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Abstract
1.	 Categorical raster datasets often require upscaling to a lower spatial resolution 
to make them compatible with the scale of ecological analysis. When aggregating 
categorical data, two critical issues arise: (a) ignoring compositional information 
present in the high‐resolution grid cells leads to high and uncontrolled loss of in-
formation in the scaled dataset; and (b) restricting classes to those present in the 
high‐resolution dataset assumes validity of the classification scheme at the lower, 
aggregated resolution.

2.	 I introduce a new scaling algorithm that aggregates categorical data while simul-
taneously controlling for information loss by generating a non‐hierarchical, repre-
sentative, classification system for the aggregated scale. The Multi‐Dimensional 
Grid‐Point (MDGP) scaling algorithm acknowledges the statistical constraints of 
compositional count data. In a neutral‐landscape simulation study implementing 
a full‐factorial design for landscape characteristics, scale factors and algorithm 
parameters, I evaluated consistency and sensitivity of the scaling algorithm. 
Consistency and sensitivity were assessed for compositional information reten-
tion (IRcmp) and class‐label fidelity (CLF, the probability of recurring scaled class 
labels) for neutral random landscapes with the same properties.

3.	 The MDGP‐scaling algorithm consistently preserved information at a significantly 
higher rate than other commonly used algorithms. Consistency of the algorithm 
was high for IRcmp and CLF, but coefficients of variation of both metrics across 
landscapes varied most with class‐abundance distribution. A diminishing return 
for IRcmp was observed with increasing class‐label precision. Mean class‐label 
recurrence probability was consistently above 75% for all simulated landscape 
types, scale factors and class‐label precisions.

4.	 The MDGP‐scaling algorithm is the first algorithm that generates data‐driven, 
scale‐specific classification schemes while conducting spatial data aggregation. 
Consistent gain in IRcmp and the associated reproducibility of classification sys-
tems strongly suggest that the increased precision of scaled maps will improve 
ecological models that rely on upscaling of high‐resolution categorical raster data.
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1  | INTRODUC TION

Spatially explicit ecological models rely on spatially exhaustive data 
layers at appropriate scales for the ecological process of interest 
(Lam & Quattrochi, 1992; Mas, Gao, & Pacheco, 2010), which often 
requires scaling datasets to the scale of analysis. Upscaling of raster 
data to coarser spatial resolutions aggregates data of multiple high‐
resolution grid cells into lower resolution grid cells. As data are ag-
gregated, generalization leads to information loss. Since the goal of 
data aggregation is to retain sufficient information relevant to a sci-
entific question addressing a phenomenon at the aggregated scale, 
it is important to quantify the amount of information retained in the 
aggregated product and to control information loss.

Classification schemes of categorical data are valid for the range 
of spatial scales for which they were defined. However, commonly 
applied spatial‐aggregation methods majority rule, nearest‐neighbor 
rule, or random rule, or more complex methods such as spatial scan 
statistic (Coulston, Zaccarelli, Riitters, Koch, & Zurlini, 2014), only 
consider the original, high‐resolution class scheme when assigning 
class labels to aggregated, larger landscape units. Complex spatial 
co‐occurrence patterns are oversimplified, often resulting in vastly 

increasing abundance of dominant classes and elimination of rare 
classes (Gann, Richards, & Biswas, 2012; He, Ventura, & Mladenoff, 
2002; Ju, Gopal, & Kolaczyk, 2005). The presumption that the orig-
inal class descriptors are valid at the aggregated lower resolution, 
regardless of scale factor, leads to uncontrolled loss of information 
content in each grid cell of the aggregated map, and potentially to fal-
lacy in ecological models that use the oversimplified aggregated data.

For illustration, consider information loss for a landscape with 
two cover classes, ‘grass’ and ‘tree’ (Figure 1a). Aggregating the land-
scape subset of 49 grid cells with a class percentage distribution 
of 73% ‘grass’ and 27% ‘tree’ cover into a single coarser resolution 
cell requires a new class label assignment. The majority rule, a sim-
ple plurality decision rule that assigns the output category with the 
highest proportion of sub‐samples (i.e. mode) applies the label ‘grass’ 
(Figure 1a). The nearest‐neighbour rule assigns the ‘tree’ class, the cat-
egory closest to the centre of the scaled grid cell, and the random rule 
assigns the output class at random (Figure 1a). Application of these 
three algorithms to the same input data results in completely different 
class assignments to the up‐scaled grid cell, resulting in pure (100% 
cover) classes of either ‘tree’ or ‘grass’. Assignment to a single class re-
duces the compositional information content of the aggregated grid 

K E Y W O R D S

categorical raster data, compositional count data, multi-dimensional grid-point, neutral 
landscape models, scaling algorithm, simplex, simulation, spatial scaling

F I G U R E  1   Information loss associated with majority‐, nearest‐neighbor‐ and random‐rule scaling algorithms. (a) Applying the three 
algorithms to the two‐class (‘grass’ (G) and ‘tree’ (T)) landscape example shows that none of the algorithms captures the more intuitive class 
of ‘Woodland’ at the aggregation scale. Depending on the algorithm, the amount of compositional information that is lost is either ~27%, if 
class ‘G’ is assigned, or ~73%, if class ‘T’ is assigned. (b) As richness increases, assigning a single input class label to the aggregated output cell 
represents only one of five original classes that were present, and the maximum compositional information that can be retained is less than 
30%. A mixed class label that captures the heterogeneity is required at this scale to represent the landscape. In all three cases, four classes 
are omitted from the scaled class label. The single‐class scaled class label over‐represents its class with 100%, when in fact that class was 
present at only 28.57% for the outcome of the majority rule, 22.45% for the random rule and 10.2% for the nearest‐neighbor rule
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cells to 73% when assigning class ‘grass’, or to 27% when class ‘tree’ 
is assigned. With an increasing number of classes within a sample, 
compositional information decreases upon aggregation (Figure 1b).

Subsequently, if the aggregated product is used in combination 
with remotely sensed data to retrieve biophysical properties of the 
landscape, for instance biomass, then the biomass estimate will be 
coarsely over‐ or underestimated because it is much larger for trees 
than it is for grass. Magnitudes of error and uncertainty of estimated 
properties depend on the proportional misrepresentation of the gen-
eralized scaled landscape unit, and the difference in biophysical prop-
erties of the respective classes that are over‐ or underrepresented. In 
the example, to capture the relative abundance of both classes at the 
scale of lower resolution, a more appropriate class might have been 
‘Woodland’, not a label option, since it did not exist in the original 
map. To date, no spatial aggregation algorithm generates scale–spe-
cific representative classes as landscape units are aggregated.

Several sub‐disciplines of ecology have addressed defining 
representative classification schemes on the basis of quantitative 
measures of species co‐occurrence data (Braun‐Blanquet, 1932; 
De Cáceres et al., 2015; Mucina, 1997; Van Der Maarel, 1979). 
Species‐association patterns, when randomly sampled on a 1‐m2 
scale across a defined spatial extent, are expected to differ from the 
association patterns of the same species on a 50‐m2 scale (O'Neill 
et al., 1996; Schlup & Wagner, 2008). Consequently, plant commu-
nities vary along the continuum of spatial scales and definitions of 
communities or vegetation classes depend on the scale at which the 
landscape is sampled. Methods that generate scale‐specific classi-
fication schemes from samples have to be consistent in delivering 
class descriptors (labels) that are reproducible and representative for 
the population, that is, the sampled landscape at the scale of inter-
est (De Cáceres, Font, Vicente, & Oliva, 2009; De Cáceres & Wiser, 
2012; Tichý, Chytrý, Hájek, Talbot, & Botta‐Dukát, 2010; Tichý, 
Chytrý, & S̆marda, 2011; Wildi, 2010). The principles of reproduc-
ibility and representativeness also apply to scaling methods that aim 
to generate scale‐specific classification schemes, recognizing class 
co‐occurrence variability at different scales. An algorithm that im-
plements scaling of classification schemes preferably also provides 
a control mechanism for information loss, considering the relative 
class abundance (composition) and the spatial arrangement (configu-
ration) of sub‐samples within samples. The algorithm presented here 
addresses the compositional information retention aspect.

2  | MATERIAL S AND METHODS

2.1 | Defining the sample space

The sample space of spatially explicit, categorical data is finite and 
discrete, and samples of local neighborhoods result in count fre-
quencies of classes. Sample space and relative class abundance 
distributions within samples depend on (a) diversity and spatial char-
acteristics of the landscape and (b) the scale factor.

Richness (rch), the number of distinct classes, and evenness, 
which refers to the class abundance distribution (CAD) across the 

landscape, define diversity. The spatial distribution patterns of the 
classes across the landscape range from systematic to random and 
from highly dispersed to completely aggregated.

Scale factor (sf) is the ratio of the spatial resolution of the scaled 
grid to the resolution of the original, high‐resolution grid; when 
squared, sf provides the number of sub‐units or grid cells within a 
sample (Nsmp). For instance, if the resolution of the original raster is 
1 m and the scaled grid resolution is 7 m, the scale factor is 7 and the 
number of sample sub‐units Nsmp is 49 (sf2).

With sf and rch greater than 1, the number of possible distinct 
sample outcomes is the number of restricted or weak compositions 
with binomial coefficients:

Since percent‐cover per sample is constrained to exactly 100%, the 
precision (Prc) of relative abundance of class (c) is:

For a given sf, as rch increases (Table 1, rows), or for a given rch, 
as sf increases (Table 1, columns), the number of unique composi-
tions increases rapidly. The precision or granularity of measurement 
of relative class abundance of a sample is solely determined by sf 
(Table 1, Equation 2). For a given landscape with a specific rch and 
scaled with a specific sf, the frequency distribution of each possible 
composition then depends on CAD and the spatial dispersion or ag-
gregation pattern of the classes across the landscape.

The constraint that the sum of all sample proportions = 1 makes 
the data compositional in nature (Aitchison, 1986). The sample space 
of compositional data is called the simplex or SD (Aitchison, 1986).

The constraint of the simplex is that all xi ≥ 0, and that the sum 
of all xi  = 1. When dealing with count compositions (i.e. integers), 
quantitative grouping or classification methods that use distance 
metrics from the real space R and that assume multivariate normal 
distributions are inadequate and lead to spurious statistical results 
(Aitchison,  1986; van den Boogaart & Tolosana‐Delgado, 2008; 
Jackson, 1997). Proposed solutions for statistical analysis of com-
positional data are log‐ratio transformations of compositional data 
(Aitchison & Egozcue, 2005; Egozcue, Pawlowsky‐Glahn, Mateu‐
Figueras, & Barceló‐Vidal, 2003), which then allow application of 
analytical methods that are valid in R space. Log‐ratio transforma-
tion, however, is not defined for count compositions with count zero, 
and the methods that have been proposed to deal with zero count 
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data add noise to the data (Martín‐Fernández, Barceló‐Vidal, & 
Pawlowsky‐Glahn, 2003; Martín‐Fernández, Hron, Templ, Filzmoser, 
& Palarea‐Albaladejo, 2014). When scaling categorical raster data, 
samples will contain zeros when not every class is present in every 
sample. The number of zeros in a sample depends on landscape di-
versity and sf. Observations with zeroes are anticipated whenever 
sf is small relative to rch and are always present when sf produces 
a sub‐sample unit count less than rch. The frequency of zeros in a 
sample increases with rch and sptAgg and is present in every sample 
when rch exceeds the number of sub‐samples (sf2). Hence, a scaling 
algorithm that generates representative classification schemes has 
to be robust in dealing with compositional data samples that have a 
high frequency of zeros.

2.2 | The multi‐dimensional grid‐point 
scaling algorithm

The new multi‐dimensional grid‐points (MDGP) scaling algorithm 
presented here conducts spatial aggregation of categorical data 
while simultaneously generating a non‐hierarchical, representative 
classification system for the aggregated scale. The algorithm allows 
for user‐control of information retention while addressing the con-
straints of the sample space of compositional data with a high prob-
ability of zeros in the sample data.

The scaling algorithm performs two integrated tasks: (a) classifi-
cation (grouping) of landscape objects (scaled grid cells) on the basis 
of relative abundance of classes within the samples, resulting in a 
scale‐specific classification system that is representative at the scale 
of aggregation; and (b) assignment of all spatially aggregated units of 
the landscape to one of the scaled classes in the new classification 
system. The algorithm recognizes SD as the multi‐dimensional fea-
ture space spanned by compositional data, resulting in polytopes, 
where the number of features (i.e. richness) defines the number of 
vertices of the polytope and with equal unit distance of all vertices.

For a given landscape, richness (number of original classes) and 
scale factor determine the number and location of regularly spaced 
multi‐dimensional grid‐points (MDGP) in the solid space of the poly-
tope. As richness and scale factor increase, the number of possible 
scaled class combinations (i.e. scaled richness) increases (Table 1). 
With increasing scale factor, however, precision of class propor-
tion (the distance between points in the evenly‐spaced grid) rapidly 
increases beyond ecological and, in many cases, statistical signif-
icance (Table 1). The MDGP‐scaling algorithm limits scaled class‐
label precision by implementing a partitioning parameter, which 
reduces the number of possible grid points (Table in Figure 2). The 
‘parts’ parameter partitions each dimension of the sample space 
(0%–100%) into equal parts. The result is a polytope with regularly 
spaced MDGPs, where the number of vertices is still equal to the 
number of original classes, but now the number of partitions in 
each dimension determines the number of MDGPs (Figure 2). The 
1‐part partition is equivalent to the majority‐rule, where the scaled 
classes are identical to the input classes (Figure 2) and the output 
label precision is 100% (pure classes only). Increasing the scaled 
class‐label precision to 50% requires 2‐part partitioning of the sam-
ple space in each dimension, adding MDGPs at the 50% marks in 
each dimension. Each grid point then gets a class‐label assigned 
that is composed of class and class proportions.

Assignment of each scaled grid cell to one of the MDGPs requires 
a decision rule. The decision criterion applied for this algorithm 
is the percentage similarity or Czekanowski index or coefficient 
(Czekanowski, 1909), here descriptively called compositional infor-
mation retention (IRcmp) (Equation 4)

where Pi = proportion of class i and N = the number of classes 
in the sample data (Smp) of the scaled grid cell. A scaled grid cell 

(4)IRcmp=

N∑
i=1

min
(
PiSmp,PiMDGP

)
,

TA B L E  1  Number of weak compositions for compositions with constraint of exactly 100% coverage. Precision is 100% divided by the 
number of subsamples which is the scale factor squared

 

Number of weak combinations

Scale factor

Richness 3 5 7 9 15 25

2 10 26 50 82 226 626

3 55 351 1,275 3,403 25,651 196,251

4 220 3,276 22,100 95,284 1,949,476 41,081,876

5 715 23,751 292,825 2,024,785 111,607,501  

6 2,002 142,506 3,162,510 34,826,302    

7 5,005 736,281 28,989,675      

8 11,440 3,365,856        

9 24,310 13,884,156        

10 48,620 52,451,256        

Precision 11.11% 4% 2.04% 1.23% 0.44% 0.16%
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is assigned to the MDGP that maximizes IRcmp (minimizes the num-
ber of flipped cells). Revisiting the example of a two‐class landscape 
(Figure 1a) for each of the 1‐ to 5‐part solutions, the number of 

MDGPs increases from two to six classes (Table 2). A grid cell with 
a composition of 73% ‘grass’ and 27% ‘tree’ cover (Figure 1a) is as-
signed to the majority class grass for the 1‐part solution (label pre-
cision = 100%), retaining 73.5% compositional information. For the 
4‐part (label precision = 25%) solution, it is assigned to the MDGP 
with 75% grass and 25% tree, retaining a maximum of 98.5% of com-
positional information (Table 2).

The effects of scaled class‐label precision and sf on the num-
ber of potential and realized grid points and their frequency distri-
butions are demonstrated in Figures 3‒5. A landscape with three 
classes (Figure 3), when scaled with the MDGP‐scaling algorithm 
for class‐label precisions of 1‐, 3‐ and 5‐parts has a potential of 3, 
10 and 21 grid points, respectively. The number of realized grid 
points for each class‐label precision and sf depends on the CAD 
and sptAgg; in Figure 3, these are a geometric CAD with a low 

F I G U R E  2  Red box: Ternary (2‐simplex) plots of three classes a, b and c, for multi‐dimensional grid‐point solutions of 1–5 parts 
representing 100%, 50%, 33.3%, 25% and 20% class‐label precisions, respectively (left to right). Numbers along the axes are percentages 
of class presence in each combination (dot). The outer points have one (the apices) or two classes; the inner points, when present, are 
composed of all three classes in different proportions. The total number of points and the distances between points is the class‐label 
precision, which is determined by the number of partitions (Table). The 1‐part precision solutions (first column) are identical to the majority‐
rule solution with the distance between the three points equal to 100%. Blue box: As richness increases the dimension of the polytope 
increases. For Richness = 4, grid points are evenly spaced within the 3‐simplex (tetrahedron)

TA B L E  2  Scaling solutions of example 1 (Figure 1) applying 
1‐ to 5‐part output class‐label precision solutions. Maximized 
information retention for each class‐label set in bold and maximized 
IR across all class‐label precision solutions in bold red. Class‐
label precision of 25% (4‐part solution) maximizes compositional 
information retention for this grid cell and the MDGP algorithm 
assigns a label nominally representing 75% ‘grass’ and 25% ‘trees’

Parts Label list IR (%)

1 (majority) G100 73.5

T100 26.5

2 G100 73.5

G5_T50 76.5

T100 26.5

3 G100 73.5

G67_T33 93.5

G33_T67 59.5

T100 26.5

4 G100 73.5

G75_T25 98.5

G50_T50 76.5

G25‐T75 51.5

T100 26.5

5 G100 73.5

G80_T20 93.5

G60_T40 86.5

G40_T60 66.5

G20‐T80 46.5

T100 26.5

F I G U R E  3  Neutral random landscape of three hypothetical 
classes (A, B, and C). Class abundance distribution is geometric and 
spatial aggregation low (h = 0)
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spatial aggregation. As output class‐label precision increases to 
33.3% and 20%, the number of realized output classes increases 
from 3 to 10 and 19 classes for a sf of 5 (Figure 4) and to 7 and 13 
for a sf of 15 (Figure 5), respectively. The frequency distributions 
shift from 100% pure classes to a majority of grid cells assigned to 
mixed‐label classes.

As richness increases, the number of possible scaled classes is 
still very high (Table 3), but many of the classes are expected at low 
frequencies across the landscape. Hence, to allow for removal of 
scaled classes with low proportions across the landscape, a thresh-
old parameter for minimum representativeness was implemented. 
Output classes that are below the threshold are iteratively removed, 

F I G U R E  4  Landscape scaling results for landscape in Figure 3, scaled with a scale factor of five. Scaled landscape class frequencies 
(left) and associated maps (right) for label precisions of (a) 100% (1‐part; majority‐rule), (b) 33.3% (3‐part), and (c) 20% (5‐part). Circle size 
displays absolute scale of class proportions (Prop_AS) across all plots; colour rendered as relative scale of class proportions (Prop_RS) within 
each plot. Black dots indicate that the potential grid point was not realized at the aggregated scale. Class labels in the legend of the map as 
generated by the MDGP‐scaling algorithm. Class labels are composed of class name and nominal percent representativeness



     |  7Methods in Ecology and Evolu
onGANN

and their assigned landscape units are reassigned to the remaining 
MDGPs that maximize their IRcmp. The class removal process repeats 
until no class is below the representativeness threshold. Rare classes 
that occur in monotypic patches at the aggregation scale, however, 
might be of ecological significance. Maintaining rare classes even if 
they fall below the representativeness threshold is achieved with a 

threshold parameter for homogeneity, which sets the minimum class 
percentage in a sample to declare it homogenous or monotypic. 
The pseudocode for the MDGP‐scaling algorithm is presented in 
Figure 6.

The objective of the following simulation study was to conduct a 
consistency and sensitivity analysis for the MDGP‐scaling algorithm 

F I G U R E  5  Landscape scaling results for landscape in Figure 3, scaled with a scale factor of 15. Scaled landscape class frequencies (left) 
and associated maps (right) for label precisions of (a) 100% (1‐part; majority rule), (b) 33.3% (3‐part), and (c) 20% (5‐part). Circle size displays 
absolute scale of class proportions (Prop_AS) across all plots; colour rendered as relative scale of class proportions (Prop_RS) within each 
plot. Black dots indicate that the potential grid point was not realized at the aggregated scale. Class labels in the legend of the map as 
generated by the MDGP‐scaling algorithm
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to evaluate the effects of landscape characteristics, scale factor, and 
scaled class‐label precision on information retention and class repre-
sentativeness for the larger landscape.

2.3 | Test framework

To evaluate consistency and sensitivity of MDGP‐scaling, a test 
framework with a simulation component to generate neutral random 

landscapes was implemented. The framework (Figure 7) integrates 
(a) the generation of neutral landscape models, (b) scaling of the land-
scapes, and (c) evaluation of the scaling results. Testing the perfor-
mance of algorithms on replicates of simulated complex landscapes 
with known properties sets the statistical benchmark for applying 
them to real landscapes (Fahrig, 1991; With & King, 1997). A full fac-
torial design for three levels of rch (3, 6, and 9 classes), two models 
of CAD (equal and geometric), and four levels of sptAgg (0, 0.3, 0.6, 1) 

 

Number of constrained combinations

Parts (partitions)

Richness 1 2 3 4 5 6

2 2 3 4 5 6 7

3 3 6 10 15 21 28

4 4 10 20 35 56 84

5 5 15 35 70 126 210

6 6 21 56 126 252 462

7 7 28 84 210 462 924

8 8 36 120 330 792 1,716

9 9 45 165 495 1,287 3,003

10 10 55 220 715 2,002 5,005

Precision 100% 50% 33.33% 25% 20% 16.67%

TA B L E  3  Number of constrained 
combinations and precision limits for 
equal part partitioning of n dimensions 
(richness). Precision is 100%/number of 
partitions

F I G U R E  6  Pseudocode of the MDGP‐
scaling algorithm
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defined 24 landscape types. Equal CAD (Equation 5), although very 
unlikely in natural systems, provided the most neutral random land-
scape type, whereas the geometric CAD (Equation 6) was based on 
the ecological theory of resource limitation (Motomura, 1932), but 
any mathematical or statistical model (i.e. log‐series, gamma, nega-
tive binomial, log‐normal) that models the shape of relative abun-
dance distributions (McGill et al., 2007) could be implemented. Class 
proportions Pc for each class c for equal and geometric CAD were 
calculated as:

Neutral landscape models were produced for landscapes that 
resemble distribution patterns that are driven by environmental 
gradients, one of many pattern types. An algorithm that produces 
such landscapes is the midpoint‐displacement algorithm (Fournier, 
Fussell, & Carpenter, 1982; Palmer, 1992). The algorithm em-
ployed here was the implementation in the Python module ‘nlmpy’ 
(Etherington, Holland, & O'Sullivan, 2015). The parameters that 
determine the landscape pattern are the dimensions of the land-
scape (number of rows and columns), and a spatial aggregation 
parameter h that ranges from 0–1 and controls the level of spatial 
autocorrelation. The resulting array of continuous values was then 
converted to a raster with categorical data, using the classifyArray 
function in the ‘nlmpy’ module, where the weights parameter was 

generated using rch (the number of classes) in combination with 
either the equal or geometric CAD (Equations 5 and 6). Spatial dis-
tribution patterns for rch of three and nine classes, equal and geo-
metric CAD and sptAgg factor h of 0, 0.3 and 1 are demonstrated 
in Figure 8.

For each of the 24 landscape types with unique characteristics, 
10 replicates with 1,000 × 1,000 cells were generated, resulting in 
240 neutral landscapes with known properties. Spatial‐aggregation 
algorithms were evaluated for sf of 5, 9, 15 and 25. Origin of the 
scaled grid was randomized five times for each sf and landscape to 
account for effects of arbitrary origins of the scaled grid.

2.4 | MDGP‐scaling algorithm consistency and 
sensitivity to scaling parameters and landscape 
characteristics

Efficacy of the MDGP‐scaling algorithm to increase IRcmp with 
the increase in class‐label precision, was evaluated on the basis 
of mean IRcmp of all scaled grid cells across the landscape using 
pairwise‐paired Wilcoxon rank‐sign tests (Wilcoxon, 1945). Test 
p‐values were adjusted using the Bonferroni correction for multi-
ple comparisons.

Consistency of the algorithm is crucial to build confidence in its 
application to real landscapes. Consistency was defined as reproduc-
ibility of scaling results across different simulated random landscapes 
that were congruent in the key characteristics of rch, CAD and sptAgg. 
It was expected that scaled landscapes originating at arbitrary grid 
origins of the same original landscape and across replicate landscapes 
with the same properties display low variability in scaling results. 

(5)Pc=
1

rch
forequalCAD

(6)Pc=
2rch−1(

2∗2rch−1−1
)
∗2c−1

forgeometricCAD

F I G U R E  7  Schema of framework 
to test the effects of landscape 
characteristics, scale factor and class‐label 
precision on information retention, class‐
count consistency and class‐label fidelity 
in a full factorial design
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Three indicators that were expected to display low variability are 
IRcmp, class count (CC) of the scaled classification scheme, and class‐
label fidelity (CLF), which is the frequency of class‐label recurrences 
across classification schemes generated at random grid origins.

To evaluate consistency of the algorithm when presented with 
random variation of landscapes with the same characteristics, con-
sistency of mean IRcmp, CC and CLF were evaluated at the landscape 
type level with coefficients of variability (CV). An algorithm, robust 
to random variations of the landscape, is expected to display low CV. 
For IRcmp and CC, CV was calculated across the five random scaling 
results of each of the ten random landscapes per landscape type. 
For the five random origins of each landscape, (a) the mean proba-
bility of class‐label recurrence across all class labels (CLFmnPrb) and 
(b) the proportion of classes for which recurrence probability was 
one (CLFprp1) were calculated. High CLFmnPrb and CLFprp1 indicate 
consistent and reproducible classification schemes. Consistency for 
the CLF parameters was evaluated with the CV calculated across all 
landscapes of a landscape type and summarized by landscape type 
characteristics, scale factors and class‐label precisions.

Sensitivity of the MDGP‐scaling algorithm to scaling parameters 
and landscape characteristics was assessed with the magnitude of 

change for IRcmp and CLF when evaluated by landscape type and sf. 
With increasing class‐label precision, regardless of landscape type 
and sf, IRcmp was expected to significantly increase, while CLF was 
expected to decrease. Significance of differences in IRcmp and CLF 
between class‐label precisions was tested with pairwise‐paired 
Wilcoxon rank‐sign tests (Wilcoxon, 1945), and p‐values were ad-
justed using the Bonferroni correction.

Consistency and sensitivity for the three indicators were as-
sessed for four sf and four class‐label precisions, ranging from 2‐ to 
5‐parts. For the simulation study, the representativeness threshold 
was maintained constant at 1% and class homogeneity at 90%.

The MDGP‐scaling algorithm, simulation and test framework, 
data analysis and visualization were scripted in R (R Core Team, 
2013), using packages ‘raster’ (Hijmans & van Etten, 2010), ‘rgdal’ 
(Bivand, Keitt, & Rowlingson, 2013), ‘compositions’ (van den Boogaart 
& Tolosana‐Delgado, 2008), ‘foreach’ and ‘doParallel’ (Revolution 
Analytics & Weston, 2013). Neutral landscape generation and scaled 
data aggregation for random landscape origins for the different scale 
factors were scripted in Python 2.7 (Python Software Foundation) 
utilizing the Python module ‘nlmpy’ (Etherington et al., 2015). All data 
were processed at the high‐performance‐computing cluster (HPC) 

F I G U R E  8  Neutral landscapes with (a) equal and (b) geometric CAD of three (left panels) and nine (right panels) classes for sptAgg factor 
h = 0.0 (top), 0.3 (middle), and 1.0 (bottom)
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of the Instructional & Research Computing Center (IRCC) at Florida 
International University (FIU).

3  | RESULTS

Mean IRcmp was significantly higher for class‐label precisions of 50% 
and greater (pairwise‐paired Wilcoxon Rank‐Sign tests; Bonferroni 
adjusted p < .001; N = 50; Figure 9). Scale factor had a greater effect 
on IRcmp for majority‐rule aggregated landscapes than MDGP‐scaled 
landscapes for all landscapes regardless of CAD and spatial aggrega-
tion factors greater than zero (Figure 9). Difference in IRcmp between 
MDGP‐scaled and majority‐rule aggregated landscapes increased 

with sf for all landscapes and was much greater for landscapes with 
low sptAgg.

3.1 | Algorithm consistency

Consistency of the algorithm was high for IRcmp, CC and CLF. 
Landscape‐specific coefficient of variation for IRcmp ranged from 
0.05% to 5.2%. Consistency of IRcmp was high across all landscape 
types and scale factors and varied little with scale factor. However, 
evaluating consistency for individual landscape characteristics 
showed that CV was almost twice as high for landscapes with equal 
CAD, and variability increased with richness but decreased with spa-
tial aggregation.

F I G U R E  9  Sensitivity of information retention (IR) to scaling parameters for landscapes with (a) equal and (b) geometric class‐abundance 
distribution (CAD). Richness (rch) increases across columns, while spatial aggregation (sptAgg) increases down rows. MAJ‐1 = majority‐rule 
algorithm with 100% class‐label precision, MDGP = multi‐dimensional grid‐point scaling algorithm with 2 = 50%, 3 = 33%, 4 = 25% and 
5 = 20% class‐label precision
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Variability in class count on average was below 10% when eval-
uated by landscape, class‐label precision and scale factor (95th per-
centile = 19.7%). Lowest consistencies (CV > 20%) were observed 
only for a few landscapes with high spatial aggregation (h = 1), and 
in two instances for low aggregation (h = 0) when the scale factor 
was 25.

Consistency in CLF was high for both parameters, CLFmnPrb 
and CLFprp1. Mean CV for CLFmnPrb was below 10% for all label 
precisions (95th percentile = 12.6%). The strongest effect on con-
sistency of CLFmnPrb was observed for spatial aggregation of land-
scapes. For landscapes with high spatial aggregation (h  =  1) CV 
was on average 8.3% (95th percentile = 15.9%), at least twice as 
high as for all lower aggregation levels. Variability of CLFprp1 was 
much higher than for CLFmnPrb. CLFprp1 varied most across spatial 
aggregation levels as well, but CV reached 18.8% (95th percen-
tile = 34.6%). No effects on consistency of either CLF metric were 
observed for landscape characteristics richness and CAD, or for 
scale factor.

3.2 | Algorithm sensitivity

Mean IRcmp increased with increasing class‐label precision and 
decreasing sf for all landscapes (Figure 9). Mean IRcmp was sig-
nificantly lower (paired Wilcoxon rank‐sign test; p  <  .001) for 
landscapes with equal CAD than for those with geometric CAD, 
and it increased with sptAgg and decreased with rch (Figure 9). 
Considering the magnitude of effect, a diminishing return for IRcmp 
with increasing class‐label precision was observed across all land-
scapes and sf (Figure 9). Largest gains were consistently observed 
when increasing label precision from 1‐part to 2‐part solutions 
(majority‐rule or 100% to MDGP‐2 or 50% precision). Increase in 
IRcmp with label precision was reduced as sptAgg increased and 
was lowest for landscapes with aggregation of one. Largest gains 
in IRcmp with increasing label precision were observed for land-
scapes with high rch and for high sf (Figure 9).

Class‐label fidelity was high for all landscape types, scale fac-
tors and class‐label precisions, but decreased with increasing class‐
label precisions (Figure 10). Mean probability of class recurrence for 
landscapes with equal CAD ranged from 0.99 ± 0.02 for a class‐label 
precision of 50%, decreasing to 0.91 ± 0.1 for a precision of 20%. 
For landscapes with geometric CAD, a mean probability reduction 
of 0.02 ± 0.05 was observed when compared to the correspond-
ing equal CAD landscapes (Figure 10). With increasing class‐label 
precision, the greatest losses of CLF were observed for fully aggre-
gated landscapes, regardless of rch and CAD. For landscapes with a 
geometric CAD and low sptAgg, CLF actually increased with class‐
label precision as rch increased to nine classes (Figure 10).

4  | DISCUSSION

The scale of analysis is crucial when developing ecological mod-
els, as results for environmental and ecological processes can vary 

significantly when evaluated at different scales. Essential compo-
nents for reliable interpretation of results are selecting the ap-
propriate analytical scale for the ecological processes modelled 
and providing data with adequate precision to support the models. 
The MDGP‐scaling algorithm is the first algorithm that generates 
data‐driven, scale‐representative classification schemes while 
conducting spatial data aggregation. The simulation study dem-
onstrated that the algorithm consistently delivers similarly scaled 
class labels when generating scale‐specific classification systems. 
Representativeness of generalized data is application‐specific. 
When scaling categorical data, two thresholds are of interest: 
the minimum level of thematic class precision required to main-
tain enough information to answer the scientific question; and the 
threshold of minimum relative abundance of a class, below which 
it is of no ecological interest at the aggregated scale. The minimum 
level of class precision is the point beyond which location‐spe-
cific generalization reduces information content to levels where 
the question of interest can no longer be addressed. To attain a 
desired precision in the thematic domain, the MDGP‐scaling al-
gorithm provides control parameters that allow for IRcmp optimi-
zation in the thematic domain that can be tuned with respect to 
ecological significance for subsequent modeling. Spatially explicit 
and exhaustive layers of compositional information retention that 
are provided by the MDGP‐scaling algorithm provides valuable 
input for ecological models that consider the spatially explicit 
propagation of uncertainty and error.

Gains in IRcmp with increasing class‐label precision followed the 
law of diminishing returns. Richness in scaled classification systems 
increased while CLF diminished, which complicates optimization of 
the precision parameter. Decreasing class‐label precision in several 
instances reduced IRcmp marginally while significantly enhancing CLF 
and reducing class count, producing a more general classification 
scheme. An increase in class‐label precision did not always increase 
CC or reduce CLF, which indicates that the class‐label precision pa-
rameter needs to be optimized for individual landscapes and scale 
factors.

4.1 | Ecological applications

Spatially explicit models of landscape dynamics have their advan-
tages over spatially implicit models (DeAngelis & Yurek, 2017), but 
they require the detection of spatially explicit change at adequate 
spatial and temporal resolutions. Detection of changes in land 
cover and ecosystem properties are common remote sensing ap-
plications. Interpretation of changes in spectral‐reflectance pat-
terns, as they relate to biophysical parameters of the land surface 
or as changes in land cover depends on the accurate identification 
of land cover at the spatial, temporal and thematic precision at 
which changes are modeled. Landscapes that display high spatial 
heterogeneity complicate retrieval of biophysical parameters using 
remotely sensed data (Jacob & Weiss, 2014; Liu, Hiyama, Kimura, 
& Yamaguchi, 2006; Lu, 2006). For instance, Leaf Area Index (LAI), 
and Fraction of Photosynthetically Active Radiation (FPAR) are two 
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important biophysical variables in ecosystem productivity models 
that rely on prior knowledge of land‐cover information (Ganguly 
et al., 2008; Knyazikhin et al., 1999; le Maire, Marsden, Nouvellon, 
Stape, & Ponzoni, 2012; Steltzer & Welker, 2006; Zhao et al., 2016). 
Sensitivity of LAI and FPAR to land‐cover and high heterogeneity of 
vegetation types within a pixel affects LAI estimates in a nonlinear 
fashion (Garrigues, Allard, Baret, & Weiss, 2006; Lotsch, Tian, Friedl, 
& Myneni, 2003), and LAI estimate errors at coarse resolution are 
inversely related to the proportion of the dominant land cover in a 
pixel (Tian et al., 2002). Consequently, scaling of land cover maps 
that maintains more precise plant community information reduces 
error and uncertainty of biophysical parameter estimates from mod-
erate‐resolution remotely sensed data.

Another application that requires scaling of land‐cover informa-
tion is modeling land‐cover change across long temporal extents. 
Since the early 2000s, availability of multi‐spectral datasets with 
high spatial resolution has increased. Modeling spatially explicit 
and exhaustive changes in the past, however, requires resorting 
to data with lower spatial resolution. Combining categorical land‐
cover maps derived at different scales requires high spatial resolu-
tion products to be scaled to the lower resolution reconciling scaled 
differences of classification systems. A high priority in this case is to 
determine class‐label precisions at which the low‐resolution sensor 
can spectrally differentiate the most common co‐occurrence pat-
terns of mixed classes. Applying the MDGP‐scaling algorithm can 
assist in the optimal class‐label precision selection for a variety of 

F I G U R E  1 0  Sensitivity of class‐label fidelity evaluated across all landscape iterations with the same characteristics for five random 
origins (N = 50) for landscapes with (a) equal and (b) geometric class‐abundance distribution (CAD). Richness (rch) increases across columns, 
while spatial aggregation (sptAgg) increases down rows. MAJ‐1 = majority‐rule algorithm with 100% class‐label precision, MDGP = multi‐
dimensional grid‐point scaling algorithm with 2 = 50%, 3 = 33%, 4 = 25% and 5 = 20% class‐label precision
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sensors for which larger spatial extents or longer time‐series data 
are available. In a test study, the MDGP‐scaling method was ap-
plied to scale 2 m resolution plant community maps derived from 
WorldView‐2 data to the 30 m Landsat resolution (Gann, 2018a). 
Scaling the original map with a class‐label precision of 33% increased 
IRcmp by 15%, while also increasing class‐detection accuracy by 
5.2% when compared to majority‐rule aggregation. Classification ac-
curacy increased because the mixed classes had more refined class 
definitions (labels) that translated into more specific multi‐spectral 
reflectance patterns. How scaled maps with higher class‐label pre-
cision increase accuracy and precision of ecological modeling still 
needs to be evaluated.
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