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Abstract
The ecosystem approach is being promoted as the foundation of solutions to the unsustainability of fisheries.

However, because the ecosystem approach is broadly inclusive, the science for its implementation is often considered
to be overly complex and difficult. When the science needed for an ecosystem approach to fisheries is perceived this way,
science products cannot keep pace with fisheries critics, thus encouraging partisan political interference in fisheries
management and proliferation of “faith-based solutions. In this paper we argue that one way to effectively counter
politicization of fisheries decision-making is to ensure that new ecosystem-based approaches in fisheries are viewed
only as an emergent property of innovation in science and policy. We organize our essay using three major themes to
focus the discussion: empirical, jurisdictional, and societal challenges. We undertake at least partial answers to the
following questions: (1) has conventional fisheries management really failed?; (2) can short-comings in conventional
fisheries management be augmented with new tools, such as allocation of rights?; (3) is the Ecosystem Approach
to Fisheries (EAF) equivalent to Ecosystem-Based Management?; and (4) is restoration of degraded ecosystems a
necessary component of an EAF?
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Fisheries management and governance globally underwent a
major shift in the second half of the 1970s, with the United Na-
tions Convention on the Law of the Sea (UNCLOS; UN 1995).
Although the USA is still not party to UNCLOS, approval of the
Magnuson–Stevenson Sustainable Fisheries Act in 1976 (and
subsequent reauthorizations, including the Sustainable Fish-
eries Act in 2006) resulted in similar large policy shifts. Prior
to UNCLOS, the chosen scale of management was a matter of
convenience, feasibility, and compromise, often regional, some-
times even local. Once adopted, UNCLOS made it legally fea-
sible to manage on scales of stock dynamics out to the full con-
tinental shelf, and its application was further extended to highly
migratory and straddling stocks by the Fish Stocks Agreement
(FSA; UN 1995).

In the years following the extended mandate from UNCLOS,
science became an important driver and enabler of change in
scale and scope of management, initially through improvements
in assessment techniques and data collection (e.g., Browman
and Stergiou 2005; Link 2005, 2010; NRC 2006; Fraser et al.
2008; Garcia and Charles 2008; Piet et al. 2008; Salas et al. 2008;
Bakun et al. 2009). As improved information about stock delin-
eation and movements, magnitude and nature of fisheries land-
ings, trophic dynamics, and the ecosystem impacts of fisheries
became available, assessment processes adopted approaches
that allowed consideration of multispecies interactions and the
impacts of fishing on habitats and food webs, sometimes at a
pace faster than fisheries policy and management were prepared
to implement (NRC 2006; Commission of the European Com-
munities [CEC] (2008, (2009). Policy caught up to, and possibly
leapt ahead of, science in the late 1990s and 2000s, when several
subsequent international policy agreements and declarations, in-
cluding provisions of the Reykjavik Declaration (FAO 2002b),
the St. John’s Declaration (2005), and United Nations General
Assembly Resolutions 61/105 (UN 2006) and 64/72 (UN 2009);
FAO (2003, 2008), further extended UNCLOS and the FSA to
broader ecosystem contexts.

In addition, there is a growing sense that traditional man-
agement has “failed,” although a growing body of literature
counters that view. Still, the effect has been to think about alter-
native approaches, including specific policy instruments such
as no-take marine reserves and incentive-based methods, but
also larger whole-scale changes in the way the fishery system
is perceived and managed. Some proposals are for structural
changes, such as simply eliminating large-scale fisheries in fa-
vor of small-scale ones (UNEP 2012), but the broader ecosystem
mandate for fisheries is getting particular attention as the foun-
dation for solutions to the unsustainability of fisheries (Pikitch
et al. 2004). For many, however, there is a disconnect between
the past, present, and future concerning how we think about
fisheries management, both good and bad. But a sustained dis-
agreement about what has happened in the past, and where we
are in the present, is irrelevant—the question now is, what is the
best way forward?

The ecosystem approach to fishery has been championed as
one way forward because it more holistically considers complex
linkages across human and natural systems, identifies conflicts
between competing ecosystem services, and also directly con-
siders both direct and indirect impacts of fishing activities on
marine ecosystems. However, there is no consensus among ex-
perts and critics on how to implement this broader ecosystem
mandate, whether through the “ecosystem approach to fisheries”
(EAF) or “ecosystem-based management” (EBM); advocates of
both approaches have offered few significant new insights con-
cerning details about how they are to be implemented.

Both EAF and EBM are broadly inclusive, so it is easy for ad-
vocates to argue they will bring into conventional fisheries man-
agement considerations that previously have been overlooked
or deemphasized. However, it is not a given that simply adding
more considerations to fisheries science and management nec-
essarily makes either of them better or solves problems encoun-
tered by conventional practices. The science for implementation
of EAF and EBM is often considered to be complex and dif-
ficult (Murawski 2007; Link 2010; Rice 2011); indeed, when
“ecosystem” is interpreted holistically, the science undoubtedly
is complex. When the science needed for EAF or EBM is per-
ceived as including all ecosystem dynamics, science products
cannot keep pace with fisheries critics, elevating the risk of
politicization of fisheries decision-making through “advocacy
science” and proliferation of “faith-based” solutions (Hilborn
2006; Cowan et al. 2010).

In this paper we develop the argument that to effectively
counter politicization of fisheries decision-making it is neces-
sary to clarify when these new “ecosystem-based” approaches
to fisheries assessment and management should be viewed as
an emergent property of innovation in science and policy, and
when they require significant changes in fisheries governance.
This requires confronting both the implicit and explicit distinc-
tion between the EAF and EBM. Although different fisheries
regulatory agencies have adopted one or the other of these terms,
for reasons that are rarely specified, there is an important differ-
ence between the concepts underlying the two terms. The notion
of adopting an “ecosystem approach” is inherently evolutionary.
Existing fisheries institutions and practices are taken as the start-
ing point, and their policies and techniques (both assessment and
management) are augmented with key ecosystem components
as these become relevant and feasible. The notion of adopting
an ecosystem basis for management (EBM) is more revolution-
ary. One starts with as full an understanding of the ecosystem
structure and function as possible, and then decides how human
uses, including fishing, can be accommodated without serious
alteration to ecosystem processes. Both concepts have strengths
and weaknesses. The EAF builds on what exists, requiring fewer
changes to legislation and institutions. It focuses efforts on the
ecosystem factors considered most relevant to fisheries and can
advance as rapidly as science can provide the empirical support
for change. However, simply by being incremental, it allows
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agencies to avoid hard problems both in accommodating less
tractable ecosystem relationships and drivers in assessment and
management, and in integrating fisheries with other human uses
of the services from the same ecosystem. The EBM immediately
requires confronting the drivers and relationships that matter
most to the ecosystem, whether tractable for science and man-
agement to address or not, and requires an integrated approach
to decision-making across human uses of ecosystem services.
Ecosystem-based management requires changes to legislation
and regulatory roles for agencies, and some loss of autonomy
of fisheries management agencies relative to more integrated
planning and policy, a change not welcomed by most fisheries
agencies.

Regardless of approach, neither the science of ecosystem as-
sessments nor the policy of integrated ecosystem-scale man-
agement is yet mature. Although modest progress has been
made (examples include the Convention on Biological Diversity
[CBD] 2009; NOAA 2009), consensus has not yet emerged on
key components of the scientific basis for ecosystem-scale as-
sessment and management (e.g., the appropriate spatial scale at
which management should operate and/or is likely to be effec-
tive), nor on the form and extent of integration of fisheries man-
agement with other regulatory agencies. However, there is agree-
ment on directions in which past approaches must be altered.
As currently practiced, fishery management remains bounded
by historical jurisdictional boundaries rather than ecological
ones, and progressive science advisors and managers try to
fit expanded ecosystem considerations into spatial frameworks
that may correspond poorly to functional ecosystem boundaries.
Ways that do match practical management scales with scales of
ecosystem dynamics must be found and implemented.

A perfect match of ecological and management scales may
be impossible, as there is no single spatial scale that will en-
compass all the key components of the fishery ecosystem. Some
of the key benthic communities and habitats may have impor-
tant structure on scales of tens of kilometers or less, whereas
some ecologically important highly migratory predators in many
systems disperse and migrate over hemispheric spatial scales,
creating linkages among far-distant local food webs.

Detailed ecosystem indicators can be collected at any of
these scales, but their use is likely to vary (Link 2010). At local
scales, ecosystem indicators can be proposed as triggers in man-
agement control rules, although at present ecosystem properties
are rarely used to set tactical management advice, other than
bycatch limits and management of forage fish fisheries (Pitcher
et al. 2009; Link 2010). As management scales get larger, strate-
gic as well as tactical measures may be at least informed by the
status of ecosystem properties. For example, in Australia, man-
agement does a qualitative, risk-based screening to identify a
few particularly high-risk species from a diverse array of marine
organisms (Hobday et al. 2011), and then designs management
approaches that consider the risk to those species. The European
Commission (EC) established Regional Advisory Committees
responsible for strategic and some tactical management advice

on fisheries involving more than 90,000 vessels using dozens of
different types of fishing gears. Even these committees operate
on multiple scales, ranging from major seas to larger areas to
capture both demersal and highly migratory species (Jennings
and Rice 2011).

In this essay, we attempt to identify some of the most signifi-
cant challenges to the development and implementation of fish-
eries in its broader ecosystem context. Specifically, we will seek
answers to the following five questions: (1) has conventional
fisheries management really failed?; (2) can short-comings in
conventional fisheries management be augmented with new
socioeconomic management measures, such as allocation of
rights?; (3) can short-comings in conventional fisheries man-
agement be augmented with new ecologically based measures
of EAF, or is EBM necessary?; (4) is restoration of degraded
ecosystems a necessary component of achieving the broader
mandate or is it sufficient to simply to prevent further degra-
dation?; and (5) if the answer to questions 2, 3, or 4 is yes,
how does the added complexity of assessment, management,
and ecosystem restoration change the pathways and time course
of implementation, as well as the expectations of management
outcomes? Question 1 sets the context for the rest of the paper
and is addressed first. The possible ways to address any prob-
lems identified in considering question 1 are discussed from
three perspectives relating to the types of challenges that arise
from making fisheries management more holistic and inclusive:
empirical, jurisdictional, and societal. That discussion provides
the basis to answer the other four questions, two of which deal
with pathways ahead and two with breadth of accountability for
fisheries management.

We note that consensus was not an explicit requirement of
authors for participation in this essay, so the reader may feel at
times the discussion does not lead to a single clear and consistent
conclusion. In fact, if we had achieved consensus, we might have
failed to adequately expose the complexity of the relationship
between EAF/EBM and the challenges to implementation of the
process.

HAS CONVENTIONAL FISHERIES MANAGEMENT
REALLY FAILED?

The answer to this question depends on what one consid-
ers success. Notwithstanding dramatic claims about the large
majority of stocks globally being overfished (Pauly 2007) or
destined for economic extinction by the middle of this century
(Worm et al. 2006), recent reports (FAO 2009) document that
fewer than 20% of fish stocks globally are overfished or col-
lapsed. Also, Worm et al. (2009) and Branch et al. (2011) show
that some major ecosystems have never been overfished, that
many others are now recovering from historical overfishing,
and that this recovery has been accomplished with conventional
fisheries management tools: restrictions of catch and effort, gear
limitation, closed areas, and rights-based management (also see
review by Jensen et al. 2012). However, the data available for
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these studies do not include those from small stocks targeted by
artisanal or recreational fisheries and includes only a few stocks
from Asia and Africa. Consequently, even when judging “suc-
cess” by the status of the target species, the jury is still out, with
some clear failures, some likely successes, and many “currently
unresolved” cases.

The success of fisheries management must be judged on stan-
dards more inclusive than just the status of the target stock(s).
Well-managed fisheries must have sustainable outcomes biolog-
ically, economically, and socially. Hilborn (2007) indicated that
one of the showcases of sustainable biological management,
the Bristol Bay salmon fishery, has been far from successful
economically. Social scientists, because of the consequences
of fishery regulations for fishery-dependent communities, have
taken to task many fisheries considered both biological and
economic successes (Lowe and Carothers 2008; Charles and
Wilson 2009). Societal success can be even more difficult to
define than ecological or economic success, even though it has
been one of the three cornerstones of sustainability since the
concept entered the policy arena in the 1980s (World Com-
mission on Environment [WCED] 1987); many sources (Rice
2009) stress that a key advance to a more expanded mandate for
fisheries management is to make the human dimensions of the
fishery an inherent part of the approach. This situation brings
out one of the real challenges of more inclusive approaches to
fisheries: the more holistic the basis for fisheries management,
the more opportunities there are for fisheries to be considered
“failed” somehow in policy or implementation. This should not
be thought of as a fault of broadening the mandate of fisheries; it
is correct to evaluate success of fisheries on all three dimensions
of sustainability. However, considering humans as part of the
ecosystem explicitly illustrates the difficult standard on which
success or failure should be objectively measured. To our knowl-
edge, no meta-analysis has been made of the social or economic
status of global or even regional fisheries. Therefore “success”
of fisheries management remains unresolved, although indica-
tions are ample that specific fisheries can improve performance
on any or all of the three aspects of sustainability. For the rest of
this essay we consider the challenges to making various types
of improvements: empirical, jurisdictional and financial, and
societal.

EMPIRICAL CHALLENGES
Although the expanded mandate places fisheries manage-

ment in a fuller ecosystem context, fisheries management is still
management of fisheries, not of ecosystems, just as classical
fisheries management is management of fisheries, not of target
species per se. So it is possible to argue that the scales at which
fisheries are defined by the coupled natural–human systems (Liu
et al. 2007) also define the appropriate scales for management
in any context, conventional or ecosystemic. However, coupled
natural–human systems are often difficult to delineate (Liu et al.
2007).

Legal jurisdictions always influence how coherent fisheries
are defined; for example, vessels cannot operate outside the
geographic areas for which they are licensed to operate. This
is true even on the high seas, given flag–state responsibilities.
Fishers also at least generally respect the legal boundaries of the
jurisdictions for which they are licensed to fish, if only because
the penalties for unreported and unregulated fishing is severe in
an increasing number of areas (FAO 2002a,b).

Beyond the legal jurisdictions, coherent management of fish-
eries has to be compatible with the distribution and behavior of
target species of fisheries. Even in multispecies fisheries, fleets
will fish where they expect favorable catch rates and low fish-
ing costs and where the mix of species will keep them at least
close to the allowable harvests for each species in the com-
plex being harvested (Alverson and Hughes 1996; Broadhurst
et al. 1997; Diamond 2004; Cotter et al. 2009; Piet et al. 2009).
Hence fishers’ behavior is both a constraint on what options
are worth discussing and also an opportunity to focus manage-
ment on scales that match management measures to the inherent
scales of the activities being managed. Taking advantage of that
opportunity to focus management on the scales of activities be-
ing managed is to select the suites of measures that encourage
fisheries to behave in biologically sustainable (for the target
species and ecosystem impacts on habitats, bycatch, etc), eco-
nomically sustainable (likely to have high catch rates and low
costs to fish), and socially sustainable (provide livelihoods to
those dependent on the fishery) ways. Selection of those suites
of measures requires considering the scales of dynamics of the
whole ecosystem, going well beyond the communities of the
fishers.

Some of the factors needed to define appropriate scales for
a greater ecosystem context for management are predictions of
large-scale (decades in time, 1000s of kilometers in distance)
oceanographic and climatic processes (North Atlantic Oscilla-
tion, Pacific Decadal Oscillation, location and paths of boundary
currents, upwelling zones, etc.), while others are intermediate
and local-scale features in time and space (bathymetry, types
and distributions of sea floor substrates, upwelling sites, jets,
estuarine plumes, etc.). Factors will differ according to target
species, even in the same general geographic management area
(small pelagics, large pelagics, demersals, salmonids, etc.), as
individual fishers often participate in multiple fisheries, each one
for a single or small suite of ecologically similar target species.

Trophodynamic (food web) factors also have to be taken
into account in defining the appropriate scales for an expanded
management mandate. Again, however, the scales of relevant
trophodynamic processes often depend on the characteristics of
the target species of the fishery being managed rather than on
some general ecosystem property. For example, the trophody-
namic scale of considerations for management of the Canadian
Pacific sardine fishery must include the entire California Cur-
rent, down to the southern Baja Peninsula, whereas the tropho-
dynamic scale of considerations for the Canadian Pacific hook-
and-line rockfish fishery is much smaller, probably never more
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than a few hundred km along the coast, and often not more than
a few tens of km.

Inclusion of the socioeconomic dimensions in management
does not make identification of the appropriate scale for man-
agement any easier. The behavior of a group of fishers can be
influenced simultaneously by long-standing cultural norms of
a local community, the changing preferences for eco-certified
fish in distant markets, and fuel prices, which are driven by
global geopolitics (Kaplan and McCay 2004; Hutton et al. 2008;
Ommer et al. 2009). Ignoring any of these scales in policy or
management can lead to bad choices on the social, economic,
and even ecological dimensions of sustainability (Degnbol and
McCay 2007; Murray et al. 2008).

Consequently, the search for the correct or appropriate scale
for management to meet an expanded ecosystem mandate may
be futile and misguided. Progress can be made on goals for
both target stocks and ecosystems as long as ecosystem consid-
erations are taken into account at whatever scale makes sense
for a particular fishery and the stocks it takes as harvest or by-
catch. Knowledge of both the main target species supporting
each fishery, and the economy and culture of the communities
where the fishery is based, are needed to select a sound start-
ing point for examining which considerations (probably on a
variety of scales, from basinwide to local) will have to be taken
into account in managing a particular fishery. This will be the
case whether a fishery is being managed solely in a sectoral
context (EAF) or in a broader context integrated with uses of
other ecosystem services (EBM).

Because of the many trade-offs necessary to address the eco-
logical, social, and economic considerations described above
(also see review by Link 2010), clearly no single operational
application for making management more ecologically inclu-
sive will be universally appropriate. Rather, applications fall
into a continuum of approaches, delineated in part by their com-
plexity. At one end of the continuum, some of the less complex
(but not simple) views of the necessary expansion of manage-
ment focus on giving greater consideration to the effects of
environmental drivers on stock dynamics (Bailey et al. 2004;
Stige et al. 2006) and/or to the full footprint of the fishery on
the ecosystem (Jennings and Kaiser 1998; Hall 1999). Simply
put, expanding the scope of management means incorporating
ecosystem principles (sensu Pikitch et al. [2004], Francis et al.
[2007], and Link [2010]) into the management of fisheries, so
that “success” means maintaining population sizes large enough
that exploited stocks can retain their ecological functions, while
protecting habitats and critical species.

At the other end of the continuum, more inclusive (and com-
plex) views posit that modern management must explicitly con-
sider whole ecosystems, the fisheries that are imbedded within
them, and the cumulative impacts of other pressures on the
ecosystems being exploited. This view takes the perspective that
marine ecosystems comprise a myriad of interacting species,
some targeted by fisheries and some not, located in a spatial
domain that contains a variety of habitats and physical oceano-

graphic processes. These ecosystems provide many goods and
services to humans and are affected directly and indirectly by
many human uses. To an extent great enough to require inte-
grated planning, the species, habitats, and physical processes
are interdependent; the uses and impacts are cumulative and in-
teract; and all of these relationships must be taken into account
in management lest ecosystem functions diminish.

The more inclusive approaches are certainly closer to views
that fisheries management should focus on preserving the
full structure, productivity, diversity, and resilience of marine
ecosystems (Jackson et al. 2001; Garcia et al. 2003; Brow-
man et al. 2004), not just take account of the environmental
forcers that may drive the dynamics of the stocks being har-
vested and the key direct impacts of the fishery. This may be
especially important in large river deltaic ecosystems, estuaries,
reefs, shallow continental shelves, etc., where multiple stressors,
including climate change, contribute to habitat loss and/or de-
struction, eutrophication, hypoxia/anoxia, and pollution; such
stressors threaten the ability of these areas to provide future
ecosystem services, including productivity of fisheries. It nec-
essarily follows, though, that this view of fisheries management
makes fisheries just a part of integrated management. Choices
to promote sustainable fisheries and efforts to restore produc-
tivity of impacted systems in these multistressed ecosystems
must necessarily be harmonized with management of the envi-
ronmental stressors as well.

This more inclusive view of fisheries management also re-
quires a finer understanding of spatial patterns and dynamics,
ecosystem-level processes and feedbacks, and the potential con-
sequences of unintended removals and other effects on the
ecosystem (Browman et al. 2004; Pikitch et al. 2004). Con-
sequently, ecosystem processes define scales necessary for as-
sessment and management even if they do not coincide with the
scale on which fisheries are prosecuted.

Empirical demands differ at different points along the contin-
uum. More fishery-centered approaches may be more practical
for tactical advice on the hard decisions about the necessary
trade-offs on the ecological, social, and economic dimensions
of a specific fishery. At this scale, relatively focused assess-
ments give priority to the ecosystem factors that are significant
drivers of the dynamics of the harvested stocks and directly af-
fect the fishery. Assessments to support this scale of approach
are not simple but often are tractable. Scales of assessment
and management can be matched to scales of fisheries. More
fishery-centered approaches also use existing fisheries gover-
nance structures to make fisheries decisions, often an important
consideration in getting buy-in from the fishers whose activities
are being managed and in meeting requirements of fisheries leg-
islation. However, this approach is sectorally based, rather than
set up to integrate other human uses of the same place, and may
not be consider many key aspects of ecosystem structure and
function directly.

The more inclusive end of the continuum is certainly more
“ecosystem-oriented” but also is much less tractable. Its best
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uses may be in developing strategic advice, when there is a
need to evaluate restoration options and alternative multiple-
use scenarios in systems not yet degraded and to consider how
these alternatives are predicted to affect fisheries resources in
the future. In this case, scenario evaluations, including social
and economic trade-offs over longer time scales, will proba-
bly depend more on the growing science of ecological fore-
casting and policy gaming than on more focused fishery-based
assessments. Although many examples in the recent literature
argue for and attempt to apply a more holistic approach, all
acknowledge the empirical challenge of ecosystem-scale as-
sessment of status, and most note that more holistic assessments
often have to stop several steps away from providing an actual
basis for tactical decision-making in any particular fishery (NRC
2006; Bakun et al. 2009; Game et al. 2009; Gerber et al. 2009;
Hobday et al. 2009; Lindegren et al. 2009; Litzow and Urban
2009; Morell 2009).

Substantial progress has been made in the development of
ecosystem-scale assessment tools that are capable of integrat-
ing physical forcing with dynamics of populations or functional
groups, which often include the pressures on the system from
multiple human activities in the sea (Travers et al. 2007; Link
2010; Fulton et al. 2011). Different tools take qualitative (“traf-
fic light”; Caddy 2007) and quantitative (structural analyses of
interaction matrices; Robinson et al. 2008; Kenny et al. 2009)
approaches to the complex integration of tasks. For the initia-
tives most closely linked to policy, these ecosystem assessment
approaches focus on identifying those ecosystem components
most crucial for maintaining ecosystem structure and functions:
the “ecologically and biologically significant area/species” of
CBD (2009) and DFO (2006), and the “vulnerable marine
ecosystems” of United Nations General Assembly Resolution
61/105 (UN 2006) and FAO (2009). Although these approaches
can clarify the nature of some of the major trade-offs that must
be made among human uses (including among different fish-
eries) and between ecological, social, and economic aspects of
policy choices, they are at present mostly strategic tools. They
usually fall short of providing an analytical basis for determin-
ing quantitative ecological benchmarks and triggers for decision
rules.

Many quantitative descriptive and simulation models are now
available, ranging from expanded single-species assessments
that consider changes in predation mortality, to so-called “end-
to-end” models that attempt to capture both the biological and
biophysical processes governing production dynamics (Fulton
et al. 2011). Plagányi (2007) and Espinoza-Tenorio et al. (2012)
provide thorough overviews of the strengths and limitations of
each model platform, and despite tremendous advancement in
this field over the past decade, there will always be limitations in
forecasting skill from these models because of limitations in our
fundamental knowledge of ecosystem dynamics and structure.
In fact, some argue that continued use of assessment and ecosys-
tem models for management decisions should be heavily sub-
sidized by large-scale monitoring of fish abundance and CPUE

(i.e., Large Marine Ecosystems; Branch et al. 2011; Hilborn
2012) if we are to sustain fisheries worldwide, despite the high
costs of collecting data at very large spatial scales.

Clearly, empirical challenges will be encountered during as-
sessment of ecosystem status at every scale of management.
At tactical scales, existing assessment algorithms will have to
be augmented by more functional relationships between major
ecosystem forcers and stock dynamics, assessment of direct im-
pacts on parts of the ecosystem other than the target species,
and more attention to the social and economic consequences of
management options. For strategic management at the ecosys-
tem scale, models and assessment tools that are much more
inclusive will be needed, considering species interactions, “sig-
nificant” areas and species, and interactions between the effects
of different industry sectors. Progress can certainly be made on
fishery and ecosystem objectives when ecosystem-based prin-
ciples are applied at relevant scales. However, many years will
be needed before it will be clear what efforts will be needed,
and at what scales, to truly achieve the goals of preserving the
structure and function of marine ecosystems, allowing coastal
communities to maintain their preferred livelihoods, and having
fisheries create wealth rather than require support for continued
existence.

Addressing the challenges of more inclusive ecosystem as-
sessments will require more than just larger data sets with more
variables. A history of exploitation has already affected the
dynamics of many stocks and ecosystem components (see re-
view by Jensen et al. 2012). Essentially all population dynamics
models are strongly influenced by the density-dependent feed-
backs structured into the models. Multispecies trophodynamic
models create more ways in which density dependence can be
expressed, but do not change the dominant role of these feed-
back terms in the behavior of the modeled systems (Pope et al.
2006). If most data come from a time when fishing has al-
ready reduced abundances of species and functional groups to
well below ecosystem-scale carrying capacities, the data may
provide only limited insight into how these feedbacks are ex-
pressed. Community dynamics are undoubtedly still regulated,
but not by the functional processes that would have regulated
them when most large fish were near their respective carrying
capacities.

Aside from altering the position of a stock’s spawning
biomass relative to its carrying capacity, the historical pattern as
well as intensity of fishing can also affect population dynamics
processes in another way. Many marine fish spawn in the pelagic
realm and rely on ocean currents to transport their eggs to a di-
verse array of larval and juvenile development/nursery grounds
(Houde 1987, 1989, 2008; Bakun 1989; Cushing 1996). It has
been argued that this can be viewed as an insurance policy,
because at the time of spawning, a fish cannot know which
habitat(s) will be optimal in any given year. If abundance is re-
duced, particularly if metapopulations have been depleted, the
population may fail to saturate all potentially suitable habitats.
This can result in greater interannual variability in recruitment
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of the population, and increases in the vulnerability of the re-
cruits to local habitat degradation, if the degraded habitats are
the ones most often used by the remaining stock (NRC 2002).
In such conditions, the study of recruitment ceases to be an
attempt to estimate the stock–recruit curve, but also requires
understanding how processes work across life stages (Houde
2008). It also requires a bigger research agenda than has been
undertaken historically.

Despite these (and many other) complexities, a great deal
of knowledge is now available that can be used in policy and
management (Murawski 2007). Moreover, not every ecosystem
process and relationship needs to be quantified to make signifi-
cant progress in these areas.

Even at the ecosystem scale, management still can apply a
large dose of common sense, building on the obvious truth that
fewer, smaller impacts are better than many large ones. As the
NRC (1999) report on Sustaining Marine Fisheries noted, the
first step in moving fisheries management towards incorporating
ecosystem considerations is good single-species management.
Research projects around the world are studying ecosystems
under stress from fishing and other causes (e.g., Halpern et al.
2008). Research is increasingly consisting of collaborations be-
tween social scientists, economists, and ecologists to better un-
derstand the root causes of overfishing and to develop decision-
support tools that close the gap in moving from single-species
management to more ecosystem-oriented approaches.

However, the sheer complexity of multiple life stage trophic
and habitat interactions is sure to create many surprising and
highly counterintuitive dynamic responses to any ecosystem
policy initiative (Pine et al. 2009). Adding the human dimen-
sion of the ecosystem approach will provide many lessons to
ecologists on why supercilious platitudes of “just take less”
have been unhelpful in the classical single-species approach and
will continue to be unhelpful in an ecosystem context. There is
great value in treating each management initiative as a delib-
erate, adaptive management experiment with highly uncertain
outcomes (Walters 1986). However, the application of exper-
imental adaptive management approaches in fisheries has so
far been extremely limited (Jensen et al. 2012). Severe prob-
lems, ranging from inadequate institutional incentives to exces-
sive monitoring costs, have plagued these approaches (Walters
2007), and policy-makers often show some resistance to exper-
iments with people’s lives and livelihoods, no matter how much
their ecological advisors tell them could be learned from the
results.

JURISDICTIONAL AND FINANCIAL CHALLENGES
Another important issue that will scale directly with the scale

and scope of management objectives and measures is the dis-
tribution of wealth and the jurisdictional authority to act. To
the extent that management decisions can be made and imple-
mented locally, these issues may not be much greater than they
are in local single-species management. However, the larger the

list of ecosystem factors that must be considered in a decision
or management action, the less likely it is that decisions can be
made locally and by a single regulatory agency. Even if those
prosecuting a fishery experience it as local, key drivers may
be acting elsewhere or on larger scales, and important impacts
may affect fishers or ecosystems in other areas or users of other
ocean resources. Hence decisions about ecosystem-sustainable
options for a local fishery may require consideration and assess-
ments on much larger scales. Costs of measures to improve the
profitability or ecological sustainability of the fishery many have
to be borne by others, often not fishers, who may not share in
subsequent benefits. The agencies with authority to implement
the necessary measures may not be the local fishery agencies,
or possibly may not be fisheries agencies at all. More inclusive
and holistic approaches are not going to make life easier for any
agency or user of any ocean resource.

One thing is certain; it costs money to collect data and manage
fisheries. For example, there is correlation between the number
of recognized fisheries collapses (and recoveries) and the rela-
tive wealth of the countries reporting these findings (Figure 1;
Worm et al. 2009). This correlation is not perfect, as some
wealthy countries apparently are better than others at managing
fisheries; moreover, collapses occur more frequently in eastern
boundary currents (upwelling areas) that experience decadal-
scale replacements of species complexes even when there is
little or no fishing (Roy et al. 1989; Lluch-Belda et al. 1991;
Santos et al. 2001). On the other hand, this correlation occurs in
part because the developed world can afford to capitalize large-
scale fisheries, and in part because wealthy countries can afford
to collect and manage the fisheries they prosecute (Worm et al.
2009).

One good example of the disparity in relative wealth, ju-
risdictional conflicts, and their effects on fisheries manage-
ment at the large marine ecosystem (LME) spatial scale is the
pan-Caribbean basin, including the Gulf of Mexico, which is
bounded by the USA, Mexico, and Cuba (Figure 2). The number
of collapsed (and recovered) fisheries, from among the 72 now
prosecuted by the USA in the Gulf, is relatively high and diverse.
These include highly migratory species and reef fishes that occur
in waters of all three countries. Along with the obvious dispar-
ity in wealth, there is an associated asymmetrical distribution of
landings data, with scarce and significantly poorer data quality
being obtained from poorer countries. This has forced the USA
to assess shared stocks in the Gulf of Mexico LME on the basis
of only US landings data. Even for single-species management,
this approach has been problematic because we know that sig-
nificant landings of some shared species are made in Mexico and
Cuba with little or no regard to ecosystem-based considerations,
particularly regarding bycatch and size limits (Rose and Cowan
2003).

Jurisdictional challenges also can arise over large spatial
scales of management even when all partners fully intend to
collaborate and cooperate to achieve common goals. Many ju-
risdictions are developing inclusive advisory or management
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FIGURE 1. Disparity in purchasing power in countries that manage fisheries in one or more of the world’s LMEs. The size of countries’ economies has been
converted into international dollars (also known as the Geary–Khamis dollar, a hypothetical unit of currency that has the same purchasing power of the U.S. dollar
in the USA at a given point in time) using purchasing power parity (http://fx.sauder.ubc.ca/PPP.html). Green bars represent millions in 2012 international dollars.
Filled areas represent collapsed fisheries on a color gradient of yellow to red. Yellow represents 0–60 collapses while red represents 345–544 collapses.

councils such as the US Regional Management Councils, the
European Union (EU) Regional Advisory Councils, and the
Australia Fisheries Management Authority. Their decision-
making powers and detailed modes of operation differ, but all in-

FIGURE 2. Disparity in purchasing power in countries that comprise the Gulf
of Mexico LME. See Figure 1 for details.

clude a spectrum of perspectives from fishers to conservation in-
terests and are intended to make fisheries decision-making more
representative and balanced. However, the appropriateness of
having a broadly inclusive process for provision of management
advice is part of the original Code of Conduct for Responsible
Fishing, and was a good idea long before ecosystem approaches
were acknowledged as central to good management. Moreover,
although all of these national/regional advisory bodies have at
least illustrative cases of making fisheries management consider
larger ecosystem perspectives, all are perceived by other agen-
cies as having made fisheries management even more sectorally
entrenched and less integrated with decision-making of other
regulatory agencies.

SOCIETAL CHALLENGES—PRESENT AND FUTURE
Society will ultimately determine the future approaches taken

for fisheries policy and management and the scopes and scales
at which they will be implemented. Even in today’s world, soci-
ety is finding it hard to make and stick to clear decisions about
the direction desired for fisheries management and policy. Even
among the authors, there is little consensus on the “right” out-
come (“targets”) at which policy and management should aim.
However, there is general agreement on a few important points
that bound the debate about selecting policy and management
targets:

• it is necessary and feasible to manage the ecosystem
state to some extent, at least regarding the direct im-
pacts of fisheries (and other human activities),
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• it is impossible to manage ecosystems entirely: too
many drivers are not under human control and the abil-
ity to predict ecosystem responses to perturbations (or
management interventions) is still limited.

Between those boundaries there is ample scope for societal—
and expert—debate on the degree and nature of impacts to ac-
cept and on the accountability of managers for the ecosystem
effects of fishing (Jensen et al. 2012). Large-scale, intensive
aquaculture alters aquatic systems in ways that approach the
agricultural model. Such practices can effectively address press-
ing food security issues for protein-poor regions of the world,
but the effects on the ecosystem are large and strongly contested
(Rice 2011). Efforts to enhance the natural productivity of de-
pleted wild stocks can range from habitat improvements to active
augmentation of recruitment. Agreement is almost universal that
inclusive approaches are needed to restore degraded ecosystems,
and that controlling sources of pollution, nutrient enrichment,
direct habitat destruction, etc., is feasible (Ring et al. 2010;
Seabrook et al. 2011). However, when it comes to restoring the
structure of biotic communities, there are serious reservations
about the ability of humans to “steer” degraded ecosystems to-
wards states that resemble historical conditions (Jackson et al.
2001; Cowan et al. 2008).

For most marine and coastal systems, fishing has already al-
tered the ecosystems sufficiently that setting appropriate targets
cannot be informed by the pristine structure and functioning
of an ecosystem, and there is debate about even what natural
ecosystem processes would mean (Ring et al. 2010; Seabrook
et al. 2011). However, new calls are being made to use fisheries
management successes and failures as ecological experiments,
to be mined for the information they contain about sustainability
(Jensen et al. 2012).

Some examples of “back to the future” approaches do exist.
In the USA, most notable are past and ongoing efforts to re-
store wetlands and ecosystem functioning to enhance fisheries
productivity in the San Francisco Bay-Delta (California Code
Chapter 3: San Francisco Bay Restoration Authority [66702.–
66702.5]). Hundreds of millions of US dollars have already
been spent to develop a real-time monitoring system capable of
limiting the intake of endangered species in pumps that deliver
water to southern California. More importantly, management of
this system requires that the estuarine null zone be maintained
within defined distances downstream to ensure that sufficient
flows exist in the estuary to promote recruitment success of
estuary-dependent fishes and invertebrates (Interagency Ecolog-
ical Program; http://www.iep.ca.gov/pwt.html; CALFED Bay-
Delta Program, http://www.science.calwater.ca.gov/science
index.html/). Similarly, restoration efforts in Chesapeake Bay
are focused on reducing nutrient inputs and improving other
ecosystem indicators to specified benchmarks to limit eutroph-
ication and the development of bottom water hypoxia/anoxia.
Among the most important reasons given for the many actions
already taken is to ensure that the Bay is restored to a point

where it is capable of supporting future living resources and fish-
eries productivity at levels similar to the historical past (Chesa-
peake Bay Executive Order 13508, November 2009, http://
executiveorder.chesapeakebay.net/).

Other notable examples include (1) watershed restoration
in the Pacific northwest, a costly ecosystem management/
restoration program in the USA and Canada aimed explicitly at
insuring healthy water systems for Pacific salmon (Nehlsen et al.
1991; Pacific Salmon Restoration Program, http://www.ifrfish.
org/pacificsalmon; http://www.wsu.edu/swwrc/SalmonIndex.
html), and (2) water management and restoration of the
Florida Everglades and Florida Bay to promote spiny lob-
ster and others fisheries (Comprehensive Everglades Restora-
tion Plan, http://www.evergladesplan.org/index.aspx). Similar
large-scale restoration and management programs are planned
for the Great Lakes (US EPA Great Lakes Restoration Plan,
http://www.epa.gov/grtlakes/glri/glmyrapo.pdf) and northern
Gulf of Mexico (Mississippi River deltaic ecosystem–Coast
2050 [LCWCRTF 1998]; CPRA 2007), both of which in-
clude specific goals aimed at restoring or maintaining fisheries
productivity.

All these major restoration programs are aimed primarily at
reducing and repairing habitat loss, with restored fishery pro-
ductivity as one of many goals. However, even when there was
consensus on goals to achieve improved ecosystem status of
these degraded systems, ecology alone could not identify which
of many restored states was the best (or at least most acceptable)
goal. In addition, few of the restoration measures are applied
by, or under the direct control, of fisheries managers and pol-
icy makers. The important message is that in situations where
ecosystem restoration is necessary for sustainable fisheries, inte-
grated planning and decision-making across many industry and
societal sectors is essential both to ensure coordinated action
among agencies responsible for managing the different stres-
sors on habitat quality and fisheries productivity, and for reach-
ing consensus and resolving conflicts among agencies and civil
society on the major trade-offs needed for restoration. The tar-
gets at which to aim will be compromises of many social and
economic considerations as well as ecological ones arrived at
through processes inclusive of many parties beyond fishers and
fisheries managers.

We would be remiss if we failed to mention marine protected
areas (MPAs) and other related types of spatial management
approaches in the tactical context of recovery/restoration and
fisheries management more generally. Although many goals of
MPAs are the same as those of fisheries management, there are
some important differences and the literature has considered the
linkage between MPAs and fisheries management as anything
from independent to one and the same (Halpern et al. 2010). We
do not believe that MPAs alone are sufficient to achieve all of the
objectives of fisheries management because they rarely are large
enough to generate more than very local benefits to fisheries
(Defeo and Perez-Castaneda 2003; Martell et al. 2005; Hilborn
2006; Laurel and Bradbury 2006); and to meet basic criteria
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for being an MPA, when in conflict, conservation goals must be
given priority over any social or economic goals. MPAs large
enough to achieve all the ecological objectives, even restoration,
would require such significant redefinitions of the social and
economic objectives of the fisheries that at least some of the
participants in the fisheries would argue the management regime
was no longer a fisheries regime but a protected-areas regime.

In the future we expect these challenges to grow larger, not
smaller. For narrow scopes and tactical scales, decisions may
be driven by the same incentives that have driven conventional
fisheries management, namely, short-term, fitness-based incen-
tives. Incentives can be defined by whatever metrics one chooses
(economic, nutritional, etc.), but keep in mind that the social cul-
ture making the decisions evolved during a time of ecological
abundance.

This is relevant here because Day et al. (2007, 2012) showed
that fishery yields in estuaries during the last postglacial maxi-
mum in sea level are 10-fold higher than in open marine ecosys-
tems, and that the distribution of complex, urban societies first
formed in the presence of abundant coastal resources associ-
ated with salt marshes and mangroves (Figure 3). Abundant
resources freed humans to think beyond sustenance, thus creat-
ing luxury time to develop language, arts, culture, and religion,
all of which are believed to have benefited humans during their

rapid, recent evolution (Dennett 2006; Day et al. 2007, 2012;
Hall and Day 2009). It is also clear that evolution in the time
of ecological abundance promoted short-term thinking wherein
humans have used the experiences of the past two or three gen-
erations to inform decisions about what do for the next one
or two generations (Sagan and Druyan 1992; Wilson 1998; A.
Einstein, cited in Isaacson 2007).

In contrast, we are now facing ecology in time of scarcity
(Hall and Day 2009), and the history of human activity in the
world’s oceans extends well beyond overfishing (Jackson et al.
2001). Populations in traditionally fishery-dependent coastal
communities are dwindling as members of the younger gen-
eration fail to follow their fathers and forefathers into fisheries
(Hamilton and Otterstad 1998; Hansen 1999; Tietze et al. 2000).
The forecasted negative impacts of climate change on crop and
livestock production in many areas that historically have pro-
vided at least subsistence if not surplus food (Gregory et al.
2005), combined with projected growth of human population
that is also increasingly urbanized in large coastal cities, is
creating a threat of a food security crisis that must be met in
large part by food from aquatic (freshwater and marine) ecosys-
tems (Cochrane et al. 2009; Hall and Day 2009). We may be
living at a nexus when not just the ecological basis for decision-
making about fishery resources is changing fundamentally, but

FIGURE 3. Distribution of early urban societies. The distribution of coastal mangroves and salt marshes is indicated by dark and light shades (adapted from Day
et al. 2012).
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FIGURE 4. The original projections of the limits-to-growth model (Hubbert
1969) examined the relation of a growing population to resources and pollution
but did not include a timescale between 1900 and 2100. Hall and Day (2009)
projected forward from the halfway mark of 2000; the projections up to the cur-
rent time are largely accurate, although projections for upcoming years predict
wild oscillations.

also in a time when the economic and social/cultural basis must
change.

As such, societal challenges may be the biggest challenge
to expanding fisheries to a broader ecosystem context because
we question whether changes can occur quickly enough for so-
ciety to fully embrace these concepts and measures, especially
in ecosystems where restoration is needed to ensure future fish-
eries productivity. Restoration often cannot be accomplished
quickly, and it frequently requires a great deal of wealth to im-
plement, particularly when top-down anthropogenic stressors
have resulted in punctuated equilibria and shifts in ecological
baselines (Jones and Walters 1976; Jackson et al. 2001). We are
not certain that the history of human evolution has prepared so-
ciety to understand and tolerate the trade-offs needed to forego
short-term economic benefits and to abandon open-access uti-
lization of natural resources in favor of protecting or restoring
ecosystem goods and service over much longer time periods,
especially in times of ecological scarcity (Figure 4; Hall and
Day 2009).

The costs of such actions will continue to increase in times of
scarcity as the price of fossil fuels climbs in response to dimin-
ishing supply and potable water becomes scarce, yet ecosystem
restoration can take decades to show any net benefits and cen-
turies to complete. The most visible example of this dilemma
is the ongoing debate about climate change, despite the over-
whelming evidence that it is occurring and having large con-
sequences (Pachauri and Reisinger 2007). For EAF to succeed,
even if the goal is simply to draw a line in the sand and pre-
vent further degradation of ecosystems as they exist today, it
probably will be necessary to begin forward-thinking over time

scales longer than have been necessary in the past. If the updated
projections of the Hubert model in Figure 4 are even modestly
realistic, relatively rapid future declines in food per capita and in
ecological goods and services will make these challenges more
pressing, thus requiring actions sooner than later.

HAVE WE ANSWERED THE QUESTIONS WE POSED?

Question 1.—Has conventional fisheries management really
failed? At some points in their past, many stocks have been over-
fished, and in some jurisdictions and periods, overfishing was
severe and widespread. Nonetheless, some major ecosystems
have never been overfished and many others are now recovering
from historical overfishing. So conventional fisheries manage-
ment has not categorically failed, but neither has it uniformly
succeeded, relative to the traditional stock- or fishery-specific
objectives for management. Moreover, complete data are avail-
able only for some larger-scale fisheries of the world. Adequate
information from most of the world’s artisanal fisheries and
many large-scale fisheries in the Southern Hemisphere are not
available for analysis, so a full evaluation of success is not yet
possible.

Question 2.—Can shortcomings in conventional fisheries man-
agement be augmented with new socioeconomic management
measures, such as allocation of rights? Where overfishing has
not occurred and where recoveries are being accomplished,
these outcomes are being achieved with conventional fisheries
management tools such as catch and effort restrictions, gear
limitation, closed areas, and rights-based management. How-
ever, recent international agreements have committed fisheries
to achieve not just sustainable use of target stocks but indeed sus-
tainable use of marine ecosystems. Some conventional tools may
contribute to achieving this broader mandate, closed areas being
a favorite tool of marine conservation biologists. Nonetheless,
the broader mandate cannot be delivered by fisheries manage-
ment agencies acting solely by sector and using only the conven-
tional tools of fisheries management in their classical applica-
tions. For example, the policy and practice of allocation of rights
to targeted stocks is complex, and the allocation of rights to
broader ecosystem impacts of fisheries is still at the conceptual
stage for all but special cases such as some bycatch allocations.

Question 3.—Can shortcomings in conventional fisheries man-
agement be augmented with new ecologically based measures
such as EAF or EBM? Considering EAF first, taking account
of more drivers of stock dynamics and the broader footprint of
fisheries may contribute modestly to achieving the stock-related
objectives of conventional fisheries management. It will do little,
however, to address shortcomings in conventional management
that stem from unresolved conflicts between social, economic,
and ecological outcomes of fisheries, or from ineffective imple-
mentation of conventional management measures. To the extent
that the ecosystem impacts of fisheries are managed effectively,
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EAF can contribute to the broader mandate of sustainable use
of ecosystems. However, as soon as fishery impacts on ecosys-
tems have to be harmonized with the impacts or desired out-
comes of other uses of marine ecosystems, EAF alone will not
be adequate. Some form of integrated planning and decision-
making becomes necessary, moving into the domain of EBM.
An ecosystem approach to fisheries has more tractable informa-
tion demands for implementation, is more readily focused on
priority problems, and is more compatible with fisheries gov-
ernance. However, it fails to address some key determinants of
sustainability. Ecosystem-based management deals more ade-
quately with the drivers of unsustainability and the new commit-
ments to ecosystem-scale sustainability. But it demands far more
action by policy-makers and managers, more attention to the hu-
man dimension of an ecosystem, and an integration of fisheries
management and decision-making with management and
decision-making of other sectors—an integration so far widely
resisted by fishery interests.

Question 4.—Is restoration of degraded ecosystems a necessary
fisheries management objective, or is our goal simply to prevent
further degradation? If the goal of management is preserving
the structure, productivity, diversity, and resilience of marine
ecosystems and prosperous, vibrant human communities, then
restoration will often be necessary. Restoration is most urgently
needed in places where significant habitat degradation has oc-
curred. However, such degradation is rarely due to fisheries
alone, even though fisheries productivity is impaired by the
degradation, and conventional fisheries management objectives
are not achievable until restoration has occurred. Under such
conditions, EBM, integration of efforts to manage all the causes
of ecosystem degradation, will be needed.

Question 5.—If the answer to questions 2, 3, or 4 is yes, how
does the added complexity of assessment, management, and
ecosystem restoration change the pathways and time course
of implementation and the expectations of management out-
comes? Where restoration is needed (question 4), it is rarely
accomplished quickly and often requires a great deal of wealth
to implement. Where ecosystem-scale sustainability of impacts
requires major reductions in the impacts of fisheries on popula-
tions or habitats, there will be social and economic consequences
of the necessary management measures. Again, more integrated
consideration of livelihoods rather than just fisheries’ profits
and employment will probably be needed before progress is
possible. We are not certain that the history of human evolution
has prepared society to understand and tolerate the trade-offs
needed to forego short-term economic benefits, and abandon
open-access utilization of natural resources, in favor of protect-
ing or restoring ecosystem goods and service over much longer
time periods.
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pour l’Exploitation de la Mer (IFREMER), Paris.

Bakun, A., E. A. Babcock, and C. Santora. 2009. Regulating a complex adaptive
system via its wasp-waist: grappling with ecosystem-based management of
the New England herring fishery. ICES Journal of Marine Science 66:1768–
1775.

Branch, T. A., O. P. Jensen, D. Ricard, Y. Ye, and R. Hilborn. 2011. Contrast-
ing global trends in marine fishery status obtained from catches and from
stock assessments. Conservation Biology 25:777–786. DOI: 10.1111/j.1523-
1739.2011.01687.x.

Broadhurst, M. K., S. J. Kennelly, J. W. Watson, and I. K. Workman. 1997.
Evaluations of the Nordmøre grid and secondary bycatch-reducing devices
(BRDs) in the Hunter River prawn-trawl fishery, Australia. U.S. National
Marine Fisheries Service Fishery Bulletin 95:209–218.

Browman, H. I., and K. I. Stergiou. 2005. Politics and socio-economics of
ecosystem-based management of marine resources. Marine Ecology Progress
Series 300:241–296.

Browman, H. I., K. I. Stergiou, P. M. Cury, R. Hilborn, S. Jennings, H. K.
Lotze, P. M. Mace, S. Murawski, D. Pauly, M. Sissenwine, and D. Zeller.
2004. Perspectives on ecosystem-based approaches to the management of
marine resources. Marine Ecology Progress Series 274:269–303.

Caddy, J. F. 2007. Marine habitat and cover: their importance for productive
coastal fishery resources. UNESCO Publishing, Paris.

CBD (Convention on Biological Diversity). 2009. Expert workshop on scientific
and technical aspects relevant to environmental impact assessment in marine
areas beyond national jurisdiction. United Nations Environment Programme
(UNEP), Report UNEP/CBD/EW-EIAMA/2, New York.

CEC (Commission of the European Communities). 2008. The role of the CFP in
implementing an ecosystem approach to marine management: communica-
tion from the commission to the council and the European parliament. CEC,
COM(2008)187 Final, Brussels.

CEC (Commission of the European Communities). 2009. Green paper: reform
of the common fisheries policy. CEC, COM(2009)163 Final, Brussels.

Charles, A. T., and L. Wilson. 2009. Human dimensions of marine protected
areas. ICES Journal of Marine Science 66:6–15.

Cochrane, K. L., C. De Young, D. Soto, and T. Bahri, editors. 2009. Cli-
mate change implications for fisheries and aquaculture: overview of cur-
rent scientific knowledge. FAO (Food and Agriculture Organization of the
United Nations), FAO Fisheries and Aquaculture Technical Paper 530,
Rome.

Cotter, J., P. Petitgas, A. Abella, P. Apostolaki, B. Mesnil, C. Y. Politou, J.
Rivoirard, M. J. Rochet, M. T. Spedicato, V. M. Trenkel, and M. Woillez.
2009. Towards an ecosystem approach to fisheries management (EAFM)
when trawl surveys provide the main source of information. Aquatic Living
Resources 22:243–254.

Cowan, J. H., Jr., C. B. Grimes, W. F. Patterson III, C. J. Walters, A. C. Jones, W.
J. Lindberg, D. J. Sheehy, W. E. Pine III, J. E. Powers, M. D. Campbell, K. C.
Lindeman, S. L. Diamond, R. Hilborn, H. T. Gibson, and K. A. Rose. 2010.
Red snapper management in the Gulf of Mexico: science- or faith-based?
Reviews in Fish Biology and Fisheries 21:187–204.

Cowan, J. H., Jr., C. B. Grimes, and R. F. Shaw. 2008. Life history, history,
hysteresis, and habitat changes in Louisiana’s coastal ecosystem. Bulletin of
Marine Science 83:197–215.

CPRA (Coastal Protection and Restoration Authority). 2007. Integrated ecosys-
tem restoration and hurricane protection: Louisiana’s comprehensive master
plan for a sustainable coast. CPRA of Louisiana, Baton Rouge.

Cushing, D. H. 1996. Towards a science of recruitment in fish populations.
Excellence in Ecology 7.



508 COWAN ET AL.

Day, J. W., Jr., J. D. Gunn, W. J. Folan, A. Yáñez-Arancibia, and B. P. Hor-
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Applicability of the trophic index TRIX in two transitional ecosystems: the
Mar Menor lagoon (Spain) and the Mondego estuary (Portugal). ICES Journal
of Marine Science 65:1442–1448.

Santos, A. M. P., M. D. F. Borges, and S. Groom. 2001. Sardine and horse
mackerel recruitment and upwelling off Portugal. ICES Journal of Marine
Science 58:589–596.

Seabrook, L., C. A. Mcalpine, and M. E. Bowen. 2011. Restore, repair or
reinvent: options for sustainable landscapes in a changing climate. Landscape
and Urban Planning 100:407–410.

St. John’s Declaration. 2005. Declaration of ministers from the conference
on the governance of high seas fisheries and the UN fish agreement: mov-
ing from words to action. Department of Fisheries and Oceans, St. John’s,
Newfoundland and Labrador, Canada. Available: www.dfo-mpo.gc.ca/fgc-
cgp/declaration e.htm. (March 2012).

Stige, L. C., G. Ottersen, K. Brander, K. S. Chan, and N. C. Stenseth. 2006.
Cod and climate: effect of the North Atlantic oscillation on recruitment in the
North Atlantic. Marine Ecology Progress Series 325:227–241.



510 COWAN ET AL.

Tietze, U., G. Groenewold, and A. Marcoux. 2000. Demographic change in
coastal fishing communities and its implications for the coastal environment.
FAO (Food and Agriculture Organization of the United Nations) Fisheries
Technical Paper 403.

Travers, M., Y. J. Shin, S. Jennings, and P. Cury. 2007. Towards end-to-end mod-
els for investigating the effects of climate and fishing in marine ecosystems.
Progress in Oceanography 75:751–770.

UN (United Nations). 1995. The United Nations agreement for the implemen-
tation of the provisions of the United Nations convention on the law of the
sea of 10 December 1982 relating to the conservation and management of
straddling fish stocks and highly migratory fish stocks (dated 8 Septem-
ber 1995). UN, Division for Ocean Affairs and the Law of the Sea, New
York.

UN (United Nations). 2006. UN resolution 61/105: sustainable fisheries, includ-
ing through the 1995 agreement for the implementation of the provisions of
the United Nations convention on the law of the sea of 10 December 1982 re-
lating to the conservation and management of straddling fish stocks and highly
migratory fish stocks, and related instruments. UN, Division for Ocean Af-
fairs and the Law of the Sea, New York. Available: www.un.org/Depts/los/
general assembly/general assembly resolutions.htm. (March 2012).

UN (United Nations). 2009. UN resolution 64/72: sustainable fisheries, includ-
ing through the 1995 agreement for the implementation of the provisions of
the United Nations convention on the law of the sea of 10 December 1982 re-

lating to the conservation and management of straddling fish stocks and highly
migratory fish stocks, and related instruments. UN, Division for Ocean Af-
fairs and the Law of the Sea, New York. Available: www.un.org/Depts/los/
general assembly/general assembly resolutions.htm. (March 2012).

UNEP (United Nations Environment Programme). 2012. UNEP 2011 annual
report. UNEP, Division of Communications and Public Information, Nairobi,
Kenya.

Walters, C. J. 1986. Adaptive management of renewable resources. Macmillan,
New York.

Walters, C. J. 2007. Is adaptive management helping to solve fisheries problems?
Ambio 36:304–307.

WCED (World Commission on Environment and Development). 1987. Our
common future. Oxford University Press, Oxford, UK.

Wilson, E. O. 1998. Consilience: the unity of knowledge. Knopf, New York.
Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern,

J. B. C. Jackson, H. K. Lotze, F. Micheli, S. R. Palumbi, E. Sala, K. A. Selkoe,
J. J. Stachowicz, and R. Watson. 2006. Impacts of biodiversity loss on ocean
ecosystem services. Science 314:787–790.

Worm, B., R. Hilborn, J. K. Baum, T. A. Branch, J. S. Collie, C. Costello, M. J.
Fogarty, E. A. Fulton, J. A. Hutchings, S. Jennings, O. P. Jensen, H. K. Lotze,
P. M. Mace, T. R. McClanahan, C. Minto, S. R. Palumbi, A. M. Parma, D.
Ricard, A. A. Rosenberg, R. Watson, and D. Zeller. 2009. Rebuilding global
fisheries. Science 325:578–585.


	Florida International University
	FIU Digital Commons
	8-13-2012

	Challenges for Implementing an Ecosystem Approach to Fisheries Management
	James H. Cowan Jr.
	Jake C. Rice
	Carl J. Walters
	Ray Hilborn
	Timothy E. Essington
	See next page for additional authors
	Recommended Citation
	Authors


	UMCF_A_690825_O

