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ABSTRACT OF THE DISSERTATION 

AERODYNAMIC LOAD CHARACTERISTICS EVALUATION AND TRI-AXIAL 
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 Damages during extreme wind events highlight the weaknesses of mechanical 

fasteners at the roof-to-wall connections in residential timber frame buildings. The 

allowable capacity of the metal fasteners is based on results of unidirectional component 

testing that do not simulate realistic tri-axial aerodynamic loading effects. The first 

objective of this research was to simulate hurricane effects and study hurricane-structure 

interaction at full-scale, facilitating better understanding of the combined impacts of 

wind, rain, and debris on inter-component connections at spatial and temporal scales. The 

second objective was to evaluate the performance of a non-intrusive roof-to-wall 

connection system using fiber reinforced polymer (FRP) materials and compare its load 

capacity to the capacity of an existing metal fastener under simulated aerodynamic loads.  

The Wall of Wind (WoW) testing performed using FRP connections on a one-

story gable-roof timber structure instrumented with a variety of sensors, was used to 

create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall 

connections tested under several parameters: angles of attack, wind-turbulence content, 
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internal pressure conditions, with and without effects of rain. Based on the aerodynamic 

loading results obtained from WoW tests, sets of three force components (tri-axial mean 

loads) were combined into a series of resultant mean forces, which were used to test the 

FRP and metal connections in the structures laboratory up to failure. A new component 

testing system and test protocol were developed for testing fasteners under simulated tri-

axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were 

compared for hurricane clips. Also, comparison was made between tri-axial load capacity 

of FRP and metal connections.  

The research findings demonstrate that the FRP connection is a viable option for 

use in timber roof-to-wall connection system. Findings also confirm that current testing 

methods of mechanical fasteners tend to overestimate the actual load capacities of a 

connector. Additionally, the research also contributes to the development a new testing 

protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic 

database obtained from the WoW testing. 
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1. Introduction 
 
1.1 Tropical Cyclone Activities 

Since the early-1990 the North Atlantic Basin has experienced a substantial 

increase in tropical cyclone activity.  Tropical cyclones form in tropical regions where 

there is warm water (at least 80 degrees Fahrenheit), moist air and converging equatorial 

winds (see Figure 1.1).  Most tropical cyclones begin off the west coast of Africa.  

Typically, as the thunderstorm moves out over the Atlantic Ocean, it gains strength and 

becomes a tropical cyclone fueled by the warm seasonal waters; were zones of warm sea 

surface temperatures, decreased wind shear and areas of low pressure are prevalent.  

Goldenberg et al. (2001) concluded that the years 1995-2000 saw the highest mean 

number of major tropical cyclones and mean Net Tropical Cyclone (NTC) activity of any 

6 consecutive years in the entire 1944-2000 database.   

 

 

 

 

 

 

 

 

Figure 1.1: Formation Dynamics (Left) and Tropical Cyclones Winds (Right)  
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Whether the increase in tropical cyclone activity is a consequence of climate 

change or a pattern repeated during Earth natural cycles may be debatable.  Since the 

tropical cyclone database was implemented in 1944 and more sophisticated weather-

monitoring systems employed today allow meteorologist to account for all weather 

activities, it is difficult to ascertain the tropical cyclone activity before the 1940’s.   

It is a fact that the 2004 and 2005 tropical cyclone seasons were extremely active; 

costing the state of Florida and adjacent states millions of dollars in damages and loss of 

life.  The annual average economic losses due to tropical cyclone activity increased from 

$1.3 billion in the years 1949-1989 to $10.1 billion from 1990-1995; with the occurrence 

of tropical cyclones Katrina and Rita, the 2005 season set a new record with losses 

totaling over $100 billion (Lott and Ross, 2006).   

 The economic impact of wind damage is at the highest point ever recorded.  Wind 

related property damage is the most costly of all natural disasters with the costs doubling 

every 5-10 years (Davenport 2002).  Table 1.1 shows several of the most severe tropical 

cyclones and the economic impact of each event (Dantin, 2007).  Loss of life also 

increased; 1,450 persons lost their lives between the 2004 and 2005 tropical cyclone 

seasons. 

 

1.2 Damages in Residential Buildings  

The residential damages occurring during tropical cyclone activity and the loss of 

life reflect the obsolete and poor construction practices in tropical cyclone active areas.  

More importantly, the public’s belief in the effectiveness of its built environment and its 

ability to withstand the brutal forces of nature has been shattered.  Damages caused by  
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Table 1.1: Comparison of Tropical Cyclones Losses (Dantin, 2007) 

 

tropical cyclone Andrew in Florida and Iniki in Hawaii in 1992, demonstrated that 

tropical cyclone impact mitigation is an imperative area of study (DCCA, 2006).  More 

recently, the impact of hurricanes Katrina and Rita indicated that serious research must be 

undertaken into hurricane damage mitigation in order to lessen the toll that hurricane 

and/or tropical cyclones can exact in human lives and property.  
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In the United States, it is estimated that wood-frame buildings account for 

approximately 90% of all residential buildings (Li, 2005); and approximately 50% of the 

United States population now lives within 100 miles of a tropical cyclone-prone coastline 

(Alvarez 2000).  These are the zones at most risk for tropical cyclone activity, so the 

development of structural mitigation techniques and retrofit systems that protect residents 

against timber-framed home damage and loss of life is of great importance.   

 

1.3 Research Objectives 

 This research work addresses two high priority investment categories for 

hurricane research: ‘Impacts and Interactions’ and ‘Preparedness and Building 

Resiliency’ as suggested by the National Science Board (NSB, 2007).   

 Engineered structures are vulnerable to damage from tropical cyclone induced 

wind, rain, and debris; however the concepts of their combined impacts on a structure are 

not well understood.  Therefore, the first objective of this research is to simulate tropical 

cyclone effects, in order to study tropical cyclone-structure interaction in a full-scale 

environment.  The use of a full-scale testing environment will enhance the understanding 

of the combined impacts of wind, rain, and debris on the built environment at spatial and 

temporal scales.  High-resolution surface wind data obtained during tropical cyclones 

through the Florida Coastal Monitoring Program (FCMP) will establish a baseline for 

simulating the requisite surface level wind characteristics in the full-scale testing facility. 

 Damages during extreme wind events highlight the weaknesses inherent in coastal 

residential building construction and underscore the need for improving their structural 

performance; such as the weak-link at the roof-to-wall connection.  Current codes call for  
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the use of code approved metal connectors; commonly referred as hurricane clips or 

straps in timber frame construction.  Thus, second objective of the research is to develop 

a novel alternative system, cost-effective, light, strong, ductile, and non-intrusive roof-to-

wall connection system.  Using high performance fiber composite materials, such as 

fiber-reinforced polymers (FRP), an alternative to conventional intrusive connections will 

be developed.  The concept and viability of such FRP connection has been developed 

through component testing using actuator loading (Canbek, 2009). However, the 

aerodynamic loadings on typical residential buildings needs to be evaluated at full-scale 

and such results need to be used to develop roof-to-wall connections that will withstand 

extreme wind loading.  The methodology for such development will involve performance 

based design (PBD); a concept well embraced by the earthquake engineering community.  

The project will assess the structural and economical feasibility, constructability, and 

performance of the proposed connection system through detailed experimental 

investigations, including non-linear effect. The FRP connection system will be applicable 

for new and existing buildings that are prone to extreme wind events such as tropical 

cyclones and hurricanes.  The FRP connection developed could be an alternative for 

retrofitting existing buildings that may have wood fiber degradation due to long exposure 

to moisture or water damage and excessive nail penetration.  Older buildings may have 

degraded timber members that can be further damaged by the addition of more nails into 

the wood fibers, which will reduce the connection capacity.   
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1.4 Outline of Research Work 

 The scope of the research work is described herein.  The investigation into the 

development of a FRP roof-to-wall connection consisted of many phases.  The initial 

phase was an exhausting literature review of previous roof-to-wall connection methods, 

wood-FRP applications and existing testing methods.   

Research on the initial development of FRP roof-to-wall connections have been 

already performed at the Structures and Construction Laboratory (SCL) (Canbek, 2008).  

A series of component tests were performed using a universal testing machine (UTM) 

and compared to the currently used fastening products capacities.  Based on the results of 

component testing a full-scale section of a building was built and incorporated with FRP 

roof-to-wall connections and tested at the SCL.  These tests demonstrated the overall 

ultimate failure modes of the connections in the structures lab.  These results helped in 

determining the configuration of the FRP connection including the type of FRP, type of 

epoxy, and shape details.  

The current work used the results obtained from initial component level testing 

(Canbek, 2009) and performed systematic hybrid testing using full-scale aerodynamic 

and aero-hydrodynamic experiments and additional component level experiments to 

develop the final design of the FRP connection.  The hybridization was based on PBD 

approach taking into the effects of wind, rain, and internal pressure due to breach of the 

building envelope.  

Wall of Wind (WoW) tests simulated hurricane effects for the purpose of 

evaluating the performance of the initially developed roof-to-wall connection system and 

also determining the wind-rain loading effects at full-scale.  Tri-degree of freedom load 
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cells were used to measure the loads induced by properly simulated hurricane level winds 

accompanied with wind-driven rain (WDR) on FRP roof-to-wall connections 

incorporated in a holistic building model.  A series of uplift and bi-directional lateral load 

components were developed by correlating the connection loads and the WoW flow field 

profiles.  These coefficients were evaluated using different angles of wind attack on the 

structure, under enclosed and partially-enclosed conditions, as well as with wind driven 

rain effects.   

Once obtained, the SCL was used to conduct a series of test that validated the 

WoW coefficients.  At the component level and using the WoW obtained load values, 

these loads were used in a series of simultaneous tri-directional force component testing 

completing an entire hybrid system for the ultimate design of the FRP connections.  

Using the tri-directional force component or 3-dimensional resultant load testing on a 

connection section, a FRP connection could be directly correlated to aerodynamic and 

hydro-dynamic loads.   

 

1.5 Layout of Report 

The report has been divided into the following chapters.  

Chapter 1 explains the objectives of this research and the hybrid testing concept used.  

Chapter 2 discusses the current metal connection systems used in residential construction 

and the reports on failures of the roof-to-wall connection during an extreme wind event.   

Previous testing research and the results regarding their failure modes are presented.  

Chapter 3 describes the existing wind testing methods and the new concept of full-scale 

wind-structure interaction studies using the WoW to test and validate connection systems.  
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Chapter 4 describes prior research work on FRP connections and the completed work at 

FIU on FRP timber connections (Canbek, 2009).  The FRP component and full-scale tests 

of several FRP roof-to-wall connections are presented. 

Chapter 5 describes the WoW testing on the FRP connections subjected to tropical 

cyclone simulations to study the aerodynamic and aero-hydrodynamic effects.  The test 

specimen, instrumentation, their location and WoW testing methodology is outlined.  The 

test results are reported and the connection loads to use at the SCL were developed.   

Chapter 6 describes the testing at SCL at component level using the aerodynamic loads 

obtained from the WoW tests.  The specimen, reaction frame, test set-up, test protocol 

and used instrumentation are presented; and all tests results are reported.  

Chapter 7 discusses the final conclusions on the FRP design and suggests 

recommendations for future research on FRP roof-to-wall connections. 

Chapter 8 reports all the references used in this dissertation. 
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2. Timber Connection Systems  

 

2.1 Residential Construction Connection Systems  

Timber or wood construction has been around before the 1800’s.  By the 1940’s 

the introduction of mass produced steel nails and light-frame construction led to a 

revolutionary change in the wood construction industry.  As hundreds of thousands of 

veterans of World War II needed temporary housing, the construction of roof structures 

was innovated and plywood was introduced to replace planking (Wolfe and McCarthy 

1989).  These construction methods still dominate the construction practices in residential 

structures. 

As trussed-roof configurations become more and more complex, the necessity to 

investigate and understand the behavior (i.e. how loads are resisted, transferred, and 

distributed) of the complete roof system becomes progressively more important (Gupta 

2005).  There are different ways that a residential structure can fail under the extreme 

wind loads associated with tropical cyclones and hurricanes.  Most people only consider 

window or garage door shutters when retrofitting their homes as a tropical cyclone 

approaches.  In reality there are other structural considerations that must be addressed in 

order to increase the resilience of a residential building.   

 

2.1.1 Wind-Load Induced Failures 

As wind impacts a building, it creates vortices that can overwhelm the structure 

on different locations (see Figure 2.1).  As wind travels around sharp edges, such as wall 

corners, roof overhangs and roof ridgelines, a separation bubble is formed.  The wind  
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Figure 2.1: Wind Dynamics around a Building 

 

separation bubble is bounded by a free shear layer region of high velocity gradients and 

high turbulence (Holmes 2001).  Conical vortices are formed (see Figure 2.2); as these 

are shed down wind, high negative pressure peaks are produced which generate suction 

or uplift loads on roofs up-lift loads on a roof are transferred through the roof elements 

(e.g., tiles, shingles) to the plywood sheathing to the roof trusses; which could lead to 

roof detachment if the inter-component connections are improperly designed or installed.  

Figure 2.3 illustrates the distribution of forces along a timber building during a high wind 

event.  In a properly designed building the roof loads are transferred through a continuous 

vertical load path to the foundation.   

Besides uplift, the high tropical cyclone winds place loads on a building that 

creates other modes of structural deformation (Figure 2.4).  These are racking that is 

resisted by the walls and sliding and overturning both resisted by the anchoring system 

into the concrete (www.SimpsonStrongTie.com).  If the structure is not properly 

Separation 
“bubble” 

Stagnation Point
Fluctuating re-
attachment point 

Shear layer positions: 
High turbulence 
Low turbulence 
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anchored to foundation, it may lead to sliding or raking of the structure.  As demonstrated 

in tropical cyclone Camille, it is essential that wood-frame buildings have to be properly 

anchored to their foundations, and the walls, floors and roofs adequately tied together 

(Dikkers et al.  1970).   

 

 

                       

 

Figure 2.2: Conical Vortices (Texas Tech University on the Right) 

 

 

 

 

 

 

 

 

Figure 2.3: High Negative Pressure Peaks Generate Roofs Suction or Uplift Loads  
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connections, wall-to-floor connections, or anchorage-to-foundations fail.  Continuous 

load path and structural integrity are crucial for windstorm resiliency of residential 

buildings.   

Tropical cyclone damage has shown that wood structures tend to suffer little 

damage when the roof system remains intact under extreme wind loading, while major 

damage occurs when the roof system is partially or completely damaged (Reed et al.  

1997). Post tropical cyclone inspections have noted the entire roofs detaching from 

buildings in some cases (Figure 2.5).  This indicates a serious deficiency in the roof-to-

wall connection systems, most notable in older construction. Thus the roof-to-wall 

connections play an important role to prevent roof failures and lessen the damages during 

high winds.  

 

 

 

 

 

 

 

 

 

Figure 2.5: Complete Roof Failure (Coastal Contractor, 2009) 
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2.1.3 Current Practice for  Roof-to-Wall Connections  

The Florida Building Code (FBC, 2007) has special provisions for buildings in 

the High Velocity Hurricane Zone (HVHZ) which consists of Miami-Dade and Broward 

counties in the state of Florida.  Due to the strict design and construction practices used in 

the HVHZ, all metal connectors must be approved and rated by the code compliance 

authorities for use in buildings.  The Notice of Approval (NOA) lets structural designers 

know the capacity of a specific product to be used in their design (Figure 2.6).  FBC-07: 

2321.7.2 requires all wood to wood straps to resist a minimum uplift force of 700 pounds 

with 4-16d nails in each member (FBC, 2007).  The nails used may change if the NOA 

allows it. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Notice of approval (MDC, 2004) 
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Although significant improvements in building codes have improved roofing 

designs, such as the use of ring-shank nails spaced every 6 inches, post tropical cyclone 

inspections have noted a deficiency in the roof-to-wall connection systems; especially in 

older constructions.  There has been limited research focusing on the load transfer 

mechanisms resulting from vertical uplift loads (i.e. wind loads) and the distribution of 

those loads through the roof assembly, especially through the roof-to-wall connections 

(Mani 1997).   

Traditional intrusive roof-to-wall connections, such as toe-nail connections metal 

plates and hurricane clips connected with nails have several disadvantages.  The invasive 

nature of these connections weakens the connected structural members.  Timber 

structural capacity is decreased through crushing of the wood fibers of the bottom chord 

of a roof truss by deep and dense pattern of toe-nail penetrations.  Holes created from 

these connections can also make paths for water infiltration.  Along coastal areas, metal 

connections deteriorate rapidly due to the harsh environments.  Extreme wind events 

cause non-linear aerodynamic loading effects which cause splitting and tear out of wood, 

nail withdrawal, nail bending, and clip buckling (NAHB 2002; Riley and Sadek, 2003).  

The next section describes past research regarding roof-to-wall connections.  

 

2.2 Past Research on Roof–to-Wall Connections  

Only limited research has been directed toward the analysis of the response of the 

inter-component connections and their effect on a complete building system (Polensek 

and Schimel, 1986, 1988; Groom and Leichti, 1991, 1994).  Some of the previous studies 

performed by Rosowsky et al. (1998) and Reed et al.  (1996, 1997), also recognized that 
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the behavior of inter-component connections is not well understood and recommended 

further testing of such connections.  The purpose of the analytical studies conducted on 

different structural components as well as the inter-component connections in an 

assembled model, is to compare the experimental research and assess the validity of the 

proposed models and analyses (Riley and Sadek 2003).   

 Experimental testing of roof-to-wall connections in wood frame buildings was 

carried out by National Institute of Standards and Technology (NIST) (NISTIR 6938 by 

Riley and Sadek, 2003).  The National Association of Home Builders (NAHB) Research 

Center, Inc., under sponsorship of the U.S.  Department of Housing and Urban 

Development (HUD), performed research work on roof framing connections in 

conventional residential construction (NAHB, 2002).   

Past studies and experiments reveal that there are several inconsistencies in the 

design methodologies used for engineering analysis of traditional and hardware-type 

connections and there are several failure modes that can potentially lead to building 

safety issues.  The study suggested that “further increases in the connection capacity 

would require clips or straps that connect the trusses directly to the wall studs, and should 

probably be paired with straps that anchor the studs directly to the foundation” (Riley and 

Sadek, 2003).  The performance of connections tested by NIST was necessary for the 

development of analytical models of the connections and for complete 3-D numerical 

models of entire houses (Riley and Sadek, 2003).   

Additional research and testing was recommended to predict the response of roof-

to-wall connection, its performance and their non-linear behavior under combined loads 

from wind induced dynamic effects (Riley and Sadek, 2003).  Riley and Sadek suggested 
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testing of different types of connectors and longer wall lengths.  Furthermore, they 

recommended that “component tests of single, directly loaded connections would allow 

numerous tests with a particular load pattern and connection type, to determine the 

statistical mean, variance, and uncertainty of the response” (Riley and Sadek, 2003).   

 For the NAHB project, several research areas were investigated to benchmark the 

response of conventional and engineered roof connections.  Results of the hardware-type 

connections show a potential than can lead to inaccurate prescriptive connection 

provisions and design solutions.  Testing revealed that primary failure modes for joints 

with hurricane clips included buckling of the clip, separation of metal truss plate, and 

truss rotation.  The research report emphasized that the current design methods can 

potentially overestimate the resistance of certain connections and cause safety issues 

(NAHB, 2002). 

Several roof-to-wall connection systems were tested under various past research 

projects. The testing of the various systems and the results are described below. 

 

2.2.1 Toe Nailed Connection Systems 

Past research work included toe-nailed connections.  The building frame 

specimen incorporated with these connections was subjected to four types of loading: 

monotonic up-lift, monotonic lateral load or pushover, combined up-lift and lateral load, 

and cyclic lateral loading.  The loads were generated by vertical and horizontal actuators 

(Figure 2.7).  The experiments investigated behavior of the connections at failure.   
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2.2.1.1 Up-Lift Loading 

Toe-nailed connection failure mode from up-lift load test at NIST was 

characterized with nails pulling out of the top plate of the wall, which resulted in 

separation in the bottom wood fibers of the bottom chord of the roof truss (see Figure 

2.7).  A constant up-lift deformation of 0.25 in/min was applied for 360 seconds.  After 

125 seconds, the actuator load was almost 4,000 pounds (8 connections would correspond 

to 500 pounds per connection), the specimen failed at the connection between the trusses 

and the top-plate of the wall.  According to the test results the measured load of a 

particular connection failure was not more than 600 pounds.  The behavior of the 

connection was highly non-linear and once the connection reached its ultimate load it lost 

a significant portion of its resistance.   

Several research areas were investigated to benchmark the response of toe-nail 

roof-to-wall connections by the NAHB (NAHB, 2002).  Results from the studies indicate 

 

 

 

 

 

 

 

 

 

Figure 2.7: (a) Vertical and Horizontal Actuators; (b) Toe-Nail Failure (NIST, 2003) 

 
                          a                                                              b 
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several inconsistencies in the design methodologies used for engineering analysis of 

traditional connections that can potentially lead to inaccurate regulatory connection 

provisions and design solutions.  Testing revealed that primary failure modes for toe-

nailed connections included splitting and tear-out of wood, nail bending, and nail-

withdrawal NAHB.   

Most toe-nailed connections fail at winds in excess of 90 mph (Cheng, 2004).  

Cheng’s research, “Testing and analysis of the Toe-Nailed Connection in the Residential 

Roof-to-Wall System”, looked into the rafter to top-plate toe-nailed connection.  Using an 

Instron 5581 test machine, over 300 mechanical tests were conducted on three different 

wood types and two common and box nail types; to statistically determine mean values 

and variance of the uplift capacity of selected wood types (Cheng, 2004).  The study 

suggested that an amendment to the International Building Code (IBC, 2000) would be a 

more effective approach to reduce building loss.  The author strongly opposed the use of 

toe-nailed roof-to-wall connections in any type of buildings located in hurricane prone 

regions and suggested the use of other types of hardware (Chang, 2004). 

 

2.2.1.2 Lateral Loading 

The NIST researchers tested specimens using monotonic lateral load to determine 

the ultimate shear capacity and the pushover response of the toe-nailed connection.  A 

lateral deformation (parallel to the side wall) was applied.  The specimen resisted the 

applied load before it failed at approximately 2,500 pounds (8 connections corresponded 

to 300 lbs/connection) (NIST, 2003).  The overturning moments in the connection at one 

end caused the outer truss to pull free of the top-plate (please see Figure 2.8).  The failure  
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Figure 2.8: Failure of Toe-Nail Connection with a Lateral Load (NIST 2003) 

 

mode was observed to be nail withdrawal from the top-plate, resulting in wood splitting 

from the bottom chord of an inner truss.  The failed outer truss reached an ultimate load 

of approximately 550 pounds.  Results indicated that the connections in shear are rigid, 

but more flexible in tension (NIST, 2003).   

 

2.2.1.3 Combined Up-Lift and Lateral Loading 

NIST researchers tested the specimen in both up-lift and lateral directions to 

simulate wind effects on a structure, including a lateral load component to simulate 

pressure on the outside wall (NIST, 2003).  A constant up-lift deformation was applied to 

the roof, simultaneously a lateral displacement was applied to produce a lateral load equal 

to 29.5% of the vertical load, but in general the peak lateral loads were about 25% of the 

peak vertical loads (Figure 2.9 and 2.10) (NIST, 2003).   
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Figure 2.9: Displacements Applied To Specimen with Toe-Nail  

Connections (NIST, 2003) 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Loads Applied To Specimen with Toe-Nail Connections (NIST, 2003) 
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Similarly to previous tests, the specimen’s stiffness decreased throughout the test, 

but the resistance continued to increase until connections began to failed (NIST, 2003).  

The nails in the connection, placed in tension by the overturning moment from the lateral 

portion of the load, pulled free from the top plate of the wall and resulted in some wood 

splitting in the top plate of the wall (Figure 2.11).  The lateral force did not exceed 140 

pounds and the maximum up-lift force in the outer truss was 900 pounds (NIST, 2003).  

The peak vertical loads carried by the failed connections were larger than those measured 

in the up-lift test alone. 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Failure of Toe-Nailed Connection with Combined Load (NIST, 2003)   
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2.2.2 Mechanical Connection Systems (Hurricane Clip) 

In past research, mechanical clips were tested under four types of loading: 

monotonic up-lift, monotonic lateral load or pushover, combined up-lift and lateral load, 

and cyclic lateral loading.  The experiments investigated behavior of the connections at 

failure.   

 

2.2.2.1 Up-lift Loading 

NIST tested a hurricane clip specimens twice in up-lift.  The first test failed when 

the entire top-plate pulled loose from the wall studs and cladding, with a load of 6,000 

pounds (8 connections would correspond to 760 lbs/connection).  Results indicated that 

the maximum ultimate load of failure was 1,000 pounds per connection (NIST, 2003).  

The second test failure was occurred when the hurricane clip remained attached to the 

upper member of the top-plate and the truss, but the upper member of the top-plate and a 

portion of lower member separated from the rest of the wall (Figure 2.12).  The behavior 

of the hurricane clip connection was highly non-linear and once the connection reached 

its ultimate load of 1,070 pounds, it also lost a significant portion of its resistance.  The 

hurricane clip connections showed good ductility, continuing to carry significant, but 

reduced, load at relatively large levels of deformation (NIST, 2003). 

The data obtained at NIST provided the basis for limited analytical models of the 

connection response.  Figure 2.13 shows a comparison of toe-nail and hurricane clip 

failure.  The behavior of both toe-nail and hurricane clip is highly nonlinear.  Once the 

connections reached their ultimate load they lose a significant portion of their resistance 

(NIST, 2003).  Nevertheless, Figure 2.13 clearly shows that hurricane clips have a higher  
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Figure 2.12: Typical Failure Modes of Roof-To-Wall Connections  

from NIST Tests (NIST, 2003) 

 
 

 

 

 

 

 

 

 

 
 

Figure 2.13: Comparison of Responses with Toe-Nailed Connections and  
Hurricane Clips (NIST, 2003)
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up-lift capacity.  Furthermore, in most cases the hurricane clip had a larger deformation at 

failure than the toe-nail connection; and the residual strength of the hurricane clip 

connection was usually greater than the toe-nail connection (NIST, 2003).  Further 

research and testing was recommended to fully quantify the response of roof-to-wall 

connections.   

The NAHB researchers did not conduct any up-lift tests on metal connectors only 

lateral resistance was tested.  

 

2.2.2.2 Lateral Loading 

NIST tested a specimen under a monotonic lateral load to determine the ultimate 

shear capacity and the pushover response of hurricane clip connections.  A lateral 

deformation was applied at a constant rate and a near constant stiffness; the specimen 

began to fail at 3,500 pounds (NIST, 2003).  The outer truss pulled free of the top-plate, 

due to the tension of the overturning moments; as shown in Figure 2.14.  As in the 

previous toe-nail tests, the failure mode was nail withdraw from the top-plate.  The 

results indicated that the hurricane clip connection was fairly stiff in shear, but weaker in 

tension.  The response of the connections were similar in shear, but the outer connection, 

which failed first, was clearly carrying greater tension due to the overturning moments 

(NIST, 2003).  The peak vertical load measured in the failed connection was near twice 

as large as the peak lateral load.  It was smaller than the load measured in the hurricane 

clip during the up-lift loading test.  This may be due to the different modes of failure 

between the two tests.  
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Figure 2.14: Outer Truss Failure Due to Overturning Moment (NIST, 2003) 

 The behavior of both types of connections (toe-nail and hurricane clip) was highly 

non-linear, with most deformation occurring in the vertical direction.  Figures 2.15 and 

2.16 illustrate that the hurricane clip connections had a higher capacity in both shear and  

 

 

 

 

 

 

 

 

 

Figure 2.15: Comparison of Responses of the Inner Trusses (NIST, 2003) 
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Figure 2.16: Comparison of Responses of the Outer Trusses (NIST, 2003) 
 

up-lift (NIST, 2003).  The residual strength of the hurricane clip connection tended to be 

similar to or greater than the capacity of the toe-nailed connection (NIST, 2003). 

 The NAHB study measured and compared the lateral (parallel-to-wall) 

performance of full-scale roof-to-wall connections systems constructed with, among 

others, metal connector hardware.  Based on test results the scope of the minimum 

prescriptive provisions for roof-to-wall attachment was determined for a building 

configuration and loading conditions (NAHB, 2002).   

 The test consisted of laterally loading a 12 feet wide by 20 feet long specimen.  

The trusses were connected to the top plate using metal connectors on one side (loading 

side) and rollers on the other (see Figure 2.17).  Tension was applied to the roof using a 

strap attached to a hydraulic actuator using a clevis (see Figure 2.18).   
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Figure 2.17: Roof-To-Wall Connection Test Set-Up (NAHB, 2002) 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 2.18: Vertical Tension Applied Using a Strap, Hydraulic Actuator 
and Clevis (NAHB, 2002) 
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Although designed primarily to resist roof uplift forces, the hurricane clips 

increased the peak lateral resistance of the roof-to-wall connections by approximately a 

factor of two as compared to toe-nails.  The NAHB researchers conducted six tests on 

hurricane clips in up-lift loading.  The average peak load was found to be 6,427 pounds 

or 584 pounds per joint and had a displacement of 1.10 inch at peak load (NAHB, 2002).  

The modes of failure consisted of truss plate separation, truss slip and rotation, clip 

buckling, clip tension failure and truss plate separation as shown in Figures 2.19 through 

2.23 (NAHB, 2002).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Truss Plate Separation (NAHB, 2002) 
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Figure 2.20: Truss Slip and Rotation (NAHB, 2002) 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: Hurricane Clip Buckling (NAHB, 2002) 
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Figure 2.22: Hurricane Clip Tension Failure (NAHB, 2002) 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.23: Hurricane Clip Tension Failure and Connector Plate  
Nail Withdrawal (NAHB, 2002) 
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 In the NAHB test, H2.5 hurricane clips manufactured by Simpson Strong Tie 

were used. The lateral capacity of a single H2.5 hurricane clip, as provided by the 

manufacturer, is 130 pounds (Simpson Strong Tie, 1999).  By comparing the 

experimental values and the analytical predictions of the yield theory of the NDS design 

and capacity limit states, the safety margin was calculated (NDS, 2007).  The safety 

margins of were found to be excessive (NAHB, 2002).  The allowable design value 

specified by the manufacturer is established based on a joint slip limit state.    The direct 

implementation of design methods develop for single dowel connections to light-gage 

steel hardware connections, which exhibited different response and unique failure modes, 

resulted in ambiguous design values and an arbitrary design basis with respect to the 

performance levels of the hardware systems (NAHB, 2002).  Based on the limited testing 

performed in this research, the allowable lateral resistance of hurricane clip H2.5 in the 

direction parallel to wall could be increased from 130 lb to 260 pounds per clip.  The 

calculated lateral design values expose the inconsistencies in using the joint slip limit 

state for establishing connection properties (NAHB, 2002). 

 

2.2.2.3 Combined Up-Lift and Lateral Loading 

Only NIST conducted tests on a specimen under both up-lift and lateral loads to 

simulate wind effects on the structure, including a lateral load component to simulate 

pressure on the outside wall (NIST, 2003).  The applied vertical load was measured and a 

lateral displacement applied to produce a lateral load equal to 29.5% of the vertical load; 

in general the peak lateral loads were about 25% of the peak vertical loads (NIST, 2003).   
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The deformation and the loads applied to the hurricane clip test are shown in 

Figures 2.24 and 2.25.  The first connection began to fail at an applied lateral load of 

1,900 pounds with a total deflection of ½ inch; while the maximum applied vertical load 

was almost 7,900 pounds and a total vertical deflection of almost 2.5 inches (Figure 2.25) 

(NIST, 2003).  The failure occurred at the connection on the outer truss that was in 

tension from both the uplift and the overturning moment due to the lateral load (NIST, 

2003).  The top plate of the wall split, which allowed the hurricane clip to pull free 

(Figure 2.26).  The connection of the inner truss adjacent to the truss that failed first, 

failed when the nails withdrew from the intact top plate.   

The maximum up-lift load was measured in the inner truss hurricane clip, which 

had a load of more than 1,500 pounds and the lateral load was about 225 pounds (NIST, 

2003).  The responses of the inner truss connections were quite similar, but the outer truss 

that failed first, exhibited much less stiffness in both shear and up-lift, and failed at a 

relatively low load (NIST, 2003).  Unexpectedly, the capacity of this connection was 

slightly bigger than the toe-nail connection and less than other hurricane clip connections.  

The reduced capacity may have been due to an inherit weakness in the wood of the to-

plate, or a split in the wood caused by poorly driven nails.   

A comparison of the inner and outer truss responses with the two types of 

connections is illustrated on Figures 2.27 and 2.28 (NIST, 2003).  These curves highlight 

the great variability that can occur in the response of wood frame construction.  This 

could be caused by poor quality of the materials and the quality of workmanship.  The 

wood properties can vary considerably, and are dependent on the wood type, dryness, and 

density, as well as cracks or other physical defects.  The combined strength of the other  
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Figure 2.24: Displacements Applied to the Specimen with Hurricane  
Clips (NIST, 2003) 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.25: Loads Applied to the Specimen with Hurricane Clips (NIST, 2003) 
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Figure 2.26: Failure of Hurricane Clip Connection with Combined  
Load (NIST, 2003) 

 

three hurricane clips on that wall of the specimen allowed the specimen to resist almost 

45% more load than the specimen with toe-nailed connections. 

A comparison of the inner and outer truss responses with the two types of 

connections is illustrated on Figures 2.27 and 2.28 (NIST, 2003).  These curves highlight 

the great variability that can occur in the response of wood frame construction.  This 

could be caused by poor quality of the materials and the quality of workmanship.  The 

wood properties can vary considerably, and are dependent on the wood type, dryness, and 

density, as well as cracks or other physical defects.  The combined strength of the other 

three hurricane clips on that wall of the specimen allowed the specimen to resist almost 

45% more load than the specimen with toe-nailed connections. 
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Figure 2.27: Comparison of Responses of Inner Trusses (NIST, 2003) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28: Comparison of Responses of Outer Trusses (NIST, 2003)
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3. Full-Scale Wall of Wind Testing 

 
3.1 Overview of Current Testing Methods 

 
Residential structures are susceptible to damage from tropical cyclone induced 

wind, rain, and debris; however, these combined impacts are not well understood (NSB, 

2007).  In order to understand tropical cyclone wind-induced impacts and interactions, 

and increase the resiliency and preparedness of our built environment, scientists and 

engineers attempt to simulate the wind loads on structures. Several experimental methods 

are available for research and development of engineered structures: 

 Wind-tunnel testing of small-scale models 

 Full-scale field testing in the natural environment 

 Full-scale laboratory testing of components and structures to simulated wind 

induced forces generated by actuators and pressure chambers    

     

3.1.1 Wind Tunnels 

Wind tunnel tests provide a wealth of useful data on scaled-models of buildings 

(see Figure 3.1) in wind flows, to within various degrees of approximation that simulate 

natural wind flows and their effects (Cermak et al., 1995).  Some limitations of wind 

tunnel testing are due to: 

 The use of highly simplified model structures with only the external geometry 

modeled 

 Reynolds number effects 
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Wind tunnel testing is sometimes thought of as an art, which requires judgment 

and experience in wind tunnel test development and in interpreting, adjusting, or 

correcting the obtained test results.  Commercial boundary layer wind tunnel testing has 

been used for more than forty years.  In that time there has been a gradual evolution from 

the rudimentary 1960’s testing at Teddington, UK on models of the New York Trade 

Center’s twin towers, to the more elaborate tests conducted in 2002 by two laboratories 

on models of the same towers.  The evolution continues, as the tests elicited controversy, 

because their respective estimates of the towers’ response differed by over 40 % (Federal 

Building and Fire Safety Investigation of the World Trade Center Disaster, 2005). 

 

3.1.2 Wind Effects on Full-Scale Buildings 

Effective studies of wind effects on full-scale buildings have been limited 

(Levitan and Mehta, 1992) (see Figure 3.2).  Commonly, the instrumentation, the power 

sources, and the recording devices fail in severe windstorms; which may lead to gaps of 

unrecorded data uncertainties on the response.  Nevertheless, valuable field studies such 

as measurements conducted in Gaithersburg (Marshall, 1977), Aylesbury (Eaton and 

Mayne, 1975), Silsoe (Richardson et al., 1997) and Lubbock (Long et al., 2006) have 

provided valuable findings and data; these findings are crucial to the validation or 

otherwise of certain wind tunnel techniques. A major finding of such studies is that 

Reynolds number effects may cause peak pressures on low-rise buildings to be 

incorrectly simulated in a wind tunnel.   

Some useful wind load data is collected on roofs of residential homes during 

tropical cyclones through the Florida Coastal Monitoring Program (FCMP)  
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Figure 3.2: Wind Effects on Full-Scale Buildings, a) Field Studies of Wind Loads on 
Buildings (Texas Tech U.), b) Full-Scale Building Testing using Pressure Bags (U. of 

Western Ontario) 
 

(http://users.ce.ufl.edu/~fcmp/overview/house.htm). The FCMP data report on actual 

wind dynamics and wind-structure interaction during an entire wind event. These data 

gives researchers a baseline to simulate wind effects in various testing facilities.  

 

3.1.3 Full-Scale Laboratory Testing of Components and Structures 

Most of the current full-scale testing of structural components and connections in 

structural laboratories are limited to individual components evaluations; such as 

windows, doors, and shutters (see Figure 3.3).  The tests do not reflect the actual physical 

processes at work in a severe windstorm, owing to the absence of a “holistic building 

system” approach; i.e., the components are not treated, and cannot be expected to behave 

as part of the entire building.   

 

 

 

a b 
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Figure 3.3: Full-Scale Testing of Individual Structural Components in Laboratories  

 

A few of exceptions exist.  The Wind Simulator of the University of Florida is 

one such exception.  This mobile system is transported to the test site and used to 

evaluate the performance of a variety of low-rise structures in Florida 

(http://news.ufl.edu/2007/08/29/tropical cyclone-wind-machine/).  Another exception is 

the “Three Little Pigs” facility in the University of Western Ontario, 

(http://www.eng.uwo.ca/research/ttlpp/default.htm), which enables pressures measured in 

a wind tunnel to be exerted on full-scale models using air bags (see Figure 3.2b).  

 

3.2 The Wall of Wind Laboratory 

A great deal of valuable information can be developed from existing testing 

techniques.  Nevertheless, the complex wind-structure interactions that occur within a 

holistic structure during a tropical cyclone can only be determined by full - or large -scale 

experiments; using flow fields that closely represent those present in a tropical cyclone.  

Sound design of a structure’s components and connections, imperative for damage 
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mitigation of new and existing buildings, requires an innovative facility that will closely 

simulate tropical cyclone effects.  This facility has to be capable of performing full- or 

large-scale experiments and destructive testing to establish the inherent weaknesses of 

components or connections built with real materials when subjected to various 

combinations of wind, rain, and debris impacts.  The International Hurricane Center 

(IHRC) at Florida International University (FIU) has developed a full-scale testing 

simulator with these capabilities (see Figure 3.4). 

 

 

 

 

 

 

 

Figure 3.4: FIU-IHRC Full-Scale Testing Simulator  

 

3.2.1  Background 

In 2003, the wind engineering team at the IHRC, with Dr.  Timothy Reinhold’s 

assistance from the Institute for Business and Home Safety (IBHS) began planning the 

development of a full-scale wind testing facility named the “Wall of Wind” (WoW).  The 

concept had been previously validated at small-scale by Mr. Charles Kennedy and Dr. 

Reinhold while at Clemson State University (Kennedy, 1999).  The WoW facility would 

be capable of testing full-sized structures such as site-built or manufactured housing to 
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failure under a range of wind and wind-rain conditions in a controlled and repeatable 

environment.   

The WoW simulator facilitates structural testing to study the inherent weaknesses 

of structures subjected to tropical cyclone wind and rain impacts at full- or large-scale 

conditions.  Testing for debris can also be incorporated with the addition of IHRC’s air-

cannons currently operational as debris-propelling devices (see Figure 3.5).  Using the 

WoW full-scale simulator, destructive testing, performance-based engineering, and 

failure-mode analysis can be studied and innovative mitigation techniques can be 

developed.  The advantages of WoW full-scale testing on structural systems are: 

1. WoW provides an environment of controllable, programmable, and repeatable testing.  

This allows the development and validation of retrofit systems and study new 

mitigation techniques and their validation without waiting passively for a storm event 

to validate the mitigation deigns.     

2. Aerodynamic effects of tropical cyclone wind loads on structural components are 

simulated on the full-scale test structure, producing a more realistic dynamic loading 

pattern on the components.   

3. WoW testing simulator enables the study of progressive damage to failure, so that 

wind characteristics associated with the beginning of specific damage could be 

determined and facilitate improvement on the prior design through performance-

based engineering.   

4. WoW enables testing under wind driven rain associated with tropical cyclones, which 

aids in the study of water infiltration through the specimen interfaces at different 

stages of weathering.   
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5. WoW full-scale testing will allow the building test specimen and its components to be 

tested with time-dependent effects, non-linear effects, boundary conditions, and 

material properties. 

6. WoW full-scale testing will eliminate difficult scaling issues and allow testing to 

realistic values of non-dimensional fluid mechanics parameters (Reynolds number, 

Strouhal number). 

7. WoW used in conjunction with debris-propelling devices or air-cannons simulates 

flying debris under tropical cyclone conditions and studies their impacts on the test 

specimen.   

7.1. Direct impact resistance of the test model components can be evaluated, 

demonstrating if components or connection systems are damaged or pierced by 

debris. 

7.2. Breach of the building envelope (e.g., roof, soffit, door, vents, garages and 

windows) changes internal pressures in the building model and may generate 

different loading conditions on members and connections. 

 

 

 

 

 

 

 

Figure 3.5: Debris Simulation Testing with Air-Cannon 
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3.2.2  Application of WoW Testing 

Full-scale destructive testing has the potential for improving safety during a major 

wind-event and may lead to the development of mitigation techniques needed in U.S. 

coastal states, vulnerable to tropical cyclones; and for affected states economy to remain 

sustainable.  Similar to research based on car crash testing, which significantly enhanced 

automobile safety through the introduction of air bags and other safety features, the 

development of wind damage mitigation technology for property loss reduction and 

human safety through WoW full-scale testing of building models and components until 

failure, allow the development of effective strengthening systems.  Building components 

such as windows and doors are usually tested separately with air canons and actuators.  

On the other hand, the WoW allows full-scale destructive testing under wind, rain, and 

debris to determine the performance of the entire structure.   

The WoW full-scale testing simulator can be employed to develop innovative 

tropical cyclone damage mitigation measures through Performance Based Engineering 

(PBE).  PBE measures design adequacy based on tri-objective system performance, 

rather than the traditional component ultimate strength approach.  In wind design, PBE 

can address issues of serviceability, safety, and occupant comfort for more variable 

environmental conditions.   

 

3.2.3  WoW Testing Methodology 

The basic approach of the WoW testing is to subject a full-scale model of a 

structure to simulated tropical cyclone effects generated by the WoW. Different 

combinations of high wind, wind-driven rain, and flying debris are simulated.  The 
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responses of the structure and its components to these combinations are recorded through 

instrumentation.  Measurements are obtained regarding:  

 Aerodynamic pressures  

 Member deformations  

 Displacements of components and connections (including non-linear effects)  

 Volume of rain infiltration into the system 

 Damages from debris   

The weak-links in the structure are revealed by evaluation of system performance 

under different combinations of tropical cyclone conditions.  This information will lead 

to four types of design improvements:  

1. Aerodynamic modifications to alleviate wind effects; like vortex-suppression systems 

on sharp edges and corners at and near roof edges and wall corners, which 

considerably reduce suctions and damages (see Figure 3.6). 

2. Development of water-infiltration mitigation measures, such as development of 

water-tight soffits to reduce rainwater infiltration (see Figure 3.7). 

3. Structural strengthening of the members to resist the high wind loading. 

4. Development of products such as advanced composite panels to reduce debris impact 

damages during tropical cyclones.   
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 Figure 3.6: Vortex-Suppression Systems              Figure 3.7: Water-Tight Soffits 

 

3.2.4 Description of the WoW Facility 

The initial development of the WoW concept is marked by the construction of the 

2-fan WoW (see Figure 3.8) that generates Category 3 winds and simulates horizontally-

flowing rain (Gan Chowdhury et al., 2009).  Table 3.1 lists the 2-fan WoW flow  

 

 TI 
(%) 

x
uL  

(m) 

 tTGF ,  

 
2-fan WOW flow 
 

 
10.6 

 
66.2 

 sec1.0min,6GF =1.28 
 sec3min,6GF = 1.18 

 
Hurricane Lili (2002)* 
 

 
17.8 

 
67.0 (5-min segment 

length) 

 
 sec3,1hrGF =1.53 

* Based on 1-hour wind data at 5-meter height of flat open land, which was collected by Florida 

Coastal Monitoring Program (FCMP). 

Table 3.1: Wind Characteristics of 2-fan WoW and Comparison with Real 
Hurricane (Gan Chowdhury et al., 2009) 
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Figure 3.8: 2-Fan WoW 

 

turbulence intensity (TI), longitudinal integral length scale ( x
uL ) and gust factor (GF(T,t)), 

the latter being defined as:         

     TUtTutTGF /,, max                                                        (3.1) 

Where, umax is the maximum value of the wind speeds averaged over the intervals of 

length t, and U is the mean wind speed averaged over the time period T.  Phase I flow 

characteristics are compared in Table 3.1 with those of Tropical cyclone Lili (2002), 

measured by the FCMP tower in a flat open field at Lydia, LA (Yu, 2007).  The 

differences are due to the lack of a controllable turbulence generating system for the 2-

fan WoW.  The 2-fan system was employed on the following research  

 Metal Roof Edge Fascia Testing (see Figure 3.9) 

 Product Testing For Tropical cyclones   

 Preliminary Testing On Utilities (see Figure 3.10) 
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insurers.  The current research on innovative roof-to-wall connection development has 

been performed using the 6-fan WoW system.  The flow simulation for the 6-fan WoW is 

described in the following sections. 

 

3.2.4.1 Simulation of Tropical Cyclone Characteristics  

Atmospheric turbulence strongly influences the wind flow around a structure and 

the aerodynamic loading on the structure (see Figure 3.11).  Many researchers, including 

Kareem and Cermak (1979), Li and Melbourne (1995) and others have been documented 

the role of wind turbulence in the aerodynamics of bluff bodies, such as buildings. The 

following are several useful descriptors of atmospheric turbulence (Simiu and Scanlan, 

1996): 

 Co-spectra, indicates the extent to which wind fluctuations with various 

frequencies at different points in space are mutually coherent 

 Turbulence Intensity, e.g., longitudinal turbulence intensity given by the ratio of 

the root mean square of the longitudinal (x-direction) wind speed fluctuations u(z,t) to the 

longitudinal mean wind speed U(z) at elevation z 

 Integral Turbulence Lengths, i.e., measures of the overall sizes of the eddies 

associated with the various turbulent fluctuation components 

 Turbulence Spectra, (defined by spectral density functions Sx(z,n), Sy(z,n), 

Sz(z,n)) used to estimate the frequency content of wind speed fluctuations in the x, y, and 

z directions 
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Figure 3.11: Wind-Structure Interaction for Building Structures 

 

 The accuracy of the WoW testing and its success in helping to understand wind-

structure interaction and mitigating tropical cyclone effects will depend on the research 

aimed at stimulating a wind field that reasonably resembles wind mean and turbulence 

characteristics for real tropical cyclones.   

Transient flow field characteristics have been simulated actively in small-scale 

laboratory experiments the multiple-fan systems sharp changes in gust magnitudes were 

successfully simulated.  To achieve better simulation of flow features at high frequencies, 

oscillating vanes were incorporated in the flow by Nishi and Miyagi (1995).  Methods 

already proven for gust and turbulence generation for small scale experiments will be 

used for the generation of velocity profile, turbulence, and gust effects for the WoW.  

Rapid variations of the fan engine speed (achieved by servo-control) simulate 

longitudinal turbulence.  Horizontal airfoils enhance the control of vertical fluctuations in 

the flow through multiple sinusoidal or quasi-sinusoidal control functions (see Figure 

3.12).    
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Figure 3.12: Horizontal Airfoils for Vertical Fluctuations in the Flow 
 

As a member of the FCMP, the IHRC research team has invaluable high-

resolution surface wind data (Masters et al., 2005) collected during tropical cyclones 

Floyd, Francis, Isabel, Iván, Jeanne and Lili.  The FCMP data generated mean wind 

speed, gust factor, turbulence intensity, integral length scale, and turbulence spectra are 

used as baseline wind field characteristics to closely simulate tropical cyclone winds in 

the WoW facility.   

In view of the deficiencies of the preliminary 6-fan WoW system an investigation 

was undertaken using a small-scale (1:8) WoW model to develop the target wind flow 

generating devices and methods efficiently (see Figure 3.13).  The mean and turbulence 

characteristics of the flow were improved markedly through the application of passive 

devices and of active controls designed on the basis of analyses of tropical cyclone wind 

data.  The knowledge gained from the small-scale WoW was used to enhance the full-

scale WoW wind field parameters (Huang et al., 2008).  
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Figure 3.13: Small-Scale Model Configuration (Liu, 2008) 

 

In the revised full-scale WoW configuration, it was possible to generate 

reasonable mean wind speed profiles and turbulence characteristics closely resembling 

tropical cyclone conditions (Huang et al., 2009).  To produce more severe hurricanes, 

additional research is currently being performed on redesigning the WoW fan engines, so 

that high mean rpm be maintained while adequate turbulence generation is achieved.  

Just as in the small-scale WoW, the results in full-scale WoW show that the 

application of fluctuating waveforms can greatly influence and improve the turbulence 

characteristics. Application of quasi-periodic sums of sinusoidal signals, designed on the 

basis of real tropical cyclone wind data analyses, succeeded in adding low-frequency 

quasi-periodic components to the WoW flow and improving the longitudinal power 

spectral densities, turbulence intensities, integral length scales, and gust factors. The 

application of quasi-periodic signals also improved the vertical turbulence for the revised 

full-scale WoW configuration.  The wind characteristics of Phase II of the WoW are 

shown in Table 3.2.  
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The WoW has the capability of generating wind-driven rain (WDR) to re-create, 

as closely as possible; tropical cyclone conditions (Bitsuamlak et al., 2009) (see Figure 

3.14).   The challenge is to achieve an accurate raindrop size distribution in the flow field.  

The WoW used with debris-propelling devices provides the capability to simulate the 

behavior of wind-borne debris generated by tropical cyclones and study their effects on 

structures.  Holmes et al. (2006) present numerical modeling of sphere and square plate 

trajectories which can be used for debris simulation in the WoW. 

 

 

Figure 3.14: Water monitoring and collection setup. (a) Complete setup with camera 
and plastic ceiling, (b) the SWB test specimen from bird’s view and (c) leaked water 

through the roof layer and (d) water collection - (Bitsuamlak, 2009) 
 

 



55 
 

Case 

(Waveform; mean 

rpm) 

Wind speed 

(m/s) 

TIu 

(%) 

TIw 

(%) 
 t,TGF  

x
uL  

(m) 

Revised WoW 

(Flat waveform; 

4,000) 

36.7 

(1-min mean 

speed) 

38.2 

(3-sec peak gust) 

4.6 5.4 

 sec3min,6GF = 

1.06 

 sec3min,1GF = 

1.04 

36.6 

Revised WoW 

(W3 sinusoidal 

waveform; 3,500) 

33.7 

(1-min mean 

speed) 

41.8 

(3-sec peak gust) 

19.9 6.7 

 sec3min,6GF = 

1.33 

 sec3min,1GF = 

1.24 

134.7

Revised WoW 

(W4 quasi-

periodic 

waveform; 2,855) 

28.8 

(1-min mean 

speed) 

38.3 

(3-sec peak gust) 

23.8 7.1 

 sec3min,6GF = 

1.42 

 sec3min,1GF = 

1.33 

89.9 

Preliminary 

WoW 

(Flat waveform; 

4,000) 

36.3 

(1-min mean 

speed) 

38.5 

(3-sec peak gust) 

6.0 - 
 sec3min,6GF = 1.09 

 sec3min,1GF = 1.06 
59.6 

FCMP* 

22.3 

(1-min mean 

speed) 

28.3 

(3-sec peak gust) 

17.8 7.0 

 sec3min,1GF = 

1.27 

 sec3min,6GF = 

1.43 

 sec3,1hrGF = 1.59 

98.7 

* Mean results of three observation sites (Iván - 1, Iván - 2, and Lili) at which data were 

collected by Florida Coastal Monitoring Program (FCMP). 

Table 3.2: Wind characteristics of Full-Scale WoW (Huang et al., 2008) 
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3.2.4.2 WoW Instrumentation 

The WoW test specimens (houses or other structures) are instrumented with strain 

gages, linear voltage differential transducers (LVDT), string potentiometers (String Pots), 

load cells, and pressure transducers to gain maximum information about the response 

characteristics of the different components (see Chapter 5).  The displacement sensors 

measure both absolute and relative motions of the components.  Motions are recorded in 

all 3 directions, X, Y, and Z.  The pressure transducers measure the aerodynamic 

pressures on the model surface.  Water infiltration into the test specimen at different 

stages of testing will be measured by rain collecting modules mounted inside the building 

model.   

 

3.2.4.3 WoW Research Goals 

Full- or large-scale aerodynamics and destructive testing helps to determine the 

wind effects and structural behavior leading to failure; thus facilitating design 

improvements.  The 6-fan WoW testing, used in conjunction with structural reliability, 

factorial experimental design, and other techniques, may allow for better understanding 

of tropical cyclone-structure interaction and inherent design weaknesses leading to 

failure, thus facilitating the development of advanced mitigation techniques to enhance 

resiliency of coastal buildings and infrastructure against windstorms.   

Tropical cyclone damage mitigation technologies can be tested on components, 

but their actual behavior within a building system can in most instances be determined 

only by testing a full-scale, complete (holistic) system.  Using the WoW testing, retrofit 
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and mitigation techniques can be validated in a controllable, programmable, and 

repeatable test environment, such as:  

 Mitigation of Roof Damage 

 Development of High Performance Materials  

 Soffit resistant Materials 

 Development of Innovative Roof-to-Wall Connection System. 

The current work is based on the use of WoW testing on holistic test specimens to 

develop a new non-intrusive roof-to-wall connection system. 

 

3.3 Summary 

Loss due to tropical cyclones is one of the largest and most pervasive risks faced 

by the U.S.  Full-scale aerodynamic and destructive testing of houses and structures using 

the WoW, developed at the IHRC, will help to change the public’s perception of building 

safety and contribute to the development of a “culture of preparedness.”  The current 

research focuses on the development of an innovative inter-component connection system 

to strengthen houses against extreme wind events through systemic hybrid testing using 

the full-scale WoW testing facility and the SCL laboratory at FIU.   
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4. Initial Development of Fiber Reinforced Polymer Connections 

 

4.1  Introduction 

In an effort to provide the timber construction industry with an alternative roof-to-

wall connection system, researchers at Florida International University (FIU) are 

developing an innovative FRP connection system (Canbek, 2009).  The methodology is 

to perform hybrid testing at the Structural and Construction Laboratory (SCL) and the 

Wall of Wind (WoW) facilities.  To develop the proof of concept, extensive testing was 

carried out at the component and full-scale level to determine feasibility of FRP 

connection as part of the vertical load path system (Canbek, 2009).  This chapter 

summarizes the initial testing of FRP connections at the SCL. 

A direct shear test was performed to evaluate the strength of the FRP-timber 

interface in shear.  Next, three phases of component level FRP tie connection tests were 

conducted using a Universal Testing Machine (UTM).  Several FRP tie connection 

configurations were tested according to the American Standards for Testing of Materials 

(ASTM) D 1761 standard (ASTM, 2006).  The most viable type of FRP connection, in 

terms of cost-effectiveness, applicability and efficiency was selected for further research 

and development.  The FRP-tie was then incorporated in a full-scale laboratory test 

specimen to validate and evaluate the in-situ performance of the tie.  The uplift forces 

from an extreme wind event were simulated using hydraulic jacks controlled by an 

electric pump.   
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4.2  Rationale for a Non-Intrusive Connection System 

The roof-to-wall failures of timber residential structures caused by extreme wind 

events demonstrate the necessity of a sound roof-to-wall connection system, capable of 

transferring the wind induced forces through the vertical load path into the foundation.  

The deficiencies of conventional hurricane clips at the roof-to-wall interface are listed 

below: 

 The connection with metal clips may fail prematurely through nail pull-out at a 

much lower load than the specified capacities recommended by the manufacturer  

 Metal clips can create weak zones in the timber, due to closely spaced nails used 

for attaching the connector to the timber connection 

 Metal clips may make the structure susceptible to water intrusion due to holes 

created by excessive nail penetrations 

 In humid coastal regions harsh environmental conditions may weaken the 

connection by corroding the metal clips and/or a toe-nailed connection 

In order to overcome the above mentioned shortcomings of metal connectors, an 

innovative connection design was conceived using advanced high-performance fiber 

composite polymers (FRP). 

 

4.3 Past Work on FRP-Timber Interaction 

Several studies have aimed at investigating the FRP-timber bonding 

characteristics and the strengthening of timber members with FRP.  Davalos et al. (2000) 

investigated the Mode I fracture of FRP-timber bond interface using a contoured double-

cantilevered beam specimen (see Figure 4.1).  The goal was to establish fracture 
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toughness data to predict whether de-lamination of FRP will occur under actual service 

conditions.  Results showed that Hydroxyl Methanol Resorcinol (HMR) performed much 

better than Resorcinol-Formaldehyde (RF) as a coupling agent with higher strength and 

lower coefficient of variation values in dry conditions.  Under wet conditions, the 

difference in specimens tested with HMR and RF became more apparent. 

 

 

 

 

 

 

 

Figure 4.1: The Contoured Double-Cantilevered Beam  
Specimen (Davalos et al., 2000) 

 
 

Jia and Davalos (2004) conducted a study to understand the effect of load ratio on 

Mode-I fatigue fracture of FRP-timber bonded interfaces.  For this study, they used the 

contoured double cantilevered beam specimen show in Figure 4.1.  The adherents used in 

this study were red maple timber and pultruded Phenolic FRP laminate.  The FRP-timber 

interface was bonded using RF.  After processing the results of the experiments, the 

following three equations were developed by modifying Paris Law:  
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da
                                                         (Equation 4.2) 

  59.593.007.016109 meanGGx
dN

da
                                                         (Equation 4.3) 

 

where a is the crack length, N is the number of cycles, G is the energy release rate, as 

shown in Equation 4.4, C is the compliance, b is the thickness of the specimen, P is the 

applied load, and R is the load ratio (Pmin/Pmax).  Stating that any of these equations yields 

satisfactory results for determining the effect of load ratio on crack propagation, authors 

recommended Eq. (4.3) for use in engineering applications (Jia and Davalos, 2004). 

 

dA

dC

b

P
G

2
maxmin,

2

maxmin,                                                                  (Equation 4.4) 

 

Tascioglu et al. (2003) studied the durability and shear strength of E-

glass/Phenolic composite and treated timber bond interface.  The goal of the study was to 

evaluate the effects of preservatives and pre- and post-treatment applications on FRP-

timber bond interface.  After conducting the modified ASTM D 905 (ASTM, 2008) and 

ASTM D 2559 (ASTM, 2004) tests, the authors concluded that preservative treatments 

and pre- and post-treatment applications have significant negative effects on the FRP-

timber bond strength (Tascioglu et al., 2003).  
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Triantafillou (1997) investigated the shear strengthening of timber members using 

FRP.  They tested twenty one beams, which were designed to fail in shear, and 

strengthened them using FRP with varying configurations and coverage areas.  The study 

showed that externally bonded FRP can significantly increase the shear capacity of 

timber beams, and that the coverage area of FRP may be optimized following the basic 

principles of mechanics (Triantafillou, 1997).   

Plevris and Triantafillou (1995) conducted a research on creep behavior of FRP-

reinforced timber members.  An analytical study was performed to model the timber 

beams reinforced with carbon FRP (CFRP) in three point bending.  It was observed that 

creep behavior of FRP-reinforced timber beam was dominated by the creep behavior of 

timber itself.  Also, it was noted that FRP would make a significant impact on the creep 

performance of the timber beam, as it generally decreases the deformations and increases 

the ultimate strength (Plevris and Triantafillou, 1995). 

 

4.4 FRP Tie Roof-to-Wall Connection Development Tests  

4.4.1 Test Specimen and Setup  

 Viable FRP roof-to-wall component connections were designed and tested 

according to specifications of the ASTM D 1761 (ASTM, 2006) (Canbek, 2009).  The 

specimens simulated, as close as possible an actual roof-to-wall connection.  Figure 4.2 

shows the schematics of the test specimen.  They consisted of 2-14 inch long double top 

plates and a 33 inch long joist (22 inch clear spacing); all members used were 2 x 6 inch 

No 2 Spruce-Pine-Fir (SPF) lumber.  The FRP was attached at two ends of the joist using 

two-part epoxy according to the manufacturer’s specifications.  The specimens were  
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                            Side View                                                      Top View 
 

Figure 4.2: Top and Side Views of Test Specimen (Canbek, 2009) 
 

allowed to cure for at least one week prior to testing.  Four types of FRP were used, 

including unidirectional carbon FRP (CFRP), bidirectional CFRP, unidirectional glass 

FRP (GFRP) and bidirectional GFRP.                                     

The specimens were tested upside down on a steel frame, as shown in Figure 4.3.  

The specimens were connected to the frame using either bolts or clamps at the corners of 

the double top plates.  The load was applied at the center on the bottom of the joist, using 

a Universal Testing Machine (UTM) at a displacement rate of 0.035 inch/minute.  A 5 

inch long rubber was placed under the crosshead to avoid crushing of the timber under 

the loading point.  As per ASTM 1761 (ASTM, 2006), two dial gages were placed at the 

two ends of the joist, 1.5 inches from the top plates in order to measure the load at the 1/8 

inch deflection (Figure 4.4). 

 

33 in.

22 in.

 

3 3  in .

1 4  in .



64 
 

 

 

 

 

 

 

 

Figure 4.3: A Typical Specimen before Testing (Canbek, 2009) 
 

 

 

 

 

 

 

 
 
 

Figure 4.4: Schematics and Application of FRP Tie Configuration I (Canbek, 2009) 
 

4.4.2 FRP Tie Connection Testing and Results: Uplift Loading 

Three configurations of FRP connections, namely, Configurations A, B, and C 

were tested (Canbek, 2009).  Two types of FRP’s were used with each configuration, 

making six sets of test specimens.  Each set consisted of three identical samples to assess 

repeatability of test results.  Configurations details (A, B and C) are listed in Table 4.1.   

4.0 in.

3.0 in.

6.0 in.

1.5 in.

Placed on double 
top plate 

Cut along the line 
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Configuration 
Type of FRP 

Used 
Dimensions of FRP Used 

A 
(Modified V) 

Unidirectional 
Glass FRP A4.0 in.

9.0 in.
 

Unidirectional 
Carbon FRP 

B 
(Modified IV) 

Unidirectional 
Glass FRP 

B

7.5 in.

7.0 in

4.0 in.

2.0 in.

 
Cut along the dashed lines 

Unidirectional 
Carbon FRP 

C 
(Modified III) 

Bidirectional 
Glass FRP 

C

8.0 in.

6.0 in.

3.0 in.

4.0 in.

 

Bidirectional 
Carbon FRP 

 
Table 4.1: Schematics and Types of FRP Connections Tested  

in Stage II (Canbek, 2009) 
 

In Configuration A four 4 x 9 inches FRP ties were placed on the top plates and 

connected to the joist.  Each FRP tie was placed, such that half would attach to the top 

plate and the other half on the joist.  The specimens prepared by GFRP and CFRP are 

shown in Figure 4.5.  The modes of failures were very similar for glass and carbon 

(Canbek, 2009).  In all specimens, the FRP peeled off from the top-plate, and in various 

cases detached some timber fibers (Figure 4.6).  The ultimate load for CFRP was 

approximately 20% higher than that of GFRP (Canbek, 2009).  Furthermore, the  
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Figure 4.5: Configuration A with CFRP (Left) and GFRP (Right)  
Before Testing (Canbek, 2009) 

 

 

 

 

 

 

 

Figure 4.6: Failure of Configurations A with CFRP (Left) and  
GFRP (Right) (Canbek, 2009) 

 

separation of timber fibers from the top plate was more obvious in the CFRP tie 

connections (Figure 4.6).     

In Configuration B the FRP used for each connection consisted of one FRP tie 

instead of two and the load transfer width was 1 inch on the joist-top plate interface 

(Figure 4.7).  The FRP was also bonded on the vertical surface of the double top plate.  

The specimens were prepared with CFRP and GFRP are shown in Figure 4.7. 
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Figure 4.7: Configuration B with CFRP (Left) and GFRP (Right)  

Before Testing (Canbek, 2009) 
 

In Configuration B, two different modes of failure were observed as shown in 

Figure 4.8.  Figure 4.8a shows that the FRP under the load transferring piece peeled off 

as a block, while in the other specimen the load transferring piece ruptured and a portion 

of FRP separated from the top plate (Figure 4.8b). 

 

 

 

 

 

 

 

                                   (a)                                                                  (b) 

Figure 4.8: Two Modes of Failure Observed in Configuration B (Canbek, 2009) 
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Configuration C was made using bidirectional GFRP or CFRP to attempt to 

improve the mode of failure.  The FRP was placed on each side of the top plate and at the 

end of the joist (Figure 4.9). The mode of failure was very similar for both types of FRP.  

The connection failed as the FRP ruptured along the bent line on the top plate, and 

subsequently peeled off (Figure 4.10).  The results obtained from the experiments are 

summarized in Table 4.2 and graphed in Figure 4.11.   

 

 

 

 

 

 

 

Figure 4.9: Configuration C with CFRP (Left) and GFRP (Right) Before  
Testing (Canbek, 2009) 

 

 

 

 

 

 

 

Figure 4.10: Failure of Configurations C with CFRP (Left)  
and GFRP (Right) (Canbek, 2009) 
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Configuration 
FRP 
Type 

Specimen 
No. 

Ultimate 
Load (lbs) 

Average 
Ultimate 

Load (lbs) 

Coefficient 
of 

Variation 

A 

GFRP 

AG1 4,650 

4,320 0.089 AG2 3,900 

AG3 4,410 

CFRP 

AC1 5,280 

5,187 0.022 AC2 5,220 

AC3 5,060 

B 

GFRP 

BG1 3,000 

2,273 0.277 BG2 1,870 

BG3 1,950 

CFRP 

BC1 2,530 

3,067 0.251 BC2 3,950 

BC3 2,720 

C 

GFRP 

CG1 4,070 

3,200 0.238 CG2 2,660 

CG3 2,870 

CFRP 

CC1 3,880 

4,490 0.124 CC2 4,620 

CC3 4,970 

 
Table 4.2: Summarized FRP Tests Results (Canbek, 2009) 
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Figure 4.11: Results of FRP Tie Connection Development Stage II (Canbek, 2009) 

 

Compared to other configurations, Configuration A yielded more favorable 

results.  The failure loads obtained with CFRP were 20% higher (Canbek, 2009).  

Nevertheless, the price of a CFRP tie connection is approximately 5 times higher than 

that of a GFRP tie connection.  Therefore, Configuration A with GFRP was selected as 

the best alternative for further development (Canbek, 2009).  Table 4.3 gives a cost 

analysis for Configuration A based on prices obtained from local suppliers of FRP and 

epoxy materials and manufacturer data sheets for GFRP and CFRP.  The resin 

consumption rate used was not measured during the experiments, but was rather obtained 

from manufacturer data sheets. 
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  Table 4.3: Cost Analysis for Configuration A with  
GFRP and CFRP (Canbek, 2009)   

 

4.4.3  FRP Tie Connection Testing and Results: Lateral Loading 

Only Configuration A (GFRP and CFRP) and C (CFRP) met the minimum High 

Velocity Hurricane Zone (HVHZ) required threshold (700 lbs x 3FS = 2,100 lbs) with 

4,200 lbs.  Based on the economy of GFRP, Configuration A with GFRP was selected as 

the most feasible connection for further study (Canbek, 2009).  The purpose of the next 

round of testing was to determine the performance of Configuration A under lateral loads.  

A testing setup similar to that commonly used by hurricane clip manufacturers was 

adopted.  Two ties were placed at the centerline of the nominal 2 x10 inch Southern 

Yellow Pine (SYP) timber, as shown in Figures 4.12 and 4.13.  The load was applied 

using an inverted U-shaped timber member (Figure 4.14).      

 

 

 

                                                           

 

 

       Figure 4.12: Views of Specimen Tested For Lateral Loading (Canbek, 2009)   

Type of 
FRP Used 

Price of FRP 
without epoxy 

($/in2) 

Resin 
Consumption 

(gal/in2) 

Price of Epoxy 
for 4 Gallons 

Kit ($) 

Cost of a 
Single FRP 

Tie with 
Epoxy ($) 

GFRP 0.013 0.0001102 272.41 0.73 
CFRP 0.0123 0.0001102 272.41 4.71 

FBC Min. Threshold (4200 lbs)

            
           Top View                               Side View   
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Figure 4.13: Specimen Used For 
Lateral Loading Tests (Canbek, 2009) 

 

 

 

 

 

Figure 4.14: Application of Load in 
Lateral Loading Test (Canbek, 2009) 

The average ultimate load for the three specimens was 2,290 lbs, yielding a value 

of 1,145 lbs per connection in the lateral direction (Canbek, 2009).  This value is much 

higher than the lateral capacity of many hurricane clips available, which can range 

between 100 to 200 lbs (Canbek, 2009).  Figure 4.14 shows that the typical mode of 

failure for FRP tie connections under lateral loads is peeling off.  

Based on the uplift and lateral load carrying capacity, Configuration A with 

GFRP was selected as the best alternative, in terms of cost and applicability, for 

validation in the full-scale tests. 

 

 

 

 

 

 

Figure 4.15: Typical Mode of Failure under Lateral Loading (Canbek, 2009) 
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4.5 Full–Scale Testing 

 A full-scale specimen was tested to evaluate the in-situ performance of the FRP 

tie connection developed at the component level under uplift forces.   

4.5.1 Test Setup and Specimen Preparation 

 The full scale specimen was built using No. 2 Spruce Pine Fir (SPF) 2 x 6 inch 

lumber.  The specimen consisted of two 8 feet-3 inch high, 8 feet long shear walls, with a 

center to center spacing of 17 feet.  The shear walls were supported by five fink type 

trusses, as shown in Figures 4.16 and 4.17.  Each shear wall had 9 feet long double top 

plates, five vertical studs with a center-to-center distance of 2 feet, and a single 8 feet 

long bottom plate.  The double top plate had 6 inches of overhang at the ends, for the 

placement of FRP tie connection (Figure 4.16, 4.17 and 4.18).  The 4 x 8 feet sheathing 

plywood was American Paper Association (APA) -rated and 19/32 inch thick, it was used 

as sheathing on the outer walls and the roof.  The roof sheathing was placed such that the 

8 feet sides were parallel to the ridge.  The outer walls sheathing were placed vertical 

along the studs.  The sheathing was attached to the roof and the outer walls using 8d-2 

inch long screws, spaced every 6 inches. 

 

 

 

 

 

 

Figure 4.16: The Full-Scale Test Specimen without Sheathing (Canbek, 2009) 

8ft 3in

17ft

8ft 
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Figure 4.17: Front View of Test 
Specimen (Canbek, 2009) 

 

 

 

 

 

 

 

 

Figure 4.18: Side View of Test 
Specimen (Canbek, 2009) 

 

The specimen was constructed with parts of the structure intentionally 

strengthened beyond normal construction practice to ensure that the failure would be 

localized to the FRP connection.  U-shaped metal straps were used at the top and bottom 

of the shear walls, to connect the plates to the studs using twelve 10d-1.5 inch long nails 

(Figure 4.19-1).  To avoid the possible separation of the double top plates, a metal U-

shaped connector, spaced every 24 inches, was installed and nailed using nine 8d-1.5 inch 

long nails (Figure 4.19-2).  Finally, the roof ridge was strengthened using V-shaped metal 

straps to avoid separation at high loads.  The test specimen was affixed to the laboratory 

tie-downs, using two steel channel sections under the two shear walls, bolted on the 

bottom plate every 24 inches (Figure 4.20).   

 

 

 

 



75 
 

 

 

 

 

 

 

 

Figure 4.19: (1) Strap Holding the Stud and the Lower Top Plate Together; and (2) 
U- Shaped Metal Plates Holding the Upper and Lower Top Plates Together 

(Canbek, 2009) 
 

The load was applied onto the roof using 8 hydraulic jacks connected to a single 

electric pump equipped with a speed control valve.  Four of the jacks were applying force 

to the north part of the roof and four to the south part of the roof.  The spacing between 

the jacks was 2 feet in east-west direction and 6 feet in north-south direction (Figure 

4.20).  A steel loading frame was fabricated to mount the hydraulic jacks.  The jacks were 

first bolted to ½ inch thick steel plates.  Subsequently, the plates were bolted to four 12 

inch long 3/4 inch diameter threaded rods.  The steel plates of the same size as those on 

the top were bolted at the bottom.  Load cells were placed on the top beam of the loading 

frame, such that it would be on the same vertical axis with the jack.  The jack system was 

placed on the loading frame through the holes on the top beam, such that the load cells 

will be sandwiched between the bottom plates and the loading frame (Figure 4.21).  In 

order to distribute the load, 8 feet long channel members were constructed using four 2 x 

6 inch dimensional lumbers.  Steel angles were screwed to the timber channel, and the 

2 

1 
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entire section was connected to the clevis eyes placed on top of the jacks using a bolt 

(Figure 4.22).  This connection system allowed the timber member to rotate freely about 

a clevis.  The FRP tie connections for the full-scale test used Configuration A with 

GFRP, as described in the previously.  The FRP tie connection was applied at the ends of 

each side of the joists, making for a total of 20 FRP tie connections.   

 

 

 

 

 

 

 

 

Figure 4.20: Full-Scale Test Specimen and the Loading Frame without Sheathing 
and Instrumentation (Canbek, 2009) 

 
 

 

 

 

 

 

 

Figure 4.21: Placement of Load Cell between the Loading Frame  
and Steel Plate (Canbek, 2009) 

 

Specimen 

Loading Frame 

Tie-down plates on 
strong floor

Hydraulic Jack 

Upper flange of 
top beam of 

loading frame 

Push button 
load cell 

Steel Plates 
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Figure 4.22: Jack with the Load Distribution Channel Mounted  

On Top (Canbek, 2009) 
 

 The instrumentation for the full-scale specimen consisted of twenty three string 

pots, eight strain gages and eight load cells.  The numbering and schematic representation 

of sensors are summarized in Table 4.4 and shown in Figure 4.23.  The sensors were 

numbered starting from the load cells, to string pots and finally to strain gages.  The 

numbering sequence started from northeast corner and moved in the clockwise direction.  

A push-button load cell was placed under the vertical axis of each jack to measure 

applied load.  String pots 9-13 and 27-31 were placed on the outer wall, to measure the 

displacement of each truss at 1.5 inch away from the wall on the outside.  String pots 18-

22 were connected to the 8 feet long timber member assembled on the loading frame to 

measure the displacements at the center of the bottom chord of the truss.  String pots 14-

17 and 23-26 were directly connected to the loading frame to measure the displacements 

at loading points on the axis of rotation of the timber channel members.  Eight 60 mm 

strain gages were used to measure the strains centered on the vertical section of the FRP 
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tie connections.  The strain gages measured the strains of the FRP tie connections located 

at the four corners of test specimen.  Figure 4.24 shows a sketch of the instrumented 

specimen before testing. 

 

 

Sensor No. Sensor Type Measurement 

1, 2, 3, 4 Load cells 
Located under the jacks on the north side of the 

structure to measure the applied load 

5, 6, 7, 8 Load cells 
Located under the jacks on the south side of the 

structure to measure the applied load 

9, 10, 11,l 
12, 13 

String pots 
Connected to the northern outer wall, 4 ft above 
the ground to measure the displacement of the 

truss at a distance of 1.5 in. from top plate 

14, 15, 16, 
17 

String pots 
Connected to the loading frame to measure the 
displacements at the loading points on the north 

side of the test specimen 

18, 19, 20, 
21, 22 

String pots 
Connected to the loading frame to measure the 
displacements at the center of the bottom chord 

of  the trusses 

23, 24, 25, 
26 

String pots 
Connected to the loading frame to measure the 

displacements at the loading points on the south 
side of the test specimen 

27, 28, 29, 
30, 31 

String pots 
Connected to the southern outer wall, 4 ft above 
the ground to measure the displacement of the 

truss at a distance of 1.5 in. from top plate 
32, 33, 34, 
35, 36, 37, 

38, 39 
Strain gages 

Attached to FRP ties at 4 corners of the test 
specimen to measures the strain on center line of 

the vertical leg of the tie placed on the joist 
 

Table 4.4: Sensor List (Canbek, 2009) 
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Figure 4.23: Schematic Representation of Sensor Locations (Canbek, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Schematics of Full-Scale Test Specimen with Sensors in Place 
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4.5.2 Test Observations and Results 

 The loading history for the test specimen is shown in Figures 4.25, 4.26 and 4.27.  

Figure 4.25 represents the load applied from each individual jack.  Figure 4.26 shows the 

load applied on each quadrant of the roof.  Figure 4.27 shows the total load applied on the 

specimen.  Figure 4.28 compares the loads applied from each jack at the time of failure.  

In Figures 4.25 and 4.26, the loads applied from each jack were not exactly the same.  

This may be attributed to the manifold locations, hose lengths, and bends that could alter 

the ease of flow through the system (Canbek, 2009).  The FRP tie connections were 

numbered as shown in Figure 4.29.   

 

 

Figure 4.25: Load Applied From Each Jack (Canbek, 2009) 
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Figure 4.26: Load Applied To Each Quadrant of the Roof (Canbek, 2009) 

 

 

 Figure 4.27: Total Load Applied on the Specimen (Canbek, 2009) 
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Figure 4.28: The Loads Applied At Each Cylinder at Initial  
Failure Load (Canbek, 2009) 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: The Numbering of FRP Tie Connections (Canbek, 2009) 

 

N
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 The initial failure of FRP tie connections was seen at connections 13 and 14 at a 

total load of 20,716 lbs.  The failure of these two ties started as both began to peel off 

from the top plate.  Although most of the portion of the FRP tie connections 13 and 14 

were detached from the top plate, the system was still able to sustain the applied load.  

When the load was increased to 23,659 lbs, FRP tie connections 7, 8, 11, 12, 19 and 20 

failed at the same time, following the complete detachment of FRP tie connections 13 

and 14 in a domino pattern.  The FRP tie connection 13 detached from the top plate 

completely, while the FRP tie connection 14 failure was at the interface between the FRP 

and the truss.  The two different modes of failures observed on the two different sides of 

the same truss suggested that the FRP-timber bond strength in Mode I and Mode II are 

very close to each other (also observed in the component level tests) (Canbek, 2009).  

The initiation of failure of FRP tie connections 13 and 14 at 20,716 lbs is shown in Figure 

4.30.  The complete failure of these two FRP tie connections at 23,659 lbs is shown in 

Figure 4.31.  Failure of FRP tie connections 11 and 12 was very similar to that of FRP tie 

connections 13 and 14.  FRP tie connection 11 remained attached to top plate and its 

failure took place at the interface between the FRP and the truss.  FRP tie connection 12 

remained attached to the truss, and peeled off from the top plate completely (Figure 

4.32).  FRP tie connections 19 and 20 failed as the FRP peeled off from the top plate.  At 

the failure load, some parts of these ties were still attached to the top plate as seen in 

Figure 4.33.  Figure 4.34 shows the FRP tie connections 7 and 8 at the ultimate load.  A 

complete failure was not observed, but considerable peel off of FRP from the top plate 

along with timber fibers was noted with significant amounts of timber fibers remaining 

attached to the FRP in the failed ties (Canbek, 2009).    
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Figure 4.30: Initiation of Failure in 
FRP Tie Connections 13 and 14 at 

20,716 lbs (Canbek, 2009) 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.32: Failure of FRP Tie 

Connections 11 and 12 (Canbek, 2009) 
 

 

 

 

 

Figure 4.31: Complete Failure of FRP 
Tie Connections 13 and 14 at  

23,659 lbs (Canbek, 2009) 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.33: Failure of FRP Tie 

Connections 19 and 20 (Canbek, 2009) 
 

 

 

 



85 
 

 

 

 

 

 

 

 

Figure 4.34: Failure of FRP Tie Connections 7 and 8 and  
Separation of Timber Fibers (Canbek, 2009) 

 

If it is assumed that loads applied from each jack is transferred to the closest 

connections, loads at pairs of FRP tie connections are as shown in Figure 4.35.  Based on 

this assumption, the load versus displacement values of string pots located at the outer 

walls are presented in Figures 4.36-46. 

The displacement readings obtained from string pots 9 through 13 on the north 

side of the trusses are shown in Figure 4.46.  Figure 4.47 illustrates the displacement 

readings obtained from string pots 27 to 31 on the south side of the trusses.  The data 

obtained from string pots 18 to 22, which were displacements at the center of the bottom 

chord of the trusses are shown in Figure 4.48.  The displacements in these figures are 

plotted against the total load applied.  Upward displacements are considered positive.  

The three figures collectively suggest that the FRP tie connections provide a rigid and 

stiff load transfer mechanism from roof to the wall (Canbek, 2009).  Results indicate very 

small displacements at each connection and that the 1/8 inch deflection limit is never 

reached, this is in full agreement with the component level tests (Canbek, 2009).   
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Figure 4.35: The Loads at Pairs of FRP Tie Connections at Initiation  
of Failure (Canbek, 2009) 

 

 

Figure 4.36: Load-Displacement for FRP Tie Connections 1 and 2 (Canbek, 2009) 
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Figure 4.37: Load-Displacement for FRP Tie Connections 3 and 4 (Canbek, 2009) 

 

Figure 4.38: Load-Displacement for FRP Tie Connections 5 and 6 (Canbek, 2009) 
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Figure 4.39: Load-Displacement for FRP Tie Connections 7 and 8 (Canbek, 2009) 

 

Figure 4.40: Load-Displacement for FRP Tie Connections 9 and 10 (Canbek, 2009) 
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Figure 4.41: Load-Displacement for FRP Tie Connections 11 and 12 (Canbek, 2009) 

 

Figure 4.42: Load-Displacement for FRP Tie Connections 13 and 14 (Canbek, 2009) 
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Figure 4.43: Load-Displacement for FRP Tie Connections 15 and 16 (Canbek, 2009) 

 

Figure 4.44: Load-Displacement for FRP Tie Connections 17 and 18 (Canbek, 2009) 
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Figure 4.45: Load-Displacement for FRP Tie Connections 19 and 20 (Canbek, 2009) 

 

 

Figure 4.46: Total Load-Displacements on the North Side of the Truss vs. 
Total Load (Canbek, 2009) 
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Figure 4.47: Total Load-Displacements on the South Side of the Truss  
vs. Total Load 

 
 

 

Figure 4.48: Total Load-Displacements at the Center of the Bottom Chord  
of the Truss (Canbek, 2009) 
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In Figures 4.49 through 4.52, the strains at pairs of FRP tie connections at the 

corners are plotted versus the stress in vertical leg of FRP tie connections.  It was 

assumed that the loads applied from each jack are equally shared between nearest pairs of 

FRP tie connections.  The figures show that the ultimate stress values in the failed ties 

seem to be very close to the bond strengths calculated in component level tests (Canbek, 

2009).   The strains obtained from the strain gages placed on FRP tie connections at the 

corners are plotted versus time and versus total load in Figures 4.53 and 4.54 

respectively.  A maximum of 581 micro-strains was recorded at one of the failed 

connections.  According to the manufacturer’s specifications, the GFRP used has an 

elastic modulus of 3,790 ksi, a tensile strength of 87 ksi and a maximum elongation of 

0.023 inch (Canbek, 2009).  Therefore, the average stress in the vertical leg of the FRP tie 

connection on the joist is about 2.2 ksi, less than its rupture strength. 
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Figure 4.49: Stress-Strain for FRP Tie Connections 1 and 2 (Canbek, 2009) 

 

Figure 4.50: Stress-Strain for FRP Tie Connections 9 and 10 (Canbek, 2009) 
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Figure 4.51: Stress-Strain for FRP Tie Connections 11 and 12 (Canbek, 2009) 

 

Figure 4.52: Stress-Strain for FRP Tie Connections 19 and 20 (Canbek, 2009) 
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Figure 4.53: Strain Values of FRP Tie Connections Located at the  
Corners of the Truss (Canbek, 2009) 

 

 

Figure 4.54: Total Load-Strain for FRP Tie Connections Located  
at the Corners (Canbek, 2009)  
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 The full-scale test has provided valuable information.  Since there are ten 

connection points, the ultimate load per connection can be estimated as 2,365 lbs.  

Considering that the application of load from the jacks was not perfectly uniform and the 

system was able to take more loads even after failure of one connection, it may be 

concluded that the capacity of one tie is greater than this value (Canbek, 2009).  This 

value exceeds the FBC requirement of 700 lbs for HVHZ with a factor of safety of 3 as 

used by most of the hurricane clip manufacturers.   

 

4.6 Conclusions  

 The component level tests showed that the FRP-timber bond strength is related to 

the size of the bonded area.  The relation is not constant and beyond a threshold value, no 

more increase is observed in the FRP-timber Mode II bond strength.  The component 

level tests and the full-scale test both suggest that the bond strengths of FRP-timber in 

Mode I and II seem to be very close to each other (Canbek, 2009). The full-scale and 

component level tests results, of the FRP connection, demonstrated similar load 

capacities and stiffness (Canbek, 2009). 

The initial research on the FRP connection indicated that the new connection can 

be effective in transferring the vertical and lateral roof-to-wall loads.  Furthermore, the 

connection is economically comparable to commercially available metal connectors and 

applicable to new construction or as a retrofit for existing structures (Canbek, 2009). 

The FRP tie connection developed by Canbek (2009) provided the basis for 

further testing using hybridized experiments performed at the WoW and SCL. The 

hybridized testing, described in the following sections, was necessary to develop 
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performance based design details to ascertain the performance of the new connection 

under tropical cyclone wind effects (including high winds, wind-driven-rain and wind-

borne debris impacts).   
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5. Wall of Wind Testing of the FRP Roof-to-Wall Connections 

 

5.1  Introduction 

The FRP tie connection developed by Canbek (2009) and described in Chapter 4 

provided the basis for further testing and development of the GFRP connection.  As part 

of the hybridized experiments, the WoW was employed to test the behavior of the roof-

to-wall connections as part of a test building subjected to simulated hurricane effects.  

These findings helped to evaluate the performance of the connections and aerodynamic 

and aero-hydrodynamic loading on them from wind and wind-driven rain effects for 

various angles of attack, enclosed and partially enclosed conditions, and various 

turbulence characteristics.  Thus the performance of the connections were evaluated 

under high winds with and without wind-driven rain conditions and simulated high 

internal pressure that may occur due to the breach of building envelope from wind-borne 

debris. 

A one-story gable-roof structure instrumented with sensors to measure the wind 

induced effects on the roof-to-wall connections underwent high wind tests  for five 

different angles of attack, two internal pressure conditions,  two kinds of wind flow (with 

and without low frequency fluctuations), and with and without simulated wind-driven 

rain. 

 

5.2  Rationale for Testing GFRP Connection at the WoW 

Using the GFRP tie connections developed at the SCL, the WoW was employed 

to tests, in a more realistic manner, the behaviors of the connection.  Using the results of 



100 
 

these aerodynamic and aero-hydrodynamic tests, resultant wind-induced forces were 

developed from the load cells data on the uplift loads, lateral loads parallel to the wall 

and lateral loads perpendicular to the wall.  These resultant forces were used to test the 

GFRP connection to failure in the SCL as detailed in chapter 6.  Therefore, the resultant 

loads are dependent on ratios of uplift to lateral loads for various cases of angles of 

attack, internal pressure conditions, wind turbulence, and rain conditions.  From the 

failure load equivalent wind speed causing failure can then be estimated using the 

following equation: 

                                                     Eq. 5.1 

Where, 

  is the equivalent wind speed at which the connection fails 

  is the resultant load at which the connection fails  

            (obtained from SCL tests) 

  is the air density 

  is the tributary area for the connection 

 CF is the aerodynamic load coefficient for the connection 

 

5.3 Test Specimen and Setup 

 The test specimen used in the WoW tests was built in house by research personnel 

(see Figure 5.1).  It consisted of two separate entities, the base structure and the roof.   
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Figure 5.1: Wall of Wind Test Specimen 

 

Since the load cells were placed in between the roof and the top-plate it was imperative 

for the two systems, the base structure and roof, to be built separately.  The base structure 

and roof were purposely built to be very sturdy to prevent damage during testing, since 

the failure (if any) was to be limited to the roof-to-wall connection. 

A 10 x 10 x 8 (eave height) feet base structure was built using Spruce Pine Fir 

(SPF) No. 2 – 2 x 6 inch dimensional lumber to be consistent with the lumber utilized in 

the connection development stage in SCL (Chapter 4).  The bottom structure was 

composed of a 5 inch high timber floor (Figure 5.2), 8 feet walls with 2 x 2 feet windows 

and one door (Figure 5.3).  The floor consisted of 6-2 x 6 inch 10 feet long members 

spaced every 2 feet.  Members 2 feet in length were installed in the perpendicular 

direction of the floor to create a foundation membrane (Figure 5.2).  The wall studs were 

spaced 14 inches apart to prevent wall failure.  Metal clips were installed at the top-plate 

to top of the stud and on the bottom plate to the bottom of the studs (Figure 5.4).  The  
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Figure 5.2: Floor Membrane 

 

Figure 5.3: Wall with Door & Window 

outside and the inside sheathing used was 5/8 inch APA plywood nailed every 6 to 4 

inches to the wall studs, bottom-plate and double top-plate. The entire structure was 

painted with polyurethane to slow down the weathering effects on the structure.   

The gable roof was built using SPF No. 2 – 2 x 4 inch dimensional lumber and ½ inch 

sheathing nailed every 4 inches.  The roof consisted of three 10 feet trusses spaced 5 feet 

apart (see Figure 5.5), with a 1.5 feet overhang on each side.  The trusses were connected 

to a 10 x 10 feet mitered single top-plate using the GFRP tie connection (Figure 5.6).  

The top-plate was later cut between the connections to determine if the load cells 

recorded any load sharing; no major difference was observed.  The GFRP connection 

shown in Figure 5.7 is a typical example of the 3 x 1 inch GFRP used as the roof-to-wall 

connection for each roof.  A total of 8 GFRP tie connections were utilized, 2 on the gable 

end trusses and 4 on the middle truss.  Six 6-degrees of freedom (DOF) load cells were 

installed and sandwiched between aluminum plates bolted to the top plate underneath the 

trusses and the double top plate of the base structure (see Figure 5.8).  Thus all the 
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loading from the roof-to-wall connections were transferred through the load cells. A 

vented soffit was installed between the walls and overhang, but not connected to the 

bottom structure (see Figure 5.9).  The soffit was screwed to the overhangs of the trusses 

and flashing was installed along the overhang, ridge and gable ends (see Figure 5.10).  

Sub-fascia was nailed to the trusses and no purlins or horizontal members were used 

between the trusses.   

 

 

 

 

 

 

 

Figure 5.4: Metal Clips at the Stud to 
Top & Bottom Plate 

 
 
 

 

 

 

 

 

 

 

Figure 5.5: Roof Trusses             

 

 

 

 

 

 

Figure 5.6: Mitered Top-Plate & 
GFRP Connection 

 

 

 

 

 

Figure 5.7: Typical 3 x 1 inch GFRP 
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Figure 5.8: Roof & Bottom structure Aluminum Plate Connection 
 

 

 

 

 

 

 

 

 

 

Figure 5.9: Vented Soffit 

 

Figure 5.10: Roof Flashing 
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5.4 Test Specimen Instrumentation  

The test specimen was instrumented with the following sensors in all connections 

(see Figure 5.11 and 5.12): 

 6 Load Cells (each with 6 degrees of freedom) under the trusses; sandwiched 

between double top plate of walls and single top plate of roof (see Figure 5.13). The 

recorded forces are FX, FY, and FZ corresponding to the in-plane shear (parallel to the side 

walls), out-of-plane shear (perpendicular to the side walls), and uplift, respectively. Three 

orthogonal moments (MX, MY, and MZ) were also recorded. 

 6 Linear Voltage Differential Transformers (LVDT) to measure horizontal 

displacements of GFRP truss connection (parallel to the side walls); placed on roof single 

top-plate (see Figure 5.13) 

 12 String Potentiometers (Sting Pots) to measure vertical deflection and 

horizontal deflection (perpendicular to the side walls) of the connections; placed on roof 

single top-plate (see Figure 5.14) 

 8 Strain Gauges to measure strain in the vertical portion of each GFRP 

connection (see Figure 5.15) 

 2 Compact-Rios were used for all data acquisition, installed on the inside of the 

walls of the test specimen and controlled using a common laptop through an Ethernet 

connection (see Figure 5.16). 
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Figure 5.11: WoW Test Specimen Instrumentation; and Connection Numbers 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Typical Connection Instruments 
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Figure 5.13: Load Cell & LVDT 

 

 

 

 

 

 

Figure 5.14: String Potentiometers 

 

 

 

 

 

 

 

 

 

Figure 5.15: Strain Gauges 

 

 

 

 

 

 

 

 

 

Figure 5.16: Compact Rios 
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5.4.1 Load Cell Loads Transferred to the GFRP Connection  

Due to the eccentricities between the trusses and the 6-DOF load cell used during 

the WoW tests, the recorded loads were transferred from the load cells to the truss-GFRP 

connection points (see Figure 5.17).  The recorded data from the 6-DOF load cells 

employed during the WoW test was converted to tri-axial resultant forces using the 

equations below.  The equations for carrying moments to any desired location: 

 

4.6...........................................................................................................

3.6...........................................................................................................

2.6...........................................................................................................

zLCyxxyz

yLCxzzxy

xLCzyyzx

MeFeFM

MeFeFM

MeFeFM







 

 
In order to find the point where the moments are zero, these three equations should be 

solved for ex, ey, ez for Mx = My = Mz =0 

 
Solving equation 1 for ez, 
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Solving equation 2 for ex, 
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Insert ez into equation 5: 
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Now, insert ex found in equation 6 into equation 3: 
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this equation is independent of ey.  The only unknown in equation 7 is ey, now solve for 

ey.  After ey is found, insert it into equation 4 and solve for ez.  After ez is found, insert it 

into equation 5 and solve for ex. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Load Cell and Truss Connection Points Eccentricities 
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5.5 WoW Testing Protocol for GFRP Roof-to-Wall Connections  

 A total of 30 tests were performed during the WoW experiments under various 

parameters including: 5 angles of attack (AOA) (see Figures 18-22), enclosed and 

partially-enclosed building conditions, wind without rain condition, and wind-driven rain 

(WDR) condition.  Each test was performed using a 1 minute flat waveform (at 

maximum rpm of the WoW engines and generating high frequency turbulence only) and 

3 minutes quasi-periodic waveform (generating low frequency turbulence in addition to 

high frequency turbulence).  The wind characteristics of the full-scale WoW are given in 

Table 3.2. 

 

The various testing phases are described below.  

5.5.1 Phase I Test Protocol 

The first set of tests was performed with a wind angle of attack of 0 degrees with 

the gable ends being perpendicular to wind flow (see Figure 18).  A total of six, 1-3 

minutes tests were conducted in Phase I with: 

 an enclosed building for 1 minute, at 4000 rpm (WoW engine rpm) 

 an enclosed building for 3 minutes, using a Quasi-Periodic waveform 

 an enclosed building with WDR for 1 minute, at 4000 rpm 

 an enclosed building with WDR for 3 minutes, using a Quasi-Periodic waveform 

 a partially-enclosed building (1 window and the door removed) for 1 minute, at 

4000 rpm 

 a partially-enclosed building (1 window and the door removed) for 3 minutes, 

using a Quasi-Periodic waveform 
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Figure 5.18: Wind AOA of 0 Degrees 

 

5.5.2 Phase II Test Protocol 

The second set of tests was performed with a wind angle of attack of 90 degrees 

with the gable ends being perpendicular to wind flow (see Figure 19).  A total of six, 1-3 

minutes tests were conducted in Phase II with: 

 an enclosed building for 1 minute, at 4000 rpm 

 an enclosed building for 3 minutes, using a Quasi-Periodic waveform 

 an enclosed building with WDR for 1 minute, at 4000 rpm 

 an enclosed building with WDR for 3 minutes, using a Quasi-Periodic waveform 

 a partially-enclosed building (1 window removed) for 1 minute, at 4000 rpm 

 a partially-enclosed building (1 window removed) for 3 minutes, using a Quasi-

Periodic waveform 



112 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Wind AOA of 90 Degrees 

 

5.5.3 Phase III Test Protocol 

The third set of tests was performed with a wind angle of attack of 45 degrees (see 

Figure 20).  A total of eight, 1-3 minutes tests were conducted in Phase III with: 

 an enclosed building for 1 minute, at 4000 rpm 

 an enclosed building for 3 minutes, using a Quasi-Periodic waveform 

 an enclosed building with WDR for 1 minute, at 4000 rpm 

 an enclosed building with WDR for 3 minutes, using a Quasi-Periodic waveform 

 a partially-enclosed building (2 windows removed) for 1 minute, at 4000 rpm 

 a partially-enclosed building (2 windows removed) for 3 minutes, using a Quasi-

Periodic waveform 
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 a partially-enclosed building (2 windows and the door removed) for 1 minute, at 

4000 rpm 

 a partially-enclosed building (2 windows and the door removed) for 3 minutes, 

using a Quasi-Periodic waveform 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Wind AOA of 45 Degrees 

 

5.5.4 Phase IV Test Protocol 

The fourth set of tests was performed with a wind angle of attack of 30 degrees 

(see Figure 21).  A total of four, 1-3 minutes tests were conducted in Phase IV with: 

 an enclosed building for 1 minute, at 4000 rpm 

 an enclosed building for 3 minutes, using a Quasi-Periodic waveform 

 an enclosed building with WDR for 1 minute, at 4000 rpm 

 an enclosed building with WDR for 3 minutes, using a Quasi-Periodic waveform 
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Figure 5.21: Wind AOA of 30 Degrees 

 

5.5.5 Phase V Test Protocol 

The last set of tests was performed with a wind angle of attack of 60 degrees (see 

Figure 22).  A total of six, 1-3 minutes tests were conducted in Phase V with: 

 an enclosed building for 1 minute, at 4000 rpm 

 an enclosed building for 3 minutes, using a Quasi-Periodic waveform 

 a partially-enclosed building (2 windows removed) for 1 minute, at 4000 rpm 

 a partially-enclosed building (2 windows removed) for 3 minutes, using a Quasi-

Periodic waveform 

 a partially-enclosed building (2 windows and the door removed) for 1 minute, at 

4000 rpm 



115 
 

 a partially-enclosed building (2 windows and the door removed) for 3 minutes, 

using a Quasi-Periodic waveform 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Wind AOA of 60 Degrees 

 

5.6 WoW Test Results for GFRP Roof-to-Wall Connections  

 This section reports the WoW testing results.  Graphs of the 3-second time 

averaged histories of individual load cells and load direction, bar graphs with mean 

results of all the conditions per load cell and the dot graphs with mean force results of 

individual load cells are presented here.   

 

The nomenclature used to determine the type of test runs in the graphs is as follows: 

1- E_FT: corresponds to an enclosed condition and wind speeds at full-throttle 

(4000 RPM) (Figure 5.23). 
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2- E(W)_FT: corresponds to an enclosed condition with wind driven rain and wind 

speeds at full-throttle (4000 RPM) (Figure 5.24). 

3- PE_FT: corresponds to a partially enclosed condition where 1 (for AOA 90º test) 

or 2 (for AOA 45º test) windows have been removed and 1 window and the door 

(for AOA 0º test) and wind speeds at full-throttle (4000 RPM) (Figure 5.25, 5.26 

& 5.27). 

4- PE’_FT: corresponds to a partially enclosed condition, where the windows and 

the test specimen door have been removed and wind speeds are at full-throttle 

(4000 RPM) (for AOA 45º & 60º tests). 

5- E_QP: corresponds to an enclosed condition and wind speeds that correspond to a 

quasi-periodic ramp function. 

6- E (W)_QP: corresponds to an enclosed condition with wind driven rain and wind 

speeds that correspond to a quasi-periodic ramp function. 

7- PE_QP: corresponds to a partially enclosed condition where 1 (for AOA 0º & 90º 

tests) or 2 (for AOA 45º test) windows have been removed and wind speeds that 

correspond to a quasi-periodic ramp function. 

8- PE’_QP: corresponds to a partially enclosed condition where 2 (for AOA 45º & 

60º tests) windows and the test specimen door have been removed and wind 

speeds that correspond to a quasi-periodic ramp function. 

 

 

 



Figure 5.23: Enclosed O· 

Figure 5.25: Enclosed & 
Wind D riven Rain O· 

Figure 5.24: Partially Enclosed 
One Window Removed 90· 

Figure 5.26: Partially Enclosed Two 
Windows Removed 45· 

Figure 5.27: Partially Enclosed One Window & Door Removed O· 
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5. 6.1. Load Cell Results from Phase I Testing 

The load cell results plotted as graphs for all  the tests under Phase I are shown below. 
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5. 6.2 Load Cell Results from Phase II Testing 

The load cell results plotted as graphs for all the tests under Phase II are shown below. 
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5. 6.3 Load Cell Results from Phase III Testing 

The load cell results plotted as graphs for all  the tests under Phase III are shown below. 
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5. 6.4 Load Cell Results from Phase IV Testillg 

The load cel l results plotted as graphs for al l  the tests under Phase IV are shown below. 
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5. 6.5 Load Cell Results/rom Phase V Testing 

The load cell results plotted as graphs for all  the tests under Phase V are shown below. 
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5. 6.6 Bar Graphs with Mean Results of All Conditions in Load Cell I 

Based on the loading time histories mean forces and moments were calculated and 

plotted as bar graphs as shown below. 
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5. 6. 7 Bar Graphs with Mean Results of All Conditions in Load Cell 2 
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5. 6.8 Bar Graphs with Mean Results of All Conditions in Load Cell 3 
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5. 6. 9 Bar Graphs with Mean Results of All Conditions in Load Cell 4 
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5. 6. J 0 Bar Graphs with Mean Results of All Conditions in Load Cell 5 
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5. 6. J J Bar Graphs with Mean Results of All Conditions in Load Cell 6 
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5. 6. J 2 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell J 

Based on the mean Fx, Fy, and Fz values scatter plots are given below to show the 

proportionalities between the uplift and the lateral (in-plane shear and out-of-plane shear) 

forces. 

100 , 

I� t 
100 , 

\0 

5 c · 

� 0 

100 I 
·I� 
·'00 

'00 

100 ' 

'00 

100 
• • � 

0 
• 

-100 i 
·'00 

·300 

lOAOCEll I 

I • . FlJSEtGUST 
• 

f 
PI£ANUT 

-+ 
• .FO-S[CGlJST 

IS 30 os " 7S 90 W!ANEJT 
• 

• 
• ... FU·SECGUST 

• • WEANUT 

DEGREES 

Graph 5.241 : Mean Forces, 
Enclosed at Full Throttle 

lOAOUlll 

• Fl_HECGUST 

• MEA'l PUT 
• • • 

• IFyJSECGlJ5i • 
• MEA>jPUT 

IS " " 60 75 II> 
• • , fl_l·SECGUST 

• • MEA'lPiJT 

DEGREES 

Graph 5.242: Mean Forces, 
Partially Enclosed at Full Throttle 

1 72 

lOAOCIU 1 

: r�-------------'l-------:: If------
• 50 I------------:c-------------
� 0 t 

1
00 I • ·ISO 

• ·'00 

·,SO 
DEGREES 

. FxJ�E(GUST 
MEAHPE'JT 

.FyJS[CGU>T 
MEANPrJT 

j, FI_J.SEC GUST 

MEANPE'JT 

Graph 5.243: Mean Forces, 
Partially Enclosed' at Full Throttle 

lOAO([U 1 '
00 I 150 I +hJS£CGUST 

• MEANE (WLFT .': i • 
• 

1FO-S(C(iLlST • 
- o

. 
MEANE!WIJT 

0 IS 30 41 '" 75 90 ,: I 
, 

.lfz3·S;:CGUST • 
MEANE (WLFT • 

·150 

DEGREES 

Graph 5.244: Mean Forces, 
Enclosed with Water at Full Throttle 



lOAOCElll 
W 

• 

" .f)_H[CGU5T 

• • MfANEJlI' 
• 

" . 
• 

� 20 • 
• 

.fLl-SECGUST 
MlAtH_QI' 

• 

IS 30 i 60 75 90 -20 • • .&FU-SEC GUST 

• • MEANE_QP 

., 
DEGREES 

Graph 5.245: Mean Forces, 
E nclosed at Quasi-Periodical 

lOAOCEll I 
1" 

liO ! 

!J 
.fJJS[CQJST 

• Po'EANPCQP 

• 

.fO·S(CGUST 

• 
Po'EANPE_QP 

, r • 
• 

·,0 • • 15 30 4S q 7S '" .& FU-S(CQJST 
• • 

Po'EANP(_QP : L  • • 

DEGREES 

Graph 5.246: Mean Forces, 
Partially Enclosed at Quasi-Periodical 

1 73 

lOAD CEll 1 

• 

• , ----------�----------
, 15 JO " 60 75 911 

• 

• 

� ----------------------

� �I---------------------
• 

.hJSfCGUST 
MEANP['Jlf' 

.FO-S{CGUSJ 
MEAN PE'_ Q.P 

.&fO-SECGUSJ 
MEANP£'_QP 

-11111 

� � 

80 

DEGREES 

Graph 5.247: Mean Forces, 
Partially Enclosed' at Quasi

Periodical 

lOAOCEll I 

HlJS[CGUST 
... MEANE /WLO' 40 • 

20 • .fyJ5{CGUSJ 

MEAH( lWLO' 

• 15 30 4\ ,. 75 T -20 
·40 I • .6. fU-SECGUST 

M[AN{ (WLQ' 

-611 
• 

DEGREES 

Graph 5.248: Mean Forces, 
Enclosed with Water at Quasi

Periodical 



5. 6. J 3 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell :1 
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5. 6. 14 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell 3 
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5. 6. J 5 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell 4 
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5. 6. J 6 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell 5 
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5. 6. J 7 Scatter Plots of Mean Fx, Fy and Fz ill Load Cell 6 
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5. 6. J 8 Strain Time Histories 

The data obtained from the strain gages provided an indication of the amount of strain 

induced in the vertical lap of each GFRP connection during the WoW testing. The data 

showed that minimal strains were induced. Sample plots (for connection 5 )  are shown . 
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5. 6. 19 Horizofltal Displacemeflt (Parallel to tlte Side Walls) Time Histories 

The data obtained from the L VDTs provided an indication of the horizontal deflections 

(parallel to the side walls) of the connections during the WoW testing. The data showed 

that minimal displacements were induced. Sample plots (for connection 5 )  are shown. 
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5. 6.20 Horizofltal Deflectiofl (Perpefldicular to tile Side Walls) Time Histories 

The data obtained from the string pots provided an indication of the horizontal deflection 

(perpendicular to the side walls) of the connections during the WoW testing. The data 

showed that minimal deflections were induced. Sample plots (connection I )  are shown . 
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5. 6.21 Vertical Deflection Time Histories 

The data obtained from the string pots provided an indication of the vertical deflection of 

the connections during the WoW testing. The data showed that minimal deflections were 

induced. Sample plots are shown below for connection 1 for various angles of attack. 
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5. 6.22 Illternal Pressure Time Histories 

The data obtained from the pressure transducers helped to estimate the internal pressure 

generated by simulating breach of the building envelope. The maximum difference, 

related to the uplift loading on a connection (#5), between enclosed and partially-

enclosed conditions was observed for 0° AOA. The uplift force time histories and 

corresponding mean uplift forces for connection 5 for enclosed and partially-enclosed 

conditions for 0° AOA and ful l  throttle testing are shown in Graphs 5 .309, 5.3 1 0. 
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The partially-enclosed condition was simulated by removing the windward window and 

opening the door. The corresponding internal pressure time histories obtained by pressure 

transducers 3, 4, and 5 (near connection 5 )  and the mean internal pressure values are 

shown in Graphs 5 .3 1 1  to 5 .3 1 5 .  
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5.7   Discussion of Results 

The previous section, 5.6 illustrated by graphical representations all of the results 

obtained from the thirty WoW tests. In sections 5.6.1.1 to 5.6.1.5 the time histories of the 

load cells in the five phases (0º, 90º, 45º, 30º and 60º) of the experiments were 

graphically represented.  The graphs were separated into individual load (Fx, Fy, Fz) and 

moment (Mx, My and Mz) components for all the six load cells installed underneath the 

GFRP roof-to-wall connections.  The graphs contained the results of all the different 

conditions tested: 

 Enclosed condition tested using full-throttle and quasi-periodic waveforms for all 

angles of attack (0º, 90º, 45º, 30º and 60º) 

 Enclosed condition tested under simulated wind-driven rain using full-throttle and 

quasi-periodic waveforms for 0º, 45º & 90º angles of attack  

 Partially enclosed (PE) condition tested using full-throttle and quasi-periodic 

waveforms for all angles of attack (0º, 90º, 45º, 30º and 60º) 

 Partially enclosed (PE’) condition tested using full-throttle and quasi-periodic 

waveforms for 45º & 60º angles of attack.         

Each test was performed using a 1 minute flat waveform (full-throttle; at 

maximum rpm of the WoW engines and generating high frequency turbulence only) and 

3 minutes quasi-periodic waveform (generating low frequency turbulence components 

with 0.03, 0.13 and 0.3 Hz, in addition to high frequency turbulence) (Huang et. at, 

2008).  Thus turbulence intensities for the flat waveform and the quasi-periodic 

waveform generated wind flows are shown in Table 3.2 as 4.6% and 23.8%, respectively. 

The difference is due to the presence of low frequency fluctuations associated with the 
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quasi-periodic waveform generated wind flow. Though the peak 3-sec gusts wind speeds 

are comparable for the two different waveform generated flows the mean wind speeds for 

the flat waveform case is considerably higher than the quasi-periodic waveform case.  As 

such the loads recorded on the roof-to-wall connections for the flat-waveform (or full 

throttle) cases are higher than those for the quasi-periodic waveform cases. However the 

proportionalities between the mean uplift, in-plane, and out-of-plane forces are very 

similar for both waveforms as depicted by the plots. This emphasizes that the higher 

turbulence generated by the low frequency fluctuations of the wind does not affect the 

proportionalities between the mean uplift and lateral forces induced on the connections. 

Thus for further testing of the GFRP connections to failure under tri-axial loading in 

SCL, only the data obtained for the flat waveform tests are used.    

Hurricane winds are accompanied by wind-driven rain. Aerodynamic loading on 

buildings and their components and connections, due to wind effects only, can differ 

from aero-hydrodynamic loading induced by the combined effect of wind and impinging 

rain. Generally wind tunnels cannot be used for comprehensive research into this 

phenomenon. This limitation can affect standard provisions, whose adequacy needs 

therefore to be assessed. For differences between aerodynamic and aero-hydrodynamic 

loading to be determined it is necessary to perform repeatable, controlled full-scale tests 

simulating hurricane winds and rain.  WoW was used to determine if there is any 

significant difference between aerodynamic and aero-hydrodynamic loading induced on 

the GFRP connections by testing under simulated hurricane wind and wind-induced rain, 

respectively.  Based on the results no significant increase in load was observed during the 
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wind-driven rain tests as compared to wind with no rain.  Thus the data used for failure 

testing in SCL were obtained from the wind tests.  

Design wind loads on building components and connections are a combination of 

external and internal pressures. Internal pressures can contribute to a significant portion 

of the design wind load (Irwin and Sifton, 1998), depending on opening size and location. 

This is especially true in the event that windborne debris suddenly breach the building 

envelope creating sizeable openings. While significant work has been undertaken in 

boundary layer wind tunnels (BLWT) to assess external pressures on a building facade, 

research into internal pressures has been less extensive, and has typically been limited to 

a few building opening scenarios.  Aynsley et al. (1977) investigated the impact of wall 

porosity on internal pressures. Stathopoulos et al. (1979) carried out BLWT experiments 

in order to examine the impact of various opening configurations on internal pressures for 

different background leakage values, wall openings and exposures.  A state-of-the- art 

review was undertaken by Oh et al. (2007).  Recently Karava (2008) studied internal 

pressures at model scale for a dominant opening in the building facade for ventilation 

purposes.  For the current study on roof-to-wall connections full-scale testing was 

performed to determine the effects of internal pressure changes on the connections due to 

breach of building envelope. The testing included two conditions pertaining to internal 

pressures: enclosed and partially-enclosed (simulating breach of envelope) conditions as 

specified in ASCE 7-05. The test specimen was provided with operable panels 

(representing windows and doors) which were removed to simulate the breach of the 

envelope effects.  Internal pressure data were collected by pressure transducers installed 

inside the test specimen. The change in the internal pressure was correlated with the 
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change in the loading on the connections. The maximum difference in uplift loading 

between enclosed and partially-enclosed conditions was observed for connection #5 for 

0º AOA. The mean uplift forces for connection 5 for enclosed and partially-enclosed 

conditions for 0º AOA and full-throttle testing were 117 lbs and 645 lbs, respectively – 

the difference being 528 lbs. The difference in the mean internal pressures between 

enclosed and partially-enclosed conditions was 0.08 psi. The tributary area for connection 

5 was 35 sq. ft. which gives an additional load of about 400 lbs on the connection due to 

the change in the internal pressure. Though the measured increase in loading on the 

connection is higher than the estimated increase based on internal pressure (which is 

based on approximation of tributary area and uniformity of internal pressure throughout 

the area), the experiments indicate how severe can be the effects of breach of building 

envelope on connections as the loading may increase several times (5.5 times in this 

case).   

No significant movement of the roof structure or deformation/failure of the 

connections was observed under the highest wind generated by the WoW. In order to 

illustrate the minimal strains and deflections, two connections (connections 1 and 5) were 

selected and the time histories graphed for the strains and displacements.  The strain for 

the vertical lap of the GFRP connection was limited 900 micro-strains. The horizontal 

and vertical deflections were limited to 0.015 inch and 0.03 inch, respectively.    

The maximum recorded up-lift loads sustained by a single GFRP angle piece were 

observed at connection #1 (332 lbs with a maximum recorded vertical GFRP strain of 

185 µ�) at AOA 0º with a partially enclosed condition (see Graph 5.183 for the 3-sec 

mean loads of load cell #1).  The maximum recorded in plane (parallel to side wall) load 
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sustained by a single GFRP angle piece were observed at connection #3 (105 lbs; strain 

was not recorded in the in plane direction of the GFRP connections), at AOA 30º with a 

partially enclosed condition (see Graph 5.205 for the 3-sec mean loads of load cell #3).  

Table 5.1 shows the ultimate load and strain results of the uni-axial component tests of 

the 3" x 1" GFRP connection used in the WoW tests.  From the component and WoW test 

results it can be seen why the WoW tests could not achieve failure of the connection.  

The maximum ultimate up-lift load recorded at the component level test was more than 

double than that of the WoW results (666 lbs vs. 322 lbs, respectively); furthermore, the 

ultimate in-plane load was almost 26 times higher in the component tests vs. the WoW 

tests results (2760 lbs vs. 105 lbs, respectively).  The up-lift strain at the component level 

was also more than double than the WoW strain results observed in connection #1 (375 

µ� vs. 185 µ�).   

 

Component Test 
Test 
No. 

Ultimate 
Load/GFRP 
Connection 

(lbs) 

Ultimate 
Strain/GFRP 
Connection 

(µ�) 

Average 
Load of 
GFRP 

Connection 
(lbs)* 

Average 
Strain of 
GFRP 

Connection 
(µ�)* 

Up-Lift Test  
1 762 357 

666 375 2 450 340 
3 785 428 

Lateral In-Plane      
(L1 or Parallel to 
Side Walls) Tests 

1 2375 N/A 
2760 N/A 2 2630 N/A 

3 3275 N/A 
* Un-Factored Results (i.e., FS=3)  

Table 5.1: Uni-Axial Component Tests of 3" x 1" GFRP used in WoW Tests 
(Canbek, 2008) 
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            As mentioned earlier, the load cells measured uplift, in-plane (parallel to the side 

walls), and out-of-plane (perpendicular to the side walls) loads experienced by each 

GFRP connection. These combinations of loads were used in the next phase of the 

research, i.e., tri-axial loading of the GFRP connection in SCL till failure at the 

component level. For each test the three force components were converted to a resultant 

mean load in order to test the GFRP connections more realistically using aerodynamic 

loading obtained from WoW tests. A total of 36 resultant forces were obtained from the 

loads recorded at the WoW and were used to test the newly developed GFRP connections 

and metal hurricane clips. Hurricane clips were tested to provide a comparison of 

performance between FRP and metal connections subjected to simultaneous tri-axial 

loading. 
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6. Tri-Axial Component Testing of the GFRP Connections to Failure 

 

6.1  Introduction 

The WoW tests were vital in understanding the wind induced loads on a 

connection and the corresponding failure modes necessary for an effective investigation 

of the performance of connection systems in high wind events.  This knowledge was 

utilized to develop an innovative testing method, tri-axial testing, to determine if a 

fastener can withstand extreme wind forces.   

The WoW testing performed using GFRP connections on a one-story gable-roof 

timber structure instrumented with the six load cells (each with 6-DOF) at the roof-to-

wall connections, recorded the aerodynamic and aero-hydrodynamic loads effects at five 

angles of attack (0º, 30º, 45º, 60º, & 90º) and two internal pressure conditions (enclosed 

and partially enclosed).  The load cells measured uplift, in-plane (parallel to the side 

walls), and out-of-plane (perpendicular to the side walls) loads experienced by each 

GFRP connection.  The three component forces (tri-axial mean loads), based on the 

aerodynamic loading obtained from WoW tests, were combined into a series of resultant 

mean forces that were then used to test GFRP component connections in the SCL up to 

failure in a more realistic manner.   

A total of 23 resultant forces were obtained from the loads recorded at the WoW.  

Because of testing set-up limitations, 23 of the 36 resultant forces were used to test the 

newly developed GFRP connections and hurricane clips.  Hurricane clips were tested to 
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provide a comparison of performance between GFRP and metal connections subjected to 

simultaneous tri-axial loading.  

 

6.2  Rationale for Tri-Axial Testing of GFRP Connection  

Research conducted at FIU on the performance of mechanical fasteners; seem to 

indicate a propensity to incorrectly report a mechanical fastener load capacity in the 

product manufacturers’ literature (Ahmed et al., 2009).   Research results showed that the 

increase of allowable load capacity in a timber connection joint with two or four metal 

fasteners is not linear in nature and the failure modes were highly dependent on the 

number of fasteners per joint.  Therefore, the addition of multiple metal fasteners does 

not necessary increase the connection capacity, as is currently and incorrectly indicated in 

product manufacturers’ literature (Ahmed et al., 2009).  Also the general procedure for 

fastener testing is to test the connector under uni-axial loading – uplift or in-plane shear 

or out-of-plane shear. The tests are not usually performed using simultaneous tri-axial 

loading which can produce different results when compared to those obtained from 

testing under individual axial or shear loading. However under real storms a fastener will 

experience simultaneous uplift, in-plane, and out-of-plane loading which will have 

specific ratios based on several factors (e.g., location of the connection, type of the roof, 

etc). Thus the current procedure can lead to incorrect specifications of the allowable 

capacity of a mechanical fastener.   

To circumvent the above limitations the current testing approach is based on 

simultaneous loading (uplift, in-plane or parallel to the side walls, and out-of-plane or 

perpendicular to the side walls) with proportionalities obtained from realistic wind 
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testing.  Such testing method is more realistic than the traditional unidirectional testing 

method as it takes into account the behavior of a connection under simultaneous 

aerodynamic tri-axes loads present during a high wind event, as observed in the results of 

the WoW GFRP tests (see Chapter 5).  Therefore, new tri-axial test protocol was 

established and connections tested to failure at the SCL using ratios of uplift to in-plane 

lateral and out-of-plane lateral loads. Each test in SCL represented a particular tri-axial 

aerodynamic loading obtained at the WoW for specific parameters: connection location, 

angle of attack, and internal pressure condition (enclosed or partially enclosed condition). 

The results were compared with those from testing using individual loading.    

 

6.3 Test Specimen, Setup and Instrumentation 

 The component test specimens used in the tri-axial tests were built by research 

personnel.  A total of 23 GFRP and 23 metal connector specimens were tested. Each 

specimen composed of a 24 inch double top-plate and a 14 inch perpendicular member, 

which simulated the bottom chord of the truss.  Each specimen was built using SPF No. 2 

– 2 x 6 inch lumber with two separate connection systems, GFRP (Figure 6.1) or metal 

connectors (Figure 6.2).  The test system was composed of a double acting 10,000 lbs 

hydraulic jack that could pull on the component specimen using a cable and pulley 

(Figure 6.3).  A load cell between the specimen and pulley recorded the ultimate failure 

load, via a DAQ computer.  Each specimen was bolted to an I-beam that in turn was 

attached to two channels bolted to the SCL tie-downs.  By moving the specimen North-

South and East-West the resultant loading could be simulated (Figure 6.4). 
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6.4 SCL Testing Protocol of Tri-Axial Component Specimens 

 A total of 46 tri-axial tests were performed at the SCL (23 tests for GFRP 

connections and 23 tests for metal connectors).  The tests were performed at 23 locations, 

each location simulating a particular tri-axial aerodynamic loading scenario as obtained 

from WoW testing.  As explained in Chapter 5 the simulated rain didn’t produce any 

significant loading difference when compared to the wind-only test condition.  Also the 

ratios of the mean uplift loading to the lateral loading were similar for the flat and quasi-

periodic waveform testing.  The modified partially enclosed condition (PE’) condition 

also didn’t produce much different results when compared to those produced under the 

partially enclosed condition (PE).  Thus the WoW results used for SCL testing were those 

obtained for the wind-only condition tested using the flat waveform (Full-Throttle) with 

“Enclosed” and “Partially Enclosed” building conditions.  Also, for the current SCL 

testing the aerodynamics moments were neglected because of the difficulty in simulating 

tri-axial moments with the current test set up in SCL.  Tri-axial moment testing is 

recommended as future work.  The specimens, one set with the GFRP connections (one 

connection – 2 - 9 x 5.5 inch GFRP pieces-- per specimen) and one set with metal 

connectors (two diagonally placed connectors per specimen) were tested at each of the 23 

specified locations.   

The locations were established using Tables 6.1 through 6.6 – which show the 

mean tri-axial aerodynamic forces obtained from WoW testing, their ratios and the 

locations of the specimens based on those ratios (the locations are compared using case 

numbers).  The locations were determined using ratios of the two lateral forces divided 
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by the up-lift force (i.e. FX/FZ and FY/FZ).  Therefore, the vertical component of the 3-D 

coordinate system was constant.  Moving the I-beam further away from the jack and 

pulley (i.e, in the North to South direction) simulated the FY -component (or the force 

perpendicular to the side walls in the WoW test specimen) (Figure 6.4).  In a similar 

manner by moving the specimens on the I-beam from East to West simulated the FX - 

component (or the force parallel to the side walls in the WoW test specimen (Figures 6.4 

a&b).  

 

 6.4.1 SCL Tri-Axial Test Cases 

The following, Tables 6.1 to 6.6, were used to calculate the tri-axial component 

test locations, using the mean forces obtained from the WoW tests for enclosed and 

partially enclosed conditions tested at full-throttle for all five angles of attack (0º, 30º, 

45º, 60º and 90º).  Since the height of the pulley used remained constant, ratios of the 

lateral forces parallel to the side walls (FX) and lateral forces perpendicular to the side 

walls (FY) were divided by the up-lift forces (FZ), in order to calculate the distance X and 

Y used in the SCL tests. The following tables give the specimen locations for the tri-axial 

positions. The following tables give the specimen locations for the tri-axial positions. 
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Table 6.1: Specimen Locations for Connection #1 
 
 
 
 
 
 
 
 
 
 
 

Connection #1  Location of the Specimen 

Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  91.8  8.9  166.1  190.0  0.6  0.1  35.9  3.5  65.0 
AOA 30  10.9  ‐146.8  140.4  203.4  0.1  ‐1.0  5.0  ‐68.0  65.0 
AOA 45  52.3  ‐89.4  108.6  150.1  0.5  ‐0.8  31.3  ‐53.5  65.0 
AOA 60  92.2  ‐152.6  84.0  197.1  1.1  ‐1.8  71.3  ‐118.0  65.0 
AOA 90  ‐57.7  ‐130.2  125.6  189.9  ‐0.5  ‐1.0  ‐29.8  ‐67.4  65.0 

Part. Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  64.1  ‐67.2  331.9  344.6  0.2  ‐0.2  12.6  ‐13.2  65.0 
AOA 30  ‐5.8  ‐207.6  223.9  305.4  0.0  ‐0.9  ‐1.7  ‐60.2  65.0 
AOA 45  37.6  ‐131.3  171.3  219.1  0.2  ‐0.8  14.3  ‐49.8  65.0 
AOA 60  73.4  ‐203.1  202.8  296.3  0.4  ‐1.0  23.5  ‐65.1  65.0 

AOA 90  ‐67.4  ‐157.5  182.4  250.2  ‐0.4  ‐0.9  ‐24.0  ‐56.1  65.0 
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Connection #2  Location of the Specimen 

Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  ‐1.1  ‐47.8  99.0  109.9  0.0  ‐0.5  ‐0.8  ‐31.4  65.0 
AOA 30  6.3  89.0  107.5  139.7  0.1  0.8  3.8  53.8  65.0 
AOA 45  7.0  45.1  66.4  80.6  0.1  0.7  6.8  44.1  65.0 
AOA 60  13.0  46.9  88.5  101.0  0.1  0.5  9.6  34.5  65.0 
AOA 90  ‐17.6  146.8  99.3  178.1  ‐0.2  1.5  ‐11.5  96.1  65.0 

Part. Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  ‐0.4  ‐97.9  429.8  440.8  0.0  ‐0.2  ‐0.1  ‐14.8  65.0 
AOA 30  9.4  49.1  272.4  276.9  0.0  0.2  2.2  11.7  65.0 
AOA 45  16.0  5.8  204.5  205.2  0.1  0.0  5.1  1.9  65.0 
AOA 60  34.0  3.8  241.3  243.7  0.1  0.0  9.1  1.0  65.0 

AOA 90  ‐17.0  81.1  209.5  225.3  ‐0.1  0.4  ‐5.3  25.2  65.0 

 
Table 6.2: Specimen Locations for Connection #2 

 
 

 
 
 
 
 
 
 
 
 
 



204 
 

Connection #3  Location of the Specimen 

Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  8.8  ‐52.9  1.4  53.6  6.3  ‐38.2  410.2  ‐2479.9  65.0 
AOA 30  76.2  ‐156.1  104.2  202.5  0.7  ‐1.5  47.5  ‐97.4  65.0 
AOA 45  49.3  ‐121.8  80.0  153.8  0.6  ‐1.5  40.0  ‐98.9  65.0 
AOA 60  53.2  ‐84.2  67.5  120.3  0.8  ‐1.2  51.2  ‐81.0  65.0 
AOA 90  41.4  ‐126.1  117.9  177.5  0.4  ‐1.1  22.8  ‐69.5  65.0 

Part. Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  62.2  ‐116.0  136.8  189.8  0.5  ‐0.8  29.6  ‐55.1  65.0 
AOA 30  104.6  ‐173.7  154.1  254.7  0.7  ‐1.1  44.1  ‐73.3  65.0 
AOA 45  78.7  ‐153.3  139.8  221.9  0.6  ‐1.1  36.6  ‐71.3  65.0 
AOA 60  81.4  ‐89.4  104.2  159.7  0.8  ‐0.9  50.8  ‐55.8  65.0 

AOA 90  64.9  ‐158.0  187.2  253.4  0.3  ‐0.8  22.5  ‐54.9  65.0 

 
Table 6.3: Specimen Locations for Connection #3 
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Connection #4  Location of the Specimen 

Enclosed   Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  87.1  19.4  180.9  201.7  0.5  0.1  31.3  7.0  65.0 
AOA 30  14.6  ‐29.5  101.3  106.6  0.1  ‐0.3  9.4  ‐18.9  65.0 
AOA 45  21.8  ‐23.1  98.0  103.1  0.2  ‐0.2  14.5  ‐15.3  65.0 
AOA 60  4.9  ‐27.1  88.9  93.0  0.1  ‐0.3  3.6  ‐19.9  65.0 
AOA 90  7.3  ‐44.4  79.6  91.5  0.1  ‐0.6  5.9  ‐36.3  65.0 

Part. Enclosed   Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  21.3  ‐19.6  124.1  127.5  0.2  ‐0.2  11.2  ‐10.3  65.0 
AOA 30  8.5  ‐21.6  97.6  100.4  0.1  ‐0.2  5.6  ‐14.4  65.0 
AOA 45  6.6  ‐21.1  103.4  105.7  0.1  ‐0.2  4.1  ‐13.2  65.0 
AOA 60  17.9  ‐22.7  92.7  97.1  0.2  ‐0.2  12.5  ‐15.9  65.0 

AOA 90  ‐3.1  ‐6.5  123.2  123.4  0.0  ‐0.1  ‐1.7  ‐3.4  65.0 

 
Table 6.4: Specimen Locations for Connection #4 
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Connection #5  Location of the Specimen 

Enclosed  Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  61.7  58.1  116.9  144.4  0.5  0.5  34.3  32.3  65.0 
AOA 30  61.5  35.7  241.4  251.7  0.3  0.1  16.5  9.6  65.0 
AOA 45  72.9  24.6  198.4  212.8  0.4  0.1  23.9  8.1  65.0 
AOA 60  55.8  75.3  255.6  272.2  0.2  0.3  14.2  19.2  65.0 
AOA 90  12.3  ‐3.2  220.9  221.2  0.1  0.0  3.6  ‐0.9  65.0 

Part. Enclosed   Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  33.4  240.9  645.4  689.7  0.1  0.4  3.4  24.3  65.0 
AOA 30  11.6  131.4  482.2  499.9  0.0  0.3  1.6  17.7  65.0 
AOA 45  40.9  106.7  384.5  401.2  0.1  0.3  6.9  18.0  65.0 
AOA 60  ‐15.8  149.2  454.2  478.4  0.0  0.3  ‐2.3  21.4  65.0 

AOA 90  6.7  54.2  338.1  342.4  0.0  0.2  1.3  10.4  65.0 
 

Table 6.5: Specimen Locations for Connection #5 
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Connection #6  Location of the Specimen 

Enclosed   Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  14.3  15.3  ‐14.6  25.5  ‐1.0  ‐1.0  ‐63.8  ‐68.1  65.0 
AOA 30  25.5  ‐37.3  21.2  49.9  1.2  ‐1.8  78.1  ‐114.4  65.0 
AOA 45  24.8  ‐20.3  18.6  37.0  1.3  ‐1.1  86.7  ‐71.1  65.0 
AOA 60  11.0  ‐23.6  ‐54.9  60.7  ‐0.2  0.4  ‐13.1  27.9  65.0 
AOA 90  ‐2.5  ‐98.4  75.6  124.1  0.0  ‐1.3  ‐2.1  ‐84.6  65.0 

Part. Enclosed   Fx(lbs)  Fy(lbs) Fz(lbs)
Total Load 

(lbs) 
Fx/Fz  Fy/Fz  X (in.)  Y (in.)  Z (in.) 

AOA 0  48.0  58.6  45.9  88.6  1.0  1.3  68.0  83.0  65.0 
AOA 30  39.6  1.0  55.4  68.1  0.7  0.0  46.4  1.2  65.0 
AOA 45  38.3  32.4  75.3  90.5  0.5  0.4  33.0  27.9  65.0 
AOA 60  24.7  23.6  ‐1.7  34.2  ‐14.4  ‐13.8  ‐938.8  ‐897.3  65.0 

AOA 90  15.0  ‐41.1  124.5  132.0  0.1  ‐0.3  7.8  ‐21.4  65.0 

 
Table 6.6: Specimen Locations for Connection #6
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6.5 SCL Tri-Axial Tests Results 
 All the results recorded from the tri-axial tests are shown in Tables 6.7 through 6.11.

 
 

Connection 
Number

Case Fx/Fz Fy/Fz
FRP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

CLIP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

1 0.6 0.1 1424* 688 86 1244 642* 310 39 561
5 0.2 -0.2 1944 362 379 1872 1393 259 271 1342
7 0.0 -0.5 2658 28 1155 2394 899 9 391 810
10 0.0 -0.2 2492 2 553 2430 1474 1 327 1437

N/A 6.3 -38.2
11 0.5 -0.8 1197 392 731 863 1015 333 620 731
13 0.5 0.1 1538 664 148 1379 818 353 79 734
14 0.2 -0.2 1734 290 267 1689 1299 217 100 1265
16 0.5 0.5 1350 577 544 1093 1117 478 450 904
20 0.1 0.4 2131 103 744 1994 1609 78 562 1506

N/A -1.0 -1.0
N/A 1.0 1.3

AOA 0

No. 3
Enclosed 

Tri-Axial Load Testing Results

Lateral (X) direction > 3 Feet

Lateral (X) direction > 3 Feet
Lateral (X) direction > 3 Feet

Partially Enclosed

Enclosed 
Partially Enclosed

Enclosed 
Partially Enclosed

CONDITION

No. 1

No. 6

No. 5
Enclosed 

Partially Enclosed

No. 4
Enclosed 

Partially Enclosed

No. 2
Enclosed 

Partially Enclosed

 
 

Table 6.7: Tri-Axial Test Results AOA 0º (* Y-distance is 4.5”)
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Connection 
Number

Case Fx/Fz Fy/Fz
FRP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

CLIP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

3 0.1 -1.0 2915 156 2104 2012 1172 63 846 809
3 0.0 -0.9 2915 55 1981 2138 1172 22 797 859
8 0.1 0.8 1893 86 1206 1457 1070 49 682 823
10 0.0 0.2 2492 85 442 2451 1474 50 261 1450

N/A 0.7 -1.5
12 0.7 -1.1 1491 612 1017 902 1366 561 932 826
14 0.1 -0.3 1734 237 480 1649 1299 178 360 1235
14 0.1 -0.2 1734 146 374 1687 1299 110 280 1264
17 0.3 0.1 1101 269 156 1056 1325 324 188 1271
19 0.0 0.3 2228 52 586 2149 1157 27 304 1116

N/A 1.2 -1.8
N/A 0.7 0.0

AOA 30Tri-Axial Load Testing Results

CONDITION

No. 1
Enclosed 

Partially Enclosed

No. 5
Enclosed 

Partially Enclosed

No. 6
Enclosed 

Partially Enclosed

Partially Enclosed

No. 3
Enclosed 

Partially Enclosed

No. 4
Enclosed 

Partially Enclosed

X or Y Too Small  for current set-up.
Lateral (X) direction > 3 Feet

No. 2
Enclosed 

Lateral (X) direction > 3 Feet

 
 

Table 6.8: Tri-Axial Test Results AOA 30º 
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Connection 
Number

Case Fx/Fz Fy/Fz
FRP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

CLIP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

2 0.5 -0.8 1565 546 933 1132 1352 471 806 978
4 0.2 -0.8 2043 351 1224 1597 1010 173 605 790
8 0.1 0.7 1893 164 1059 1560 1070 93 599 882
10 0.1 0.0 2492* 193 172 2479 1474 114 101 1466

N/A 0.6 -1.5
12 0.6 -1.1 1491 529 1030 939 1366 484 944 861
14 0.2 -0.2 1734 367 389 1649 1299 275 291 1236
14 0.1 -0.2 1734 108 345 1696 1299 81 259 1270
17 0.4 0.1 1101 377 127 1027 1325 454 153 1235
20 0.1 0.3 2131 217 567 2043 1609 164 428 1542

N/A 1.3 -1.1
23 0.5 0.4 1110 470 397 924 803 340 287 668

AOA 45

Partially Enclosed
Enclosed 

CONDITION

No. 1
Partially Enclosed

Enclosed 
No. 2

Partially Enclosed

Tri-Axial Load Testing Results

Enclosed 

Lateral (X) direction > 3 Feet

Lateral (X) direction > 3 Feet

No. 3

Partially Enclosed
Enclosed 

Partially Enclosed
Enclosed 

No. 4

No. 5

No. 6
Partially Enclosed

Enclosed 

 
 
 

Table 6.9: Tri-Axial Test Results AOA 45º (* Y-direction is 4.5”)
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Connection 
Number

Case Fx/Fz Fy/Fz
FRP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

CLIP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

N/A 1.1 -1.8
6 0.4 -1.0 2483 615 1703 1700 1076 267 738 736
7 0.1 0.5 2658 343 1235 2328 899 116 418 787
10 0.1 0.0 2492* 347 170 2462 1474 205 101 1456

N/A 0.8 -1.2
N/A 0.8 -0.9
14 0.1 -0.3 1734 92 506 1656 1299 69 379 1241
14 0.2 -0.2 1734 319 406 1655 1299 239 304 1240
18 0.2 0.3 2011 413 557 1888 1358 279 376 1275
19 0.0 0.3 2228 73 695 2116 1157 38 361 1099
21 -0.2 0.4 2558 464 993 2311 904 164 351 817

N/A -14.4 -13.8

AOA 60

No. 6
Enclosed 

Partially Enclosed

No. 4
Enclosed 

Partially Enclosed

No. 5
Enclosed 

Partially Enclosed

No. 2
Enclosed 

Partially Enclosed

No. 3
Enclosed 

Partially Enclosed
Lateral (X) direction > 3 Feet

X or Y Too big for current set-up.

Lateral (X) direction > 3 Feet

Lateral (X) direction > 3 Feet

Tri-Axial Load Testing Results

CONDITION

No. 1
Enclosed 

Partially Enclosed

 
 

Table 6.10: Tri-Axial Test Results AOA 60º (* Y-direction is 4.5”) 
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Connection 
Number

Case Fx/Fz Fy/Fz
FRP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

CLIP 
(lbs)

Fx 
(lbs)

Fy 
(lbs)

Fz  
(lbs)

2 -0.5 -1.0 1565 475 1073 1035 1352 411 927 894
6 -0.4 -0.9 2483 669 1563 1810 1076 290 677 784
9 -0.2 1.5 2209 218 1821 1232 823 81 678 459
7 -0.1 0.4 2658 201 957 2471 899 68 324 836
12 0.4 -1.1 1491 348 1059 990 1366 319 970 907
11 0.3 -0.8 1197 307 746 884 1015 260 633 750
15 0.1 -0.6 2341 186 1138 2037 1158 92 563 1008
14 0.0 -0.1 1734 44 120 1729 1299 33 90 1295
19 0.1 0.0 2228* 123 154 2219 1157 64 80 1155
19 0.0 0.2 2228 44 352 2200 1157 23 183 1142
22 0.0 -1.3 2530 51 2006 1541 1028 21 815 626
21 0.1 -0.3 2558 291 796 2413 904 103 281 853

Tri-Axial Load Testing Results AOA 90

CONDITION

No. 1
Enclosed 

Partially Enclosed

No. 2
Enclosed 

Partially Enclosed

No. 3
Enclosed 

Partially Enclosed

No. 6
Enclosed 

Partially Enclosed

No. 4
Enclosed 

Partially Enclosed

No. 5
Enclosed 

Partially Enclosed

 
 

Table 6.11: Tri-Axial Test Results AOA 90º (* Y-direction is 4.5”)
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Figure 6.9: GRFP Connector Case 3 

 

 

 

 

 

 

 

 

 

Figure 6.10: Metal Connector Case 3 

 

 

 

 

 

 

 

Figure 6.11: GRFP Connector Case 4 

 

 

 

 

Figure 6.12: Metal Connector Case 4 
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Figure 6.13: GRFP Connector Case 5 

 

 

 

 

 

 

 

 

Figure 6.14: Metal Connector Case 5 

 

 

 

 

 

 

 

Figure 6.15: GRFP Connector Case 6 

 

 

 

 

 

 

Figure 6.16: Metal Connector Case 6 
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Figure 6.17: GRFP Connector Case 7 

 

 

 

 

 

 

Figure 6.19: GRFP Connector Case 8 

 

 

 

 

 

Figure 6.18: Metal Connector Case 7 

 

 

 

 

 

 

Figure 6.20: Metal Connector Case 8 
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Figure 6.21: GFRP Connector Case 9 

 

 

 

 

 

 

Figure 6.22: Metal Connector Case 9 

 

 

 

 

 

Figure 6.23: GRFP Connector Case 10 

 

 

 

 

 

 

Figure 6.24: Metal Connector Case 10 
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Figure 6.25: GRFP Connector Case 11 

 

 

 

 

 

 

 

 

Figure 6.26: Metal Connector Case 11 

 

 

 

 

 

 

Figure 6.27: GRFP Connector Case 12 

 

 

 

 

 

Figure 6.28: Metal Connector Case 12  
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Figure 6.29: GRFP Connector Case 13 

 

 

 

 

 

 

 

 

 

Figure 6.30: Metal Connector Case 13 

 

 

 

 

 

 

Figure 6.31: GRFP Connector Case 14 

 

 

 

Figure 6.32: Metal Connector Case 14 
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Figure 6.33: GRFP Connector Case 15 

 

 

 

 

 

 

 

 

Figure 6.34: Metal Connector Case 15 

 

 

 

 

 

 

Figure 6.35: GRFP Connector Case 16 

 

 

 

Figure 6.36: Metal Connector Case 16 
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Figure 6.37: GRFP Connector Case 17 

 

 

 

 

 

Figure 6.38: Metal Connector Case 17 

 

 

 

 

 

Figure 6.39: GRFP Connector Case 18 

 

 

 

Figure 6.40: Metal Connector Case 18 
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Figure 6.41: GFRP Connector Case 19 

 

 

 

 

 

Figure 6.42: Metal Connector Case 19 

 

 

 

 

 

Figure 6.43: GRFP Connector Case 20 

 

 

 

Figure 6.44: Metal Connector Case 20 
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Figure 6.45: GFRP Connector Case 21 

 

 

 

 

 

 

Figure 6.47: Metal Connector Case 22 

 

 

 

 

Figure 6.46: GRFP Connector Case 21 

 

 

 

 

 

 

Figure 6.48: Metal Connector Case 22 
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Figure 6.49: GFRP Connector Case 23 

 

 

 

 

 

 

 

 

Figure 6.50: GRFP Connector Case 23 

 

 

6.7 Unidirectional Tests on Metal and GFRP Connections 

 This section reports on the unidirectional tests performed at the SCL for metal and 

GFRP fasteners.  These tests closely simulate the current testing methods used to 

determine the ultimate failure loads published by fasteners manufacturers.  The up-lift 

capacity test method of the metal fasteners is first illustrated and the results tabulated in 

Figure 6.51 and Table 6.12, respectively.  The L1 (parallel to the side wall) load capacity 

test method of the metal fasteners then illustrated and the results tabulated in Figure 6.52 

and Table 6.13 respectively.  The same methods to determine up-lift and L1 (parallel to 

the side wall) failure capacity are repeated for the GFRP connection in Figures 6.53 and 

6.54 and the results are shown in Tables 6.14 and 6.15.    
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Figure 6.51: Metal Clip Connection Tested in Up-Lift 

 

 

 
 
 
 

 

 

Table 6.12: Measured Test Results and Sample Statistics of the Load capacity of 
Metal Clip Connectors Tested in Up-Lift  

 

 

 

Load Type 
Test 1 Test 2 Test 3 Test 4 Test 5 Mean STDV 

COV
lbs lbs lbs lbs lbs lbs lbs 

1/8" LOAD 450 465 560 655 620 
 437  58.0 0.13 

ULTIMATE 478 385 420 385 515 
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Figure 6.52: Metal Clip Connection Tests Set-Up in the L1 

or Parallel to the Side Walls Direction 

 

 

 

 

 

 

 

 
Table 6.13: Metal Clip Connection Tests Results for L1 or  

Parallel to the Side Walls Direction 

 

 

Test  
Governing 
L1 Load 

/Clip 
Mean 

 
No  lbs lbs   
1 188 

165 
2 168 
3 125 
4 124 

5 220 



227 
 

 

 

 

 

 

 

Figure 6.53: GFRP Connection Tested for Up-Lift (Canbek, 2009) 

 

 

 

 

 

 

 
 
 

 
Table 6.14: GFRP Tests Results for Up-Lift (Canbek, 2009) 

 

 

 

Test No. 
Ultimate 

Load (lbs) 

Average 
Ultimate 

Load (lbs) 

Governing 
Up-Lift 

Load/Clip 

Coefficient 
of 

Variation 

1 4,650 

4,320 720 0.089 2 3,900 

3 4,410 
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Figure 6.54: GFRP Connection Tested for L1 or  

Parallel to the Side Walls (Canbek, 2009) 
 

 

 

 

Wood 
Type 

Specimen 
No. 

Ultimate 
Load 
(lbs) 

Average 
Ultimate 

Load 
(lbs) 

Governing 
L1 Load 

/Clip 

Coefficient 
of 

Variation 

SPF 
1 3,480 

3,313 552 0.100 2 3,530 
3 2,930 

 

Table 6.15: GFRP Connection Tested for L1 or  
Parallel to the Side Walls (Canbek, 2009) 
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6.8 Test Observations and Discussion 

From the SCL tri-axial test results three major findings can be noted.  One is the 

GFRP connection load capacity compared to that of the metal connector tested.  In many 

tests results, the ultimate failure load of the GFRP connection specimen was double of 

that for the hurricane clip.  The second is the failure mode difference between the metal 

connectors versus the non-intrusive GRFP connection.  The third is the reduction in 

ultimate uplift load capacities as compared to the manufacturer specified capacities of 

metal connectors or hurricane clips, when subjected to tri-axial loads simulating the 

aerodynamic forces that occur during a high wind event, versus unidirectional testing.  

 This research reports an investigation into the performance of GFRP and 

mechanical fasteners used in residential construction to withstand uplift forces, lateral 

forces parallel to the side walls and lateral forces perpendicular to the side walls 

occurring during high wind events.  The capacity of both types (GFRP connection and 

metal fasteners) of roof-to-wall connection systems were evaluated by testing specimens 

under simultaneous tri-axial loads.  The aim was to perform a series of tests on both types 

of connectors to evaluate and compare their failure load capacity under more realistic 

conditions.  The results obtained from the SCL tri-axial tests, appear to indicate that the 

failure load capacity of the GFRP connection performed similar to and in most cases 

better than the metal fasteners test results; under tri-directional simultaneous loads 

obtained from aerodynamic tests at the WoW (see Tables 6.7 through 6.11).  In some 

cases the ultimate failure resultant load for the GFRP connection was observed to be 

double of that for the metal fastener.  The GFRP connection test results seem to 

demonstrate that it can be applicable to new construction as well as retrofitting of old 
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residential buildings that require strengthening against extreme wind loads with 

minimally intrusive techniques. 

The results show that the failure modes of connection joints are highly dependent 

on the type of the connection (GFRP versus metal). The failure modes difference 

observed during the tri-axial testing of the metal connector versus the non-intrusive 

GRFP connection are shown in Figures 6.5 through 6.24.  In most cases the GFRP failed 

when the bond between the GFRP and the wood ruptured.  It was noted that as GFRP is 

non-intrusive it doesn’t weaken the wood members and crushing of wood is avoided.  

The failure mode observed was mostly detachment of GFRP from the wood surface and 

wood surface peeling.  In the case of the hurricane clip the failure mode was observed as 

both nail withdraw or pull-out, clip rupture (Figures 6.5 through 6.24) and in some cases 

wood  failure (Figure 6.48).   

Currently, the allowable uplift loads for existing metal fasteners are established 

using unidirectional tests.  As reported in Section 6.7, metal connector tests conducted in 

SCL illustrated that a variety of failure modes exist that included clip buckling, clip 

tearing, nail withdrawal and wood member splitting; with the predominant failure mode 

being wood splitting (Ahmed et al., 2009).  The allowable loads are determined by the 

following formula: Allowable Load = min (Load at failure / 3.0; Load at 1/8” 

deflection)/number of clips.  There was no linear relationship between the failure load for 

the entire specimen and the number of clips used.  The average uplift capacity for the clip 

(when tested using one clip per connection joint) (Figure 6.51) was calculated to be 437 

pounds (see Table 6.12).  A similar metal fastener tested unidirectional in the lateral 

direction (i.e. parallel to the side wall) (see Figure 6.52) (using four clips per specimen) 
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showed a mean allowable capacity of 165 pounds per clip (see Table 6.13).  Using 

similar test procedures Canbek (2008) tested GFRP connections as shown in Figures 6.53 

and 6.54 also in Section 6.7.  These unidirectional component tests resulted in mean load 

capacities of 720 pounds and 552 pounds for up-lift and lateral load respectively (see 

Tables 6.14 and 6.15); once the factor of safety had been applied (Canbek, 2008).  The 

test results obtained from the uni-axial testing are overestimated, because the other force 

components are being neglected during the testing, which is not realistic as determined by 

the WoW test results (Chapter 5).  

The failure loads for both connectors (GFRP and metal) decreased during the tri-

axial test, as expected (see Tables 6.7 through 6.11).  Various aerodynamic force 

components ratios were simulated during the testing to failure which caused the resultant 

failure loads to vary depending on the specific test case.  When the coefficients FX/FZ and 

FY/FZ for the tri-axial testing were low the uplift capacity matched the uni-axial testing 

uplift capacity closely.  However when the coefficients were high, reduced uplift capacity 

was observed compared to the uni-axial testing uplift capacity.  This indicated that the 

lateral load components, if applied simultaneously with the uplift load component as 

experienced during real storms, the uplift load capacity of the connection is reduced – so 

that the uni-axial uplift test results are overestimated; even though a factor of three was 

applied to them.  Similar overestimation may occur for uni-axial lateral load testing.  As 

an example, in one of the most extreme cases where the tri-axial test was simulating a 

partially-enclosed condition at 90º AOA, the uplift failure recorded loads were 295 

(884/3FS) pounds and 250 (750/3FS) pounds as compared to the 720 pounds (see Table 

6.14) and 437 pounds (see Table 6.12), obtained from uni-axial testing, for the GFRP and 
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metal clip respectively; and the lateral (parallel to the walls) failure loads were 102 

(307/3FS) pounds and 87 (260/3FS) pounds as compared to the 552 pounds (see Table 

6.15) and 165 pounds (see Table 6.13) obtained from uni-axial testing for the GFRP and 

metal clip, respectively (see Table 6.11 for tri-axial results).  Even though, the GFRP has 

more ultimate failure capacity, results clearly indicate the inappropriateness of the 

existing testing protocol used to test connectors.  Thus the current design approach, based 

as it is on testing a fastener in one direction instead of simultaneous three dimensional 

loads, may lead to erroneous predictions of the allowable capacity.  Design based on 

these erroneous allowable load capacities can cause inter-component connection failures 

during hurricanes.  Improving upon current practice by taking into account the results 

reported herein and the suggested tri-axial testing will improve the performance of timber 

construction in high winds.  

 The wide-ranging variety of tri-axial test results in this research (23 cases) (see 

Tables 6.7 through 6.11), which are based on the extensive aerodynamic load 

configurations observed during the WoW test results, are not practical for industry 

product testing; therefore, a series of nine tri-axial critical configurations (covering the 

range of possible direction cosines) are suggested in order to find the ultimate capacity of 

a timber roof-to-wall connection in all three directions (see Table 6.16).  The capacity of 

a connection depends upon the ratio between the vertical component Fz and the 

longitudinal component Fx of the demand and the ratio between the vertical component 

Fz and the lateral component Fy of the demand.  Therefore, the test protocol must consist, 

for any one connection, of a set of tests covering the ratios Fx/Fz and Fy/Fz as shown in 

Table 6.16.  It is the intent of this proposed testing method to simplify the work of a 
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product testing engineer and still provide accurate results that consider the three 

dimensional forces that occur during a high wind event.  Table 6.17 shows the results 

obtained from the tri-axial testing performed using the newly developed test protocol and 

test set up.  The coefficients shown in Table 6.17 are obtained from the tri-axial tests 

performed in the SCL by approximating ratios Fx/Fz and Fy/Fz to the first decimal 

places.  The tri-axial failure loads are given for corresponding cases as shown in Table 

6.17.  

 

 

Component Tri-Axial Tests Configuration 

Test 
Coefficients  Averaged Clip Results 

Fz Fx Fy Fx (lbs) Fy (lbs) Fz  (lbs) 
1 1.0 1.0 1.0       
2 1.0 1.0 0.5       
3 1.0 1.0 0.0       
4 1.0 0.5 1.0       
5 1.0 0.0 1.0       
6 1.0 0.5 0.5       
7 1.0 0.5 0.0       
8 1.0 0.0 0.5       

9 1.0 0.0 0.0       

* Test could not be performed due to testing system limitations. 

Table 6.16: Component Tri-Axial Tests Configuration 
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Component Tri-Axial Tests Configuration -- Example  

Test 
Coefficients  Averaged Clip Results 

Case 
Fz Fx Fy Fx (lbs) Fy (lbs) Fz  (lbs) 

1 1.0 1.0 1.0 455 949 865 12 
2 1.0 1.0 0.5 * * * * 

3 1.0 1.0 0.0 * * * * 

4 1.0 0.5 1.0 441 867 936 2 

5 1.0 0.0 1.0 43 822 834 3 

6 1.0 0.5 0.5 478 450 904 16 

7 1.0 0.5 0.0 389 171 1253 17 
8 1.0 0.0 0.5 71 424 860 7 & 15 

9 1.0 0.0 0.0 65 215 1290 10 & 19 

* Test could not be performed due to testing system limitations. 

Table 6.17: Tri-Axial Tests Example
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7. Summary, Conclusions and Future Work  

  

7.1       Summary of Research Activities and Findings 

A unique experimental facility called the Wall of Wind (WoW) capable of 

performing controlled and repeatable full-scale testing in wind flow that adequately 

replicate hurricane conditions was employed to develop mitigation techniques to prevent 

large damage caused to residential buildings in the coastal areas by hurricane induced 

winds and wind-driven rain. One of the most critical connections in wood frame 

construction, prone to hurricane wind induced failure, is that of the roof rafter and the top 

plate of the wall. These connections typically use mechanical fasteners, such as metal 

straps fastened with nails. However these connections are intrusive, have several failure 

modes, and suffer corrosion when used in coastal regions. Through full-scale testing 

under simulated hurricane conditions the current research focused on developing novel, 

cost effective, light, strong, ductile, corrosion-resistant, and no-intrusive roof-to-wall 

connection systems using high performance glass fiber reinforced polymer (GFRP) 

materials to strengthen new and existing residential buildings to improve their hurricane 

resiliency.  

Testing of the GFRP connections in the WoW generated aerodynamic and aero-

hydrodynamic data pertaining to tri-axial loading and to corresponding displacements and 

strains at the connections.  No significant movement of the roof structure or 

deformation/failure of the connections was observed under the highest wind generated by 

the WoW.  The load cells recorded tri-axial loads and moments for various angles of 

attack.  When the building specimen was tested under the partially enclosed condition, 
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noticeable load increases were recorded at the connections.  This allowed quantification 

of the increase in loads due to any possible breach of the building envelope and the 

corresponding increase in the internal pressures.  No significant increase in load was 

observed during the wind-driven rain tests as compared to wind tests without rain.  The 

WoW data were used to generate simultaneous tri-axial loading.  The new GFRP 

connections (initially developed through component level and full-scale testing in the 

Structures and Construction Laboratory (SCL)) and existing metal fasteners were then 

tested to failure under such loading in SCL.  The failure modes were detachment of 

GFRP from the wood for non-intrusive connections versus nails pull out and clip rupture 

for the metal fasteners. Results demonstrated that the newly developed GFRP 

connections had similar or, in most cases greater tri-axial load capacity as compared to 

metal fasteners.  Furthermore, the GFRP connection is economically comparable to 

commercially available metal connectors ($0.73/GFRP connection versus $0.55/metal 

connector) (Canbek, 2009). In addition to the development of the new GFRP connection, 

a new test protocol was developed for testing inter-component connections under realistic 

tri-axial aerodynamic loading as opposed to the existing method of unidirectional testing. 

The following sections state the conclusions pertaining to the various components of the 

research. 

   

7.2       Initial GFRP Connection Development 

The initial research on the GFRP connection indicated that the GFRP connection 

can be effective in transferring the vertical and lateral roof-to-wall loads.  However the 

tests were unidirectional and thus did not evaluate the performance of the connection 
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under simulated tri-axial aerodynamic loading. The full-scale and component level tests 

results, of the GFRP connection, demonstrated similar uplift load capacities (Canbek, 

2009).  The GFRP tie connection thus developed provided the basis for further testing 

using hybridized experiments performed at the WoW and SCL.  The hybridized testing, 

performed in this research, was necessary to ascertain and validate the performance of the 

new connection under closely simulated tropical cyclone wind effects (including high 

winds, wind-driven-rain and wind-borne debris impacts).  The initially developed GFRP 

connection configuration when evaluated for cost effectiveness proved to be 

economically comparable to commercially available metal connector. 

  

7.3       Wall of Wind (WoW) Tropical Storm Simulator Experiments  

The WoW tests performed in this research helped to better understand the 

aerodynamic and hydro-aerodynamic loading on the roof-to-wall connections during an 

extreme wind event.  The results obtained from the thirty WoW tests performed in five 

phases (0º, 90º, 45º, 30º and 60º) were graphically represented to demonstrate the peak 

and mean loads, deflections, and strains.  The graphs contained the results of all the 

different conditions tested: 

 Enclosed condition tested using full-throttle and quasi-periodic waveforms for all 

angles of attack (0º, 90º, 45º, 30º and 60º) 

 Enclosed condition tested under simulated wind-driven rain using full-throttle and 

quasi-periodic waveforms for 0º, 45º & 90º angles of attack  

 Partially enclosed (PE) condition tested using full-throttle and quasi-periodic 

waveforms for all angles of attack (0º, 90º, 45º, 30º and 60º) 
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 Modified partially enclosed (PE’) condition tested using full-throttle and quasi-

periodic waveforms for 45º & 60º angles of attack.         

Each test was performed using a 1 minute flat waveform (full-throttle; at 

maximum rpm of the WoW engines and generating high frequency turbulence only) and 

3 minutes quasi-periodic waveform (generating low frequency turbulence in addition to 

high frequency turbulence).  The difference was due to the presence of low frequency 

fluctuations associated with the quasi-periodic waveform generated wind flow.  Though 

the peak 3-sec gusts wind speeds were comparable for the two different waveform 

generated flows the mean wind speeds for the flat waveform case was considerably 

higher than the quasi-periodic waveform case.  As such the loads recorded on the roof-to-

wall connections for the flat-waveform (or full throttle) cases were higher than those for 

the quasi-periodic waveform cases.  However the proportionalities between the mean 

uplift, in-plane, and out-of-plane forces were very similar for both waveforms.  This 

emphasized that the higher turbulence generated by the low frequency fluctuations of the 

wind did not affect the proportionalities between the mean uplift and lateral forces 

induced on the connections.  Thus for further testing of the GFRP connections to failure 

under tri-axial loading in SCL, only the data obtained for the flat waveform tests were 

used.    

Hurricane winds are accompanied by wind-driven rain (WDR).  Aerodynamic 

loading on buildings and their components and connections, due to wind effects only, 

may differ from aero-hydrodynamic loading induced by the combined effect of wind and 

impinging rain.  The WoW was used to determine if there is any significant difference 

between aerodynamic and aero-hydrodynamic loading induced on the GFRP connections 
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by testing under simulated hurricane wind and wind-induced rain, respectively.  Based on 

the results no significant increase in load was observed during the wind-driven rain tests 

as compared to wind tests without rain generation.  Thus the data used for failure testing 

in SCL were obtained from the dry wind tests only. It should be noted that due to the lack 

of published WDR research, additional research is needed on drop size distribution and 

rainfall intensity during tropical cyclones. Such data are needed to attempt more realistic 

generation of WoW-WDR capabilities needed to realistically simulate tropical cyclone 

related rainfalls and their variability’s.   

Design wind pressures on building components and connections are combinations 

of external and internal pressures.  Internal pressure contribution is significant especially 

in the event where windborne debris suddenly breach the building envelope creating 

sizeable openings.  For the current study on roof-to-wall connections, full-scale testing 

was performed to determine the effects of internal pressure changes on the connections 

due to breach of building envelope.  The testing included two conditions pertaining to 

internal pressures: enclosed and partially-enclosed (simulating breach of envelope) 

conditions as specified in ASCE 7-05.  The test specimen windows and doors were 

removed to simulate breach of the envelope effect.   The change in the internal pressure 

was correlated with the change in the loading on the connections.  Since it had more 

tributary area, the maximum difference in uplift loading between enclosed and partially-

enclosed conditions was observed in the middle truss (connection #5 for 0º AOA and 

full-throttle testing).  The mean uplift at connection # 5, for enclosed and partially-

enclosed conditions were 117 lbs and 645 lbs, respectively – the difference being 528 lbs. 

 The difference in the mean internal pressures between enclosed and partially-enclosed 
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conditions was 0.077 psi.  The tributary area for connection # 5 was 35 sq. ft., which 

would contribute to an additional load of about 390 lbs on the connection due to the 

change in the internal pressure.  The measured load increase on the connection was 

higher than the estimated increase based on internal pressure and tributary area.  This 

might be caused by the approximation of tributary area and assumption of uniformity of 

internal pressure throughout the area.  Nevertheless, the experiments indicated how 

severe the effects of a breach in the building envelope could be on connections, as the 

loading might increase several times (5.5 times in this case).   

There was no significant movement of the roof structure or deformation/failure of 

the GFRP connections under the highest winds generated by the WoW, indicating that 

the connections were adequate at least under simulated moderate hurricane conditions. 

 The tests provided a wealth of information on the aerodynamic tri-axial loads on roof-to-

wall connections that might occur during an extreme wind event. Thus a database was 

developed on wind-induced uplift, in-plane (parallel to the side walls), and out-of-plane 

(perpendicular to the side walls) loads experienced by the GFRP connections. The 

database showed that there could be significant lateral load components acting 

simultaneously with the uplift load component—such load combination is generally not 

simulated in existing connection test methods. The combinations of loads were used in 

the next phase of the research, i.e., tri-axial loading of the GFRP connection in the SCL 

till failure at the component level.  For each test the three force components were 

converted to a resultant mean load in order to test the GFRP connections more 

realistically using the aerodynamic loading obtained from WoW tests. Based on the SCL 

testing system capability a total of 23 out of 36 resultant forces obtained from the WoW 



241 
 

testing were simulated in the SCL to test the newly developed GFRP connections and 

metal hurricane clips to failure.  Hurricane clips were tested to provide a comparison of 

performance between GFRP and metal connections subjected to simultaneous tri-axial 

loading. 

  

7.4       Laboratory Tri-Axial Loading Experiments  

           The capacity of both types (GFRP connection and metal fasteners) of roof-to-wall 

connection systems were evaluated by testing specimens under simultaneous tri-axial 

loads.  The aim was to perform a series of tests on both types of connectors to evaluate 

and compare their failure load capacities under more realistic conditions.   

The results obtained from the SCL tri-axial tests indicated that the GFRP 

connection performed similar to and in most cases better than the metal fasteners. .  In 

some cases the ultimate failure resultant load for the GFRP connection was observed to 

be double of that for the metal fastener.    

The results show that the failure modes of connection joints are highly dependent 

on the type of the connection (GFRP versus metal).   It was noted that as GFRP is non-

intrusive it didn’t weaken the wood members and crushing of wood was avoided.  The 

failure mode observed was mostly detachment of GFRP from the wood surface and wood 

surface peeling.  In the case of the hurricane clip the failure mode was observed as nail 

withdrawal or pull-out, clip rupture, and in limited cases wood failure.   

The test results on ultimate load capabilities and failure modes demonstrated that 

GFRP connection could be a viable alternative to metal fasteners. Such non-intrusive 

GFRP connection is applicable to new construction and will be especially useful as a 
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retrofitting tool for old residential buildings that require strengthening against extreme 

wind loads with minimally intrusive techniques. 

Currently, the allowable uplift loads for existing metal fasteners are established 

using unidirectional tests.  The allowable load per clip is determined by the following 

formula: Allowable Load per Clip = min (Load at failure / 3.0; Load at 1/8” 

deflection)/number of clips used in the test specimen.  The test results obtained from the 

unidirectional testing are often overestimated, because the other force components are 

neglected during the testing, which is not realistic as determined by the WoW and SCL 

test results.  The unidirectional failure loads for both connectors (GFRP and metal) 

decreased during the tri-axial tests.  Various aerodynamic force components ratios were 

simulated during the tri-axial testing to failure which caused the resultant failure loads to 

vary depending on the specific test case.  When the coefficients FX/FZ and FY/FZ for the 

tri-axial testing were low the uplift capacity matched the uni-axial testing uplift capacity 

closely.  However when the coefficients were high, reduced uplift capacity was observed 

compared to the unidirectional testing uplift capacity.  This indicated that when the lateral 

load components were comparable to and  applied simultaneously with the uplift load 

component, as experienced during real storms, the uplift load capacity of the connection 

was reduced – implying that the unidirectional uplift test results were overestimated.  

Similar overestimation may occur for unidirectional lateral load testing.  As an example, 

in one of the most extreme cases the tri-axial test recorded the uplift failure loads to be 

295 pounds and 250 pounds as compared to the 720 pounds and 437 pounds, obtained 

from unidirectional testing, for the GFRP and metal clip respectively; and the lateral 

(parallel to the walls) failure loads were 102 pounds and 87 pounds as compared to the 
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552 pounds and 165 pounds obtained from unidirectional testing for the GFRP and metal 

clip, respectively. 

 Thus, tri-axial aerodynamic loading investigation into the performance of GFRP 

and mechanical fasteners used in residential construction to withstand forces occurring 

during high wind events demonstrated a propensity to overestimate fastener capabilities 

while using unidirectional testing methods.  Even though, the GFRP has more ultimate 

failure capacity, results clearly indicated the inappropriateness of the existing testing 

protocol used to test connectors.  Thus the current design approach, based as it is on 

testing a fastener in one direction instead of simultaneous three dimensional loads, may 

lead to erroneous predictions of the allowable capacity.  Design based on these erroneous 

allowable load capacities can cause inter-component connection failures during 

hurricanes.  Improving upon current practice by using the suggested tri-axial testing 

protocol with nine test configurations should allow the designer to have proper 

understanding of the simultaneous load capacities of a connection and thus help to 

improve the performance of timber construction in high winds.  

  

7.5       Project Contributions  

The project helped in the development of WoW research infrastructure and 

instrumentation at FIU, which is facilitating testing of entire structures and promoting 

research focusing on the complex interaction between hurricanes and the built 

environment. This is necessary to develop a cohesive and systemic approach to building 

hurricane resilient communities. The WoW provides testing capabilities for investigating 

real building structure and component performance against hurricanes and for developing 
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advanced mitigation techniques and products, filling a significant technological gap. 

Three different types of tests are feasible: (i) Aerodynamic (pressure/load tests for low 

rise buildings), (ii) Hydro-aerodynamic (wind-driven rain tests), and (iii) Destructive 

(failure-mode testing). WoW research activities and findings would have important and 

sometimes immediate economic and social impact in the coastal states, as well as inland 

states. 

In addition, a component level testing setup has been developed in SCL to test 

connections to failure under the influence of simultaneous tri-axial loading. The test 

system is composed of a double acting hydraulic jack that can pull on the component 

specimen using a cable and pulley. A load cell between the specimen and pulley records 

the ultimate failure load. The specimen is bolted to an I-beam that in turn is attached to 

two channels bolted to the SCL tie-downs. By moving the specimen North-South and 

East-West the resultant loading can be simulated.  

Based on WoW testing a database has been developed on aerodynamic and aero-

hydrodynamic loading on roof-to-wall connections tested under several parameters: 

angles of attack, wind-turbulence content, enclosed and partially-enclosed building 

conditions, with and without effects of rain. This database can be used by other 

researchers and industry professionals to test roof-to-wall connections under realistic 

combined loading (based on ‘holistic’ testing under wind) simulated in structural 

laboratories.  

A database has been developed on the uni-axial and tri-axial load capacity of the 

GFRP connections and of a particular type of metal fastener. To the researcher’s 

knowledge the simultaneous application of tri-axial loading to roof-to-wall connections in 
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SCL is one of the first attempts to mimic realistic aerodynamic loads obtained from full-

scale wind testing.  

The research’s findings demonstrated that a GFRP connection system is a viable 

option for use in a timber roof-to-wall connection system.  In most cases the GFRP 

connection was able to achieve double the resultant load capacity of a typical metal 

fastener.  Findings also indicated that current testing methods for mechanical fasteners 

tend to overestimate the actual load capacity of a connector, because of improper testing 

methods.  The research proposed a new testing protocol to test connection fasteners using 

simultaneous tri-directional forces that closely resemble actual aerodynamic forces on a 

roof-to-wall connection experienced during an extreme wind event.   

The work reported in this paper is intended to draw the attention of practitioners 

and code writers to current inappropriate and incorrect testing methods for evaluating the 

capacity of connectors, and to suggest that tests such as those reported in this dissertation 

can contribute significantly to improving the performance of roof-to-wall connections 

and enhance the resilience of communities subjected to strong winds.  This research 

presents the first step into the understanding of tri-axial connection loads and the 

connector capacities that are representative of the loads that a single story residential 

timber framed structure undergoes during a high wind event.    

 

7.6       Future Work Recommendations 

            Although this dissertation encompassed a broad range of research activities, some 

aspects of the GFRP connection behavior and proposed tri-axial testing method need to 

be further researched.  The GFRP connection has yet to be tested aerodynamically under 
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very strong hurricane conditions.  This performance can be simulated in the 12-fan WoW 

system which is presently under development. Also, a series of timber structures, within 

tropical cyclone prone coastal areas, could be retrofitted with the new GFRP roof-to-wall 

connections. Building performance under possible future storms can then provide 

validation of the connections -- there is no better test method than subjecting the 

connections to actual tropical cyclone conditions.  Such retrofitting can also be used to 

study the long term weather effects of moisture, heat and rain on the GFRP connections, 

which are not yet completely understood.  Also, the impacts of fatigue and creep in the 

GFRP connections have yet to be examined.  Studies on creep and fatigue are warranted 

for the GFRP connections as they are for existing metal fasteners.  The tri-axial testing 

method and system used in this research could be improved to test all 36 resultant 

aerodynamic forces obtained from the WoW tests.  This could be done by enhancing the 

current testing system by enlarging the size of the system and implementing a pulley 

swivel system that can allow more lateral locations to be tested.  Also, performing more 

than one test per resultant location would give a better statistical representation of the tri-

axial component test results reported in this research.  Finally, the simulation of 

simultaneous tri-axial moments in addition to the tri-axial loads is recommended as future 

work as such loading would more closely replicate the aerodynamic loading on a roof-to-

wall connection occurring during an extreme wind event. 
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