure 7.2: Ontology’s Description Logic View.

Figure 7.3: OntoScore Propagation.ni is the number of subclasses of nodei.

Here,α represents the decay in semantic relevance when traversinga dotted link between a

conceptC and a role restriction∃r.C.

As an example, assuming thatOS(A,w,A) = q, then theOntoScorewould propagate as

shown in Figure 7.3 to different nodes in the ontology.

We provide a syntactic name to the concepts corresponding toexistential relationship restric-

tions so as to allow calculatingIRS(x,w) whenx is a role restriction concept of the form∃r.C.

The syntactic name in our implementation is“Exists”+r+C . For example, the relationship“find-

ing site of” between“Asthma Attack” and“Bronchial Structure” in Figure 6.2 gives rise to the

new existential role restriction named“Exists finding site of Bronchial Structure”.

7.4 Architecture and System Overview

In this section we present the architecture and overview of the XOntoRank system.
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7.4.1 XOntoRank Architecture

Figure 7.4 shows the architecture of XOntoRank, which is divided into two stages. The pre-

processing phase consists of the Index Creation Module, which takes as input the corpus of XML-

formatted EMR documents to be indexed (CDA in our experiments), the ontological system(s)

referenced in the EMR documents and the set of all keywords (the vocabulary) to be indexed.

Figure 7.4: XOntoRank Architecture.

The Index Creation Module generates theXOntoRank Dewey Inverted Lists (XOnto-DILs)

which are inspired from the Dewey Inverted Lists of XRANK [GSBS03]. XRANK is based on

ElemRank, a variation of the PageRank algorithm that exploits the structure and containment edges

of XML documents. The key difference is that instead ofElemRank(v) we storeNS(v,w), that

is, the relevance score of nodev with respect to keywordw given the XML documents and the

ontological systems, defined in (7.5).ElemRankcould be incorporated inNS(v,w) but our CDA

documents have no ID-IDREF edges and henceElemRankwould make no difference.

For example, Figure 7.5 shows the Dewey ID’s generated for a subset of the document of

Figure 9.1. We have truncated the prefix in the Dewey ID’s for space constraints. Figure 7.6

shows a fragment of theXOnto-DIL for the same document. Note that the first component of

each Dewey ID is the document ID. The process to buildXOnto-DILs is described in detail in

Section 7.5.2.
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Figure 7.5: Dewey IDs for CDA Document.

Figure 7.6: Dewey Inverted List for CDA Document.
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During the query phase, the Query Module inputs the user keyword query and executes

XRANK’s DIL algorithm using the XOnto-DILs generated in thepre-processing phase. The

Database Access Module then obtains the appropriate XML fragments addressed by the result-

ing Dewey ID’s.

7.4.2 Building the XOnto-DILs

In this section we describe how theXOnto-DILs are computed for the various semantics described

in Section 7.3. We computeXOnto-DILs for all words in the Vocabulary, defined as the union of

words in the ontological systemsO1, . . . , Os and in documents inD. As above, we assume there

is a single ontological systemO0. XOnto-DILs are computed in three stages:

Full-text Indexing: First, we build a full-text index of the CDA documents and theontology. This

phase is common to all the algorithms, and computes the TF-IDF score.

OntoScore Computation Stage:Second, we build anOntoScore Hash MapM , that stores the

OS(v,w) for every pair(v,w) of concept nodev and keywordw with OS(v,w) > threshold,

wherethresholdis a predefined value used to improve the efficiency of building M . We chose a

thresholdthat could give us a balance of space and quality. The detailsof computingM , as well

as the criteria to choosethresholdare presented in Section 7.5.

DIL Creation: Finally, we compute the XOnto-DILs for the documents inD. TheNS(v,w)

for each pair(v,w) of nodev ∈ Ti, Ti ∈ D, w ∈ V ocabulary is computed by (7.5), where

OS(CN(v.onto), w) is retrieved from Hash MapM . We show howM is computed in the next

section.

7.5 OntoScore Computation Algorithms

In the next sections we show how the Hash MapM is computed during the OntoScore stage for

each of the OntoScore computation methods described in Section 7.3.
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Listing 7.2: Compute OntoScore Hash Map.

1procedure ComputeOntoScore(Vocabulary V , SNOMED Ontology
Graph O)

2for each keyword w in V
3begin
4 /* Find all concept nodes in O that contain w
5 S ← getRootSet(w, O)
6 for each concept s ∈ S
7 begin
8 do BFS from s
9 for each accessed concept node v

10 begin
11 Compute OS(v, w) /* By Eq. 7.7 */
12 /* If expanding u→ v, OS(v, w) = OS(u, w) · decay */
13 if M.get(v, w) < OS(v, w)
14 M.put((v, w), OS(v, w))
15 else
16 Stop BFS expansion for v
17 end if
18 end
19 end
20end

7.5.1 Ontology as Undirected Graph

If a nodev ∈ Oi can be reached from multiple concept nodesu1, . . . , ux, then we assign tou

the maximum score that any ofu1, . . . , ux would assign. Again other aggregation functions are

possible.

OS(v,w) = maxi=1...x(OS(v,w, ui)) (7.10)

The algorithm to compute the Hash MapM in theOntoScorephase is depicted in Listing 7.2.

An inefficiency of Listing 7.2 is that it does breadth-first-search (BFS) starting from all nodes

that contain keywordw (Line 4). This can potentially lead to traversing the same node multiple

times, once for each BFS instance. This can be avoided using the following observation:

Observation 1: If multiple BFS instances arrive at a node, then we only need to propagate one

value, which corresponds to the aggregate function, that is, we merge the met BFS expansions into
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one with the aggregate node score.

The reason is that the score propagates by multiplying by decay for each level. Hence, ifv has

scoref(OSi, OSj) wheref(·) is the combining function (max in (7.10)), a nodeu with distancel

from v will have scoref(OSi, OSj) · decayl. If we would ignore this observation and do the BFS

expansions independently,u would get scoref(OSi · decayl, OSj · decayl). The two quantities

are equal for any reasonable combining functionf(·) like max, sum, andproduct.

The above observation is implemented by doing the followingchanges to Listing 7.2: We

replace Line 4 by the following:

4 do BFS in parallel from s

and insert the following lines after Line 6:

7 if v already has an OS score then

8 Stop expanding v for expansion instance that produced

the smallest OS(v, w)

Note that to do BFS in parallel we insert all nodes inS in the BFS queue and then do BFS as

usual. To halt the expansion of a nodev (Line 6.2 in the correction above) that has already been

processed and its adjacent nodesC have already been inserted in the queue, we maintain pointers

from v toC in the queue, and remove from the queue the nodes inC whenv’s expansion is halted.

7.5.2 Ontology as Taxonomy

As mentioned in Section 7.3.2, we restrict the links used to computeOntoScore, by only consid-

ering theis-a and inverse-is-aedges in SNOMED. Hence, the first modification is to change the

loop in Line 3 of Listing 7.2 to restrict the BFS to only followthese two types of relationships,

capturing only the taxonomic portion of the ontology.

We also modify the way in whichOS(v,w) is computed (Line 5 of Listing 7.2), replacing the

formula in (7.7) by the cases exposed in Section 7.3.2. In particular, if we expand from nodeu

with OntoScoreOS(u,w) to nodev, then:
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• if u
is−a−−−→ v thenOS(v,w) = OS(u,w)

InDegreeis−a(v)

• if u
is−a←−−− v thenOS(v,w) = OS(u,w)

whereInDegreer(v) is the number of incoming relationship edges of typer.

The rest of the algorithm stays as specified in Listing 7.2, using the same threshold constraints

and the same optimization described inObservation 1.

7.5.3 Ontology as Collection of Relationships

In this case, as mentioned in Section 7.3.3, all relationship edges are considered. We enumerate

below how the expanded nodes are assignedOntoScoreswithout having to physically create the

ontological graph with the existential role restrictions described in Section 7.3.3. The assigned

OntoScoresare equal to the ones computed by building the ontological graph described in Sec-

tion 7.3.3.

Hence, the BFS expansion is the same as in Section 7.4.1. TheOntoScorecomputation of

Line 5 is changed as follows, to reflect the approach described in Section 7.3.3. If we expand from

nodeu with OntoScoreOS(u,w) to nodev, then:

• if u
is a−−→ v thenOS(v,w) = OS(u,w)

InDegreeis a(v)

• if u
is a←−− v thenOS(v,w) = OS(u,w)

• if u
r−→ v, r 6= is a thenOS(v,w) = a · OS(u,w)

InDegreer(v)

• if u
r←− v, r 6= is a thenOS(v,w) = a · OS(u,w)

Note that the denominatorInDegreer(v) is the in-degree of the existential role restriction

∃r.v.

7.6 Experiments

In this section we experimentally evaluate the XOntoRank system and show the feasibility of both

the Preprocessing and Query phases. The experiments were performed on a Pentium 4, 2.8 GHz
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PC with 1GB RAM. XOntoRank was implemented in Java JDK 5.0, using DOM for XML parsing

and Microsoft SQL Server 2000 for the persistent storage of indexes. To access and navigate

SNOMED CT, which takes multiple GBs of disk space, we used theAPI provided by the National

Library of Medicine (NLM) Unified Medical Language System (UMLS) [NLM08]. This API

provides the necessary methods to query the ontology and dictionary and obtain the concept code

and display name for a particular string. We used this API as ablack box in both the preliminary

CDA document generation and the Index Creation Module of XOntoRank.

Table 7.1: Number of results marked as relevant for each query. User marks up to 5
results.

Query XRANK Graph Taxonomy Relations
q1 “cardiac” “arrest” 5 5 5 5
q2 “cardiac” “coarctation” 5 5 5 5
q3 “neonatal” “cyanosis” 3 3 0 3
q4 “carbapenem” “ibuprofen” 0 3 0 3
q5 “supraventricular arrhythmia”

“pericardial effusion”
0 0 1 0

q6 “regurgitant flow” “amiodarone” 0 1 1 2
q7 “supraventricular arrhythmia”

“acetaminophen”
0 0 0 0

AVERAGE 1.875 2.429 1.714 2.571

In Section 7.6.1 we quantify the differences in the ranking for the alternative OntoScore com-

putation techniques of Section 7.3. We also present resultsof a user survey that we performed

with the aid of a medical doctor and researcher. In Section 7.6.2 we measure the performance of

the XOntoRank system in terms of index creation and query execution times. Some screenshots of

the XOntoRank system are available at the project homepage [Flo08]. The system was not made

available to the public due to patient record privacy concerns.

CDA Documents Generation: We developed a program to convert automatically the relational

anonymized EMR database of the Cardiac Division of a local hospital into a set of XML CDA

documents. Each CDA document represents the medical recordof a single patient conglomerating

all her hospitalization entries. 3 492 such documents were created, each being on average 47KB
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with 1 133 XML elements. Ontological references were inserted for every XML node whose

value matched one of the concepts in SNOMED. This resulted in2 454 CDA documents with

ontological references to SNOMED with an average of 151 references per document.

7.6.1 Quality Results

We performed two quality experiments. The first one comparesthe distances between the re-

sult lists of the proposed search approaches for a real queryworkload, and the second one is a

proof-of-concept user survey which compares the user satisfaction for these approaches. The four

approaches –baseline plus the three described in Section 7.3– are denoted asXRANK(baseline,

no use of ontology),Graph (Section 7.3.1),Taxonomy(Section 7.3.2), andRelationships(Sec-

tion 7.3.3).

Distance between Top-k lists: We performed a series of two-keyword queries obtained from

domain expert collaborators. The second column of Table 7.1shows a sample of these queries.

Note that some keywords are phrases enclosed in quotes. We use the top-k Kendall Tau [FKS03]

measure to determine the distance between the lists and hence test the effects of each individual

algorithm. Table 7.2 reports the Kendall Tau values fork = 20 and penalty parameterp = 0.5 (see

[FKS03] for definition ofp), normalized over 20 queries. We observe the large distancebetween

the result ofGraphand theRelationshipsalgorithm; this was expected since the expansion on the

ontology graph achieved by theGraphalgorithm is less restricted than theRelationshipsalgorithm,

which extends theTaxonomyexpansion. For this reason, the distance betweenTaxonomyand

Relationshipslists is small.

Table 7.2: Normalized Kendall Tau values for four approaches.

XRANK Graph Taxonomy Relationships
XRANK 0.000 0.171 0.101 0.209
Graph 0.171 0.000 0.116 1.000
Taxonomy 0.101 0.116 0.000 0.171
Relationships 0.209 1.000 0.171 0.000
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Quality Survey: We conducted a survey to determine the quality of each of the four algorithms

we presented. Given the specialized nature of our medical records dataset, which come from a

children’s cardiac clinic, it is hard to find many users to properly evaluate the results. Hence, we

chose to only report, as a proof of concept, the results of a survey on a single domain expert–

medical doctor and researcher knowledgeable in this area–instead of involving non-expert users

who could degrade the reliability of the results.

The results of the survey are shown in Table 7.1. For each query, we presented to the user the

union of the top-5 results from each of the four algorithms. The user was asked to select up to 5

results that he found relevant to the query. For this experiment, we setdecayto 0.5,thresholdto

0.1 andα to 0.5.

For queriesq1 andq2, the top-5 results obtained byXRANKare also the top-5 results for the

ontology-enabled algorithms, because the query keywords appear frequently in the CDA docu-

ments. Forq3, XRANKonly generated three results –all of which were marked as relevant–, but

only one of these appear in the top-5 list of the other three algorithms. For the remaining queries,

XRANKdoes not produce any results, since there is no CDA document with direct occurrences

of both keywords (or phrases). In contrast, the ontology-enabled algorithms find relevant results

to the queries by mapping the keyword’s concept to other concepts present in the documents.

For q4, bothGraphandRelationshipsalgorithms produce the same results by expanding through

non-taxonomical edges in the SNOMED ontology.

For q5, only the Taxonomyalgorithm produced a result that was considered “relevant”by

the domain expert. This result did not reach the top-5 ofGraph andRelationshipsalgorithms,

because the expansion through non-taxonomical concepts produced more compact results –single

XML elements that mapped a concept to both query keywords– with higher score, but those were

not considered relevant by the domain expert.

For q6, the Relationshipsalgorithm produces better results, because it combines theresults

of both theGraph and Taxonomyalgorithms; the expansion over the ontology for theGraph

algorithm decayed before it could reach the taxonomical result found by theTaxonomyandRela-

tionshipsalgorithms.
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Note that in some cases, the semantic knowledge representedby the ontology might not be

sufficient to provide high quality Information Retrieval over EMR’s. For instance, consider query

q7 =[“supraventricular arrhythmia” “acetaminophen”]. The scores of zero for the ontology-

assisted algorithms in Table 7.1 are due to the following reason: All the results of these algorithms

map the concept“acetaminophen”to the concept“aspirin” . In the context ofpain control, these

two concepts are indeed related, because they both provide relief of pain. But in this specific case,

the keyword“supraventricular arrhythmia”implies that the target context of this query is notpain

controlbutcardiology, and in this context, however, these drugs are generally unrelated.“Aspirin”

has cardiac benefits that are not seen with“acetaminophen”, due to the differing properties of the

two drugs.

The findings of Table 7.1 are summarized as follows. The quality of RelationshipsandGraph

is generally superior to the baselineXRANKalgorithm, which means that when the keywords are

not present in a document, the ontology-enhanced algorithms are capable of finding “good” results

to satisfy the given queries. TheTaxonomyalgorithm can be slightly worse thanXRANK, since the

former could return results where a query keyword is matchedto a far ancestor concept, because

Taxonomydoes not penalize the ontology expansion when followingis-a (parent) edges.

7.6.2 Performance Results

Pre-processing phase:Building XOnto-DIL lists for all keywords in the SNOMED ontology

was not feasible given that they are in the order of millions,the keywords vocabulary cannot be

extracted from the provided SNOMED API, and the API is slow given that it is IO-intensive (note

that SNOMED is a multi-gigabyte ontology). Note that there is a method to get all occurrences

of a specific keyword, but there is no vocabulary of all keywords in the database. Hence, we

indexed a subset of this universe of keywords which let us execute a large number of queries

and estimate reliable projections of index execution time.In particular we built XOnto-DIL lists

for all the keywords in the CDA documents and for all keywordscontained in a concept, up to 2

relationships away from a concept referenced in a CDA document (more than 400 unique concepts

are referenced in our CDA collection). The above rules translated to the indexing of more than
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40 000 keywords directly present in the documents and more that 100 000 concepts from the

SNOMED ontology. To navigate SNOMED efficiently, we loaded the appropriate fragment in

main memory, thus reducing the access to SNOMED flat files. However, the SNOMED navigation

was still too slow. In the future, we plan to work on more efficient ways to navigate the ontology

to build the XOnto-DIL lists, as discussed in Section 9. We set decayto 0.5,thresholdto 0.1 and

α to 0.5.

Table 7.3 presents the average creation time, average number of postings (rows in Figure 7.6)

and size of a XOnto-DIL list of a keyword for each of the four approaches. For the average

creation time, we exclude the time taken to navigate the SNOMED ontology, since it can take up

to several minutes for frequent keywords, given the currentimplementation of the SNOMED API.

We observe that the average creation time forTaxonomyis much larger thanGraph. This is due

to the fact that the expansion inGraphdecays continuously, whereas the expansion forTaxonomy

decays quickly only for descendants, but may expand indefinitely for parent relationships. We also

see how theGraphand bothRelationshipsapproaches generate the largest number of XOnto-DIL

entries, given the fact that the navigation does not decay for the one direction ofis-a edges. We

observe a high difference between the number of postings fortheTaxonomyapproach compared

to theRelationshipsalgorithm, giving evidence of the large number of concepts mapped through

the ontology graph. Note that the size of the XOnto-DIL entries can be reduced by appropriately

adjusting thethresholdand/ordecayparameters.

Table 7.3: Average Size for XOnto-DIL Entries.

Algorithm
Per Keyword

Avg. Creation Time (ms) Postings Size (KB)
XRANK 1.0 1 435.7 39.3
Graph 4 143.5 20 906.7 571.7
Taxonomy 10 743.5 5 511.9 150.7
Relationships 13 485.3 46 979.5 1 284.6

Query Phase:Figure 7.7 presents the average execution times for querieswith varying number

of keywords, fork = 10. The time forRelationshipsalgorithm is higher due to the larger number

of nodes in the XML document that are ontologically related to the query keywords.
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Figure 7.7: Average Execution Time for Keyword Queries withVarying Number of Key-
words.

7.7 Related Work on Leveraging Ontologies for Information Retrieval

Various query expansion strategies (e.g. [XC96]) have beenproposed for general as well as bio-

logical documents search. For instance, the QEEF framework[WR05] uses the UMLS ontology

to suggest additional terms. [The03, STW03, STW05], assignweights on the ontology edges by

comparing the distributions of the contents of the two nodesand of their combination on a very

large dataset like the Web. This approach, which complements our work, is too time-consuming

for large ontologies like SNOMED. The ontological associations are exploited by expanding the

XXL query. It differs from our approach in which XXL considers symmetric associations between

ontology concepts, whereas we use the authority flow model. [KK05, KKJ06] expand the query

by matching the ontology to the document DTD. All the above techniques are proposed for struc-

tured XML queries. For our case of keyword queries, query expansion is not appropriate, since it

leads to non-minimal results (see [HP02] for a definition of aminimal keyword search result) —

the same concept appears multiple times in a result.

In Information Retrieval, two approaches have addressed the problem of computing similarity

between two concepts. Initially, statistical correlations between terms were exploited [Les69].

With the conception of ontologies and semantic networks like WordNet [Fel98], a graph-oriented

approach was adopted, focusing on the number, depth and direction of the edges between two
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concepts [RMBB89]. A more recent approach has combined these two techniques [Lin98, Res99]

by taking into account the graph structure and statistics.

In the Semantic Web, various approaches have been suggestedto measure semantic similarity

between different artifacts. Most similarity measures such as [LH03, KC06] focus only on sub-

sumption relations (i.e. hierarchical“is-a” links in an ontology). Maguitman et al. [MMRV05]

propose an information theoretic measure of similarity that also considers non-hierarchical links.

However, their approach requires the presence of a large number of instances to determine the

similarity between concepts. In the medical domain, most ontologies, including SNOMED, only

describe concepts and not instances. Hence, their approachcannot be used. The notion of authority

flows is also similar to the spreading activation scheme thatis used in information retrieval [Cre97]

and web mining [GVD05]. A novel aspect of our approach is the use of strategies based on de-

scription logics and the spreading of activation from the ontology into the XML documents.

7.8 Conclusions and Future Work

We have introduced the problem of ontology-aware keyword search on XML-based EMR docu-

ments, which contain references to clinical ontological concepts. We defined semantics for this

problem, where the ontological references, as well as the relationships within the ontology are

used in creating and ranking the query results. Alternativeviews of the ontology were consid-

ered. We created efficient algorithms, building on previouswork, to generate the top-k query

results. The algorithms were evaluated experimentally, showing that the precision and recall of

our algorithm is better than the baseline algorithm.

A critical future direction is the optimization of the indexcreation process. Our current index

creation approach relies on the API and data provided by [SNO08], which are based on flat files.

Implementing approximation and early pruning techniques,as well as in-memory representations

of the ontology graphs, may prove useful in scaling to largerontologies and datasets.
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CHAPTER 8

COMPARING TOP-K XML LISTS

8.1 Introduction

Systems that produce ranked lists of results are abundant. For instance, Web search engines re-

turn ranked lists of Web pages. To compare the lists producedby different systems, Fagin et

al. [FKM+04, FKS03] present distance measures for top-k lists that extend the traditional distance

measures for permutations of objects, like Kendall tau [FKM+04] and Spearman’s Footrule [FKM+04].

In addition to ranking whole objects (e.g., Web pages), there is an increasing number of sys-

tems, including XRANK [GSBS03], XSEarch [CMKS03], XKeyword [HPB03], XXL [TW02a,

TW02b], XIRQL [FG01], that provide keyword search on XML or other semi-structured data,

and produce ranked lists of XML sub-trees. In addition, XML lists distance measures can also

be applied to rank-aware extensions [FG01] of XPath and XQuery. Furthermore, these measures

are needed for XML lists aggregation, where the results fromseveral XML search engines can be

aggregated to find the best top-k list for the given lists. [DKNS01] presents the Web page aggre-

gation problem. Clearly, there is a need to have measures to compare the results of such systems

among each other or against the user’s ideal list of results.

Unfortunately, previous distance measures are not suitable for ranked lists of sub-trees since

they do not account for the possible overlap between the returned sub-trees. That is, two sub-

trees differing by a single node would be considered separate objects. For instance, Figure 8.1

shows two top-3 lists of sub-trees produced by two imaginaryXML keyword proximity search

algorithms. TreesTa2 andTb3 only differ by a single node but this is ignored by object-level

distance measures.

In this chapter, we present the first distance measures for ranked lists of sub-trees, and show

under what conditions these measures are metrics. In particular, the distance measures consist

of two components: the tree similarity component and the position distance component. The

former captures the similarity between the structures of the returned sub-trees, while the latter
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captures the distance of the sub-trees in the two lists, similarly to previous object-level distance

measures [FKM+04, FKS03].

Intuitively, our distance measures work in two phases. In the first phase, they find the optimal

(closest) mapping between the two top-k lists of sub-trees, where the distance between a pair of

sub-trees is computed using one of the approaches proposed in previous works, including tree

edit distance [Bil03, Bil05, LCS+04, NJ02], tree alignment distance [Bil03], Fourier transform-

based similarity [FMPP02, FMMP05], entropy-based similarity [Hel07], tag similarity [But04],

and path shingle similarity [But04]. The cost of the optimalmapping between the two lists of

sub-trees represents the tree similarity component.

Next, we compute the position distance component given the optimal mapping, using one of

the previously proposed techniques on measuring the distance between top-k (partial) lists [FKM+04,

FKS03].

In the rest of the chapter we focus on XML trees; however the exact same ideas can be applied

to any type of tree representations. We make the following contributions:

1. Present the first suite of distance measures for ranked lists of sub-trees. Three variants

are presented. The XML Lists Similarity Distance based on Total Mapping (XLS) where

all sub-trees from the first list are mapped to sub-trees in the second, XML Lists Similar-

ity Distance based onTotal Mappingwith position component (XLS-P) which includes a

position component in addition to the XML similarity component and the XML Lists Sim-

ilarity Distance based onPartial Mapping with position component(XLS-PP) where only

adequately similar sub-trees are matched to each other.

2. Prove under what conditions these measures are metrics. As we show, the trickiest require-

ment is the satisfaction of the triangle inequality.

3. Present efficient algorithms to computeXLS, XLS-PandXLS-PPfor two lists of XML sub-

trees.

4. We conducted a study to compare three popular XML keyword proximity search systems:

XRANK [GSBS03],

XSEarch [CMKS03] and XKeyword [HPB03]. We implemented all three systems and
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Figure 8.1: Top-3 trees for query“Ullman Database”.
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report on theXLS, XLS-PandXLS-PPdistances of their results for various datasets and

queries.

The rest of this chapter is organized as follows: Section 8.2presents the background. Sec-

tion 8.3 presents the distance measures for lists of XML trees. Section 8.4 briefly describes our

distance measures for various tree similarity measures described in Section 8.2.1. Section 8.5

describes the normalization issues. Section 8.6 presents algorithms for computing the proposed

XML list distance measures. Section 8.8 presents our experimental evaluation and Section 8.7

presents the related work.

8.2 Background

In this section we briefly discuss various tree similarity measures (Section 8.2.1). We then discuss

some of the popular distance measures for lists of objects (Section 8.2.2) and the conditions that a

measure must satisfy to be considered a metric (Section 8.2.3).

8.2.1 Tree Similarity Measures

In this section we briefly present state-of-art techniques for measuring similarity between trees

proposed in the literature. Any of these similarity measures can be used in our framework. How-

ever, only the measures that are metrics will lead to a distance metric for XML lists, as shown in

Section 8.3.

General Tree Similarity Measures: Several techniques have been proposed in the literature for

measuring the similarity between general trees. Tree edit distance [Bil05, Tai79, YKT05, ZS89]

measures the minimum number of node insertions, deletions,and updates required to convert one

tree into another.

Tree alignment distance [Bil05, JWZ94] is a special case of the tree editing problem, in which

trees become isomorphic when labels are ignored.
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XML-Specific Tree Similarity Measures: Various techniques for measuring the structural simi-

larity between XML trees have been proposed. All of these measures were used to cluster XML

documents based on structure. Jagadish et al. [NJ02] introduced a structural similarity distance

based on tree edit distance, by adding insert-tree, delete-tree operations in order to develop an

edit distance metric that is more indicative of the structural similarity between XML trees. Flesca

et al. [FMMP05] propose a Fourier transform technique to compute similarity. Buttler [But04]

presents a similarity metric based on path-shingles in which the structural information is extracted

from the documents using the Full Paths. Entropy-based similarity [Hel07] is a novel technique

used to compute the structural similarity of semi-structured documents based on entropy. Tag sim-

ilarity is perhaps the simplest metric for structural similarity, as it only measures how closely the

set of tags match between two pages. [WN05] discusses a method to identify duplicate entities in

a XML document which could be used to enhance the tree mappingstep in our distance metrics.

8.2.2 Distance Measures for Permutations

In this section we present some of the most popular and widelyused measures for the distance

between complete lists of objects (permutations). We review Spearman’s footrule and Kendall tau

distance measures [Dia88, FKS03, KG90]. Spearman’s footrule metric is theL1 distance between

two permutations. Formally, it is defined by

F (σ1, σ2) =
∑k

i=1 |σ1(i)− σ2(i)|

whereσ1 andσ2 are the two permutations of lengthk, andσ1(i) denotes theith element inσ1.

Kendall tau metric between permutations is defined as follows: For each pairi, j ∈ P of

distinct members, ifi andj are in the same order inσ1 andσ2, then letKi,j(σ1, σ2) = 0; else

Ki,j(σ1, σ2) = 1. Kendall tau is

K(σ1, σ2) =
∑

{i,j}∈P Ki,j(σ1, σ2).
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8.2.3 When a Distance Measure is a metric

A binary functiond is called symmetric ifd(x, y) = d(y, x) for all x, y in the domain, and is called

regular ifd(x, y) = 0 if and only if x = y. We define a distance measure to be a nonnegative,

symmetric, regular binary function. A metric is a distance measured that satisfies the triangle

inequalityd(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in the domain.

8.3 Distance Measures for Lists of XML Trees

In this section, we first provide some definitions (Section 8.3.1) then present theXLSmeasure (Sec-

tion 8.3.2),XLS-Pmeasure (Section 8.3.3 3.3) and finally theXLS-PPmeasure (Section 8.3.4).

Normalization issues are discussed in Section 8.5.

8.3.1 Problem Definition

The goal of this work is to define and compute the distance between two listsLa, Lb of XML

trees,La = Ta1, Ta2 · · · Tak andLb = Tb1, T b2 · · · , T bk, whereTxi are XML trees. Often, as

is the case with XML proximity search systems, allTai, Tbj are included (obtained by a sequence

of deletes) in a treeT i of a collectionD = T1, · · · , Tn. However, this property is not important

in our definitions. Note that for the case of complete lists (permutations) of subtrees where each

subtree appears in both lists, the problem is reduced to the permutations distance problem which

we discussed in Section 8.2.2. However, this case is not practical since XML search engines return

different XML trees. Hence, we focus on top-k lists.

A total mappingf from La to Lb is a bijection fromLa to Lb. Hence, treeTai is mapped

to Tbj = f(Tai). LetN be the set of all possible total mappings,f from La to Lb. Similarly, a

partial mappingg is a partial function fromLa toLb.

Let TS(T1, T2) be the tree similarity between two treesT1, T2. TS can be the tree edit

distance or another measure as discussed in Section 8.2.TS is normalized in [0,1] as explained in

Section 8.5.1.
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8.3.2 XML Lists Similarity based on Total Mapping

In this section we present our first measure for the distance between two top-k lists of XML trees.

The key intuition is that we extend previous list distance measures that only consider exact map-

pings between the objects of the two lists to also consider approximate mappings. In particular,

we first compute the closest pairwise mappings between the XML trees from the two lists and then

view these mappings as exact mappings and apply list permutation distance measures.

Assumingk elements in each XML list,XLS is defined as follows. First we define the total

mapping similarity distanceMSDT (La,Lb, f) betweenLa andLb for a total mappingf as

MSDT (La,Lb, f) =

∑

i=1···k TS(Tai, f(Tai))

k
(8.1)

That is,MSDT is a measure of how “tight” the total mappingf is. Notice thatMSDT (La,Lb, f)

takes values in [0,1], sinceTS is also in [0,1] and we divide byk.

We next define the minimum total mappingfminT as the total mapping betweenLa andLb

with minimumMSDT (La,Lb, f). It is,

fminT = argminfMSDT (La,Lb, f) (8.2)

that is,argminf is thef that minimizesMSDT .

GivenfminT , we define the minimum total mapping similarity distance,

MinMSDT (La,Lb) = MSDT (La,Lb, fminT ) (8.3)

Definition 1: The XML Lists Similarity based on total mapping (XLS) between XML listsLa,

Lb is the minimum total mapping similarity distance. It is:

XLS(La,Lb) = MinMSDT (La,Lb) (8.4)

Notice thatXLS(La,Lb) is in [0,1] sinceMinMSDT (La,Lb) is in [0,1].

Measures forMinMSDT (La,Lb): The tree similarity,TS which is used to computeMinMSDT (La,Lb)

can be any of the tree or XML similarity measures discussed inSection 8.2.1. The only constraint

(as we show in Theorem 8.3.1) is that the measure used must be ametric ifXLS is to be a metric.
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Theorem 8.3.1 XLS is a metric if the tree similarity measure employed,TS, is a metric.

Proof: It is straightforward thatXLS is nonnegative

(XLS(La,Lb) ≥ 0), symmetric (XLS(La,Lb) = XLS(Lb,La)) and regular (XLS(La,La) =

0) since this holds for tree similarity measure,TS which is a metric.

We need to prove the triangular property, that is, for any tree listsLa, Lb, Lc prove that:

XLS(La,Lc) ≤ XLS(La,Lb) +XLS(Lb,Lc) (8.5)

To do so, we will prove the triangular property forMinMSDT (·, ·). That is we need to prove

that:

MinMSDT (La,Lc) ≤MinMSDT (La,Lb) +MinMSDT (Lb,Lc) (8.6)

Prove triangular property for MinMSDT:From Equations 8.1 and 8.3 (we skipk in denominator

of Equation 8.1 throughout the proof, as it is for normalization purposes and does not affect the

proof correctness):

MinMSDT (La,Lb) = MSDT (La,Lb, fminT
ab)

=
∑

i=1···k

TS(Tai, fminT
ab(Tbi)) (8.7)

wherefminab is the minimum total mapping fromLa to Lb.

Similarly:

MinMSDT (Lb,Lc) = MSDT (Lb,Lc, fminT
bc)

=
∑

j=1···k

TS(Tbj, fminT
bc(Tbj)) (8.8)

MinMSDT (La,Lc) = MSDT (La,Lc, fminT
ac)

=
∑

i = 1 · · · kTS(Tai, fminT
ac(Tai)) (8.9)

Hence, from Equations 8.7, 8.8 and 8.9, proving Equation 8.6is equivalent to proving:

∑

i=1···k

TS(Tai, fminT
ac(Tai)) ≤

∑

i=1···k

TS(Tai, fminT
ab(Tai)) +

∑

i=1···k

TS(Tbj , fminT
bc(Tbj)) (8.10)
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Since the tree similarity measureTS(·, ·) is a metric, it satisfies the triangular property. Con-

sider a treeTai in La that is mapped toTbj = fminT
ab(Tai) in Lb, which is in turn mapped to

treeTcs = fminT
bc(Tbj) = fminT

bc(fminT
ab(Tai)) in Lc. The triangular property forTai, Tbj,

Tcs can be written as:

TS(Tai, fminT
bc(fminT

ab(Tai))) ≤

TS(Tai, fminT
ab(Tai)) + TS(Tbj , fminT

bc(Tbj)) (8.11)

Summing Equation 8.11 over allTai’s in La, and keeping in mind thatfminab, fminbc are

bijections, we get

∑

i=1···k

TS(Tai, fminT
bc(fminT

ab(Tai))) ≤

∑

i=1···k

TS(Tai, fminT
ab(Tai)) +

∑

j=1···k

TS(Tbj , fminT
bc(Tbj)) (8.12)

The left hand side of Equation 8.12 is the total mapping similarity distanceMSDT (La,Lc, f ′),

wheref ′(·) = fminT
bc(

fminT
ab(·)). We know from Equation 8.9, thatfminT

ac gives the minimum total mapping similar-

ity distance betweenLa, Lc. That is

MSDT (La,Lc, fminT
ac) ≤MSDT (La,Lc, f ′) (8.13)

Hence,

∑

i=1···k

TS(Tai, fminT
ac(Tai)) ≤

∑

i=1···k

TS(Tai, fminT
bc(fminT

ab(Tai))) (8.14)

From Equations 8.11 and 8.14 we get Equation 8.10 which was our goal.

Note that Theorem 8.3.1 also applies for any XML similarity measure that is a metric, as

explained in Section 8.4.

Example 1: Consider the top-3 listsLa andLb in Figure 8.1. We will illustrate the steps involved

in computingXLS(La,Lb). In this example, we use tree edit distance,TED as the tree simi-

larity measure,TS. We first compute the XML similarity component by finding all possible total

mappings,N = {f1, f2, f3, f4, f5, f6}:
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f1(Ta1) = Tb1, f1(Ta2) = Tb2, f1(Ta3) = Tb3

f2(Ta1) = Tb3, f2(Ta2) = Tb2, f2(Ta3) = Tb1

f3(Ta1) = Tb2, f3(Ta2) = Tb1, f3(Ta3) = Tb3

f4(Ta1) = Tb1, f4(Ta2) = Tb3, f4(Ta3) = Tb2

f5(Ta1) = Tb3, f5(Ta2) = Tb1, f5(Ta3) = Tb2

f6(Ta1) = Tb2, f6(Ta2) = Tb3, f6(Ta3) = Tb1

The normalized tree edit distance (see Section 8.5.1) between each pair of trees inLa andLb

is given by the following matrix:













Tb1 Tb2 Tb3

Ta1 0.00 0.78 0.71

Ta2 0.71 0.58 0.20

Ta3 0.78 0.43 0.58













The total mapping similarity distance of each total mappingin N is calculated by Equation 8.1

as follows:

MSDT (La,Lb, f1) = (0.00 + 0.58 + 0.58)/3 = 1.16/3 = 0.38

MSDT (La,Lb, f2) = (0.71 + 0.58 + 0.78)/3 = 2.07/3 = 0.69

MSDT (La,Lb, f3) = (0.78 + 0.71 + 0.58)/3 = 2.07/3 = 0.69

MSDT (La,Lb, f4) = (0.00 + 0.20 + 0.43)/3 = 0.63/3 = 0.21

MSDT (La,Lb, f5) = (0.71 + 0.71 + 0.43)/3 = 0.63/3 = 0.62

MSDT (La,Lb, f6) = (0.78 + 0.20 + 0.78)/3 = 0.63/3 = 0.59

Hence,f4 is the mapping with the minimum mapping distance. It isXLS(La,Lb) = minMSDT (La,Lb) =

MSDT (La,Lb, f4) = 0.21.
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8.3.3 XML Lists Similarity based on Total Mapping with Position

Component

As we described in Section 8.3.2,XLS takes in to consideration the similarity of XML trees across

each list. This works well in computing a reasonable similarity distance between top-k XML Lists

wherek is relatively small. Whenk is large, it is important to also take in the consideration, the

position of the mapped trees in each list. For example, consider 3 top-k lists of XML treesLa,

Lb andLc whereXLS(La,Lb) = XLS(Lb,Lc) but fminT
ab preserves the correct order (i.e.

fminT
ab(Ta1) = Tb1, fminT

ab(Ta2) = Tb2 and so on) whilefminT
bc maps the trees in reverse

order (i.e.fminT
bc(Tb1) = Tck, fminT

bc(Tb2) = Tck−1 and so on). Ideally, we want the distance

betweenLa andLb to be smaller than the distance betweenLb andLc. Hence, we define a

measure, XML Lists Similarity based on Total Mapping with Position Component (XLS-P ) that

includes the mapping position distance in addition to the mapping similarity distance.

Definition 2: The XML Lists Similarity based on Total Mapping with Position Component

(XLS-P ) between XML listsLa, Lb has two components:

• The XML similarity componentMinMSDT (La,Lb).

• The total mapping position distance component

PDT (La,Lb, fminT ), which is also referred as the position component in this section.

PDT is defined using one of the well known metrics on permutationsas discussed below.

PDT is in [0, 1] as discussed in Section 8.5.2. It is

XLS-P (La,Lb) = a ·MinMSDT (La,Lb) + b · PDT (La,Lb, fminT ) (8.15)

wherea, b are the XML similarity and position component constants respectively. a, b adjust

the relative importance of the two components. Notice thatXLS-P (La,Lb) is in [0,2] since

MinMSDT (La,Lb) andPDT (La,Lb, fminT ) are in [0,1] and constantsa andb are in [0,1].

We choosefminT to minimize the XML similarity component and not the wholeXLS-P ,

because we believe it is more intuitive to compute the distance component based on the tightest

XML similarity mapping rather than mixing the two components.
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Note that other functions can be used to combine the contribution of the two components, as

we discuss below.

Measures for XML Similarity component,

MinMSDT (La,Lb): The tree similarity,TS which is used to computeMinMSDT (La,Lb)

can be any of the tree or XML similarity measures discussed inSection 8.2.1.

Measures for Position component,PDT (La,Lb, fminT ): Note that list permutation distance

metrics (not top-k list distance measures) are used inXLS-P . Given the mappingfminT , we

naturally extend the Spearman’s footrule distance and Kendall tau distance for permutations with

ties [Dia88, FKM+04, FKS03, KG90] as follows:

Position distance (PDTF ) based on Spearman’s footrule metric for permutations, is given by:

PDTF (La,Lb, fminT ) =

k
∑

i=1

∣

∣posLa(Tai)− posLb(fminT (Tai))
∣

∣ (8.16)

whereposLa(Tai) is the position of treeTai in list La. This formula is extended as follows to

consider ties. A set of trees with the same score is called a bucket. The ranked list of results

can be then viewed as ranked list of bucketsB1, B2, · · · , Bn. The position of bucketBi, denoted

pos(Bi) is the average result location within bucketBi. We assignposLa(Tai) = pos(B(Tai))

whereB(Tai) is the bucket ofTai.

Position distance (PDTK) based on Kendall tau metric for permutations considering ties, is

given by:

PDTK(La,Lb, fminT ) =
∑

{i,j}∈P

Ki,j(La,Lb
′) (8.17)

whereLb′ is constructed from listLb when elementTbj is replaced byTai = (fminT )−1(Tbj),

that is,Tbj = fminT (Tai). That is, we assume that an elementTai in La and its corresponding

elementTbj in Lb are the same. Hence, we just havek distinct elements1, 2, · · · , k in both

lists, and the problem of computingPDTK(La,Lb, fminT ) of the two XML lists is same as

computing the Kendall Tau metric of two permutations.P is the set of all unordered pairs of the

k distinct elements.

Hence, there are two variants ofXLS-P :

XLS-PF (La,Lb) = a ·MinMSDT (La,Lb) + b · PDTF (La,Lb, fminT ) (8.18)
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XLS-PK(La,Lb) = a ·MinMSDT (La,Lb) + b · PDTK(La,Lb, fminT ) (8.19)

XLS-P is not a metric: The XML Lists Similarity based on Total Mapping with Position

Component (XLS-P ) is not a metric because the total mapping position distancecomponent

PDT (La,Lb, fminT ) is not a metric. In particular,PDT (La,Lb, fminT ) does not satisfy the

triangular inequality property. This is because the mapping fminT is computed by comparing

XML trees (accounting for possible tree overlaps) and not bycomparing whole objects. To be

more specific, if we consider three lists of (whole) objectsWa, Wb andWc, then fT
ac(·) =

fT
bc(f

T
ab(·)) (wherefT

ac is a total mapping betweenWa andWc) since we can only have “exact”

matches. But if we consider three lists of XML treesLa, Lb andLc, typically fminT
ac(·) 6=

fminT
bc(fminT

ab(·)) since we could have “partial” matches. The following example illustrates

this scenario:

Let La, Lb andLc be the following top-2 lists of XML trees.La = (Ta1, Ta2), Lb =

(Tb1, T b2) andLc = (Tc1, T c2). Now, suppose thatTS(Ta1, T b1) = TS(Ta2, T b2) = TS(Tb1, T c1) =

TS(Tb2, T c2) = TS(Ta1, T c2) = TS(Ta2, T c1) = 0.4 and all other distances (between the re-

maining pairs across the different lists) are 0.6 (and for all x, TS(x, x) = 0). Then, the following

would be the minimum total mappings between each listLa, Lb andLc:

fminT
ab(Ta1) = Tb1, fminT

ab(Ta2) = Tb2 fminT
bc(Tb1) = Tc1, fminT

bc(Tb2) = Tc2

fminT
ac(Ta1) = Tc2, fminT

ac(Ta2) = Tc1

If we assumea = 1 and b = 1, thenminMSDT (La,Lb) = minMSDT (Lb,Lc) =

minMSDT (La,Lc) = 0.4 + 0.4 = 0.8. But, fminT
ab andfminT

bc preserve order (i.e.,Ta1

is mapped toTb1, Ta2 is mapped toTb2 and so on.), butfminT
ac does not preserve order (it maps

Ta1 to Tc2 andTa2 to Tc1). Hence we have

PDT (La,Lb, fminT
ab) = PDT (La,Lb, fminT

bc) = 0.0 andXLS-P (La,Lb) = XLS-P (Lb,Lc).

Now, sincefminT
ac does not preserve order,PDT (La,Lb, fminT

ab) > 0 (in fact the actual value

would be1.0 as it maps the elements in reverse order). So,XLS-P (La,Lc) = 0.4 + 1.0 = 1.4.

This breaks the triangular inequality property sinceXLS-P (La,Lb)+XLS-P (Lb,Lc) = 0.4+

0.4 = 0.8 > 1.4.
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Example 1 (cont’d): Consider the top-3 listsLa andLb in Figure 8.1. We will illustrate the steps

involved in computingXLS-P (La,Lb). As before, we first computef4 –the total mapping with

the minimum mapping similarity distance. It isminMSDT (La,Lb) = MSDT (La,Lb, f4) =

0.21. The normalized Spearman’s footrule position component isPDTF (La,Lb, f4) = 2.0/4.0 =

0.5. Hence,XLS-PF (La,Lb) = 0.21 + 0.5 = 0.71 (assuminga = 1 andb = 1). If the position

distance is calculated using normalized Kendall tau, thenPDTK(La,Lb, f4) = 1.0/3.0 = 0.33

andXLS-PK(La,Lb) = 0.21 + 0.33 = 0.54 (assuminga = 1 and b = 1). The difference

in the two scores is due to inherent differences between the Spearman’s footrule and Kendall tau

metrics.

8.3.4 XML Lists Similarity based on Partial Mapping with Position

Component

The total mapping distance measures in Section 8.3.2 have the drawback that two totally irrelevant

trees from the two lists may be mapped to each other, given that all trees must be mapped between

the two lists. This is unintuitive and may lead to confusing results, especially for the positional

component of the measure. To overcome this drawback, we propose thepartial mappingmeasures,

where trees from the two lists are mapped only if they are adequately similar.

Similarity Threshold: In order to partially map the two lists of XML trees, we specify a threshold

ω, which is set to a value in [0, 1]. Intuitively, we only createmappings between trees of the two

lists whose tree similarity (TS) is up toω. For example, if we want to create only the mappings

between trees that are at most 40% different, then we setω = 0.4. Notice thatTS is also in [0,1]

as described in Section 8.5.1. The thresholdω is chosen given the application’s characteristics. We

consider various values forω in Section 8.8. Note that forω = 1, XLS-PP reduces toXLS-P .

Assumingk elements in each XML list,XLS-PP is defined as follows. First we define the

partial mappingg for a total mappingf and thresholdω.g is a partial function defined only for

XML treesTai with TS(Tai, f(Tai)) ≤ ω. Theng(Tai) = f(Tai). Let Lag be the subset of

La that contains the XML trees that have a mapping forg.
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Next we define thepartial mapping similarity distanceMSDP (La,Lb, g) betweenLa and

Lb given a partial mappingg as:

MSDP (La,Lb, g) =

∑

Tai∈Lag
TS(Tai, g(Tai)) +

∑

Tai∈{La−Lag} c

k ·max(c, ω)
(8.20)

where XML trees that do not get mapped incur a penalty cost,c. Notice thatMSDP (La,Lb, g)

is also in [0,1] sinceTS is in [0,1] and we divide byk ·max(c, ω). Note that penalty cost,c is

also in [0,1].

We next define the minimum partial mappinggminP betweenLa andLb given a threshold,

ω as the partial mapping that has a corresponding total mapping f for thresholdω and has the

minimumMSDP (La,Lb, g). That is,

gminP = argmingMSDP (La,Lb, g) (8.21)

We emphasize thatg must come from a total mapping, in order for the metric properties

defined below to hold.

GivengminP , we define theminimum partial mapping similarity distance

MinMSDP (La,Lb) = MSDP (La,Lb, gminP ) (8.22)

Definition 3: The XML Lists Similarity based on Partial Mapping with PositionComponent

(XLS-PP ) has two components:

a TheXML partial similarity componentMinMSDP (La,Lb).

b Thepartial mapping position distance component

PDP (La,Lb, gminP ), which is also referred as the position component.PDP can be one

of the well known measures (some are not metrics) on top-k lists as discussed below.PDP

is in [0,1] as discussed in Section 8.5.2.

It is:

XLS-PP (La,Lb) = a ·MinMSDP (La,Lb) + bPDP (La,Lb, gminP ) (8.23)
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wherea, b are constants defined as in Section 8.3.2. Notice thatXLS-PP (La,Lb) is in [0,2]

sinceMinMSDP (La,Lb) andPDP (La,Lb, gminP ) are in [0,1] and constantsa andb are in

[0,1].

The same tree similarity measures as inXLS can be used for the XML partial similarity

component.

Measures for Position component,PDP (La,Lb, gminP ): We need to use partial (top-k) list

distance measures. Given the partial mappinggminP , we naturally extend the Spearman’s footrule

distance and Kendall tau distance for top-k lists with ties by combining previous works [Dia88,

FKM+04, FKS03, KG90], which separately tackle the top-k [FKS03] and the ties [FKM+04]

issues, as follows:

Position distancePDPF (l) based on Spearman’s footrule for top-k lists with location param-

eterl considering ties is computed as follows. We place all trees in both lists whose tree similarity

TS is greater than thresholdω at positionl. Let list Lb be a list constructed byLb by replacing

each elementTbi by Taj = (gminP ) − 1(Tbi), if this mapping exists (recall thatgminP is a

partial function). Then,

PDPF (l)(La,Lb, gminP ) = F (l)(La,Lb′) (8.24)

whereF (l)(·, ·) is the footrule function for top-k lists defined in [FKS03]. We extend this formula

to consider ties by considering buckets for computing the position as explained in Section 8.3.2.

Position distancePDPK(p)(La,Lb, gminP ) based on Kendall tau metric for top-k lists with

penalty parameterp, considering ties, is given by:

PDPK(p)(La,Lb) =
∑

{i,j}∈La∪Lb′

K
(p)
(i,j)(La,Lb

′) (8.25)

whereLb′ is defined as in Section 8.3.2, and is defined as in [FKS03].

Hence, we have two variants ofXLS-PP :

XLS-PPF (La,Lb) = a ·MinMSDP (La,Lb) + b · PDPF (l)(La,Lb, gminP ) (8.26)

XLS-PPK(La,Lb) = a ·MinMSDP (La,Lb) + b · PDPK(p)(La,Lb, gminP ) (8.27)
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XLS-PP is not a metric: XLS-PP is not a metric becauseMSDP is not a metric. The reason

is that the triangular property does not hold for any choicesof threshold,ω (in [0,1]) and penalty

constant,c (in [0,1]).

Example 1 (cont’d): Consider again the listsLa andLb in Figure 8.1. Assumingω = 0.4 and

c = 0.4, we get the following partial mappings from the previous total mappings:g1(Ta1) = Tb1.

g2, g3 are empty mappings.

g4(Ta1) = Tb1, g4(Ta2) = Tb3. g5 is again an empty mapping.

g6(Ta2) = Tb3.

The mapping distance of each partial mapping is as follows:

MSDP (La,Lb, g1) = (0.00 + c+ c)/(3 ·max(c, ω))

= (0.00 + 0.40 + 0.40)/(3 · 0.40)

= 0.80/1.2 = 0.66

MSDP (La,Lb, g2) = (c+ c+ c)/(3 ·max(c, ω))

= (0.40 + 0.40 + 0.40)/(3 · 0.40)

= 1.20/1.20 = 1.00

MSDP (La,Lb, g3) = 1.00

MSDP (La,Lb, g4) = (0.00 + 0.20 + c)/(3 ·max(c, ω))

= (0.00 + 0.20 + 0.40)/(30.40)

= 0.60/1.2 = 0.50

MSDP (La,Lb, g5) = 1.00

MSDP (La,Lb, g6) = (c+ 0.20 + c)/(3 ·max(c, ω))

= (0.40 + 0.20 + 0.40)/(30.40)

= 1.00/1.2 = 0.83

g4 is the mapping with the minimum mapping distance.minMSDP (La,Lb) = MSDP (La,Lb, g4) =

0.50.
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The Spearman’s footrule position component

PDPF (La,Lb, g4) = 4.0/12.0 = 0.33. XLS-PPF (La,Lb) = 0.50 + 0.33 = 0.83 (assuming

a = 1 andb = 1).

If the position distance is calculated using normalized Kendall tau, thenPDP (La,Lb, g4) =

2.0/12.0 = 0.17. XLS-PPK(La,Lb) = 0.50 + 0.17 = 0.67 (assuminga = 1 andb = 1).

Notice that the normalized position component inXLS-P is smaller than inXLS-PP , even

though two trees do not match inXLS-PP . The reason is that the maximum value (used in

normalizing as we describe in Section 8.5.2) of position distance (PDP ) is larger inXLS-PP .

8.4 XML Similarity Measures for Various Tree Similarity Mea sures

As mentioned before, only those tree similarity measures that are metrics may lead to a distance

metric for XML lists. In particular, if the tree similarity measure is a metric, then

• XLS is a metric (as proved in Section 8.3.2);

• XLS-P andXLS-PP are not metrics (as proved in Sections 8.3.3 and 8.3.4).

The following tree similarity measures are metrics: Tree-Edit Distance [Bil05], Tree-Edit-

based Structural Distance [NJ02], Fourier Transform-based Distance [FMPP02, FMMP05], Entropy-

based Similarity [Hel07], and the similarity measure in [LCS+04]. In Table 8.1 we present these

results in more detail along with the complexity of calculating each tree similarity measure.

Theorem 8.4.1 Tree edit distance is a distance metric

Proof: Following [Bil05], we assume throughout the paper that labels assigned to nodes are chosen

from a finite alphabetΣ. Let λ /∈ Σ denote a special blank symbol and defineΣλ = Σ ∪ λ. We

define a cost functionγ : (Σλ × Σλ)‖(λ, λ) → R, on pairs of labels. We will always assume that

γ is a distance metric. That is, for anyl1, l2, l3 ∈ Σ the following conditions are satisfied:

1. γ(l1, l2) ≥ 0 (non-negative),γ(l1, l1) = 0 (regular).

2. γ(l1, l2) = γ(l2, l1) (symmetric).
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Table 8.1: Tree Similarity Measures and Their Properties.

Tree Similarity Measure Is a Metric? XML-Specific? Time Complexity to compute the measure
between pair of trees

Tree-Edit Distance [Bil05] Yes No O(Cost(TD(Tai, T bj)) = O(|Tai| ·
|Tbj| · min(leaves(Tai), depth(Tai)) ·
min(leaves(Tbj), depth(Tbj)) [NJ02]

Tree-Alignment Distance [Bil05,
JWZ94]

No (fails triangle-
inequality)

No O(|Tai| · |Tbj | · (deg(Tai) + deg(Tbj))
2)

Tree-Edit based Structural Dis-
tance [NJ02]

Yes Yes O(|Tai| · |Tbj |)

Fourier Transform-based Dis-
tance [FMPP02, FMMP05]

Yes Yes O(NlogN) whereN = max(|Tai| · |Tbj |)

Entropy-based Similarity [Hel07] Yes Yes O(N) whereN = max(|Tai| · |Tbj|)
Path-Shingle based Similar-
ity [But04]

No (since it is
based on hashing)

Yes Linear time in general.O(|Tai|+ |Tbj |)

Similarity measure in [LCS+04] Yes Yes Linear time in general.O(|Tai|+ |Tbj |)
Similarity measure in [YKT05] No No Linear time in general.O(|Tai|+ |Tbj |)

1
6
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3. γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3) (triangle inequality).

LetT1 andT2 be labeled trees. We represent each edit operation by(l1 → l2), where(l1, l2) ∈

(Σλ × Σλ) \ (λ, λ). The operation is a relabeling ifl1 6= λ andl2 6= λ, a deletion ifl2 = λ, and

an insertion ifl1 = λ. We extend the notation such that(v → w) for nodesv andw denotes

(label(v)→ label(w)). Here, as with the labels,v orw may beλ. Given a metric cost function ?

defined on pairs of labels we define the cost of an edit operation by settingγ(l1 → l2) = γ(l1, l2).

The cost of a sequenceS = s1, · · · , sk of operations is given byγ(S) =
∑k

i=1 γ(si).

The edit distance,TED(T1, T2), betweenT1 andT2 is formally defined as:

TED(T1, T2) = min{γ(S) | S is a sequence of operations transformingT1 into T2}.

Sinceγ is a distance metric,TED also becomes a distance metric as follows:

TED(T1, T2) > 0 (non-negative). Each tree edit operation has a non-negative cost and hence

their summation would also be non-negative, becauseγ is a distance metric.

TED(T1, T1) = 0 (regular) as no tree-edit operations are required to transform a treeto itself

and hence the cost is 0.

TED(T1, T2) = TED(T2, T1) (symmetric). Lets1, · · · , sk be the sequence of edit operations

to transformTa to Tb. Then, we can transformTb to Ta by sequences′k, · · · , s′1, wheres′i is the

dual of si. For e.g., if the edit operationsi adds nodev, s′i would remove nodev and so on.

This would generate a sequence of edit operations that transformsT2 to T1 with minimum cost,

because if there were a sequence of operations that transformsT2 to T1 with cost lesser than this,

then, using that sequence, we could obtain a sequence of operations that transformsT1 to T2

with the same cost, which is a contradiction. Note that for the symmetricity property to hold, an

operation and its dual –both should be assigned the same penalty.

TED(Ta, Tc) < TED(Ta, Tb) + TED(Tb, Tc) (triangle inequality). LetS1 be the sequence

of operations that transformsTa to Tb andS2 be the sequence that transformsTb to Tc. Then

the sequenceS3 = concatenate(S1, S2) can transformTa to Tc andγ(S3) = γ(S1) + γ(S2),

which proves the triangle inequality. If there is another sequenceS′
3 that goes fromTa to Tc with

γ(S′
3) < γ(S3) (since the tree edit distance is the minimum distance as mentioned above) then it

will be γ(S′
3) ≤ γ(S1) + γ(S2).
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8.5 Normalization

In this section we discuss how we normalize the XML similarity component and the position

components ofXLS-P andXLS-PP , in Sections 8.3.3 and 8.3.4 respectively. Normalization

of XML similarity component depends on the tree similarity measure (TS) employed. In Sec-

tion 8.5.1, we discuss the normalization steps when tree edit distance (TED) is used as the tree

similarity measure. Section 8.5.2 discusses the normalization of the position component.

8.5.1 Normalize Tree-Edit Distance based XML Similarity Compo-

nent

Let T1 andT2 be two rooted, ordered and labeled XML trees And letTED(T1, T2) be the tree

edit distance betweenT1, T2. Let TEDmax(T1, T2) be the maximum cost among the costs

of all possible sequences of tree-edit operations that transform T1 to T2 (notice that the tree

edit distance,TED(T1, T2) is the minimum cost among the costs of all possible sequencesof

tree-edit operations). We normalize the tree edit distanceby dividing the tree edit distance,

TED(T1, T2) by TEDmax(T1, T2).This normalizedTED(T1, T2) is also called Structural Dis-

tance in [DCWS04, DCjWS06]. To calculateTEDmax(T1, T2), we calculate the cost to delete

all nodes fromT1 and insert all nodes fromT2. That is,TEDmax(T1, T2) = size(T1) · Dp +

size(T2) · Ip whereDp andIp are the delete and insert penalties andsize(T1) is the number of

nodes present in treeT1.

We use unit delete and insert penalties in our experiments. The normalizedTED(T1, T2) is

low when the trees have similar structure and high percentage of matching nodes, and high when

the trees have different structure and low percentage of matching nodes (0 [1] is the min [max]

value).
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8.5.2 Normalize Position Component

In XLS-P : To normalize the position component inXLS-P , we refer to the metrics on permu-

tations presented in [FKS03]. The maximum value ofPDTK(La,Lb, f) is k(k − 1)/2, which

occurs whenLa is the reverse ofLb. The maximum value ofPDTF (La,Lb, f) is k2/2 whenk is

even and(k+1)(k−1)/2 whenk is odd. As with Spearman’s footrule, the maximum occurs when

La is the reverse ofLb. Hence, to normalize we divide the metrics by these maximum values.

In XLS-PP : To normalize the position component inXLS-PP , we refer to the metrics on top-k

lists presented in [FKS03]. In order to normalize the position components of two top-k lists, we

divide them by their maximum values which occur when there are no mappings between ListsLa

andLb.

Theorem 8.5.1 The maximum value of top-k Spearman’s footrulePDPF (l)(La,Lb) is 2k(l −

(k + 1)/2) wherel is the location parameter.

Proof: Since there are no mappings between the top-k lists, allk elements of each of the list get

mapped to locationl. Hence,

PRF (l)
max(La,Lb) = 2(|1− l|+ |2− l|+ · · ·+ |k − l|)

= 2k(l − (k + 1)/2)

For a natural choice ofl = k + 1, the maximum value isk(k + 1), which we use in our

experiments.

Theorem 8.5.2 The maximum value of top-k Kendall tau,PRk(p)(La,Lb) is pk(k − 1) + k2

wherep is the penalty parameter.

Proof: Since there are no mappings between the top-k lists, there are2k distinct elements in

La ∪ Lb. For the unordered pairs within each list,K̄
(
(i,j)p)(La,Lb

′) = p since these pairs do not

appear in the other list. There arek(k − 1)/2 such pairs and considering both the lists, there are

k(k − 1) such pairs, each with penaltyp. Hence the total penalty ispk(k − 1). For the unordered

pairs across each of the two lists,K̄
(
(i,j)p)(La,Lb

′) = 1 since one element in each pair does not
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appear in the other list. There isk2 such pairs, each with penalty1. Hence the total penalty in this

case isk2. Adding them together, we get the maximum value which ispk(k − 1) + k2.

We usep = 0.5 in our experiments.

8.6 Algorithms

In this section, we describe efficient algorithms to computeXLS (Section 8.6.1),XLS-P (Sec-

tion 8.6.2) andXLS-PP (Section 8.6.3) given two XML top-k lists.

8.6.1 Compute XLS

In this section, we describe efficient algorithms to computeXLS given two XML top-k lists.

Näıve approach:XLS-P for any two top-k XML lists La andLb is computed as follows. First,

the setN of all possible total mappings fromLa toLb is computed. Then, for each total mapping

f in N , we compute the total mapping similarity distance,MSDT (La,Lb, f) using Equation 8.1,

and then find the minimum mappingfminT . Then, we computeXLS-P (La,Lb) using Equa-

tion 8.4.

Overview of our algorithm: Instead of computing the setN of all possible total mappings and

then selecting the minimum mappingfminT , we pre-compute the tree similarity measure of each

tree pair across the two lists, build a bipartite graph, and apply a minimum cost perfect matching

algorithm (we use the Hungarian algorithm [Mun57]) to compute all minimum mappingsfminT .

This procedure is presented in Algorithm 8.1.

Algorithm details: The following high level steps of execution explain the algorithm in detail:

1. Pre-compute the tree similarityTS(Tai, T bj) between every pair of XML trees, one from

each listLa andLb. There arek2 such pairs, hence the complexity of this step isk2 ·

Cost(TS(Tai, T bj)) whereCost(TS(Tai, T bj)) is the complexity of computing the tree

similarity between the two treesTai andTbj. We use the dynamic programming algorithm

by Zhang and Shasha [ZS89] to compute the edit-distance between ordered trees [Bil05]
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Listing 8.1: Algorithm for computingXLS.

1procedure ComputeXLS(La = {Ta1, Ta2, · · · , Tak},
Lb = {Tb1, T b2, · · · , T bk}, int a, int b)

2begin
3 S[k, k]← 2-D array that stores the tree similarity

measures between every pair of XML trees (one from
each List)

4 for i in 1, · · · , k
5 for j in 1, · · · , k
6 Compute TS(Ta, T b); // Section 8.2.1
7 Normalize TS(Tai, T bj); // Section 8.5.1
8 S[i, j]← TS(Tai, T bj)
9 end

10 end
11end

(any available algorithm can be employed to compute tree edit distance) as it is a popular

tree-edit distance algorithm also available online . We refer to a detailed survey of tree edit

distance algorithms [Bil05].

2. Create a weighted complete bipartite graphG(C,P,W ) as follows. The first set of nodes

C = 1, 2, · · · , k denote the set of elements in XML listLa. The second set of nodes

P = 1, 2, · · · , k denote the set of elements in XML listLb. The weightW (i, j) =

TS(Tai, T bj).In this section, we describe efficient algorithms to compute XLS-P given

two XML top-k lists.

3. Execute a minimum cost perfect matching algorithm onG(C,P,W ) to computefminT .

We use the Hungarian algorithm [Mun57]. Finally,XLS is computed using Equation 8.4.

The complexity of the Hungarian algorithm isO(k3).

4. Total Complexity of the algorithm is

O(k2 · Cost(TS(Tai, T bj)) + k3).
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Listing 8.2: Algorithm for computingXLS-P .

1procedure ComputeXLS-P(La = {Ta1, Ta2, · · · , Tak},
Lb = {Tb1, T b2, · · · , T bk}, int a, int b)

2begin
3 /* Replace Line 9 in Listing 8.1 with: */
4 Compute PDT (La, Lb, fminT ) using Eq. 8.16 (for Spearman’s

footrule) or Eq. 8.17 (for Kendall Tau)
5 Compute XLS-P using Eq. 8.18 or Eq. 8.19
6end

8.6.2 ComputeXLS-P

This algorithm is similar to the algorithm in Section 8.6.1,except for a few changes as we will

describe. fminT is computed as before and then the position distancePDT (La,Lb, fminT )

is computed using Equations 8.16 and 8.17) for Spearman’s footrule and Kendall tau position

component respectively. Then,XLS-P is computed using Equation 8.18 or 8.19.

Total Complexity of the algorithm isO(k2 · Cost(TS(Tai, T bj)) + k3 + k2). Note the addi-

tionalO(k2) to compute the position component.

8.6.3 ComputeXLS-PP

In this section, we describe efficient algorithms to computeXLS-PP given two XML top-k lists.

Näıve approach: XLS-PP for two top-k XML lists La andLb is computed as follows –given

a threshold,ω and penalty constant,c: First, the setN of all possible total mappings fromLa to

Lb is computed. Then, for each total mappingf in N , we compute a partial mappingg by retain-

ing only those mapping instances inf whose tree similarity,TS(·, ·) between the corresponding

pair of trees is at leastω. Then, for eachg we compute the partial mapping similarity distance,

MSDP (La,Lb, g) using Equation 8.20 and then find the minimum mappinggminP . Then we

compute the position distance,PDP (La,Lb, gminP ) (using Equation 8.24 or 8.25). Finally, we

computeXLS-PP (La,Lb) using Equation 8.26 or 8.27.
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Listing 8.3: Algorithm for computingXLS-PP .

1procedure ComputeXLS-PP(La = {Ta1, Ta2, · · · , Tak},
Lb = {Tb1, T b2, · · · , T bk}, int ω, int c, int a, int b)

2begin
3 /* Replace Line 6 in Listing 8.2 with the following:
4 if TS(Tai, T bj) ≤ ω
5 S[i, j]← TS(Tai, T bj)
6 else
7 S[i, j]←∞
8 end if
9 /* Replace Line 7 with the following: */

10 assignmentm[k, 2]← 2-D array that stores the mthgminP with
the minimum mapping distance

11 /* Replace Line 9 with the following: */
12 Compute PDP (La, Lb, gminP ) using Equation 8.24 (for

Spearman’s footrule) or Equation 8.25 (for Kendall
Tau)

13 /* Replace Line 10 with the following: */
14 Compute XLS-PP using Equation 8.26 or 8.27
15end
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Our algorithm: This algorithm is similar to the algorithm in Section 8.6.1,except for a few

changes as we will describe. In Step 2, after the complete bipartite graphG(C,P,W ) is con-

structed, we eliminate all the edges with weightW (Tai, T bj) > ω and then execute the Hungar-

ian algorithm to findgminP with the minimum mapping similarity distance,MinMSDP (

La,Lb). Then, we compute the position distancePDP (La,

Lb, fminP ) using Equations 8.24 or 8.25. Finally,XLS-PP is computed using Equation 8.26

and 8.27 for Spearman’s footrule and Kendall tau respectively.

Total Complexity of the algorithm isO(k2 · Cost(TS(Tai,

T bj))+ k3 + k2). Note the additionalO(k2) to compute the position component. The complexity

of this algorithm is same as the one forXLS-P .

8.7 Evaluation of Top-k XML Lists

Most of the related work was presented in Section 8.2.

XML Retrieval Evaluation: The INitiative for the Evaluation of XML Retrieval (INEX) [INi09]

has provided since 2002 the infrastructure and means for evaluating the effectiveness of content-

oriented XML search systems. INEX utilizes a series of queries that may contain both content and

structural conditions. Although XML retrieval allows document fragments to be retrieved, these

fragments cannot always be viewed as independent units. In this direction, INEX is encouraging

the development of systems that return entities instead of just documents or elements. Our work

can benefit this initiative of INEX by providing appropriateevaluation measures for lists of XML

fragments. Clarke [Cla05] and Kazai et al. [KLdV04] presenttechniques to incorporate the overlap

between XML fragments when evaluating XML search algorithms. They are complementary to

our work since their techniques can be applied on our measures to account for overlap between

the XML results.

Matching in Relational Databases:Guha et al. [Guh04] address the problem of merging approx-

imate attribute rankings produced by executing a query on a “dirty” relational database. To do so,

they propose a modification to the Hungarian Algorithm to identify a set of top ranking results.
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In our case, the top-k lists are fairly small and hence memory-based matching techniques like the

Hungarian algorithm are more appropriate.

8.8 Experimental Evaluation

In this section we experimentally evaluate the measures presented in the previous sections by

comparing three popular XML keyword search algorithms. We use tree edit distance (TED) as

the XML tree similarity measure (TS).

8.8.1 Datasets and Experimental Setup

Datasets: We use two real datasets: the DBLP dataset and the NASA XML dataset available

at [oWCSE09]. Figure 8.2 shows a reduced version of both datasets’ schemata and Table 8.2

summarizes their characteristics.

Table 8.2: XML Datasets Used in the Experiments.

Dataset Number of
Elements

Average
Depth

Maximum
Depth

DBLP 7137933 1.90 5
NASA 791923 5.58 8

Experimental Setup: We implemented the following XML keyword proximity search systems:

XRANK [GSBS03], XSEarch [CMKS03] and XKeyword [HPB03]. These three algorithms take

as input a corpus of XML documents and a keyword query, and return as output an ordered list

of XML fragments that satisfy the query by containing all thekeywords. All three algorithms

favor minimal and compact subtrees that satisfy the query, but use different ranking functions and

pruning rules. In particular, while XKeyword ranks its answers by the size of the resulting subtree,

XRANK and XSEARCH also utilize Information Retrieval (IR) score functions based ontf · idf .

XSEarch prunes result paths that repeat the same tag in internal nodes, while XRANK prunes
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(a) XML schema for DBLP dataset fragment (only “article” elements and their subtrees from original
dataset are included)

(b) XML schema for NASA dataset fragment. Some elements wereomitted due to space constraints.

Figure 8.2: XML schemata for DBLP and NASA datasets.
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results if there is a more specific result in the same element.Also, XRANK returns whole subtrees

while XSEarch and XKeyword return paths.

In our implementation, we used the IR score provided by the CONTAINSTABLE function

of Microsoft SQL Server 2000 to compute the IR components of both XRANK and XSEARCH

ranking functions. The experiments were performed on a PC with an Intel Pentium Core 2 Duo,

2.00 GHz processor, 2GB RAM, running Windows Vista Business. All algorithms were devel-

oped in Java (JDK version 1.6.006), use the Document Object Model (DOM) for XML parsing

and navigation, and Microsoft SQLServer 2000 for the persistent storage of indexes. The tree sim-

ilarity (TS) measure we use in our experiments is the dynamic programming algorithm by Zhang

and Shasha [ZS89] which computes the tree-edit-distance between ordered trees [Bil05] whose

complexity is

Cost(TED(Tai, T bj)) = O(|Tai||Tbj | ·min(leaves(Tai), depth(Tai)) ·

min(leaves(Tbj), depth(Tbj)).

We refer to a detailed survey of tree edit distance algorithms [Bil05]. In Section 8.8.2, we first

analyze the results of a single query to show the intuition ofour evaluation scheme, and later we

report average XML Lists Distance values over many experiments on the two datasets. In Sec-

tion 8.8.3, we report performance (time) experimental results.Figure 3 shows a reduced version of

both datasets’ schemata and Table 8.2 summarizes their characteristics.

8.8.2 Quantitative Results

Analyze a Single Query: To illustrate our measures, we present an analysis for the keyword

query “database retrieval language” over the DBLP XML dataset. Figure 8.3 shows the top-3

search results output by each of the three XML search algorithms. Table 8.3 presents theXLS,

XLS-P andXLS-PP measures between every pair of XML lists from Figure 8.3. Notice that

XLS(La,Lb) is in [0,1] whileXLS-P (La,Lb) andXLS-P (La,Lb) are in [0,2] and we found

that setting the distance measure constants toa = 1 andb = 1 leads to reasonable results.

Notice that in Table 8.3 we only presentXLS-PP measures forω = 0.7 and0.9 asXLS-PP

values forω = 0.5, 0.3, 0.1 for the top-3 lists presented in Figure 8.3 are the same as forω = 0.7
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Figure 8.3: Top-3 search results for query“database retrieval language”over DBLP.
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Table 8.3: XML List distances based on Total and Partial mappings for top-k lists in Figure 8.3.

XLS[MinMSDT (La, Lb)] XRANK XSEARCH XKEYWORD
XLS-P [XLS-P F , XLS-PK ]

XLS-PP [XLS-PP F , XLS-PPK]
XRANK XLS[0.00] XLS[0.30] XLS[0.30]

XLS-P [0.00, 0.00] XLS-P [0.80, 0.30] XLS-P [1.05, 0.46]
XLS-PP 0.7[0.00, 0.00] XLS-PP 0.7[0.67, 0.50] XLS-PP 0.7[0.75, 0.54]

XSEARCH XLS[0.30] XLS[0.00] XLS[0.00]
XLS-P [0.80, 0.30] XLS-P [0.00, 0.00] XLS-P [0.25, 0.17]

XLS-PP 0.7[0.67, 0.50] XLS-PP 0.7[0.00, 0.00] XLS-PP 0.7[0.08, 0.04]
XLS-PP 0.9[0.49, 0.41] XLS-PP 0.9[0.00, 0.00] XLS-PP 0.9[0.08, 0.04]

XKEYWORD XLS[0.30] XLS[0.00] XLS[0.00]
XLS-P [1.05, 0.46] XLS-P [0.25, 0.17] XLS-P [0.00, 0.00]

XLS-PP 0.7[0.75, 0.54] XLS-PP 0.7[0.08, 0.04] XLS-PP 0.7[0.00, 0.00]
XLS-PP 0.9[0.58, 0.45] XLS-PP 0.9[0.08, 0.04] XLS-PP 0.9[0.00, 0.00]

1
8

1



(we explain why later). Note that we use the penalty constantc equal toω.

LetLa, Lb andLc be the top-3 lists of XRANK, XSEarch and XKeyword algorithmsrespec-

tively as shown in Figure 8.3. The associated tree edit distance values between every pair of XML

trees in each of the lists as follows:

AB =













Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71

Ta2 0.98 0.98 0.89

Ta3 0.50 0.00 0.71













AC =













Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71

Ta2 0.98 0.98 0.89

Ta3 0.50 0.00 0.71













BC =













Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71

Ta2 0.50 0.00 0.71

Ta3 0.71 0.71 0.00













First of all, notice that the top-3 lists of XSEarch and XKeyword are identical (and hence the

tree edit distance matricesAB andAC are identical), except that the first two results of XKeyword

have the same score. This is the reason that the distances between XSEarch and XKeyword, for

total mapping, are small (but not zero) in Table 8.3, since the position components consider ties.

Note that XRANK returns a different subtree as its second result, since the XRANK function

ranks the total score for this subtree higher than the score of the single element that appears in the

other two lists. In this subtree, the keyword “Retrieval”appears twice within the “title” element,

which increases its IR score. In addition, the third elementin the XRANK list was penalized by

its length and as a result.

Between XRANK and XSEarch, two results are identical, andTa2 is mapped toTb3 in total

mapping, even though they are very different. This irrelevant mapping and is removed in the

partial mapping measures.

We computedXLS-PP for various thresholds,ω = 0.9, 0.7, 0.5, 0.3 and0.1, and found

thatXLS-PP distance values are identical for thresholds0.7, 0.5, 0.3 and0.1.This is because we

have at least two identical trees between every pair of list (three identical trees in case of XSEarch

and XKeyword) and they always get mapped between them, whilethe third unmapped result get
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mapped with the unmapped result in the other list depending on the threshold. Between XRANK

& XSEarch, and XRANK & XKeyword, the tree edit distance of this third mapping is0.89 and

hence the results are identical for thresholds0.1, 0.3, 0.5, 0.7.

Quantitative Results over Multiple Queries

Figures 8.4(a) and 8.4(b) show the total distances (split into the two components) between

the result lists pro-duced by the three search algorithms onthe DBLP dataset averaged over 50

two-keyword queries, usingXLS-PF andXLS-PK , respectively. The queries used include:

“artificial intelligence”, “xml indexing”, “text mining”, “image retrieval”, “OLAP mining” . No-

tice that the distance increases ask increases because as the trees get larger, the results become

more disparate due to the pruning rules of the algorithms that go in effect for larger trees. As men-

tioned before, XKeyword ranks its answers by the size of the resulting subtree, while XRANK

and XSEARCH also utilize Information Retrieval (IR) score functions based ontf · idf . The

reason that XKeyword has large distance to the other two rankings is that it does not have an IR

component in its ranking function. Hence, when multiple trees have the same size, they are ranked

arbitrarily. XRANK and XSEarch have smaller distance between them because their rankings are

more similar given that the results were mostly single-nodetrees.

Figures 8.4(c) and 8.4(d) show the distances between the results of the three search algorithms,

for the DBLP dataset, averaged over 50 two-keyword queries usingXLS-PF andXLS-PK , for

varying thresholds, for top-50 results respectively. Recall that for ω = 1.0, XLS-PP (partial

mapping) reduces toXLS-P (total mapping). We use the penalty constantc equal toω. In

Figures 6(c), 6(d), 6(e) and 6(f), we see that the normalizeddistances increase as decreases. The

reason is that for small there are few matches which lead to large position distance components.

Note that for XRANK-vs.-XKeyword and XSEarch-vs.-XKeyword, for ω = 0.9 we get slightly

smaller distances than total mapping (ω = 1.0). The reason is that almost all tree pairs in the

top-50 results of these rankings have normalized tree edit distance up to0.7, while for ω = 1.0,

we divide by a larger number (than forω = 0.9) to normalize the XML similarity component.

On the other hand, for XRANK-vs.-XSEarch, the distance keeps reducing asω increases from0.1

to 0.9 and this is because there are some tree pairs in the top-50 results of these rankings with
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(a) AverageXLS-P F vs. Top-k (b) AverageXLS-PK vs. Top-k

(c) AverageXLS-PP F vs. threshold,ω,
k = 50

(d) AverageXLS-PPK vs. threshold,ω,
k = 50

Figure 8.4: Experiments on DBLP Dataset.
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normalized tree edit distance greater than0.9.

Figure 8.5 repeats the set of experiments of Figure 8.4 on theNASA dataset. Some sam-

ple two-keyword queries used in these experiments are:“arcminutes magnitude”, “astrographic

motion”, “equinox culmination”, “photo-graphic wavelengths”, “oxford zone”. Some impor-

tant observations on the results of NASA dataset are (a) Distance between XML lists is generally

larger for NASA dataset because of its larger depth. (b) In contrast to Figure 8.2, XSEarch and

XKeyword have the smallest distance because both algorithms return paths as result. This factor

was less important in Figure 8.2 because most results were single-node. In contrast, XRANK has

large distance to the other two rankings because it returns whole subtree as result. (c) XRANK is

very close to XSEarch in DBLP, but very far in NASA dataset. The reason is that the XRANK and

XSEarch pruning conditions are very rare for very shallow subtrees (DBLP) but more frequent for

deeper subtrees (NASA dataset). The latter also leads to unpredictable fluctuations to the distances

for increasingk (Figure 8.5), in contrast to the linear increase in the DBLP dataset (Figure 8.4). In

both datasets, notice that the XML Similarity distance contributes the most to the total distance.

This shows that the main difference of these three algorithms comes more from how they define a

result and less on how they rank them.

8.8.3 Performance Results

Due to space constraints and negligible execution times forthe DBLP dataset (always less than

one second), we only present results on the deeper NASA dataset. Figure 8.6(a) shows the average

execution time to computeXLS-P for various values ofk, over the same 50 two-keyword queries

used in the distance experiments. As expected, the average execution time increases superlinearly

ask increases because there are more results in the top-k lists under comparison. Figure 8.6(b)

shows the average execution time to computeXLS-PP for various values of the thresholdω,

for fixed k = 50. Notice that the execution times are different for the threepairs of search

algorithms. The reason is that XRANK produces the largest size of results as it returns whole

XML elements, while XKeyword produces concise results by returning paths. XSEarch produces

results of intermediate size by returning paths like XKeyword but has different pruning rules.
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(a) AverageXLS-P F vs. Top-k (b) AverageXLS-PK vs. Top-k

(c) AverageXLS-PP F vs. threshold,ω,
k = 50

(d) AverageXLS-PPK vs. threshold,ω,
k = 50

Figure 8.5: Experiments on NASA Dataset.
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Thus, the execution times of XRANK vs. XSEarch are the highest, while XSEarch vs. XKeyword

is the lowest.

(a) Avg. execution time to compute
XLS-P (ω = 1.0) vs. Top-k

(b) Avg. execution time to compute
XLS-PP (ω = 1.0) vs. Top-k

Figure 8.6: Performance Experiments on NASA Dataset.
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CHAPTER 9

CONCLUSIONS

In this dissertation I have explored three different challenges that must be addressed to fa-

cilitate and enhance the massive adoption of semistructured documents and, in particular, of the

Extensible Markup Language. These three challenges have been clearly identified asStorage,

Parsingand domain-specificInformation Discoveryon such type of documents. Each of these

challenges has been deeply explored and novel solutions have been proposed to improve the per-

formance and quality of each if these aspects.

A novel method forstoringsemistructured documents has been proposed, mapping the phys-

ical characteristics of semistructured documents to the geometrical layout of hard drives. Such

optimization facilitates navigation of the data by reducing access overheads, and is achieved by

utilizing information provided by standard disk profiling tools.

To provide an optimalparsingand processing of semistructured documents, we have devel-

oped a Double-Lazy Parser, a new approach that responds to the need of a more memory-efficient

XML DOM parser, by introducing lazy behavior in both the pre-parsing and progressive parsing

phases.

Extending the previous work on searching semistructured documents, we have created a frame-

work that exploits the domain-specific knowledge to improvethe quality of theinformation dis-

coveryprocess. In particular, we have created the XOntoRank system, that integrates the domain

knowledge captured by clinical ontologies into a system forsearching Electronic Health Records.

To evaluate the results of our search system for semistructured documents, we designed mean-

ingful evaluation metrics that deal with top-k lists of subtrees instead of objects, taking into con-

sideration the tree similarity and the position distance among the lists.
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In Datenbanksysteme in Büro, Technik und Wissenschaft (BTW), 9. GI-Fachtagung,,
pages 264–273, London, UK, 2001. Springer-Verlag.
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APPENDIX

This Appendix presents a sample Electronic Medical Record using the Clinical Document
Architecture (CDA) as described in Section 6.2.

Listing 9.1: HL7 CDA Sample Document

1<? xml version="1.0" ?>
2<ClinicalDocument xmlns="urn:hl7-org:v3" xmlns:voc="

urn:hl7-org:v3/voc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="urn:hl7-org:v3
CDA.ReleaseTwo.Committee.2004.xsd" templateId="

2.16.840.1.113883.3.27.1776">
3 <id extension="c266" root="2.16.840.1.113883.3.933"/>
4 <confidentialityCode code="N" codeSystem="

2.16.840.1.11.3883.5.25" />
5 <author>
6 <time value="20040407"/>
7 <assignedAuthor>
8 <id extension="KP00017" root="2.16.840.1.113883.3.933

"/>
9 <assignedPerson>

10 <name>
11 <given>Juan</given>
12 <family>Woodblack</family>
13 <suffix>MD</suffix>
14 </name></assignedPerson></assignedAuthor></author>
15 <recordTarget>
16 <patientRole>
17 <id extension="49912" root="2.16.840.1.113883.3.933"/

>
18 <patientPatient>
19 <name>
20 <given>FirstName</given>
21 <family>LastName</family>
22 <suffix>Jr.</suffix>
23 </name>
24 <administrativeGenderCode code="M" codeSystem="

2.16.840.1.5.1"/>
25 <birthTime value="20020924"/>
26 </patientPatient>
27 <providerOrganization>
28 <id extension="M345" root="2.16.840.1.113883.3.933"/

>
29 </providerOrganization></patientRole></recordTarget>
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30 <component>
31 <StructuredBody>
32 <component>
33 <section>
34 <code code="10160-0" codeSystem="

2.16.840.1.113883.6.1" codeSystemName="LOINC"/>
35 <title>Medications</title>
36 <entry>
37 <Observation>
38 <code code="84100007" codeSystem="

2.16.840.1.113883.6.96" codeSystemName="SNOMED
CT" displayName="Medications"/>

39 <value xsi:type="CD" code="195967001" codeSystem=
"2.16.840.1.113883.6.96" codeSystemName="SNOMED
CT" displayName="Asthma">

40 <originalText><reference value="m1"/></
originalText>

41 </value></Observation></entry>
42 <entry>
43 <Observation>
44 <code code="84100007" codeSystem="

2.16.840.1.113883.6.96" codeSystemName="SNOMED
CT" displayName="Medications"/>

45 <value xsi:type="CD" code="32398004" codeSystem="
2.16.840.1.113883.6.96" codeSystemName="SNOMED
CT" displayName="Bronchitis">

46 <value xsi:type="CD" code="91143003" codeSystem=
"2.16.840.1.113883.6.96" codeSystemName="
SNOMED CT" displayName="Albuterol" />

47 </value></Observation></entry>
48 <entry>
49 <SubstanceAdministration>
50 <text><content ID="m1">Theophylline</content>20

mg every other day, alternating with 18 mg
every other day. Stop if temperature is above
103F.</text>

51 <consumable>
52 <manufacturedProduct>
53 <manufacturedLabeledDrug>
54 <code code="66493003" codeSystem="

2.16.840.1.113883.6.96" codeSystemName="
SNOMED CT" displayName="Theophylline"/>
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55 </manufacturedLabeledDrug></manufacturedProduct><
/consumable>

56 </SubstanceAdministration></entry>
57 </section></component>
58 <component>
59 <section>
60 <code code="11384-5" codeSystem="

2.16.840.1.113883.6.1" codeSystemName="LOINC"/>
61 <title>Physical Examination</title>
62 <component>
63 <section>
64 <code code="8716-3" codeSystem="

2.16.840.1.113883.6.1" codeSystemName="LOINC"/>
65 <title>Vital Signs</title>
66 <text>
67 <table>
68 <tr>
69 <th>Temperature</th>
70 <td>36.9 C 98.5 F</td>
71 </tr>
72 <tr>
73 <th>Pulse</th>
74 <td>86 / minute </td>
75 </tr></table></text>
76 <entry>
77 <Observation>
78 <code code="50373000" codeSystem="

2.16.840.1.113883.6.96" codeSystemName="
SNOMED CT" displayName="Body height"/>

79 <effectiveTime value="200404071430"/>
80 <value xsi:type="PQ" value="1.77" unit="m" />
81 </Observation></entry></section></component></

section></component>
82</StructuredBody></component></ClinicalDocument>
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