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ABSTRACT

Pseudomonas aeruginosa is a metabolically versa-
tile bacterium that is found in a wide range of biotic
and abiotic habitats. It is a major human opportun-
istic pathogen causing numerous acute and chronic
infections. The critical traits contributing to the
pathogenic potential of P. aeruginosa are the pro-
duction of a myriad of virulence factors, formation of
biofilms and antibiotic resistance. Expression of
these traits is under stringent regulation, and it
responds to largely unidentified environmental
signals. This review is focused on providing a
global picture of virulence gene regulation in
P. aeruginosa. In addition to key regulatory
pathways that control the transition from acute to
chronic infection phenotypes, some regulators have
been identified that modulate multiple virulence
mechanisms. Despite of a propensity for chaotic be-
haviour, no chaotic motifs were readily observed in
the P. aeruginosa virulence regulatory network.
Having a ‘birds-eye’ view of the regulatory
cascades provides the forum opportunities to pose
questions, formulate hypotheses and evaluate
theories in elucidating P. aeruginosa pathogenesis.
Understanding the mechanisms involved in making
P. aeruginosa a successful pathogen is essential in
helping devise control strategies.

INTRODUCTION

Pseudomonas aeruginosa is a Gram-negative bacterium
that has the ability to thrive in most natural and
man-made environments. It is found in diverse habitats,
including soil, water, plants and animals, and can infect
multiple hosts (1,2). Pseudomonas aeruginosa causes a
wide variety of acute (short duration, typically severe)

and chronic (persisting for a long time, often refractory
to treatment, severity varying with pathogen) human in-
fections, including in patients with severe burn wounds,
urinary tract infections, AIDS, lung cancer, chronic ob-
structive pulmonary disease, bronchiectasis and cystic
fibrosis (CF) (3–6).
Metabolic versatility, intrinsic and acquired antibiotic

resistance, biofilm formation and production of multiple
virulence (disease-causing) factors make P. aeruginosa
a formidable pathogen. The virulence machinery of
P. aeruginosa comprises both cell-associated determinants
(such as lipopolysaccharides, pili, flagella) and numerous
secreted factors (such as elastases, proteases, exotoxins,
pyocyanin, extracellular polysaccharides). One of the
mechanisms by which P. aeruginosa senses external
signals is using sensor proteins that, through phospho-
transfer or phosphorelay, activate specific transcriptional
regulators. These sensor–regulator protein pairs are called
two-component systems (TCS). The P. aeruginosa PAO1
genome encodes �127 TCS members, compared with 60
in Escherichia coli (7) and 70 in Bacillus subtilis (8), reflect-
ing the adaptability of P. aeruginosa. TCS and their modi-
fications also feed into major regulatory pathways and play
a critical role in allowing cells to modulate gene expression
in response to environmental conditions (9,10). Many of
the secreted virulence factors and phenotypes, such as
biofilm formation, are under the control of a cell density
recognition mechanism called quorum sensing (QS) that
aids in the coordinated expression of genes (11,12). QS
is a key to virulence gene expression in many bacteria
and serves as an attractive target for antibacterial chemo-
therapy (13).
In humans, acute P. aeruginosa infections in specific

sites, such as the CF lung, eventually lead to chronic inec-
tions. This is caused by adaptive modifications in the in-
fecting clonal type, resulting in diverse morphotypes (14).
Acute virulence factors include the Type 2 and Type 3
secretion systems, flagella, type IV pili and QS-regulated
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virulence factors (proteases, elastase, pyocyanin) (15). On
establishing a chronic infection, P. aeruginosa overpro-
duces extracellular polysaccharides, forms biofilms and
small colony variants and upregulates the Type 6 secretion
system (15–18). Antibiotic resistance plays a major role in
both types of infection, although the cells display higher
levels of resistance in chronic infections (18,19). The tran-
sition to a chronic infection phase is the result of
numerous changes in cellular physiology in response to
external stimuli (20). The changes include downregulation
of acute virulence genes with a concomitant upregulation
of chronic infection phenotypes and antibiotic resistance,
facilitating recalcitrant infections (15,20). Host invasion,
establishment of acute infection and the subsequent tran-
sition to the chronic phase involves tightly regulated ex-
pression of many genes associated with metabolism,
virulence and antibiotic resistance. Several key players in
these transition processes have been identified and include
transcriptional and post-transcriptional regulators
(21–23). Many of these will be discussed in subsequent
sections of this review.
Gene regulation in P. aeruginosa is a complex process

involving numerous transcriptional regulators, regulatory
RNAs (rgRNA) and s factors. The P. aeruginosa genome
is >6 Mb (24), approaching that of lower eukaryotes. The
genome is plastic and has acquired genes and undergone
extensive rearrangements to adapt to specific niches (25).
The large genome of P. aeruginosa supports a multitude of
regulatory networks, with �8% of the total genome
dedicated to the regulatory proteins (26). Pseudomonas
aeruginosa PAO1 encodes 434 transcriptional regulators,
24 s factors and 34 small RNAs, many of which remain to
be characterized (24,27–29). Moreover, predicted regula-
tory networks indicate that there is an extensive crosstalk
between the different transcriptional regulators (27,30).
These networks, however, are based in part on in silico
analyses, and their validity needs to be established. This
review makes an effort to consolidate the empirically
proven major virulence regulatory networks in
P. aeruginosa with the hope of providing a framework
for future studies to better understand pathogenic
processes in P. aeruginosa and in related bacteria.

MAJOR VIRULENCE REGULATORY SYSTEMS
IN P. AERUGINOSA

The experimentally established virulence regulatory
network in P. aeruginosa is depicted in Figure 1. Our
group and others have previously performed in silico
analyses of the P. aeruginosa transcriptional regulatory
network (27,30,31). Comparing those networks with the
network depicted in Figure 1 clearly demonstrates the gap
in knowledge between predicted networks and established
ones. An important contributing factor to this discrepancy
is the fact that the functions of the majority of the genes in
the PAO1 genome remain unknown. Deep sequencing,
transcriptome metaanalysis (32,33) and complementary
studies will aid in assigning functions to the hypothetical
genes and undoubtedly narrow this knowledge gap.
Cis regulatory elements (CREs) form a critical part

of transcription. CREs are non-coding DNA sequences

present in or near a gene, and they often contain
binding sites for transcription factors and/or other regu-
lators of transcription (34). The two major CREs are pro-
moters and enhancers (35,36). The promoters contain the
binding sites for transcription factors and other regulatory
molecules, such as s factors and regulatory RNAs
(37–39). Enhancers, once thought to be part of only eu-
karyotes, are found widely in prokaryotes also, and they
function in conjunction with the s54-RNA polymerase
(40–42). The known P. aeruginosa transcription factor
binding sites are listed in Table 1. This section will focus
on the transcriptional and post-transcriptional regulation
of critical pathways that determine P. aeruginosa
pathogenesis.

QS

QS is a signalling mechanism that bacteria use to regulate
gene expression in a population density-dependent
manner, and it was first demonstrated in Vibrio fischeri
(58). In QS, the bacteria produce and secrete small mol-
ecules called autoinducers or quoromones. When these
molecules reach a concentration threshold, they diffuse
back into the cell to elicit a coordinated response pro-
moting group survival (59). Pseudomonas aeruginosa uses
QS to regulate production of various virulence determin-
ants, such as extracellular proteases, iron chelators, efflux
pump expression, biofilm formation, motility and the
response to host immune signals (60). This is achieved
using two types of autoinducers, N-acyl-homoserine
lactones (AHLs) and 2-alkyl-4 quinolones (AQs) (61).

AHL-mediated QS
Pseudomonas aeruginosa has two canonical AHL QS
signalling pathways, the las and rhl systems. Together,
these pathways affect expression of �10% of the
P. aeruginosa transcriptome (62). The lasI (PA1432) and
rhlI (PA3476) genes encode the N-3-oxododecanoyl
homoserine lactone (3-oxo-C12-AHL) synthetase (63,64)
and N-butyrylhomoserine lactone (C4-AHL) synthetase,
respectively (65–68). The resulting AHLs then bind and
activate their cognate LuxR family regulators, LasR
(PA1430) (64) or RhlR (PA3477) (67). LasR and RhlR
multimerize in the presence of their cognate AHL (69,70).
In in vitro studies, LasR–DNA interaction is cooperative
and non-cooperative in the presence or absence of a dyad
symmetry in the binding sites, respectively (71).
Rhl-regulated promoters have binding sites with a dyad
symmetry (72).

AQ-mediated QS
Pseudomonas aeruginosa synthesizes two AQ QS signals,
2-heptyl-3-hydroxy-4-quinolone (PQS) and its precursor,
2-heptyl-4-quinolone (HHQ) (73). Both PQS and HHQ
enhance in vitro binding of the LysR-type transcription
regulator, MvfR (also known as PqsR, PA1003), to the
promoter of the pqsABCDE operon (PA0996–PA1000),
suggesting that they function as MvfR effectors (74).
Microarray analysis identified 141 genes differentially ex-
pressed in an mvfR mutant strain, including lasR, algT/U
(PA0762), rsmA (PA0905) and rsaL (PA1431) (75). PQS
also acts independently of MvfR to induce expression of
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the Fur regulon through its ability to bind iron (73,76) and
membrane vesicle formation by inducing membrane
curvature (77,78). PmpR (PA0964), a YebC member,
negatively regulates MvfR (Figure 1) (79).

QS regulation
The las, rhl and PQS/HHQ/MvfR systems exhibit positive
feed-forward autoregulation (52,80). In addition, the
P. aeruginosa AHL systems function in a hierarchical
manner, as the 3-oxo-C12-AHL-LasR complex positively
regulates rhlI, rhlR and mvfR expression as well as lasI
(81–83). Exceptions to this have been noted. RhlR has
been shown to regulate LasR-dependent genes in strains
lacking lasR (84), and timing of lasI, lasR, rhlI and rhlR
expression can vary drastically depending on growth con-
ditions (85).
Many global regulators have been shown to modulate

QS-dependent genes. RpoS (PA3622), the stationary
phase s factor affects �40% of the QS regulon (72,86).
RpoS binding sites have been identified in several of the
QS-dependent promoters. RpoS also affects lasR and rhlR
expression, and LasR binding sites have been identified in
promoters of other transcriptional regulators in the QS
regulon, including PA2588, PA4778, pvdS (PA2426),
vqsR (PA2591) and rsaL (87). Chromatin immunopre-
cipitation studies have shown occupancy by histone-like
silencers MvaT (PA4315) and MvaU (PA2667) on lasI,
lasR, mvfR, rpoS and rsaL (88). RsaL plays an important
role in las signalling homeostasis, by binding to the lasI
promoter and preventing LasR-mediated activation (89).
In addition to affecting gene expression through las regu-
lation, microarray analyses indicate that RsaL affects ex-
pression of 130 genes, including direct regulation of

pyocyanin and hydrogen cyanide genes (89). RsaL also
seems to be important in regulating the transition from
planktonic to a sessile state, as rsaL mutants exhibit
increased swarming motility and fail to form biofilms
(90). RsaL expression is under the control of LysR-type
regulator OxyR (PA5344) (91). The lasI promoter region
has also been shown to be bound by CzcR (PA2523),
which is required for expression of rhlI and rhlR in
addition to lasI (Figure 1) (92). CzcR is part of the
CzcRS TCS, which is shown to be involved in carbapenem
and heavy metal resistance (93).

VqsR (PA2591), which is induced by H2O2 or human
serum (94) and is under LasR regulation (95), regulates
QS through inhibition of the LuxR-type regulator, QscR
(PA1898, Figure 1) (96). Although QscR binds to 3-oxo-
C12-AHL, its specificity is not as stringent as LasR (97).
The QscR regulon partially overlaps that ascribed to the las
and rhl systems, but also has unique targets (98). In the
absence of AHL, QscR can multimerize and form hetero-
dimers with LasR and RhlR (99). QscR also plays a role in
LasI homeostasis, as mutations in qscR result in premature
lasI expression (100). An AraC family member VqsM
(PA2227) regulates VqsR in addition to numerous genes
involved in QS, including RsaL, PprB (PA4296), MvfR,
RpoS as well as AlgT/U and MexR (PA0424) (101).

Additionally, pqsH (PA2587), which encodes the
enzyme responsible for oxidation of HHQ to form PQS,
is positively regulated by the las system (102,103) and is
negatively regulated by the rhl system (52). PQS is derived
from anthranilate, which is synthesized by the kynurenine
pathway (104). Kynurenine pathway anthranilate is also
required for N-decanoyl-homoserine lactone (C10-AHL)
dependent signalling, which is independent of las, rhl and

Figure 1. Continued
synthesis of PQS, is a key regulatory molecule of the PQS signalling system in P. aeruginosa, which is involved in expression of QS-regulated
virulence factors. Details on the individual interactions and the appropriate references can be found in the text. Some of the interactions labelled as
indirect are regulated by unknown mechanisms and warrant further investigation. In the figure, some regulators and phenotypes have been men-
tioned more than once.

Table 1. Cis regulatory elements in P. aeruginosa transcriptional regulation

Transcription factor Cis regulatory element Major virulence phenotype regulated Reference

AlgR ACCGTTCGTC Alginate production, biofilm formation, T3SS (43)
AlgZ GGCCATTACCAGCC Alginate production (44)
Anr TTGATN4ATCAA Anaerobic regulator of QS (45)
ArgR TGTCGCN8AA Carbon and nitrogen catabolism (46)
ExsA TNAAAANA T3SS (47)
FleQ Box 1: CGCCTAAAAATTGACAGTT Motility, biofilm formation (48)

Box 2: CATTAGATTGACGTTAATC
Fur GATAATGATAATCATTATC Iron uptake (49)
LasR (las box) NHCTRNSNNDHNDKNNAGNB QS (50)
MexT ATCAN5GTCGATN4ACYAT Antibiotic resistance, T3SS, QS (51)
MvfR TTCGGACTCCGAA QS (52)
PsrA G/CAAACN2-4GTTTG/C Stress regulon (RpoS), T3SS (53)
RcsBa TTA-GAAACGTCCTAAA Fimbriae (54)
RhlR (lux box) CCTGTGAAT/ATCC/TGGT/CAGTT QS (55)
Vfr AATTGACTAATCGTTCACATTTG QS (56)
VqsR TCGCCN8GGCGA QS (57)

H=C/T/A; R=A/G; S=C/G; D=G/A/T; K=G/T; B=C/G/T; N=A/C/G/T.
aRcsB is found only in P. aeruginosa PA14, not in P. aeruginosa PAO1.
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qscR (104). The receptor for this signalling is yet to be
identified (105). Besides potential heterodimerization
with QscR, additional post-transcriptional regulation of
QS has been described. In one such mechanism, QteE
(PA2593) destabilizes LasR and RhlR, and in the
absence of qteE, the quorum threshold-requirement for
activation of QS-dependent genes is lost (106). RsmA
negatively regulates rhl and las signalling, resulting in
reduced AHL levels (107). Moreover, it has been shown
the RNA chaperone Hfq (PA4944) positively regulates
rhlI translation through rsmY and RsmA (108).

Recently, our laboratory has established a role for the
ß-lactamase regulator AmpR (PA4109) in activating
QS-regulated genes (23). The production of QS-regulated
secreted virulence factors, such as LasA (PA1871) and
LasB (PA3724) proteases, and pyocyanin production
is significantly impaired in AmpR-deficient strains.
Further, loss of ampR reduced virulence in the
Caenorhabditis elegans toxicity assay (23,109). In
addition, AmpR regulates non–ß-lactam resistance by re-
pressing activity of the MexEF–OprN (PA2493–PA2495)
efflux pump, the alginate master regulator AlgT/U (110)
and biofilm formation (23), suggesting that it plays a role
in maintaining the acute mode of infection.

TCS

TCS are sophisticated signalling mechanisms marked by
a highly modular design that have been adapted and
integrated into a wide variety of cellular signalling
circuits. The archetypical TCS is composed of a
membrane integrated sensory histidine kinase (HK) and
a cytoplasmic response regulator (RR) (111). The HK
contains a periplasmic N-terminal domain that detects
specific stimuli (sensing domain) and a C-terminal cyto-
plasmic transmitter domain that comprises a dimerization
domain, a conserved histidine and an adenosine triphos-
phate catalytic domain (112). HKs can have two or more
transmembrane domains with little or no periplasmic
domain, whereas others are completely cytoplasmic. The
cognate RR contains a conserved receiver domain and
a variable output domain (113). On receiving a signal,
two HK monomers dimerize and cross-phosphorylate
at the conserved histidine residue, and the phosphate
is subsequently transferred to an aspartate residue in
the receiver domain of the cognate RR (114). The
phosphotransfer is catalysed by the receiver domain, and
it results in a conformational change that activates the
output domain, which often binds DNA and modulates
gene expression or enzymatic activity (9,113,115).
Variations to this model occur in phosphorelays, where
a sensor kinase first transfers the phosphoryl group to
an RR that has no output domain. This P�RR then trans-
fers the phosphoryl group to a histidine-containing
phosphotransfer protein, and this in turn serves as a phos-
phate donor to a terminal RR, which has an output
domain mediating a cellular response (10). In other
cases, the sensor kinase and the RR lacking an output
domain are fused into one protein (hybrid sensor kinase)
(116). Other variations include the TCS connectors, a
group of proteins that modulate the phosphorylation

state and activity of sensor HK and RR and establish
regulatory links between otherwise independent signal
transduction pathways (117).
Pseudomonas aeruginosa, equipped with 55 HKs, 89 RRs

and 14HK–RRhybrids, possesses one of the largest pool of
TCS proteins identified in any microorganism analysed
thus far (24). This provides the bacterium with a
sophisticated capability to regulate diverse metabolic adap-
tations, virulence and antibiotic resistance processes that
are hallmark of P. aeruginosa infections. One of the
critical TCSs is GacSA (GacS-PA0928, GacA-PA2586),
which is central to expression of virulence factors, second-
ary metabolites, biofilm formation and QS (107,118) and is
the switch between acute and chronic infections (1,119).
GacS is a hybrid sensor HK that contains an HK
domain, an RR domain and a histidine phosphotransfer
(Hpt) domain (21,120). GacS phosphorylation is under
the control of two hybrid sensor kinases, RetS (PA4856)
(21) and LadS (PA3974) (22) (Figure 1). RetS can directly
interact with GacS and prevent GacS phosphorylation
(22,121), whereas LadS phosphorylates GacS (22).
Phosphorylated GacA positively regulates the transcrip-
tion of two small regulatory RNAs, rgRsmZ (PA3621.1)
and rgRsmY (PA0527.1), which block the negative regula-
tor RNA-binding protein RsmA (PA0905). RsmA posi-
tively regulates genes of the Type 3 secretion system, type
IV pili formation and iron homeostasis while repressing
QS, Type 6 secretion and potentially other transcription
factors (122–124). The GacSA TCS is also involved in
antibiotic resistance to three different families of antibi-
otics, tobramycin, ciprofloxacin and tetracycline (125),
apparently through RsmA/rgRsmZ.
In P. aeruginosa, PhoPQ (PA1179–PA1180) together

with PmrAB (PA4776–PA4777) are two TCSs that
respond to limiting concentrations of cations, and
regulate resistance to polymyxin B and cationic antimicro-
bial peptides through the regulation of the arnBCADTEF-
pmrE (PA3552–PA3559) LPS modification operon
(126,127). PhoQ is involved in swarming and twitching
motility as well as in biofilm formation and is required
for virulence without affecting the T3SS or QS systems
(Figure 1) (128). The HK PhoQ activates the RR PmrA
independently of PmrB, suggesting an interaction between
these TCSs (129). In addition, increased resistance to
antibiotics, including polymyxin B, aminoglycosides and
quinolones in phoQ mutants suggests crosstalk between
PhoPQ and other TCSs (130,131).

Formation of biofilms

Biofilms are surface-associated multicellular bacterial
communities encapsulated in a self-produced extracellular
matrix composed of polysaccharides, proteins and nucleic
acids that mediate cell-to-cell and cell-to-surface inter-
actions (132). Pseudomonas aeruginosa biofilms, typically
associated with poor patient prognosis, signify the switch
from an acute to a chronic infection. Biofilms can be
formed on abiotic (environment) or biotic (wounds,
surgical implants, CF lung) surfaces (133). Biofilm forma-
tion and maintenance is tightly regulated in response to
environmental cues, conferring enhanced resistance
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against antimicrobial agents and immune defence mech-
anisms on the biofilm bacteria (12). Formation of biofilms
is a multi-stage process that is initiated by the surface at-
tachment of planktonic bacteria to form a monolayer,
clonal growth/aggregation leading to the formation of
microcolonies, maturation to form mushroom-shaped
structures and dispersal (134–136). As can be imagined,
this complex transition in the bacterial lifestyle is
accompanied by drastic changes in gene regulation.
Surface attachment by P. aeruginosa to form micro-

colonies has been attributed to type IV pili, flagella, free
DNA, alginate and Pel and Psl polysaccharides, although
pili, alginate and flagella mutants also form biofilms
(136,137). Attachment is a reversible process, and the com-
mitment to form biofilms is partly under positive SadB
(PA5346) regulation (138). SadB upregulates both Pel
polysaccharide production and the chemotaxis-like
cluster CheIV (PA0408–PA0417), which is thought to
regulate flagellar motion by an unknown mechanism (139).
The Cup fimbriae, encoded by three distinct gene clusters

cupA (PA2128–PA2133), cupB (PA4081–PA4086) and
cupC (PA0992, PA0993, PA0994) in P. aeruginosa PAO1,
have been demonstrated to play a role in different stages
of biofilm formation on biotic and abiotic surfaces (140).
Regulation of the cup genes is complex, involving a phase
variation-dependent repression of cupA expression by an
H-NS member MvaT (141,142). MvaT also regulates the
cupB and cupC loci to a lesser extent (141). The cupB
and cupC clusters are under the primary regulation of
the RocS1–RocR–RocA1 (PA3946–PA3948) three-
component system (143). This system is similar to the
Bordetella pertussis BvgASR system (144) and consists of
the hybrid sensor kinase RocS1, the response regulator
RocA1 and the RocA1-repressor RocR (143,145). RocR
has been hypothesized to bind to c-di-GMP through its
EAL (diguanylate phosphodiestrerase) domain and
prevents phosphotransfer from RocS1 to RocA1, thus pre-
venting RocA1 activation (143,145). Pseudomonas
aeruginosa PA14 has a fourth cup cluster (cupD) on the
pathogenicity island PAPI-I, which is controlled positively
by the response regulator RcsB (PA4080) and negatively by
the EAL-domain containing response regulator PvrR
(146). In addition, diguanylate cyclases and phospho-
diesterases of the wsp gene cluster (PA3702–PA3708)
(147,148) MorA (PA4601) (149) and TpbA–TpbB
(PA3885, PA1120) (150) modulate intracellular levels of
c-di-GMP to exert a regulatory effect on the cup gene
clusters (Figure 1).
The main components of the extracellular polymeric

substance matrix of biofilms are Pel and Psl polysacchar-
ides, alginate and free DNA (12,136). Both pel and psl
gene loci are post-transcriptionally regulated by the
RetS–LadS (PA4856 and PA3974, respectively) system
through rsmY and rzmZ (21,22,121) and by c-di-GMP
levels, either directly (147) or by binding the transcrip-
tional regulator FleQ (PA1097) (151). The pel operon is
also repressed by the las QS system through the tyrosine
phosphatase TpbA (PA3885) (150). A membrane-bound
sensor, PpyR (PA2663) enhances biofilm formation
through the psl operon and virulence through modulating
QS (152). Although alginate is a major component of

biofilms and affects biofilm structure, it is not essential
for biofilm formation (136). Alginate regulation is dis-
cussed in a separate section (see later in the text). QS regu-
lates cell lysis in biofilms (153–155), thereby controlling
the release of extracellular DNA, a major component of
the biofilm matrix (156,157). The QS system also regulates
rhamnolipid production (67) that promotes motility and,
hence, formation of the cap in the mushroom structure of
mature biofilms (158), and maintenance of biofilm
channels (159). BfiRS (PA4196–PA4197), BfmRS
(PA4101–PA4102) and MifR (PA5511) are TCSs shown
to regulate biofilm development and maturation by se-
quential phosphorylation (160). They activate biofilm for-
mation at different transition stages, reversible to
irreversible attachment (BfiRS), irreversible attachment
to maturation stage-1 (BfmRS) and maturation stage-1
to mushroom structure formation (MifR) (Figure 1)
(160). The BfiRS system may function in conjunction
with the GacSA TCS and feed into the Rsm loop of regu-
lation to control biofilm formation (160). SagS (PA2824),
the cognate sensor of HptB (PA3345), modulates biofilm
development (by controlling BifS phosphorylation) and
other virulence phenotypes (by modulating rgsRmZ
levels) depending on whether the cells are in the plank-
tonic or biofilm phase (161).

Analyses of clinical isolates reveal a positive correlation
between expression of lasR, rhlR and acute virulence
factors (162,163), suggesting that QS is required for viru-
lence in vivo. QS is also important when P. aeruginosa
grows as biofilms in the CF lung (164). In vivo studies
show that lasI and rhlI mutants produce milder chronic
lung infections compared with their wild-type counter-
parts (165) and form more susceptible biofilms (166).
However, in some in vitro studies, there was no apparent
difference in the biofilms formed by the QS mutants and
the wild-type strains (167,168). This discrepancy in the
requirement of QS for biofilm formation and establish-
ment of a successful chronic infection is probably not
surprising, as QS regulates many different functions.
Further, it has been demonstrated that the CF environ-
ment selects for strains with lasR mutations, although the
rhl system is intact (169). Although lasR is higher up in the
QS hierarchy, studies have shown that secondary muta-
tions can re-establish rhl expression in las mutants (170).
This suggests that in CF biofilms, the rhl system is more
important, and lasR inactivation serves to downregulate
the acute virulence factors (171).

A major cause of antibiotic resistance in biofilms has
recently been attributed to the phenomenon of persistence.
Persister cells are small subpopulations of antibiotic-
sensitive cells that have acquired transient antibiotic toler-
ance (172). When the antibiotic levels drop, the persisters
grow into a population of sensitive cells, again with a
small sub-population of persisters (173,174). Many
genes involved in the formation of persisters have been
identified in P. aeruginosa PA14, including two transcrip-
tional regulators AlgR (PA5261) and PilH (PA0409)
(175). However, this topic is outside the scope of this
review but has been extensively reviewed elsewhere
(176,177).
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Alginate production

In the lungs, especially in patients with CF, P. aeruginosa
can convert from a non-mucoid to an alginate-
overproducing mucoid phenotype signalling chronic infec-
tion (178). Chronic P. aeruginosa infection seems to be
localized to foci within the anaerobic mucus environment
in the lung’s respiratory zone (179–182). These foci lead to
tissue damage decreasing lung function, and the appear-
ance of the mucoid phenotype correlates with poor patient
prognosis (183,184). The exopolysaccharide alginate is a
linear polymer of b-D-mannuronic acid and a-L-guluronic
acid (185), which stimulates production of IgG and IgA
antibodies (186). Although production of alginate is meta-
bolically taxing, it protects the bacteria from phagocytosis
and antibodies, thus conferring a survival advantage
(187,188). Conversion to mucoidy occurs when biofilms
are treated with activated polymorphonuclear leucocytes
(189), hydrogen peroxide (189), antibiotics (190) and
nutrient starvation (191,192).

A complex regulatory pathway controls alginate biosyn-
thesis. The central player is the sE family extracytoplasmic
function s factor AlgT/U (PA0762) (193,194), whose
activity is inhibited post-transcriptionally by the anti-s
factor MucA (PA0763) and by MucB (PA0764) (195–
197). Loss of function mutations in mucA or mucB result
in a mucoid phenotype (195,198,199) because of release of
AlgT/U from MucA by a regulated intramembrane pro-
teolytic pathway [reviewed in (200,201)]. It was recently
demonstrated that MucA proteolysis is regulated not
only by AlgW (PA4446) but also by MucD (PA0766) by
activating the MucP protease (PA3649) (202). In addition,
AmpR links alginate production with antibiotic resistance
and QS by negatively regulating algT/U expression
(Figure 1) (110). AlgT/U regulates alginate production
at least in part by autoregulation (193), controlling expres-
sion of the transcriptional regulators algR (203,204), algB
(198,204), amrZ (205) and the algD (PA3540) alginate
biosynthetic operon (204,206,207). AlgB (208), AlgR
(43,209,210) and AmrZ (211) directly bind to the algD
operon to activate transcription. The alternative s factor
RpoN (PA4462) is also required for high levels of algT/U
and algD expression (212).

The algB (PA5483) and algR (PA5261) genes encode
NtrC and LytR subfamily, respectively, of TCS RRs
(213). Interestingly, aspartic acid phosphorylation in the
regulatory domain is not essential for alginate production
(214). Transcriptome analysis of a PAOmucA22 mucoid
strain (PDO300) (196) identified seven predicted transcrip-
tional regulators, PA1235, PA1261, PA1637 (KdpE),
PA2881, PA3420, PA3771 and PA5431, and one sensor
kinase, EraS (PA1979), whose expression was down-
regulated in an algB mutant but not in a strain containing
a mutation in its cognate TCS sensor, KinB (PA5484)
(208). In addition to regulating the algD operon, AlgR
directly activates transcription of algC (PA5322), which
encodes a phosphomannomutase/phosphoglucomutase
essential for Psl, alginate and rhamnolipid synthesis
(Figure 1) (215–218). AlgR also is important for mature
biofilm formation, possibly by directly repressing rhl-QS
(219), type IV pilus formation by binding to the

fimTU–pilVWXY1Y2E promoter (220,221) and hydrogen
cyanide production by binding to the hcnA (PA2193)
promoter (222). Interestingly, in contrast to alginate pro-
duction, the phosphorylation site is required for regulating
cyanide production and twitching motility (220,223).
AlgR has also been shown to indirectly regulate the
cyclic AMP/Vfr-dependent pathway (224). The AlgR
regulon has been characterized by several transcriptome
studies (219,222,225). Two other regulators of alginate
production in P. aeruginosa are Alg44 (PA3542) (226)
and a diguanylate cyclase, MucR (PA1727) (227). MucR
produces a pool of c-di-GMP in the vicinity of the PilZ
domain of Alg44 (PA3542), which then positively regu-
lates alginate production (Figure 1) (226–228).

Regulation of iron uptake

Iron is critical for growth of all organisms, and
P. aeruginosa is no exception. Transcriptome studies
reveal that a large number of genes are regulated in
response to iron (229,230). Biologically useful iron
(Fe2+) in the environment is scarce and is available
mostly in the insoluble Fe3+ form. To help scavenge this
free iron, bacteria produce siderophores that bind extra-
cellular iron and transport them back into the cell through
TonB-dependent receptors on the cell surface (231).
Pseudomonas aeruginosa produces two siderophores,
pyoverdine and pyochelin, and can also subvert sidero-
phores produced by other organisms to take up haem
(232,233). However, excess free iron in the cell leads to
formation of toxic reactive oxygen species, and, therefore,
cells tightly regulate the uptake (234). The ferric uptake
regulator (Fur, PA4769) is a conserved protein in
P. aeruginosa and other Gram-negative bacteria, and it
is a major iron acquisition regulator (235). Fur dimerizes
rapidly after synthesis, and it takes a minimum of two
dimers to bind promoters of genes under Fur regulation
in P. aeruginosa (236). Fur controls the iron regulon
directly by binding the Fur box (237) and indirectly by
modulating expression of other regulators, including the
pyochelin uptake regulator PchR (PA4227), ECF s
factors like PvdS, TCS regulators and small regulatory
RNAs [asPrrF1 (PA4704.1), asPrrF2 (PA4704.2);
Figure 1] (237–239).
Iron concentrations in the cell also influence expression

of virulence factors in P. aeruginosa. PvdS, for example, is
critical in linking iron and virulence by controlling the
production of pyoverdine, an outer membrane pyoverdine
receptor [FpvA (PA2398)] and two important extracellular
virulence factors [PrpL (PA4175) and exotoxin A
(PA1148); Figure 1] (240–242). Also, pvdS mutants
showed reduced virulence in a rabbit endocarditis model
(243). Human lactoferrin inhibits P. aeruginosa biofilm
formation, indicating a role for iron in the process (244).
Iron chelation by lactoferrin induces twitching motility in
P. aeruginosa negating colonization and ultimately,
biofilm formation (244,245). Intracellular iron concentra-
tions are one of the signals for biofilm development in a
process involving Fur but not the iron uptake regulatory
RNAs asPrrF1 and asPrrF2 (246). Further, high levels of
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iron suppress the PQS system, release of extracellular
DNA and biofilm formation (247).
The link between iron and QS systems in P. aeruginosa

is complex. QS systems are enhanced under limiting iron
concentrations (85,248,249), and major QS regulators are
also involved in regulating iron responsive genes
(75,250,251). MvfR, for example, has been demonstrated
to control transcription of iron-related genes, and it has an
iron-starvation box in its promoter, a site recognized by
PvdS (PA2426) to turn on transcription under low-iron
concentrations (229,252). It was recently demonstrated
that iron levels affect activity of the MvfR signalling
molecule HAQ, adding another layer of complexity to
the role of iron in QS (253). Another major QS and viru-
lence regulator, VqsR regulates phenazine production by
modulating phnAB expression (94). Moreover, the small
regulatory RNAs asPrrF1 and asPrrF2, which are nega-
tively regulated by Fur, positively regulate PQS produc-
tion (Figure 1) (254). PQS has been shown to accumulate
in the outer membrane and in membrane vesicles (77).
PQS chelates iron, and this facilitates pyochelin and
pyoverdin in scavenging iron (73,76).
Thus, iron uptake regulation in P. aeruginosa is a

complex affair and involves multiple regulators that
affect expression of numerous genes either by themselves
or through other regulators. In addition, the interconnec-
tions between iron uptake mechanisms and other virulence
systems, such as QS and biofilm formation, demonstrate
the versatility of this bacterium in being able to pragmat-
ically read environmental signals to accordingly modulate
gene expression.

Toxins and exoproteins

Exoproteins are an important component of bacterial
survival not only because they allow the bacteria to
interact with their immediate environment and other or-
ganisms in the vicinity but also because they play a critical
role in virulence. P. aeruginosa has a large complement of
secreted proteins and five (type I, II, III, V and VI) of the
seven secretion systems characterized in bacteria (255).
A majority of the secreted proteins are toxins that aid in
P. aeruginosa virulence, most of which, including LasA,
LasB, PrpL, ToxA and phospholipases [PlcH (PA0844),
PlcN (PA3319), PlcB (PA0026)], is secreted through the
Xcp type II secretion system (T2SS) (255). Effector mol-
ecules that are crucial for evading the host phagocytic
response are secreted through a dedicated T3SS (256),
whereas the type I system (T1SS) secretes the alkaline
protease AprA (257,258) and the haemophore HasAp
(PA3407) (259). Substrates of the recently identified
T6SS are just being discovered (260). In addition,
c-di-GMP levels, modulated by the diguanylate cyclase
WspR (PA3702) is involved in the switch between T3SS
and T6SS independent of RetS but is dependent on
rgRsmY and rgRsmZ (Figure 1) (261).
HasAp, a T1SS-secreted haem-uptake protein in

P. aeruginosa, is under QS control (250). QS is also
known to regulate PrpL that targets the human lactoferrin
(see previous section) (240). Thus, QS in P. aeruginosa not
only regulates enzymes to degrade the human lactoferrin

but also produces proteins to retrieve the iron from the
degraded lactoferrin. The other known T1SS substrate,
AprA, is regulated by a novel LTTR named BexR
(PA2432) that controls bistability in P. aeruginosa
(Figure 1) (262). Inactivation of QS has been
demonstrated to reduce expression of T2SS-secreted pro-
teases, chitinases and lipases (63,263) because of
downregulation of the Xcp T2SS (264,265). The TCS
PhoBR (PA5360–PA5361) regulates other T2SS-secreted
exoproteins, such as PlcH, PlcC, PlcN and the Hxc T2SS
secreted alkaline phosphatase LapA (266,267).
Microarray analysis revealed that a novel cell-surface
signalling system PUMA3 regulates Hxc T2SS genes
(268). The three T6SS systems (HSI-I, HSI-II and
HSI-III) in P. aeruginosa are differentially regulated by
the QS systems (269). Although LasR and MvfR nega-
tively regulate the HSI-I system, they positively regulate
expression of the functionally redundant HSI-II and
HSI-III (Figure 1) (269). In addition, a putative regulator
Sfa3 (SfnR) in P. aeruginosa PA14 (an orthologue of
PA2359 in PAO1) potentially regulates the HSI-III
cluster (269). HSI-I expression is also regulated by RetS
through RsmA (270).

Pseudomonas aeruginosa T3SS is regulated in a complex
and multi-tiered process, and it is probably the most well
understood (271). Expression of T3SS is regulated tran-
scriptionally and post-transcriptionally in response to host
cell contact and environmental Ca2+ levels (272,273).
ExsA (PA1713), an AraC member, regulates expression
of the 43 genes that form the T3SS in P. aeruginosa by
binding as a monomer to an A-rich 8-bp region upstream
of the �35 in the promoter of genes under its regulation
(272,47). ExsA autoregulates its own expression and is
also activated by PsrA (PA3006), a member of the TetR
family (274,275). Two anti-activators [ExsD (PA1714) and
PtrA (PA2808)] also regulate ExsA-mediated activation
(Figure 1). T3SS transcription is coupled to secretion
and involves the anti-activator ExsD and the anti–anti-
activator ExsC (PA1710) that regulate ExsA function.
Under non-inducing conditions (high Ca2+), ExsE
(PA1711) binds the anti–anti-activator ExsC, allowing
the anti-activator ExsD to bind ExsA and inhibit tran-
scription. Under Ca2+ delimiting conditions, ExsE is
secreted, freeing ExsC to bind ExsD. Free ExsA then ac-
tivates T3SS expression (Figure 1) (276). Although this is
the primary mode of control, T3SS can also be triggered
by stress because of DNA damage (RecA-mediated acti-
vation of PtrB) (277), high salt (278,279), metabolic stress
(123,279,280), alginate regulators AlgT/U, AlgR and
MucA (281), the MexEF–OprN efflux pump regulator
MexT (PA2492) through PtrC (282) and the RetS/LadS/
Gac-Rsm TCSs (21,22,283). Under low oxygen condi-
tions, the anaerobic regulator Anr activates the response
regulator NarL (PA3879), which in turn represses
rgRsmY and rgRsmZ expression, allowing RsmA to
activate T3SS (284). Expression of T3SS, however,
happens only in a subset of the population even under
inducing conditions (279,285). Multiple levels of control
allow fine-tuning of T3SS expression, allowing
P. aeruginosa to sense various environmental conditions
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and regulate expression in conjunction with other viru-
lence factors.

Regulatory RNAs in P. aeruginosa virulence

RNAs other than messenger RNAs, transfer RNAs or
ribosomal RNAs are termed small RNAs (sRNAs), and
they affect all steps in gene expression pathways in both
prokaryotes and eukaryotes (286). In general, sRNA-
mediated regulation occurs in one of two ways, base
pairing with DNA or mRNA, or by affecting the
activity of a protein or protein complex (286). Not sur-
prisingly, virulence gene expression in P. aeruginosa also
relies on small rgRNA-mediated post-transcriptional
regulation. The importance of rgRNAs in regulation of
bacterial virulence is well established (39,287,288). Most
of the P. aeruginosa rgRNAs that have been characterized
play a role in virulence gene regulation (discussed later in
the text). A recent study identified �150 novel sRNAs
using sRNA-Seq in P. aeruginosa PAO1 and PA14,
which includes both strain-specific and shared ones (289).

Perhaps the most well characterized system involves the
rgRNAs, rgRsmY and rgRsmZ (whose roles in virulence
regulation have been discussed in the ‘TCS’ and ‘Toxins
and Exoproteins’ sections). These are two functionally re-
dundant rgRNAs in P. aeruginosa that play a critical role
in the switch between acute and chronic infections
(21,290). GacA of the GacSA TCS positively regulates
expression of rgRsmY and rgRsmZ, which then bind to
and sequester the sRNA-binding protein RsmA through
the GGA motif (291–293), leading to derepression of the
genes that RsmA represses (107,124,294,295). The conse-
quences of RsmA sequestration result in dysregulation of
the expression of numerous virulence factors, as discussed
in the ‘TCS’ section. Given the importance of this regula-
tory process in P. aeruginosa pathogenesis, regulation of
expression of rgRsmY and rgRsmZ is multi-tiered. The
histidine phosphotransfer protein HptB is phosphorylated
by a phosphorelay involving the three sensor kinases
PA2824, PA1611 and PA1976 (296). Phosphorylated
HptB then transfers the phosphate to an anti–anti-s
factor PA3374, to negatively regulate expression of rsmY
(296,297). In another mode of regulation, the BfiSR TCS
activates expression of the ribonuclease CafA (PA4477),
which specifically targets rgRsmZ (298). Further regula-
tion is achieved by the global regulators of the H-NS
family of proteins MvaT and MvaU, which bind to
AT-rich regions upstream of the rsmZ gene repressing
their expression (299). In addition to all this, there is a
negative autoregulatory feedback mechanism, the details
of which have not been elucidated yet (300). On synthesis,
rgRsmY is stabilized by Hfq binding, either alone or in
conjunction with RsmA (108,301).

Another example of post-transcriptional regulation by
sequestering a RNA-binding protein links virulence with
metabolism. Pseudomonas aeruginosa Crc (PA5332) is a
RNA-binding protein that recognizes CA-motifs around
the ribosome binding sites of the mRNA of carbon
compound catabolism genes. Crc thus represses genes
whose products help utilize less preferred carbon sources
(302–304). When less preferred substrates, such as

mannitol, have to be utilized, expression of catabolic
genes is achieved by sequestration of Crc by the rgRNA,
rgCrcZ (305). Expression of rgCrcZ is under the control of
the TCS CbrAB (PA4725–PA4726), which in conjunction
with Crc plays a role in carbon compound catabolism,
biofilm formation, antibiotic resistance, secretion systems
and swarming (306–312).
Pseudomonas aeruginosa antisense sRNAs (asRNAs)

can also act by base pairing with target mRNAs, thus
inhibiting translation (313). One such example is asPhrS
(PA3305.1), which plays a role in PQS and pyocyanin
expression (314). Transcriptome studies indicate an exten-
sive overlap between the genes that are positively regu-
lated by the transcriptional regulator PqsR (also known
as MvfR, PA1003) and asPhrS, suggesting that asPhrS
regulates pqsR mRNA (75,314). Interestingly, it was
shown that asPhrS specifically targets a region in the
RBS of a small ORF (uof), which is present upstream of
PqsR (314). As translation of pqsR and uof are coupled,
asPhrS regulates pqsR translation by modulating transla-
tion of uof (314). Expression of asPhrS is under the control
of the oxygen responsive regulator Anr (314). Hfq
controls asPhrS expression indirectly by regulating Anr
expression, whose mechanism of action is yet to be
elucidated (314,315).
Small asRNAs also play a role in regulation of iron

uptake and involve base pairing by the sRNAs asPrrF1
and asPrrF2, which are the P. aeruginosa orthologues
of E. coli RyhB (237,316). Expression of asPrrF1 and
asPrrF2 is repressed by Fur when iron concentrations
are high (237). Under iron-starvation conditions,
asPrrF1 and asPrrF2 are expressed and base pair with
the mRNA of target genes, which include the superoxide
dismutase sodB (PA4366), genes involved in the trichloro-
acetic acid cycle and anthranilate and cathechol degrad-
ation (317). Thus, asPrrF1 and asPrrF2 link carbon
metabolism, iron uptake and QS-mediated virulence.
Another asRNA gene asPrrH is located in the same
locus as asPrrF1 and asPrrF2. The asPrrH asRNA (at
325 nt) is longer than asPrrF1 (116 nt) and asPrrF2
(114 nt), and the coding region of asPrrH overlaps with
the asPrrF1 terminator, the intergenic region between
asPrrF1 and asPrrF2 and the 50-end of the asPrrF2
ORF (318). The expression of asPrrH is maximal in the
stationary phase of growth, similar to asPrrF1 and
asPrrF2, and under iron-deplete conditions (318). Haem
represses asPrrH expression, and this involves the outer
membrane haem receptors PhuR (PA4710) and HasR
(PA3408) (318). Interestingly, under conditions of haem
starvation, asPrrH expression leads to the repression of
achAB and sdhCDAB, which are also targets of the PrrF
asRNAs (318). In addition to these targets, asPrrH also
represses NirL, a protein involved in biosynthesis of haem,
under haem and iron limitation (318).

CONCLUSIONS AND PERSPECTIVES

Pseudomonas aeruginosa is a versatile bacterium that can
thrive in a wide range of habitats. This is achieved by
an intricately interlinked regulatory system of transcrip-
tional regulators, s factors, sRNAs and their regulons.
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The exquisite control of gene expression is exemplified in
the virulence regulatory network (Figure 1), which dem-
onstrates that none of the virulence mechanisms are
isolated. Expression of individual virulence networks is
under transcriptional and post-transcriptional regulation
of multiple-regulatory systems, either directly or indir-
ectly. Furthermore, some signalling cascades inversely
regulate the acute and chronic virulence phenotypes de-
pending on the signals sensed. The next critical phase of
research should focus on the signals that the bacteria rec-
ognizes to achieve gene regulation.
The extent of cross-regulation between the transcrip-

tional regulators highlights the global nature of the regu-
lation, where individual subnetworks (such as the QS
network, alginate network and so forth) are interlinked
to form a hyperconnected network (Figure 1). Given the
complexity of the connections, one can expect the
response of a cell to be elaborate even when faced with
a simple stress condition. A fundamental point in a
network setting is that one should evaluate the role of
individual players (such as a regulator) not in isolation,
but with the knowledge that the entire network will react
to what it does. In other words, local changes can have
global effects. This, in turn, results in subtle cause–effect
relationships. Studying the functions of a regulator
by generating deletion or overexpression strains is often
performed under the assumption that other regulators
will remain static. In reality, however, such modifications
can lead to aberrant changes across the network in ways
that were initially unintended. Moreover, there is a possi-
bility that such changes can occur because the network
connections might not always be obvious. This can be
attributed, in part, to as yet uneludicated implicit
players in the network that dictate or otherwise influence
cellular response. This is a likely explanation for the
many ‘global’ regulators in P. aeruginosa and in similar
bacteria that have complex regulatory networks. In such
cases, many of the phenotypes observed with single regu-
lator mutant strains can be part of a ripple effect that
propagates through the network affecting disparate
phenotypes.
A simplified model of gene regulatory network treats

genes as being on or off, that is, taking binary values.
It is, therefore, no surprise that Boolean networks
(discrete dynamical network models) have been used to
model and study gene regulatory circuits (319–321).
Probabilistic Boolean networks, which take into account
molecular and genetic noise (322,323), and stochastic
Boolean networks, which permit the modelling of gene
perturbations (324), provide important insights into the
dynamical behaviour of the system. Although they are
computationally complex, they are a valuable addition
to the numerous other programs that are available to
analyse gene regulatory networks (31,325,326).
Dynamical systems theory helps us to analyse the

behaviour of complex systems that can frequently be
expressed by time-differential equations. When the behav-
iour of a dynamical system depends sensitively on small
changes in initial conditions, then the system is said to be
chaotic, that is, capable of exhibiting chaotic behaviour.
Researchers have investigated whether regulatory

networks can have subsystems that are capable of exhibit-
ing chaotic behaviour (327). It has been shown that
competition between two or more subnetworks of com-
parable importance can lead to chaos (328–330). In fact,
chaos has been shown to be possible in biochemical
systems with only two feedback loops, and positive
feedback is known to be necessary for chaotic behaviour
(331). So, one would expect chaotic subsystems in a regu-
latory network as complex as the one that controls
P. aeruginosa virulence (Figure 1). Despite of this predis-
position, gene regulatory networks seldom exhibit chaotic
behaviour. This could be because the competitions
between opposing nodes are not strong enough (332) or
that chaotic behaviours are short-lived because of trigger-
ing of other pathways, such as cell–cell communication
(333). Another possibility is that the natural random vari-
ability of biochemical systems masks the chaotic behav-
iour (332). However, maintaining a low level of chaos
in such a complex network is probably a combination
of the aforementioned and, potentially, as yet unknown
factors.

In gene regulatory networks, a particular dynamical
system is characterized by time-evolving variables
(chemical concentrations, gene expression and so forth)
and by parameters (temperature, ambient chemical con-
centrations and so forth). A network can exhibit chaotic
or non-chaotic behaviour depending on the parameters
that influence it (334). Environmental factors, such as
the temperature or the nutritional status of the cells, par-
ameterize the relationship between transcription factors
and the genes that they regulate. Although it is understood
that some choices of parameters can induce chaotic behav-
iours, the parameter may not even be achievable, such
as high temperatures (334). Mutations can also alter rela-
tionships in regulatory networks by causing changes in
existing links or forming new ones. In a dynamically
robust (non-chaotic) system, small finite changes in the
parameters lead to only qualitative changes in the dynam-
ical behaviour. However, there are boundaries in the par-
ameter space where the behaviour of the system changes
qualitatively and may include the possibility of chaotic
dynamics. Predicting whether a network will be stable or
chaos-prone under some conditions has been proven to be
difficult and remains poorly characterized. Recent work
has identified the minimum number, types and inter-
actions among three and four nodes/subnetworks that
can lead to chaos in a gene regulatory network (332).
Such minimal subnetworks have been termed ‘chaotic
motifs’, and networks with these motifs can exhibit
chaotic behaviour under the right parameters (332).
Analysis of the network in Figure 1 does not readily
show such chaotic motifs. This could be because the
network is incomplete (lack of data on the interactions
among the P. aeruginosa regulators) or because of errors
in the inferred interactions. Although P. aeruginosa viru-
lence regulation has been extensively studied, there is yet
much to learn. Thus, absence of empirical evidence does
not preclude a propensity to chaos and is worth further
investigation.

Depending on an elaborate network to achieve
gene regulation is likely an adaptive mechanism by
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P. aeruginosa. Possessing alternate pathways to regulate
the same phenotype ensures a rapid response to stimuli
even if one of the pathways is affected, thus enhancing
survival. Such examples can be seen throughout the
network. As discussed in the ‘Toxins and Exoproteins’
section, expression of T3SS genes can be regulated at
multiple levels, in response to various different signals
and stress conditions, and it is not entirely dependent
on any one signal. However, the extent of contributions
of the individual regulators and, consequently, the fine
balance that exists in some regulatory cascades within
the network, are sometimes not easily apparent.
Network dependence is also a probable reason for regula-
tor genes being non-essential, in the sense that deleting a
transcriptional regulator gene typically does not affect cell
viability because of the presence of alternate regulatory
mechanisms. Having key regulators modulate different
related phenotypes has the added advantage in allowing
the cells to adapt to external signals by modulating one
or a few regulators instead of individually regulating
different virulence systems. A case in point is AmpR
that positively regulates acute virulence factors while
downregulating chronic infection phenotypes (23). Also
of importance is the co-regulation of metabolism and viru-
lence. Studies have identified regulators like CbrB that,
with its cognate sensor CbrA, not only regulate carbon
metabolism but also virulence phenotypes through the
rgRNA, rgCrcZ and the RNA-binding protein Crc
(306,307). Moreover, there is crosstalk between CbrA
and regulators other than CbrB, highlighting the complex-
ity of the system (306).

The plethora of transcriptome studies using microarrays
or deep sequencing will add to the database of genes that
are differentially expressed in response to regulator muta-
tions or specific growth conditions. Differentiating the
direct effect of a change from a ripple effect can, at least
partly, be achieved by meta-analysis studies that look at
multiple transcriptomes, identifying effects unique to each
condition and differentiating them from the so-called
ripple (32,33). Network analyses can help us understand
the relationship between different regulators, group them
based on function and, more importantly, help identify
critical nodes and prominent players. This can serve as a
means of target identification in attempting to deal with
P. aeruginosa infections. In Figure 1, we see that some
parts of the network are more densely connected than
others, with central cores containing most of the links.
A case in point is LasR of the QS subnetwork. It is well
known that QS is central to virulence regulation in
P. aeruginosa and targeting key regulators will have a
better chance of therapeutic success. Recently, inhibitors
of a key QS regulator were shown to reduce pathogenicity
in Vibrio cholera (335).

With the extensive use of high-throughput tran-
scriptomics, gene regulation studies are now focusing on
the role of non-coding RNAs in bacteria. rgRNAs have
been shown to be extensively involved in gene regulation
in P. aeruginosa and other bacteria (124,237,299,305,314,
336). Techniques such as RNA-seq allow for the entire
transcriptome to be sequenced, giving us an unprece-
dented insight into non-coding RNAs, asRNAs and

sRNAs involved in regulation. Preliminary studies using
prediction software and complementary experiments have
already advanced our understanding (29,108,124,299,
314,337). Given the many different ways in which small
RNAs can modulate gene expression (313) and potentially
undiscovered ones, we can look forward to exciting new
discoveries in bacterial gene regulation in the coming
years.
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