Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-12-2009

Efhcient Storage and Domain—Speciﬁc Information
Discovery on Semistructured Documents

Fernando R. Farfan

Florida International University, flarfan@cis.fiu.edu

DOI: 10.25148/etd.F109120826
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Data Storage Systems Commons, and the Other Computer Engineering Commons

Recommended Citation

Farfan, Fernando R., "Efficient Storage and Domain-Specific Information Discovery on Semistructured Documents" (2009). FIU
Electronic Theses and Dissertations. 126.
https://digitalcommons.fiu.edu/etd/126

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.


https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/126?utm_source=digitalcommons.fiu.edu%2Fetd%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

EFFICIENT STORAGE AND DOMAIN-SPECIFIC INFORMATION DISCOERY
ON SEMISTRUCTURED DOCUMENTS

A dissertation submitted in partial fulfilment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE
by

Fernando Farfan

2009



To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Fernando Farfan, and exttiEfficient Storage and Domain-
Specific Information Discovery on Semistructured Docuraghéaving been approved in
respect to style and intellectual content, is referred ofpo judgment.

We have read this dissertation and recommend that it be egqbro

Peter Clarke

Raju Rangaswami

Naphtalie Rishe

Debra VanderMeer

Evangelos Christidis, Major Professor

Date of Defense: November 12, 2009

The dissertation of Fernando Farfan is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean George Walker
University Graduate School

Florida International University, 2009



(© Copyright 2009 by Fernando Farfan

All rights reserved.



DEDICATION
To my loving wife, Claudia.
To my children, Javier and Mariana.
To my parents, for all their support during all this time.

Ad Maiorem Dei Gloriam



ACKNOWLEDGMENTS

| would have never been able to finish my dissertation witlibatguidance of my
advisor, committee members, help from friends, and sugpmrt my wife, children and
family.

| would like to express my deepest gratitude to my advisor\lagelis Hristidis, for
his excellent guidance, example, patience and supporb, AdsDr. Raju Rangaswami,
who along with Dr. Hristidis gave me the opportunity to joiis hesearch projects that
led me beyond a Master’s program and finalize with this diatien. | would also like to
thank Dr. Debra VanderMeer, Dr. Peter Clarke and Dr. Naghikshe, for guiding my
research and being part of my dissertation committee.

| want to thank the Institute of International Education #mel Fulbright Program, for
granting me the honor of being a Fulbright Scholar during mashrs program at FIU.
Also, | would like to thank the School of Computing and Infation Sciences at FIU,
for providing me with the appropriate funding opporturstte pursue my studies and re-
search, to the University Graduate School for granting mesaddtation Year Fellowship
for my last year of work.

To all my friends in the Databases and Systems Research atabpat FIU: Medha,
Ramakrishna, Luis, Ricardo, Jorge, Sajib, Eduardo and ddreo Thank you for your
friendship, support and teachings.

| would also like to thank my parents, grandparents, brotret sister, for being
always there supporting me and encouraging me to keep going.

Finally, I would like to thank my wife Claudia, and our chiédr Javier and Mariana,
for being always my strength and inspiration, for cheerirgup, and patiently standing

by me throughout these times.



ABSTRACT OF THE DISSERTATION
EFFICIENT STORAGE AND DOMAIN-SPECIFIC INFORMATION DISCONRY
ON SEMISTRUCTURED DOCUMENTS
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Professor Evangelos Christidis, Major Professor

The increasing amount of available semistructured dataaddmefficient mechanisms
to store, process, and search an enormous corpus of datadorage its global adop-
tion. Current techniques to store semistructured docusradtiter map them to relational
databases, or use a combination of flat files and indexeseTivesapproaches resultin a
mismatch between the tree-structure of semistructuredlatat the access characteristics
of the underlying storage devices. Furthermore, the ineffay of XML parsing methods
has slowed down the large-scale adoption of XML into actyatesm implementations.
The recent development of lazy parsing techniques is a nségqr towards improving
this situation, but lazy parsers still have significant dsaeks that undermine the massive
adoption of XML.

Once the processing (storage and parsing) issues for seatised data have been
addressed, another key challenge to leverage semistedatiata is to perform effective
information discovery on such data. Previous works haveesded this problem in a
generic (i.e. domain independent) way, but this processbeaimproved if knowledge
about the specific domain is taken into consideration.

This dissertation had two general goals: The first goal waletse novel techniques
to efficiently store and process semistructured documeniss goal had two specific

aims: We proposed a method for storing semistructured dentsithat maps the physical

Vi



characteristics of the documents to the geometrical lagbliard drives. We developed a
Double-Lazy Parser for semistructured documents whichdlices lazy behavior in both
the pre-parsing and progressive parsing phases of theessthDdcument Object Model’s
parsing mechanism.

The second goal was to construct a user-friendly and effieiegine for performing
Information Discovery over domain-specific semistructudecuments. This goal also
had two aims: We presented a framework that exploits the despecific knowledge to
improve the quality of the information discovery processrmprporating domain ontolo-
gies. We also proposed meaningful evaluation metrics topementhe results of search

systems over semistructured documents.
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CHAPTER 1
INTRODUCTION

Semistructured data models have become popular and widepted as an effective
means to encode and exchange documents in heterogeneoosem@nts. An increasing
number of applications manage large amounts of semistecttiata [PGMW95]. Such
applications include Bioinformatics suffix-tree-basedjismnce alignments [DKP9],
genomics data analysis [Rok07], multi-resolution vide@3B6], clinical data [DAB06],
XML Databases, and even directory-file hierarchies in gglraurpose systems. More-
over, hundreds of application languages have based thegifgation in semistructured
formats. Some examples include Medical Markup Language MMMLO8], Geo-
graphic Information Systems Markup Language (GML) [GML08pen Document For-
mat (ODF) [ope08, 00x08], Health Level 7 [HL708a], and SbkdaVector Graphics
(SVG) [SVGO08].

To support and further encompass this wide adoption of ¢amtsred data formats,
specifically represented by the eXtensible Markup Langxddke [BPSM*06], efficient
mechanisms to store, parse, and search such documentgessamy. These three phases
constitute a line of work that needs to be optimized to enthedighest performance and
guality in processing semistructured documents. Figudeshows these three phases. A
large amount of research has been driven to improve these finocessing phases. But
there is still room for improvement.

Current approaches to store semistructured data eithethmagata to an underlying
relational database system (e.g., [BFRS02a, DFS99, MHBHEIRR STZ"]), or use the
abstraction provided by a general-purpose object storam@ager [CDF94], or use a
combination of flat files and indexes (e.g., [AGBD, Gal07, JAKC 02, KM06, Xal07,
XTO07]). These storage schemes, however, ignore the misnietween the structure

and navigational primitives of semistructured data andaiteess characteristics of disk



Storing Parsing Searching

Figure 1.1: Three phases to work with semistructured dootsne

drives. In particular, semistructured data have a tree f@plg structure with tree-type
operations. Relational databases, on the other hand,sttotured tables that are opti-
mized for row-based access, and flat files are unstructupgohiaed for sequential ac-
cess. Further complicating this mismatch, the underlytngagie device, i.e. disk drives,
store information in circular tracks that are accessed migichanical seek and rotational
overhead. These current solutions result in sub-optinadsses to semistructured data.
Given the abundance of semistructured data today, thene is@ediate need for re-
examining the current storage and access machinery. Inhbsss, | explore strategies
to optimize the storage, processing, and retrieval of deatisired data on disk drives by
explicitly accounting for the mismatch between the streetaf the data and the disk drive
characteristics.

A key step in the massive adoption of semistructured datheioptimization of its
processing mechanisms. The importance of efficient XML ipgrsnethods has been
underscored by Nicola and John [NJO3]; they showed thatdhsnm process when using
the Document Object Model (DOM) [DOMQO08] is processor and ragmconsuming,
particularly needing main memory as much as five times treeddithe original document.
Lazy XML parsing has been proposed (e.g., [xer08]) to imprthe performance of the
parsing process by avoiding the loading of unnecessaryegitan This is a significant

improvement. However, it still requires initial preprosiggy phases during which the



whole document has to be processed. It is necessary to peneio techniques that
exploit the physical layout of semistructured documentsriter to further optimize the
parsing process on semistructured documents.

Although a vast corpus of work [CKKS05, FG01, CMKS03, CMBB, GSBS03,
HPBO03, HPO06, LYJ04, XP05] has addressed the problem oftguaformation Retrieval
(IR) on semistructured data, a series of challenges arigm e search process is per-
formed over domain-specific documents. The definition andgire of queries, search
algorithms, and results should embrace and resemble as knoehedge about the spe-
cific nature of the documents as possible.

This thesis presents new techniques to improve the perfazenand quality of the
three phases presented in Figure 1.1, summarized in tlosvialy aims:

i Exploit the physical organization and layout of semistaued documents to obtain

a more efficient storage mechanism,

ii Efficiently parse and process semistructured documeyntskipping unnecessary

data,

iii Perform domain-specific Information Discovery by stiurgly the semantics of the

structure and the content of the documents for various dwsnand

iv Design meaningful evaluation metrics for search systdmasdeal explicitly with

collections of semistructured documents.

The rest of this thesis is organized as follows. The next @rgpesents the research
significance of this dissertation. Chapter 3 presents the ohedels and background
considerations used in the rest of the chapters. The firstopdéine thesis discusses the
efficient storage of semistructured data and is found in @mnap The second part treats
the efficient parsing of semistructured documents and isdan Chapter 5. The third part

discusses challenges and techniques to provide domadifisreformation discovery on



semistructured documents and is developed in Chaptersg 8.aThe conclusions to
the dissertation are found in Chapter 9.

In each chapter we motivate the need for the work and pres@ant background
material. We then present the theoretical model and ouaresepproach to solve the
specific problems. We then show the experimental analydtseahtroduced techniques.

The related work for the research is presented next, folidwethe chapter’s conclusions.



CHAPTER 2
RESEARCH SIGNIFICANCE

The significance of this research is as follows:

1. Semistructured documents have been adopted in manyements. From large
database installations to myriads of languages and didbested on the Extensible
Markup Language (XML), semistructured documents can badoeverywhere.
However, the current technologies to store, process andtsdais type of data

have not reached an optimal level of performance.

2. Current approaches to store semistructured data eitagitine data to an underly-
ing relational database system, use the abstraction md\g a general-purpose
object storage manager, or use a combination of flat filesraides. Since these
approaches retrofit existing storage mechanisms to wotk seimistructured data,
their scope is restricted to the underlying mechanisms hvhie@ predominantly
optimized for sequential accesses resulting in a mismagtivden the structure
and navigational primitives of semistructured data andateess characteristics
of disk drives. Given the growing amount of semistructurathdthere is a need
for re-examining the current storage and access machihatystipport them, and
to design strategies to optimize the storage and retrihvgdmistructured data on
disk drives by explicitly accounting for the mismatch begénehe structure of the

data and the disk drive storage and access characteristics.

3. The widespread use of semistructured documents, andtiogar XML, requires
efficient parsing techniques. The importance of efficienthoés for parsing XML
documents was underscored by Nicola and John [NJO3]; trewyesththat the pars-
ing process is processor and memory consuming, partigui@gding main mem-

ory as much as five times the size of the original documents plohibitive re-



guirement makes imperative to develop more efficient mashanfor parsing and

processing.

. As semistructured documents become more popular ancsprieled, so does the
need for efficient and high-quality tools for searching arstalvering information
over these document corpora. Although several efforts haea made to optimize
search systems for semistructured documents and XML repies, it is possible
to improve the quality of these systems by integrating ih gearch process the
knowledge of the particular domain. While previous solnsi@xploit the struc-
tural and syntactical features of XML, we need to exploit aatit features, user
preferences, and other domain knowledge that is capturédedarenced by the

documents.



CHAPTER 3
BACKGROUND

In this chapter we establish some notation and initial deding that will be of interest
for the rest of the dissertation. We present the formal defmiof semistructured data,

and the current methods to storing and accessing this tygeafments.

3.1 Semistructured Data

We view a semi-structured document as a labeledfieghere each node has alabel

A(v), which is atag namefor non-leaf nodes andaluefor leaf nodes. Also, non-leaf
nodesv have an optional set(v) of attributes, where each attributec A(v) has a name
and a value. Note that our layout technique can also be apjglidocuments with cycles

(e.g., ID-IDREF edges for XML documents).

root

Book [title = Book [title =

Book [title =
“XML Databases”, year= 2002 ] “Storage Principles”, year=2001] «y\1 Queries’[' year= 2002 |

Chapter [title=
“XML Introduction” Chapter [title= - o o
: “ImpISmerEtation ‘%oipctlusgglr:es: | Crgf:\:,gl:,le_] _ Ch?pter [t|IIe— Chapter [title=
Chapter [title= Issues” | Chapter [title= XPath” | “Conclusions "]

“Semistructured Data” Introduction” ]

Section [title=

Section [title= Section [title= . -
. . X - Discussion” ]
Section [title= Section [title= “Hard Disks” ] “Conclusions” ] ) )
“Concurrency” ] “Converting to ) o Section [title=
XML "] Section [title= “Open Issues” ]

“Main Memory” ]

Figure 3.1: A sample semi-structured document.

Figure 3.1 shows an example of a semi-structured documenhi§ case an XML
document) and Figure 3.2 shows the corresponding treetstecreated by replacing

the labels with node IDs in the semi-structured tree of Fedif..



OQGO @
Cé ® ()

Figure 3.2: Tree structure for the XML document in Figure. 3.1

3.2 Access Model for Semistructured Data

Current-day file systems stored semi-structured data (sZyvi. document) sequentially
on the disk. This is equivalent to placing the tree in deptt-firder. To ensure a fair
comparison of our storage method to the default layout, aiphi/pointer is added from
each node to its first child and its right sibling, therebywaihg the possibility to skip
the entire subtree of a node to access its right sibling. ®pisnization is used for the
default strategy in all the experimental results we report.

For XML data, which we use as a case-study for evaluating ppraach, XPath
gueries form the core navigation component of XML query pesing systems. For
evaluating XPath queries, we adopt the “standard” XPatlhuatian strategy [GKP02]
shown in Listing 3.1. Intuitively, this strategy processesXPath query) in a depth-
first manner on the XML document, one step@f(Q).first) at a time, and stores the
intermediate results in a sét In [BFHRO6] we explain how optimizing XPath also leads
to optimized XQuery.

Current implementations of XML parsers create an in-meng@gument tree struc-
ture that is populated (on-demand in some implementati&&.02]) by retrieving cor-
responding sections of the disk-resident XML document. X#fares typically handle

documents that are both smaller (i.e., tens of KB) as well ashntarger size (several



Listing 3.1: Standard XPath evaluation strategy [GKP02].

1 procedure processLocationStep(n, @Q.tail)
node set S+« apply Q.first to ng;

2

s 1 f Qtail not enpty then

+ begin

5 for each node n in S do

6 processLocati onStep(n, Q.tail);
7 end

s end

s end procedure

GB). Consequently, trivial solutions such as loading thizreXML document in mem-

ory prior to parsing are not deemed practical.

3.3 Disk Drive Modeling

We base our disk drive modeling on the work of [RW94b]. In timodel,seekrotation,

andtransfer timescombine the following features:

e A seek timehat is linear with the distance, using the single-cylinaled full-stroke

seek times published in the disk drive specification.

No head-settle effects or head-switching costs.

A rotational delaydrawn from a uniform distribution over the interval rotation
time).

A fixed controller overhead.

A transfer timdinear with the length of the request [RW94b].

The average random access timg,q, is a function of the average seek time and

rotational delay and is given by:

trana = seekTime (%) + % Trot (3.1)



whereseekT'ime is a disk specific function computing the seek time given tnalper of

tracks to seek [RW94b] and is given by:

. ifd< &
seekTime(d) = a+fVidifd<g (3.2)

v+ 4 - d; otherwise

whered is the seek distance in cylinders,is the total cylinder count, and, 5, v andé

are disk specific parameters.
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CHAPTER 4
EFFICIENT STORAGE OF SEMISTRUCTURED DATA ON DISK DRIVES

4.1 Motivation

An increasing number of applications manage large amountemistructured data.
Common applications that use semistructured data todayde®ioinformatics sequence
search and alignment [DK®9], genomic data analysis [Rok07], multi-resolution wide
storage [FJS96], clinical data systems [CDAQ07], XML datdsa and more [PGMW95].
Given that a semi-structure such as a tree provides a margivetway of managing
large amounts of data, the trend of storing data in such ftrmsdikely to strengthen in
the future.

Current approaches to store semistructured data eithertimeagata to an underly-
ing relational database system (e.g., [BFRS02b, DFS99,MREHR, STZ]), use the
abstraction provided by a general-purpose object storageager [CDF94], or use a
combination of flat files and indices (e.g., XALAN [Xal07], YXTO07], Galax [Gal07],
BLAST [AGM t90], Timber [JAKC'02] and Natix [KMO06]). Since these approaches
retrofit existing storage mechanisms to work with semistned data, their scope is re-
stricted to the underlying mechanisms, which are predontiypaptimized for sequential
accesses. Consequently, these approaches may result smatci between the struc-
ture and navigational primitives of semistructured datd #e access characteristics of
disk drives. In particular, semistructured data haveea (or graph) structure with tree-
type operations. Relational databases, on the other heord, gructured tables that are
optimized for row-based access, and flat files are unstrediwoptimized for sequen-
tial access. Further complicating this mismatch, the ugiohgy storage devicd,e. disk

drives, store information in circular tracks that are asedswith mechanical seek and
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rotational overhead. Given the growing amount of semistinec! data, there is a need for
re-examining the current storage and access machinerguppbrt them.

In this chapter, we explore strategies to optimize the gead retrieval of semistruc-
tured data on disk drives by explicitly accounting for thesmatch between the structure
of the data and the disk drive storage and access charécteris particular, this chap-
ter presents algorithms that given the physical charatiesiof a disk drive (number of
tracks, sectors per track and rotational speed.), placessetured data on the disk drive
in a way that facilitates navigation of the data by reduciogess overheads. Such low-
level control of data layout is made possible using infoioraprovided by standard disk
profiling tools [WGPW95, TADP99, DRC0D4].

The proposed technique first addresses the problem of grguyides of semistruc-
tured data trees so that they can be mapped to disk blocks.chbpter presents the de-
velopment and experimental evaluation of grouping stiategvhich are compared with
the Enhanced Kundu Misra (EKM) grouping strategy [KMO06]c&ed, the proposed on-
disk layout strategy for node groups optimizes common teegation operations such as
parent-to-child and node-to-next-sibling traversalseSéhon-disk layout strategies make
use of semi-sequential disk access technique {f88Rhat allows the reduction and even
elimination of rotational delay overhead during disk asess

Given that this approach requires circumventing the pestddgical block abstrac-
tion, applying this layout strategy to a general purpose stosggem is not straightfor-
ward! The goal of these techniques is simply to expose the meritslamerits of this
approach. Through experiments we show that our proposetaqgpis superior for a
dedicated single-user storage system with standard gaelmd prefetching capabilities

— for instance, a specialized system for analysis of bicligilata (suffix trees) [BHO6].

Prior research has made a similar argument in favor of fiaegd data layout by
circumventing the logical block abstraction, for the cas&bular data [SS804].

12



Based on this study, we believe that our approach providessh fperspective on the
problem of storing semistructured data that is worth thengiton and research time of the
community.

To evaluate the proposed native data layout techniquesseagtthe Extensible Markup
Language (XML) as a case study. XML is becoming increasipglyular due to its abil-
ity to represent arbitrary semistructured data. It is théade data representation format
for many modern applications, including Geographic Infation Systems Markup Lan-
guage (GML) [GMLO8], Medical Markup Language (MML) [MMLO8Health Level
HL7 [HL708a], Clinical Document Architecture (CDA) [DABI6] used to represent
Electronic Health Records (EHRs), Open Document Format{JODS08, oox08], and
Scalable Vector Graphics (SVG) [SVG08] used to describedimmensional graphics and
graphical applications. Despite the widespread use of Xt& challenge of optimizing
access to XML data stores is a key challenge also identifitteitatest report [AAB05]
on the future directions on database research, publistergl &aw years by the database

research community.

Table 4.1: Query classification of popular XML benchmarks.

Benchmark Workload Document Total | # Non-deep-| # Deep-
size queries focused | focused
TPoX Financial app 2-25KB 11 4 7
XMach-1 E-commerce app 2-100 KB 7 4 3
XMark Auction Website| 10MB - 10 GB 20 13 7
XPathMark | Education app | 10MB - 10GB 54 20 34
X007 Web app 4MB - 1GB 23 4 19
XBench Publications DB| 1KB-10GB 17 11 6
MemBeR Synthetic 11 MB 7 0 7
MBench Synthetic 50MB - 50GB 37 37 0
Total 176 93 83

Recent surveys of popular XML benchmarks [AM06, BR0O3, Ni(R] show that all
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gueries to XML data can be classified into deep-focused anddeep-focused queries.
In Table 4.1, we summarize the key XML benchmarks availablthé public domain.
These benchmarks are further described on Section 4.7.

This collection of well-accepted and standardized XML benarks demonstrate:

i. that XML document sizes can be fairly large running somes into tens of giga-
bytes; this combined with the fact that XML parsers can camsas much as 5X
the amount of main memory during parsing as the original sfabe XML doc-
ument [NJO3] implies that secondary storage accesses raugttbmized if at all

possible, and

ii. that the non deep-focused queries, form at least halfietdtal queries suggested
within these popular XML benchmarks ; this implies that opting accesses to
the non-deep-focused query class is at least as importaptiasizing for the deep-
focused class. Further, in the event that a workload gezeebatth classes of queries
with similar frequency, the storage system could concéyvsiore data using both
the traditional approach and tree-based approach withaethesat that this approach
requires more consideration for write-dominant worklo#d® can incur an unac-

ceptable amount of overhead for maintaining consistency.

For evaluating our native layout proposals, we employ XRptéries [XPa07] ob-
tained from the XPathMark benchmark for the evaluation. Yem@ne the relative perfor-
mance of native layout against thefaultapproach, which stores XML files sequentially.
To do so, we augmented an existing XML parsing engine to impl& the grouping
techniques that we propose. To evaluate disk I/0O performane use an instrumented
DiskSim disk simulator [BGCO03] and replayed the block asdesces generated by XML
guery processing engines. Our evaluation also addre€&3@&tformance in the presence

of query parallelism as would be typical for server envire@mts. Summarizing, these
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experiments reveal that while the default sequential lagoovides superior performance
for the deep-focusedlass of XML queries (or access patterns retrieving entitgrees
of semistructured data), the proposed native layout teckas outperform the default for
all other query access patterns.

The rest of the chapter is organized as follows. Section re8qmts the architecture
of a native semistructured storage system. In Section e3resent native data-layout
strategies for semistructured data on disk drives. In 8eai4, we present strategies for
organizing and grouping nodes in the tree so that they candmpped to disk blocks. In
Section 4.5 we conduct a theoretical analysis of the pedorga impact of data layout. In
Section 4.6, we evaluate the proposed approach for the €xdélodata by comparing it
against the default sequential layout. We survey relatatt wmdSection 4.7. We conclude

and discuss future directions in Section 4.8.

4.2 System Architecture

In this section, we propose an architecture for building ®vaasemi-structured storage
system which allows the use of our layout techniques withmmathchanges to the current
storage stack. A detailed description of the data and acseds| abstractions considered

for this architecture can be found in Section 3.1.

4.2.1 Modifying the Storage Stack

Modern disk drives provide a high-level logical block abstion to the operating system,
which does not export information about the physical dayaué performance charac-
teristics, and internal operation of the disk drive. We jmsgpa modified storage stack
inside the operating system that will facilitate nativeadityout strategies by including

mechanisms to effect low-level data layout.
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Figure 4.1: Storage stack modification.

The lowest levels of the current storage stack (shown inréigul(a)) form the stor-
age subsystem, which exports a logical block I/O interfddee dominant storage mech-
anisms, i.e., databases and file systems, form the middée thgt accesses data on the
storage device(s) using the logical block interface whig® groviding high-level APIs
for applications. These storage mechanisms are optimiareeélational data and sequen-
tial files respectively.

The proposed storage stack (Figure 4.1(b)) builds a natwei-Structured Storage
(SSS) engine on top of the block 1/O interface to provideveastorage and access sup-
port for semi-structured data. The SSS engine employs dilipg to perform native
data layout on a reserved contiguous area (partition) ofiltble drive. Storage access
modules (e.g. file system, database engine) need to be niipwimadified to use the
SSS interface in order to efficiently store and retrieve s&mictured data, or bypass it
for non-semi-structured data. We chose not to build-inveatupport into an existing file

system or existing DBMS, because we believe that the SSSerg well as its inter-
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face can be made generic enough to work with any storagesanoagule. Existing file

and database systems can then be extended with native Rympidrt for semi-structured
data via the SSS engine. While the proposed approach caligoificant changes to the
operating system storage management, it is important ta pat that applications retain
their original interface to the operating system and renti@nsparent to the underlying

mechanisms.

4.3 Semi-structured Data Layout

In this section, we present disk layout strategies for s&nuietured data. First, we in-
troduce a basic tree-structured placement strategy, desstmategy which illustrates the
basic ideas of our approach. Next, we present an improveapintiized variant of the
basic strategy, which addresses the shortcomings of the &taategy. Finally, we dis-
cuss some practical challenges that must be addressed mpémenting the proposed

placement strategies.

4.3.1 Basic Tree-structured Placement

A key limitation of the default storage method is that it isiopzed only for accessing the
semi-structured data tree in depth-first order since itgdabe data file sequentially on
disk. For example, for the semistructured documentin lE@ut and its tree in Figure 3.2,
the nodes would be stored sequentially in alphabeticarowle refer to this henceforth as
the default layout and use it for comparison purposes in@edt6. If this file is accessed
in strictly depth-first order, such a placement scheme wbaldptimal. However, typical

tree navigation during the answering of queries displaggaiowing characteristics: (a)

nodes are accessed along any path from the root to a leaf tehyeand (b) siblings are

often accessed together, without accessing their deseendahe default layout of the
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nodes would result in random accesses (and therefore g@@elkformance) for both the
above accesses, except for the leftmost path or travelsailg keaf levels.

Based on the above observations, we design our basic lalyategy tree-structured
placement To simplify the presentation of the algorithm we assumé #a&h node in
the tree occupies an entire disk block. This assumptionlaxeed in Section 4.4 where
we discuss in detail the grouping methods that can be emghlayeninimize internal
fragmentation within disk blocks while maintaining thedar&ructure of the file.

In the basic tree-structured placement, nodes are plac#teatisk starting from the
outermost available track (we choose the outermost traektduts higher bandwidth,
favoring the more frequently accessed higher levels of tbe)t In particular, we first
place the root node on the block with the smallest logical-block-number (LBWi) the
outermost available track of the disk. Second, we placehiisiien sequentially on the
nextfreetrack such that accessing the first childf v after accessing results in asemi-
sequential acced$SS 04]. This is accomplished by choosing a block forotationally
skewed fronv such that when accessingfter accessing, the rotational delay incurred
is zero. Further, accessing a non-first child from a paredéemavolves a semi-sequential
access to reach the first child and a short rotational-dedagdb on the child index. The
children of the first-child of the root node are then placed@next available track, once
again at a rotationally-optimal point relative to their @at. Next, the grandchildren of
the first child of the root are placed following a similar apach, and so on.

As described above, the basic tree structured layout ckqusent nodes to place
their respective children in depth-first order (DFO). Weoagperimented with breadth-
first-ordering (BFO) in choosing parents, but found DFO tasistently outperform in
the experiments due to its significantly shorter seek timesd parent-child traversals.
Intuitively, this can be visualized in Figure 3.2 where wegant the DFO numbering

for parent nodes (above each node); notice the localizatidhe numbers within each

18



Figure 4.2: Basic tree-structured placement strategy.

subtree. The BFO ordering, on the other hand, scatters mimgb&ver the entire tree,

resulting in large seek times for parent-child traversals.

Example 4.3.1Figure 4.2 shows the layout of the tree of Figure 3.2 on a diaker. To
simplify presentation, we assume that the disk has a sirlgteepwith a single surface
(and consequently a single disk head). Furthermore, werasghat the rotational skew
between tracks is the seek-distancequarter-rotation. The root node A is placed on
the outermost track, track 0. Its first child B is placed on finst available free track
closest to A, i.e., track 1. The block on which B is placed tatronally skewed by a
quarter-rotation relative to A as a consequence of our aggion. Accessing B after A
would require only seeking to the next track. The remainkmtgleen of node A, i.e. |, and
N, are placed sequentially next to the first child B. The asked blocks in each track
immediately before the first-child represent the rotaticsieew between a parent and its
first-child. The remaining nodes are placed following a gamapproach to complete the

placement of the tree.

Listing 4.1 outlines the procedure for tree-structurec@haent. Notice that the leaf
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Listing 4.1: Basic Placement Algorithm

1 procedure Pl acel nDi sk(Tree 1)
> begi n
Pl acel nTrack( Get Fi r st FreeTrack(), 0, Root (7))
whil e there are nore nodes
begi n
n < Get Next Node()
t« GetFirstFreeTrack()

© o) ~ (<) (4] EN w

L+ enpty

L+ Add(Children(n))
10 IbnFirstChild < Fi ndSem Sequenti al (n.lbn, T)
1 Pl ace(t, bnFirstChild, L)
12 end

13 end

nodes of the tred” shown in Figure 3.2 are not numbered in the ordering and harece

not returned byet Next Node( ) , which is when the placement algorithm terminates.

4.3.2 Optimized Tree-structured Placement

The basic layout strategy, as is obvious in Figure 4.2, tesukevere external fragmenta-
tion of disk space (internal fragmentation within a diskdids discussed in Section 4.4),
which also increases the average seek time of I/O operatidlesnow describe an opti-
mization of the basic tree-structured layout strategy thdtices external fragmentation
as well as random seek times drastically.

The key idea in th@ptimized tree-structured placemeastthe use ohon-freetracks
for placing the children for a given parent node. The optediplacement strategy is less
restrictive than the basic tree-structured placementegiyain two specific ways: (1) it
allows placing children on aon-freetrack, and (2) it does not require the first-child to be
placed at the rotationally-optimblock but rather allows placing the first-child anywhere

within a rotationally-optimatrack-regionas defined next.
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We define d@rack-regionas a contiguous list oiV;, disk-blocks along a track. The
blocks within a track-region, therefore, are also seqaémithe logical address space
(LBN space) of the disk. Given a parent nodeand a target track, we define the
rotationally-optimal track-regiorfor « on trackt as the track-region of siz&;, blocks
starting from the block where the disk head lands when sgekirtrackt starting from
u. In Figure 4.3, two rotationally-optimal track-region¥,(=6) for parent node ‘S’ are
marked using thet symbol. To place the children nodes for nadea set ofcandidate
rotationally-optimal track-regions are chosen close tavhich can lie on either side of
the parent track. The optimized placement algorithm ch®dse track-region closest to
u with sufficient free space to house the children.oDther than this variation, the opti-
mized tree-structured placement algorithm proceeds teplze tree similar to the basic
placement algorithm.

In the above placement description, the choice of the mtatly-optimal track-region
size (V;,) is a critical factor. Increasing the track-region sizeegithe placement algo-
rithm more opportunity to reduce fragmentation and consetiy reduce random-seek
overhead between node accesses, but it also increasesetiage@votational delay in-
curred during parent-to-child node-traversals. This isygportant trade-off to be consid-
ered when choosingy;,. In our experiments, we choo$g, as a quarter of the track-size.

Figure 4.3 shows the layout of the tree in Figure 3.2 on a hestd(glatter) using the
optimized strategy. Again, we assume that the platterestit the clockwise direction.
The assumptions of track skew are also the same as for threedhetegy. In the optimized
placement, since a single track can contain the childrereeéral nodes, the external
fragmentation (shown in Section 4.6) is drastically redluicempared to the basic tree-
structured placement.

The Pl acel nTr ack method in Listing 4.2 outlines the logic for optimized tree-

structured placement. Line 1 places the root node of thetrea the outermost track.

21



Figure 4.3: Optimized Strategy.

Lines 2-7 place the children of thmeextnode (which is the root node in the first iteration)
on the rotationally-optimal track-region (returned ByndRot Tr ackRegi on). The
next node is returned byet Next Node( ) , which returns a non-leaf node of the XML
tree based on the chosen ordering scheme. The above preaegeated until all the
nodes are placed on the disk. The auxiliary met@et Tr ack( LBN) returns the track
for LBN; the auxiliary method-r eeTr ackRegi onStart (LBN, int, tracks)
recieves as parameters a parent LBN, its number of childrehthe number of tracks to
skip, and returns the LBN for the first child if all childrenrche placed in the candidate
tracks rotationally-optimal track-region. Otherwiseurgis NULL. Candidate tracks are
the two tracks situated at parentTrack +/- tracksToSkipeetvely.

Notice that the leaf nodes @f are not numbered in the ordering and hence are not
returned byget Next Node(). Thefi ndRot TrackRegi on( LBN parent, i nt
nchi | dr en) auxiliary method checks for availability of space in theatainally opti-
mal track-regions in tracks on either side of the parendéisky starting from the closest
track. It returns the LBN for placing the first-child of tipar ent node. The remaining
children are placed incrementally following the first chil@ihedi r ect i on identifier

specifies where the target track lies with respect to thenpaidéthe di r ecti on has

22



Listing 4.2: Optimized Placement Algorithm

1 procedure <Track, LBN> Fi ndRot TrackReg(LBN parent, int n)
2 begi n

s tracksToSkip <+ 1

a  parentTrack < Get Tr ack( parent)
s WwWhile true
6

7

begi n
IbnFirstChild < FreeTrackRegi onSt art ( parent, n,
tracksToSkip)

8 i f lbnFirstChild not NULL
9 begi n
10 return <Get Track((bnFirstChild), lbnFirstChild >
11 end
12 end
1 tracksToSkip + +
12 end

15

1s procedure Pl acel nDi sk(Tree T)

17 begin

1 PlacelnTrack(getFirstFreeTrack(), 0, root(tree))
1w While there are nore nodes

2  begin

21 n < CGet Next Node()

22 L+ enpty

23 L < add(children(n))

24 < IbnFirstChild >« Fi ndRot TrackReg( n.lbn, L. size())
2 Pl ace(target, lbnFirstChild, L)

26 end

27 end
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a negative value, the target track is less than the paresit. ttakewise, a positive value

indicates that the target track is greater than the parack.tr

4.3.3 Implementation Issues

In implementing the strategies presented above, sevaeligal issues must be consid-
ered. First, the above placement scheme assumes thate, sioigliguous partition, large
enough to accommodate the semi-structured data is avail@bis assumption is realistic
for both file systems and database systems since they tiypadialcate a large contiguous
disk partition and can reserve a fraction of this space fmirsg semi-structured data.

Second, after a tree node is read from the disk drive, a nghgilde CPU think
time is typically required before the next 1/0 request isiest We address this issue
as follows. If the next request is for a sibling node (storeguentially in our approach),
then on-disk pre-fetching mechanisms ensure that this isqate-fetched into the on-disk
cache. However, if the next request is for a child node (stsremi-sequentially), then
during computation time, the disk would have already ratdmg an amount proportional
to the CPU think time and hence no semi-sequential accedsiWweyossible. To address
this, we skew the first child by an additional rotational getguivalent t®5 percentile
of a sample from the think time distribution. This ensurest th most cases, the semi-
sequential nature of child node accesses will be preserved.

Third, the proposed strategy would work well when processirsingle query at a
time. However, if there are multiple queries issued corentty by different processes
or users, then the resulting interleaving 1/0Os are likelydegrade sequential or semi-
sequential accesses to random ones. This problem is protremen in traditional re-
lational database and filesystem accesses. Techniques diskhscheduling layer such

asanticipatory schedulinglD01], which group together requests from a single process
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and minimize the effects of multiple interleaved 1/O redusseams, address this issue
well. We evaluate the impact of query parallelism (in Set#do6) with anticipatory 1/0
scheduling to demonstrate the effectiveness of nativeulagtategies in the simulated
environment.

Finally, existing storage interfaces are restrictive wmeakes it non-trivial to obtain
profiling information or control data layout. While the nefed more expressive storage
interfaces has been brought up repeatedly in the storag@roscommunity(e.g., [Gan01,
KPH98, RGF98])), for the time-being, we can circumvent théstriction by employing
disk profiling and control tools. Profiled information indies: rotational time, seek time,
track and cylinder skew times, sizes of read cache and wrffertalong with pre-fetching
and buffering techniques, logical to physical block maggirand access time prediction.
This profiled information enable fine-grained control foslddrives, tailored specifically

for semi-structured data.

4.4 Supernode Trees

So far, we assumed that each node in the semi-structurettélataccupies an entire disk
block. This assumption, however, is not realistic; in piagtthe tree nodes are of variable
size, ranging from a fraction of a disk block to multiple didkcks.

In this section, we first lay the foundation for grouping nede a semi-structured
data tre€l’ to form supernodesvhere each supernode occupies an entire disk block.
Next, we describe how to organize the supernodes into asogetree structurés. The
placement strategies of Section 4.3 are then applied oruterisode tree instead of the

node tree.
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4.4.1 Grouping Nodes into Supernodes

To reduce the internal fragmentation, it is desirable taugrthe maximum number of
nodes into a supernode. It is also important to group adjaceees of7’ in the same
supernode, so that navigating among these nodes requiyesrandisk access. If the size
of a node is larger than the size of a disk block, it is storedgusultiple supernodes,
which are then stored in consecutive disk blocks.

To elucidate the following grouping techniques, we assunma¢ &ll nodes have the

same size, and one supernode can contain at most five nodes.

(c) EKM grouping as described
in [KMO06]

Figure 4.4: Grouping strategies for creating supernodes.

2An alternative strategy to avoid breaking the tree-stngctf the rest nodes would
be to store a pointer to a Binary Large Object (BLOB) and uselgact storage man-
ager [CDF 94] to manage BLOBs.
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Sequential grouping. Nodes are added to a supernode starting from the root nodg usi
a depth-first (and left-to-right) traversal. The only difface is that a single node is not
split nodes across disk blocks, unless the size of the nodeeaer than the size of a
disk block. Figure 4.4(a) illustrates this grouping stggtéor the tree presented earlier in

Figure 3.2.

Tree-preserving grouping. The tree-preserving grouping proceeds as in the sequential
grouping except it ensures that cycles of supernodes donotih the grouped tree. At
each step, before adding a nadé a supernodé, the following additional conditions
are checked:

(i) the parent node of isin S, or

(i) the parent node of is in the parent supernode 6f
If any of these conditions hold, then we addb S. If neither holds, then by addingto
S a cycle of supernodes in the original trf€evould be created. To avoid that, we close
S and addy to a new supernode. This strategy aims at preserving thastreeture of the
original treeT in the supernode tree. Figure 4.4(b) illustrates this grogiptrategy for

the tree of Figure 3.2.

Enhanced Kundu Misra grouping. We also implement a grouping technique developed
independently at the same time by Kanne and Moerkotte [KM@fEd the Enhanced
Kundu Misra (EKM) grouping, an extension to the original KwnMisra grouping algo-
rithm [KM77]. The EKM strategy operates in a bottom-up fashand aims at reducing
the number of node groups while preserving the originaldtaecture, thereby increasing
navigations between nodes within the same group. It opebgteonverting the n-ary tree
into a binary tree representation, obtaining a layeredtparing that helps reducing the
number of supernodes while preserving the connectednégpste.4(c) illustrates this

grouping strategy for the tree of Figure 3.2.
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4.4.2 Building Supernode Trees

The organization of the supernodes into a supernodefigaletermines the placement
of the supernodes on the disk drive according to the algostpresented in Section 4.3.
Hence, it is desirable to preserve the tree-structurg of 7s. That is, if a parent-child
pair of nodes il is split to different supernodes, then it is preferable tiit #pto two
adjacent supernodesTn. Based on the grouping strategies described above, wedawnsi

four supernode tree organization strategies:

1. Thesequential supernode lisivhich corresponds to the default placement strategy,
uses sequential grouping to form supernodes. It is merehkad-list of supernodes in
the order in which the supernodes were formed. Figure 4sh(@ys the formation of

this list.

2. Thetree-preserving supernode treghich corresponds to theee-preservingtree-
structured placemento be introduced in Section 4.6, uses the tree-preservimgping
to form supernodes. The supernode tree is formed by addgesdzktween two supern-
odesS;, S; if there is an edge between two nodes S;,v; € S; inT. Notice that due
to the nature of tree-preserving grouping no cycles canro¢ggure 4.5(b) shows the
formation of this tree.

3. The sequential supernode treerhich corresponds to theequential tree-structured
placement algorithnin Section 4.6, uses the sequential grouping to form supkeso
Then, the supernode tree is created by adding edges betagsmfpsupernodes;, S;

if there is an edge between two nodes S;, v; € S; in T and adding the edge will not
create a cycle. Figure 4.5(c) shows the formation of this.tre

4. TheEKM supernode trebuilds a tree on the EKM supernodes. Again no cycles exist

due to the nature of EKM grouping. Figure 4.5(d) shows thendron of this tree.

Swith respect to grouping
4with respect to placement algorithm
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Figure 4.5: Supernode Trees.

4.5 Theoretical Analysis

In this section, we present a quantitative model to analieeaccess times for the de-
fault and the optimized tree-structured placement stregeglable 4.2 summarizes the
description of each parameter used in this analysis.

First we compute the random, sequential and semi-sequiaatiess times, following
the equations and models described in Section 3.3. For thhado@a disk, chosen as
the base disk configuration in the experiments (and alsbdudescribed in Table 4.7),
the rotational latency is given b¥,,, = 8.33 ms anda = 1.83,5 = 0.17,v = 2.85
andd = 0.0035. For an XML document of size 50MB occupies 129188 blocks dr 32
cylinders after grouping with the tree-preserving grogpstrategy (Table 4.4). Thus,
substituting these values in the above Equation 3.1, thdoraraccess time for the area
occupied by this document is given by, = 5.99 ms.

The average sequential access titne from one block to the next is a very small
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Table 4.2: Disk Drive Parameter Description

Thesaur: Average access time in default placement
T:.... Average access time in tree-structured placement
tseq: Average access time for sequential access
trana. Average access time for random access
tsemi—seq: Average access time for semi-sequential acgess
ay: Access is from parent to first child

ao: Access is from a parent node to non-first child
ag: Access is from a non-leaf node to its right sibling
ays: Access is from a leaf node to its right sibling

as: All other accesses (that i&; = (1 — (3, P))

P;: Probability that access occurs;l <i <5

tae faut(a;): Average time forw; in default placement
tiree(a;): Average time fom; in tree-structured placement
C: Number of Cylinders

T.... Rotational Period

T,:. Time taken to transfer one block of data

value, approaching zero. Hence,
tseq =0 (4.1)
For the tree-structured placement, the access betweereat@ard its first child is

semi-sequential, and from a node to its right sibling is segjal. The average time for

semi-sequential access,,;_s., given by:
tsemi—seq(V) = seekTime (s(v)) (4.2)

wheres(v) is the number of tracks to be seeked during a semi-sequewtiass. When

T is a complete tree with heightand degred, the average(v) is given by:

frd—2—f/A-f))+2+f/A-f)

2n/

s(v) = (4.3)

wherer’ is the number of internal nodes given hy= { lfdf)l)
To understand this equation, let’'s assume that the rootdspth 1 and the leaves at

depthd. If there are two edges; — v; andu, — v, Whereu; andu, are on the same
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level andv, andv, are theirl*" respectively, thed FO(v,) — DFO(u,) = DFO(vy) —
DFO(us). Thus, the distance in tracks from to its childu; and fromv, to u, are the
same. In the above relatiol, FO(x) is the corresponding number in the DFO ordering.
The numbers above the internal nodes in the tree shown ind-B)Q illustrate the DFO
ordering.

To calculate the averaggv) for the nodes of level £ + 1, we need to find the size

of the subtree rooted atwhich is

= “

The average of(v) for the nodes v of levet + 1 is the average(v) of any set of

1+f+...+fd_k_1:

siblings at levek + 1. That is,

FH-fi) JH(1- ) .
(o) _ (Gpome) _ (PR + 1) 4.5)

f f 2

Hence, for levek it is W%

For an average fanout of 10 and a depth of 5 in an XML ts¢e) from Equation 4.3
is 1.83. Thus, theeekT'ime(s(v)) isa + 3 - v/1.83 = 2.26.

Equation 4.2 assumes perfect semi-sequential time, whiclithieved by the tree-
structured algorithm (Algorithm 4.1). However, in the casthe optimized tree-structured
algorithm (Algorithm 4.2)f,..,.i—se,(v) depends on the number of track-regions per-track,

k. Hence,

1
—T
2]{3 rot

Since the first-child is placed anywhere within a rotatibrajptimal track-region

tsemi—seq(V) = seekTime (s(v)) + (4.6)

rather than rotationally optimal sector, accessing thé €indd may involve anywhere
between 0 to};Tmt rotational delay after the seek operation. This additiontdtional
delay during the semi-sequential acces%igmt on an average. When a track is divided

in 8 track regionsk =8 and for the barracuda disk(v) is calculated above and is 1.83
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ms. Substituting these values in Equation 4.6, the averagesequential time is given
BY tsemi—seq(v) = 2.79 ms, a significant reduction of 53.4 % from an average random
access time of 5.99 ms.

Next, we discuss the time needed for each of the five basicsadtgpes of Table 4.2.
When the first child is accessed from its parent),(a sequential access occurs in the
default placement, whereas a semi-sequential accesssaodine tree-structured place-
ment. When a non-first child is read from its paresf)( it is a random access in the
default placement, whereas for the tree-structured plaognt is the sum of the semi-
sequential time and the average sibling indgx2; wheref is the tree fanout) times,,
(time required to transfer data from one node). When thessdsdrom a non-leaf node to
its right sibling @3) itis a random access in the default placement, and a seglactess
in the tree-structured placement. When from a leaf-nodeasess its right siblingd(,),
it is a sequential access in either placement strategyl @itar casesd;), such as when
moving up the tree, for both placements a random access & ldsformed. Table 4.3

summarizes the access times in the default and the tresitgted storage for every.

Table 4.3: Average access times in default and tree-stedtjplacement for each access
typeal

Access type; | Description tdefauit(@;) | tiree(ai)

a; Parent to first child tseq tsemi—seq

as Parent to non-first child trand toemi—seq + 5 (Tnt)
as Non-leaf node to right sibling ¢,.4..4 Tseq

ay Leaf node to right sibling Tseq Tseq

as All other accesses trand trand

The average access times in default and tree-structuneystare computed by Equa-

tions 4.7 and 4.8 respectively.

5
Tdefault = Z Pz : tdefault(ai) (47)

i=1
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5
Ttree = Z Pz : ttree(ai) (48)
i=1

Tree-structured placement is better wien, < Ty qui-

While this is not realistic (and necessarily subjectivelte juery as demonstrated
extensively later in Table 4.6), if we did assume that a qeehyibits all the access types
shown in Table 4.3, with each access type occurring equedtyuently, the average 1/0
times for the default and the tree placement can be obtaipedlbstituting their values

in Equations 4.7 and 4.8 as:

T _ ! t +—1 t +—1 t +—1 t +—1 t
default — 5 seq 5 rand 5 rand 5 seq 5 rand
= 3.594 ms, and
1 1 ¥ 1 1 1
Tree = T tsemi—se = tsemi—se o Tn = tse z tse - tran
t 5 q+5 ( q+2( t)>+5 q+5 (1_'_5 d
=2.344ms

where the transfer timé€,; = 0.03 ms.

4.6 Evaluation Case Study: EXtensible Markup Language (XML

In this section, we experimentally evaluate the grouping) mative layout strategies for
placing XML data on disk drives.

We used the DiskSim [BGCO03] disk simulator for our evaluasianstrumenting it to
provide the additional interface:

<LBN> findSem Sequential ( LBN parent, int cyl, int track )
which given a parent LBN, returns an LBN on <cyl,track>, such that access from the
parent LBN toX is semi-sequential.

The optimized-tree placement in Algorithm 4.2 uses thierfiaice to find semi-sequential

LBA for subsequent nodes in the tree that has to be placedeodish. The optimized
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tree-structured and the default placement algorithms weptemented in C and inte-
grated with the instrumented DiskSim code. The groupingridlgms were implemented

as a separate module.

4.6.1 Data Set and Queries

We generated XML files (each file corresponds to an XML treejpoious sizes using the
XMark generator [SWK 02b] with different scaling factors frori = 0.01 to f = 1.00,
corresponding to file sizes ranging from 1MB to 100MB. Thetioh 100MB for the max-
imum file size is due to the memory constraints in currenthilable open-source XML
parsing engine implementations. These engines createthgation tree data structures
for the entire tree in memory during parsing, while at the saitne consuming as much
memory as five times the original document size [NJO3].

Earlier in Table 4.1, we presented the document sizes usedaugral popular bench-
marks typically used to evaluate XML query optimizationsyage, indexing and so on.
As mentioned earlier in Section 4.2, trivial solutions thadd the entire document in
memory are not practical for large (several gigabyte sizéd). documents. Although
the XML documents we experiment with are small relative ® size of the disk, these
serve as examples to illustrate tiedative effectiveness of native layout when compared
to the existing approaches. It should additionally be nttetithe on-disk buffer is small
(1-8MB) for the disks we use, substantially smaller rekativ the size of the documents,
and is not in any significant way capable of influencing thed@©ess patterns apart from
on-disk readahead.

We implemented the three grouping strategissguential, tree-preservingndEKM
— described in Section 4.4, computing and storing the in&tion about the supernode

that would contain each XML node. We also implemented exteissto the DiskSim
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Table 4.4: XML Tree and Supernode Tree Parameters

XMark | Tree | #Nodes| B/node| # Supernodes x1000 B/supernode (Avg)
factor | (MB) | x1000 | (Avg) TP | Seq. | EKM TP | Seq. | EKM
0.01 1.7 17.1 25.2 2.5 2.1 2.1|343.8| 418]| 412.3
0.05| 8.3 59.6 25.8| 12.8| 10.6| 10.7|373.2|450.8| 447.5
0.10| 16.8| 167.8 25.8| 26.0| 21.4| 21.6|345.3|418.7| 414.9
0.50| 83.7| 8329 26.1]129.2| 106.6| 114.8| 345.3| 418.5| 414.6
1.00| 168.7| 1666.3] 26.1| 259.6| 214.3| 216.1| 345.3| 418.2| 414.7

disk simulator [BGCO03] that allowed us to simulate the ratayout strategy described
in Section 4.3. We then used the supernode information te stem on disks simulated
by DiskSim.

Table 4.4 provides information about the XML trees used &edcbrresponding su-
pernode trees formed. The number of supernodes in the s&jugrouping is the low-
est since it groups the nodes to form supernodes withoutestyiations. EKM does a
bottom-up grouping of the tree and reduces the number oftmegsupernodes by re-
ducing the problem of finding supernodes for arbitrary trieethe simpler problem of
finding supernodes for flat trees (trees in which all nodesh®itoot are leaves) [KMOE].
Tree-preserving grouping avoids cycles by placing restns on the nodes being added
to the supernode. This in turn reduces the number of nodesyparnode and subse-
guently increases the number of supernodes. The averags/sagdernode is six for the
tree-preserving grouping and is 8 for Sequential and EKMigimg.

For the query workload, we adopted performance-sensitiegigs from the XPath-
Mark benchmark [Fra04], but omitted the ones that checkdatures supported by XPath
(e.g.,Q18: /comment]) To compute reliable results we added more queries witiaim
properties of depth, number of conditions and selectivitye query workload is summa-

rized in Table 4.5.

To contrast the relative advantages of using our nativeéegfies with those of the
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Table 4.5: XPath queries for the deep-focused (D) and thaleep-focused (N) classes.

# | Deep-focused Query

Dy | /site/closed_auctions/closed_auction/annotation/description/parlist/
listitem /text /keyword

D, | /site/people/person/watches

Ds | /site/open_auctions/open_auction/annotation/description/text/keyword
Dy | /site/people/person/address/country

Ds | /site/regions/australia/item/description/text/emph

D¢ | /site/people/person/ * [business

D~ | /site/closed_auctions/closed_auction/ x /description

Dyg | /site/regions/ x [item/description/text

Dy | /site/closed_auctions/ [itemref

# | Non deep-focused Query

Ny | /site/open_auctions/open_auction

Ny | /site/closed_auctions

N3 | /site/regions/australia

N, | /site/closed_auctions/closed_auction

N5 | /site/regions/ x [item

Ng | /site/ * /australia

N7 | /site/open_auctions/open_auction|Qid =" open_auction0’]/bidder

Ng | /site/regions/asia/item|[Qid =" itemd'] /mailbox /mail/ from

Ny | /site/open_auctions/open_auction|Qid = ” open_auction0”]/ [ keyword
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default sequential layout, we classify XPath queries imto tategories:deep-focused
gueriesandnon deep-focused queriea subset of each class is shown in Table 4.5. The
former class describes the special class of XPath quers#vigate entire subtrees of
the tree (queried, ..., Dy in Table 4.5). The latter class, non deep-focused queries
Ni,..., Ny in Table 4.5, represents all queries that do not belong tddimaer class.

As we shall demonstrate, the default layout primarily adsles the class of deep-focused
gueries and is sub-optimal for all other queries. Noticédhdy the supernode-granularity
navigation matters for overall /0O performance, and notrtbde-granularity navigation.
Hence, queries liké,, which do not access leaf nodes, are included in the firsgoage
since they access supernode leavespiiiehessubtree is very small and fits in less than

one supernode.

4.6.2 Tree Navigation Performance

We conducted experiments that compare the I/O times for amsgy XML queries for
four different layout strategies, corresponding to theesapde tree organizations of Sec-
tion 4.4: default(Section 3.1)tree-preserving tree-structurdd’P-TS),sequential tree-
structured(Seq-TS), andEKM tree-structuredEKM-TS) layout strategy.

To consider caching effects in our experiments, we assuhcdatl nodes along the
path from the root to a single leaf node would be cached in mm&mory, either in the op-
erating system VFS or a custom application level cache. iSldgeasonable assumption
for XML trees, which are typically short even when their tatie is large, due to large
fan-out. Consequently, we ignore repeated accesses t@ ifgaeh as parent, ancestor
nodes) during the depth first traversal of the XML tree. Suadhing reduces the number
of random accesses equally in all three placement strategiee the navigation of nodes

for answering a query is exactly the same regardless of yleitastrategy.
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Figure 4.6: Total I/O times in logarithmic scale for variqulacement strategies.
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Table 4.6: Navigational patterns for the two XPath quergsés forf = 0.5.

a;'s are defined in Table 4.2.

Default Placement
Query al as as a4 as Query al a as a4 as
D1 9046 0 0 0 1982 N1 1098 0 0 0 | 4775
Do 7211 0 0 0 55 N2 0 0 0 0 5
D3 12744 0 0 0 1895 N3 0 0 0 0 10
Dy 7211 0 0 0 55 Ny 1387 0 0 0 | 3053
Ds 1823 0 0 0 759 Ns 1322 0 0 0 | 9323
D¢ 7315 0 0 0 4 Ng 9324 0 0 0 | 8418
D7 2765 0 0 0 2814 N7 1098 0 0 0 | 4775
Dg 11937 0 0 0 9654 Ng 121 0 0 0 870
Dy 16166 0 0 0 5 Ny 1098 0 0 0 | 4775
TP-TS Placement
Query al as as a4 as | Query a1 a9 as a4 as
D1 4438 | 1182 | 1799 | 1114 5117 N1 1 1 71 5513 1
Do 3250 3 333 | 1801 3251 N 0 1 0 4 0
D3 6171 | 1729 | 2428 902 7897 N3 0 1 0 9 0
Dy 3287 3 333 | 1764 3288 Ny 0 2 42 3762 0
Ds 659 319 507 169 976 Ns 0 6 42 | 10065 5
Deg 5218 1 371 3 5049 Ng 4 2 485 | 14647 4
D7 1344 | 2665 42 71 3758 N7 1 1 71 5513 1
Dg 4071 | 4831 | 1360 | 2164 8896 Ng 0 2 2 937 1
Dg 8213 1 | 4657 4 7199 Ny 1 1 71 5513 1
Seq-TS Placement
Query al as as a4 as | Query a1 a9 as a4 as
D1 6856 | 1073 | 1768 219 1112 N1 1074 859 5 24 | 3911
Do 6714 47 47 0 458 No 0 1 0 0 4
D3 9582 458 | 2347 123 2129 N3 0 1 0 0 9
Dy 6714 47 47 0 458 Ny 1347 7 2 7 | 2307
Ds 1149 175 487 33 738 N5 1305 | 2576 0 103 | 6661
Deg 6765 1 95 0 458 Ng 8771 | 1719 83 47 | 7122
D7 2620 | 1098 2 44 1815 Nr¢ 1074 859 5 24 | 3911
Dg 9193 | 3364 | 1385 715 6934 Ng 120 227 0 6 638
Dg 10564 1 | 4602 0 1004 Ny 1074 859 5 24 | 3911
EKM-TS Placement
Query ai az a3 a4 as | Query al a2 as a4 as
D1 2126 | 4153 | 1795 | 1319 5521 N1 0 2 88 2305 1
Do 2040 | 1117 | 3342 | 1983 3156 N 0 1 0 0 0
D3 3259 | 5042 | 3838 731 7981 N3 0 1 0 4 0
Dy 2040 | 1117 | 3342 | 1983 3156 Ny 0 2 151 1495 0
Ds 445 | 1106 395 287 1414 N5 0 6 89 3588 5
Deg 2242 | 1129 | 3347 | 1924 3306 Ng 0 6 | 3584 6174 4
D~ 803 | 2000 151 | 1237 2801 N7 1 2 88 2304 2
Dg 2730 | 9672 913 | 3323 | 12399 Ng 0 2 12 327 1
Dg 3180 | 2581 | 6116 0 4029 Ny 1 2 88 2304 1
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Total I/O time

Figure 4.6 shows (in logarithmic scale) the I/O times forlequaery, for the two classes
of queries, deep-focusedf) and non deep-focusedf), for an XMark file with scaling
factor f = 0.5. We executed five simulation runs for each column shown irgtlagh.
For the first run, the start LBA for the placement of the rootl@avas0. For all the
subsequent runs, it varied with increment28 (> track size). Thus, the start LBA was
varied over the range — 1250. The confidence interval, for a confidence level of 95%,
for all the five runs was found to be + 10.96. The results shown in the graph are for
the start LBA 0.

For the deep-focused class of queries, the default pladestrattegy performs con-
sistently better than the others, since it can retrieve@stibtrees more efficiently. For
the non-deep-focused query class, the performance of taeltiplacement strategy is
consistently worse than the tree-structured variants{$PSeq-TS, and EKM-TS). For
this query-class, a large number of accesses are non-sefienthe default placement,
since complete sub-tree accesses are few.

Figure 4.7 shows the relative performance with the norredlintal I/O time to reduce
the impact of the large variance across queries. Each valseaied relative to the max-
imum value for the experiment. To better demonstrate thegivel distribution of seek,
rotational delay, and transfer time components, the tatainalized 1/0 time is further
split to show these 1/O access time components. It can betbeenhe average rota-
tional delays for the tree-structured placement strase@iethe case of non-deep-focused
gueries) are substantially lower relative to the defauliteyy. However, this is not the
case for the deep-focused class where the default strateggréorms in all respects.

To better understand and explain the graphs of Figure 4.6-muote 4.7, we counted
the different types of accesses in the supernode tree (emassatranslates to a disk

I/O operation) for answering the XPath queries for both teepdfocused and non deep-
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focused classes. Table 4.6 shows the numbers of supernctiEssas for the five basic
types of tree accesses, throughas, defined in Table 4.3. As an example, observe that
for the TP-TS placement, Quety, requires 4438, accesses, the parent-to-first-child
type accesses.

We can make some general observations from Table 4.6. testiefault placement
causes all the accesses to be either of typ® a5, since only parent-to-first-child sequen-
tial accesses are possible for this layout. Second, thefdeeged queries are dominated
by a; andas type accesses, while the non-deep-focused queries aradmaibya; and
a4 accesses (except in the case of default placement). Thidesrtae non-deep-focused
gueries to exploit native layout, since all the accessesblings are sequential, as op-
posed to the large number of random accesses the deep-dapusees require. Observe
further that the EKM and TP-TS placement strategies ineréas number of accesses
from parent to non-first child, thus utilizing the semi-seqtial and sequential access op-
timization to a larger extent. For the deep-focused qugeoieshe other hand, the default
placement erforms the best both because the number of d&j@esesses for his place-
ment is the highest and number of random accesses is lowmeasio§t cases) among all
placement techniques.

In Figure 4.7 (b), we see a somewhat unexpected outcomehthaeek times reduce
for queriesN, and N3 for TP-TS, Seq-TS and EKM placement. An answer can be found
in the access patterns of these queries (Table 4.6).Mz@nd V3, all accesses for the
default placement are of type, which are random accesses, where as for the TP-TS and
EKM placement, they are either semi-sequential or seqaleatcesses, leading to the ob-
served difference in seek overhead. Further, the Seq-T8 slaghtly lower performance
relative to these two because of the increase in the numb@mdbm accesses for this
placement. Note that although the number of random acc@ss®sg-TS is relatively

higher, it is still lower than the default placement and leergerforms better than the
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default placement.

The above discussion serves to reinforce the arguments wle selier when dis-
cussing Figure 4.6. In summary, the EKM-TS placement gyaperforms better overall
due to its lower internal fragmentation and tree-strucpresservation property; it results
in 1/0 times which are 3X-127X better than the default sggteBetween the remain-
ing strategies, TP-TS performs better on an average, dibetter preserves the original

tree-structure.

Sensitivity to drive characteristics

To evaluate the effect of drive characteristics, we coretliet sensitivity study of I/O
access time for representative disk-drive models. Thesdnwedels chosen, shown in
Table 4.7, were the Seagate Barracuda, Seagate CheetaBedigate Cheetah 4LP, and
the HP C3323A as representative of four performance cladseéisk drives:base, fast
rotating and fast seeking, fast rotatingadslow rotatingrespectively. A disk block is of

size 512 bytes.

Table 4.7: Characteristics of experimented disk drives.

Disk Disk | Size RPM Stroke | Transfer | Sectors Cylinders
model type | [GB] [ms] | [MBps] | /track
Barracuda | Base 2.0 7200| 16.679| 10-15 | 119-186 5172
Cheetah 9LR Fastdisk| 9.1 | 10045| 10.627| 19-28.9 | 167-254 6962
Cheetah 4LR Fastrot. | 4.5 | 10033| 16.107| 15-22.1 | 131-195 6581
HP C3323A | Slowrot.| 1.0 5400| 18.11| 4.0-6.6 | 72-120 2982

Figure 4.8 shows the average (across queries in a querg)-ttaal I/O times (in log-
arithmic scale) for the two query classes for an XMark filehwft = 0.5 with the var-
ious hard disk models. For the special class of deep-focqsedes (Figure 4.8(a)),

the default placement strategy performs better than ther agtinategies benefiting from
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optimized sub-tree retrievals. However, for all other geei(Figure 4.8(b)), the tree-
structured placement strategies perform better for ak disdels, offering as much as
7X-34X reduction in average I/O time for answering queri€his underscores the im-
portance of native layout strategies for XML data.

We break down the gains further in Figure 4.9 into the retateduction in seek and
rotational delay components for each of the drives by nammg the 1/0 times at each
disk drive using the maximum value as reference.. Noticéhenon-deep-focused query
class (Figure 4.9(b)), the average rotational-delayswdystantially reduced relative to the

default layout.

Effect of Query Interleaving

One concern with a native layout targeted to a optimize aiipaccess pattern is the im-
pact of multi-processing in the system. For instance, aeses\ikely to execute multiple
XPath queries simultaneously; optimizing individual guexecutions may not neces-
sary translate to overall performance improvement wherctineesponding I/O request
sequences are interleaved. As elaborated in Section 4s3isue in its more general
form (i.e., multi-process blocking 1/0 performance) hastbaddressed earlier with an-
ticipatory 1/0 scheduling [ID0O1]. Consequently, we exptwit XML servers would be
configured with I/O schedulers that include an anticipatiore.

To evaluate the performance of our grouping and placemehhigues under multi-
ple simultaneous XPath queries, we interleaved a subsetag-tbcused and non-deep-
focused queries stated in Table 4.5. The interleaved qgieel®nged to either the disjoint
set of queries which accessed disparate portions of th@treeersecting queries whose
access paths overlapped. The ordering of the 1/0Os aftataeaigng were based on antic-
ipatory scheduling. We simulate the behavior of the anditmpy 1/0 scheduler assuming

that each query is serviced within an independent threadssn@s synchronous 1/O re-
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guests. The behavior of the non-work-conserving antioiyascheduler would result in
optimizing the schedule of successive I/O operations tiegufrom the same query, in
spite of them being issued synchronously, as long as otheraguin the system access
disjoint portions of the XML tree. When there is an overlapsabtrees between two

gueries, their I/Os must interleave.

Table 4.8: Query Interleaving for Multi-User Simulations.

Disjoint Deep-focused| Non-deep-focused
Queries Queries Queries
01 Dy + Dy N; + Ny
09 D4+ Dy Ny + Ng
03 Ds + D7 N5 + Ny
04 Dy + Dy + Ds Ny + Ny + N5
5 Dy+ Ds + Dy N4+ Ns + Ny
06 D4+ D5+ Dy N4 + N5 + Ny
Intersecting | Deep-focused| Non-deep-focused
Queries Queries Queries
T D1 -+ D7 N1 —+ N6
Up) Dy + D, N5 + Ng
3 Ds + Dy N7 + Ny
Y Dy + Dg N1+ Ng + Ny
s D1+D7+D9 N6+N7+N9
s D2+D4+D6 N5+N6+N8

For the choice of queries, we selected bdi$joint queries which traverse different
subtrees of the document, as welliagersecting queriesthat access common subtrees,
which navigate common sub-trees of the document. Tablehb®sthe selected queries
that were interleaved in each of these categories, wheeders to disjoint queries and
represents intersecting queries.

Figure 4.10 shows the total I/O time (in logarithmic scale) the execution of in-

terleaved deep-focused and non-deep-focused XPath gudree results for the deep-
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focused queries from Figure 4.10 (a), show that like in grglery execution, the default
strategy performs better for multiple interleaved quettes the other strategies.
Similarly, the behavior with the the non-deep-focusedretered queries mostly mimic
their single query counterparts. The native layout stiatggrovide much better execution
times for both the disjoint and intersecting queries, asvshim Figure 4.10 (b). More-
over, the EKM-TS performs better the most consistently sithe interleaved query
executions. The breadth-first grouping approach of thisguteent strategy causes the
I/Os corresponding to the upper levels of the XML tree to @ parallel. For lower
tree levels, the anticipatory scheduler which ensuresttigal/O sequences generated by
the individual query threads are grouped successfullyaliirthe default placement per-
forms consistently worse for the disjoint queries, sina Ifl® sequences generated by

individual query threads are executed almost sequentially

4.6.3 Fragmentation

We now measure the internal and external fragmentatiorriedwy the grouping and

placement algorithms respectively.

Internal Fragmentation: Figure 4.11 (a) shows the internal fragmentation of diskklo
space with the three grouping algorithrssguentigltree-preservingandEKM. As ex-

pected, the sequential grouping algorithm has little maefragmentation as it can freely
add nodes to a supernode as long as adding the next node doéslate the block-

size restriction. Supernodes are not occupied completely the remaining space is
smaller than the size of the next XML node. The tree-presgrgrouping places further
restrictions on grouping for preserving the XML tree-sttue in supernodes and incurs
additional internal fragmentation (as much as 55%). Weatgat considering the fact

that current disk drives are bound more by 1/O access time ltlyd/O capacity, trading
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capacity for improving access is acceptable. The interaghhentation with EKM is very
close to that for sequential grouping. The EKM algorithm treesflexibility that allows
selecting any of a node’s many subtrees as partition, tigesbtaining a more optimal
result for this procedure. Our tree-preserving groupirggpathms lack this flexibility,
and can only add the next node to the current supernode inamar fashion.

External Fragmentation: Figure 4.11 (b) shows the external fragmentation results fo
the data placement strategies. The default strategy imenosexternal fragmentation as it
places the supernode list sequentially on the disk. TP-TSS&g-TS incur external frag-
mentation of less than 28%, while that of the EKM-TS is higdtearound 32%. However,
we once again contend that these numbers are acceptaldeiifg the arguments men-
tioned above. EKM-TS incurs the highest external fragmestiabecause in EKM-TS,
the fanout of nodes is less in the top levels (closest to ifdt)e tree and is higher in the
lower levels, unlike the other strategies. If the fanout tka is higher at a greater depth,
it is more difficult to find contiguous free space to place la#l thildren on the partially
occupied tracks using the optimized placement strategys@guently the children are
placed on new tracks, thereby increasing the external feaggtion. Furthermore, for a
native storage solution that is well integrated into theseg file or database system, it

is relatively easy to utilize fragmented free space.

4.7 Related Work on Storing Semistructured Data

Storage of semi-structured data has received attentidreifast few years because of its
growing popularity. Most work has focused on storing setmietured data in relational
DBMSs or in flat files with indexes. The former approach (BB®8M *01, DAYF, STZ",
NNPO0O, DFS99, MAG 97]) has been the most popular due to the success and maiurity
the relational DBMSs. The latter approach (e.g., [KBNKORJQ1]) is based on storing
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the data as a flat file and building separate indexes on topseT$teategies do not use
native layout of semi-structured data and are limited tayéreeric optimization strategies
built into relational databases and file systems.

The problem of native storage of semi-structured data has bddressed in Natix
[KM99, KBMO05] and in System RX [BCJ05], where the tree-structured data is split
into pages and each page is stored in a disk block, therelogiregithe number of read
accesses while traversing the tree. OrientStore [MLLAGSJsuschema information to
make a storage plan for the semi-structured data. The albadies however view a disk
drive as a list of pages and do not take into account the phlysiaracteristics of its
operation whereas we investigate how to exploit detailéarimation about the disk drive
and use this information to minimize overheads such as Seekand rotational-delay.

Given the restrictive block IO interface, the clear caseafanore expressive interface
has been made before [Gan01]. Systems such as [GNSW"04, SPP 03] use intel-
ligence from upper layers of the storage stack inside seodayices to improve overall
IO performance. Our work, if deployed, can use such systémsicorporate storage
techniques for semi-structured data into disk firmware.

Recent work by [SSP0O5] uses the idea of semi-sequential access for efficiersgto
of multi-dimensional data. This work is significantly diféat from our work in that un-
like semi-structured data, multi-dimensional data is&trced with access patterns along
data dimensions and can afford efficient layout based on &ieitbute cardinality. Also,
with semi-structured data, grouping multiple data elemémbe stored on a disk block is
non-trivial due to the variable size of the data elements.

Atropos [SSS04] exploits the physical properties of disk drives and ssesi-sequential
accesses to store relational databases. Our work targetsdéih that has a tree struc-
ture, quite different from the relational tables. We alsowlthat a naive application

of the semi-sequential access paradigm to XML tree strastl@ads to large seek times
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and severe space fragmentation. Our optimized layouteglyatduces such overhead
significantly. To the best of our knowledge, there is no éxgstvork tackling the prob-
lem of laying out XML data, accounting for low-level hard \istorage and operation
semantics.

XML Benchmarks: The Transaction Processing over XML (TPoX) benchmark [RK]S
evaluates the performance of XML stores, XML databasesjradekes, by generating a
mix of XQueries for various financial transactions on theegated XML documents.
XMach-1 [BRO1, BR03], XOO7 [BDL], XMark [SWK*02a] and XPathMark [Fra04]
are typically used to evaluate query optimizations in XMMach-1 is based on an
E-commerce website while XMark generates queries for awrrserce website with
information on bids, items, brokers and customers. XPatkMra0O4] is an XPath
based benchmark for XMark and generates an educationahdotithat represents the
English alphabet. The XBench [YOKO03] benchmark is an agpilie oriented bench-
mark for XML databases. Finally, the Michigan (MBench) [RB3] and the Mem-
Ber [AMMO5, MMMO06] Benchmarks are both micro-benchmarkatthenerate synthetic
workloads wherein document structure can be finely comimofarying their depth and
fan-out) so as to be able to reproduce the access patternsasiety of different real-

world workloads.

4.8 Conclusions

In this chapter, we have taken a first step towards builditigeatorage systems for semi-
structured data, a problem which has been largely unexgl®k¥e presented on-disk data
layout techniques for semi-structured data that expjfi@ticount for the structural mis-

match between the semi-structured data and disk drivesealute disk access overhead.

These layout techniques are based on node-grouping dgritor semi-structured data

53



that reduce the number of disk 1/0 operations required wieeessing the data. We
have suggested directions for addressing the challengewtiuld arise in integrating the
proposed layout techniques in existing storage systems.
Summary of Experimental Findings and Lessons Learned

We conducted an evaluation of the native layout techniqesesguXML as a case-
study. All experiments were performed on XPathMark benatkrgaeries with an instru-

mented DiskSim simulator. Our experiments revealed that:

e For the specific class afeep-focusedueries, which result in access patterns re-
trieving entire sub-trees, the existing file system layoathanism (i.e., sequential
layout of the tree in depth-first-order) offers significgrtetter performance than
native layout (5X-54X across the query set). For such qaeme believe that

sequential layout is the right choice.

e For all other query classes, which we grouprem-deep-focusecdhative layout
taking into account tree navigation primitives, offers aschmas 3X-127X perfor-
mance improvement across the range of XPathMark queriésvehaxperimented
with, representing a large improvement. A sensitivity gtadross a range of disk
models, representing drives of varying performance, ssigtpat average 1/0 per-

formance improvement across the non-deep-focused quieoy 8¥-34X.

e Of the various native layout techniques we considered, KM-H'S provided con-
sistently better performance, barring a few cases. Theeafodings were largely
preserved when we experimented with multiple simultaneoesy executions with
the anticipatory 1/0O scheduler. This scheduler naturalyies forward the benefits

of native layout into the 1/0O schedule.

e Native layout strategies, however, can result in substhfragmentation of disk

space. Our initial estimates reveal total fragmentatioe(nal+external) of as
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much as 50% for the best-performing EKM-TS layout technidtigs fragmented
space can be reclaimed with clever file system or databassysplementations
to store non semi-structured data. Even if that were notfeEawve believe an ad-
ditional 50% of space overhead for several magnitudes obd@dwidth increase

could be acceptable in many settings.

Our findings in this study serve to more closely examine araduexe layout tech-
niques based on the nature and distribution of queries faeess patterns). Further,
based on our findings in this study, it can be inferred thainglsilayout technique is
unlikely to be optimal for navigating semi-structured ddtee optimality of any layout
technique closely depends on the nature of the workload.uégt choice of the under-
lying data layout strategy can drastically improve 1/O asceémes if knowledge of the

access patterns (e.g., query workload) is available blefom.
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CHAPTER 5
EFFICIENT PARSING OF SEMISTRUCTURED DOCUMENTS

5.1 Motivation

XML has become the de facto standard format for data reptasemand exchange in do-
mains ranging from the Web to desktop applications. Exasnpi&XML-based document
types include Geographic Information Systems Markup LaggGML) [GML08], Med-
ical Markup Language (MML) [MMLO08], HL7 [HL708a], and Openddument Format
(ODF) [ope08, 00x08]. This widespread use of XML requireficieint parsing tech-
niques. The importance of efficient XML parsing methods wageuscored by Nicola
and John [NJO3]; they showed that the parsing process iepsoc and memory con-
suming, particularly needing main memory as much as fivedithe size of the original
document.

There are two popular XML parsing APIs, DOM [DOMO08] and SAXx98]. SAX
reads the whole document and generates a sequence of eveotdiag to the nest-
ing of the elements, and hence it is not possible to skip neadarts of the document
as this would change the semantics of the API. On the othedt,HRa®M allows users
to explicitly navigate in the XML document using method<eldet Fi r st Chi | d(),
get Next Si bl i ng(), and so on. DOM is the most popular interface to traverse XML
documents because of its ease of use. Unfortunately, itlementation is inefficient
since entire subtrees cannot be skipped when a methoddk&lext Si bl i ng() is
invoked. This also leads to frequent “Out of memory” exaeqsi. In contrast to SAX,
parsing a document using DOM could potentially avoid regdire whole document as
the sequence of navigation methods may only request to aecemall subset of the

document. In this work we focus on parsing using a DOM-likeliface.
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Lazy XML parsing has been proposed (e.g., [xer08]) to imprtwe performance
of the parsing process by avoiding the loading of unnecgsdaments. This approach
substitutes the traditional eager evaluation with a lazalwation as used by functional
programming languages [Abr90]. The architecture showniguie 5.1, based on the
terminology of [NSLO02], consists of two stages. First, agpoeessing stage extracts a
virtual document tree, which stores only node types, hidiaal structure information
and references to the data associated with each node. Af$esttucture is obtained, a
progressive parsing engine refines this virtual tree on deimahich grows as needed, ex-
panding the original virtual nodes into complete nodes watlues, attributes, and textual

information.

Progressive

Pre-Parsing Parsing

XML Virtual DOM
Document Document Tree Tree

Figure 5.1: Lazy XML Parser Architecture. A pre-parsing ghaxtracts a virtual docu-
ment tree and a progressive parsing engine refines thigaviree on demand.

Clearly, the lazy parsing technique is a significant improgat. However, it still suf-
fers from the high initial cost of pre-parsing (Figure 5.1)ave the whole document must
be read before the lazy/progressive parsing starts. Thpgrseng stage is inevitable due
to the lack of internal physical pointers (or something gglgnt) within the XML docu-
ment. We propose a method to (a) insert such internal pHysddaters in the document,
and (b) exploit them to optimize the parsing method and gigdhe pre-parsing stage.
In particular, our approach is calletbuble-Lazy Parsing (2LP)ecause both stages in

Figure 5.1 are lazy, in contrast to previous work where oné/decond stage is lazy. The

57



pre-parsing phase will lazily process only the subtreeshefXML document that are
necessary to satisfy the navigation request.

We address two key issues in inserting such physical painkarst, we need to decide
how we can implement the pointers given the current W3C XMindard specification
[BPSM*06]. Second, we need to decide where to add the pointersideving the in-
curred overhead adding pointers on every node can caus&thefshe file to double.
Also, following a pointer would typically require a randonsklaccess, and hence exces-
sive use of such pointers must be avoided.

Regarding the first issue, we emulate physical pointers,dmtitipning the original
XML document into several fragments (subtrees) which aen timterlinked using the
XML Inclusion [xin08] feature. A drawback of this approachthat the XML document
is split into a set of smaller XML documents/filesdiowever, we shall argue and demon-
strate in the rest of this chapter that the performance gamsutweigh this drawback.
Regarding the second issue, we investigate in detail tlieedfé decisions to be made
with respect to fragment size, and propose an optimal corafigun that can be applied in
general cases.

We also propose a method to manage the parsing of large XMundeots under
limited main memory configurations. This approach allow$ 2t scale to large XML
documents, even when the total size of the document supdisseavailable amount
main memory. This is not possible with current parsers, Wwigport “Out of memory”
exceptions under such condition.

This chapter makes the following contributions:

1. We develop a framework to allow efficient XML parsing, whimproves the pre-

lUnfortunately, the XML standard does not support an altéregphysical pointer
construct (XPointer [xpo08] is logical and not physical)edio the complication this
would incur during cross-platform document exchange. thsa feature becomes avail-
able in the future, it could be used instead of the descrilaetitipning approach.
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parsing time as well as the memory requirements of parsingr. f@mework is
based on the idea of placing internal physical pointersiwitiile document. Such

pointers are currently realized using the XML Inclusiontéza.

2. We present algorithms to perform double-Lazy XML Parg@igP) for DOM-like
navigation, given internal physical pointers. We have enpénted 2LP as a back-

ward compatible modification of the Apache Xerces2 Javadpfxer08].

3. We present algorithms to add internal physical pointah&o XML document by
partitioning it into subtrees given an optimal partitionesi We show how the the-
oretically optimal partition size can be computed assurkimgvledge of the navi-

gation patterns on complete XML trees and knowing the hask characteristics.

4. We efficiently manage the main memory consumption of oul{Mrser, making
it possible to parse and navigate large documents undeitmorgdin which other

approaches fail.

5. We study our partitioning and parsing algorithms botlotbgcally and experimen-
tally. Experiments on various XML navigation patterns,luatng XPath, confirm
our theoretical results and show consistent and often dramgprovement in the

parsing times.

The rest of this chapter is organized as follows: SectiopEegents the system frame-
work and the overview of our approach. We describe our deubky parsing techniques
in Section 5.3. Section 5.4 presents techniques for pariitg the original document
into smaller subtrees. An approach to parse using a limiteduat of main memory
is presented in Section 5.5. The implementation of all theskniques is discussed in
Section 5.6. Our experiments are discussed in Section 5&7prdsent related work in

Section 5.9. Finally, Section 5.8 discusses our conclgsion
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5.2 System Framework and Overview of Approach

In this section we present the data and query models and dialgbverview of our

approach.

5.2.1 Data and Query Models

XML data: We view an XML document as described in Section 3.1. For suitpin the
presentation we assume that there are no ID-IDREF edgest{wiauld make the tree a
graph). However, our framework can support ID-IDREF edgembluding the partition
id, in addition to the attribute id, in the IDREF attributeBigure 5.2 shows a sample
XML tree, extracted in a similar way to Figures 3.1 and 3.2.aNBotate each node with
its size and the size of its subtree (in parenthesis). Toldinthe discussions in the rest
of this chapter, we assume that these sizes are in numbeiskdbldcks. Similarly, the
number in the parenthesis represents the size (in bloclks)aijahe subtree rooted at the

node.

Figure 5.2: Sample XML tree. We annotate each node with #s and the size of its
subtree (in parenthesis).

We clarify that this work is not aiming at improving the perftance of XML database
systems [Gal07, Xal07, XT07, JAK®2, Nat06], where indexes [GW97, Gru02] and

60



other optimizations are possible, but at improving the igfficy of using XML as a format
to store documents for general applications as motivat&eation 5.1.

XML navigation patterns: We consider two types of XML navigation patterns in our

experiments. The first type is a simptet-to-leaf traversalin which a path is traversed
from the root of the XML document to any of its leaves. We use $imple yet common
and useful pattern to model the theoretical behavior of ppr@ach.

Second, we use XPath queries. We use XPath and not XQuerydseecar work
tackles the problem of efficient parsing for the purpose fifiehtly navigating the XML
data, which is XPath’s role. However, our results for XPatirgto XQuery as well, since
XQuery queries are typically evaluated by combining theiltesof the involved XPath
gueries. Again, we adopt the “standard” XPath evaluaticategjy [GKP02], as shown in
Algorithm 3.1 in Section 3.2.

5.2.2 Disk Drive Modeling

We utilize the disk drive characteristics and models preski Section 3.3 to obtain
the transfer time and random access time for the set of hakddiives that use for our
theoretical model and experimental section. Table 5.1gmtssthe disk driveransfer
time (t.4nsr) @andrandom access time,.,.«), required to transfer and access a disk block
respectively, for the four hard drive disks we utilize for thieoretical model and experi-
mental section. The values presented in this table wereegattirom the manufacturers
data sheets [Hit09, Max09, Qua09, Sea09].

Notice that according to their model definition, the typisaék times are the average
seek track-to-track seekandfull stroke We also consider the analysis of the average

seek distance, utilizing one third of the full stroke as therage distance seek.
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Table 5.1: Hard Drive Modeling Parameters

Maxtor | Quantum Seagate Hitachi

Disk Model 6L020J1| Fireball+ Cheetah| UltraStar
[Max09] KX27.3 15K.4 10K300

[Qua09] [Sea09] [Hit09]

Formatted capacity (GB 20.0 27.3 36.7 73.4
Heads 1 16 2 3
Rotational Speed (RPM 7200 7200 15000 10025
Stroke (ms) 17.8 15 7.9 10
Transfer (MBps) 54.2 66.6 200 134.375
Block count 40,132,503 54,600,000 71,687,372 143,374,804
Cylinders 16 383 16 383 50 864 65 494
Avg. seek 8.5 8.5 3.5 4.3
Track switch 0.8 0.8 0.2 0.4
Full Stroke 17.8 15 7.9 10

The equations in Table 5.2 describe the Gamma function tdeta the head posi-
tioning effects as stated in [RW94b], approximating the suead seek-time profile for

the different disk drives.

Table 5.2: Gamma Function: Seek Curve Modeling

seek distance ~v (Ms)
< 1/3 Cylinders| a + b - V/distance
> 1/3 Cylinders| ¢+ d - distance

As stated in Table 5.2 the average seek distance will be hess dne third of the
cylinders, we use the first equation to calcutatdable 5.3 summarizes the values for the
four parameters, b, c andd, as well as the Gamma function value and the final Transfer

Time and Random Access Time.
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Table 5.3: Gamma Values, Transfer and Random-access Time

Maxtor | Quantum | Seagate| Hitachi

Disk Model 6L020J1 | Fireball+ | Cheetah| UltraStar
KX27.3 15K.4 10K300

a 0.694374| 0.694374| 0.174460| 0.373425
b 0.105626| 0.105626( 0.025540, 0.026575
c 3.850000; 5.250000( 1.300000 1.450000
d 0.000851| 0.000595| 0.000130| 0.000131
~v(1/3 eylinders) | 1.275209| 1.192346| 0.359615| 0.528011
tiranss 0.009446| 0.007688| 0.002560; 0.003810
trand 5.441876| 5.359013| 2.359615 3.520530

5.2.3 Overview of Approach

Our approach for parsing XML documents consists of two staderst, the document
is partitioned into a set of smaller XML files, which are thaterlinked using Xinclude
[Xin08] pointers. The optimal size of a partition is compltesing a formula which
considers the random versus sequential access chartcsenisa hard disk. The second
stage involves the parsing of a partitioned document. Thgkal is to read a minimal set
of partitions in order to perform the sequence of navigatommands. 2LP loads (pre-
parses using the terminology of Figure 5.1) the partitiona lazy manner, that is, only
when they are absolutely necessary for the navigation seguén the case of DOM, we
maintain an overall DOM tre®(T") which is initially the DOM tree of the root partition
Py of T. ThenD(T') is augmented with the DOM tred3( P;) of the loaded partitions’.
Further, to control memory usage, our approach also pedtary unloading of inac-
tive partitions (discussed in Section 5.3) if the total amtaaf main memory used by the
DOM tree exceeds a threshold. Thus, in addition to a fasppreing stage, our method
also allows DOM-based parsing with limited memory resosiré¢ote that previous lazy
parsing techniques can also implement the proposed taghifidg optimizing memory

usage, but to a smaller extent since the virtual documeatrinast be stored in memory
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at all times.

5.3 2LP on Partitioned XML Documents

Let 7" be the original XML document, ané, ... P, be the partitions to whicli" was
split during the partitioning stage, explained in Sectioh %, is the root partition, since
it contains the root element of T. Figure 5.3 shows an exawipepartitioned XML tree.
All the partitions are connected by Xinclude elements, aming the Uniform Resource
Identifier (URI) to the patrtition file. The Xinclude elememte represented in the figure

by noded/, f’ andy’, as explained in Section 5.4.1.

Figure 5.3: Partitioned XML Tree after partitioning thedr@ Figure 5.2.

Note that by creating a partition (e.d%), the key result is that we facilitate skipping
the subtree rooted at this partition. That is, by creatingipgan P, we can directly access
noden from nodef”.

The XML representation of two of the partitions in Figure &3hown in Listing 5.1.

PartitionF, corresponds to the root partition since it contains the obtte original XML
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Listing 5.1: XML Documents after partitioning.

1 <l-- pO.xm -->
» <Cat al og>
s <xi:include href="pl.xm"

xm ns: xi ="http://ww. w3. org/ 2001/ Xl ncl ude" />
<xi :include href="p2.xm"

xm ns: xi ="http://ww. w3. org/ 2001/ Xl ncl ude" />
<Book title="XM. Queries" year="2002">

<xi:include href="p4.xm"

xm ns: xi ="http://ww. wW3. org/ 2001/ Xl ncl ude" />

10 </ Book>
u </ Cat al og>

© ®© ~ o (4] »

<l-- pl.xm -->

1 <Book title="XM Dat abases" year="2002">
15 <Chapter title="XM Introduction">

16 <Section title="S@GW" />

7 </ Chapter>

18 <Chapter title="Sem structured Data" />
10 </ Book>

document. The subtree rooted at the fBsiok element was partitioned and tB®ok
element has been replaced by the Xinclude pointer to the Xdiudhent of Partitior; .
This additional element added to the tree upon partitiomiitighold the reference to the
root of the partition’s subtree. We explain this aspect itadlen Section 5.4.

Listing 5.2 describes the process of loading (pre-parsangartition. After loading
a partition, progressive parsing occurs as needed. | dadParti ti on() method
replaces, in the working DOM tree, the Xinclude pointer edata with the DOM tree of
the partition that points to.

To ensure the double-lazy processing of the partitions, @eglrio decide when it is
absolutely necessary for a partition to be loaded. Inteliyiva partition must be loaded
when a navigation method (e.get Fi r st Chi | d() ) cannot be executed without do-

ing so, that is, the return value of the method cannot be coedpatherwise.
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Listing 5.2: Load Partition algorithm.

1 procedure | oadPartition(Xl ncludeEl ement e¢)

2 begi n

s newPartitionRoot < preParse(e. getAttribute("href"));
« replace(e, newPartitionRoot); [* replace e by
5

6

newPartiti onRoot in the node tree =/
end

Similarly, we also need to decide which partitions to unl@ad when to do so in
order to accommodate new partitions that need to be loadeen ghat the available
system memory is limited. We address unloading of partitiordetail in Section 5.5.

We now present the 2LP versions of the key DOM methods thattrigger the load-
ing of a partition:get Fi r st Chi | d() ,get Text Cont ent () andget NodeNane() .
Note that theget Next Si bl i ng() method cannot trigger a partition loading, because
even if the sibling node is an Xinclude pointer, we do not haMead the partition before
the user asks for the details of the returned node (e.g.g@®hNodeNanme() shown
below).

Figure 5.3 presents tigeet Fi r st Chi | d() method with the logic to decide whether
a partition has to be loaded. The original method only rettinef i r st Chi | d member
of the current object (*hi s”). In our modification, the loading is performed if the curte
node is an XInclude element, and it will assign the root eleinod the loaded partition
to the firstChild member variable. Thus, instead of retugrdivectly the first child of the
XlInclude node, we return the first child of the root elementhef partition.

Example 3.1 Consider the partitioned XML document depicted in Figurg. 5Let’s
also consider the root-to-leaf navigation pattera> f—j—k. We start by parsing and
traversing the root partition, labelef,. The first node-steja, is satisfied in partitiorf,,
but to satisfy the second node-stgpwe need to follow the Xinclude pointer to partition

P,, while completely skipping the processingigf After pre-parsing partition?;, we
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Listing 5.3: Modifiedget Fi r st Chi | d() method to handle the lazy loading of parti-
tions.

1 Node getFirstChild() {

i f this.isXl ncludeEl enment() {
| oadPartition(this);

}
return firstChild;

o (4] » w N

}

progressively parse it to reach We need to satisfy the last two node-steps by following
the pointer to partitionPs, pre-parsing it to then progressively parse the desiredesod

In this example, we omitted the traversal of partitighsand P,. O

Example 3.2 Let’s consider the XML document in Listing 5.1 and the XPatbry

/ Cat al og/ Book[ @itle="*Storage Principles’’]/Chapter.

The careful reader can verify that this query requires loadall the partitions, even when
we lazily process the document.

Note that in Example 3.2 we had to load partitibnjust to read an attribute of its
root element. To save such unnecessary partition loadirrgextend the attributes of
the Xinclude element to contain additional information @aibthe root element of the
partition. This may save the loading of a partition when dnfprmation about its root
node is required. Thus, the partition will be loaded onhh# information needed by the
navigation is not included in the pointer element. The daifalidation to implement this
idea is minimal, as shown in Section 5.7.2, since internall{Mdes typically are very
small.

Table 5.4 summarizes the differentlusion leveldbased on the data from the par-
tition’s root element that is duplicated in the correspogdXinclude element. The
names of the attributes used to store this data in the Xleobleinent are also displayed.

For the TAGATR level, we use a single attribute whose value will resedlquery
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string (as used in World Wide Web forms) of the forfieldl = wvaluel& field2 =
value2& field3 = value3. .. [BLOS].

Table 5.4: Attributes Stored for Different Inclusion Level

Inclusion Level | Data to Include Attribute Name
NONE None N/A

TAG Tag (Default) xi PartitionTag
TAG_ATR Tag + Attributes xi PartitionAtr
TAG_ATR_TXT | Tag + Attributes + Text xi Parti ti onTxt

Example 3.2 (continued) If we extend the XInclude elements depicted in Listing 5:1 ac
cording to Inclusion level TARTR and execute the same XPath query, we will find the
necessary information about the tag names and attributeegin the Xinclude pointer
elements. Thus, partition’3, and P, will not be processed at all, since the attribute val-
ues added to the Xinclude pointer can help us discriminatetwtChapter” elements
satisfy the attribute condition without loading the padit. O

In addition to theget Fi r st Chi | d() method presented above, which is unaffected
by the inclusion level, we now show how other key navigatiatmods of DOM need to
be modified for the 2LP. Figure 5.4 presents two navigatiatines that have been mod-
ified to allow the double-lazy processing of XML partitionghvdifferent inclusion lev-
els. Similar to theget Fi r st Chi | d() method, these two methods return (originally)
just the corresponding member variable of the object. Byifgiod) them, the methods
will lazily include the corresponding partition if and onlythis is needed to satisfy the
navigation pattern and if the desired information is notuded in the Xinclude pointer
element. If the inclusion is performed, the root elementefpartition is assigned to cur-
rent object (t hi s”) and its member variables (hame and textdet NodeNane() and
get Text Cont ent () respectively) are returned. Similar modifications are qrentd

for the other DOM methods that can potentially trigger thediog of a partition.
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Listing 5.4: Key Modified Document Object Model Navigatioreihods.

String get NodeNane()

1

> if(this.isXl ncludeEl enent()) {

3 [+ Check for tag information in Xlnclude el enent =/

4 i f(inclusionLevel !'= NONE) {

5 name = this.getAttribute("xiPartitionTag");

6 /+ The xi PartitionTag attri bute inside the
Xl ncl ude

7 * el ement stores the tag name of the root el enent

8 * of the partition */

0 } else {

10 [+ Make “‘this’’ point at the root elenent of the

1 * | oaded partition, and update ‘‘nane’’ variable
*/

12 | oadPartition(this);

13 }

14 }

15 return nane;

16}

17
18 String get Text Content ()
w i f(this.isXl ncludeEl enent()){

2 i f(inclusionLevel == TAG ATR_TXT) {

21 text = this.getAttribute("xiPartitionTxt");

2 } else {

23 [+ Make “‘this’’ point at the root elenent of the

2 * | oaded partition, and update ‘‘nane’’ variable
*/

2 | oadPartition(this);

26 }

27 }

28 return text;

29}
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5.4 Partitioning the XML File

Our main goal when partitioning XML documents is to minimthe 2LP parsing time
needed for navigating the document.

In what follows, we first describe (in Section 5.4.1) how tatji@n an XML docu-
ment by selecting subtrees of an optimal size. Then in Sebtih.2 we make a theoretical
analysis to obtain the optimal partition or subtree sizeglan simplified navigation pat-

terns.

5.4.1 Partitioning Algorithm

The key criterion to partition the original document is thember of blocks that each
partition will span across the hard disk drive (i.e., thetiian size). This size criterion
is independent of the particular tree-structure (or schémoae exists) and the query
patterns, and is shown to lead to efficient partitioning sud®(Section 5.7). The rationale
behind this is that disk 1/0 performance is dictated by therage size of 1/0 requests
when accesses are random [DRO3].

The key idea of the algorithm is a bottom-up traversal of thdé X{ree, where nodes
are added to a partition until the size threshold (in numbbtaxks) is reached. We show
how the optimal partition size is calculated in Section.4.

Since we are using Xlnclude to simulate the physical pointere need to comply
with the XInclude definition and hence provide partitionstthre themselves well-formed
XML documents. This means that our partitions need to haaetgxone root element.
Thus, the partitioning algorithm must include entire sabs when creating a new patrti-
tion. This constraint leads to having a few very large parig since every XML docu-
ment typically has very few nodes with very high fanout (eggpen_auctions node in

XMark [Fra04]). However, as we shall show in Section 5.7s tthbes not degrade the

70



Listing 5.5: Partitioning Algorithm.
1int partitionTree(Node n, int threshol d){
» [/* Returns the size in bytes of the node n, including
3 attri bute names and val ues and text section =/
+ Size = getSize(n);
s for(Node c : n.getChildren()) {

6 size = size + partitionTree(c);
7
}
g 1f(size >= threshold && !'isRoot(n)) {
9 createPartition(n);
10 /* Recal cul ates the size after creating partition x/
1 size = get Size(n);
12 }
13 return size;
14}

15

s VOi d createPartition(Node n) {

17 X = createNewXMFil e();

18 [+ Replace subtree rooted at n in current XM. docunent
19 by an Xl nclude el enment pointing at file x =/

20 addXlncludePtr(n, x);

2 [* Move the subtree rooted at n to file x =/

22 noveSubtree(n, Xx);

2 }

parsing performance since these partitions typically riedzk completely navigated by

XPath queries.

Figure 5.5 describes the basic tree partitioning algoriththe partiti onTr ee(
T.root, threshold ) method will recursively traversg in abottom-up fashion, calculate
the size of each subtree, and if this size exceeds the tHdeshen thecr eat ePartiti on()
method is called for this subtree. Tloe eat ePartiti on() method will move the entire
subtree to a new XML document and a new Xinclude element wejilace its root node in the
original XML file to reference the new partitioned subtreels® depending on the inclusion
level flag, specific information of the partition’s root elem will be added to the newly created

XlInclude element.
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Listing 5.1 shows the resulting partitioned XML tree for tK®L tree of Figure 5.2 with a
threshold of 10 blocks per partition. Noéeis the XInclude element which points to the partition
rooted at node b. The same holds for nogdleg’, o'.

Example 4.1 Consider the XML document in Figure 5.2. When we exegatd i t i onTr ee(

a, 10 ), the depth-first traversal of the tree rooted ategins. The traversal will descend
until it reaches the leftmost branch, and from there it widgin the bottom-up search for the
subtree whose size in blocks is larger or equal to the spddifieeshold. Hence, we first create
a new partition for the subtree rooted at nodereplacing this node with an Xinclude pointer
to the newly created partition. We assume in this case thaamaising the default inclusion
level (NONE), and thus an extra block is used by the pointenamtain the data. We continue
the navigation and create another partition with the subtreoted at nodg, repeating the same

steps; we further create the new partitions rooted at noflagdo. O

5.4.2 Estimating the Optimal Partition Size

To obtain an appropriate value for the partition size, wedoahthe following analysis for the root-
to-leaf navigation pattern described in Section 5.2.1 drtipular, we calculate the average access
time to navigate from the root to each of the leaves of the XMtuient. While performing a
similar analysis for general XPath patterns is infeasille th the complexity and variety of the
navigation patterns, we show, in Section 5.7, that usinghberetically obtained partition sizes
leads to good results for general XPath queries as well.

We assume, for sake of simplicity, that our tree is complett each node of’ occupies a
single disk block. Therefore, the XML tre€l”, which hasN nodes and degreé has height
h = log,; N. As we shall see in the evaluation section, the simplifyisguanptions used in our
theoretical model do not significantly impact the key resuhe theoretically optimal is found to

be very close to the experimentally computed optimal size.

2Later on, we shall show that in spite of these simplifyinguasgtions, the experi-
mentally obtained optimal partition sizes closely matchtbeoretical estimates.
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Cost with no partitions: When the XML document is not partitioned (and hence 2LP isapgti-

cable), the average cost of a root-to-leaf traversal isginyethe following equation. Note that for

simplicity we assume the document is parsed from scrataly ¢éivee a navigation pattern occurs.

COStnOPaM trand + N - 75t7“ansf (51)

root—leaf —

wheret,..,,q is the random access time needed to reach the root of thertdetg g, ¢ is the
time required to transfer one block of data for the speci& drive. Note that the whole tree must
be read (pre-parsed in Figure 5.1) to create the intermeediaticture used to later progressively
parse the document. No cost is assigned to the progressisiag@hase since the document has
been already loaded in memory during pre-parsing.

Cost with partitions: Let us assume that the tree will be segmented into equalby gartitions,

and we can describe each partition as having:

x: Number of nodes in partition

I = logqx: Height of the partition
In this case, the average cost for a root-to-leaf travessgivien by the following equation:

C’ostfo‘lo’;t_leaf = (# partitions accessed) X (trand + T - tiransf)

wheret, qnqa - tiransf 1S the cost to pre-parse and load a partition. The numberrtifipas along

a root-to-leaf traversal is h/h’. Hence we have the follaywguation:

COStfo%?;t—leaf = %(trand +x- ttransf)

Observe that the ratio of heights can be simplified usingrittgaic properties, and is inde-

pendent of d. As a result, we obtain:

In N
COStfoaogt—leaf = m(tr(md +T- ttransf) (5.2)

Based on (5.2), we model the optimal cost of the partitioe $ar four different hard disk
drives, described in Table 5.5. A detailed description aof lward disk drive model and how we

calculate the data transfer and random access times islettin Section 5.2.2.
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Table 5.5: Disk Drive Characteristics

Disk Model Size (GB)| tiransy (MS) | trana (MS)
Maxtor D740X 20.0| 0.009446| 5.441876
Fireball Plus 27.3| 0.007688| 5.359013
Cheetah 15K.4 36.7| 0.002560] 2.359615
Hitachi Ultrastar 73.4| 0.003810f 3.520530

Figure 5.4 presents the tim&gost. et for the four different disk drives presented in

root—leaf

Table 5.5 for varying partition sizes The optimal partition size is the value sfthat minimizes

the time.
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Figure 5.4: Effect of varying the partition sizes on the ager root-to-leaf navigation
access time.

The un-partitioned cosﬂost""P“"zaf is equal to the time for the maximum patrtition size,

root—I

where the whole document fits in a single partition.

5.5 Management of Limited Main Memory

As mentioned earlier, the DOM representation of an XML doenhtan span up to five times its
size in main memory. This fact combined to the increasing sfZXML documents causes current

XML parsers to often fail with an “Out of Memory” exception.
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Listing 5.6: Modified Load partition Algorithm with Partén Unloading mechanism.

1void | oadPartition(XlncludeEl ement e) {

> newPartitionRoot = preParse(e.getAttribute("href"));
s [+ replace e by newPartitionRoot in the DOMtree */
+ replace(e, newPartitionRoot);

s registerPartition(this, e);

s While(size(T) > nenory_threshold) {

7 unl oadPartition(getPartitionToUnl oad(T));

s}

@ }

We have created and implemented a mechanisumlmad inactive partitiongrom the overall
DOM tree. A partitionP is considered as inactive if the path from the root of the D@a# to the
point of the current navigation sequence does not inclugieelament frompP.

To achieve the unloading of inactive partitions, we add a d#atucture that stores the infor-
mation about the root element of the partition, the path efértition document in the file system
as well as a pointer to such root element. Every time a pamtit loaded, all the metadata and the
pointer are stored for further analysis. Also, after eadftitn is loaded, the system checks for
the size of the overall DOM tree to decide whether one or margétipns have to be unloaded.

Listing 5.6 presents a modified version of theadPartiti on() method presented in
Listing 5.2. This new version adds the logic for unloadingtiians to restrict the total amount
of main memory used by the overall DOM tree to a fixed threshBigery time a new partition is
loaded, the method checks for the overall memory utilizatiod unload suitable partitions until
the memory usage is below the threshold. Three auxilianhotst are added to handle the logic:

registerPartition(): This method receives as parameters the current elementidit thie partition

has been added as well as the metadata of the partition. rétsstioe filename of the partition
document in the file system and all the necessary informdtamecreate the Xinclude pointer
when the partition has to be unloaded.

getPartitionToUnload(): It analyzes the information stored by thegi sterPartiti on()

method and decides which partition has to be unloaded. W&emented two variants of this

method to implement th€&irst-in, First-out (FIFO) and Least Recently Used (LRU$GGO6]
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strategies, as used in the context of virtual memory pagacement. Thé-IFO strategy picks
the oldest partition, taking the one at the head of the p@rtfjueue. When a partition is loaded,
we insert it at the tail of the queue. Notice that the rootipart, F,, will never be unloaded,
since it contains the root of the original XML document andneed to maintain that information
accessible at all times. THeRU strategy discards the least recently used partitions;gitires
keeping track of what was used when, which is more expensamRIFO.

unloadPartition(): Once theget Partiti onToUnl oad() method selects a partition, this

method removes the underlying subtree from the overall D€ and reconstructs the Xinclude

pointer using the metadata stored by tlegi st er Partiti on() method.

5.6 System Implementation

In this section, we describe the architecture and impleatiemt of the two key components of our
system: the XML Partitioner and the 2LP parser.

The system architecture is shown in Figure 5.5. The XML Ranigr takes a source XML
document and patrtitions it based on a threshold determiséed) uhe model presented in the
previous section. The 2LP Parser can also parse un-paeitiXML documents.

The 2LP parser was implemented by modifying the Xerces2 Bavser, allowing it to handle
the Xinclude-defined partitions, but also preserving itskinaard compatibility. Figure 5.6 shows
a simplified class diagram in Unified Modeling Language (UMiotation [BD03, Gro08], for
the classes involved in our modification. The top layer isW&C DOM Interface, followed by
the Xerces2 Java Parser which is the implementation of suetface. The shadowed classes are
the ones modified from the open-source package. The bottgen g our own package, which
encapsulates the modifications required to handle thdipaitig and inclusion mechanisms.

Below, we describe the key ideas behind the modified and naddied classes in the imple-
mentation.

Elementimpl: This class was modified to handle inclusion behavior onggeNodeNane()

andget At tri but es() methods. Depending on the inclusion level, these methogsamaver
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a query with local information or require an inclusion to ionpa new partition and answer the
query.

PartitionMgr: ThePartiti onMyr class is attached to ti@r eDocunent | npl class in the
Xerces package, to manage the orchestration of traverdahelnsion. Every time a new patrtition
is required, theXl ncl udeHandl er will process the specified URI and a nd®artiti on
object will be created. It also manages the unloading mesiman

XIncludeHandler: This class handles directly the inclusion operations wimenkied from the

Par ent Node andEl enent | npl objects in the Xerces package. This class works as a replace-
ment to the default XInclude processor provided by the Xepaser. In order to achieve this, we
turn off the XInclude feature, and let our package handledtpmointers.

Partition: This class is an abstraction to represent a partition psecksy thexl ncl udeHandl er
class. Notice that all the user-level interaction is stdtfprmed via the DOM Interface, guaran-
teeing the backward compatibility desired as a design ga.have made our XML Inclusion
feature backward compatible, so another XML document tlaat Xinclude pointers in it will

be treated in the same way by our double lazy parser, and atiyigmeed document joined by

XInclude pointers will be handled by any Xerces parser inrasmb way.

5.7 Experiments

In this section, we evaluate our XML Partitioning and 2LPalas. First, we experiment with
optimal size of partitions based on the theoretical modeppsed in Section 5.4.2. Second, we
measure the performance of our techniques with two naeiggtatterns, root-to-leaf patterns
and XPath queries, as presented in Section 5.2.1. Thirdyvalaae the impact of our memory
management optimization by unloading unnecessary pasitias presented in Section 5.5.

Our framework was developed in Java using JDK 5.0. We modifiedXerces2 Java Parser
2.9.1 [xer08]. The experiments were performed on a 2.0GHktRa IV workstation with 512MB

of memory running Linux. The workstation has a 20GB MaxtodDX disk.
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5.7.1 Evaluation of the Theoretical Model

We generated XML files of various sizes using the XMark getoe{®&WK*02b]. We applied the
partitioning algorithm to these documents, with severalifian sizes (in blocks) to compare our
theoretical model described in Section 5.4.2 against @xgeertal results performing the same type
of root-to-leaf navigation patterns described in Secti¢h Blote that throughout the experiments
the 2LP parser is used for partitioned documents and theeXdor un-partitioned.

Figure 5.7 shows the average time to traverse all the retgafopaths for an XML docu-
ment with XMark factor 0.5 (50MB), running on a Maxtor D740>ardd drive as described in
Section 5.4.2. The theoretical curves are based on the rpoelstnted in Section 5.4.2. Notice
that the scale is logarithmic and the patterns of the graphsienilar, with a slight deviation in
the experimental graph. We believe that the gap betweerméwedtical and experimental graphs
is caused because the theoretical model does not take icharEcthe processing time needed to
navigate these paths and the effect of paging due to thesbihaimount of memory, but only the
primary 1/O time involved in reading the partition for the XMile. From the graph, we can infer

the optimal size of the partition to be 2680 disk blocks, Whiapproximately one Megabyte.
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Figure 5.7: Average Traversal Time for Partition Sizes.

Next we compare the optimal partition size (obtained expenitally) for various document

sizes (by varying the XMark factor) with the theoreticaliopim. Figure 5.8 shows these results
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for the same hard drive, where again the theoretical andieestal values are close. For the first
two XMark factors, the experimental optimal values are @grably smaller than the theoretical
prediction. This is due to the fact that for the case of smlafihaving smaller partitions will ben-
efit the performance of the navigation patterns, since itasantikely that the partitions (stored in
the same directory) are contiguously placed on disk. Theyitem can efficiently (sequentially)

retrieve all the partitions from the disk.
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Figure 5.8: Optimal Size of Partitions.

5.7.2 Performance Evaluation

We now present the evaluation of our approach using two tgpesvigation patterns, root-to-
leaf traversals and XPath queries. As explained in Sectidr? 5the comparisons assume that
the XML document has not been already parsed before a quergvigation pattern, that is, we
measure both the pre-parsing and progressive parsing tifftégure 5.1. We measure three time
components in the total execution time:

Pre-Parsing: The Xerces parser uses its deferred expansion node fegtimiidly creating only

a simple data structure that represents the document’shirgnand layout. This phase requires
scanning the whole document to retrieve this structure. uRgpartitioned documents, it means

that the first time we load the file, the whole document has ttrdoeersed and processed; for
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partitioned documents, every time we process a new pautitics pre-parsed to create the logical

structure in memory.

Progressive ParsingAs the navigation advances, this initial layout built in fire-parsing phase

is refined, and all the information about the nodes is add#tktsekeleton. This phase is performed
only on the visited nodes and will have the same behavior th bo-partitioned and partitioned
documents.

Inclusion: This phase is introduced by the 2LP components, and captueetime required to
include and import the new partition into the working docunérl his component does not apply
to un-partitioned documents.

Root-to-leaf traversal cost:Figure 5.9 shows the average access cost in millisecondsgooot-

to-leaf access patterns, comparing the performance fareift XMark factors. To compute the
average time, we sampled 10% of the leaves of each docunushfgaeach tenth leaf into the
sample, and performed. root-to-leaf traversals for eachpkad leaf. A traversal in this case
results in a sequence of parent-to-first-child and siblorgext-sibling operations in order to reach
the desired leaf. These experiments were performed witth#aretical optimal partition size and

the NONE inclusion level (the inclusion level does not imgae simple root-to-leaf traversals).
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Figure 5.9: Root-To-Leaf Access Cost.

XPath query cost: Our second experiment executes a set of XPath queries avétNth. data.

The queries are shown in Table 5.6. We have included the mpeafice queries from XPath-
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Mark [Fra04], that is, the ones that test the execution timeé ot specific XPath functional

aspects. We added more queries to have more reliable results

Table 5.6: XPath Queries

# Query

Q1 | /site/closed_auctions/closed_auction/annotation/description/parlist/
listitem text /keyword

Qs | /site/people/person/watches

Qs | /site/open_auctions/open_auction/annotation/description/text /keyword
Q4 | /site/people/person/address/country

Qs | /site/regions/australia/item/description/tex/emph

Q¢ | /site/people/person/ *x /business

Q7 | /site/closed_auctions/closed_auction/ x [description

Qs | /site/regions/ x [item/description/text

Qo | /site/open_auctions/openauction

Q10 | /site/closed_auctions

Q1 | /site/regions/australia

Q12 | /site/closed_auctions/closedauction

Q13 | /site/regions/ x [item

Q4 | /site/ x Jaustralia

Q15 | /site/open_auctions/open_auction|Qid =" openauction0']/bidder

Q16 | /site/regions/asia/item|Qid =" itemd’]/mailbox/mail | from

Q17 | //keyword

Q15 | /site/closed_auctions/ [itemref

For this set of experiments, we used several XML documemissibrresponding to various
XMark factors. Once again, we use the theoretically optipaatition size for partitioning the
XML documents. We used the default inclusion level (TAG)tfugse experiments.

Figures 5.10 and 5.11 show the performance of such quenie§Mark factors of 0.5 and 1
(100MB) respectively. Figure 5.12 shows the average vdiuethe same experiment over three
datasets with XMark factors 0.500, 0.750 and 1.000. We seeftnoun-partitioned files, the pre-
parsing time is always similar, since the whole documenttbdse processed to load the initial
layout. For partitioned files, only the required partitiomr®e processed, leading to significant
reduction in the pre-parsing phase in most of the cases. Wekserve that the partitioned

documents perform consistently better than the un-pamtti ones. We have some cases in which
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the performance of the partitioned documents is almostldéquhe performance of the original

files. These cases, such @sg, g9, Q14 and )15, need to traverse most sections of the tree,

requiring the inclusion of most partitions.

8000

7000

6000

5000 +— f—— +— —

4000 +— +— — | H

3000 + (— - - —

Execution Time (ms)

2000 = —— = — ——

AN A Y G Y o A

©
<
o

Part. [ ‘

Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.
Part.
Unpart.

Q1 Q2 Q3 Q5 Q5 Q6 Q7 Qs Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
XPath Query

‘EI Pre-parsing B Progressive parsing O Inclusion ‘

Figure 5.10: XPath Query Performance for XMark Factor = G the performance
XPath queries from XPathMark.

In the cases of)y, Q14 and @47, theopen_auctions partition is loaded which has a size of
15MB (due to the fact that each partition must be a well-faX®IL document, as explained in
Section 5.4.1). Pre-parsing and progressively parsirglénge partition penalizes these queries
and they almost match the execution time of the un-pargtiomersion. However, in a typical
scenario, such large partitions must be completely acdessgways, except for the rare case
when a navigation pattern specifies a child at a particulaitipa (e.g.,1000t" child).

The inclusion time component varies correspondingly tosibe of the partitions that have to
be included into the working document. We see then that itlasion component fa@s, Qg, Q14
and(@5 is large, but again this is caused by the large size obffen_auctions partition required
to satisfy all these four queries. For these same queriesuvelflarge segments of time consumed
by the Inclusion operation. The reason is that we rely onDbeurnent . i mport Node()

method provided by the DOM model which traverses the wholaoiied XML tree and updates
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Figure 5.12: Average XPath Query Performance for XMarkdescfrom 0.050 to 1.000,
using the performance XPath queries from XPath-Mark.
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the owner document for every single node. Even when thedraedady in memory, this operation
is CPU intensive, delaying the process of including the naxtiton.

Inclusion Levels: We now experiment with the inclusion levels described inti®ad.3. Initially,

we observe the increase of space required by the partitimes ghe distinct inclusion levels,
compared against the original unpartitioned document. ®Wétipned a document with XMark
Factor = 0.5.

Figure 5.13 presents the results of this experiment, stgplow space overhead even when
the full information of the partition root is added to the Xlade element. Compared to the size of
the original size and to the size of the partitioned file witbliision level NONE, we can say that
practically no overhead exists. We can see how the thirdisnah level has the same overhead as
the second one. This is due to the fact that most of the nodésdntain text are leaf nodes, and

none of the internal nodes that were chosen to root a nevtipartiontain text values.
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Figure 5.13: Space Overhead for Inclusion Levels.

Figure 5.14 shows the average query execution time perfwenahen XPath queries are exe-
cuted over partitioned documents with different Includierels. We picked several XPath queries
that represent different categories of queries and diffeages. Given the practically inexistent
space overhead discussed above, adding information dimudt element of the partition in the

Xlnclude physical pointer can give us a significant perogataf gain. In particular, the TAGTR

level is generally the best choice.
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5.7.3 Partition Unloading

In this section we evaluate the performance of 2LP when theuatrof main memory designated
to store the DOM tree is limited and hence, the partition ading mechanism is required. We
simulated this by introducing ®tal memory threshold factak/r, which takes into account the
DOM overhead claimed by [NJO3] which concludes that a DOMusioent can expand in main
memory up to three or five times the size of the XML file. Thistémenodels the limited number
of Megabytes that can be allocated by the DOM document at ey gnoment.

For this experiment, we repeated the execution of our padioce evaluation XPath queries,
but this time adding the Partition Unloading mechanism to2hwP. The XPath queries from Table
3 were executed sequentially, without resetting the DOM teethe initial partitionP, this with
the objective of having several partitions loaded beforeheguery was executed. To simulate
the Total Memory Threshold/7, we set the Java Virtual Machine’s maximum java heap size to
450MB, and used our partitioned XML document for xmark factd..0.

Figure 5.15 shows the total amount of main memory allocate@lP after each query is
executed. The JVM Memory Limit resembles ttodal memory threshold factod/r, as lim-
ited by the JVM maximum heap size. We measured the perforenah2LP without Unloading
mechanism as well as the behavior of the unloading mechaiolowing two strategiesFirst-

In-First-Out (FIFO) andLeast-Recently-Used (LRIJoth as used in the context of main memory
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page replacement. Both strategies restrict the loadedigast according tal/r, replacing the

appropriate partition as dictated by each strategy.
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Figure 5.15: Loaded Patrtitions after Sequential Query Hixeqs.

The execution of 2LP without Unloading followed a behavisishown in Figure 5.11, where
at a point after the execution Gf4, the application crashed with an “Out of Memory” exception,
not being able to perform the total execution of our querglldasing a lazy parser like Xerces on
the unpartitioned document leads to the same behavior. Wassdue to the fact thap,, uses a
wildcard and requires almost the whole tree to be loadechiraio memory. In contrast, boFFIFO
andLRU approaches for the unloading strategy were able to managgitital point of loading
several partitions during quety, 4, working properly until the last query was executed evereund
the main memory limitations. We can see that our unloadingageh has the potential to scale
better to parse large documents under limited memory dondit whereas current approaches
including Xerces will raise “Out of Memory” exceptions.

Both FIFO andLRU strategies lead to similar behaviors, with slight differes in the order
in which the partitions are unloaded as shown for queflegandQ12; in ()7 a larger partition is
unloaded by théIFO strategy, whereasRU unloads a smaller one. Similarly, f@F2, theLRU
strategy selects a large partition to unload, while thetgams unloaded byIFO are not as large.

Figure 5.16 compares the execution time of the XPath queries the 2LP utilizes the Un-

loading Mechanism. The figure contains the execution time2EP with no Unloading Mech-
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anism, as well as botRIFO and LRU strategies. The execution of the queries was performed
sequentially as explained before, and this caused theMiostjieries to perform similarly under
the three conditions, since the same partitions have to ddetbin the same order to solve the
qguery. For the execution of queys, the size of the overall DOM tree has surpassed the memory
threshold and hence one partition has to be unloaded, ngeanienalty in the total execution
time. Querieg)4 andQg show a similar performance for the three variants, sincthalpartitions
that are needed to solve these queries are already loadechémory in these specific moments,
not needing to parse any new partitions. Also none of theeatiyr loaded partitions were un-
loaded by these queries. In the case of quefjes and ()17, the maximum memory threshold
was reached several times during the query execution, ghetarge number of partitions re-
quired to be parsed by the 2LP. This causes a lot of partitiorize unloaded during the query
execution, drastically penalizing the total executiondirueries)s andQg need to navigate the
open_auctions subtree, requiring a larger amount of processing time dgiterlarge size of such

subtree.
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Figure 5.16: Execution Time with Unloading Mechanism.

Figure 5.17 shows the number of partitions that are loadethaded and unloaded during the

execution of each XPath query. A loaded partition meansitias been parsed for the first time
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by the 2LP. An unloaded partition is one that has been chogehebUnloading Mechanism to
be discarded. A re-loaded partition is one that has beenqudy discarded but it is needed to

satisfy the query and hence is parsed again.
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Figure 5.17: Loaded, Re-Loaded and Unloaded Partitions.

Again we can see how the performance of queflgs )2, Q3 and(Q), is similar; the same
partitions have to be loaded and unloaded for these caseshs&sved in Figure 5.16, the execu-
tion of queries), and(@g do not require the parsing of any new partitions, since alltbcessary
partitions are already in main memory. The performance efigeQ.4 andQ; is also related
to the behavior in the previous figure. The wild cards and eledant operators require a large
number of partitions to be parsed and with this, a large nurobeartitions to be unloaded as
well.

We can also see that both tR-O andLRU strategies behave similarly in terms of re-loaded
partitions. In terms of total execution timeRRU is penalized by the reordering of the partitions in

the internal data structures of the strategy.
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5.8 Related Work on Parsing of Semistructured Documents

Nicola and John [NJO3] have identified the XML parsing precas a bottleneck to enterprise
applications. Their study compares XML parsing in sevepglliaation domains to similar ap-
plications that use relational databases as their back-@yukrations such as shredding XML
documents into relational entities, XPath expressionuatadn and XSLT [xsl08, XSL0O7] pro-
cessing are often determined by the performance of the iymateXML parser [NJO3], limiting
the massive adoption of native XML databases into largéesaaterprise applications.

Noga, Schott, and Lowe [NSLO2] present the idea of LazyiRgras presented in the Sec-
tion 5.1. The virtual document tree can potentially be stave disk to avoid the pre-parsing
stage; however, the virtual document tree has to still bd fiean disk. Schott and Noga apply
these ideas to the XSL transformations [SNO3]. Kenji anad¥iki [KHO5] have also proposed
a lazy XML parsing technique applied to XSLT stylesheetsistaucting a pruned XML tree by
statically identifying the nodes that will be referred agrithe transformation process.

Lu et al. [LCPO06] present a parallel approach to XML parsindpich initially pre-parses
the document to extract the structure of the XML tree to therigpm a parallel full parse. This
parallel parsing is achieved by assigning the parsing df esagment of the document to a different
thread that can exploit the multi-core capabilities of eomporary CPU’s. Their pre-parsing phase
is more relaxed than the one proposed by [NSLO2] and that wethusughout our work; this
relaxed pre-parsing only extracts the tree shape withoditiadal information, and is used to
decide where to partition the tree to assign the parsingasks to the threads. This partitioning
scheme differs from ours since it is performed after theganesing phase is executed, whereas
ours is performed a priori, with the objective of optimizisgch pre-parsing stage.

There have been efforts in developing XML pull parsers @Ju@r both SAX and DOM
interfaces. Also, [xpp08] presents a new API built just oexel on top of the XML tokenizer,
hence claiming to be the simplest, quickest, and most aftiéegine for processing XML.

Huang et al. [HCLO5, HCLLOG6] present a pre-filtering framelwto improve the efficiency
of XPath processing over large XML documents with the exgsOM and SAX models. Their

framework utilizes an inverted index and a tiny search emgirat locates the useful fragments
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that may be candidates to satisfy the input XPath query, ahdthese fragments are submitted
to the XML parser. In contrast to our approach which is midiyneavasive and is compatible
with current XML parsers and standards, they use specthpizeprietary storage and processing
mechanisms.

Van Lunteren et al. [VLEBO04] propose a programmable state machine technique thatipso
high performance in combination with low storage requireteeand fast incremental updates.
A related technique has been proposed by Green, Miklau,uRaiand Suciu [GMOS02], to
lazily convert an XPath query into a Deterministic Finitetémata (DFA). After this conversion
is performed, they submit the XML document to the DFA in ortlersolve the query. They
propose a lazy construction opposed to an eager creatice sonstructing the DFA with the
latter technique can lead to an exponential growth in the gizhe DFA.

Kiselyov [Kis01] presents techniques to use functionagpamming to construct better XML
Parsers.

Kanne and Moerkotte [KM06] have worked on tree partitionaigorithms, but their tech-
niques are more oriented to low-level disk placement, nrappach partition to a single block on
the disk drive to be further exploited by native XML data stlike Natix [Nat06].

Several works have been proposed in the area of XML compresSome of these works [FLMMO6,
LS00] require the document to be decompressed before amy queavigation can be performed
over the XML data. Some others, considegeebry-friendly[BLMO5], only require a small subset
of the document to be de-compressed. Some recent works [TWWD307, DRR08] can support
navigation in the compressed document. SDOM [DRRO08] prep@ssuccinct way of represent-
ing XML documents in order to reduce their memory fingerpand allow efficient navigation.
However, SDOM still incurs the pre-parsing cost. Furtherenaoheir representation is not back-
wards compatible with current XML parsers. [LS00, THO2, VAZSBLMO5, FLMMO6] have
similar limitations. These XML compression and parsinghteques could be viewed as comple-
mentary to our work since we mainly optimize the pre-parsitagge with a slight optimization of

the progressive parsing stage and they mainly optimizeatierlone.
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5.9 Conclusions

Lazy XML parsing is a significant improvement to the perfonoa of XML parsing but to achieve
higher levels of performance there is a need to optimize thepprsing phase during which the
whole document is read. In this chapter, we address thidgaroby enabling laziness in the pre-
parsing phase as well. To do so, we have proposed a mechanigdd tphysical pointers in an
XML document by partitioning the original document and limi the partitions with Xlinclude
pointers. We have also proposed 2LP, an efficient parsingriign for such documents, that
implements pre-parsing laziness. Additionally, we impdemted a dynamic partition unloading
mechanism that can enables parsing in memory-limited systallowing us to parse and nav-
igate large documents under conditions wherein other matgpically fail. To aid partitioning
decisions, we have proposed a theoretical model for theepsinng of partitioned documents and
presented methods to compute optimal partition sizes. We &aperimentally showed that 2LP

outperforms other deferred evaluation techniques sucleaseX Java Parser.
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CHAPTER 6
CHALLENGES FOR INFORMATION DISCOVERY ON ELECTRONIC HEALTH
RECORDS

6.1 Motivation

The National Health Information Network (NHIN) and its dafaaring building blocks, RHIOs
(Regional Health Information Organizations), are encgimg the widespread adoption of elec-
tronic medical records for all hospitals within the next fixgars. In addition, The Department
of Health and Human Services (HHS) has recently increasadirfg and placed pressure on the
healthcare industry to improve the technology involving #xchange of medical information.
Many standards and protocols have been introduced thagidilin the process of unifying the
electronic medical record into a single architecture. A &eynponent of this effort is the adop-
tion and standardization &lectronic Medical Records (EMRJo date, there has been little or no
effort to define methods or approaches to rapidly search daciments and return meaningful
results.

One of the most promising standards for EMR manipulation exahange is Health Level
7's Clinical Document Architecture (CDA) [CDAO7], whichuverages a semi-structured format
(Extensible Markup Language, or XML), dictionaries, andobogies to specify the structure and
semantics of EMRs for the purpose of Electronic Data Int@ngie (EDI). This HL-7 architecture
has been adopted worldwide.

The definition and adoption of this standard presents neWechges to related computer sci-
ence disciplines like data management, data mining andnirgfoon retrieval. In this chapter we
study the problem of facilitatingnformation discoveryn a corpus of CDA documents, i.e., given
a question (query) and a set of CDA EMRSs, find the entitiesi¢dlly subtrees) that are “good”
for the query, and rank them according to their “goodnessh wespect to the query. The suc-
cess of Web search engines has shown that keyword queriasuaedul and intuitive information

discovery approach. Therefore, we focus in keyword quéni¢isis chapter. Other types of infor-
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mation discovery queries on EMRs not studied here inclugheenic conditions, aggregation and
statistics, classification and clustering (the last twockoeer to the data mining discipline).

As an example, consider the usual scenario where a doctdswanheck possible conflicts
or complications between two drugs. Keyword query “drug+AgiB death” could be submitted
to discover cases where a patient who took both drugs diete that the word “death” can be
specified in many different elements of a CDA document, asd aynonyms or related terms
like “mortality” can be used instead. The latter can be @dky leveraging appropriate medical
ontologies like SNOMED Clinical Terminology (SNOMED CT)N#®08] as discussed below.

To study the challenges and requirements of informationogisry on EMRs we have built
a diverse research team consisting of computer scientigtdical research doctors and a partner
from the medical informatics industry. The medical doctorsvided the domain knowledge re-
garding the types of queries and answers that are of intasesfell as the possible applications
of such an information discovery system. Furthermore, traymerated the different critical di-
mensions in searching EMRS, like time, location, and typstaifeholder. These dimensions have
not been considered in systems for searching general XMurdeats; however, ignoring these
dimensions would significantly limit the use of an EMR inf@tion discovery engine.

The key ranking criteria found in current systems as wekhasbibliography [Sal89, BYRN99,
GSBSO03] are (a) relevance, (b) quality (authority) and pe)cHicity. Relevance to the query has
the obvious meaning, while quality represents the quedgpendent importance of a result. For
example, a medication is more important than the name of suramce company for a clinical
researcher. Specificity determines how focused a resudttiset query. For example, returning a
department of a hospital when the query is only relevant tartiqular doctor of this department
is worse than returning this doctor object.

It is challenging to define the information discovery sentanfor CDA documents such
that the three aforementioned key ranking criteria areidensd, given the hierarchical structure
and specific semantics of CDA, and the common referencestsidelentities like dictionaries,
ontologies, separate text, or multimedia patient data. ibé¢dlictionaries and ontologies typi-

cally used in CDA are SNOMED CT [SNOQO08], Logical Observatldentifiers Links and Codes
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(LOINC) [Log06] and RxNorm [RxNO7]. We also study how prengowork on information dis-
covery on XML data [AYBS04, AYCD06, CKKS05, CMNO03, FG01, GSBS03, HGP03, HPO06,
LYJO4, XQu07, XP05] can be leveraged, and what limitatiomghtnexist in this unique domain.

We note that our study does not address the impopdmacy issuesnvolved in accessing
patient information, as required by the United States Hdalsurance Portability and Account-
ability Act (HIPAA) [Hea08]. We envision two possible scemms. The simplest scenario is
that each division of an institution deploys the informatidiscovery engine on its own corpus
of EMRs and provides authentication-controlled acceshéaadivision’s practitioners. The more
complex scenario, which is out of the scope of this studyp igrovide information discovery on
a set of interconnected federated databases where eklamadss control mechanisms must be
employed [BGBJO5].

The rest of this chapter is organized as follows: Sectiormpfe8ents a background exposition
of current clinical information standards and a brief syroe information discovery on XML data.
Section 6.3 addresses the challenges that we have idemtifesgcute information discovery on a
corpus of EMR documents. Section 6.4 presents additioteteework. Our concluding remarks

are presented in Section 6.5.

6.2 Background

In this section we review key standards used to represeanitalidata and EMRs and present
previous work on information discovery on general XML do@nts. In particular, Section 6.2.1
introduces some popular clinical information represénmastandards as well as clinical ontolo-
gies, whereas Section 6.2.2 presents the Clinical Docudettitecture (CDA), which will be

the focus of this chapter. Given that CDA is represented inLXBlection 6.2.3 presents a brief

survey on information discovery on general XML documents.
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6.2.1 Clinical Information Models, Dictionaries and Ontologies

The work in [Her02, KOG 01] described Medical Informatics as the broad term remptasg
the core theories, concepts and techniques of Informatimtications in health. We describe
the key standards, dictionaries and ontologies that aremtly used in CDA. In particular, we
first present th&keference Information Model (RINBIL708b], the model from which the CDA
documents derive their meaning. Three popular clinicdlaharies/ontologies referred to in CDA
documents are presented - tBgstematized Nomenclature of Human and Veterinary Megicin
(SNOMED)[SNOO08], theLogical Observation Identifiers Names and Codes (LOIN®Y06]
andRxNorm[RxNO7].

Health Level Seven (HL7):Health Level Seven (HL7) [HL708a] is a not-for-profit orgaaiion
that provides standards for interoperability in the hemlth industry, mainly focused on clinical
and administrative data. HL7 is an American National Stagsldnstitute (ANSI) -accredited
Standards Developing Organization (SDO) that includesigers, vendors, payers, consultants,
government groups and other entities interested in dewvgjagtinical and administrative standards
for healthcare.

HL7 standards specify a series of flexible standards toit@iglthe communication between
heterogeneous systems and vendors, allowing informatidse tshared and processed in a uni-
form and consistent manner. During the years, HL7 has deedl€Conceptual Standards (i.e.
HL7 RIM), Document Standards (i.e. HL7 CDA), ApplicationaBtlards (i.e. HL7 CCOW) and
Messaging Standards (i.e. HL7 v2.x and v3.0). These stdadiafine the language, structure and
data types that participate in the integration of heteregaa systems [Cal08].

Reference Information Model (RIM): The HL7 Reference Information Model (RIM) is the
grammatical specification of HL7 messages, constitutiedotiilding blocks of the language enti-
ties and the relationships among them. RIM can be repratesta network of classes, expressed
using a notation similar to the Unified Modeling Language (UNUUNIO7]. Its structure can be
summarized into six “core” classes and a set of relationsdxe them, as depicted in Figure 6.1.
We include a brief description of each class as follows:

The Act class represents all the actions and happenings —analoégaiserb— to be doc-
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umented through the healthcare process, capturing alvétsethat have happened in the past,
that are currently happening or that are expected to hapgée future. The terms ‘Act’, ‘Action’,
and ‘Activity’ are all used interchangeably [HL708b].

TheEntity class represents any physical thing or being —analogousuiosa that takes part or
is of interest in the health care and that is capable of ppatitng in an Act. Although it instantiates
any physical thing or group of physical things (includingng subjects and organisms), it does
not include the roles that things can play or the acts thagthtan perform.

TheRoleclass ties an entity to the acts that it plays or providesgiprg how a particular
entity participates in a particular act. Each role is plalggdne entity, but one entity in a particular
role can participate in an act in several ways.

TheRoleLinkclass specifies the connections and dependencies thabetigen two different
and individual Role objects. The Participation class dpEca relationship between a particular
Role instance and a particular Act instance. At the same, iine@nnects the Entity playing the
Role, to the specified Act, thus expressing the context ittt in terms of who performed it.

TheActRelationshigclass associates a pair of Act objects,representing a cbhandrom one
Act to another one. Such relationships include “Act to Ad8eciations, as well as “Source/Tar-
get” associations between the objects. [HL708b] states'AtaRelationship on the same source
Act are called the “outbound” act relationships of that A&ttRelationships on the same target
Act are called the “inbound” relationships of that “Act”. dla 6.1 presents some examples to each
core class of the RIM model.

Each Act may be related to any number of Participations, iteRlayed by Entities, at
the same time that each Act may be related to other Acts vidAttRelationship class. The
Act, Role and Entity classes may also be specialized interotkasses. As an example, the
Entity class specializes into the class Living Subject,cuhiself has a specialization class called
Person. Person then inherits the attributes of both Entity laving Subject. CDA documents
(Section 6.2.2) use the semantic definitions from the HL7 RisIng the HL7 Version 3 Data
Types [HL707b] to define the clinical content of the docursent

Since HL7 mainly focuses on information interchange, RIBbgbrovides a set of classes to
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Table 6.1: RIM Core Classes Examples

Core Class Example
Act Clinical observation N
Assessment of health condition
. Person
Entity Chemical substance
Patient
Role
Employee
RoleLink Manager has authority over Analyst (Using role link for ‘&fit
authority”).
L Surgeon
Participation Author
ActRelationship Theophylline mitigates asthma (Using ActRelationship ybet
“mitigates”).

define a communication infrastructure, including Messagatf@l and Infrastructure (structured

documents and components) [HL708b, HL707a].

Entity player __playedRole| Role Participation Act
<Green> <Yellow> <Blue> <Red>
source target source target
outboundLink inboundLink outboundRelationship inboundRelationship
RoleLink ActRelationship
<Yellow> <Red>

Figure 6.1: RIM Core Class Diagram.

Systematized Nomenclature of Medicine (SNOMED)The International Systematized Nomen-
clature of Human and Veterinary Medicine (SNOMED) was adahore than 20 years ago as the
conjunction of SNOMED RT and the United Kingdom’s Clinicarins Version 3, and has grown

up into a comprehensive set of over 150,000 records in twdifferent chapters or axes. These
concepts are organized into anatomy (topology), morpho(pgthologic structure), normal and

abnormal functions, symptoms and signs of disease, ch&anghraigs, enzymes and other body
proteins, living organisms, physical agents, spatiatietahips, occupations, social contexts, dis-

eases/diagnoses and procedures [SNOO0S8]. Within the disk@gnosis axis, many disease con-
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cepts have cross-references to other concepts in the woginthat are essential characteristics

of the disease. These form a useful basis for further foratdin and development of a reference

terminology [Spa97].

Is a

301226008

Lower Respiratory
Tract finding

29870500
Finding of
Region of Thorax

106048009
Respiratory finding

Has finding site

82094008

Lower Respiratory
Tract structure

301229001

Bronchial
finding

118946009

Disorder of
Thorax

50043002

Disorder of
Respiratory system

41427001

Disorder of
Bronchus

79688008
Respiratory
Obstruction

405944004

Asthmatic
Bronchitis

Finding|site of

195967001
Asthma

233680000
Allergic Asthma

Finding site of

955009
Bronchial Structure

266364000
Asthma attack

Finding site of

Figure 6.2: Partial SNOMED ontology for the term “Asthma”

SNOMED has created and is committed to spreading the adgoptid implementation of
SNOMED Clinical Terms (SNOMED CT3NOMED CT is a universal health care terminology
and infrastructure, whose objective is making health camedge usable wherever and when-
ever itis needed. It provides a common language that enaldessistent way of capturing, shar-
ing and aggregating health data across specialties arsdaditare. The SNOMED CT structure
is concept-based; each concept represents a unit of me&wawigg one or more human language
terms that can be used to describe the concept. Every cohaspiter-relationships with other
concepts that provide logical computer readable defirgtiamcluding hierarchical relationships

and clinical attributes. Figures 6.2 and 6.3 show sub grapttee SNOMED CT ontology graph.
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75748004

Theophylline sodium
glycinate

111131008
Theophylline
monohydrate

Dose form of

385268001
Oral Dosage Form

376676009

Theophylline 300mg
tablet

55867006
Aminophylline

Figure 6.3: Partial SNOMED ontology for the term “Theopimyd’

Has 27994007

Has active

Isa Is
component Theophylline
measurement
6649300? (blood)
Theophylline
Is a
Isa
398957005
Oxtriphylline
86498000 419865007

Respiratory smooth >
muscle relaxant Xantine
bronchodilator

At the moment, SNOMED CT contains more than 325,000 concegts 800,000 terms in
English, 350,000 in Spanish and 150,000 in German. Alsaethee 1,200,000 relationships
connecting these terms and concepts.

SNOMED CT terms are routinely referenced in CDA documentghieyr numeric codes, that is,

the SNOMED CT vocabulary is referenced as an external doawording to HL7 V3 processes.

Logical Observation Identifiers Names and Codes (LOINC) LOINC is a voluntary effort
housed in the Regenstrief Institute, associated with hadlaniversity. It was initiated in 1994 by
the Regenstrief Institute and developed by RegenstrieflamtdOINC committee as a response to
the demand for electronic movement of clinical data. LOINCIlftates the exchange and pooling
of results, such as blood hemoglobin, serum potassium talrsigns, for clinical care, outcomes
management, and research. Currently, most laboratoriesthrr diagnostic services use HL7 to
send their results electronically from their reportingtepss to their care systems. However, most
laboratories and other diagnostic care services iderd#istin these messages by means of their
internal and idiosyncratic code values. Thus, the caresystinnot fully “understand” and prop-
erly file the results they receive unless they either adapptbducer’s laboratory codes (which is
impossible if they receive results from multiple sources)invest in the work to map each result
producer’s code system to their internal code system. LOtN@xs are universal identifiers for

laboratory and other clinical observations that solve pingglem.
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The LOINC laboratory terms set provides a standard set ofessel names and codes for
identifying individual laboratory and clinical resultsOINC codes allow users to merge clinical
results from many sources into one database for patient climecal research, or management.
The LOINC database currently contains about 41,000 terrhihwinclude 31,000 observational
terms related to laboratory testing.

Each record in the LOINC database identifies a clinical olzgeam and contains a formal 6-
part name, a unique name for tests, identifying code witltlkch@its, synonyms, and other useful
information.

Currently, LOINC codes are being used in the United Statdaliiyratories and federal agen-
cies and are part of the Health Insurance Portability ancowetability Act [Hea08] Attachment
Proposal [MHS 03]. Internationally, LOINC has been adopted in Switzedtlagdong Kong, Aus-
tralia, Canada and Germany. Similar to SNOMED CT, LOINC isduby CDA documents as a

vocabulary domain, encoding CDA components into a standatabase of terms.

RxNorm: RxNorm [RxNO7] is a standardized nomenclature for clinidalgs produced by the
National Library of Medicine. A clinical drug is a pharmatieal product administered to a
patient with a therapeutic or diagnostic intent. The da@iniof a clinical drug combines its ingre-
dients, strengths, and form. The form refers to the phy$icat in which the drug is administered
in a prescription or order. For example, two possible defing of clinical drugs are: (ahc-
etaminophen 500 MG Oral Tabldbr a generic drug name, and (ggetaminophen 500 MG Oral
Tablet [Tylenol] for a branded drug name [RxNO7].

The purpose of RxNorm is to standardize the information argle both between systems
within the same organization and between different orgdiuas, allowing various systems using
different drug nomenclature to share data efficiently. ibisnded to cover all prescription med-
ications approved for use in the United States. RxNorm isarared by concepts, collections of
names identical in meaning at a specified level of abstmactBach concept can be mapped to
different string values in different systems, all naminopgfs that are the same. It also provides a
linkage to terms from other vocabularies (i.e., the con€ato-Novum 7/7/7 21 Tablets a term

from the SNOMED vocabulary; it is not within RxNorm at all,e@pt as it is related to RxNorm
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within the RXNREL table [RXNO7]).

6.2.2 Clinical Document Architecture

The Clinical Document Architecture (CDA) is an XML-basedcdment markup standard that
specifies the structure and semantics of clinical documesuish as discharge summaries and
progress notes, for the purpose of exchange. It is an Amehtaional Standards (ANSI) ap-
proved HL7 standard, intended to become the de facto etectnoedical record.

According to the developers of CDA version 2.0 [CDAQ7], thaimcharacteristics of the

CDA standard are:

a. Persistence:The clinical documents exist in an unaltered state for a pieréd defined by

local and regulatory requirements.
b. Stewardship: A clinical document is maintained by an organization erngdsvith its care.
c. Authentication: The clinical records are intended to be legally authergit.at
d. Context: The clinical document specifies its own default context.

e. Wholeness: Authentication of a clinical document applies to the whalstance and the
full context. Also, it is a complete and persistent set obinfation including text, images,

sound and other multimedia content.

f. Human readability: A clinical document is human readable.

Some projects already implementing CDA are: Continuity afeCRecord (USA) [ASTO7],
SCIPHOX (Germany) [SCI07], MedEmed (Canada) [OBJ03], RICKDenmark) [PIC07], e-
Claims Supporting Document Architecture (Canada), Hdafttrmation Summaries (New Zealand),
Aluetietojaerjestelmae (Finland) [IV02] and Dalhousies€hiarge Summary System (Canada).

Figure 6.4 [DAB'06] shows a fragment of the CDA's Object Model that represéiné se-
mantic constructs of the RIM, depicting the connection framlocument section to a portion of

the CDA clinical statement model with nested CDA entries.
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entryRelationship |

component

0..* Section
0..* cIinicaIStatement[\

Organization 0.1 clinicalStatement
~~~~~~~~ 0..* clinicalStatement
~~~~~~~~~~~~ 0.1
~~~~~ { subject
DrugOrOtherMaterial ManufacturedProduct N———
1.1
LabeledDrug 1.1 < consumable
Material 0.1
o -

entry |/

Figure 6.4: Fragment of CDA Object Model.

The colors in Figure 6.4 identify these classes with the abasses of RIM as depicted
in [DAB*06] (Red for Act specializations, blue for Participatiogsgen for Entities, yellow for
Roles and pink for Relationships). As described in [DABS], an Act can have zero to many Ac-
tRelationships to other Acts, and can have zero to manydiations, each played by an Entity
in some Role. A Role relates two Entities; the Entity playthg Role is represented by a solid
line and the Entity who recognizes the role is representéd avilashed line. Thus, in Figure 6.4,
a “legalAuthenticator” is a Participant of a “ClinicalDanent” Act and is played by a “Person”
Entity in an “AssignedEntity” Role that is recognized by @rtjanization” Entity [DAB"06].

The “Component” class is an ActRelationship that may link t&linicalDocument” to the
body choice (“NonXMLBody” or “StructuredBody”) or the “SicturedBody” to each nested
“Section”. The “StructuredBody” contains one or more Satitomponents, each of which con-
tains a human readable title and a “narrative block”, the d&nmumeadable content that has to be
populated by the document originator and rendered by thpiest. Each section can also contain
any number of CDA entries and external references. The CDratiee block is wrapped by the
“text” element within the “Section” element, and provideslat for the human readable content
needing to be rendered. Within a document section, thethardalock represents content to be

rendered, whereas CDA entries represent structured domtevided for a computer. CDA en-
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tries encode content present in the narrative block of theessection. The example shows two
“Observation” CDA entries, although several other CDA iestiare defined.

Figure 6.4 shows, at the right of the Section class, the BRa&hationship, which leads to
the clinical statement portion. Each Entry representciirad content intended for computer
processing such as decision support applications. AlsoclihicalStatement class contains spe-
cializations of the Act class (in this case Observation,strtceAdministration, Supply and Pro-
cedure) that will be included in the formal representatioAR *06].

CDA external references always occur within the context @D entry, and are wrapped by
the “reference” element. External references refer togthihat exist outside the CDA document
- such as some other image, some other procedure, or someobswvation (which is wrapped
by the “ExternalObservation” element). The CDA entry thahps the external reference can be
used to encode the specific portions of the external refertémat are addressed in the narrative
block.

Listing 9.1 in the Appendix depicts a sample CDA docum®&nt which is wrapped by the
“ClinicalDocument” element, as it appears in line 2 of thigufie. The CDA header (lines 3-
29) identifies and classifies the document, and providesnrdbon about authentication of the
record as well as the participants (patient and involvediigaess). Figure 6.5 depicts the tree
representation ob; .

The CDA body (lines 31-82), which is wrapped by the “StruetiBody” element, is the core
of the document and contains the clinical report. It can bleeeian unstructured segment or
an XML fragment. We focus this study in the structured XML dgion of the clinical report,
which is the one providing the most opportunity for high-ifyanformation discovery. Tradi-
tional Information Retrieval (IR) approaches [Sal89, BY®8ican be applied to the unstructured

scenario.

6.2.3 Information Discovery on General XML Documents

XML has emerged as the de facto standard format to represenéexhange data through the

World Wide Web and other heterogeneous environments, sgaarwide variety of domains and
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applications. The increased popularity of XML repositerégaxd XML documents in general must
be accompanied by effective ways to retrieve the infornmesiored in this format. In this section
we present an overview of previous work on searching XML doents. This corpus of work will
be viewed as the starting point to present the challengaesfafation discovery on CDA XML
documents in Section 6.3.

Limitations of Traditional Information Retrieval (IR) Met hods: The traditional and popular
text-based search engines cannot deal effectively with XMtuments due to a series of lim-
itations. First, text-based search engines do not exgieitXML tags and nested hierarchical
structure of the XML documents. Second, the whole XML docometreated as an integral unit
and is returned as a whole, which is unacceptable given thsilgyp large sizes of XML docu-
ments —in contrast we would like to be able to return partsi0flsiL document. A third drawback
is the keyword proximity concept in XML, which can be measlireterms of containment edges,
in contrast to the traditional keyword proximity searcherttand HTML documents. That is, two
keywords that may appear physically proximal in the XML filayrbe distant or unrelated in the
tree-structured XML document and vice versa.

Previous Work on Searching XML documents: XRANK [GSBS03] computes rankings at
the granularity of an element, considering element-torelat links in addition to document-to-
document links. XRANK ranks the XML elements by generaligihe PageRank algorithm [BP98],
combining the ranking of elements with keyword proximity.

XSEarch [CMKSO03] ranks the results taking into consideratioth the degrees of the seman-
tic relationship and the relevance of the keyword. XSEatst adds the power of distinguishing
between tag names and textual content. They also disalleultsevhere the same tag name ap-
pears more than once in nodes of a vertical result path. Cettedn[CKKSO05] present an extended
framework to specify the semantic relationship of XML elertse providing a variety of intercon-
nection semantics based on the XML schema, improving thétgjeé the ranking of XSEarch.
XIRQL [FGO01] utilizes a different strategy to compute itsking, defining index units, specific
entity types that can be indexed and used for tf-idf compnat

Schema-free XQuery [LYJO04] refines the work of XSEarch byiziig meaningful lowest
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common ancestors instead of the concept of interconneciéelsnskimming some unrelated, “too
inclusive” elements that are not supposed to be returnedheCet al. [CKKSO05] improve even
further this approach by including the schema into the fraark and discovering interconnection
information. Xu and Papakonstantinou [XP05] define a remi#t “smallest” tree, that is, a subtree
that does not contain any subtree that also contains all deday Hristidis et al. [HP06] group
structurally similar tree-results to avoid overwhelmihg user.

Previous works define a query answer in several differenswXyRANK, XIRQL and TeX-
Query [AYBSO04] define an answer to be a document fragmenefgdip a subtree) —the most spe-
cific fragment of the XML document is typically the higheshkad answer. In contrast, XSEarch
defines the result to a query to be a sequence of XML nodes dhdatues forming a path that
connects the elements that contain the keywords or thafs#tie query predicates. On the other
hand, Carmel et al. [CMNMO03] utilize XML Fragments as the syntax to specify the queny b
their query answers consist of entire documents, not fraggn®radhan [Pra06] present a flexible
algebraic approach for defining results’ properties in therg in addition to a list of keywords.

XKeyword [HGPO03] operates on an XML graph (with ID-IDREF edy and returns a subtree
of minimum size that contains all query keywords. The Worlid&Web Consortium has proposed
syntactic and semantic extensions to XQuery and XPath [A¥BXQu07] to support full-text

search capabilities. Amer-Yahia et al. [AYCDO6] presenfsigebra to support such an extension.

6.3 Challenges of Information Discovery on CDA Documents

In this section we present a series of challenges that have tmldressed to effectively perform
information discovery on a corpus of CDA documents. For gicitp we focus on plain key-
word queries, although the same challenges are valid forsgactured queries as well —a semi-
structured query is a query where partial information alblo@istructure of the results is provided.
For example, specify that we are only interested in “codeirants under “Observation” elements.
We discuss why the general work on information discovery dtixXlocuments (Section 6.2.3)

is not adequate to provide quality information discovery@DA XML documents. The key
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reasons are the complex and domain-specific semantics arfdetjuent references to external
information sources like dictionaries and ontologies.
We use DocumenD; depicted in Figure 9.1 as our running example, along withpilaen

keyword queries of Table 6.2.

Table 6.2: CDA Document Queries

Id | Keyword Query

¢1 | “Asthma Theophylline”

¢2 | “Substance Theophylline”
g3 | “Respiratory Theophylline’
qs | “Temperature”

6.3.1 Structure and Scope of Results

In contrast to traditional Web search where whole HTML doeunts are returned as query re-
sults, in the case of XML documents and particularly CDA dueuts, we need to define what
a meaningful query result is. Previous work has studiecafit approaches to define the struc-
ture of results. A corpus of works [AYBS04, FG01, GSBS03]gidar a whole subtree as re-
sult, that is, a result is unambiguously defined by the lowesimon ancestor (LCA) node of
the keyword nodes. We refer to this approaclsaltree-as-result For example, XRANK fa-
vors deeply nested elements, returning the deepest nodairiog the keywords as the most
specific one, having more context information. In contrasipath as the result is proposed
by [ACD02, BNH"02, HP02, CMKSO03, HPBO03]; where a minimal path of XML nodeseis
turned that collectively contain all the query keywords.té\tlhat we use the term “path” loosely
to differentiate it from the subtree-as-result approadtalse it can be a collection of meeting
paths (a tree) for more than two query keywords. We referitodpproach apath-as-result
Example: To illustrate this challenge we execute quefyon documentD;. For the path-as-
result approach there are two candidate results depicte#igures 6.6 (a) and (b) because of
the two appearances of the keyword “Theophylline” in lin€sahd 54. For the subtree-as-result

approach, only the subtree rooted at the XML node of line ZBpsssible result.
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Itis unclear whether the subtree-as-result or the pattesigt is a better fit for searching CDA
documents. The discussion on minimal information unit Wwedbeds more light to this aspect.

Another issue is thacopeof a result, in particular, whether results spanning acEgRs
should be produced. For instance, two query keywords magpunedfon two EMRs authored by
the same doctor (the doctor becomes the connection elemalis@issed in Section 6.3.10. If
the query is “drug-A drug-B death” then clearly two-EMR rksware not useful since if different
patients took the two drugs no correlation between the dragde drawn. On the other hand, if
the query is “rare-disease-A rare-disease-B” then it maydedul to find a doctor who has treated
two patients that have had one disease each. A simple solotibis dilemma is to allow the user

to explicitly specify if cross-EMR results are allowed.

Observation
(37)

SubstanceAdministration
(49)

e
‘8t;§ervation ‘ atgk;stanceAdministration
value text manufacturedLabeledDrug
[Asthma] (50) (53)
(39) |
content code
[Theophylline] [Theophylline]
(50) (54)
(@) Path connecting (b) Path connecting
“Asthma” in line 39 and “Asthma” in line 39 and
“Theophylline” in line 50 “Theophylline” in line 54

Figure 6.6: Atomic path results for Quegy. The highlighted nodes match the terms.

Finally, doctors would like to be able to specify the resudthema in some cases, which in

turn limits the types of elements searched for the query kegs:
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6.3.2 Minimal Information Unit (MIU)

It is challenging to define the granularity of a piece of imfiation in a way that it is self-contained
and meaningful, but at the same time specific. For exampoaumentD; returning the “value”
element of line 45 without the preceding “code” element ismeaningful for the user. Hence, the
“value” element is not an appropriate MIU, whereas the esinlp “Observation” element could
be.

Furthermore, for some queries it is required to include thresult some elements that do
not contribute in connecting the query keywords or are pgfatteMIU of such a connecting node.
For instance, the “patientPatient” element should be oheduin the result oy, if a practitioner
submits the query, but not if a researcher does. Such péizaiian issues are further discussed
in Section 6.3.14.

Another issue is the static definition of MIU. In XKeyword [BB3], a “target object” is the
equivalent of an MIU and they are defined statically on theesw by a domain expert. Xu et
al. [XLWSO06] also define MIUs in a static manner. Such statitJMefinitions are not adequate
for CDA information discovery, as the following scenarigpiins. For the query “Body height”
a reasonable result is the “Observation” element in line8X.70n the other hand, for the query
“1.77” this same element is not meaningful since obvioust/user knows that “1.77” is a height
value, but the patient who has this height is probably of niaterest. Hence, there is a need to
dynamically specify MIUs.

Example: The tight semantic relationship between the nodes in theemimoted at the element
“SubstanceAdministration” in line 49 of Figure 9.1 can le#lte system expert to consider this
subtree as a MIU. In this case, the single result of qugrgn DocumeniD; for the path-as-result

approach is the one shown in Figure 6.7. If, in contrast, gwaement in the tree is considered a

minimal information unit, then the two paths depicted inUfay6.6 are the results for this query.
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:_ _____________________ 1

EI MIU Definition

Figure 6.7: Result fog; usingSubstanceAdministratiaas Minimal Information Unit

6.3.3 Semantics of Node and Edge Types

Itis challenging to incorporate the rich semantic inforimatavailable for the clinical domain, and
particularly for the elements of a CDA document, in the resswlnking process. At the most ba-
sic, a domain expert statically assigns a weight to each andedge type, as in BANKS [BNFD2].
In addition to that, we can assign a relevance to whole paihith® schema as explained below.
Furthermore, it is desirable that the degrees of semargmcagion are adjusted dynamically ex-
ploiting relevance feedback [SB97] and learning [Mit9@hriques.

The equivalent of a schema for a CDA document is the CDA Rel@a®bject Model (Fig-
ure 6.4), showing the connection from a document sectionpiriéon of the CDA clinical state-
ment model [DAB 06]. Edge and node weights can be specified on this Object Mdetar
example, the relationship between a substance and thepiatieas prescribed to may be more
relevant than the relationship between the substance arabtttor who prepared the EMR.

As mentioned above, assigning relevance degrees to whttle pestead of single edges can
improve the ranking quality. For example, the pattubstance Administration — consumable
— manu factured Product — manu facturedLabeledDrug — code” could have a higher or

equal weight than Substance Administration — consumable — manufactured Product”.
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(50) (53)
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(@) Path connecting “Sub- (b) Path connecting “Sub-
stance” in line 49 and “Theo- stance” in line 49 and “Theo-
phylline” in line 50 phylline” in line 54

Figure 6.8: Path Results tg.

This is particularly important for cases where a syntatlfidang path corresponds to a seman-
tically tight association. For instance, the paffubstance Administration — consumable —
manu factured Product — manu facturedLabeled Drug — code” in lines 49-57 of Figure 9.1
has four edges, but intuitively this sequence of elemenlistygically appear as an indivisible
unit. Hence, this path may be viewed as a single edge for ttgopa of ranking. In general, the
information discovery algorithm must neutralize the efffeidthe schema design decisions of CDA
by considering a semantic instead of a syntactic distance.

Example: Consider queryg, executed overD;. We can see with this query the need to in-
dex and query the XML tags in addition to the values; in thisecthe keyword “Substance”
matches the tag “SubstanceAdministration” in line 49. Fig®.6 shows two possible results to
g2. Even though the first result only involves two edges (wisdteasecond involves four), it could
be that the second result is ranked higher if the pafubstance Administration—consuma

ble—manu factured Product—manu facturedLabeled Drug—code” is viewed as a single edge.
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6.3.4 Access to Dictionaries and Ontologies

CDA documents routinely contain references to externdiafiary and ontology sources through
numeric codes. As an example, documBntincludes references to LOINC [Log06] and SNOMED
CT[SNOO08] in lines 34 and 38 respectively. Hence, it is n@kEmenough to answer a query con-
sidering the CDA document in isolation, as is done by all jines work on information discovery
on XML documents (Section 6.2.3). In this setting, the queywords may refer to text in the
CDA document or an ontology that is connected to the CDA damirthrough a code reference.
For example, the query keyword “appendicitis” may not besent in the document but its code
might be present, so we need to go to the ontology and searthefguery keyword there.

On a high level, it would be desirable to view the data grapbh @DA document) along with
the ontology graph (e.g., SNOMED) as a single “merged grapim’ approach to achieve that is

the following:

a. View a code node in a CDA document and the correspondingagyt node as a single
node, that is, collapse these two nodes. Equivalently, adddge with infinite weight

between them (assuming higher weight denotes higher aseogi

b. For free text nodes (with no code)f the CDA document we add an edge betweemnd
each ontology node with weight equal to the IR similarity between the contenvaind

u. Only the edges with weight greater than the specified totdsdre finally created.

This second technique can be omitted if we assume that ti®raaf the CDA document
is including the ontology/dictionary codes where apprajgriand there are matching ontology
entities for all real entities in the CDA document.

An alternative technique has been described to incorporgtdogy information in the query
processing [HHPO6]. Designed to enable keyword search ta glaphs with authority flow
semantics, the ObjectRank authority flow algorithm [BHP@4éxecuted on the ontology graph
to rank the ontology nodes with respect to the query, and tisels the terms of the top-ranked

ontology nodes to expand the original query.
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Example: Queryqs executed oD, would have an empty result (for AND semantics) if the on-
tologies/dictionaries were not text searched. Howevehdfintuition discussed above is applied,
the same results as iy are valid, since the query term “respiratory” is associatemthe term
“Asthma” in D; through relationships of the SNOMED ontology, as shown gufé 6.2.

Note that it is challenging to rank results produced by exiplp ontological relationships as
discussed in Section 6.3.5.
Performance:The solutions proposed to exploit ontology/dictionaryomhation incur challeng-
ing performance issues. Two high-level technigues thatbmaemployed to realize the above

query semantics are:

a. Search all ontologies for the query keywords, find adedpaissociated codes, and then

search the CDA documents for these codes.

b. Start searching the documents and for each ontology coclsurtered, lookup the key-

words in the corresponding ontology.

Furthermore, it is challenging to develop efficient pre-pomation and runtime algorithms to
facilitate the expensive in terms of execution semantidcheimerged data and ontologies graph
discussed above.

Another performance challenge arises due to the size of thadagies. As mentioned in
Section 6.2.1, SNOMED CT contains more that 235,000 coscaptl 1,200,000 relationships
between them. This corresponds to more than 2GB of commrelsga, which will play a role in

deciding which execution approach will be more efficient.

6.3.5 Different Types of Relations in Ontology

We need to assign an appropriate value to each of the redgtimsent in the ontologies. SNOMED

CT, for example, has four different types of relationships:

1. Defining characteristics,

2. Qualifying characteristics,
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3. Historical relationships and

4. Other relationships.

Figures 6.2 and 6.3 include relations such as “May be”, “Figdite of” and “Has finding
site” in addition to the most common “Is a” relationship. i&&r and stronger relations in the
ontology should intuitively have a higher weight.

Furthermore, we need to take into consideration the doeabf the edges. For instance,
following “Is A’ edges specializes and restricts the seargtihe one direction, but generalize in
the other direction, with the risk of returning imprecisens.

We must also consider the number of incoming and outgoing®tiat each node has. For ex-
ample, some SNOMED CT concepts such as “Duplicate conceglivalid concept” participate
in historical relationships and possess a large incomimggese Navigating these historical rela-
tionships to concepts with such large in-degrees may no¢befirial to the information discovery
process.

A possible approach to measure the degree of associatimed&eihodes of an ontology graph
is to execute ObjectRank [BHP04] on the ontology graph, asriteed by Hwang et al. [HHPO®].
In particular, for queryys we can place the nodes containing the keyword “Respiratioryhe
base set and then execute ObjectRank. If the node contaiménigrm “Asthma” (line 39 ofD,)
ends up having a higher score than the node containing time'Bronchitis” (line 45 of D,), then
the “Asthma” node will be preferred. This process can behfrimproved by assigning different
authority transfer bounds [BHPO04] to various edge (refeiop) types of the ontology according
to their semantic association.

Example: As an example we execute quegyon D;. We can see in the ontology graph of
Figure 6.2 that “Asthmatic Bronchitis” and “Asthma” are bbtrelated to “Respiratory”, but
“Asthmatic Bronchitis” is two “Is A” edges away from “Resgitory”, whereas “Asthma” is only
one edge away. Hence a result containing “Theophiline” adthma” (line 39) would be better

than one containing “Theophyline” and “Bronchitis” (line3).
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6.3.6 Arbitrary Levels of Nesting

We can find an arbitrary number of levels of nesting and réoniig the definition of components
and sections, as exemplified in the padlmponent — section — component — section in lines
58-63 of Figure 9.1.

Taking into consideration the semantics of the documeatirtterconnection relationship rule
of XSEarch [CMKSO03], where the same tag may not appear twidaternal nodes of a result
path, cannot be applied since the same tag can appear twaceeiical path (top-to-bottom). In
particular, the rule of XSEarch assumes that a vertical path not contain the same tag twice,
since elements with the same tag name are typically in the $ewel of the tree. This is clearly
not true for CDA documents.

Hence, the XSEarch interconnection relationship shoulechbéified considering semantic in-
formation of the surrounding elements. For instance, if s&uee that a “component” element
represents a hospitalization, then if two keywords withghme tag appear in different compo-
nents of the same section, the XSEarch rule can be appli¢aobuf they are in two different

sections of same component.

6.3.7 Handling ID-IDREF Edges

CDA entries can include pointers to “content” elements a&f @DA Narrative Block; similarly,
“renderMultiMedia” elements of the CDA Narrative Block caoint out to CDA entries. The
“content” element can contain an optional ID attribute tentify it, and it can serve as the target
for a reference. The “originalText” component of a RIM ditrie can then refer to this identifier,
indicating the original text. As an example we can find an Il@ilaite in line 50 of Figure 9.1. A
reference to this element is found in the “originalText"rent of line 40.

These edge types have been ignored for results computatiprebious search strategies like
XRANK, which only utilizes the hyperlinks (ID-IDREFs) forcsre calculation. That is, results
are always subtrees ignoring the ID-IDREF edges. We wankpo# these edges in producing

the results. A consequence of this issue is the fact thatehatrcan be a graph (with cycles)
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and not a tree. In this case, we need to decide whether we breatycles to return a tree as
the answer, since a tree is typically easier to present aasbneabout. Also, similar to XRANK,

ID-IDREF and containment edges could be assigned diffeverghts.

Observation
(37)

value text
[Asthma] (50)
(39)

SubstanceAdministration
(49)

N content
Seal [Theophylline]
(50)

ID/IDREF ~ ™= =>

Figure 6.9: Result to Queny; considering ID/IDREFS.
Example: We execute query; on the sample documeii?;. We obtain the two path results

depicted in Figure 6.6, but if we include the ID-IDREF hyjpgklbetween elements in lines 40 and
50 of Figure 9.1 we obtain the graph depicted in Figure 6.9taming a cycle.

In case we decide the best solution is to break the cyclesydkiissue is to decide the best
edge to remove. The simplest possibility is to eliminatehierlink and preserve a path as the
one shown in Figure 6.6(a). Alternatively, the weights amdatfions of the edges may be taken

into account.

6.3.8 Free Text Embedded in CDA Document

In some cases, plain text descriptions are added to cedeiioss to enrich the information about
the record or to express a real life property not codified atiaiaries or ontologies. As a first
measure, traditional text-based Information Retrievethitéques [Sal89, BYRN99] should be in-
cluded in the architecture to support such cases.

Another technique to address the coexistence of semitstactand unstructured data is pre-
sented in [HGPO3], where IR and proximity rankings are coradi

In addition to embedded plain text, HTML fragments can alsanicluded to the CDA docu-

ment, resulting in a mix of semantic mappings. For instatioe,50 in Figure 9.1 describes the
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Listing 6.1: Free text occurence of keywords on qugry

s <t ext ><content | D="nl">Theophyl | i ne</content>20 ng every
ot her day, alternating with 18 ng every ot her day.
Stop if tenperature is above 103F. </text>

Listing 6.2: Embeded HTML fragment is the result of query
e <t h>Tenper at ure</t h>

full-text description of the dosage for a substance. Duédéocomplex nature of this description,
there is no single entity in the ontology to accurately match

Example: To exemplify this challenge we execute qugryn our sample documerd;. List-
ings 6.1 and 6.2 show two possible results for this queryragsmy each element is a MIU. List-
ing 6.1 presents a free-text entry containing the keywordniperature”, whereas Listing 6.2
depicts an HTML fragment also containing the keyword. Witradditional semantic informa-
tion, these results cannot be ranked based on their stragcappropriate IR techniques should be
applied to solve this challenge. For instance, the secordltenay be ranked higher since it has

a smaller document length (DL).

6.3.9 Special Treatment of Time and Location Attributes

After discussing with medical researchers and practit@ne&e found that time and location are
critical attributes in most queries. For instance, for therg “drug-A drug-B” the doctor is
probably looking for any conflict between these drugs, anttbdhe time distance between the
prescriptions of these drugs for a patient is a critical @ietinformation. Location is also im-
portant since two patients located in nearby beds in theitabgthould be viewed as associated
because infections tend to transmit to neighboring bedsary it is challenging to standardize
the representation of such location information within aiRE

Furthermore, time and location can lead to the definition efrios similar to the inverse

document frequency (idf) in Information Retrieval [Sal8Bbr instance, asthma is more common
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in summer; hence a patient who has asthma in winter shoulcitieed higher for the query
“asthma”. Similarly, a patient who has the flu in a town whepeone else has it should be ranked
higher for the query “flu”. These associations are too complace time can be used to define
time, distance, or periodicity. Similarly, location retatships can be specified either within a
hospital or across towns.

Finally, there should be a way to specify time intervals & djuery, possibly using a calendar
interface, and then use the specified time window as an asdilter. Specifying the time-distance
between the keywords can also be useful. For instance, #my tpewborn heart block” which is
often needed at Miami Childrens Hospital, should not retupatient who got a heart block when
he was 60 years old but the word “newborn” appeared in his EMR description field of her

birth day.

6.3.10 Identity Reconciliation and Value Edges

A single real-life entity (e.g., a medication or a doctorjligplicated every time it is used in a CDA.
Hence, associating two records of the same author, or twerpatwith the same medication is
hard. In contrast, in previous work on searching XML docuteea real-life entity is typically
represented by a single XML element, which is linked using MIREF edges where needed. For
instance, in XKeyword two articles of the same author havid&EF to the same author element.

The problem of reference reconciliation has been tacklatl othe context of structured
databases [DHMO05, HS95, MNUOO, MWO03, SB02, TKM02, Win95fan the context of free
text document collections [ML95, MW03, NC01, ZAR02]. Hoveeyfocusing on the domain of
CDA documents allows manually specifying rules by a domajreet on what types of elements
are good candidates for referencing identical real-lifiects, in case these elements have identical
or similar values.

In particular, we can identify on the schema the elementshignge the property that the same
value probably means the same real-life entity, so thatutvadges” can be added accordingly.
Such elements may be the “assignedAuthor”, the “patier®at the “manufacturedLabeled-

Drug” and so on. On the other hand, no “value edge” should bleddetween two “title” ele-
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ments. E.g., two patients who both have “Physical Exanonatvalue on the “title” element (line
61 in Figure 9.1) are not related in any way.

As another example, if two medications have the same SNOD&M,chey should be asso-
ciated. However, if a drug and its generic have different 8NED codes, such associations are
hard to establish.

Another challenge involves the use of multiple possiblyramping ontologies across the cor-
pus of CDA documents. For instance, different codes arefasdle term "Asthma” in SNOMED
CT and LOINC (195967001 and 45669-9 respectively). Ontplomgpping techniques can be
leveraged [DHMO05, HS95, ML95, MNUOO, MWO03, NCO01, SB02, TKR|ONIn95, ZARO2] (for
more details on such techniques see Section 6.4). Furthermwe can probabilistically extend
these initial mappings using “meta-rules” like the follagi[MNJO4]: if two concepts’; andC
match, and there is a relationshjpetweenC; andCs in OntologyO and a matching relationship
¢’ betweenC| andC/, in OntologyO’, then we can increase the probability of match betw@en
andC’. Hence, code elements in a single or multiple CDA documérasrefer to the same or

similar real-life entities will be associated through alteedge”.

6.3.11 EMR Document-as-Query

An alternative query type to the plain keyword query is usangrhole (or part of) EMR (CDA)
document as the query. This approach can be used in ordedtirfiilar CDA documents, that is,
CDA documents of patients with similar history, demograghformation, treatments, and so on.
The user should be able to customize and personalize sucficemation discovery tool to fit her
needs. Forinstance, a researcher may not consider thejamgs{author of CDA document) name
when matching CDA documents, and could specify that a gemeedication should be viewed
as identical to the non-generic equivalent. Previous wardacument content similarity [And00]
and XML document structural similarity [NJO2] can be leygd to solve this problem. The
latter corpus of works is based on the concept of tree edamie. The best known algorithm for
computing tree edit distance between two ordered trees #hbng and Shasha [2S89] with the

time complexity of roughlyO(n*) wheren is the number of the nodes in a tree. Chakaravarthy at
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al. [CGRMO06] match pieces of unstructured documents t@sitrad entities, whereas we want to
match a structured document to other structured or unsieatidocuments.

Furthermore, such document-as-query queries can be udedatie medical literature rele-
vant to the current patient. In this scenario, the EMR apfiimn could have a button named
“relevant literature” that invokes an information discowalgorithm on PubMed or other medical
sources. Price et al. [PHOEOQ2] present a first attempt tasvédnid direction, where they extract
all MeSH terms (MeSH refers to the U.S. National Library ofditgne’s controlled vocabulary
used for indexing articles for MEDLINE/PubMed) from an EMiRo{ specific to CDA) and then
query MEDLINE using these terms. The structured format ofAGIacuments can potentially
allow more elaborate searching algorithms where multiptens that are structurally correlated

can construct a single and more focused query on medicadtlitee sources.

6.3.12 Handle Negative Statements

A substantial fraction of the clinical observations enteirto patient records are expressed by
means of negation. Elkin et al. [EB®5] found SNOMED-CT to provide coverage for 14,792
concepts in 41 health records from Johns Hopkins Universitwhich 1,823 (12.3%) were iden-
tified as negative by human review. This is because negatidanfjs are as important as positive
ones for accurate medical decision making. It is common inedioal document to list all the
diagnoses that have been ruled out, e.g., state that “tienpdbes not have hypertension, gout,
or diabetes”. This creates a major problem when searchirdjcaledocuments. Today, one has
to examine the terms preceding a diagnosis to determinesifdiagnosis was excluded or not.
Ceusters and Smith [CS05] propose new ontological relghigps to express “negative findings”.
It is challenging to handle such negative statements fonfmmration discovery query in a way
that the user can specify whether negated concepts showatdheded or not from the search

process.

121



6.3.13 Handle Extension Elements

Locally defined markup can be used to extend CDA when locabstios have no corresponding
representation in the CDA specification. Such user- ortirtgtn-defined element types are hard to
incorporate to the global semantic information, since nospossible to define general structural
requirements for the results, as in XSEarch [CMKS03] andvitbhek of Xu and Papakonstanti-
nou [XPO5].

6.3.14 Personalization

The information discovery engine should provide persaedliresults depending on the prefer-
ences of each individual user. For example, for differerdtais, different entities and relation-
ships in the CDA components are more important. For soméhuaaé providers, the medication
may be more relevant than the observation, or the medicatanbe more relevant than the doctor
name. Also the relationships in ontologies may be viewefg aintly.

Furthermore, depending on whether a user is a nurse, a ptigtn@etechnician or a physician,
the system could automatically assign different weight®dges and nodes of the CDA Obiject

Model (Figure 6.4) to facilitate the information needs o thsers.

6.3.15 Confidentiality of Records

The level of confidentiality of the medical record is indaitby theconfidentialityCodeslement
in the header section of the record, taking the values “nBrrirastricted” and “very restricted”.
The value of this element, shown in line 4 of Figure 9.1, mayadé at what level we may return
results for an executed query. dbnfidentialityCodes set to “restricted” but no personal info
is contained in the result, then the result could be outpuhefise, the credentials of the user
should also be taken into consideration to validate whetiteruser has the right privileges to

obtain the query results.

122



As mentioned in Section 6.2.1, LOINC codes are already gdttRAA [Hea08], complying
with the confidentiality standards imposed by the Federale@ument on the Insurance and Health

Care Industries.

6.4 Related Work on Information Discovery on Electronic Hedth

Records

This section reviews some research areas that are relateel pooblem we are introducing in this
chapter, in addition to the XML information discovery teajures reviewed in Section 6.2.3: the
testing and evaluation of IR techniques on XML, the probldrmutomatic ontology mapping, and
the limitations of medical ontologies.

To test and evaluate IR techniques on XML documents, thedliNi¢ for the Evaluation of
XML Retrieval (INEX) [INi09, FGKLO02] was created in 2002 taqvide the infrastructure and
means to evaluate the retrieval methods and techniquesoaratpare results, specifically pro-
viding a large XML test collection and appropriate scoringthods, for the evaluation of content-
oriented XML retrieval systems. For INEX 2007, the testedtion consists of more than 650,000
XML-encoded articles from the Wikipedia project, compjid.6 Gigabytes of textual informa-
tion. These documents are organized in topics, with re@vassessments defined for each topic.
A series of content-only (CO) and content-and-structur&SCqueries is defined for each topic.
The CO queries resemble those used in the Text REtrievaletemie (TREC) [Tex07].

Even when representing the same domain, information ssuneg be of heterogeneous se-
mantics, resulting in a necessary mapping between ontsdagid schemata in order to compose
the information and enable interoperation. This has be@&search topic in recent years, provid-
ing strategies to compose different and heterogeneousesywiming to reduce the impreciseness
and errors in such mappings. A large number of articles atediat [Ont07]. ONION [WDO01]
and Prompt [NMO3] use a combination of interactive spedifices of mappings and heuristics to
propose potential mappings. GLUE [DMDHO02] employs machesning techniques to discover

the mappings. OMEN [MNJO04] exploits schema-level inforimatby using a set of meta-rules.

123



In recent years, one of the hottest research directions @liaaleinformatics has been to ad-
dress the biomedical terminology problem. Ontologies asgtdption logics have been chosen
to tackle this challenge, proving to be an adequate solutui it has also been shown that de-
scription logics alone cannot prevent incorrect repreganmts of the medical terminology, since
frequently they are not accompanied of the proper theoryeseiibe them. The inappropriate
adoption of the UMLS Metathesaurus [UMLO7] has been spetificriticized and questioned
in [CSFO03], which cites these three problems: (1) There isde wange of granularity of terms in
different vocabularies. (2) The Metathesaurus itself leanifying hierarchy, so you cannot take
advantage of hierarchical relations. (3) There may be ddatures of vocabularies that get lost in
their ‘homogenization’ upon being entered into the Meta#tueus. Hahn et al. [HRS99] recognize
the value of biomedical terminologies as the starting pfaintan engineering-oriented definition
of medical ontologies, in which the reviewing of concept sistency and hierarchy concludes
with the inclusion of missing terms and the correction ofcfaissified concepts. A new approach
has been proposed by [SAD7], in which they introduce a new level of abstraction toresent
a match between a text fragment and an ontology; they faiglihe discovery of medical knowl-
edge by adding semantic annotations (with domain knowlédgpe the ontology) to the syntactic

parse trees from the processed documents.

6.5 Concluding Remarks

We have introduced the problem of Information Discovery tecEonic Medical Records (EMR),
enumerating a series of challenges that must be addrespeal/tde a quality information discov-
ery service on EMRs, specifically on Clinical Document Atebture (CDA) documents. The
challenges are related to the semantics of the architediueeXML definitions of CDA docu-
ments, and the convergence of the narrative structureiagstavith ontologies and dictionaries.
More research is needed to address the ability of keywomttisega to return meaningful results on
CDA documents containing time-dependent relationshipsid&ce is also needed in determin-

ing how ontologies can be best used in CDA documents to ingokeyword search effectiveness
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and minimize information discovery times. We hope that ¢isk will spur new research on this

topic, which can have a dramatic impact on the quality oftheale.
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CHAPTER 7
ONTOLOGY-AWARE SEARCH OF ELECTRONIC HEALTH RECORDS

7.1 Motivation

The National Health Information Network (NHIN) and its dataaring building blocks, RHIOs

(Regional Health Information Organizations), are encgimg the widespread adoption of Elec-
tronic Medical Records (EMR) for all hospitals within fivears. A key component of this effort

is the standardization of EMR. To date, there has been bttleo effort to define methods or
approaches to search such documents effectively.

One of the most promising standards for EMR manipulation exachange is Health Level
7's [HL708a] Clinical Document Architecture (CDA) [CDAQAvhich leverages a semi-structured
(XML) format, and ontologies to specify the structure anchaatics of EMRSs for the purpose of
Electronic Data Interchange (EDI).

In this chapter we present the XOntoRank system, which addsethe problem of facilitating
ontology-aware information discovery within a corpus of KMased EMR documents. By infor-
mation discovery [PB99, HP02] we mean the extraction ofesepieces of data from a database
given a user query. Information discovery can be viewed asxtéansion of traditional Informa-
tion Retrieval (IR), which ranks the relevance of unstruetidocuments given a keyword query.
Hence, given a question (query) and a set of EMRs, we needithiénentities (typically subtrees)
that match the query, and rank them according to their “gessthwith respect to the query. The
success of Web search engines has shown that keyword qaeriasiseful and intuitive approach
to information discovery. Therefore, we focus on keyworeérigs in this paper.

A large corpus of work (e.g. [FG01, GSBS03, CMKS03, HPBO8rasses keyword search
of XML documents, where the query keywords are matched to Xidtes and a minimal tree
containing these nodes is returned. A variety of rankindpri@pies are used, ranging from the
size of the result-trees to adaptations of Information iBedt (IR) scoring. Investigators have
explored ontologies (e.g. [KK05, STWO05]) for XML queryingie compare them to our work in

Section 7.7.
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For example, consider the quetgronchial Structure Theophylline’and a CDA document
such as the one in Figure 9.1 in the Appendix, which is exphiim detail in Section 6.2. The
phrase*Bronchial Structure” does not appear in this document. Hence, most traditional XM
based keyword search systems will not return any resultsveder, this document contains an
ontological reference to atAsthma” concept defined in SNOMED (in Line 39, Figure 9.1).
The SNOMED ontology further defines“anding-site-of” relationship betweefAsthma” and
“Bronchial Structure” (as shown in Figure 6.2 in Section 6.2). Hence, based on fiir@taas in
the ontology, a result tree connecting tiesthma” node of Line 39 and th€rheophylline” node
of Line 50 can be created as output.

The use of ontological definitions allows us to perform setiwasearch on the XML docu-
ments. We no longer require an exact match between keywottig iquery and in the document,
but we can make use of the domain ontology to infer a semagittionship between keywords
in the query and terms in the document. This allows returnioge results than would otherwise

be returned with an exact-match requirement. This papeesthle following contributions:

1. Introduce the problem of ontology-aware keyword searmbrag XML-based EMR docu-

ments, which can be extended to general XML documents.

2. Define the semantics of what constitutes a result and hewesults are ranked for the
problem of ontology-aware keyword search within the EMR. Idgerage previous work

related to searching XML data.

3. Develop a set of techniques to compute the degree of asisocbetween ontological con-
cepts that take into account both taxononsa links as well as more general semantic

relationships between concepts. This is a core componantrafinking framework.

4. Create and experimentally evaluate algorithms to ansfifieiently ontology-aware key-
word gueries in EMRs. These algorithms were tested withE&4R data acquired from a

local hospital.
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We note that our study does not address the important priigsties involved in access-
ing patient information, as required by HIPAA [Hea08]. Thaligies and principles described
in [LAE T04] could work as a starting point in achieving Hippocratiformation discovery.

The rest of this chapter is organized as follows: Sectiondéfihes the problem and its se-
mantics. Alternative approaches to compute the semariéicarece of an ontological concept to
a keyword are presented in Section 7.3. In Section 7.4 wesptéBe architecture. Section 7.5
presents the algorithms to implement the approaches ofo®et3. Section 7.6 presents the ex-
perimental evaluation of XOntoRank. Section 7.7 presergsipus work and we conclude in
Section 9.

Notice that the relevant background for this chapter carobad in Section 6.2.

7.2 Problem Definition and Semantics

XML data: Our data collection isasé = {T1,...,T,} of XML documents. We view an XML

document as a labeled trée Each node € T has:

a. A textual description.text, which is the concatenation of its tag name, attribute names

and values, and text content, and

b. An optional ontological referenaeonto, which typically consists of an integer cod@ento.system
for the referenced ontological system (e.g., SNOMED) anthi@ger code.onto.concept

for the specific concept (e.gAsthma”).

Nodes with ontological reference are caltmte nodesThe set of ontological systems refer-
enced by nodes i is called ontological systems collectioh= {O1, ..., Os}.

For instance, the node of Line 39 in Figure 9.1 hésxt="value xsi:type="CD” code="195967001"
codeSystem="2.16.840.1.113883.6.96” codeSystemNa®RESMED CT” displayName="Asthmg”
v.onto.system = 2.16.840.1.113883.6.96, andv.onto.concept = 195967001. Note that some
attribute values like code strings are not included.iexzt since these are unlikely to be used in a
query keyword or in ontology reference words from. An exgekcifies the attributes that should

not be included in the textual description.
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In the algorithms presented in this paper we ignore ID-IDREges as well as inter-document
references, since we build on tree search algorithms. Hemvthe technigues we use to incorpo-
rate ontological information are straightforwardly applile to graph search algorithms as well

(i. e. when ID-IDREF edges are considered [HPBO3]).

Keyword Search: A keyword queryQ is a se{wy, ..., w,, } of keywords. Previous work, which
ignores ontological references, has generally definedethdts as subtrees of the XML documents
that contain all query keywords (see Section 7.7 for an ogerof related work). In this work
we adopt the result semantics of XRANK [GSBSO03], which is aylar representative of this
class of works, and extend it to account for ontological nexfees. Any other system could be
extended in a similar way. The key extension is that instéaequiring keywords to be contained
in the nodes of the result subtree, we require that the resibliree has nodesssociatedwith
every query keyword. LelN S(v, w) (Node Score), whose computation is explained later, be the
association degree of a nodevith respect to a keyword which is directly contained im or is
associated to through an ontology. The result ¢f for a documenfl” € D is defined as follows.
Let Ry = {v|v € T AVw € QFu € (Desc(v) Uv)(NS(u,w) > 0)} be the set of elements
that are, themselves or through their descendant nodes;iaiesl to all query keywords d@.
Desc(v) is the set of descendantsofn 7.

The result of the quer) is defined as:

Result(Q) = {v|Vw € Q,Fu € (Desc(v)Uv)(NS(u,w) > 0A -3t € Desc(v)(t € Ry))}
(7.1)

Intuitively, a resultv is an element that has sub-elements associated with eable guery
keywords, but no sub-element is associated with all keysoxibte thatResult(Q) is a subset of
Ry. The latter condition ensures we do not generate non-speesilts.

For instance, if queng=[‘asthma”, “medication”] is executed on the document of Fig-
ure 9.1, we get the XML fragment depicted in Figure 7.1, behmegy most specific sub-element
in the CDA document that contains both terms in the query.eNloat in the case, both terms

are actually contained in the XML fragment. In general, tiguthe terms need not be in the

fragment, but may be associated with nodes in the fragmemtgh the ontology.
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Listing 7.1: XML Fragment representing the answer to qugtfasthma”, “medica-
tions”]
<(bservati on>
<code code="84100007" codeSystemnme"
2.16.840.1.113883. 6. 96"
codeSyst emNanme="SNOVED CT" di spl ayName="
Medi cati ons"/ >
<val ue xsi:type="CD' code="195967001" codeSysten¥
"2.16.840.1.113883. 6. 96" codeSyst enmNane="SNOVED CT

di spl ayNanme="Ast hma" >
<ori gi nal Text>
<reference val ue="nm"/>
</ origi nal Text>
</ val ue>
</ Qbservati on>

Score of results: As mentioned abovey .S(v, w) is non-zero if a node directly containsw or
is associated ta through an ontological system. This score is propagatedh&r modes of the
XML document as follows. Th@ropagated scoré”S (v, w, u) of an element with respect to

keywordw, assuming that a sub-elemenof v hasN S(u, w) > 0, is
PS(v,w,u) = decay' - NS(u,w) (7.2)

wherel = distance(v,u) is the number of containment edges betweeandu. Decay is set
betweerD and1 to account for the specificity of a result.
Given that multiple sub-elements@Mmay be associated with, we use the following formula

for the overall score of givenw

Score(v,w) = MaTyepese(v)un S (v, w, u) (7.3)

Other monotonic aggregation functions are also possilthe store of a result elementfor
Qis
Score(v,Q) = Z Score(v,w) (7.4)

weR

Again other monotonic aggregation functions are possible.
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Association degree of node to keyword:The association degre¥ S(v,w) of nodev € T,
T € D with respect to a keyword;, given documents collectio® and an ontological systems
collectionO is a combination of its IR score with respectitoand its ontological association to

w.
IRS (v.text, w),

NS(v,w) = max (7.5)
OSy.onto.system(C N (v.onto), w)
where/RS(d, w) is the IR score of a documedtgiven keywordw within the collectionD. D is
an implicit input to/ RS(-) since popular IR functions [Sal89, RW94a, Sin01] use theidwmnt
frequency {f) which is computed oveD. We view each XML element as a document to apply
the IR function. In our experiments we use the BM25 [RW94aLtion.

OSy.onto.system (U, w) is the association degre®iftoScorgof a node (concept) € O;, where
O, is specified by.onto.system, to keywordw, and is computed by exploiting the relationships
in O;, as explained in detail in Section 7.3.

C'N(v.onto) returns the concept node with codento.concept in the ontological system
specified byv.onto.system. For instance, consider the document of Figure 9.1 showhen t
Appendix, and the ontological system of Figure 6.2 in Sec6®. C'N (v.onto) for the code
elementy of Line 39 in Figure 9.1 will return the concept notfesthma” identified with the code
195967001 in Figure 6.2 in Section 6.2RS(-) andOS(-) are normalized t¢0, 1].

The intuition of (7.5) is that a node may be associated with a keywotdeither through its
textual description.text or through its ontological refereneeonto. We then pick the strongest
one. TheDS(-) term of a non-code node (5 Again, alternative monotonic aggregation functions
are possible.

For instance, for the keyword="Asthma” assuming node of Line 39 in Figure 9.1 has
IRS(v.text,w) = 0.3 and its related SNOMED node u h&sSsyonep(u,w) = 0.5, its
NS(v, w) would be0.5.
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7.3 Semantic Relevance of Ontological Concepts to Keywords

A key component of XOntoRank is the derivation of semantlevance of a concept in the
ontology to a query keyword. Since nodes in an XML document may refer to concepts in the
ontology, this derivation essentially quantifies the seimamlevance of an XML element to a
guery keyword based on terminological definitions in theotouy.

The Semantic Web community has developed various mechamdisdetermine semantic sim-
ilarity of concepts in an ontology (see Section 7.7 for a dpton of Related Work). However,
most existing measures do not use relationship informét@ween concepts in a general manner.
The main advantage of ontologies like SNOMED over simplgot@mies is that they describe
various kinds of relationships between concepts, whichbeansed to calculate relevance mea-
sures.

We view the ontology as a graph, where the nodes in the gragvsent concepts, and edges
represent relationships between concepts. Our approacialfulating the semantic relevance of
a concept to a query keyword is inspired by the idea of authfiow. Initially, each concept in
the ontology is granted a certain authority based on howglyat is related tow, as measured
by its IR score. Authority then flows from these concepts teeotoncepts in the ontology based
on certain rules. Note that the authority flow occurs in a rgiga fashion and hence, it can affect
descendants and not only direct children of the involvethelgs.

In this section, we examine various strategies for dirgctime flow of authority, based on
different views of the ontology. For simplicity of presetidé we consider a single ontologyy
and omit theOy subscript aD.S(). We use the overloaded functi@hS (v, w, z) to represent the
relevance of conceptto keywordw due to the occurrence af in another node in the ontology.
Itis:

OS(v,w) = maz4eco,(0S(v,w,x)) (7.6)

Other monotonic aggregation functions are possible.
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7.3.1 View Ontology as Undirected, Unlabeled Graph

This strategy treats the ontology as an undirected gragh, nai distinction among the different
kinds of relationships between concepts. Based on this vievdefineO S (v, w, x) as:

OS(v,w,z) = IRS(x,w) - decay’ (7.7)

wherel = distance(v, x) and0 < decay < 1.

7.3.2 View Ontology as Taxonomy

This strategy only considers the taxonomic portion of thtology, i.e. we only consideis-a
links between concepts for calculatinttoScore. Theis-alinks form a Directed Acyclic Graph
(DAG), since cycles are not permitted based on subclass relatjns) S(v, w, z) is computed

recursively using (7.6) and the following two cases:

i xis asuperclass o, i.e., there is a path fromto = in the DAG formed by thés-a links.

In this case,
OS(v,w,xz) = IRS(x,w)

The intuition behind this definition is that sinaeis a superclass af, any query forz is
completely and logically satisfied hy For example, let be“Asthma”, w be“Bronchus”
andz be“Disorder of Bronchus” (‘DOB" ) in the ontology fragment of Figure 6.2. It is
OS(“Asthma”, “Bronchus”, “DOB”) = IRS(“DOB”, “Bronchus”) . An extreme case of

this rule is whene is the same as. In this caseQS(v, w,v) = IRS(v,w).

il zis adirect subclass ofy, i.e. there is ams-alink from z to v. In this case,
OS(v,w,x) = IRS(z,w) - (1/n)

wheren is the number of subclasses:0fThe intuition behind this definition is that sinee

is a subclass af, any query forz is partially satisfied by. Our heuristic for calculating the
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extent of the partial satisfaction is based on the numbeulatlasses of, similarly to the
authority flow distribution in [BHPO04]. For example, lebe“Disorder of Bronchus”, w be
“Asthma” andx be“Asthma” in Figure 6.2. In the actual ontology, the concéfsthma”

has 26 direct subclasses. Hence, in this c&®(‘Disorder of Bronchus”, “Asthma”,

“Asthma”) = IRS(“Asthma”, “Asthma”) *(1/26).

7.3.3 Including the Relationships between Concepts

To handle different kinds of relationships, we interpreh@epts and relationships in SNOMED
using description logics [Baa03]. Many biomedical ontasg including SNOMED, belong to
a category of Descriptions Logics callédCt [BLS06]. Concepts in this logic are defined as
follows:

C = A|T|C 1 D|3r.C (7.8)

where A ranges over atomic concept names
T is the top concept
r ranges over relationship names
C, D are concept names

is the concept intersection operator

The Jr.C' construct is an existential quantification operator thatlates the existence of a
relationship (or role) to a concept. We can also viewdr.C' as a concept where every instance of
the concept is related by roteto an instance of a conceft We call such a concept axistential
role restriction since it describes a constraint or restriction on the wabfea relationship. (7.8)
describes the different ways in which a concept can be defidtw ££* logic. TheEL™ logic
also defines subclass (or concept inclusion) relationdiépseen concepts @8 C D.

Some examples @f LT expressions from Figure 6.2 are:
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Disorder of ThoraxC Finding of Region of Thorax
Asthma Attack T Asthma

M dFinding-site-of.Bronchial Structure

Consider the last statement, which says thathma Attack”is a concept that is a subclass of
Asthma and that hasfanding-site-ofrelationship to théBronchial Structure” concept. In other
words, any instance dAsthma Attack” (e.g. the'Asthma Attack suffered bya specific patient)
is also an instance 6Asthma” and is found in some instance ‘@ronchial Structure”.

This description logic view allows us to describe every @pi@s a subclass of a set of atomic
concepts or existential role restrictions. Hence, we cauae a graph with different kinds of
relationships into one that has only subclassea relationships.

For example, consider an ontology graph fragment depici&igure 7.1. A description logic
view of this ontology would appear as shown in Figure 7.2. @bted links between concepts
represenis-a links, meant to indicate the relationship between a conéepind adr.X for any

roler.

is_a

Figure 7.1: Sample Ontology Fragment.

We now calculat& S (v, w, x) in this logically transformed ontology graph using an egten
of the strategy of Section 7.3.2. In particular, if there Iglatted link” betweenz andw, i.e. one

of z or v is of the formC', and the other is of the formr.C, then,

OS(v,z,w) =0S(z,w) -« (7.9)
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Figure 7.2: Ontology’s Description Logic View.

a/nx q/Nrg a - g/(nesny) a - g/( NreNezc)

a - q/(nrs)

a - q/( NreNrac)

is_a

a - g/(nrs)

Figure 7.3: OntoScore Propagatior).is the number of subclasses of nade

Here, « represents the decay in semantic relevance when traveasiiogted link between a
conceptC' and a role restrictiodr.C'.

As an example, assuming th@S(A,w, A) = ¢, then theOntoScorewould propagate as
shown in Figure 7.3 to different nodes in the ontology.

We provide a syntactic name to the concepts correspondiagistential relationship restric-
tions so as to allow calculatingR.S(z, w) whenz is a role restriction concept of the forer.C'.
The syntactic name in our implementatiorfExists"+r+C . For example, the relationshffind-
ing site of” between'Asthma Attack” and“Bronchial Structure” in Figure 6.2 gives rise to the

new existential role restriction namégxists finding site of Bronchial Structure”

7.4 Architecture and System Overview

In this section we present the architecture and overvielm®MOntoRank system.
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7.4.1 XOntoRank Architecture

Figure 7.4 shows the architecture of XOntoRank, which isddi# into two stages. The pre-
processing phase consists of the Index Creation Moduleshwibkes as input the corpus of XML-
formatted EMR documents to be indexed (CDA in our experiserihe ontological system(s)

referenced in the EMR documents and the set of all keywohdswdcabulary) to be indexed.

Keyword Query

. > QUERY MODULE
XML )

‘ Dewey IDs

Ontolog\ of Result

Fragments
INDEX CREATION
MODULE

. DATABASE
| ACCESS MODULE

Y

XML
RESULTS

Set of all
keywords

XOnto-DIL Index

PREPROCESSING PHASE QUERY PHASE

Figure 7.4: XOntoRank Architecture.

The Index Creation Module generates ®ntoRank Dewey Inverted Lists (XOnto-DILSs)
which are inspired from the Dewey Inverted Lists of XRANK [BS03]. XRANK is based on
ElemRanka variation of the PageRank algorithm that exploits thecstire and containment edges
of XML documents. The key difference is that instead#ém Rank(v) we storeN S (v, w), that
is, the relevance score of nodewith respect to keywordv given the XML documents and the
ontological systems, defined in (7.5lemRankcould be incorporated itV.S (v, w) but our CDA
documents have no ID-IDREF edges and hdileenRankvould make no difference.

For example, Figure 7.5 shows the Dewey ID’s generated farbaet of the document of
Figure 9.1. We have truncated the prefix in the Dewey ID’s fmmcg constraints. Figure 7.6
shows a fragment of th¥Onto-DIL for the same document. Note that the first component of
each Dewey ID is the document ID. The process to bMi@nto-DILs is described in detail in

Section 7.5.2.
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0.5.0.3.0

0.5.0.3.0.0

Theophylline

History Taking Asthma
(Medication)

Figure 7.5: Dewey IDs for CDA Document.

L
R\
<>Q$\®A %t\ﬂ

Asthma —— P 6.0.5.0.2.0.1 0.83
9.0.5.0.1.0.2 0.38

Thepohylline ——»{ 5.1.3.0.0.2.2 .76
6.0.5.0.3.0.0 .57

Figure 7.6: Dewey Inverted List for CDA Document.
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During the query phase, the Query Module inputs the user &eywuery and executes
XRANK'’s DIL algorithm using the XOnto-DILs generated in thpFe-processing phase. The
Database Access Module then obtains the appropriate XMinfemts addressed by the result-

ing Dewey ID’s.

7.4.2 Building the XOnto-DILs

In this section we describe how th&®nto-DILs are computed for the various semantics described
in Section 7.3. We comput€Onto-DILs for all words in the Vocabulary, defined as the union of
words in the ontological systend3;, ..., O, and in documents iw. As above, we assume there
is a single ontological systerm,. XOnto-DILs are computed in three stages:

Full-text Indexing: First, we build a full-text index of the CDA documents and timtology. This
phase is common to all the algorithms, and computes the H-stidre.

OntoScore Computation Stage:Second, we build a®ntoScore Hash Map/, that stores the
OS(v,w) for every pair(v, w) of concept node and keywordw with OS (v, w) > threshold,
wherethresholdis a predefined value used to improve the efficiency of bugdih. We chose a
thresholdthat could give us a balance of space and quality. The detademputing)M, as well

as the criteria to choogfresholdare presented in Section 7.5.

DIL Creation: Finally, we compute the XOnto-DILs for the documentsiin The NS (v, w)

for each pair(v, w) of nodev € T;, T; € D, w € Vocabulary is computed by (7.5), where
OS(CN (v.onto),w) is retrieved from Hash Map/. We show how)M is computed in the next

section.

7.5 OntoScore Computation Algorithms

In the next sections we show how the Hash Mdpis computed during the OntoScore stage for

each of the OntoScore computation methods described imn8&t8.
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Listing 7.2: Compute OntoScore Hash Map.
1procedure Conput eOnt oScor e( Vocabul ary V, SNOVED Ont ol ogy

G aph 0)
.for each keyword w in V
sbegin

+ [+ Find all concept nodes in O that contain w
5 S+« getRoot Set(w, O)
s for each concept seS

7 begin

8 do BFS from s

9 for each accessed concept node v
10 begi n

1 Compute OS(v,w) /* By Eq. 7.7 =/
12 [+ I'f expanding u— v,08(v,w)=0S(u,w) - decay */
13 if M.get(v,w) < OS(v,w)

14 M .put((v,w), OS(v,w))

15 el se

16 Stop BFS expansion for v

17 end if

18 end

19 end

xoend

7.5.1 Ontology as Undirected Graph

If a nodev € O; can be reached from multiple concept nodgs. . ., u., then we assign ta
the maximum score that any aof;, . . ., u, would assign. Again other aggregation functions are
possible.

OS(v,w) = mazi=1._(0S(v,w,u;)) (7.10)

The algorithm to compute the Hash Map in the OntoScoreghase is depicted in Listing 7.2.

An inefficiency of Listing 7.2 is that it does breadth-firgtasch (BFS) starting from all nodes
that contain keywordv (Line 4). This can potentially lead to traversing the samdenmultiple
times, once for each BFS instance. This can be avoided usinipiowing observation:
Observation 1: If multiple BFS instances arrive at a node, then we only neggrbpagate one

value, which corresponds to the aggregate function, thatésmerge the met BFS expansions into
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one with the aggregate node score.

The reason is that the score propagates by multiplying bsiydfee each level. Hence, if has
scoref(0S;,0S;) wheref () is the combining functiorvfax in (7.10)), a node: with distance
from v will have scoref (OS;, OS}) - decay'. If we would ignore this observation and do the BFS
expansions independently,would get scoref (OSS; - decay', OS; - decay'). The two quantities
are equal for any reasonable combining functfgrn like mazx, sum, andproduct.

The above observation is implemented by doing the followdghgnges to Listing 7.2: We

replace Line 4 by the following:

+ do BFS in parallel froms

and insert the following lines after Line 6:

7 if v already has an OS score then
8 Stop expanding v for expansion instance that produced

the smallest OS(v,w)

Note that to do BFS in parallel we insert all nodessim the BFS queue and then do BFS as
usual. To halt the expansion of a nodéLine 6.2 in the correction above) that has already been
processed and its adjacent nodéhave already been inserted in the queue, we maintain pginter

from v to C in the queue, and remove from the queue the nodésvimenv’s expansion is halted.

7.5.2 Ontology as Taxonomy

As mentioned in Section 7.3.2, we restrict the links usedtomuteOntoScoreby only consid-
ering theis-a andinverse-is-aedges in SNOMED. Hence, the first modification is to change the
loop in Line 3 of Listing 7.2 to restrict the BFS to only follothese two types of relationships,
capturing only the taxonomic portion of the ontology.

We also modify the way in whicth S (v, w) is computed (Line 5 of Listing 7.2), replacing the
formula in (7.7) by the cases exposed in Section 7.3.2. Itiqodar, if we expand from node

with OntoScoreOS(u,w) to nodev, then:
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[ ] |f u is;a) v thenOS(v,w) = #ﬁ%

o if ud%y thenOS (v, w) = OS(u, w)

wherelInDegree,(v) is the number of incoming relationship edges of type
The rest of the algorithm stays as specified in Listing 7.Rgihe same threshold constraints

and the same optimization describeddbservation 1

7.5.3 Ontology as Collection of Relationships

In this case, as mentioned in Section 7.3.3, all relatignekiges are considered. We enumerate
below how the expanded nodes are assigdatbScoresithout having to physically create the
ontological graph with the existential role restrictiorssdribed in Section 7.3.3. The assigned
OntoScoresre equal to the ones computed by building the ontologicablydescribed in Sec-
tion 7.3.3.

Hence, the BFS expansion is the same as in Section 7.4.1 OmteScorecomputation of
Line 5 is changed as follows, to reflect the approach destiib8ection 7.3.3. If we expand from

nodewu with OntoScore) S (u, w) to nodev, then:

o if u %y thenOS (v, w) = 7INDOEQST€:87:Z)@(U)

o if udty thenOS(v, w) = OS(u, w)

OS5 (u,w)

o if u'sv,r+#is.athenOS(v,w) =a- TnDegreen(o)

o if u < v, r#is.athenOS(v,w) = a-O0S(u,w)

Note that the denominatdinDegree,(v) is the in-degree of the existential role restriction

dr.v.

7.6 Experiments

In this section we experimentally evaluate the XOntoRarstesy and show the feasibility of both

the Preprocessing and Query phases. The experiments wésaned on a Pentium 4, 2.8 GHz
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PC with 1GB RAM. XOntoRank was implemented in Java JDK 5.(hgi®OM for XML parsing
and Microsoft SQL Server 2000 for the persistent storagendéxes. To access and navigate
SNOMED CT, which takes multiple GBs of disk space, we usedhkeprovided by the National
Library of Medicine (NLM) Unified Medical Language SystemNILS) [NLMO08]. This API
provides the necessary methods to query the ontology atidrdicy and obtain the concept code
and display name for a particular string. We used this APl lsiek box in both the preliminary

CDA document generation and the Index Creation Module of dd@ank.

Table 7.1: Number of results marked as relevant for eachyqudser marks up to 5
results.

Query XRANK | Graph | Taxonomy | Relations
¢1 | “cardiac” “arrest” 5 5 5 5
g2 | “cardiac” “coarctation” 5 5 5 5
g3 | “neonatal” “cyanosis” 3 3 0 3
q4 | “carbapenem” “ibuprofen” 0 3 0 3
g5 | “supraventricular arrhythmia” 0 0 1 0

“pericardial effusion”

qs | “regurgitant flow” “amiodarone” 0 1 1 2
g7 | “supraventricular arrhythmia” 0 0 0 0
“acetaminophen”
AVERAGE 1.875| 2.429 1.714 2.571

In Section 7.6.1 we quantify the differences in the rankimgtiie alternative OntoScore com-
putation techniques of Section 7.3. We also present resfiisuser survey that we performed
with the aid of a medical doctor and researcher. In Sectiér2 Zve measure the performance of
the XOntoRank system in terms of index creation and quergudian times. Some screenshots of
the XOntoRank system are available at the project homepgdg8d]. The system was not made

available to the public due to patient record privacy conser

CDA Documents Generation: We developed a program to convert automatically the relatio
anonymized EMR database of the Cardiac Division of a locaphal into a set of XML CDA
documents. Each CDA document represents the medical retarsingle patient conglomerating

all her hospitalization entries. 3 492 such documents wezated, each being on average 47KB
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with 1 133 XML elements. Ontological references were iregbiior every XML node whose
value matched one of the concepts in SNOMED. This resulte?l 4684 CDA documents with

ontological references to SNOMED with an average of 151regiges per document.

7.6.1 Quality Results

We performed two quality experiments. The first one comp#nesdistances between the re-
sult lists of the proposed search approaches for a real quergload, and the second one is a
proof-of-concept user survey which compares the useifaetiisn for these approaches. The four
approaches —baseline plus the three described in Sec8erare denoted a¥RANK (baseline,
no use of ontology)Graph (Section 7.3.1);Taxonomy(Section 7.3.2), an&RelationshipgSec-
tion 7.3.3).

Distance between Topk lists: We performed a series of two-keyword queries obtained from
domain expert collaborators. The second column of Tablesolvs a sample of these queries.
Note that some keywords are phrases enclosed in quotes. ahaitopk Kendall Tau [FKS03]
measure to determine the distance between the lists ané bestcthe effects of each individual
algorithm. Table 7.2 reports the Kendall Tau valuesifer 20 and penalty parameter= 0.5 (see
[FKSO03] for definition ofp), normalized over 20 queries. We observe the large disthatweeen

the result ofGraphand theRelationshipsalgorithm; this was expected since the expansion on the
ontology graph achieved by tia&raphalgorithm is less restricted than tRelationshipslgorithm,
which extends th&axonomyexpansion. For this reason, the distance betwEemnomyand

Relationshipdists is small.

Table 7.2: Normalized Kendall Tau values for four approache

XRANK| Graph | Taxonomy| Relationships
XRANK 0.000| 0.171 0.101 0.209
Graph 0.171| 0.000 0.116 1.000
Taxonomy 0.101| 0.116 0.000 0.171
Relationships 0.209| 1.000 0.171 0.000
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Quality Survey: We conducted a survey to determine the quality of each ofdbedlgorithms
we presented. Given the specialized nature of our medicakde dataset, which come from a
children’s cardiac clinic, it is hard to find many users togedy evaluate the results. Hence, we
chose to only report, as a proof of concept, the results ofreegwon a single domain expert—
medical doctor and researcher knowledgeable in this arsi@ad of involving non-expert users
who could degrade the reliability of the results.

The results of the survey are shown in Table 7.1. For eaclygwerpresented to the user the
union of the top-5 results from each of the four algorithmbe Tiser was asked to select up to 5
results that he found relevant to the query. For this expaniinwe setlecayto 0.5,thresholdto
0.1 anda to 0.5.

For queriesy; andgs, the top-5 results obtained BYRANKare also the top-5 results for the
ontology-enabled algorithms, because the query keywqrdsax frequently in the CDA docu-
ments. Forgs, XRANKonly generated three results —all of which were marked avaat—, but
only one of these appear in the top-5 list of the other thrgerthms. For the remaining queries,
XRANKdoes not produce any results, since there is no CDA documiéimtdivect occurrences
of both keywords (or phrases). In contrast, the ontologgbéed algorithms find relevant results
to the queries by mapping the keyword’s concept to other eymiscpresent in the documents.
For ¢4, both GraphandRelationshipsalgorithms produce the same results by expanding through
non-taxonomical edges in the SNOMED ontology.

For g5, only the Taxonomyalgorithm produced a result that was considered “relevamt”
the domain expert. This result did not reach the top-Badph and Relationshipsalgorithms,
because the expansion through non-taxonomical concemdsiged more compact results —single
XML elements that mapped a concept to both query keywordt-higher score, but those were
not considered relevant by the domain expert.

For ¢g, the Relationshipsalgorithm produces better results, because it combinesethdts
of both theGraph and Taxonomyalgorithms; the expansion over the ontology for tBeaph
algorithm decayed before it could reach the taxonomicallrésund by theTaxonomyandRela-

tionshipsalgorithms.
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Note that in some cases, the semantic knowledge represeyntdd ontology might not be
sufficient to provide high quality Information RetrievalenEMR’s. For instance, consider query

" ow

g7 =["supraventricular arrhythmia” “acetaminophen]. The scores of zero for the ontology-
assisted algorithms in Table 7.1 are due to the followingaeaAll the results of these algorithms
map the conceptacetaminophen”to the conceptaspirin” . In the context opain contro| these
two concepts are indeed related, because they both pralidéaf pain. But in this specific case,
the keyword'supraventricular arrhythmia”implies that the target context of this query is patn
control butcardiology, and in this context, however, these drugs are generalblated.“Aspirin”
has cardiac benefits that are not seen vattetaminophen’ due to the differing properties of the
two drugs.

The findings of Table 7.1 are summarized as follows. The tyuafiRelationshipsandGraph
is generally superior to the baseliX®@ANKalgorithm, which means that when the keywords are
not present in a document, the ontology-enhanced algosiimcapable of finding “good” results
to satisfy the given queries. THaxonomyalgorithm can be slightly worse tha¢RANK since the

former could return results where a query keyword is matt¢bedifar ancestor concept, because

Taxonomydoes not penalize the ontology expansion when follovisag (parent) edges.

7.6.2 Performance Results

Pre-processing phase:Building XOnto-DIL lists for all keywords in the SNOMED orltgy
was not feasible given that they are in the order of millidhg, keywords vocabulary cannot be
extracted from the provided SNOMED API, and the APl is slowegithat it is |O-intensive (note
that SNOMED is a multi-gigabyte ontology). Note that theseimethod to get all occurrences
of a specific keyword, but there is no vocabulary of all keydgom the database. Hence, we
indexed a subset of this universe of keywords which let ugwrea large number of queries
and estimate reliable projections of index execution titnegparticular we built XOnto-DIL lists
for all the keywords in the CDA documents and for all keywoedsatained in a concept, up to 2
relationships away from a concept referenced in a CDA doatimeore than 400 unique concepts

are referenced in our CDA collection). The above rules teded to the indexing of more than
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40 000 keywords directly present in the documents and maelt®h0 000 concepts from the
SNOMED ontology. To navigate SNOMED efficiently, we loadée tappropriate fragment in
main memory, thus reducing the access to SNOMED flat files.ddew the SNOMED navigation
was still too slow. In the future, we plan to work on more eéfitti ways to navigate the ontology
to build the XOnto-DIL lists, as discussed in Section 9. Wedeeayto 0.5,thresholdto 0.1 and
a 1o 0.5.

Table 7.3 presents the average creation time, average mafnbestings (rows in Figure 7.6)
and size of a XOnto-DIL list of a keyword for each of the foupamaches. For the average
creation time, we exclude the time taken to navigate the SEOMnNtology, since it can take up
to several minutes for frequent keywords, given the curraptementation of the SNOMED API.

We observe that the average creation timeél@tonomys much larger thaGraph This is due
to the fact that the expansion @raphdecays continuously, whereas the expansioéxonomy
decays quickly only for descendants, but may expand indieliyrfior parent relationships. We also
see how th&raphand bothRelationshipsapproaches generate the largest number of XOnto-DIL
entries, given the fact that the navigation does not decathi®one direction ofs-a edges. We
observe a high difference between the number of postingth&rfaxonomyapproach compared
to theRelationshipsalgorithm, giving evidence of the large number of concepapped through
the ontology graph. Note that the size of the XOnto-DIL e#rtan be reduced by appropriately

adjusting thahresholdand/ordecayparameters.

Table 7.3: Average Size for XOnto-DIL Entries.

. Per Keyword
Algorithm Avg. Creation Time (mg) Postings| Size (KB)
XRANK 1.0| 14357 39.3
Graph 4 143.5| 20 906.7 571.7
Taxonomy 10743.5| 5511.9 150.7
Relationships 13485.3| 46 979.5| 1284.6

Query Phase: Figure 7.7 presents the average execution times for quertess/arying number
of keywords, fork = 10. The time forRelationshipsalgorithm is higher due to the larger number

of nodes in the XML document that are ontologically relatethie query keywords.
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Figure 7.7: Average Execution Time for Keyword Queries Wwigtnying Number of Key-
words.

7.7 Related Work on Leveraging Ontologies for Information Retrieval

Various query expansion strategies (e.g. [XC96]) have Ipeeposed for general as well as bio-
logical documents search. For instance, the QEEF framejV8R05] uses the UMLS ontology
to suggest additional terms. [The03, STWO03, STWO05], assigights on the ontology edges by
comparing the distributions of the contents of the two naated of their combination on a very
large dataset like the Web. This approach, which complesnaunt work, is too time-consuming
for large ontologies like SNOMED. The ontological assdoias are exploited by expanding the
XXL query. It differs from our approach in which XXL considesymmetric associations between
ontology concepts, whereas we use the authority flow mo#&{ 0%, KKJ06] expand the query
by matching the ontology to the document DTD. All the abowhieques are proposed for struc-
tured XML queries. For our case of keyword queries, quenaagfon is not appropriate, since it
leads to non-minimal results (see [HP02] for a definition ofiaimal keyword search result) —
the same concept appears multiple times in a result.

In Information Retrieval, two approaches have addressegnbblem of computing similarity
between two concepts. Initially, statistical correlatidmetween terms were exploited [Les69].
With the conception of ontologies and semantic networkes WordNet [Fel98], a graph-oriented

approach was adopted, focusing on the number, depth anttidireof the edges between two
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concepts [RMBB89]. A more recent approach has combinee ttvastechniques [Lin98, Res99]
by taking into account the graph structure and statistics.

In the Semantic Web, various approaches have been sugdestexhsure semantic similarity
between different artifacts. Most similarity measureshsas [LH03, KC06] focus only on sub-
sumption relations (i.e. hierarchicdb-a” links in an ontology). Maguitman et al. [MMRV05]
propose an information theoretic measure of similarity #iso considers non-hierarchical links.
However, their approach requires the presence of a largdaunf instances to determine the
similarity between concepts. In the medical domain, mosblogies, including SNOMED, only
describe concepts and not instances. Hence, their appcaaabt be used. The notion of authority
flows is also similar to the spreading activation schemeishated in information retrieval [Cre97]
and web mining [GVDO05]. A novel aspect of our approach is the of strategies based on de-

scription logics and the spreading of activation from theotogy into the XML documents.

7.8 Conclusions and Future Work

We have introduced the problem of ontology-aware keywosadcteon XML-based EMR docu-
ments, which contain references to clinical ontologicataapts. We defined semantics for this
problem, where the ontological references, as well as tlatiarships within the ontology are
used in creating and ranking the query results. Alternatiegvs of the ontology were consid-
ered. We created efficient algorithms, building on previausk, to generate the top-query
results. The algorithms were evaluated experimentallgygig that the precision and recall of
our algorithm is better than the baseline algorithm.

A critical future direction is the optimization of the indereation process. Our current index
creation approach relies on the APl and data provided by [@{Qvhich are based on flat files.
Implementing approximation and early pruning techniqassyell as in-memory representations

of the ontology graphs, may prove useful in scaling to lamgeplogies and datasets.
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CHAPTER 8
COMPARING TOP-K XML LISTS

8.1 Introduction

Systems that produce ranked lists of results are abundamntingtance, Web search engines re-
turn ranked lists of Web pages. To compare the lists prodbgedifferent systems, Fagin et
al. [FKMT04, FKS03] present distance measures foridists that extend the traditional distance
measures for permutations of objects, like Kendall tau [FiM] and Spearman’s Footrule [FK\N04].

In addition to ranking whole objects (e.g., Web pages). aligian increasing number of sys-
tems, including XRANK [GSBS03], XSEarch [CMKS03], XKeywbfHPB03], XXL [TW02a,
TWO02b], XIRQL [FGO01], that provide keyword search on XML ather semi-structured data,
and produce ranked lists of XML sub-trees. In addition, XNHtd distance measures can also
be applied to rank-aware extensions [FG01] of XPath and X@Queurthermore, these measures
are needed for XML lists aggregation, where the results fseueral XML search engines can be
aggregated to find the best tépist for the given lists. [DKNSO01] presents the Web page aggr
gation problem. Clearly, there is a need to have measurezmpare the results of such systems
among each other or against the user’s ideal list of results.

Unfortunately, previous distance measures are not saifablranked lists of sub-trees since
they do not account for the possible overlap between themedusub-trees. That is, two sub-
trees differing by a single node would be considered sepaijects. For instance, Figure 8.1
shows two top-3 lists of sub-trees produced by two imaginéiL keyword proximity search
algorithms. Treed’as; andT'bs only differ by a single node but this is ignored by objectdiev
distance measures.

In this chapter, we present the first distance measurestigedalists of sub-trees, and show
under what conditions these measures are metrics. In plartidthe distance measures consist
of two components: the tree similarity component and thatipasdistance component. The

former captures the similarity between the structures efrdturned sub-trees, while the latter
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captures the distance of the sub-trees in the two lists)aiynito previous object-level distance
measures [FKM04, FKS03].

Intuitively, our distance measures work in two phases. &Tifst phase, they find the optimal
(closest) mapping between the two tbpists of sub-trees, where the distance between a pair of
sub-trees is computed using one of the approaches propogm@vious works, including tree
edit distance [Bil03, Bil05, LCS04, NJO2], tree alignment distance [Bil03], Fourier tramsf-
based similarity [FMPP02, FMMPO05], entropy-based sintifafHel07], tag similarity [But04],
and path shingle similarity [ButO4]. The cost of the optimahpping between the two lists of
sub-trees represents the tree similarity component.

Next, we compute the position distance component given piienal mapping, using one of
the previously proposed techniques on measuring the distaetween toj-(partial) lists [FKM™04,
FKSO03].

In the rest of the chapter we focus on XML trees; however tlaeesame ideas can be applied

to any type of tree representations. We make the followingrdmtions:

1. Present the first suite of distance measures for rankeddissub-trees. Three variants
are presented. The XML Lists Similarity Distance based otalMglapping (XLS) where
all sub-trees from the first list are mapped to sub-treesearstttond, XML Lists Similar-
ity Distance based oifiotal Mappingwith position component{LS-B which includes a
position component in addition to the XML similarity compnt and the XML Lists Sim-
ilarity Distance based oRartial Mapping with position componef)KLS-PB where only

adequately similar sub-trees are matched to each other.

2. Prove under what conditions these measures are metsoseAhow, the trickiest require-
ment is the satisfaction of the triangle inequality.
3. Present efficient algorithms to compXeS XLS-PandXLS-PPfor two lists of XML sub-

trees.

4. We conducted a study to compare three popular XML keywoodimity search systems:
XRANK [GSBSO03],
XSEarch [CMKSO03] and XKeyword [HPB03]. We implemented ditee systems and
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Figure 8.1: Top-3 trees for quetYlliman Database”.
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report on theXLS XLS-Pand XLS-PPdistances of their results for various datasets and

queries.

The rest of this chapter is organized as follows: Sectionp8e®ents the background. Sec-
tion 8.3 presents the distance measures for lists of XMLstr&ection 8.4 briefly describes our
distance measures for various tree similarity measuresrided in Section 8.2.1. Section 8.5
describes the normalization issues. Section 8.6 prestgusatams for computing the proposed
XML list distance measures. Section 8.8 presents our exgeetial evaluation and Section 8.7

presents the related work.

8.2 Background

In this section we briefly discuss various tree similarityasires (Section 8.2.1). We then discuss
some of the popular distance measures for lists of objeetti(H 8.2.2) and the conditions that a

measure must satisfy to be considered a metric (SectioB)8.2.

8.2.1 Tree Similarity Measures

In this section we briefly present state-of-art techniquersnieasuring similarity between trees
proposed in the literature. Any of these similarity measwan be used in our framework. How-
ever, only the measures that are metrics will lead to a distametric for XML lists, as shown in

Section 8.3.

General Tree Similarity Measures: Several techniques have been proposed in the literature for
measuring the similarity between general trees. Tree étdrite [Bil05, Tai79, YKTO05, ZS89]
measures the minimum number of node insertions, deletarsupdates required to convert one
tree into another.

Tree alignment distance [Bil05, JWZ94] is a special caséetitee editing problem, in which

trees become isomorphic when labels are ignored.
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XML-Specific Tree Similarity Measures: Various techniques for measuring the structural simi-
larity between XML trees have been proposed. All of thesesmess were used to cluster XML
documents based on structure. Jagadish et al. [NJO2] udeata structural similarity distance
based on tree edit distance, by adding insert-tree, dlteoperations in order to develop an
edit distance metric that is more indicative of the struaitgimilarity between XML trees. Flesca
et al. [FMMPOQ5] propose a Fourier transform technique to pot@a similarity. Buttler [But04]
presents a similarity metric based on path-shingles intwtiie structural information is extracted
from the documents using the Full Paths. Entropy-basedasityi[Hel07] is a novel technique
used to compute the structural similarity of semi-strustiidlocuments based on entropy. Tag sim-
ilarity is perhaps the simplest metric for structural saritly, as it only measures how closely the
set of tags match between two pages. [WNO5] discusses a dhitldentify duplicate entities in

a XML document which could be used to enhance the tree magbépgin our distance metrics.

8.2.2 Distance Measures for Permutations

In this section we present some of the most popular and widedyl measures for the distance
between complete lists of objects (permutations). We ve@pearman’s footrule and Kendall tau
distance measures [Dia88, FKS03, KG90]. Spearman’s fleotnetric is thel.1 distance between

two permutations. Formally, it is defined by
F(o1,02) = 32y o1 (i) — o2(3)|

whereo; ando, are the two permutations of lengkh ando (i) denotes théth element iny;.
Kendall tau metric between permutations is defined as falloftor each paii,; € P of
distinct members, it andj are in the same order iy, andos, then Ietfm(al,@) = 0; else

KZ'J(O'l,O'Q) = 1. Kendall tau is

K(o1,02) = (i jyep Kij(o1,02).
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8.2.3 When a Distance Measure is a metric

A binary functiond is called symmetric ifi(x, y) = d(y, x) for all z, y in the domain, and is called
regular ifd(z,y) = 0 if and only if z = y. We define a distance measure to be a nonnegative,
symmetric, regular binary function. A metric is a distanceasured that satisfies the triangle

inequalityd(z, z) < d(z,y) + d(y, z) for all z, y, z in the domain.

8.3 Distance Measures for Lists of XML Trees

In this section, we first provide some definitions (SectidB.then present théL Smeasure (Sec-
tion 8.3.2),XLS-Pmeasure (Section 8.3.3 3.3) and finally KKeS-PPmeasure (Section 8.3.4).

Normalization issues are discussed in Section 8.5.

8.3.1 Problem Definition

The goal of this work is to define and compute the distance d@twwo listsLa, Lb of XML
trees,La = Tay,Tas---Ta, andLb = Tby,Tby - -- ,Thy, whereT'xz; are XML trees. Often, as
is the case with XML proximity search systems,’&dl;, T'b; are included (obtained by a sequence
of deletes) in a treé’; of a collectionD = T'1,--- ,Tn. However, this property is not important
in our definitions. Note that for the case of complete liserfputations) of subtrees where each
subtree appears in both lists, the problem is reduced todtraugations distance problem which
we discussed in Section 8.2.2. However, this case is notipahsince XML search engines return
different XML trees. Hence, we focus on té@plists.

A total mappingf from La to Lb is a bijection fromLa to Lb. Hence, tre€l’a; is mapped
to Th; = f(Ta;). Let N be the set of all possible total mappingsfrom La to Lb. Similarly, a
partial mappingy is a partial function from_a to Lb.

Let TS(T'1,72) be the tree similarity between two tre@g, 72. T'S can be the tree edit
distance or another measure as discussed in Sectiofi’8.B. normalized in [0,1] as explained in

Section 8.5.1.
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8.3.2 XML Lists Similarity based on Total Mapping

In this section we present our first measure for the distant@den two topk lists of XML trees.
The key intuition is that we extend previous list distanceasuges that only consider exact map-
pings between the objects of the two lists to also considpreegimate mappings. In particular,
we first compute the closest pairwise mappings between thie éés from the two lists and then
view these mappings as exact mappings and apply list petioudistance measures.
Assumingk elements in each XML listXLSis defined as follows. First we define the total

mapping similarity distancé/.S D™ (La, Lb, f) betweenLa and Lb for a total mappingf as

i1 T'S(Tas, f(Ta;))

MSDY(La, Lb, f) = 2 -

(8.1)

Thatis,M SD" is a measure of how “tight” the total mappirfgs. Notice thatV/ S DT (La, Lb, f)
takes values in [0,1], sincES is also in [0,1] and we divide by.
We next define the minimum total mappirfgrin” as the total mapping betwedm and Lb

with minimum M SDT (La, Lb, f). Itis,
fminT = argminfMSDT(La, Lb, f) (8.2)

that is,argmin ¢ is the f that minimizesM SD7.

Given fmin™, we define the minimum total mapping similarity distance,
MinMSDY (La, Lb) = MSD” (La, Lb, fmin™) (8.3)

Definition 1: The XML Lists Similarity based on total mapping .S) between XML listsLa,

Lb is the minimum total mapping similarity distance. It is:
XLS(La, Lb) = MinMSD?T (La, Lb) (8.4)

Notice thatX LS(La, Lb) is in [0,1] sinceMinM SD* (La, Lb) is in [0,1].
Measures for MinM S D™ (La, Lb): The tree similarity7’S which is used to comput®&/inM S DT (La, Lb)
can be any of the tree or XML similarity measures discusse&tkition 8.2.1. The only constraint

(as we show in Theorem 8.3.1) is that the measure used mushbtia if X .S is to be a metric.
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Theorem 8.3.1 X LS is a metric if the tree similarity measure employ&t, is a metric.

Proof: It is straightforward thaf .S is nonnegative
(XLS(La, Lb) > 0), symmetric X LS(La, Lb) = X LS(Lb, La)) and regular X LS(La, La) =
0) since this holds for tree similarity measu#é$ which is a metric.

We need to prove the triangular property, that is, for ang lists La, Lb, Lc prove that:
XLS(La,Lc) < XLS(La, Lb) + XLS(Lb, Lc) (8.5)

To do so, we will prove the triangular property fbfinM SD™ (-, -). That is we need to prove
that:

MinMSD™ (La, L) < MinMSD™ (La, Lb) + MinMSD™ (Lb, Lc) (8.6)

Prove triangular property for MinMSDTErom Equations 8.1 and 8.3 (we sktpn denominator
of Equation 8.1 throughout the proof, as it is for normali@matpurposes and does not affect the

proof correctness):

MinMSDY (La, Lb) = MSDT (La, Lb, fmink,)
= Y TS(Ta;, fmink,(Th;)) (8.7)

i=1--k
where fmingy, is the minimum total mapping froma to Lb.

Similarly:
MinMSDT(Lb, Le) = MSDT(Lb, Le, fminl.)

= TS(Tbj, fminl.(Tb;)) (8.8)

MinMSD™(La, L¢) = MSDY (La, Le, fminl))
= Zz = 1---kTS(Ta;, fminl,(Ta;)) (8.9)

Hence, from Equations 8.7, 8.8 and 8.9, proving Equations8e§uivalent to proving:

Z TS(Ta;, fminl (Ta;)) <

i=1---k

> TS(Tai, fmink,(Ta;)) + TS(Tbj, fmink.(Th;)) (8.10)
i=1--k i=1--k
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Since the tree similarity measurés(-, -) is a metric, it satisfies the triangular property. Con-
sider a treel'a; in La that is mapped td@'b; = fminl, (Ta;) in Lb, which is in turn mapped to
treeTcs = fminl (Tb;) = fminl (fminl,(Ta;)) in Le. The triangular property fof'a;, Tb;,

Tc, can be written as:

TS(Ta;, fmmg;(fmmaTb(Tal))) <

TS(Ta;, fminl,(Ta;)) + TS(Tb;, fmini.(Tb;)) (8.11)

Summing Equation 8.11 over dlla;'s in La, and keeping in mind thatming, fming. are

bijections, we get

Z TS(Ta;, fmind,(fmink, (Ta;))) <
i=1-k

> TS(Tai, fminky(Ta;)) + > TS(Tby, fmini(Tb;)) (8.12)
i=1-k j=1-k

The left hand side of Equation 8.12 is the total mapping siritil distancel SD” (La, L, f'),
wheref’(-) = fminl (
T

fminZ,(-)). We know from Equation 8.9, thgtninZ, gives the minimum total mapping similar-

ity distance betweetia, Lc. That is

MSD™(La, Le, fminl,) < MSD™ (La, Le, f') (8.13)
Hence,
> TS(Tai, fminl(Ta;)) < Y TS(Tai, fvinf(fminy(Ta;))) (8.14)
i=1-k i=1-k

From Equations 8.11 and 8.14 we get Equation 8.10 which wagaal.

Note that Theorem 8.3.1 also applies for any XML similaritgasure that is a metric, as
explained in Section 8.4.
Example 1: Consider the tog® lists La and Lb in Figure 8.1. We will illustrate the steps involved
in computingX LS(La, Lb). In this example, we use tree edit distan€dy D as the tree simi-

larity measure,I’S. We first compute the XML similarity component by finding afigible total
mappingSN = {f17 f27 f37 f47 f57 fﬁ}:
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fi(Tay) = Thy, f1(Tag) = The, f1(Tas) = Ths
fa(Tay) = Tbhs, fo(Tag) = The, fo(Tas) = Thy
f3(Ta1) = Tby, f3(T'az) = Thy, f3(Tas) = Tbs
fa(Taq) = Thy, f4(Tag) = Tbs, f4(Tas) = Thy
f5(Ta1) = Tbs, f5(T'ag) = Thy, f5(T'as) = Ths
fe(Ta1) = Tby, fe(T'az) = Tbs, f6(Tas) = Tb

The normalized tree edit distance (see Section 8.5.1) lestwach pair of trees iha and Lb

is given by the following matrix:

Tby  Tby  Tbs
Tay | 0.00 0.78 0.71
Taz | 0.71 0.58 0.20
Taz | 0.78 0.43 0.58

The total mapping similarity distance of each total mappmiy is calculated by Equation 8.1

as follows:

MSDT(La, Lb, f1) = (0.00 + 0.58 + 0.58)/3 = 1.16/3 = 0.38

(
MSD™(La, Lb, f2) = (0.71 + 0.58 + 0.78) /3 = 2.07/3 = 0.69
(
(

MSDT

)=
)=
La, Lb, f3) =
)=

MSDT(La, Lb, f4

( )
( )
(0.78 +0.71 + 0.58) /3 = 2.07/3 = 0.69
(0.00 + 0.20 + 0.43)/3 = 0.63/3 = 0.21
( )

MSDT(La, Lb, f5) = (0.71 +0.71 + 0.43)/3 = 0.63/3 = 0.62

MSDT(La, Lb, f) = (0.78 + 0.20 + 0.78) /3 = 0.63/3 = 0.59

Hence,f, is the mapping with the minimum mapping distance. Ki&S(La, Lb) = minM SD™ (La, Lb) =
MSDT(La, Lb, fy) = 0.21.
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8.3.3 XML Lists Similarity based on Total Mapping with Position

Component

As we described in Section 8.3.%,L.S takes in to consideration the similarity of XML trees across
each list. This works well in computing a reasonable sintjlatistance between top-XML Lists
wherek is relatively small. Wherk is large, it is important to also take in the consideratitme, t
position of the mapped trees in each list. For example, densd top# lists of XML treesLa,

Lb and Lc where X LS(La, Lb) = XLS(Lb, Lc) but fminl, preserves the correct order (i.e.
fminl, (Ta1) = Tby, fminl,(Tas) = Tby and so on) whilefminl, maps the trees in reverse
order (i.e.fminl (Tby) = Tcy, fminl (Tbs) = Tcj—; and so on). Ideally, we want the distance
betweenLa and Lb to be smaller than the distance betwe@nand Lc. Hence, we define a
measure, XML Lists Similarity based on Total Mapping withsRion ComponentX L.S- P) that
includes the mapping position distance in addition to thepiray similarity distance.

Definition 2: The XML Lists Similarity based on Total Mapping with PosiiicComponent
(X LS-P) between XML listsLa, Lb has two components:

e The XML similarity component\/inM SDT (La, Lb).

e The total mapping position distance component
PD”(La, Lb, fmin™), which is also referred as the position component in thisieec
PDT is defined using one of the well known metrics on permutatemsiscussed below.

PDTisin [0, 1] as discussed in Section 8.5.2. Itis

XLS-P(La,Lb) = a- MinMSD” (La, Lb) + b- PDT(La, Lb, fmin®)  (8.15)

wherea, b are the XML similarity and position component constantpeesively. a, b adjust
the relative importance of the two components. Notice KdtS-P(La, Ld) is in [0,2] since
MinM SD™ (La, Lb) andPD” (La, Lb, fmin™) are in [0,1] and constantsandb are in [0,1].

We choosefmin” to minimize the XML similarity component and not the whoteLS-P,
because we believe it is more intuitive to compute the degaromponent based on the tightest

XML similarity mapping rather than mixing the two compongnt
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Note that other functions can be used to combine the cotitibof the two components, as
we discuss below.
Measures for XML Similarity component,
MinMSD™ (La, Lb): The tree similarity,7'S which is used to computé/inM SD” (La, Lb)
can be any of the tree or XML similarity measures discussefkirtion 8.2.1.
Measures for Position componentP DT (La, Lb, fmin”): Note that list permutation distance
metrics (not topk list distance measures) are usedXiL.S-P. Given the mapping'min’, we
naturally extend the Spearman'’s footrule distance and &letali distance for permutations with
ties [Dia88, FKM"04, FKS03, KG90] as follows:

Position distanceR® DTT") based on Spearman’s footrule metric for permutationsiyangoy:
k

PDTE(La, Lb, fminT) = Z |posra(Ta;) — posLb(fminT(Ta,-)ﬂ (8.16)
=1

whereposrq(Ta;) is the position of treda; in list La. This formula is extended as follows to
consider ties. A set of trees with the same score is calledckebu The ranked list of results
can be then viewed as ranked list of buckBis Bs, - - - , B,,. The position of buckeB;, denoted
pos(B;) is the average result location within buck®t. We assigrpos,(Ta;) = pos(B(Ta;))
whereB(Ta;) is the bucket of'a;.

Position distanceH DT K) based on Kendall tau metric for permutations considetlies) ts
given by:

PD™™(La, Lb, fmin™) = Y K;;(La, LV) (8.17)
{i,j}eP

whereLb' is constructed from lisLb when element’d; is replaced byl'a; = (fmin®)~1(Tb;),
that is,Tb; = fmin® (Ta;). Thatis, we assume that an elem@lt, in La and its corresponding
elementTb; in Lb are the same. Hence, we just havelistinct elementd,2,--- %k in both
lists, and the problem of computing D™  (La, Lb, fmin™) of the two XML lists is same as
computing the Kendall Tau metric of two permutatiord3is the set of all unordered pairs of the
k distinct elements.

Hence, there are two variants &fL.S-P:

XLS-PY(La,Lb) = a- MinMSDT (La, Lb) + b- PDTF (La, Lb, fmin®) (8.18)
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XLS-PX(La,Lb) = a- MinMSDT (La, Lb) + b- PDTE (La, Lb, fmin®) (8.19)

XLS-P is not a metric: The XML Lists Similarity based on Total Mapping with Positio
Component X LS-P) is not a metric because the total mapping position distanoreponent
PD”(La, Lb, fmin™) is not a metric. In particulatP D™ (La, Lb, fmin™) does not satisfy the
triangular inequality property. This is because the mappgimin’ is computed by comparing
XML trees (accounting for possible tree overlaps) and notoyparing whole objects. To be
more specific, if we consider three lists of (whole) objedts;, Wb and We, then fL(.) =
FE(fE()) (where £1 is a total mapping betweei e andW ¢) since we can only have “exact”
matches. But if we consider three lists of XML treés, Lb and Lc, typically fminl,(-) #
fmianc( fmingb(-)) since we could have “partial” matches. The following examnitilistrates
this scenario:

Let La, Lb and Lc be the following top-2 lists of XML trees.La = (Tay,Tasy), Lb =
(Tby,Tbe) andLc = (T'c1, T'c2). Now, suppose th&S(Ta;, Tby) = T'S(Tag, Thy) = TS(Thy,Tcy) =
TS(Tbe,Tcy) =TS(Tay,Tea) =TS(Ta, Ter) = 0.4 and all other distances (between the re-
maining pairs across the different lists) are 0.6 (and fotgl'S(z, ) = 0). Then, the following

would be the minimum total mappings between eachllistZb and Lc:

fminl, (Tay) = Ty, fminl,(Tas) = Tby fminl (Thy) = Tey, fmind (Thy) = Tey

fminl (Tay) = Tca, fmink (Tag) = Tey

If we assumea = 1 andb = 1, thenminM SDT(La,Lb) = minMSDT(Lb, Le) =
minMSDT (La, Lc) = 0.4 + 0.4 = 0.8. But, fminl, and fminl, preserve order (i.eTa
is mapped td'b1, T'ay is mapped td'b, and so on.), bufmin’. does not preserve order (it maps
Tay toTcy andTas to T'cq). Hence we have
PDT(La, Lb, fminl,) = PDT(La, Lb, fminl)) = 0.0andX LS-P(La, Lb) = X LS-P(Lb, Lc).
Now, sincefminZ, does not preserve ordd?.DT (La, Lb, fminl,) > 0 (in fact the actual value
would bel.0 as it maps the elements in reverse order). $65-P(La, Lc) = 0.4 + 1.0 = 1.4.
This breaks the triangular inequality property sid€&S-P(La, Lb) + X LS-P(Lb, L¢) = 0.4+
04=08>14.
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Example 1 (cont’d): Consider the top-3 listé.a and Lb in Figure 8.1. We will illustrate the steps
involved in computing{ LS-P(La, Lb). As before, we first computg —the total mapping with
the minimum mapping similarity distance. ItiisinM SD” (La, Lb) = MSD”(La, Lb, f;) =
0.21. The normalized Spearman’s footrule position componeRi¥i ' (La, Lb, f;) = 2.0/4.0 =
0.5. Hence, X LS-PF(La, Lb) = 0.21 + 0.5 = 0.71 (assuming: = 1 andb = 1). If the position
distance is calculated using normalized Kendall tau, tA” % (La, Lb, f4) = 1.0/3.0 = 0.33
and XLS-PK(La, Lb) = 0.21 + 0.33 = 0.54 (assumingz = 1 andb = 1). The difference
in the two scores is due to inherent differences betweenghar®an’s footrule and Kendall tau

metrics.

8.3.4 XML Lists Similarity based on Partial Mapping with Position

Component

The total mapping distance measures in Section 8.3.2 hawdrdlwback that two totally irrelevant
trees from the two lists may be mapped to each other, givarathiaees must be mapped between
the two lists. This is unintuitive and may lead to confusieguits, especially for the positional
component of the measure. To overcome this drawback, wepedheartial mappingmeasures,
where trees from the two lists are mapped only if they are @aakedy similar.
Similarity Threshold: In order to partially map the two lists of XML trees, we spgafthreshold
w, which is set to a value in [0, 1]. Intuitively, we only createppings between trees of the two
lists whose tree similarityZ(.S) is up tow. For example, if we want to create only the mappings
between trees that are at most 40% different, then we set).4. Notice that7'S is also in [0,1]
as described in Section 8.5.1. The threshold chosen given the application’s characteristics. We
consider various values farin Section 8.8. Note that fav = 1, X LS-PP reduces toX LS-P.
Assumingk elements in each XML listX L.S-PP is defined as follows. First we define the
partial mappingg for a total mappingf and thresholdv.g is a partial function defined only for
XML trees T'a; with T'S(T'a;, f(Ta;)) < w. Theng(Ta;) = f(Ta;). Let La¥ be the subset of

La that contains the XML trees that have a mappinggfor
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Next we define thepartial mapping similarity distancé/.SD* (La, Lb, g) betweenLa and
Lb given a partial mapping as:

> Taseras L'S(Tai, 9(Tai)) + 3 1o, e(La—rLas) €
k- mazx(c,w)

MSDY(La,Lb,g) = (8.20)

where XML trees that do not get mapped incur a penalty eostlotice that\/ SDY (La, Lb, g)
is also in [0,1] sincel’S is in [0,1] and we divide by: - maz(c,w). Note that penalty cost, is
also in [0,1].

We next define the minimum partial mappipgrin’ betweenLa and Lb given a threshold,
w as the partial mapping that has a corresponding total mgpfifor thresholdw and has the

minimum M SD? (La, Lb, g). That is,
gmint’ = argmz'ngMSDP(La, Lb, g) (8.21)

We emphasize thag must come from a total mapping, in order for the metric proesr
defined below to hold.

Givengmin®, we define theninimum partial mapping similarity distance
MinMSDY (La, Lb) = MSD” (La, Lb, gmin®) (8.22)

Definition 3: The XML Lists Similarity based on Partial Mapping with Positi@@omponent

(X LS-PP) has two components:

a TheXML partial similarity component/inM SD? (La, Lb).

b Thepartial mapping position distance component
PD¥(La, Lb, gmin®"), which is also referred as the position componéhb? can be one
of the well known measures (some are not metrics) orktbgts as discussed below.D”

is in [0,1] as discussed in Section 8.5.2.
Itis:

XLS-PP(La,Lb) = a - MinMSD¥ (La, Lb) + bPD¥ (La, Lb, gmin®) (8.23)
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wherea, b are constants defined as in Section 8.3.2. Notice ¥hB5-PP(La, Lb) is in [0,2]
since MinM SD¥ (La, Lb) and PDY (La, Lb, gmin®’) are in [0,1] and constantsandb are in
[0,1].

The same tree similarity measures asXi.S can be used for the XML partial similarity
component.

Measures for Position component,PD” (La, Lb, gmin’): We need to use partial (tafp)- list
distance measures. Given the partial mappimgn”, we naturally extend the Spearman’s footrule
distance and Kendall tau distance for tbfists with ties by combining previous works [Dia88,
FKM*04, FKS03, KG90], which separately tackle the #ofFKS03] and the ties [FKN104]
issues, as follows:

Position distancé® D"¥ () based on Spearman'’s footrule for tbpists with location param-
eter/ considering ties is computed as follows. We place all tredmth lists whose tree similarity
TS is greater than threshold at position!. Let list Lb be a list constructed by.b by replacing
each element'b; by Ta; = (gmin®’) — 1(Tb;), if this mapping exists (recall thatmin® is a

partial function). Then,
PDPFO(La, Lb, gmin®) = FY(La, LY) (8.24)

whereF(l)(-, -) is the footrule function for togk lists defined in [FKS03]. We extend this formula
to consider ties by considering buckets for computing tretjpm as explained in Section 8.3.2.
Position distancé® DPX(#)(La, Lb, gmin®) based on Kendall tau metric for tdplists with

penalty parametes, considering ties, is given by:

PDPE®(La,Lb) = Y K

o (La, Lb) (8.25)
{i,j}€LaULV

whereLb' is defined as in Section 8.3.2, and is defined as in [FKS03].

Hence, we have two variants &f L.S-PP:
XLS-PP¥(La,Lb) = a - MinMSDY (La, Lb) + b - PDYFU(La, Lb, gmin®)  (8.26)

XLS-PPX(La,Lb) = a - MinMSDY (La, Lb) + b - PDPK®)(La, Lb, gmin®)  (8.27)
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XLS-PP is not a metric: X L.S-PP is not a metric becausk/ SDY is not a metric. The reason
is that the triangular property does not hold for any choafethresholdw (in [0,1]) and penalty
constantg (in [0,1]).

Example 1 (cont’d): Consider again the listd.a and Lb in Figure 8.1. Assuming = 0.4 and

¢ = 0.4, we get the following partial mappings from the previoustatappings:g; (T'a1) = Tb;.
g2, g3 are empty mappings.

94(Taq) = Thy, g4(Taz) = Ths. g5 is again an empty mapping.

g6(Taz) = Ths.

The mapping distance of each partial mapping is as follows:

MSDY(La,Lb,g;) = (0.00 +c+¢)/(3-maz(c,w))

= (0.00 + 0.40 + 0.40) /(3 - 0.40)

= 0.80/1.2 = 0.66
MSDY(La,Lb,gs) = (c+c+¢)/(3 maz(c,w))

= (0.40 + 0.40 + 0.40)/(3 - 0.40)

= 1.20/1.20 = 1.00
MSDFY(La,Lb,g3) = 1.00
MSDY(La,Lb,gs) = (0.00+0.20 +¢)/(3 - maz(c,w))

= (0.00 + 0.20 + 0.40)/(30.40)

= 0.60/1.2 = 0.50
MSDFY(La,Lb,gs) = 1.00
MSDY(La,Lb,gs) = (c+0.20+¢)/(3- mazx(c,w))

= (0.40 + 0.20 + 0.40)/(30.40)

= 1.00/1.2 = 0.83

g4 is the mapping with the minimum mapping distaneein M SD? (La, Lb) = MSD? (La, Lb, g4) =
0.50.
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The Spearman’s footrule position component
PDPF(La,Lb, g4) = 4.0/12.0 = 0.33. XLS-PP¥(La,Lb) = 0.50 + 0.33 = 0.83 (assuming
a =1andb=1).

If the position distance is calculated using normalized dé@dntau, thenP D (La, Lb, g4) =
2.0/12.0 = 0.17. XLS-PPX(La,Lb) = 0.50 4 0.17 = 0.67 (assuming: = 1 andb = 1).

Notice that the normalized position componentXid.S-P is smaller than inX LS-PP, even
though two trees do not match iKLS-PP. The reason is that the maximum value (used in

normalizing as we describe in Section 8.5.2) of positiotatise (°D P) is larger inX LS-PP.

8.4 XML Similarity Measures for Various Tree Similarity Mea sures

As mentioned before, only those tree similarity measurasdhe metrics may lead to a distance
metric for XML lists. In particular, if the tree similarity sasure is a metric, then

e X LS is ametric (as proved in Section 8.3.2);

e XLS-PandXLS-PP are not metrics (as proved in Sections 8.3.3 and 8.3.4).

The following tree similarity measures are metrics: TreitBistance [Bil05], Tree-Edit-
based Structural Distance [NJO2], Fourier Transform-th&&stance [FMPP02, FMMPO05], Entropy-

based Similarity [Hel07], and the similarity measure in flE@®4]. In Table 8.1 we present these

results in more detail along with the complexity of calcingteach tree similarity measure.
Theorem 8.4.1 Tree edit distance is a distance metric

Proof: Following [Bil05], we assume throughout the paper thatllgbssigned to nodes are chosen
from a finite alphabeE. Let A\ ¢ 3 denote a special blank symbol and deflig= > U \. We
define a cost function : (X x X,)|[(A,A\) — R, on pairs of labels. We will always assume that

~ is a distance metric. That s, for afy, l2, I3 € X the following conditions are satisfied:

1. y(l1,12) > 0 (non-negative)y(l1,11) = 0 (regular).

2. (l1,12) = v(l2,11) (symmetric).
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Table 8.1: Tree Similarity Measures and Their Properties.

Tree Similarity Measure Is a Metric? XML-Specific? | Time Complexity to compute the measure
between pair of trees

Tree-Edit Distance [Bil05] Yes No O(Cost(TD(Ta;, Tb;)) = O(|Tay
|Tb;| - min(leaves(Ta;), depth(Ta;))
min(leaves(Th;), depth(Tb;)) [NJO2Z]

Tree-Alignment Distance [Bil05, No (fails triangle- No O(|Ta;| - |Tb;| - (deg(Ta;) + deg(Th;))?)

JWZ94] inequality)

Tree-Edit based Structural Dis-Yes Yes O(|Ta;| - |Tb4])

tance [NJO2]

Fourier Transform-based Dis-Yes Yes O(NlogN)whereN = max(|Ta;| - |Tb;|)

tance [FMPP02, FMMPO5]

Entropy-based Similarity [Hel07] Yes Yes O(N) whereN = max(|Ta;| - |Tb;|)

Path-Shingle based SimilarNo (since it is Yes Linear time in generalO(|7'a;| + |T'b;])

ity [ButO4] based on hashing

Similarity measure in [LCS04] | Yes Yes Linear time in generalO(|7'a;| + |T'b;])

Similarity measure in [YKTO5] | No No Linear time in generalO(|7'a;| + |T'b;])




3. (U, 13) < (1, l2) + v(l2,13) (triangle inequality).

Let 77 andT; be labeled trees. We represent each edit operatidiy by I2), where(l1, l2) €
(X x 2x) \ (A, A). The operation is a relabelinglif # A andly # A, a deletion ifl; = A, and
an insertion ifl;, = A\. We extend the notation such that — w) for nodesv andw denotes
(label(v) — label(w)). Here, as with the labels,or w may be\. Given a metric cost function ?
defined on pairs of labels we define the cost of an edit operagicsettingy(l; — l2) = (11, l2).
The cost of a sequence= s1,- - - , sk of operations is given by(S) = Zle v(si)-

The edit distancel' ED(T},T5), betweeril; andT5; is formally defined as:

TED(T1,Ty) = min{y(S) | S is a sequence of operations transformifiginto 7> }.

Since~ is a distance metrid’E D also becomes a distance metric as follows:

TED(Ty,T») > 0 (non-negative Each tree edit operation has a non-negative cost and hence
their summation would also be non-negative, becauisea distance metric.

TED(Ty,Ty) = 0 (regular) as no tree-edit operations are required to transform aariéself
and hence the cost is 0.

TED(Ty,Ty) = TED(T,,T1) (symmetrig. Letsy, - - - , si be the sequence of edit operations
to transformT’a to T'b. Then, we can transforffib to T'a by sequence;, - - - , s}, wheres is the
dual of s;. For e.g., if the edit operatios; adds nodey, s; would remove noder and so on.
This would generate a sequence of edit operations thatfdorams7; to 77 with minimum cost,
because if there were a sequence of operations that tremsiorto 7; with cost lesser than this,
then, using that sequence, we could obtain a sequence dtimper that transformg; to 15
with the same cost, which is a contradiction. Note that fersiimmetricity property to hold, an
operation and its dual —both should be assigned the samé#éypena

TED(T,,T.) < TED(T,,Ty) + TED(Ty,T,) (triangle inequality. Let S; be the sequence
of operations that transforniBa to Th and S, be the sequence that transforffis to T'c. Then
the sequencés = concatenate(Sy,S2) can transfornila to T'c and~(Ss) = v(S1) + ¥(S2),
which proves the triangle inequality. If there is anothequsncesS; that goes fron¥'a to 7'c with
v(S%) < v(Ss) (since the tree edit distance is the minimum distance asiomeut above) then it

will be 1(S4) < A(S1) +7(S5):
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8.5 Normalization

In this section we discuss how we normalize the XML similagbmponent and the position
components ofX L.S-P and X LS-PP, in Sections 8.3.3 and 8.3.4 respectively. Normalization
of XML similarity component depends on the tree similaritgasure T'S) employed. In Sec-
tion 8.5.1, we discuss the normalization steps when treedesiance T E D) is used as the tree

similarity measure. Section 8.5.2 discusses the norntalizaf the position component.

8.5.1 Normalize Tree-Edit Distance based XML Similarity Canpo-

nent

Let 77 and T, be two rooted, ordered and labeled XML trees AndTléi D(T,T5) be the tree
edit distance betweeffy, T7>. Let TED,,,.(11,T>) be the maximum cost among the costs
of all possible sequences of tree-edit operations thasfoam 73 to 75 (notice that the tree
edit distance,l'ED(Ty,T>) is the minimum cost among the costs of all possible sequenices
tree-edit operations). We normalize the tree edit distamcalividing the tree edit distance,
TED(Ty,Ty) by TED 4. (Th, T>).This normalizedl’ ED(T},T3) is also called Structural Dis-
tance in [DCWS04, DCjWSO06]. To calcula®®FE D,,,.. (11, T>), we calculate the cost to delete
all nodes fromI; and insert all nodes frort,. That is,TEDyq.(11,T2) = size(T1) - Dp +
size(Ty) - I, where D, and I, are the delete and insert penalties anek(T}) is the number of
nodes present in treég .

We use unit delete and insert penalties in our experimerite. nbrmalized' ED (T}, T5) is
low when the trees have similar structure and high percensagnatching nodes, and high when
the trees have different structure and low percentage ofhnimag nodes (0 [1] is the min [max]

value).

170



8.5.2 Normalize Position Component

In X LS-P: To normalize the position component Mi.S- P, we refer to the metrics on permu-
tations presented in [FKS03]. The maximum valuerD” X (La, Lb, f) is k(k — 1)/2, which
occurs wherLa is the reverse of.b. The maximum value oP D”F (La, Lb, f) is k2/2 whenk is
evenandk+1)(k—1)/2 whenk is odd. As with Spearman’s footrule, the maximum occurs when
La is the reverse of.b. Hence, to normalize we divide the metrics by these maximaimes.

In X L.S-PP: To normalize the position componentdL.S-P P, we refer to the metrics on top-
lists presented in [FKSO03]. In order to normalize the posittomponents of two top-lists, we
divide them by their maximum values which occur when theesrar mappings between Lisis:

andLb.

Theorem 8.5.1 The maximum value of tap-Spearman’s footrule® D¥ () (La, Lb) is 2k(l —

(k 4+ 1)/2) wherel is the location parameter.

Proof: Since there are no mappings between theftdigts, all k¥ elements of each of the list get

mapped to location. Hence,

PRED (La,Lb) = 21 —1|+2=1|+---+|k—1))

max

= 2k(l— (k+1)/2)

For a natural choice of = k£ + 1, the maximum value i&(k + 1), which we use in our

experiments.

Theorem 8.5.2 The maximum value of top-Kendall tau, PR*®)(La, Lb) is pk(k — 1) + k2

wherep is the penalty parameter.

Proof: Since there are no mappings between thekdists, there arek distinct elements in
La U Lb. For the unordered pairs within each |i§f((i7j)p)(La, LY') = p since these pairs do not
appear in the other list. There aték — 1)/2 such pairs and considering both the lists, there are
k(k — 1) such pairs, each with penalty Hence the total penalty jg:(k — 1). For the unordered

pairs across each of the two Iisﬁif((z. j)p)(La, LY') = 1 since one element in each pair does not
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appear in the other list. There&$ such pairs, each with penalty Hence the total penalty in this
case igk?. Adding them together, we get the maximum value whichkig: — 1) + k2.

We usep = 0.5 in our experiments.

8.6 Algorithms

In this section, we describe efficient algorithms to compXiteS (Section 8.6.1) X .S-P (Sec-

tion 8.6.2) andX L.S- PP (Section 8.6.3) given two XML top-lists.

8.6.1 Compute XLS

In this section, we describe efficient algorithms to compXiteS given two XML top+ lists.

Naive approach: X LS-P for any two topk XML lists La and Lb is computed as follows. First,
the setV of all possible total mappings frotha to Lb is computed. Then, for each total mapping
fin N, we compute the total mapping similarity distand&S D™ (La, Lb, f) using Equation 8.1,
and then find the minimum mappingnin”. Then, we computeX LS-P(La, Lb) using Equa-
tion 8.4.

Overview of our algorithm: Instead of computing the séf of all possible total mappings and
then selecting the minimum mappirfgnin”, we pre-compute the tree similarity measure of each
tree pair across the two lists, build a bipartite graph, grmyaa minimum cost perfect matching
algorithm (we use the Hungarian algorithm [Mun57]) to conepail minimum mappinggmin? .
This procedure is presented in Algorithm 8.1.

Algorithm details: The following high level steps of execution explain the aigon in detail:

1. Pre-compute the tree similarifyS(7T'a;, T'b;) between every pair of XML trees, one from
each listLa and Lb. There arek? such pairs, hence the complexity of this stegkis:
Cost(T'S(Ta;, Th;)) whereCost(T'S(Ta;, Th;)) is the complexity of computing the tree
similarity between the two treésa; and7'b;. We use the dynamic programming algorithm

by Zhang and Shasha [Z2S89] to compute the edit-distanceelbetwrdered trees [Bil05]
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Listing 8.1: Algorithm for computingX LS.

1procedure Conput eXLS( La = {Tay,Tasy, - ,Tay},

Lb={Tb,,Thy,---,Thi}, int a int b)

2begin

3

Slk,k| < 2-D array that stores the tree simlarity
neasures between every pair of XM. trees (one from
each List)

for ¢in 1,--- )k
for jin1,--- )k

Compute T7TS(Ta,Th); I/ Section 8.2.1
Nor mal i ze T'S(Ta;,Th;); I/ Section 8.5.1
S[i, j] < TS(Ta;, Tb;)
end
end

uend

(any available algorithm can be employed to compute treiedistance) as it is a popular
tree-edit distance algorithm also available online . Werr&d a detailed survey of tree edit

distance algorithms [Bil05].

. Create a weighted complete bipartite graptC, P, W) as follows. The first set of nodes

C = 1,2,--- ,k denote the set of elements in XML ligta. The second set of nodes
P = 1,2,--- 'k denote the set of elements in XML ligib. The weightW (i,j) =
T'S(Ta;, Th;).In this section, we describe efficient algorithms to corep¥itL.S-P given

two XML top-k lists.

Execute a minimum cost perfect matching algorithm@®, P, W) to computefmin”.
We use the Hungarian algorithm [Mun57]. Finally,LS is computed using Equation 8.4.

The complexity of the Hungarian algorithma(k3).

Total Complexity of the algorithm is

O(k’z : COSt(TS(TCLi,Tbj)) + k‘g)
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Listing 8.2: Algorithm for computingX L.S-P.

1procedure Comput eXLS-P( La = {Tay,Tay, - ,Tax},
Lb=A{Tby, Tby,--- ,Tb}, int a, int b)
2begin
s [+ Replace Line 9 in Listing 8.1 with: */
« Conmpute PDT(La,Lb, fmin') using Eq. 8.16 (for Spearman’s
footrule) or Eq. 8.17 (for Kendall Tau)
s Conmpute XLS-P using Egq. 8.18 or Eg. 8.19
send

8.6.2 ComputeXLS-P

This algorithm is similar to the algorithm in Section 8.6ekcept for a few changes as we will
describe. fmin” is computed as before and then the position distare¥ (La, Lb, fmin™)
is computed using Equations 8.16 and 8.17) for Spearmanisule and Kendall tau position
component respectively. TheX,LS-P is computed using Equation 8.18 or 8.19.

Total Complexity of the algorithm i© (k2 - Cost(T'S(T'a;, Tb;)) + k* + k*). Note the addi-

tional O(k?) to compute the position component.

8.6.3 ComputeXLSPP

In this section, we describe efficient algorithms to compXiteS- P P given two XML top+ lists.
Naive approach: X LS-PP for two top+ XML lists La and Lb is computed as follows —given
a thresholdw and penalty constant; First, the setV of all possible total mappings frotha to
Lbis computed. Then, for each total mappifigh NV, we compute a partial mappinrgby retain-
ing only those mapping instances fnwhose tree similarity7’S(-, -) between the corresponding
pair of trees is at least. Then, for eacly we compute the partial mapping similarity distance,
MSD?P (La, Lb, g) using Equation 8.20 and then find the minimum mapgjngn”. Then we
compute the position distanc®,D” (La, Lb, gmin®) (using Equation 8.24 or 8.25). Finally, we

computeX LS-PP(La, Lb) using Equation 8.26 or 8.27.
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Listing 8.3: Algorithm for computingX LS-PP.

1procedure Conput eXLS- PP( La = {Tay,Tay,---,Tay},
Lb={Tby;, Tby,--- ,Thy}, int w, int ¢, int a int b
2begin
/* Replace Line 6 in Listing 8.2 with the foll ow ng:
i f TS(TCLZ,T[)]) <w
Sli, jl <= T'S(Ta;, Tb;)
el se
Sli, j] < o0
end if
/ * Replace Line 7 with the follow ng: =*/
0 assignment,,|k,2] < 2-D array that stores the m'gmin®” with
t he m ni mum mappi ng di stance
n [/* Replace Line 9 with the follow ng: =*/
» Conpute PDP(La,Lb,gmin') using Equation 8.24 (for
Spearman’s footrule) or Equation 8.25 (for Kendall
Tau)
13 /* Replace Line 10 with the follow ng: =/
1w Conpute XLS-PP using Equation 8.26 or 8.27
send

© [ee] ~ (2] o s w
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Our algorithm: This algorithm is similar to the algorithm in Section 8.6elxcept for a few
changes as we will describe. In Step 2, after the completartitip graphG(C, P, W) is con-
structed, we eliminate all the edges with wei§h{7'ai, Thj) > w and then execute the Hungar-
ian algorithm to findymin® with the minimum mapping similarity distanc&/inM SD?(
La, Lb). Then, we compute the position distae®?” (La,
Lb, fmin®) using Equations 8.24 or 8.25. Finally;LS-PP is computed using Equation 8.26
and 8.27 for Spearman’s footrule and Kendall tau respdgtive

Total Complexity of the algorithm i© (k? - Cost(T'S(Ta;,
Tb;)) + k3 + k?). Note the additionaD (k) to compute the position component. The complexity

of this algorithm is same as the one 8LS-P.

8.7 Evaluation of Top-k XML Lists

Most of the related work was presented in Section 8.2.

XML Retrieval Evaluation: The INitiative for the Evaluation of XML Retrieval (INEX) Ni09]
has provided since 2002 the infrastructure and means fluagtirsg the effectiveness of content-
oriented XML search systems. INEX utilizes a series of qsetihat may contain both content and
structural conditions. Although XML retrieval allows douent fragments to be retrieved, these
fragments cannot always be viewed as independent unitbidulirection, INEX is encouraging
the development of systems that return entities insteadsbfdocuments or elements. Our work
can benefit this initiative of INEX by providing appropriaggaluation measures for lists of XML
fragments. Clarke [Cla05] and Kazai et al. [KLdV04] presechniques to incorporate the overlap
between XML fragments when evaluating XML search algorghrthey are complementary to
our work since their techniques can be applied on our mesgaraccount for overlap between
the XML results.

Matching in Relational Databases:Guha et al. [Guh04] address the problem of merging approx-
imate attribute rankings produced by executing a query atirty” relational database. To do so,

they propose a modification to the Hungarian Algorithm taniifg a set of top ranking results.
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In our case, the top-lists are fairly small and hence memory-based matchingniqales like the

Hungarian algorithm are more appropriate.

8.8 Experimental Evaluation

In this section we experimentally evaluate the measuresepted in the previous sections by
comparing three popular XML keyword search algorithms. e wee edit distancd’ D) as

the XML tree similarity measurel(S).

8.8.1 Datasets and Experimental Setup

Datasets: We use two real datasets: the DBLP dataset and the NASA XMasdatavailable
at [oWCSEO09]. Figure 8.2 shows a reduced version of bothsdtgaschemata and Table 8.2

summarizes their characteristics.

Table 8.2: XML Datasets Used in the Experiments.

Datasetl Number of| Average Maximum
Elements | Depth | Depth
DBLP | 7137933 1.90 5

NASA | 791923 5.58 8

Experimental Setup: We implemented the following XML keyword proximity searcystems:
XRANK [GSBSO03], XSEarch [CMKSO03] and XKeyword [HPBO03]. Témthree algorithms take
as input a corpus of XML documents and a keyword query, angrrets output an ordered list
of XML fragments that satisfy the query by containing all tkeywords. All three algorithms
favor minimal and compact subtrees that satisfy the quertyige different ranking functions and
pruning rules. In particular, while XKeyword ranks its arsw/by the size of the resulting subtree,
XRANK and XSEARCH also utilize Information Retrieval (IR§a@re functions based atf - idf.

XSEarch prunes result paths that repeat the same tag imahteodes, while XRANK prunes
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8.1

dblp

[t |
T T T ] T T

| author || editor | title || journal || volume || number| | url || ee || cite |pub|isher|
(a) XML schema for DBLP dataset fragment (only “article” mlents and their subtrees from original
dataset are included)

datasets

dataset

| | | |
‘ title ‘ ‘ altname ‘ ‘references‘ ‘ keywords ‘

] | | =
‘ partNumber ‘ ‘ footnote ‘ ‘ reference ‘ ‘ keyword H abstract ‘ ‘ description ‘ ‘ details ‘ ‘ astroObject ‘ revisions
N | | —— —

‘ para H author ‘ ‘ title H altname H author ‘ ‘ para ‘ ‘ heading H para ‘ ‘ position ‘ ‘ name H creator ‘ ‘ date ‘ ‘ revision ‘

ﬁ‘ﬁ

‘ firstName H lastName ‘ ‘ firstName H lastName ‘ ‘coordinates‘ ‘ firstName H lastName H editor H date

(b) XML schema for NASA dataset fragment. Some elements weriéted due to space constraints.

Figure 8.2: XML schemata for DBLP and NASA datasets.



results if there is a more specific result in the same elenddab, XRANK returns whole subtrees
while XSEarch and XKeyword return paths.

In our implementation, we used the IR score provided by thiNCRINSTABLE function
of Microsoft SQL Server 2000 to compute the IR componentsotii IXKRANK and XSEARCH
ranking functions. The experiments were performed on a RE avi Intel Pentium Core 2 Duo,
2.00 GHz processor, 2GB RAM, running Windows Vista Busine&h algorithms were devel-
oped in Java (JDK version 1.606), use the Document Object Model (DOM) for XML parsing
and navigation, and Microsoft SQLServer 2000 for the ptstsstorage of indexes. The tree sim-
ilarity (7°S) measure we use in our experiments is the dynamic prograghatgorithm by Zhang
and Shasha [Z2S89] which computes the tree-edit-distantveeba ordered trees [Bil05] whose
complexity is
Cost(TED(Tai,Thj)) = O(|Ta;||Tb;| - min(leaves(Ta;), depth(Ta;)) -
min(leaves(Tb;), depth(Th;)).
We refer to a detailed survey of tree edit distance algostigil05]. In Section 8.8.2, we first
analyze the results of a single query to show the intuitioowfevaluation scheme, and later we
report average XML Lists Distance values over many exparisen the two datasets. In Sec-
tion 8.8.3, we report performance (time) experimentalltedtigure 3 shows a reduced version of

both datasets’ schemata and Table 8.2 summarizes theaatbastics.

8.8.2 Quantitative Results

Analyze a Single Query To illustrate our measures, we present an analysis for éyavérd
query ‘database retrieval languafever the DBLP XML dataset. Figure 8.3 shows the top-3
search results output by each of the three XML search algost Table 8.3 presents thelL.S,
XLS-P and X LS-PP measures between every pair of XML lists from Figure 8.3.i¢¢othat
XLS(La, Lb) is in [0,1] while X LS-P(La, Lb) and X LS-P(La, Lb) are in [0,2] and we found
that setting the distance measure constants=tol andb = 1 leads to reasonable results.

Notice that in Table 8.3 we only preselt.S- P P measures fap = 0.7 and0.9 asX L.S-PP

values forw = 0.5, 0.3, 0.1 for the top-3 lists presented in Figure 8.3 are the same as f010.7
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List A

Tal fitle
[1.0.0.265226.1]

(O]

Jeffrey D. Ullman Speaks Out
on the Future of Higher
Education, Startups, Database
Theory, and More.

article
[1.0.0.309266]

@ Ta2

title
[1.0.0.309266.3]

author
[1.0.0.309266.2]

JeffreyD. Ullman The Theory of Joins in

Relational Databases

article
[1.0.0.2622]

(3) Ta3

title
[1.0.0.2622.4]

author
[1.0.0.2622.2]

Jeffrey D. Ullman

Updating Logical
Databases.

)

(2)

3)

Database as a genre

List B

Thbl title
[1.0.0.265226.1]

Jeffrey D. Ullman Speaks Out
on the Future of Higher
Education, Startups, Database
Theory, and More.

article
[1.0.0.309266]

Tb2

author
[1.0.0.309266.2]

journal
[1.0.0.309266.8]

Jeffrey D. Ullman ACM Trans. Database

Syst.

Tb3 dblp

[1.0.0]

article
[1.0.0.270220]

article
[1.0.0.10273]

author
[1.0.0.270220.3]

title
[1.0.0.10273.1]

Ellen Ullman

of new media.

Figure 8.3: Top-3 search results for quédatabase retrieval languagebver DBLP.
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Table 8.3: XML List distances based on Total and Partial nvaggpfor top# lists in Figure 8.3.

XLS[MinMSD™(La, Lb)] XRANK XSEARCH XKEYWORD
XLS-P[XLS-PF, X LS-PX]
XLS-PP|XLS-PPF, X LS-PPX]
XRANK X L5[0.00] XL5[0.30] XL5[0.30]
X LS-P[0.00,0.00] X LS-P[0.80,0.30] X LS-P[1.05,0.46]
XLS-PP%7[0.00,0.00] | XLS-PP°70.67,0.50] | X LS-PP°7[0.75,0.54]
XSEARCH X L5[0.30] X L5[0.00] XLS[0.00]
X LS-P[0.80,0.30] X LS-P[0.00, 0.00] XLS-P[0.25,0.17]
XLS-PP%7[0.67,0.50] | X LS-PP°70.00,0.00] | X LS-PP°7[0.08,0.04]
XLS-PP*°[0.49,0.41] | XLS-PP%9]0.00,0.00] | X LS-PP°9[0.08,0.04]
XKEYWORD X L5[0.30] X LS[0.00] XLS[0.00]

X LS-P[1.05,0.46]
XLS-PP7[0.75,0.54]
XLS-PP"[0.58,0.45]

X LS-P[0.25,0.17]
X LS-PP%7[0.08, 0.04]
X LS-PP%°[0.08,0.04]

X LS-P[0.00, 0.00]
X LS-PP%7[0.00, 0.00]
X LS-PP"[0.00, 0.00]




(we explain why later). Note that we use the penalty constagual tow.
Let La, Lb and Lc be the top-3 lists of XRANK, XSEarch and XKeyword algorithnespec-
tively as shown in Figure 8.3. The associated tree editmtistaalues between every pair of XML

trees in each of the lists as follows:

Tby Tby Tbs Tby Tba Tbs
Tay | 0.00 0.50 0.71 Tay | 0.00 0.50 0.71
AB = 14, | 098 0.98 0.89 | AC = 14, | 098 0.98 0.89
Tas | 0.50 0.00 0.71 Taz | 0.50 0.00 0.71

Thy Tba Tbs

Ta; | 0.00 0.50 0.71

BC = 74, | 0.50 0.00 0.71

Tas | 0.71 0.71 0.00

First of all, notice that the top-3 lists of XSEarch and XKeya are identical (and hence the
tree edit distance matricesB and AC are identical), except that the first two results of XKeyword
have the same score. This is the reason that the distancesdmeXSEarch and XKeyword, for
total mapping, are small (but not zero) in Table 8.3, sineegbsition components consider ties.
Note that XRANK returns a different subtree as its secondltesince the XRANK function
ranks the total score for this subtree higher than the sddfesingle element that appears in the
other two lists. In this subtree, the keyworétrievatappears twice within thetitle” element,
which increases its IR score. In addition, the third elemenie XRANK list was penalized by
its length and as a result.

Between XRANK and XSEarch, two results are identical, dlad is mapped td'b3 in total
mapping, even though they are very different. This irredévaapping and is removed in the
partial mapping measures.

We computedX LS-PP for various thresholdsy = 0.9, 0.7, 0.5, 0.3 and0.1, and found
that X L.S- PP distance values are identical for threshdddg 0.5, 0.3 and0.1.This is because we
have at least two identical trees between every pair ofthse€ identical trees in case of XSEarch

and XKeyword) and they always get mapped between them, whel¢hird unmapped result get
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mapped with the unmapped result in the other list dependinip® threshold. Between XRANK
& XSEarch, and XRANK & XKeyword, the tree edit distance ofghhird mapping i$.89 and
hence the results are identical for threshdglds 0.3, 0.5, 0.7.

Quantitative Results over Multiple Queries

Figures 8.4(a) and 8.4(b) show the total distances (sptlit tile two components) between
the result lists pro-duced by the three search algorithmtherDBLP dataset averaged over 50
two-keyword queries, using LS-PF and X LS-PX, respectively. The queries used include:
“artificial intelligence”, “xml indexing”, “text mining”, “image retrieval”, “OLAP mining”. No-
tice that the distance increaseskascreases because as the trees get larger, the resultsdoecom
more disparate due to the pruning rules of the algorithmisgithén effect for larger trees. As men-
tioned before, XKeyword ranks its answers by the size of gselting subtree, while XRANK
and XSEARCH also utilize Information Retrieval (IR) scomnétions based onf - idf. The
reason that XKeyword has large distance to the other twoimgeks that it does not have an IR
component in its ranking function. Hence, when multiplesrbave the same size, they are ranked
arbitrarily. XRANK and XSEarch have smaller distance betwéhem because their rankings are
more similar given that the results were mostly single-ninees.

Figures 8.4(c) and 8.4(d) show the distances between thikse$the three search algorithms,
for the DBLP dataset, averaged over 50 two-keyword quesagX LS-PF and X LS-PX, for
varying thresholds, for top-50 results respectively. Reabat for w = 1.0, XLS-PP (partial
mapping) reduces t&X LS-P (total mapping). We use the penalty constargqual tow. In
Figures 6(c), 6(d), 6(e) and 6(f), we see that the normaldisthnces increase as decreases. The
reason is that for small there are few matches which leadrge lposition distance components.
Note that for XRANK-vs.-XKeyword and XSEarch-vs.-XKeyvehrfor w = 0.9 we get slightly
smaller distances than total mapping € 1.0). The reason is that almost all tree pairs in the
top-50 results of these rankings have normalized tree eddrte up td.7, while for w = 1.0,
we divide by a larger number (than far = 0.9) to normalize the XML similarity component.
On the other hand, for XRANK-vs.-XSEarch, the distance kaegducing as increases frond.1

to 0.9 and this is because there are some tree pairs in the top-6lisre$ these rankings with
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Top-10
Top-k

Top-10
Top-k

Top-50

XRANK(XR),
XKeyword (XK)

[@XML Similarity Distance WPosition Distance|

XKeyword (XK)

[EXML Similarity Distance B Position Distance|

(a) AverageX LS-P* vs. Topk

(b) AverageX LS-PX vs. Top+

Threshold, w
XRANK(XR), XSEarch(XS),

XKeyword (XK)

[mxML Similarity Distance B Position Distance|

[EXML Similarity Di

M Position Di | XKeyword (XK)

(c) AverageX LS-PPF vs. thresholdy, (d) AverageX LS-PPX vs. thresholdyw,

k =50

k =50

Figure 8.4: Experiments on DBLP Dataset.
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normalized tree edit distance greater tiah
Figure 8.5 repeats the set of experiments of Figure 8.4 oiNtk®A dataset. Some sam-

ple two-keyword queries used in these experiments ‘@reminutes magnitude”, “astrographic
motion”, “equinox culmination”, “photo-graphic wavelerngs”, “oxford zone”. Some impor-
tant observations on the results of NASA dataset are (apdist between XML lists is generally
larger for NASA dataset because of its larger depth. (b) mirest to Figure 8.2, XSEarch and
XKeyword have the smallest distance because both algasitletarn paths as result. This factor
was less important in Figure 8.2 because most results wagkeaiode. In contrast, XRANK has
large distance to the other two rankings because it retuhtdensubtree as result. (c) XRANK is
very close to XSEarch in DBLP, but very far in NASA dataseteTéason is that the XRANK and
XSEarch pruning conditions are very rare for very shallobtsees (DBLP) but more frequent for
deeper subtrees (NASA dataset). The latter also leads tedictable fluctuations to the distances
for increasingk (Figure 8.5), in contrast to the linear increase in the DBhRadet (Figure 8.4). In
both datasets, notice that the XML Similarity distance dbotes the most to the total distance.

This shows that the main difference of these three algostbomes more from how they define a

result and less on how they rank them.

8.8.3 Performance Results

Due to space constraints and negligible execution timeth®DBLP dataset (always less than
one second), we only present results on the deeper NASAalafigure 8.6(a) shows the average
execution time to comput& L.S- P for various values of, over the same 50 two-keyword queries
used in the distance experiments. As expected, the avexagat®n time increases superlinearly
ask increases because there are more results in thé tigs under comparison. Figure 8.6(b)
shows the average execution time to compkiteS- PP for various values of the threshold,

for fixed £k = 50. Notice that the execution times are different for the thpe@s of search
algorithms. The reason is that XRANK produces the largest of results as it returns whole
XML elements, while XKeyword produces concise results lynmrgng paths. XSEarch produces

results of intermediate size by returning paths like XKegavbut has different pruning rules.
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Figure 8.5: Experiments on NASA Dataset
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Thus, the execution times of XRANK vs. XSEarch are the highekile XSEarch vs. XKeyword

is the lowest.

Jm e [ | Al

1 5 10 2 50 01 03 05 odw %7 09 10
Top-k

[EARANK e, XSEARGH BXRANK vs "KEYWORD CXSEARGH ve. XKEVWORO | (xR v wsEARen BXRANK v XHEVNORD TXSEARGH v SKEVWORD \

(@) Avg. execution time to compufb) Avg. execution time to compute
XLS-P (w = 1.0) vs. Top# XLS-PP (w=1.0) vs. Top%

Figure 8.6: Performance Experiments on NASA Dataset.
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CHAPTER 9
CONCLUSIONS

In this dissertation | have explored three different chagles that must be addressed to fa-
cilitate and enhance the massive adoption of semistruttdioeuments and, in particular, of the
Extensible Markup Language. These three challenges hame dlearly identified astorage
Parsingand domain-specifitnformation Discoveryon such type of documents. Each of these
challenges has been deeply explored and novel solutioresbieen proposed to improve the per-
formance and quality of each if these aspects.

A novel method forstoring semistructured documents has been proposed, mappingyke ph
ical characteristics of semistructured documents to tlwengdrical layout of hard drives. Such
optimization facilitates navigation of the data by redgcaccess overheads, and is achieved by
utilizing information provided by standard disk profilingals.

To provide an optimaparsingand processing of semistructured documents, we have devel-
oped a Double-Lazy Parser, a new approach that responds te#d of a more memory-efficient
XML DOM parser, by introducing lazy behavior in both the grarsing and progressive parsing
phases.

Extending the previous work on searching semistructuredments, we have created a frame-
work that exploits the domain-specific knowledge to impriwe quality of theinformation dis-
coveryprocess. In particular, we have created the XOntoRankmsydtet integrates the domain
knowledge captured by clinical ontologies into a systenséarching Electronic Health Records.

To evaluate the results of our search system for semistectiibcuments, we designed mean-
ingful evaluation metrics that deal with tdplists of subtrees instead of objects, taking into con-

sideration the tree similarity and the position distancemgrthe lists.
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APPENDIX

This Appendix presents a sample Electronic Medical Recaidguthe Clinical Document
Architecture (CDA) as described in Section 6.2.

Listing 9.1: HL7 CDA Sample Document

1<? xml version="1.0" ?>
2<Cl'i ni cal Docunent xm ns="urn: hl 7-org: v3 xm ns:voc="
urn: hl 7-org: v3/voc" xm ns: xsi="http://ww.w3. org/ 2001/
XM_Scheme-i nst ance" xsi:schemalLocati on="urn: hl 7-org: v3
CDA. Rel easeTwo. Commi tt ee. 2004. xsd" tenpl at el d="
2.16.840.1.113883. 3.27.1776">
s <id extension="c266" root="2.16.840.1.113883. 3.933"/>
+ <confidentialityCode code="N' codeSyst en¥"
2.16.840.1.11.3883.5.25" />
<aut hor >
<time val ue="20040407"/>
<assi gnedAut hor >
<i d extensi on="KP00017" root="2.16.840.1.113883. 3. 933

[ee] ~ [=2] o

">
9 <assi gnedPer son>

10 <npnaneg>

1 <gi ven>Juan</ gi ven>

12 <fam | y>Wodbl ack</fam | y>
13 <suf fi x>MD</ suf fi x>

1 </ name></ assi gnedPer son></ assi gnedAut hor ></ aut hor >

1s <recordTar get >

s <pati ent Rol e>

17 <i d extension="49912" root="2.16.840.1.113883. 3.933"/

>
18 <patient Pati ent>
19 <nane>
20 <gi ven>Fi r st Nane</ gi ven>
21 <fam | y>Last Nane</fam | y>
2 <suffix>Jr.</suffix>
2 </ nane>
24 <adm ni strati veGender Code code="M codeSyst en="

2.16.840.1.5.1"/>

2 <bi rt hTi me val ue="20020924"/ >

2 </ patientPatient>

27 <pr ovi der Or gani zat i on>

28 <id extension="M345" root="2.16.840.1.113883. 3. 933"/
>

</ provi der Or gani zat i on></ pati ent Rol e></recordTar get >

N
©
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35

36

37

38

39

40

a1

42

43

44

45

46

47

48

49

50

51

52

53

54

<conponent >

<St ruct ur edBody>
<conponent >
<section>

<code code="10160-0" codeSyst en¥"
2.16.840.1.113883.6.1" codeSystemNanme="LO NC'/ >
<title>Medications</title>
<entry>
<Observati on>
<code code="84100007" codeSysten¥"
2.16.840.1.113883. 6. 96" codeSyst emNane=" SNOVED
CT" displ ayNanme="Medi cati ons"/>
<val ue xsi:type="CD' code="195967001" codeSysten¥
"2.16.840. 1. 113883. 6. 96" codeSyst emNanme=" SNOVED
CT" di spl ayName="Ast hma" >
<ori gi nal Text ><r ef erence val ue="nl"/></
ori gi nal Text>
</ val ue></ Cbservati on></entry>
<entry>
<Observati on>
<code code="84100007" codeSysten¥"
2.16.840.1.113883. 6. 96" codeSyst emNanme=" SNOVED
CT" di spl ayNane="Medi cati ons"/ >
<val ue xsi:type="CD"' code="32398004" codeSysten"
2.16.840.1.113883. 6. 96" codeSyst emNane=" SNOVED
CT" di spl ayNane="Bronchitis">
<val ue xsi:type="CD"' code="91143003" codeSystenr
"2.16.840.1.113883. 6. 96" codeSyst emNanme="
SNOMED CT" di spl ayNanme="Al buterol" />
</ val ue></ Cbservati on></entry>
<entry>
<Subst anceAdm ni strati on>
<t ext ><content | D="ml">Theophyl | i ne</content>20
ng every other day, alternating with 18 ny
every other day. Stop if tenperature is above
103F. </t ext >
<consumabl e>
<manuf act ur edPr oduct >
<manuf act ur edLabel edDr ug>
<code code="66493003" codeSysten¥"
2.16.840.1.113883. 6. 96" codeSyst emNane="
SNOVED CT" di spl ayName="Theophyl | i ne"/ >
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55 </ manuf act ur edLabel edDr ug></ manuf act ur edPr oduct ><
/ consunmabl e>

56 </ Subst anceAdm ni strati on></entry>

57 </ sect i on></ conponent >

58 <conponent >

59 <section>

60 <code code="11384-5" codeSysten¥"
2.16.840.1.113883.6.1" codeSystemNanme="LO NC'/ >

61 <title>Physical Exam nation</title>

62 <conponent >

63 <section>

64 <code code="8716-3" codeSyst enE"

2.16.840.1.113883. 6. 1" codeSystemNane="LO NC'/ >

65 <title>Vital Signs</title>

66 <t ext>

67 <t abl e>

68 <tr>

69 <t h>Tenper at ure</t h>

70 <td>36.9 C 98.5 F</td>

71 </[tr>

72 <tr>

73 <t h>Pul se</t h>

74 <td>86 / minute </td>

75 </tr></tabl e></text>

76 <entry>

77 <Observati on>

78 <code code="50373000" codeSysten¥"

2.16.840.1.113883. 6. 96" codeSyst emNanme="
SNOMED CT" di spl ayNanme="Body hei ght"/>

79 <effectiveTi me val ue="200404071430"/ >
80 <val ue xsi:type="PQ" value="1.77" unit="nt />
81 </ bservat i on></ entry></ secti on></ conponent ></

secti on></ conponent >
22</ St ruct ur edBody></ conponent ></ C i ni cal Docunent >
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