

XBench [?] benchmark is an application oriented benchmark for XML databases.

Finally, the MemBer [?, ?] and the Michigan Benchmark (MBench) [?] are both

micro-benchmarks that generate synthetic workloads wherein document structure

can be finely controlled (varying their depth and fan-out) so as to be able to repro-

duce the access patterns of a variety of different real-world workloads.

This collection of well-accepted and standardized XML benchmarks demonstrate

(i) that XML document sizes can be fairly large running sometimes into tens of gi-

gabytes; this combined with the fact that XML parsers can consume as much as 5X

the amount of main memory during parsing as the original size of the XML docu-

ment [?] implies that secondary storage accesses must be optimized if at all possible,

and (ii) that the non deep-focused queries, form at least half of the total queries

suggested within these popular XML benchmarks ; this implies that optimizing ac-

cesses to the non-deep-focused query class is at least as important as optimizing for

the deep-focused class. Further, in the event that a workload generates both classes

of queries with similar frequency, the storage system could conceivably store data

using both the traditional approach and tree-based approach with the caveat that

this approach requires more consideration for write-dominant workloads that can

incur an unacceptable amount of overhead for maintaining consistency.

For evaluating our native layout proposals, we employ XPath queries [?] ob-

tained from the XPathMark benchmark for the evaluation. We examine the relative

performance of native layout against the default approach, which stores XML files

sequentially. To do so, we augmented an existing XML parsing engine to imple-

ment the grouping techniques that we propose. To evaluate disk I/O performance,

we use an instrumented DiskSim disk simulator [?] and replayed the block access

traces generated by XML query processing engines. Our evaluation also addresses

I/O performance in the presence of query parallelism as would be typical for server

13

environments. Summarizing, these experiments reveal that while the default sequen-

tial layout provides superior performance for the deep-focused class of XML queries

(or access patterns retrieving entire subtrees of tree-structured data), the proposed

native layout techniques outperform the default for all other query access patterns.

The rest of the Chapter is organized as follows. Section 2.2 presents the ar-

chitecture of a native tree-structured storage system and the model used for tree-

structured data and their access. In Section 2.3, we present native data-layout

strategies for tree-structured data on disk drives. In Section 2.4, we present strate-

gies for organizing and grouping nodes in the tree so that they can be mapped to disk

blocks. In Section 2.5 we conduct a theoretical analysis of the performance impact

of data layout. In Section 2.6, we evaluate the proposed approach for the case of

XML data by comparing it against the default sequential layout. We survey related

work in Section 2.7. We conclude and discuss future directions in Section 2.8.

2.2 System Architecture and Data Model

In this section, we propose an architecture for building a native tree-structured

storage system which allows the use of our layout techniques with minimal changes

to the current storage stack. We also present the tree-structured data and access

model abstractions.

2.2.1 Modifying the Storage Stack

Modern disk drives provide a high-level logical block abstraction to the operating

system, which does not export information about the physical data layout, per-

formance characteristics, and internal operation of the disk drive. We propose a

14

Application

Filesystem DB Engine

DB APIFS API

Storage Device(s)

Block I/O Interface
Device Driver

Storage Network

S
to

ra
ge

 S
ub

sy
st

em

(a) Current Stack

Application

Filesystem* DB Engine*

DB APIFS API

Storage Device(s)

Block I/O Interface
Device Driver

Storage Network

S
to

ra
ge

 S
ub

sy
st

em

SSS Engine
SSS Interface

Datapath
Non−SSS

(b) Proposed Stack

Figure 2.1: Storage stack modification.

modified storage stack inside the operating system that will facilitate native data

layout strategies by including mechanisms to effect low-level data layout.

The lowest levels of the current storage stack (shown in Figure 2.1(a)) form

the storage subsystem, which exports a logical block I/O interface. The dominant

storage mechanisms, i.e., databases and file systems, form the middle layer that

accesses data on the storage device(s) using the logical block interface while also

providing high-level APIs for applications. These storage mechanisms are optimized

for relational data and sequential files respectively.

The proposed storage stack (Figure 2.1(b)) builds a native Semi-Structured Stor-

age (SSS) engine on top of the block I/O interface to provide native storage and

access support for tree-structured data. The SSS engine employs disk profiling to

perform native data layout on a reserved contiguous area (partition) of the disk

drive. Storage access modules (File system, DB Engine, etc.) need to be mini-

mally modified to use the SSS interface in order to efficiently store and retrieve

tree-structured data, or bypass it for non-tree-structured data. We chose not to

build-in native support into an existing file system or existing DBMS, because we

15

believe that the SSS engine as well as its interface can be made generic enough to

work with any storage access module. Existing file and database systems can then

be extended with native layout support for tree-structured data via the SSS engine.

While the proposed approach call for significant changes to the operating system

storage management, it is important to point out that applications retain their orig-

inal interface to the operating system and remain transparent to the underlying

mechanisms.

root

Book [title =

“
XML Databases”,
 year=
2002
]

Chapter [title=

“
XML Introduction”
]

Chapter [title=

“
Semistructured Data”
]

Chapter [title=

“
Implementation

Issues”
]

Section [title=

“
Concurrency”
]

Section [title=

“Converting to

XML
”
]

Chapter [title=

“
Conclusions”
]

Chapter [title=

“
Overview”
]

Section [title=

“
Hard Disks”
]

Section [title=

“
Main Memory”
]

Section [title=

“
Conclusions”
]

Chapter [title=

“
Introduction”
]

Chapter [title=

“
XPath”
]

Chapter [title=

“Conclusions
 ”
]

Section [title=

“
Discussion”
]

Section [title=

“
Open Issues”
]

Book [title =

“
Storage Principles”,
 year=
2001
]

Book [title =

“
XML Queries”,
 year=
 2002
]

Figure 2.2: A sample tree-structured document.

2.2.2 Data and Access Model

Q

N

J

M

O P

A

I

K L R SGF

C D E H

B

1

2

3 5

6

7

4

Figure 2.3: Tree structure for the XML document in Figure 2.2.

16

We view a tree-structured document as a labeled tree T , where each node v

has a label λ(v), which is a tag name for non-leaf nodes and a value for leaf nodes.

Also, non-leaf nodes v have an optional set A(v) of attributes, where each attribute

a ∈ A(v) has a name and a value. Note that our layout technique can also be applied

to documents with cycles (e.g., ID-IDREF edges for XML documents); however, the

navigation on such edges has not been optimized.

Figure 2.2 shows an example of a tree-structured document (in this case an XML

document) and Figure 2.3 shows the corresponding tree structure.

In the default layout strategy as is employed by current day file systems, the tree-

structured data (say an XML document) is stored sequentially on the disk, which

is equivalent to placing the tree in depth-first order. To ensure a fair comparison

of our storage method to the default layout, a physical pointer is added from each

node to its first child and its right sibling, thereby allowing to avoid reading the

entire subtree of a node to access its right sibling. This optimization is used for the

default strategy in all the experimental results we report.

For XML data, which we use as a case-study for evaluating our approach, XPath

queries form the core navigation component of XML query processing systems. For

evaluating XPath queries, we adopt the “standard” XPath evaluation strategy [?]

shown in Figure 1. Intuitively, this strategy processes an XPath query Q in a depth-

first manner on the XML document, one step of Q (Q.first) at a time, and stores

the intermediate results in a set S. In [?] we explain how optimizing XPath also

leads to optimized XQuery.

Current implementations of XML parsers create an in-memory document tree

structure that is populated (on-demand in some implementations [?]) by retrieving

corresponding sections of the disk-resident XML document. XML stores typically

handle documents that are both smaller (i.e., tens of KB) as well as much larger

17

size (several GB). Consequently, trivial solutions such as loading the entire XML

document in memory prior to parsing are not deemed practical.

Algorithm 1: Standard XPath evaluation strategy [?]

1: procedure process-location-step(n0,Q)
2: /* n0 is the context node;
3: query Q is a list of location steps */
4: node set S := apply Q.first to node n0;
5: if Q.tail not empty then
6: for each node n in S do
7: process-location-step(n, Q.tail)
8: end for
9: end if

2.3 Semi-structured Data Layout

In this section, we present disk layout strategies for tree-structured data. First,

we introduce a basic tree-structured placement strategy, a simple strategy which

illustrates the basic ideas of our approach. Next, we present an improved and

optimized variant of the basic strategy, which addresses the shortcomings of the

basic strategy. Finally, we discuss some practical challenges that must be addressed

when implementing the proposed placement strategies.

2.3.1 Basic Tree-structured Placement

A key limitation of the default storage method is that it is optimized only for ac-

cessing the tree-structured data tree in depth-first order since it places the data file

sequentially on disk. For example, for the tree in Figure 2.3 (created by replac-

ing the labels with node IDs in the tree-structured tree of Figure 2.2), the nodes

would be stored sequentially in alphabetical order. We refer to this henceforth as

18

the default layout and use it for comparison purposes in Section 2.6. If this file is

accessed in strictly depth-first order, such a placement scheme would be optimal.

However, typical tree navigation during the answering of queries displays the fol-

lowing characteristics: (a) nodes are accessed along any path from the root to a

leaf of the tree, and (b) siblings are often accessed together, without accessing their

descendants. The default layout of the nodes would result in random accesses (and

therefore poor I/O performance) for both the above accesses, except for the leftmost

path or traversals along leaf levels.

Based on the above observations, we design our basic layout strategy, tree-

structured placement. To simplify the presentation of the algorithm we assume that

each node in the tree occupies an entire disk block. This assumption is relaxed in

Section 2.4 where we discuss in detail the grouping methods that can be employed

to minimize internal fragmentation within disk blocks while maintaining the tree

structure of the file.

In the basic tree-structured placement, nodes are placed on the disk starting

from the outermost available track (we choose the outermost track due to its higher

bandwidth, favoring the more frequently accessed higher levels of the tree). In

particular, we first place the root node v on the block with the smallest logical-

block-number (LBN), on the outermost available track of the disk. Second, we place

its children sequentially on the next free track such that accessing the first child u

of v after accessing v results in a semi-sequential access [?]. This is accomplished by

choosing a block for u rotationally skewed from v such that when accessing u after

accessing v, the rotational delay incurred is zero. Further, accessing a non-first child

from a parent node involves a semi-sequential access to reach the first child and a

short rotational-delay based on the child index. The children of the first-child of the

root node are then placed on the next available track, once again at a rotationally-

19

optimal point relative to their parent. Next, the grandchildren of the first child of

the root are placed following a similar approach, and so on.

A

B

I

N
C

E

H

D

R
S

*

*

*

*

*

*

*

*
*

**
*

*

*

*

*

*

*

*

*

*

*

*
* * *

*

*

*

*

**

*
*

*

*

*

*

*
*

*
*

* *

O

P

Q

G

*

*
*

F

*

J

KM L

Figure 2.4: Basic tree-structured placement strategy.

As described above, the basic tree structured layout chooses parent nodes to

place their respective children in depth-first order (DFO). We also experimented

with breadth-first-ordering (BFO) in choosing parents, but found DFO to consis-

tently outperform in the experiments due to its significantly shorter seek times dur-

ing parent-child traversals. Intuitively, this can be visualized in Figure 2.3 where we

present the DFO numbering for parent nodes (above each node); notice the local-

ization of the numbers within each subtree. The BFO ordering, on the other hand,

scatters numbering over the entire tree, resulting in large seek times for parent-child

traversals.

Figure 2.4 shows the layout of the tree of Figure 2.3 on a disk platter. To simplify

presentation, we assume that the disk has a single platter with a single surface (and

consequently a single disk head). Furthermore, we assume that the rotational skew

between tracks is the seek-distance × quarter-rotation. The root node A is placed

on the outermost track, track 0. Its first child B is placed on the first available free

track closest to A, i.e., track 1. The block on which B is placed is rotationally skewed

20

Algorithm 2: Basic Placement Algorithm
Auxiliary Methods:

Node GetNextNode()

/* returns one node at a time in ascending order */

Track GetFirstFreeTrack()

/* smallest free track */

Place(track t, LBN lbnFirst,NodeList L)

/* place children nodes L starting from lbnFirst on track t */

LBN FindSemiSequential(LBN parent, int t)

/* returns the LBN n on track t such that

access to t from parent is semi-sequential. */

Require: Tree T to be placed
1: PlaceInTrack(GetFirstFreeTrack(),0,Root(T))
2: while more nodes do
3: n←(GetNextNode())
4: t←(GetFirstFreeTrack())
5: L← empty
6: L←(Add(Children(n)))
7: lbnFirstChild← (FindSemiSequential(n.lbn, T))
8: Place(t,lbnFirstChild, L)
9: end while

by a quarter-rotation relative to A as a consequence of our assumption. Accessing

B after A would require only seeking to the next track. The remaining children of

node A, i.e. I, and N, are placed sequentially next to the first child B. The asterisked

blocks in each track immediately before the first-child represent the rotational skew

between a parent and its first-child. The remaining nodes are placed following a

similar approach to complete the placement of the tree.

Algorithm 2 outlines the procedure for tree-structured placement. Notice that

the leaf nodes of the tree T shown in Figure 2.3 are not numbered in the ordering and

hence are not returned by getNextNode(), which is when the placement algorithm

terminates.

21

2.3.2 Optimized Tree-structured Placement

The basic layout strategy, as is obvious in Figure 2.4, results in severe external

fragmentation of disk space (internal fragmentation within a disk block is discussed

in Section 2.4), which also increases the average seek time of I/O operations. We now

describe an optimization of the basic tree-structured layout strategy that reduces

external fragmentation as well as random seek times drastically.

The key idea in the optimized tree-structured placement is the use of non-free

tracks for placing the children for a given parent node. The optimized placement

strategy is less restrictive than the basic tree-structured placement strategy in two

specific ways: (1) it allows placing children on a non-free track, and (2) it does

not require the first-child to be placed at the rotationally-optimal block, but rather

allows placing the first-child anywhere within a rotationally-optimal track-region as

defined next.

We define a track-region as a contiguous list of Ntr disk-blocks along a track.

The blocks within a track-region, therefore, are also sequential in the logical address

space (LBN space) of the disk. Given a parent node u and a target track t, we define

the rotationally-optimal track-region for u on track t as the track-region of size Ntr

blocks starting from the block where the disk head lands when seeking to track t

starting from u. In Figure 2.5, two rotationally-optimal track-regions (Ntr=6) for

parent node ‘S’ are marked using the # symbol. To place the children nodes for

node u, a set of candidate rotationally-optimal track-regions are chosen close to u,

which can lie in either side of the parent track. The optimized placement algorithm

chooses the track-region closest to u with sufficient free space to house the children

of u. Other than this variation, the optimized tree-structured placement algorithm

proceeds to place the tree similar to the basic placement algorithm.

In the above placement description, the choice of the rotationally-optimal track-

22

region size (Ntr) is a critical factor. Increasing the track-region size gives the place-

ment algorithm more opportunity to reduce fragmentation and consequently reduce

random-seek overhead between node accesses, but it also increases the average ro-

tational delay incurred during parent-to-child node-traversals. This is an important

trade-off to be considered when choosing Ntr. In our experiments, we choose Ntr as

a quarter of the track-size.

A

C

D

E

H

F G

B

I

N

K
L

M

R

S
J

O

Q

P

#
#

#

#

#

#

#
#

#

#

#

#

Figure 2.5: Optimized Strategy.

Figure 2.5 shows the layout of the tree in Figure 2.3 on a hard disk (platter)

using the optimized strategy. Again, we assume that the platter rotates in the

clockwise direction. The assumptions of track skew are also the same as for the basic

strategy. In the optimized placement, since a single track can contain the children

of several nodes, the external fragmentation (shown in Section 2.6) is drastically

reduced compared to the basic tree-structured placement.

The PlaceInTrack method in Algorithm 3 outlines the logic for optimized tree-

structured placement. Line 1 places the root node of the tree T on the outer-

most track. Lines 2-7 place the children of the next node (which is the root

node in the first iteration) on the rotationally-optimal track-region (returned by

FindRotTrackRegion). The next node is returned by getNextNode(), which re-

23

Algorithm 3: Optimized Placement Algorithm
Auxiliary Methods:

Track GetTrack(LBN)

/* returns the track for LBN */

LBN FreeTrackRegionStart(LBN, int, tracksToSkip)

/* Given a parent LBN, its number of children, and the number of tracks to skip, returns

the LBN for the first child if all children can be placed in the candidate tracks

rotationally-optimal track-region. Otherwise returns NULL. Candidate tracks are

the two tracks situated at parentTrack +/- tracksToSkip respectively. */

1: <Track,LBN> FindRotTrackRegion(LBN parent, int n)
2: tracksToSkip ← 1
3: parentTrack ← GetTrack(parent)
4: while true do
5: if lbnFirstChild←FreeTrackRegionStart(parent,n,tracksToSkip) != NULL

then
6: return <GetTrack(lbnFirstChild),lbnFirstChild>
7: end if
8: tracksToSkip++
9: end while

Require: Tree T to be placed
1: PlaceInTrack(getFirstFreeTrack(),0,root(tree))
2: while more nodes do
3: n←GetNextNode()
4: L←empty
5: L→add(children(n))
6: <lbnFirstChild>←FindRotTrackRegion(n.lbn,L.size())
7: Place(target,lbnFirstChild,L)
8: end while

24

turns a non-leaf node of the XML tree based on the chosen ordering scheme. The

above process is repeated until all the nodes are placed on the disk.

Notice that the leaf nodes of T are not numbered in the ordering and hence

are not returned by getNextNode(). The findRotTrackRegion(LBN parent,int

nchildren) auxiliary method checks for availability of space in the rotationally

optimal track-regions in tracks on either side of the parent’s track, starting from the

closest track. It returns the LBN for placing the first-child of the parent node. The

remaining children are placed incrementally following the first child. The direction

identifier specifies where the target track lies with respect to the parent. If the

direction has a negative value, the target track is less than the parent track.

Likewise, a positive value indicates that the target track is greater than the parent

track.

2.3.3 Implementation Issues

In implementing the strategies presented above, several practical issues must be

considered. First, the above placement scheme assumes that a single, contiguous

partition, large enough to accommodate the tree-structured data is available. This

assumption is realistic for both file systems and database systems since they typically

allocate a large contiguous disk partition and can reserve a fraction of this space for

storing tree-structured data.

Second, after a tree node is read from the disk drive, a non-negligible CPU think

time is typically required before the next I/O request is issued. We address this

issue as follows. If the next request is for a sibling node (stored sequentially in our

approach), then on-disk pre-fetching mechanisms ensure that this node is pre-fetched

into the on-disk cache. However, if the next request is for a child node (stored semi-

25

sequentially), then during computation time, the disk would have already rotated by

an amount proportional to the CPU think time and hence no semi-sequential access

would be possible. To address this, we skew the first child by an additional rotational

delay equivalent to 95th percentile of a sample from the think time distribution. This

ensures that in most cases, the semi-sequential nature of child node accesses will be

preserved.

Third, the proposed strategy would work well when processing a single query

at a time. However, if there are multiple queries issued concurrently by different

processes or users, then the resulting interleaving I/Os are likely to degrade sequen-

tial or semi-sequential accesses to random ones. This problem is prominent even

in traditional relational database and filesystem accesses. Techniques at the disk

scheduling layer such as anticipatory scheduling [?], which group together requests

from a single process and minimize the effects of multiple interleaved I/O request

streams, address this issue well. We evaluate the impact of query parallelism (in

Section 2.6) with anticipatory I/O scheduling to demonstrate the effectiveness of

native layout strategies in the simulated environment.

Finally, existing storage interfaces are restrictive which makes it non-trivial to

obtain profiling information or control data layout. While the need for more ex-

pressive storage interfaces has been brought up repeatedly in the storage research

community(e.g., [?, ?, ?]), for the time-being, we can circumvent this restriction by

employing disk profiling and control tools. Profiled information includes: rotational

time, seek time, track and cylinder skew times, sizes of read cache and write buffer

along with pre-fetching and buffering techniques, logical to physical block mappings,

and access time prediction. This profiled information enable fine-grained control for

disk drives, tailored specifically for tree-structured data.

26

2.4 Supernode Trees

So far, we assumed that each node in the tree-structured data tree occupies an entire

disk block. This assumption, however, is not realistic; in practice, the tree nodes

are of variable size, ranging from a fraction of a disk block to multiple disk blocks.

In this section, we first lay the foundation for grouping nodes in a tree-structured

data tree T to form supernodes where each supernode occupies an entire disk block.

Next, we describe how to organize the supernodes into a supernode tree structure

TS. The placement strategies of Section 2.3 are then applied on the supernode tree

instead of the node tree.

2.4.1 Grouping Nodes into Supernodes

To reduce the internal fragmentation, it is desirable to group the maximum number

of nodes into a supernode. It is also important to group adjacent nodes of T in

the same supernode, so that navigating among these nodes requires only one disk

access. If the size of a node is larger than the size of a disk block, it is stored

using multiple supernodes, which are then stored in consecutive disk blocks. An

alternative strategy to avoid breaking the tree-structure of the rest nodes would

be to store a pointer to a Binary Large Object (BLOB) and use an object storage

manager [?] to manage BLOBs.

To elucidate the following grouping techniques, we assume that all nodes have

the same size, and one supernode can contain at most five nodes.

Sequential grouping. Nodes are added to a supernode starting from the root

node using a depth-first (and left-to-right) traversal. The only difference is that a

single node is not split nodes across disk blocks, unless the size of the node is greater

27

S

Q

N

J

M

O P

A

I

K L R SGF

C D E H

B

S

1

2

3

4S

S

(a) Sequential grouping

T

Q

N

J

M

O P

A

I

K L R SGF

C D E H

B

1

2 3T

T4

T5

T

(b) Tree-preserving grouping

Q

N

J

M

O P

A

I

K L R SF

D E H

B

1

2

3 5

6

7

4

C

G

T1

T2T3

T4

(c) EKM grouping

Figure 2.6: Grouping strategies for creating supernodes.

28

than the size of a disk block. Figure 2.6(a) illustrates this grouping strategy for the

tree presented earlier in Figure 2.3.

Tree-preserving grouping. The tree-preserving grouping proceeds as in the se-

quential grouping except it ensures that cycles of supernodes do not form in the

grouped tree. At each step, before adding a node v to a supernode S, the following

additional conditions are checked:

(i) the parent node of v is in S, or

(ii) the parent node of v is in the parent supernode of S.

If any of these conditions hold, then we add v to S. If neither holds, then by adding

v to S a cycle of supernodes in the original tree T would be created. To avoid that,

we close S and add v to a new supernode. This strategy aims at preserving the

tree-structure of the original tree T in the supernode tree. Figure 2.6(b) illustrates

this grouping strategy for the tree of Figure 2.3.

Enhanced Kundu Misra grouping. We also implement a grouping technique

developed independently at the same time by Kanne and Moerkotte [?] called the

Enhanced Kundu Misra (EKM) grouping, an extension to the original Kundu-Misra

grouping algorithm [?]. The EKM strategy operates in a bottom-up fashion and aims

at reducing the number of node groups while preserving the original tree structure,

thereby increasing navigations between nodes within the same group. It operates

by converting the n-ary tree into a binary tree representation, obtaining a layered

partitioning that helps reducing the number of supernodes while preserving the

connectedness. Figure 2.6(c) illustrates this grouping strategy for the tree of

Figure 2.3.

29

2.4.2 Building Supernode Trees

The organization of the supernodes into a supernode tree, TS, determines the place-

ment of the supernodes on the disk drive according to the algorithms presented in

Section 2.3. Hence, it is desirable to preserve the tree-structure of T in TS. That is,

if a parent-child pair of nodes in T is split to different supernodes, then it is prefer-

able to split it to two adjacent supernodes in TS. Based on the grouping strategies

described above, we consider four supernode tree organization strategies:

1. The sequential supernode list, which corresponds to the default placement strat-

egy, uses sequential grouping to form supernodes. It is merely a linked-list of su-

pernodes in the order in which the supernodes were formed. Figure 2.7(a) shows

the formation of this list.

2. The tree-preserving supernode tree, which corresponds to the tree-preserving

(with respect to grouping) tree-structured (with respect to placement algorithm)

placement to be introduced in Section 2.6, uses the tree-preserving grouping to

form supernodes. The supernode tree is formed by adding edges between two

supernodes Si, Sj if there is an edge between two nodes vi ∈ Si, vj ∈ Sj in T .

Notice that due to the nature of tree-preserving grouping no cycles can occur.

Figure 2.7(b) shows the formation of this tree.

3. The sequential supernode tree, which corresponds to the sequential tree-structured

placement algorithm in Section 2.6, uses the sequential grouping to form supern-

odes. Then, the supernode tree is created by adding edges between pairs of su-

pernodes Si, Sj if there is an edge between two nodes vi ∈ Si, vj ∈ Sj in T and

adding the edge will not create a cycle. Figure 2.7(c) shows the formation of this

tree.

30

4. The EKM supernode tree builds a tree on the EKM supernodes. Again no cycles

exist due to the nature of EKM grouping. Figure 2.7(d) shows the formation of

this tree.

SS 2S 3S 41

(a)

1T

2T 4T

5T3T

(b)

S
S

2 3S

4S

1

(c)

T

T T3 2 1

4

T

(d)

Figure 2.7: Supernode Trees: (a) Sequential supernode list. (b) Tree-preserving
supernode tree. (c) Sequential supernode tree. (d) EKM supernode tree.

2.5 Theoretical Analysis

In this section, we present a quantitative model to analyze the access times for the

default and the optimized tree-structured placement strategies. Table 2.2 summa-

rizes the description of each parameter used in this analysis.

First we compute the random, sequential and semi-

sequential access times. The average random access time trand, is a function of

the average seek time and rotational delay and is given by:

trand = seekT ime (
C

3
) +

1

2
Trot (2.1)

31

Table 2.2: Parameter Description

Tdefault: Average access time in default placement
Ttree: Average access time in tree-structured placement
tseq: Average access time for sequential access
trand: Average access time for random access
tsemi−seq: Average access time for semi-sequential access
a1: Access is from parent to first child
a2: Access is from a parent node to non-first child
a3: Access is from a non-leaf node to its right sibling
a4: Access is from a leaf node to its right sibling

a5: All other accesses (that is, P5 = (1− (
∑4

i=1 Pi))
Pi: Probability that access ai occurs; 1 ≤ i ≤ 5
tdefault(ai): Average time for ai in default placement
ttree(ai): Average time for ai in tree-structured placement
C: Number of Cylinders
Trot: Rotational Period
Tnt: Time taken to transfer one block of data

where seekT ime is a disk specific function computing the seek time given the number

of tracks to seek [?] and is given by:

seekT ime (d) = α + β ·
√

d; if d <
C

3

= γ + δ · d; otherwise (2.2)

where d is the seek distance in cylinders, C is the total cylinder count, and α, β, γ

and δ are disk specific parameters.

For the barracuda disk, chosen as the base disk configuration in the experiments

(and also further described in Table 2.7), the rotational latency is given by Trot =

8.33 ms and α = 1.83, β = 0.17, γ = 2.85 and δ = 0.0035. For an XML document

of size 50MB occupies 129188 blocks or 325 cylinders after grouping with the tree-

preserving grouping strategy (Table 2.4). Thus, substituting these values in the

above Equation 2.1, the random access time for the area occupied by this document

32

is given by trand = 5.99 ms.

The average sequential access time tseq from one block to the next is a very small

value, approaching zero. Hence,

tseq = 0 (2.3)

For the tree-structured placement, the access between a parent and its first child

is semi-sequential, and from a node to its right sibling is sequential. The average

time for semi-sequential access tsemi−seq given by:

tsemi−seq(v) = seekT ime (s(v)) (2.4)

where s(v) is the number of tracks to be seeked during a semi-sequential access.

When T is a complete tree with height d and degree f , the average s(v) is given by:

s(v) =
fd−2(d− 2− f/(1− f)) + 2 + f/(1− f)

2n′
(2.5)

where n′ is the number of internal nodes given by n′ = (1−fd−1)
(1−f)

To understand this equation, lets assume that the root is at depth 1 and the

leaves at depth d. If there are two edges u1− v1 and u2− v2 where u1 and u2 are on

the same level and v1 and v2 are their lth respectively, then DFO(v1)−DFO(u1) =

DFO(v2)−DFO(u2), Thus, the distance in tracks from v1 to its child u1 and from

v2 to u2 are the same. In the above relation, DFO(x) is the corresponding number

in the DFO ordering. The numbers above the internal nodes in the tree shown in

Figure 2.3 illustrate the DFO ordering.

To calculate the average s(v) for the nodes v of level k + 1, we need to find the

size of the subtree rooted at v which is

1 + f + · · ·+ fd−k−1 =
(1− fd−k)

(1− f)
(2.6)

The average of s(v) for the nodes v of level k + 1 is the average s(v) of any set of

siblings at level k + 1. That is,

33

(f+(1−fd−k)
(1−f)(1+···+(f−1))

)

f
=

(f+(1−fd−k)
(1−f)(f−1)f/2

)

f
=

(fd−k + 1)

2
(2.7)

Hence, for level k it is (fd−k−1+1)
2

.

For an average fanout of 10 and a depth of 5 in an XML tree, s(v) from Equa-

tion 2.5 is 1.83. Thus, the seekT ime(s(v)) is α + β ·
√

1.83 = 2.26.

Equation 2.4 assumes perfect semi-sequential time, which is achieved by the

tree-structured algorithm (Algorithm 2). However, in the case of the optimized tree-

structured algorithm (Algorithm 3), tsemi−seq(v) depends on the number of track-

regions per-track, k. Hence,

tsemi−seq(v) = seekT ime (s(v)) +
1

2k
Trot (2.8)

Since the first-child is placed anywhere within a rotationally-optimal track-region

rather than rotationally optimal sector, accessing the first child may involve any-

where between 0 to 1
k
Trot rotational delay after the seek operation. This additional

rotational delay during the semi-sequential access is 1
2k

Trot on an average. When a

track is divided in 8 track regions, k =8 and for the barracuda disk, s(v) is calcu-

lated above and is 1.83 ms. Substituting these values in Equation 2.8, the average

semi-sequential time is given by tsemi−seq(v) = 2.79 ms, a significant reduction of

53.4 % from an average random access time of 5.99 ms.

Next, we discuss the time needed for each of the five basic access types of Ta-

ble 2.2. When the first child is accessed from its parent (a1), a sequential access

occurs in the default placement, whereas a semi-sequential access occurs in the tree-

structured placement. When a non-first child is read from its parent (a2), it is a

random access in the default placement, whereas for the tree-structured placement,

it is the sum of the semi-sequential time and the average sibling index (f/2, where f

is the tree fanout) times Tnt (time required to transfer data from one node). When

34

the access is from a non-leaf node to its right sibling (a3) it is a random access

in the default placement, and a sequential access in the tree-structured placement.

When from a leaf-node we access its right sibling (a4), it is a sequential access in

either placement strategy. In all other cases (a5), such as when moving up the tree,

for both placements a random access will be performed. Table 2.3 summarizes the

access times in the default and the tree-structured storage for every ai.

Table 2.3: Average access times in default and tree-structured placement for each
access type ai.

Access type ai Description tdefault(ai) ttree(ai)
a1 Parent to first child tseq tsemi−seq

a2 Parent to non-first child trand tsemi−seq + f
2
(Tnt)

a3 Non-leaf node to right sibling trand tseq
a4 Leaf node to right sibling tseq tseq
a5 All other accesses trand trand

The average access times in default and tree-structured storage are computed by

Equations 2.9 and 2.10 respectively.

Tdefault =
5∑

i=1

Pi · tdefault(ai) (2.9)

Ttree =
5∑

i=1

Pi · ttree(ai) (2.10)

Tree-structured placement is better when Ttree < Tdefault.

While this is not realistic (and necessarily subjective to the query as demon-

strated extensively later in Table 2.6), if we did assume that a query exhibits all the

access types shown in Table 2.3, with each access type occurring equally frequently,

the average I/O times for the default and the tree placement can be obtained by

substituting their values in Equations 2.9 and 2.10 as:

Tdefault =
1

5
· tseq +

1

5
· trand +

1

5
· trand +

1

5
· tseq +

1

5
· trand

35

= 3.594 ms, and

Ttree =
1

5
· tsemi−seq +

1

5
· (tsemi−seq +

f

2
(Tnt)) +

1

5
· tseq +

1

5
· tseq +

1

5
· trand

= 2.344 ms

where the transfer time Tnt = 0.03 ms.

2.6 Evaluation Case Study: XML

In this section, we experimentally evaluate the grouping and native layout strategies

for placing the XML data on disk drives.

We used the DiskSim [?] disk simulator for our evaluations, instrumenting it to

provide the additional interface: <LBN>

findSemiSequential(LBN parent, int cyl, int track) which given a parent LBN,

returns an LBN X on <cyl,track>, such that access from the parent LBN to X is

semi-sequential. The optimized-tree placement in Algorithm 3 uses this interface

to find semi-sequential LBA for subsequent nodes in the tree that has to be placed

on the disk. The optimized tree-structured and the default placement algorithms

were implemented in C and integrated with the instrumented DiskSim code. The

grouping algorithms were implemented as a separate module.

2.6.1 Data Set and Queries

We generated XML files (each file corresponds to an XML tree) of various sizes using

the XMark generator [?] with different scaling factors from f = 0.01 to f = 1.00,

corresponding to file sizes ranging from 1MB to 100MB. The limit of 100MB for

the maximum file size is due to the memory constraints in currently available open-

source XML parsing engine implementations. These engines create the navigation

36

tree data structures for the entire tree in memory during parsing, while at the

same time consuming as much memory as five times the original document size [?].

There is ongoing work on improving memory efficiency of XML parsers [?] which

promise to address this shortcoming in the near future. Earlier in Table 2.1, we

presented the document sizes used by several popular benchmarks typically used

to evaluate XML query optimizations, storage, indexing and so on. As mentioned

earlier in Section 2.2, trivial solutions that load the entire document in memory are

not practical for large (several gigabyte sized) XML documents. Although the XML

documents we experiment with are small relative to the size of the disk, these serve

as examples to illustrate the relative effectiveness of native layout when compared

to the existing approaches. It should additionally be noted that the on-disk buffer is

small (1-8MB) for the disks we use, substantially smaller relative to the size of the

documents, and is not in any significant way capable of influencing the I/O access

patterns apart from on-disk readahead.

We implemented the three grouping strategies - sequential, tree-preserving, and

EKM - described in Section 2.4, computing and storing the information about the

supernode that would contain each XML node. We also implemented extensions to

the DiskSim disk simulator [?] that allowed us to simulate the native layout strategy

described in Section 2.3. We then used the supernode information to store them on

disks simulated by DiskSim.

Table 2.4 provides information about the XML trees used and the corresponding

supernode trees formed. The number of supernodes in the sequential grouping is

the lowest since it groups the nodes to form supernodes without any restrictions.

EKM does a bottom-up grouping of the tree and reduces the number of resulting

supernodes by reducing the problem of finding supernodes for arbitrary trees to the

simpler problem of finding supernodes for flat trees (trees in which all nodes but the

37

Table 2.4: XML Tree and Supernode Tree Parameters

XMark
Tree

#Nodes
Avg Bytes # Supernodes Avg Bytes/Supernode

(KB) per node TP Seq. EKM TP Seq. EKM

0.01 1667 17132 25.21 2576 2119 2148 343.8 418 412.3

0.05 8270 59641 25.8 12834 10625 10703 373.2 450.8 447.5

0.1 16765 167865 25.85 25991 21435 21628 345.3 418.7 414.9

0.5 83726 832911 26.09 129188 106592 114775 345.3 418.5 414.6

1 168755 1666315 26.07 259575 214326 216140 345.3 418.2 414.7

root are leaves) [?]. Tree-preserving grouping avoids cycles by placing restrictions on

the nodes being added to the supernode. This in turn reduces the number of nodes

per supernode and subsequently increases the number of supernodes. The average

nodes/supernode is six for the tree-preserving grouping and is 8 for Sequential and

EKM grouping.

For the query workload, we adopted performance-sensitive queries from the

XPathMark benchmark [?], but omitted the ones that check for features supported

by XPath (e.g., Q18: /comment()). To compute reliable results we added more

queries with similar properties of depth, number of conditions and selectivity. The

query workload is summarized in Table 2.5.

To contrast the relative advantages of using our native strategies with those of the

default sequential layout, we classify XPath queries into two categories: deep-focused

queries and non deep-focused queries. A subset of each class is shown in Table 2.5.

The former class describes the special class of XPath queries that navigate entire

subtrees of the tree (queries D1, . . . , D9 in Table 2.5). The latter class, non deep-

focused queries N1, . . . , N9 in Table 2.5, represents all queries that do not belong to

the former class. As we shall demonstrate, the default layout primarily addresses

the class of deep-focused queries and is sub-optimal for all other queries. Notice that

only the supernode-granularity navigation matters for overall I/O performance, and

38

Table 2.5: XPath queries for the deep-focused (D) and the non deep-focused (N)
classes.

Query # Query

D1 /site/closed auctions/closed auction/ N1 /site/open auctions/open auction

annotation/description/parlist/

listitem/text/keyword

D2 /site/people/person/watches N2 /site/closed auctions

D3 /site/open auctions/open auction/ N3 /site/regions/australia

annotation/description/text/keyword

D4 /site/people/person/address/country N4 /site/closed auctions/closed auction

D5 /site/regions/australia/item/ N5 /site/regions/ ∗ /item

description/text/emph

D6 /site/people/person/ ∗ /business N6 /site/ ∗ /australia

D7 /site/closed auctions/closed auction/ ∗ / N7 /site/open auctions/open auction

description [@id =′ open auction0′]/bidder

D8 /site/regions/ ∗ /item/description/text N8 /site/regions/asia/item

[@id =′ item4′]/mailbox/mail

/from

D9 /site/closed auctions//itemref N9 /site/open auctions/open auction

[@id = ”open auction0”]//keyword

not the node-granularity navigation. Hence, queries like D2, which do not access

leaf nodes, are included in the first category since they access supernode leaves; the

watches subtree is very small and fits in less than one supernode.

2.6.2 Tree Navigation Performance

We conducted experiments that compare the I/O times for answering XML queries

for four different layout strategies, corresponding to the supernode tree organizations

of Section 2.4: default (Section 2.2.2), tree-preserving tree-structured (TP-TS), se-

quential tree-structured (Seq-TS), and EKM tree-structured (EKM-TS) layout strat-

egy.

To consider caching effects in our experiments, we assumed that all nodes along

the path from the root to a single leaf node would be cached in main memory,

either in the operating system VFS or a custom application level cache. This is

39

 1

 10

 100

 1000

 10000

 100000

 1e+06

D1 D2 D3 D4 D5 D6 D7 D8 D9

To
tal

 I/O
 T

im
e (

ms
)

Query

Default
TP-TS

Seq-TS
EKM-TS

(a) Deep-focused queries

 1

 10

 100

 1000

 10000

 100000

 1e+06

N1 N2 N3 N4 N5 N6 N7 N8 N9

To
tal

 I/O
 T

im
e (

ms
)

Query

Default
TP-TS

Seq-TS
EKM-TS

(b) Non-deep-focused queries

Figure 2.8: Total I/O times in logarithmic scale for various placement strategies.

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

N
or

m
al

iz
ed

 T
ot

al
 I/

O
 T

im
e

Seek
Rotation
Transfer

D9D8D7D6D5D4D3D2D1

Disk
(a) Deep-focused queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

N
or

m
al

iz
ed

 T
ot

al
 I/

O
 T

im
e

Seek
Rotation
Transfer

N9N8N7N6N5N4N3N2N1

Disk
(b) Non-deep-focused queries

Figure 2.9: Normalized total I/O times for various placement strategies.

41

Table 2.6: Navigational patterns for the two XPath query classes for f = 0.5. ai’s
are defined in Table 2.2.

Default Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 9046 0 0 0 1982 N1 1098 0 0 0 4775

D2 7211 0 0 0 55 N2 0 0 0 0 5

D3 12744 0 0 0 1895 N3 0 0 0 0 10

D4 7211 0 0 0 55 N4 1387 0 0 0 3053

D5 1823 0 0 0 759 N5 1322 0 0 0 9323

D6 7315 0 0 0 4 N6 9324 0 0 0 8418

D7 2765 0 0 0 2814 N7 1098 0 0 0 4775

D8 11937 0 0 0 9654 N8 121 0 0 0 870

D9 16166 0 0 0 5 N9 1098 0 0 0 4775

TP-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 4438 1182 1799 1114 5117 N1 1 1 71 5513 1

D2 3250 3 333 1801 3251 N2 0 1 0 4 0

D3 6171 1729 2428 902 7897 N3 0 1 0 9 0

D4 3287 3 333 1764 3288 N4 0 2 42 3762 0

D5 659 319 507 169 976 N5 0 6 42 10065 5

D6 5218 1 371 3 5049 N6 4 2 485 14647 4

D7 1344 2665 42 71 3758 N7 1 1 71 5513 1

D8 4071 4831 1360 2164 8896 N8 0 2 2 937 1

D9 8213 1 4657 4 7199 N9 1 1 71 5513 1

Seq-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 6856 1073 1768 219 1112 N1 1074 859 5 24 3911

D2 6714 47 47 0 458 N2 0 1 0 0 4

D3 9582 458 2347 123 2129 N3 0 1 0 0 9

D4 6714 47 47 0 458 N4 1347 777 2 7 2307

D5 1149 175 487 33 738 N5 1305 2576 0 103 6661

D6 6765 1 95 0 458 N6 8771 1719 83 47 7122

D7 2620 1098 2 44 1815 N7 1074 859 5 24 3911

D8 9193 3364 1385 715 6934 N8 120 227 0 6 638

D9 10564 1 4602 0 1004 N9 1074 859 5 24 3911

EKM-TS Placement

Query a1 a2 a3 a4 a5 Query a1 a2 a3 a4 a5

D1 2126 4153 1795 1319 5521 N1 0 2 88 2305 1

D2 2040 1117 3342 1983 3156 N2 0 1 0 0 0

D3 3259 5042 3838 731 7981 N3 0 1 0 4 0

D4 2040 1117 3342 1983 3156 N4 0 2 151 1495 0

D5 445 1106 395 287 1414 N5 0 6 89 3588 5

D6 2242 1129 3347 1924 3306 N6 0 6 3584 6174 4

D7 803 2000 151 1237 2801 N7 1 2 88 2304 2

D8 2730 9672 913 3323 12399 N8 0 2 12 327 1

D9 3180 2581 6116 0 4029 N9 1 2 88 2304 1

42

a reasonable assumption for XML trees, which are typically short even when their

total size is large, due to large fan-out. Consequently, we ignore repeated accesses

to nodes (such as parent, ancestor nodes) during the depth first traversal of the

XML tree. Such caching reduces the number of random accesses equally in all three

placement strategies, since the navigation of nodes for answering a query is exactly

the same regardless of the layout strategy.

Total I/O time

Figure 2.8 shows (in logarithmic scale) the I/O times for each query, for the two

classes of queries, deep-focused (Di) and non deep-focused (Ni), for an XMark file

with scaling factor f = 0.5. We executed five simulation runs for each column shown

in the graph. For the first run, the start LBA for the placement of the root node

was 0. For all the subsequent runs, it varied with increments of 250 (> track size).

Thus, the start LBA was varied over the range 0 − 1250. The confidence interval,

for a confidence level of 95%, for all the five runs was found to be < ± 10.96. The

results shown in the graph are for the start LBA 0.

For the deep-focused class of queries, the default placement strategy performs

consistently better than the others, since it can retrieve entire subtrees more ef-

ficiently. For the non-deep-focused query class, the performance of the default

placement strategy is consistently worse than the tree-structured variants (TP-TS,

Seq-TS, and EKM-TS). For this query-class, a large number of accesses are non-

sequential for the default placement, since complete sub-tree accesses are few.

Figure 2.9 shows the relative performance with the normalized total I/O time

to reduce the impact of the large variance across queries. Each value is scaled

relative to the maximum value for the experiment. To better demonstrate the

relative distribution of seek, rotational delay, and transfer time components, the

43

total normalized I/O time is further split to show these I/O access time components.

It can be seen that the average rotational delays for the tree-structured placement

strategies (in the case of non-deep-focused queries) are substantially lower relative

to the default strategy. However, this is not the case for the deep-focused class

where the default strategy outperforms in all respects.

To better understand and explain the graphs of Figure 2.8 and Figure 2.9, we

counted the different types of accesses in the supernode tree (each access translates

to a disk I/O operation) for answering the XPath queries for both the deep-focused

and non deep-focused classes. Table 2.6 shows the numbers of supernodes accesses

for the five basic types of tree accesses, a1 through a5, defined in Table 2.3. As an

example, observe that for the TP-TS placement, Query D1 requires 4438 a1 accesses,

the parent-to-first-child type accesses.

We can make some general observations from Table 2.6. First, the default place-

ment causes all the accesses to be either of type a1 or a5, since only parent-to-

first-child sequential accesses are possible for this layout. Second, the deep-focused

queries are dominated by a1 and a5 type accesses, while the non-deep-focused queries

are dominated by a3 and a4 accesses (except in the case of default placement). This

enables the non-deep-focused queries to exploit native layout, since all the accesses

to siblings are sequential, as opposed to the large number of random accesses the

deep-focused queries require. Observe further that the EKM and TP-TS placement

strategies increase the number of accesses from parent to non-first child, thus uti-

lizing the semi-sequential and sequential access optimization to a larger extent. For

the deep-focused queries, on the other hand, the default placement performs the

best both because the number of sequential accesses for this placement is the high-

est and number of random accesses is lowest (in most cases) among all placement

techniques.

44

In Figure 2.9 (b), we see a somewhat unexpected outcome that the seek times

reduce for queries N2 and N3 for TP-TS, Seq-TS and EKM placement. An answer

can be found in the access patterns of these queries (Table 2.6). For N2 and N3, all

accesses for the default placement are of type a5, which are random accesses, where

as for the TP-TS and EKM placement, they are either semi-sequential or sequential

accesses, leading to the observed difference in seek overhead. Further, the Seq-TS

has a slightly lower performance relative to these two because of the increase in

the number of random accesses for this placement. Note that although the number

of random accesses in Seq-TS is relatively higher, it is still lower than the default

placement and hence it performs better than the default placement.

The above discussion serves to reinforce the arguments we made earlier when

discussing Figure 2.8. In summary, the EKM-TS placement strategy performs bet-

ter overall due to its lower internal fragmentation and tree-structure preservation

property; it results in I/O times which are 3X-127X better than the default strategy.

Between the remaining strategies, TP-TS performs better on an average, since it

better preserves the original tree-structure.

Sensitivity to drive characteristics

To evaluate the effect of drive characteristics, we conducted a sensitivity study of

I/O access time for representative disk-drive models. The drive models chosen,

shown in Table 2.7, were the Seagate Barracuda, Seagate Cheetah 9LP, Seagate

Cheetah 4LP, and the HP C3323A as representative of four performance classes

of disk drives: base, fast rotating and fast seeking, fast rotating, and slow rotating

respectively. A disk block is of size 512 bytes.

Figure 2.10 shows the average (across queries in a query-class) total I/O times

(in logarithmic scale) for the two query classes for an XMark file with f = 0.5 with

45

 1

 10

 100

 1000

 10000

 100000

 1e+06

Disk1 Disk2 Disk3 Disk4

A
v
er

ag
e

T
o
ta

l
I/

O
 T

im
e

Disk

Default
TP-TS

Seq-TS
EKM-TS

(a) Deep-focused queries

 1

 10

 100

 1000

 10000

 100000

 1e+06

Disk1 Disk2 Disk3 Disk4

A
v
er

ag
e

T
o
ta

l
I/

O
 T

im
e

Disk

Default
TP-TS

Seq-TS
EKM-TS

(b) Non-deep-focused queries

Figure 2.10: Sensitivity of query I/O times to changing disk drive characteristics
(logarithmic scale).

46

Table 2.7: Characteristics of experimented disk drives.

Disk Disk Size RPM Stroke Transfer Track Size Cylinders

model type [GB] [ms] [MBps] [sectors]

Barracuda Base 2 7200 16.679 10-15 119-186 5172

Cheetah 9LP Fast disk 9.1 10045 10.627 19-28.9 167-254 6962

Cheetah 4LP Fast rotate 4.5 10033 16.107 15-22.1 131-195 6581

HP C3323A Slow rotate 1 5400 18.11 4.0-6.6 72-120 2982

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ot

al
 T

im
e

Disk

Seek
Rotation
Transfer

Disk 4Disk 3Disk 2Disk 1

(a) Deep-focused queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

Default

TP-TS

Seq-TS

EKM
-TS

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ot

al
 T

im
e

Disk

Seek
Rotation
Transfer

Disk 4Disk 3Disk 2Disk 1

(b) Non-deep-focused queries

Figure 2.11: Sensitivity of seek and rotational delay components of I/O access times
to changing disk drive characteristics.

47

the various hard disk models. For the special class of deep-focused queries (Fig-

ure 2.10(a)), the default placement strategy performs better than the other strategies

benefiting from optimized sub-tree retrievals. However, for all other queries (Fig-

ure 2.10(b)), the tree-structured placement strategies perform better for all disk

models, offering as much as 7X-34X reduction in average I/O time for answering

queries. This underscores the importance of native layout strategies for XML data.

We break down the gains further in Figure 2.11 into the relative reduction in seek

and rotational delay components for each of the drives by normalizing the I/O times

at each disk drive using the maximum value as reference.. Notice for the non-deep-

focused query class (Figure 2.11(b)), the average rotational-delays are substantially

reduced relative to the default layout.

Effect of Query Interleaving

One concern with a native layout targeted to a optimize a specific access pattern

is the impact of multi-processing in the system. For instance, a server is likely to

execute multiple XPath queries simultaneously; optimizing individual query execu-

tions may not necessary translate to overall performance improvement when the

corresponding I/O request sequences are interleaved. As elaborated in Section 2.3,

this issue in its more general form (i.e., multi-process blocking I/O performance)

has been addressed earlier with anticipatory I/O scheduling [?]. Consequently, we

expect that XML servers would be configured with I/O schedulers that include an

anticipation core.

To evaluate the performance of our grouping and placement techniques under

multiple simultaneous XPath queries, we interleaved a subset of deep-focused and

non-deep-focused queries stated in Table 2.5. The interleaved queries belonged

to either the disjoint set of queries which accessed disparate portions of the tree

48

or intersecting queries whose access paths overlapped. The ordering of the I/Os

after interleaving were based on anticipatory scheduling. We simulate the behavior

of the anticipatory I/O scheduler assuming that each query is serviced within an

independent thread and issues synchronous I/O requests. The behavior of the non-

work-conserving anticipatory scheduler would result in optimizing the schedule of

successive I/O operations resulting from the same query, in spite of them being

issued synchronously, as long as other queries in the system access disjoint portions

of the XML tree. When there is an overlap of subtrees between two queries, their

I/Os must interleave.

Table 2.8: Query Interleaving for Multi-User Simulations.

Disjoint Deep-focused Non-deep-focused
Queries Queries Queries

δ1 D1 + D4 N1 + N4

δ2 D4 + D8 N4 + N8

δ3 D5 + D7 N5 + N7

δ4 D1 + D4 + D5 N1 + N4 + N5

δ5 D4 + D5 + D7 N4 + N5 + N7

δ6 D4 + D5 + D9 N4 + N5 + N9

Intersecting Deep-focused Non-deep-focused
Queries Queries Queries

π1 D1 + D7 N1 + N6

π2 D2 + D4 N5 + N6

π3 D5 + D8 N7 + N9

π4 D4 + D6 N1 + N6 + N7

π5 D1 + D7 + D9 N6 + N7 + N9

π6 D2 + D4 + D6 N5 + N6 + N8

For the choice of queries, we selected both disjoint queries, which traverse differ-

ent subtrees of the document, as well as intersecting queries, that access common

subtrees, which navigate common sub-trees of the document. Table 2.8 shows the

49

selected queries that were interleaved in each of these categories, where δi refers to

disjoint queries and πi represents intersecting queries.

Figure 2.12 shows the total I/O time (in logarithmic scale) for the execution of

interleaved deep-focused and non-deep-focused XPath queries. The results for the

deep-focused queries from Figure 2.12 (a), show that like in single query execution,

the default strategy performs better for multiple interleaved queries than the other

strategies.

Similarly, the behavior with the the non-deep-focused interleaved queries mostly

mimic their single query counterparts. The native layout strategies provide much

better execution times for both the disjoint and intersecting queries, as shown in

Figure 2.12 (b). Moreover, the EKM-TS performs better the most consistently

across the interleaved query executions. The breadth-first grouping approach of

this placement strategy causes the I/Os corresponding to the upper levels of the

XML tree to be read in parallel. For lower tree levels, the anticipatory scheduler

which ensures that the I/O sequences generated by the individual query threads are

grouped successfully. Finally, the default placement performs consistently worse for

the disjoint queries, since the I/O sequences generated by individual query threads

are executed almost sequentially.

2.6.3 Fragmentation

We now measure the internal and external fragmentation incurred by the grouping

and placement algorithms respectively.

Internal Fragmentation: Figure 2.13 (a) shows the internal fragmentation of

disk block space with the three grouping algorithms, sequential, tree-preserving, and

EKM. As expected, the sequential grouping algorithm has little internal fragmen-

50

 1

 10

 100

 1000

 10000

 100000

 1e+06

δ1 δ2 δ3 δ4 δ5 δ6 π1 π2 π3 π4 π5 π6

To
tal

 I/O
 T

im
e (

ms
)

Query

Default
TP-TS

Seq-TS
EKM-TS

(a) Deep-focused queries

 1

 10

 100

 1000

 10000

 100000

 1e+06

δ1 δ2 δ3 δ4 δ5 δ6 π1 π2 π3 π4 π5 π6

To
tal

 I/O
 T

im
e (

ms
)

Query

Default
TP-TS

Seq-TS
EKM-TS

(b) Non-deep-focused queries

Figure 2.12: Total I/O times in logarithmic scale for interleaved XPath queries.

51

 0

 20

 40

 60

 80

 100

0.01 0.05 0.1 0.5 1.0

In
te

rn
al

 F
ra

gm
en

ta
tio

n
(%

)

XMARK Scaling Factor

Sequential
Tree-Preserving

EKM

(a) Internal fragmentation

 0

 20

 40

 60

 80

 100

0.01 0.05 0.1 0.5 1.0

Ex
te

rn
al

 F
ra

gm
en

ta
tio

n
(%

)

XMARK Scaling Factor

Default
TP-TS

Seq-TS
EKM

(b) External fragmentation

Figure 2.13: Internal and External Fragmentation.

52

tation as it can freely add nodes to a supernode as long as adding the next node

does not violate the block-size restriction. Supernodes are not occupied completely

if its the remaining space is smaller than the size of the next XML node. The tree-

preserving grouping places further restrictions on grouping for preserving the XML

tree-structure in supernodes and incurs additional internal fragmentation (as much

as 55%). We argue that considering the fact that current disk drives are bound

more by I/O access time than by I/O capacity, trading capacity for improving ac-

cess is acceptable. The internal fragmentation with EKM is very close to that for

sequential grouping. The EKM algorithm has the flexibility that allows selecting

any of a node’s many subtrees as partition, thereby obtaining a more optimal result

for this procedure. Our tree-preserving grouping algorithms lack this flexibility, and

can only add the next node to the current supernode in an in-order fashion.

External Fragmentation: Figure 2.13 (b) shows the external fragmentation re-

sults for the data placement strategies. The default strategy incurs zero external

fragmentation as it places the supernode list sequentially on the disk. TP-TS and

Seq-TS incur external fragmentation of less than 28%, while that of the EKM-TS

is higher at around 32%. However, we once again contend that these numbers are

acceptable, following the arguments mentioned above. EKM-TS incurs the highest

external fragmentation, because in EKM-TS, the fanout of nodes is less in the top

levels (closest to root) of the tree and is higher in the lower levels, unlike the other

strategies. If the fanout of a tree is higher at a greater depth, it is more difficult to

find contiguous free space to place all the children on the partially occupied tracks

using the optimized placement strategy. Consequently the children are placed on

new tracks, thereby increasing the external fragmentation. Furthermore, for a na-

tive storage solution that is well integrated into the existing file or database system,

it is relatively easy to utilize fragmented free space.

53

2.7 Related Work

Storage of tree-structured data has received attention in the last few years because

of its growing popularity. Most work has focused on storing tree-structured data in

relational DBMSs or in flat files with indexes. The former approach (e.g.,[?, ?, ?, ?,

?, ?]) has been the most popular due to the success and maturity of the relational

DBMSs. The latter approach (e.g., [?, ?]) is based on storing the data as a flat file

and building separate indexes on top. These strategies do not use native layout of

tree-structured data and are limited to the generic optimization strategies built into

relational databases and file systems.

The problem of native storage of tree-structured data has been addressed in

Natix [?, ?] and in System RX [?], where the tree-structured data is split into pages

and each page is stored in a disk block, thereby reducing the number of read accesses

while traversing the tree. OrientStore [?] uses schema information to make a storage

plan for the tree-structured data. The above studies however view a disk drive as a

list of pages and do not take into account the physical characteristics of its operation

whereas we investigate how to exploit detailed information about the disk drive and

use this information to minimize overheads such as seek-time and rotational-delay.

Given the restrictive block IO interface, the clear case for a more expressive inter-

face has been made before [?]. Systems such as [?, ?, ?] use intelligence from upper

layers of the storage stack inside storage devices to improve overall IO performance.

Our work, if deployed, can use such systems, to incorporate storage techniques for

tree-structured data into disk firmware.

Recent work by [?] uses the idea of semi-sequential access for efficient storage

of multi-dimensional data. This work is significantly different from our work in that

unlike tree-structured data, multi-dimensional data is structured with access pat-

54

terns along data dimensions and can afford efficient layout based on fixed attribute

cardinality. Also, with tree-structured data, grouping multiple data elements to be

stored on a disk block is non-trivial due to the variable size of the data elements.

Atropos [?] exploits the physical properties of disk drives and uses semi-sequential

accesses to store relational databases. Our work targets XML data that has a tree

structure, quite different from the relational tables. We also show that a naive appli-

cation of the semi-sequential access paradigm to XML tree structures leads to large

seek times and severe space fragmentation. Our optimized layout strategy reduces

such overhead significantly. To the best of our knowledge, there is no existing work

tackling the problem of laying out XML data, accounting for low-level hard drive

storage and operation semantics.

2.8 Summary

With this work, we have taken a first step towards building native storage systems

for tree-structured data, a problem which has been largely unexplored. We presented

on-disk data layout techniques for tree-structured data that explicitly account for

the structural mismatch between the tree-structured data and disk drives and re-

duce disk access overhead. These layout techniques are based on node-grouping

algorithms for tree-structured data that reduce the number of disk I/O operations

required when accessing the data. We have suggested directions for addressing the

challenges that would arise in integrating the proposed layout techniques in existing

storage systems.

We conducted an evaluation of the native layout techniques using XML as a case-

study. All experiments were performed on XPathMark benchmark queries with an

instrumented DiskSim simulator. Our experiments revealed that:

55

• For the specific class of deep-focused queries, which result in access patterns

retrieving entire sub-trees, the existing file system layout mechanism (i.e., se-

quential layout of the tree in depth-first-order) offers significantly better per-

formance than native layout (5X-54X across the query set). For such queries,

we believe that sequential layout is the right choice.

• For all other query classes, which we group as non-deep-focused, native layout

taking into account tree navigation primitives, offers as much as 3X-127X per-

formance improvement across the range of XPathMark queries that we exper-

imented with, representing a large improvement. A sensitivity study across a

range of disk models, representing drives of varying performance, suggest that

average I/O performance improvement across the non-deep-focused query set

of 7X-34X.

• Of the various native layout techniques we considered, the EKM-TS provided

consistently better performance, barring a few cases. The above findings were

largely preserved when we experimented with multiple simultaneous query ex-

ecutions with the anticipatory I/O scheduler. This scheduler naturally carries

forward the benefits of native layout into the I/O schedule.

• Native layout strategies, however, can result in substantial fragmentation of

disk space. Our initial estimates reveal total fragmentation (internal+external)

of as much as 50% for the best-performing EKM-TS layout technique. This

fragmented space can be reclaimed with clever file system or database system

implementations to store non tree-structured data. Even if that were not fea-

sible, we believe an additional 50% of space overhead for several magnitudes

of I/O bandwidth increase could be acceptable in many settings.

56

CHAPTER 3

DYNAMIC DATA ALLOCATION

This chapter presents the design, implementation, and evaluation of BORG, a

self-optimizing storage system that performs automatic, dynamic block reorganiza-

tion based on the observed I/O workload. BORG is motivated by three characteris-

tics of I/O workloads: non-uniform access frequency distribution, temporal locality,

and partial determinism in non-sequential accesses. To achieve its objective, BORG

manages a small, dedicated partition on the disk drive, with the goal of servicing

a majority of the I/O requests from within this partition with significantly reduced

seek and rotational delays. BORG is transparent to the rest of the storage stack,

including applications, file system(s), and I/O schedulers, thereby requiring no or

minimal modification to storage stack implementations. We evaluated a Linux im-

plementation of BORG using several real-world workloads, including individual user

desktop environments, a web-server, a virtual machine monitor, and an SVN server

on a single disk as well as different RAID configurations. These experiments com-

prehensively demonstrate BORG’s effectiveness in improving I/O performance and

its incurred resource overhead.

3.1 Introduction

Present day file systems, which control space allocation on the disk drive, employ

static data layouts [?, ?, ?, ?, ?, ?]. Mostly, they aim to preserve the directory

structure of the file system and optimize for sequential access to entire files. No file

system today takes into account the dynamic characteristics of I/O workload within

its data management mechanisms. In this dissertation, we contend that making allo-

cation decisions based on the observed workload patterns can considerably improve

the I/O performance of the storage system.

57

We conducted experiments to reconcile past observations about the nature of

I/O workloads [?, ?, ?] in the context of current-day systems including end-user and

server-class systems. Our key observations that motivate BORG are: (i) on-disk

data exhibit a non-uniform access frequency distribution; the “frequently accessed”

data is usually a small fraction of the total data stored when considering a coarse-

granularity time-frame, (ii) considering a fine-granularity time-frame, the “on-disk

working-set” of typical I/O workloads is dynamic; nevertheless, workloads exhibit

temporal locality in the data that they access, and (iii) I/O workloads exhibit partial

determinism in their disk access patterns; besides sequential accesses to portions of

files, fragments of the block access sequence that lead to non-sequential disk accesses

also repeat. We elaborate on these observations in § 3.2.

While the above observations mostly validate the prior studies, and may even

appear largely intuitive, surprisingly, there is a lack of commodity storage systems

that utilize these observations to reduce I/O times. We believe that such systems do

not exist because (i) key design and implementation issues related to the feasibility

of such systems have not been resolved, and (ii) the scope of effectiveness of such

systems has not been determined.

We built BORG, an online Block-reORGanizing storage system to comprehen-

sively address the above issues. BORG correlates disk blocks based on block access

patterns to capture the I/O workload characteristics. It manages a dedicated,

BORG OPtimized Target (BOPT) partition and dynamically copies working-set

data blocks (possibly spread over the entire disk) in their relative access sequence

contiguously within this partition, thus simultaneously reducing seek and rotational

delays. In addition, it assimilates all write requests into the BOPT partition’s write

buffer. Since BORG operates in the background it presents little interference to fore-

ground applications. Also, BORG provides strong block-layer data consistency to

58

upper layers, by maintaining a persistent page-level indirection map.

We evaluated a Linux implementation of BORG for a variety of workloads in-

cluding a development workstation, an SVN server, a web server, a virtual machine

monitor, as well as several individual desktop applications for single disk as well as

multiple disks. The evaluation shows both the benefits and shortcomings of BORG

as well as its resource overheads. Particularly, BORG can degrade performance when

a non-sequential read workload suddenly shifts its on-disk working-set. For most

workloads, however, BORG decreased disk busy times in the range 6% to 50%,

offering the greatest benefit in the case of non-sequential write-mostly workloads

without tuning BORG parameters for optimality. A sensitivity study with vari-

ous parameters of BORG demonstrates the importance of careful parameter choice

which can lead to even greater improvements or degrade performance in the worst

case; a self-configuring BORG is certainly a logical and feasible direction. Mem-

ory overheads of BORG are bound within 0.25% of BOPT, but CPU overheads are

higher. Fortunately, most processing can be done in the background and there is

ample room for improvement.

In this chapter, we: (i) study the characteristics of I/O workloads and show how

the findings motivate BORG (§ 3.2) , (ii) motivate and present the detailed design

and the first implementation of a disk data re-organizing system that adapts itself

to changes in the I/O workload (§ 3.3 and § 3.4), (iii) present the challenges faced in

building such a system and our solutions to it (§ 3.5), and (iv) evaluate the system

to quantify its merits and weaknesses (§ 3.6).

59

3.2 Characteristics of I/O Workloads

In this section, we investigate the characteristics of modern I/O workloads, specif-

ically elaborating on those that directly motivate BORG. We collected I/O traces,

downstream of an active page cache, over a one-week period from four different

machines.

These machines have different I/O workloads, including office and developer

desktop workloads, a version control SVN (Subversion) server, and a web-server.

The office and developer workloads are single-user workloads. The former workload

was composed mostly of web-browsing, graph plotting with gnuplot, and several

open-office applications, while the latter consisted of extensive development using

emacs, gcc, and gdb, document preparation using LATEX, email, web-browsing, and

updates of the operating system.

Workload File System Memory Reads [GB] Writes [GB] File System Top 20%

type size [GB] size [GB] Total Unique Total Unique accessed data access

office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 %

developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 %

SVN server 2.39 0.5 0.29 0.17 0.62 0.18 14.60 % 45.79 %

web server 169.54 0.5 21.07 7.32 2.24 0.33 4.51 % 59.50 %

Table 3.1: Summary statistics of week-long traces obtained from four different
systems.

The SVN server hosted document and project code-base repositories for our 6-

person research group. Finally, the web-server workload mirrored the web-requests

made to our department’s production web-server on one of our lab machines and

served 1.1 million web requests during the trace period.

Key statistics for these workloads are summarized in Table 3.1. We define the

on-disk working-set (henceforth also referred to simply as “working-set”) of an I/O

workload as the set of all unique blocks accessed in a given interval.

60

P
a
g
e

a
c
c
e
ss

fr
e
q
u
e
n
c
y

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

Rank

Writes
Reads

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

Rank

Writes
Reads

(a) Rank frequency

(b) Disk heat map

D
a
ta

a
c
c
e
ss

o
v
e
rl

a
p

w
it

h
D

a
y

1
(%

)

 0

 20

 40

 60

 80

 100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Days of the week

All accesses
Top 20% accesses

 0

 20

 40

 60

 80

 100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Days of the week

All accesses
Top 20% accesses

(b) Working set
office workload developer workload

Figure 3.1: Rank-frequency, heatmap, and working-set plots for week-long traces
for two different systems.

61

P
a
g
e

a
c
c
e
ss

fr
e
q
u
e
n
c
y

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

Rank

Writes
Reads

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

Rank

Writes
Reads

(a) Rank frequency

(b) Disk heat map

D
a
ta

a
c
c
e
ss

o
v
e
rl

a
p

w
it

h
D

a
y

1
(%

)

 0

 20

 40

 60

 80

 100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Days of the week

All accesses
Top 20% accesses

 0

 20

 40

 60

 80

 100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Days of the week

All accesses
Top 20% accesses

(b) Working set
SVN server web server

Figure 3.2: Rank-frequency, heatmap, and working-set plots for week-long traces
for two server systems.

62

3.2.1 Non-uniform Access Frequency Distribution

Researchers have pointed out that file system data have non-uniform access fre-

quency distribution [?, ?, ?]. This was confirmed in the traces that we collected

where less than 4.5-22.3% of the file system data were accessed over the duration

of an entire week (shown in Table 3.1). We observe that the office and web server

workloads are read mostly, while the developer and SVN server are write mostly.

Figures 3.1 and 3.2 (top row) shows page access rank-frequency plots for the work-

loads; file system pages were 4KB in size, composed of 8 contiguous blocks. A

uniform trend to be observed across the various workloads is that the really high

frequency accesses are due write to requests. However, and especially in the case

of the read-mostly office and web server workloads, there are a large number of

read requests that occur repeatedly. In either case (read or write), the access fre-

quencies are highly skewed. Figures 3.1 and 3.2 (middle row) depicts disk heatmaps

created by partitioning the disk into regions and measuring accesses to each region.

The heatmaps depict frequency of accesses in various physical regions spread over

the entire disk area, each cell representing a region. Six normalized, exponentially-

increasing heat levels are used in each heatmap where darker cells represent higher

frequency of accesses to the region. Disk regions are mapped to cells in row-major

order.

Skewed data access frequency is further illustrated in Table 3.1 – the top 20%

most frequently accessed blocks contributed to a substantially large (∼45-66%) per-

centage of the total accesses across the workloads, which are within the ranges

reported by Gómez and Santonja (Figure 2(a) in [?]) for the Cello traces they ex-

amined.

Based on the above observations, it is reasonable to expect that co-locating

frequently accessed data in a small area of the disk would help reduce seek times

63

when compared to the same data being spread throughout the entire disk area.

Akyurek and Salem [?] have demonstrated the performance benefits of such an

optimization via a simulation study. This observation also motivates reorganizing

copies of popular blocks in BORG.

3.2.2 Temporal Locality

Temporal locality in I/O workloads is observed when the on-disk working-sets remain

mostly static over short durations. Here, we refer to a locality of hours, days, or

weeks, rather than seconds or minutes (typical of main memory accesses). For

instance, a developer may work on a few projects over a period of a few weeks or

months, typically resulting in her daily or weekly working sets being substantially

smaller than her entire disk size. In servers, popularity of client requests result in

temporal locality. A web server’s top-level links tend to be accessed more frequently

than content that is embedded much deeper in the web-site; an important new

revision of a specific repository on an SVN server is likely to be accessed repeatedly

over the initial weeks.

Figures 3.1 and 3.2 (bottom row) depict the changes in the per-day working-sets

of the I/O workload. The two end-user I/O workloads and the web server workload

exhibit large overlaps in the data accessed across successive days of the week-long

trace with the first day of the trace. There is substantial overlap even among the

top 20% most accessed data across successive days. Interestingly, these workloads

do not necessarily exhibit a gradual decay in working-set overlap with day 1 as

one might expect, indicating that popularity is consistent across multi-day periods.

The SVN server exhibits anomalous behavior because of the commit and update

operations. Periods of high commit activity degrade temporal locality as new data

64

gets created, while periods of high update activity improve temporal locality.

These observations indicate that optimizing layout based on past I/O activity

can improve future I/O performance for some workloads and motivates planning

block reorganization based on past activity in BORG.

3.2.3 Partial Determinism

Workload Partial

type determinism

office 65.42 %

developer 61.56 %

SVN server 50.73 %

web server 15.55 %

Table 3.2: Partial Determinism in week-long traces obtained from four different
systems.

Partial determinism in I/O workload occurs when certain non-sequential ac-

cesses in the block access sequence are found to repeat. A non-sequential access

is defined by a sequence of two I/O operations that are addressed non-contiguous

block addresses. It manifests in both end-user systems and servers. For instance,

I/O during application start-up is largely deterministic, both in terms of the set of

I/O requests and the sequence in which they are requested. Reading files related

to a repeatable task such as setting up a project in an integrated development en-

vironment, compilation, linking, word-processing, etc. result in a deterministic I/O

pattern. In a web-server, accessing a web-page involves accessing associated sub-

pages, images, scripts, etc., in deterministic order. Partial determinism has been

well-explored in previous literature for its use in prefetching and caching [?, ?] and

also more recently for disk layout [?, ?].

65

In Table 3.2, we present the partial determinism for each workload calculated

as the percentage of non-sequential accesses that repeat at least once during the

week. The partial determinism percentages are high for the two end-user and the

SVN server workloads. Further, for each of these workloads, there were a non-

trivial amount of non-sequential accesses that repeated as many as 100 times. These

findings suggest that there is ample scope for optimizing the repeated non-sequential

access patterns.

3.3 Overview and Architecture

BORG is motivated by the simple question: What storage system optimizations

based on workload characteristics can allow applications to utilize the disk drive

more efficiently than current systems do? We conceived BORG with the goal of

making the storage system aware of changing workload and pro-actively reducing

on-disk mechanical delays. This section presents the rationale behind the design

decisions in BORG and its system architecture.

3.3.1 BORG Design Decisions

A Disk-based Cache.

The operating system uses main memory to cache frequently and recently accessed

file system data to reduce the number of disk accesses incurred. In any given du-

ration of time, the effectiveness of the cache is largely dependent on the on-disk

working-set of the I/O workload, and can degrade when this working-set increases

beyond the size of the page cache. Storage optimizations such as prefetching [?, ?, ?]

and I/O scheduling [?, ?, ?, ?] help improve disk I/O performance in such situations.

While good prefetching solutions can help reduce the number of I/O requests and

66

amortize seek and rotational delay costs, improved I/O scheduling can help reduce

head movement to the extent that the physical data layout and application access

patterns permit.

Using a disk-based cache as an extension of the main memory cache offers three

complementary advantages in comparison to main memory caching alone, prefetch-

ing, and I/O scheduling. First, it is more effective as a cache (than main memory)

because it offers a less expensive (and thus larger) as well as reliable caching solu-

tion, thus allowing data to be cache-resident for long periods of time. Second, the

size of the disk-based cache can easily be configured by the system administrator

without changing any hardware. And finally, dynamically optimizing data layout

based on access patterns within a disk-based cache provides the unique ability to

make originally non-sequential data accesses more sequential.

A Block Layer Solution.

A self-optimizing storage solution can be built at any layer in the storage stack

(shown in Figure 3.3). Block level attributes of disk I/O operations are not easily

obtained at the VFS or the page cache layer. While file system layer solutions can

benefit from semantic knowledge of blocks, they incur a significant disadvantage

in being tied to a specific file system (and perhaps even version). Device driver

encapsulations (interface at P4) are incapable of capturing upper layer attributes,

such as process ID and request time-stamp due to I/O scheduler re-ordering and loss

of process context. Interestingly, several studies [?, ?, ?, ?] use P4 as the profiling

point. Since our design requires both the process- and block- level attributes as well

as preservation of the temporal ordering of request issue events, we use P3 as the

profiling point.

We contend that the block layer (interface at P3) is ideal for introducing block

reorganization for several reasons. First, key temporal, block- and process- level

67

attributes about disk accesses are available. Second, operating at the block layer

makes the solution independent of the file system layer above, allowing it the flex-

ibility to support multiple heterogeneous file systems simultaneously. Finally, new

abstractions due to virtualization trends (e.g., virtual block device abstraction) as

well as network-attached storage environments (SAN and NAS) can be supported

in a straightforward way. In the case of SAN, BORG can reside on the client where

all context for I/O operations are readily available with the underlying assumption

that the SAN device’s logical block address space is optimized for sequential ac-

cess. In the case of NAS, the BORG layer can reside within the NAS device where

I/O context is readily available. Modifying the NAS interface to include process

associations within file I/O requests can complete the profile information.

File System Oblivious

Making BORG independent of the file system has its trade-offs. While an imple-

mentation for a specific file system could show greater performance improvements,

it would be difficult to implement it as a module that can seamlessly be inserted or

removed on demand. Since BORG is independent of the file system above it, it can

be used with any Linux file system without any changes to the kernel code. Further,

BORG does not interfere with the data layout and autonomously manages it space

concerns which is a critical requirement for modularity in system architecture and

design.

Using an Independent BOPT partition.

The file system optimizes for sequential accesses to entire files, a common form of

file access. This is characteristic of certain workloads, including logging, background

maintenance, as well as streaming data applications. However, certain workloads,

including application start-up, content indexing and web-page requests, exhibit a

more non-sequential, but deterministic, access behavior. It is thus possible that

68

the same set of data can be accessed sequentially by some applications and non-

sequentially by others. Further, some deterministic non-sequential accesses may

only be temporary phenomenon.

Based on this observation, Akyurek and Salem [?] have argued in favor of copying

rather than shuffling [?, ?] of data. Copying retains original sequential layouts so a

choice of location based on the observed access pattern may be possible. Reverting

back to the original layout is straightforward. Similarly, rather than permanently

disturbing the sequential layout of files, BORG operates on copies of blocks placed

temporarily in an independent BOPT partition, optimizing for the current common

case of access for each data block. This also allows BORG to ensure co-location

of most accessed data to reduce seek, and a large contiguous space for reducing

rotational delay.

3.3.2 BORG Architecture

Applications

VFS

Page Cache

File System:

EXT3, JFS,

· · ·

BORG

I/O Scheduler

Device Driver

Analyzer Planner

I/O Profiler BOPT Reconfigurator

I/O Indirector

: New components : Existing Components : Control Flow

Figure 3.3: BORG System Architecture.

Abstractly, BORG follows a four-stage process:

1. profiling application block I/O accesses,

69

2. analyzing I/O accesses to derive access patterns,

3. planning a modification to the data layout, and

4. executing the plan to reconfigure the data layout.

In addition, an I/O indirection mechanism runs continuously, re-directing requests

to the partition that it optimizes as required. Figure 3.3 presents the architec-

ture of BORG in relation to the storage stack within the operating system. The

modification to the existing storage stack is in the form of a new layer, which we

term BORG layer, that implements three major components: the I/O profiler, the

BOPT reconfigurator and the I/O Indirector. A secondary throttle-friendly user-

space component implements the analyzer and the planner stages of BORG and

performs computation and memory-intensive tasks. While profiling and indirection

are both continuous processes, the other stages run periodically and in succession

culminating in a reconfiguration operation.

For the I/O profiler, we use a low-overhead kernel tool called blktrace [?]. The

analyzer reads the I/O trace collected by the profiler and derives data access pat-

terns. Subsequently, the planner uses these data access patterns and generates a new

reconfiguration plan for the BOPT partition, which it communicates to the BOPT

reconfigurator component. The user-space analyzer and planner components run as

a low-priority process, utilizing only otherwise free system resources. Under heavy

system load, the only impact to BORG is that generating the new reconfiguration

plan would be delayed.

The BORG OPtimized Target partition (BOPT) is a disk partition used exclu-

sively by BORG. The BOPT reconfigurator is responsible for the periodic reconfigu-

ration of the BOPT partition, according to the layout plan specified by the planner.

The reconfigurator issues low-priority disk I/Os to accomplish its task, minimizing

the interference to foreground disk accesses. Finally, the I/O indirector continuously

70

directs I/O requests either to the FS partition or the BOPT partition, based on the

specifics of the request and the contents of the BOPT.

3.3.3 BOPT Space Management

Disk: .. Borg Meta-data Read-Cache Write-Buffer ..
BOPT

(a) BOPT overview

· · ·
Segment Segment

(b) Read-Cache detail

· · ·
Segment Segment

(c) Write-Buffer de-
tail

: Read-Cache segment map : Write-Buffer segment map + valid entries counter : Data blocks

Figure 3.4: Format of the BOPT partition. Each entry in the Write-Buffer and
Read-Cache map tables is a 3-tuple of the form (FS LBA, BOPT LBA, valid bit).

The OPtimized Target partition (BOPT) as managed by BORG is shown in

Figure 3.4. To reduce head movement, we suggest that the BOPT partition be

created adjoining the swap partition if virtual memory is used. BORG partitions

the BOPT into three fragments: BORG Meta-data, Read-cache, and Write-buffer.

The Read-cache and Write-buffer are further sub-divided into fixed-length segments

which store both data and (valid/invalid) map entries for the segment. The in-

memory indirection map (elaborated in § 3.4.5) maintained by BORG is a union of

all the segment map entries in the BOPT. The BOPT map entries are synchronously

updated each time the in-memory map information changes. Additionally, the seg-

ment map in the write-buffer contains a “valid entries counter” to track space usage

in the write buffer.

Table 3.3 depicts the BOPT meta-data fragment. It stores key persistent infor-

mation that aid in the operation of BORG. The BORG REQUIRE bit is set when the

71

Magic number BORG BOPTpartition identifier.
BORG REQUIRE bit BOPT contains dirty data.
BOPT size BOPT partition size.
Read-cache info Offset and size of the Read-cache.
Write-buffer info Offset and size of the Write-buffer.
Segment size Fixed size of segments in the BOPT.

Table 3.3: Borg meta-data.

BOPT contains data that requires to be copied back to the FS. If set, the operating

system initiates BORG at boot time to ensure consistent data accesses. The remain-

ing meta-data information is used to correctly populate the in-memory indirection

map structure during BORG initialization.

3.4 Detailed Design

In this section, we present the design details of BORG by elaborating on its indi-

vidual components.

3.4.1 I/O Profiler

The I/O profiler is a data collection component that is responsible for compre-

hensively capturing all disk I/O activity. The I/O profiler generates an I/O trace

that includes the temporal (timestamp of the request), process (process ID and

executable) and the block-level (address range and read/write mode) attributes as

shown in Figure 3.4.

We use the Q events reported by blktrace [?], which capture the I/O requests

queued at the block layer. These include all requests as issued by the file system(s),

including any journaling and/or page destageing mechanisms. We defer further

details to the blktrace work [?].

72

[Timestamp] [PID] [Exec.] [StartLBA] [Size] [Mode]

705423195774700 5745 screen 6914207 32 R
705423259644748 5745 utempter 24379775 8 R
705423379492524 5745 utempter 24787567 8 R
705423421266908 5753 bash 7498311 24 R
705423454005104 5745 utempter 24793415 8 R
705423493292648 5756 bash 34543375 64 R
705423565122668 5756 stty 34543439 16 R

Table 3.4: A sample I/O trace.

3.4.2 Analyzer

The analyzer is responsible for summarizing the disk I/O workload. It first splits

the I/O trace obtained from the profiler into multiple I/O traces, one per process.

Each process trace is used to build a directed process access graph Gi(Vi, Ei), where

vertices represent LBA ranges and edges a temporal dependency (correlation) be-

tween two LBA ranges. The weight on an edge between vertices (u, v) represents

the frequency of accesses (reads or writes) from u to v. The directed and weighted

graph representation is powerful enough to identify repeated sequences of multiple

non-sequential requests.
Process graphs r and s Master access graph after merging r and s

r1:(0, 3)

s1:(1, 6)

r2:(4, 2)

s2:(9, 1)

r3:(8, 2)

r1:(0, 1) s1:(6, 1)

r1, s1:(1, 2) r2, s1:(4, 2) r3:(8, 1)

s1:(3, 1) r3, s2:(9, 1)

1

1

2 1

1

1

1

1

1

1

LBA space: 0 1 2 3 4 5 6 7 8 9 10 · · ·

r1

s1

r2 r3

s2

Figure 3.5: Building the master access graph.

Since multiple processes may access the same LBA, a single master access graph

G(V, E), that captures all available correlations into a single input for the reconfig-

uration planner is created (illustrated in Figure 3.5). The vertices in the graph are

73

defined by (start LBA, size of request). Since vertices r1 and s1 have overlapping

LBAs, r1 is split into two vertices in the master access graph, one with size 1 and the

other with the overlapping s1 blocks, starting at LBA 1 with size 2. The complexity

of the merge process increases if two vertices (either within the same graph or across

graphs) have overlapping ranges. This is resolved by creating multiple vertices so

that each LBA is represented in at most one range vertex. Figure 3.5 illustrates the

merge process. The I/Os in this figure are tagged ri and si corresponding to the

process graphs r and s respectively. Since r1 and s1 have overlapping LBAs, r1 is

split into two vertices, one with size 1 and the other which contains the overlapping

blocks, starting from LBA 1 with size 2, with s1. The edge weights between r1

and r1,s1 remain unchanged, since the LBA range r1, s1(1,2) is accessed only once.

Likewise, all the overlapping vertices are split and merged and the master graph is

obtained.

A simplistic algorithm to illustrate the splitting procedure is shown in Algo-

rithm 4.U and V are the LBA’s represented by the vertices u, v respectively and i,

j, k are the new vertices that are created.

Algorithm 4: Split Vertices

Require: Graph G
1: for every vertex v in G do
2: for every other vertex u in G do
3: i = U ∪ V
4: j = U - V
5: k = V - U
6: for x in u and v do
7: Move the incoming edges to x to the vertex with the same starting LBN
8: Move the outgoing edges to x to the vertex with the same ending LBN
9: Where x was split, add an edge with weight = max(incoming, outgoing)

weight for x
10: end for
11: end for
12: end for

74

An optimization we implement to reduce the complexity of the merge algorithm

is to keep the vertices sorted by their initial LBA. The total time complexity for

the analyzer stage is given by O(n × l), where n is the number of vertices and l is

the size (in LBA) of the largest vertex in the graph. Once the merge operation is

completed, the master access graph, G, is obtained.

3.4.3 Planner

The planner takes the master access graph, G, as input and determines a recon-

figuration plan for the BOPT partition. It uses a greedy heuristic that starts by

choosing for placement the most connected vertex, u, i.e., with the maximum sum

of incoming and outgoing edges (Figure 3.6). Next it chooses the vertex v most

connected (in one direction only, either incoming or outgoing) to u. If v lies on

the outgoing edge of u, it is placed after u and if it lies on the incoming edge it

is placed before. The next vertex to be placed is the one most connected to the

group u ∪ v. This process is repeated until either all the vertices in G are placed,

or the read cache in the BOPT is fully occupied, or the edges connecting to the

unplaced vertices in the master graph have weight below a chosen threshold. If

the graph contains disconnected components, each of these are placed as separate

groups. The time complexity for the planner is O(n × lg(m) + n2) where n is the

number of vertices and m is the number of edges; finding the most connected vertex

takes O(n× lg(m)) time and finding the next vertex takes O(n) time .

Consider the master access graph in Figure 3.6. C is the most connected vertex

and is chosen for placement first. Next, vertex B is placed after vertex C since it is

connected by an outgoing edge and has the highest weight of all the edges connected

to C. Next, vertex G is placed before vertex group C ∪ B. The final sequence of

75

A B C

D E F G

H I J

8

5

7
1

7

10
7

2

2

6

6

9

2

6

9

3

8

9

4

3

8

Figure 3.6: Placing the master access graph.

vertices from the lowest LBA to the highest is: L = [F, H, J, A, G, C, B, E, D].

Based on this layout, the planner creates key information about the type of copy

operations that must be performed by the reconfigurator.

A copy can be of three types: (i) the new incoming where blocks are copied from

FS to BOPT, (ii) relocate where blocks are moved within the BOPT and (iii) the

outgoing blocks, that are evicted from the BOPT. This information is obtained by

comparing the current configuration of the BOPT partition, with the new layout

plan. In addition, we classify the blocks that retain their position in the BOPT as

static.

The above tags are used by the reconfigurator to minimize the data movement

between the OPT and the filesystem partitions as well as the data movement within

OPT. For instance, if a block is tagged as a small relocate, it means that it

remains in OPT but has to be moved to another location. Thus it can directly

be copied from its previous location to the new location in OPT. This saves the

additional overhead of copying it back to its original location in the filesystem and

then back to OPT.

76

3.4.4 BOPT Reconfigurator

The BOPT reconfigurator implements the plan created by the planner component by

performing the actual data movement to realize the new configuration of the BOPT.

This task is complicated primarily because of consistency and overhead concerns.

Overhead is partially addressed by issuing low-priority I/O requests for data layout

reconfiguration, making the use of a priority scheduler a prerequisite. BORG

ensures block data consistency between the FS and BOPT copies of data blocks by

maintaining a persistent indirection map, termed the borg map, that continuously

tracks the most up-to-date location of a data block. This map is updated each time

a block location changes.

The reconfigurator copies blocks in three stages; outgoing, where it copies all the

dirty blocks that are no longer in the new plan back to the original file system (FS)

location, relocate, where it copies blocks that have to be relocated within the BOPT,

and incoming where it copies all the new blocks that have to be copied from the

FS to the BOPT. A single data movement operation and the corresponding update

on borg map entry can be considered ‘atomic’ since any application write request

to the source LBA during data movement is put on hold until after the movement

is complete and the borg map entry is updated. This ensures that an up-to-date

version of data is always maintained by the file system.

The reconfiguration process is depicted in Figure 3.7. The planner uses the graph

G (obtained from the analyzer) and the current Current borg map to create the new

plan. The FS block C, identified as Incoming is currently being reconfigured. The

reconfigurator reads its information from the plan, copies the block from the FS

location C to the BOPT location C ′ and creates an entry in borg map.

77

Planner

6. Writes
to BOPT

5. Reads
FS block

3. Writes plan

BOPT Read Cache BOPT Write Buffer

Reconfigurator

2. Current Plan1. Graph G

BOPT
Space

FS
SpaceA

C

B’

W’

BD"

C’ C

Source Dest.

B B’
4. Reads plan

D’

Leaving

Relocate

Incoming

Legend:

Figure 3.7: Data Reconfiguration process.

3.4.5 I/O Indirector

The I/O indirector operates continuously, redirecting file system I/O requests as

required. An I/O request may be composed of an arbitrary number of pages. Each

page request is handled separately based on (i) number of blocks that can be satisfied

from the BOPT as per the borg map entry, (ii) type of operation (read or write) and

(iii) presence of a free page in the BOPT.

Algorithm 5 presents the formal algorithm used by the I/O indirector.

For each I/O request larger than one page, the indirector splits it into multiple

per-page requests (Line 1). Each page request is looked up in the borg_map to check

if it is mapped to the OPT.

If a mapping exists for all the pages of the I/O request in the borg map, the

request is indirected to the BOPT(Lines 3-7). If no mapping exists, and the re-

quest is a read request, it is issued unchanged to the file system (Line 12). If only

78

Algorithm 5: Indirect I/O Requests

Require: I/O Request: req, Indirection map: map
1: children← split req(req) {Returns a set composed by chunks of 8 blocks (1

page) afer splitting req}
2: mapped, not mapped← classify children(children)
3: if not mapped = ∅ then {All children are mapped}
4: for all r ∈ mapped do
5: r ← remap(r, map) {Remap the blocks in r to their location in OPT

according to the map table.}
6: issue(r)
7: end for
8: else if mapped = ∅ then {No child is mapped}
9: if type(req)==write AND space in opt(req, map) then

10: req ← remap(req, map)
11:
12: issue(req)
13: else {Partial translation}
14: for all r ∈ mapped do
15: r ← remap(r, map)
16: if type(r)== write then
17: borg map set dirty(r)
18:
19: issue(r)
20: end for
21: for all r ∈ not mapped do
22: if type(r)== write AND space in opt(r, map) then
23: r ← remap(r, map)
24: borg map set dirty(r)
25:
26: issue(r)
27: end for

79

some pages of a read I/O request are mapped and the mapped entries are clean,

the entire I/O is indirected to the file system; this optimization reduces the seek

overhead incurred to serve the request partially from the BOPT and the rest from

the FS (Line 19). For a write request, when no mapping exists for any of the pages,

the blocks are written to a write-buffer portion of the BOPT reserved for assimilat-

ing write requests (if space permits) along with an additional request for updating

corresponding mapping entries in the borg map (Lines 8-12) . For partially-mapped

writes, the mapped blocks are indirected to their BOPT locations; the unmapped

pages are also absorbed in the write-buffer, space permitting, otherwise these are

issued to the FS (Lines 14-26).

Figure 3.8 provides an illustration.

W’

A

C

B

B’

D

D"

FS
Space

Space
BOPT

Indirector
I/O

W’

C 1

B 0B’

C’

W’

borg_map

FS
Block

BOPT
Block Dirty

BOPT Read Cache BOPT Write Buffer

W

Request

W W’ 1

Write

Legend:

Figure 3.8: I/O Indirection.

80

3.4.6 Kernel Data Structures

The persistent data structure borg map is implemented as a radix tree such that

given an FS LBA, the BOPT LBA can be retrieved efficiently and vice-versa. It

also maintains the dirty information for the BOPT LBAs. For every page of 4KB,

BORG stores 4 bytes each for the forward and the reverse mapping and one dirty

bit. If all the pages in the BOPT of size S GB are occupied, the worst case memory

requirement is 2×S MB (S MB for forward and reverse mapping each), and S
25 MB

for the dirty information. Thus, in the worst case, borg map requires memory of

0.25% of the size of the BOPT partition, an acceptable requirement for kernel-space

memory.

3.5 Implementation Issues

In this section, we discuss the particularly challenging aspects of the BORG imple-

mentation that help address data consistency and overhead.

3.5.1 Persistent Indirection Map

Since BORG replicates popular data in the BOPT space, the system must ensure

that reads are always up-to-date versions of data, including after a clean shutdown

or a system crash. BORG implements a persistent borg_map, which is distributed

within read-cache and write-buffer segments of the BOPT. Map entries on-disk

are updated (along with their in-memory version) each time the BOPT partition

is reconfigured or when a new map entry is added to accommodate a new write

absorbed into the BOPT. Upon writes to an existing BOPT mapped block, its

indirection entry in the in-memory copy of the reconfiguration map is marked as

81

dirty, once the I/O is completed. To minimize overhead for BOPT writes, we chose

not to maintain dirty information in the on-disk copy. Upon reboot after an unclean

shut down, all entries in the persistent map are marked as dirty and future IOs to

these blocks are directed to the BOPT. This guarantees that even on a system

failure, the most up-to-date data is accessed upon reboot.

3.5.2 Indirection during Reconfiguration

During reconfiguration, data is copied from source to destination locations. I/O

requests issued by applications during reconfiguration of associated data give rise to

race conditions. While it is perhaps simpler to postpone servicing the application

I/O request until the reconfiguration operation for the associated data is completed

(to ensure data consistency), this (substantial) delay affecting the application can be

avoided. We designed special policies to handle read and write operations issued by

the application during reconfiguration. If the application issued a read request to a

page being moved due to reconfiguration from source to destination, the indirector

dispatches the read to the source page location. For a write request, the request

is issued to the destination location, the page movement is discontinued, and the

borg map is updated. These policies help to alleviate the overhead the reconfiguration

causes to the user level applications by minimizing I/O wait time for foreground I/O

operations.

3.5.3 Optimizing Reconfiguration

Consider a set L of n LBAs, L1, · · · , Ln, sequentially located in the BOPT space. L

forms a chain if ∀Li ∈ L, where Li 6= Ln, Li has to be relocated to location Li+1 and

Ln is an outgoing block. If Ln, has to be relocated to L1 within the BOPT, L forms a

82

cycle. Information about chains and cycles, that occur exclusively for the relocated

blocks, can be used to further optimize data movement during the reconfiguration

operation. If a cycle exists, it is broken by copying the last block Ln back to the FS

(if dirty) and then deleting the plan entry for that block; an additional plan entry

is then created to mark this as incoming block to Lo. Next, all remaining blocks

belonging to the same chain/cycle are copied to their new locations in the BOPT. To

do so, the reconfigurator issues all reads to the source locations in parallel; once all

reads have been completed, it issues all the writes in parallel, in each case allowing

the I/O scheduler to optimize the request schedule.

3.5.4 Request Splitting

BORG maintains metadata at the granularity of a page (rather than block) to reduce

metadata memory requirement (by 8X for Linux file systems). Consequently, the

indirector must carefully handle I/O requests whose sizes are not multiples of the

page-size and/or which are not page-aligned to the beginning of the target partition.

We address this issue via I/O request splitting and page-wise indirection, techniques

borrowed from our earlier work on EXCES [?], a block-layer extension that manages

a persistent cache for reducing disk power consumption.

3.5.5 Module Unload

BORG is dynamically included in the I/O stack by substituting the make request

function of the device targeted for performance optimization. While module in-

sertion is straightforward, module removal/unload must ensure that all the data

from the BOPT has been copied back to their original locations in the file system

and handle foreground I/O correctly. Once again, BORG uses techniques from EX-

83

CES [?] and flushes dirty BOPT blocks to their original locations in the file system

upon removal. To address race conditions caused when an application issues an

I/O request to a page that is being flushed to disk, BORG stalls (via sleep) the

foreground I/O operation until the specific page(s) being flushed are written to the

disk.

3.6 Evaluation

In this section, we compare the performance of BORG with a vanilla system in

which all the blocks are located in their original FS space under various workloads

to answer the following questions.

(i) How well does BORG perform?

We use the total disk busy time (i.e., excluding all idle periods) as the primary

metric of performance. Due to BORG’s optimizations, apart from the potentially

improved head positioning times, the degree of merging of requests may also be

increased when compared with the vanilla configuration, thus changing the request

pattern itself. Thus, the more common I/O response time metric is an ill-suited

choice. The total disk busy time (henceforth simply referred to as disk busy time) is

also robust against the trace-replay speedups we employ in some of our experiments.

(ii) Why is BORG effective?

We would like to know if BORG performance gains are because of the sequential-

ity or the proximity of data (or both) in the BOPT. We use two metrics, average

seek distance and non-sequential accesses percentage for this purpose. The latter is

measured as # Seeks
BlocksRead

. Since non-sequential accesses are at least an order of mag-

nitude less efficient than sequential accesses, even a small reduction in this metric

may lead to substantial performance benefit.

84

Further, to evaluate the importance of capturing access patterns in BORG, we

compare BORG against a strawman hot-block caching mechanism that uses a greedy

heuristic and places the most popular blocks in the order of the highest number of

accesses without taking into account access patterns.

(iii) When is BORG not effective?

BORG can degrade the system performance for certain workloads. We evaluate

BORG for varying workloads to determine in which cases it could perform worse

than the vanilla system.

(iv) How much CPU resource overhead does BORG incur?

While the upper bound on memory overhead was examined in § 3.4.6, the CPU

resources consumed by BORG should also be within acceptable limits. We use the

execution times for various stages of BORG as an approximate measure of CPU

resource utilization.

(v) How is BORG affected by its parameters?

We perform a sensitivity analysis of BORG to its parameters - reconfiguration in-

terval, BOPT size, and BOPT write buffer fraction - to evaluate their impact on

performance.

(vi) How does BORG perform with RAID systems?

To observe the impact of BORG on multi-disk systems, we evaluate BORG perfor-

mance on different RAID configurations. We use the average per-disk busy times

as our metric for the RAID experiments.

Experimental Setup. All experiments were performed on machines running the

Linux 2.6.22 kernels. We used host machines, O1 through O5, with differing hardware

configurations and disk drives (Table 3.5). We used reiserfs for O1 and O3, and

85

Host Make Model
RAM Capacity (GB)

(MB) Total FS BOPT

O1 WD 2500AAKS 1024 250 46 1

O2 WD 360GD 1024 39 24 2

O3 Maxtor 6L020L1 1024 20 15 2

O4 WD 2500AAKS 1024 250 180 8

O5 Maxtor 6L020J1 1536 20 8 1

Table 3.5: Experimental test-bed details.

ext3 for the rest. No additional hardware was required to implement BORG.

We conducted four different sets of experiments. The first set uses week-long

traces of a developer’s system and a Subversion control server (SVN). The second

experiment is an actual deployment of a web server that mirrors our CS department’s

web server. The third experiment evaluates BORG performance in a virtual machine

environment. The fourth experiment evaluates the performance improvement due

to BORG for application start-up events.

In each experiment, we performed 4 reconfigurations equally spaced in time;

this gave us a reasonable number of phases for detailed analysis. By not choosing

more favorable times such as idle disk periods based on well-known diurnal workload

cycles, we would only over-estimate the overhead of BORG during reconfiguration.

We further discuss the selection of this parameter in § 3.6.5 and § 5.2.2. Finally, we

use the notation Ri and Nj in various graphs to denote reconfiguration phase i and

non-reconfiguration phase j respectively.

3.6.1 Trace Replay

To evaluate BORG under realistic workloads, we conducted trace replay experi-

ments using SVN server and developer workloads described in Table 3.1. For the

traces and the replay, we used blktrace and btreplay respectively [?]. We used an

86

 0

 10

 20

 30

 40

 50

 60

N
1

R
1

N
2

R
2

N
3

R
3

N
4

R
4

N
5

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Phases

Vanilla
BORG

Figure 3.9: Disk busy times in various phases of the SVN server trace replay.

acceleration factor of 168X that reduces the experimentation time from one week to

a manageable one hour after verifying that the resultant block access sequence was

unaffected. The trace-playback acceleration factor was reverted to 1X during each

reconfiguration operation to accurately estimate reconfiguration overhead. Since we

only measure disk busy times, the comparison between normal and reconfigurations

phases remains valid despite the varying acceleration factors. To understand the

impact of BORG on user perceived times we also measured the total processing

times for per-request I/O response time for each of the phases. This metric reflects

the time for the complete life cycle of an I/O request including the time needed to

put a request in the I/O scheduler queue, to dispatch the request to the storage

device and to service the request from the device.

SVN Server

For the SVN server trace replay, we used the host O2 (Table 3.5). The write buffer

size was set to 20% of the BOPT size. Figure 3.9 shows the disk busy times during

different phases of the experiment. Ri and Nj correspond to reconfiguration phase

87

i and non-reconfiguration phase j respectively. R3 and R4 are beyond the y-axis

range with values of 272 and 564 seconds respectively. In all the reconfiguration

phases the busy time with BORG is notably higher than the vanilla case. This is

due to substantial head movement during reconfiguration for relocating blocks. The

longest reconfiguration phase lasted approximately 10 minutes. R3 and R4 have

substantially higher busy time than the previous two reconfigurations. After trace

analysis, we found that while the amount of data movement was similar across the

four reconfiguration instances, in the latter two phases, the I/O scheduler merge

ratio and the sequential disk accesses dropped dramatically; this can be attributed

to the blocks relocated within the BOPT being spread out more than in the previous

reconfigurations. However, As is evident by the vanilla busy times, the foreground

activity during these intervals are negligible and thus the increased reconfiguration

durations have little impact to foreground I/O.

In all the non-reconfiguration phases, each of which lasted 1.75 days approxi-

mately, BORG offers better performance for foreground I/O than the vanilla con-

figuration. In the best case (range N2), BORG decreases the disk busy time by

approximately 45%. This is a surprising result, since as per Figure 3.2, the working-

set for this workload undergoes rapid shifts. The explanation lies in the fact that the

SVN server is a write-intensive workload and the BOPT write-buffer is successful in

sequentializing a rapidly changing, possibly non-sequential, write workload. Anal-

ysis of the block level traces revealed that with BORG, the non-sequential access

percentage reduced from 1.70% to 1.15%, and the average seek distance reduced

from 704 to 201 cylinders during the non-reconfiguration phases.

Table 3.6 shows the total processing times,that reflects the impact BORG has on

user-perceived times, for the I/O requests in their different phases. As before, the

reconfiguration phases show higher response time with BORG since these requests

88

SVN Developer

Phases vanilla BORG vanilla BORG

N1 269 268 89 87

R1 2 5810 1 662

N2 95 54 71 60

R2 11 3257 1 766

N3 369 367 8 6

R3 220 8070 2 891

N4 319 223 5 3

R4 426 7776 1 917

N5 349 317 8 8

Table 3.6: Per request I/O response times (in msecs) for different phases of SVN
and Developer workloads.

 0

 100

 200

 300

 400

 500

 600

 700

N
1

R
1

N
2

R
2

N
3

R
3

N
4

R
4

N
5

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Phases

Vanilla
BORG

Figure 3.10: Disk busy time in various phases of the developer trace replay.

are issued asynchronously and result in higher queueing times.

Developer

For the developer trace replay, we used the host O1 (Table 3.5) with the BOPT write

buffer set to 40% of the BOPT size. Figure 3.10 shows the disk busy time for this

experiment in various phases. Ri and Nj correspond to reconfiguration phase i and

non-reconfiguration phase j respectively. Table 3.6 shows the total I/O time. With

this workload, the longest measured reconfiguration phases were R3 and R4 which

89

lasted approximately 7 minutes each. We observe reduced disk busy times (13% to

50% reductions) across the non-reconfiguration periods, except for N5 which shows

an increase of 25%. Overall, the developer workload is a write-mostly workload and

thus, largely conducive to BORG optimizations. Analysis of the block level traces

revealed that overall, the non-sequential access percentage reduced from 3.93% to

3.30%, and the average seek distance reduced from 1203 to 782 cylinders when using

BORG.

3.6.2 Web Server

To evaluate BORG in a production server environment, we made a copy of the

our Computer Science department web server on the O4 machine (see Table 3.5),

and replayed all the web requests for a week. During this week a total of 1137234

requests to 256017 distinct files were serviced. We set BORG to reconfigure four

times during this period, using an BOPT of 8GB (< 5% of the 180GB web server

file system). To measure the influence of the I/O history, we conducted two sets

of experiments. In the first experiment, we used all the traces gathered from the

beginning of the experiment as input to the reconfigurator (cumulative). For the

second, we only used the portion of the trace corresponding to the period since the

last reconfiguration (partial).

Figure 3.11 shows the improvements in disk busy time across various non-

reconfiguration and reconfiguration phases during the experiment. For both

the cumulative and partial experiments, BORG reduces disk busy time in all non-

reconfiguration phases with reductions ranging from 14% to 35% for cumulative and

5% to 39% for the partial configuration, except N5 for cumulative which reported

a 6% increase for cumulative due to drastic change in the last interval’s workload.

90

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N
1

R
1

N
2

R
2

N
3

R
3

N
4

R
4

N
5

D
is

k
B

us
y

T
im

e
(s

ec
)

Phases

Vanilla
BORG-C
BORG-P

Figure 3.11: Disk busy time for the week long web log replay. Borg-C and Borg-P
correspond to using cumulative and partial traces respectively.

Disk busy times in reconfiguration phases are typically higher due to the overhead

of copying data to the BOPT. Nevertheless, BORG was able to obtain overall re-

ductions of 14% and 18% for cumulative and partial configuration. It is interesting

to note that short term training yielded better results in this case, perhaps due to

greater influence of short term locality.

 0

 5000

 10000

 15000

 20000

 25000

 30000

C P C P C P C P

T
im

e
(s

ec
)

Reconfigurations

Analyzer
Planner

Reconfigurator

R4R3R2R1

Figure 3.12: BORG overhead. Bars C and P represent the cumulative and partial traces

experiments respectively. Ri indicates the ith reconfiguration.

Next we examine operational overhead of BORG. Figure 3.12 shows the amount

91

of time spent in each phase of the reconfiguration. With cumulative traces, the time

required for the analyzer and planner phases increases linearly. While the planner

and analyzer stages can run as low-priority tasks in the background, we must point

out that the current implementation of BORG analyzer and planner stages are highly

unoptimized and there is substantial room for improvement. We discuss possible

improvements for both subsystems in §5.2.2. With partial traces, the time increases

until the second reconfiguration, but then decreases and stays almost constant for

the following ones, indicating a gradually stabilizing working-set.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C P C P C P C P

of

 P
ag

es
 (

m
ill

io
ns

)

Reconfigurations

Incoming
Leaving

Relocate

R4R3R2R1

Figure 3.13: Differences in the reconfiguration plans.

To explain this further, we examined the reconfiguration plan divided by the

type of operation (refer to § 3.4.4), presented in Figure 3.13. We note that the

size of the plan consistently increases when using cumulative traces and most of

the movements correspond to page relocates, which are page movements within the

BOPT itself. The story is quite different for partial traces, where we see pages not

accessed in the past interval leaving the BOPT, resulting in a smaller working set in

the BOPT and thereby reducing the amount of work done by the analyzer, planner,

and reconfigurator stages.

92

3.6.3 Virtual Machines

BORG has the potential to significantly improve the performance of virtualized

environments, by co-locating multiple virtual machine (VM) localities spread across

a physical volume. We evaluated the impact on the per-VM boot time and the

overall performance of virtual machines by deploying BORG in a Xen [?] virtual

machine monitor. We created four VMs, each with 64MB memory and 4GB physical

partition on the host O5 (refer to Table 3.5). For evaluating boot-time improvement,

we trained BORG with the boot-time events of all the virtual machines. BORG

showed an almost 3X average improvement in VM boot-times - 167 seconds with

vanilla and 65 seconds with BORG.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N
1

R
1

N
2

R
2

N
3

R
3

N
4

R
4

N
5

D
is

k
B

us
y

T
im

e
(s

ec
)

Phases

Vanilla
BORG

Figure 3.14: BORG with a VMM.

To measure normal execution performance improvement for the VMs, we ran

the Postmark benchmark which emulates an e-mail server and creates and updates

small files. We set the number of files to be 2000 in 500 directories and performed

200,000 transactions. We reconfigured BORG after every 20% of the benchmark

was executed with the training set including I/O operations from the start of the

execution of the benchmark. The results for the I/O performance are shown in

93

App Start-up time Rand. I/O % Avg seek (#cyl)

V B V B V B

firefox 3.71 2.32 2.7 1.2 132 37

oowriter 5.30 2.74 3.8 0.2 193 20

xemacs 7.26 2.72 2.1 0.3 87 9

acroread 6.20 2.65 4.6 0.1 39 9

eclipse 4.12 1.52 2.5 0.3 198 29

gimp 3.62 3.66 2.5 2.1 102 63

ooimpress 5.18 1.97 2.7 0.3 61 39

Table 3.7: Application start-up time improvement. V: vanilla, B: BORG.

Figure 3.14. As before, the reconfiguration phases see a increased disk busy times

with BORG. For the normal operation, as the training set increases, the disk busy

times with BORG starts decreasing. Overall, there is an average decrease of 6% in

busy time during the non-reconfiguration phases. However, this improvement is not

consistent; performance degrades substantially even during normal operation in the

early stages of the benchmark. The loss of process context inside the VMM is a key

problem that tends to convert sequentially laid out files into non-sequential upon

reconfiguration. We believe that making BORG aware of process context inside the

VMM [?] can substantially improve the BOPT layout, resulting in much greater

performance benefit.

3.6.4 Application Start-up

We evaluated the impact of BORG on I/O-bound start-up phase for common desk-

top applications using host O3. We first trained the system for a duration of approx-

imately four hours, during which we invoked a subset of the applications listed in

Table 3.7 (but specifically excluding gimp and ooimpress) multiple times for perform-

ing common office tasks. We invalidated the page cache periodically to artificially

dilate time and simulate system reboots. Table 3.7 shows the difference in applica-

tion start-up times, the percentage of sequential accesses and average seek overhead.

94

For the applications that were used in training, it can be observed that there is a

noticeable improvement in the I/O time with BORG - at least 43% for oowriter

and up to 67% for eclipse. Further, it is interesting to observe that although the

percentage of sequential I/Os decreases for oowriter and acroread with BORG,

there is an overall improvement in I/O performance, possibly due to a reduction

in the rotational overhead . There is barely any difference in the performance for

untrained application gimp. However, although ooimpress was not used in the train-

ing, its start-up user-time shows an improvement of 62% in the average I/O time;

this can be attributed to large shared libraries also used by the oowriter which was

included in training.

3.6.5 Sensitivity Analysis

To gain maximum performance improvement with BORG its configurable param-

eters – the reconfiguration interval, the BOPT size, and the BOPT write buffer

fraction — must be carefully tuned for a given workload.

To better understand the effects of these parameters, we replayed the developer

and the SVN workload traces on host O1 varying each of these parameters over a

range of values. In all the experiments, the trace replay begins at the same starting

point, that is after a base reconfiguration, which uses the first six hours of the trace

as the training period. We measure the relative efficiency of disk I/O using BORG

averaged across the non-reconfiguration intervals by reporting the improvement in

disk busy time throughput (referred to henceforth as “throughput improvement”)

when compared to a vanilla system.

95

-20

 0

 20

 40

 60

 80

 100

3 days

2 days

1 day
12 hrs

8 hrs

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Reconfiguration Interval

Developer
SVN

(a)

-20

 0

 20

 40

 60

 80

 100

256M
B

512M
B

1GB
2GB

4GB
8GB

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Size of BOPT

Developer
SVN

(b)

-20

 0

 20

 40

 60

 80

 100

0% 25%
50%

75%
100%

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Write Buffer Fraction

Developer
SVN

(c)

Figure 3.15: A sensitivity analysis of BORG performance to its configurable param-
eters.

96

Reconfiguration Interval

Figure 3.15 (top) shows the percentage improvement over the vanilla system. The

reconfiguration interval is varied from 8 hours (18 reconfigurations) to 3 days (1

reconfiguration). To bootstrap the sensitivity analysis, the BOPT size is fixed to

1GB, with 50% reserved for write buffering in this experiment. For the developer

workload, as the reconfiguration interval increases the throughput increases, the

training set becomes larger, and BORG can more effectively capture the working-

set. For the SVN workload, the performance decreases for higher intervals. This

is because the SVN working-set changes quite frequently (elaboration in § 3.2 and

Figure 3.2).

BOPT size

We use the best-case reconfiguration intervals of 3 days for the developer and a day

for the SVN workload from the previous experiment. We vary the BOPT size from

256MB to 8GB, of which the write buffer is always chosen as 50% of the BOPT size.

Figure 3.15 (center) shows that as the BOPT size increases, BORG’s performance

with the developer workload increases since the developer workload has a larger

working set. When most of the blocks in the working set can be accommodated

in the BOPT, the performance improvement stabilizes. Since the working set size

for the SVN workload is relatively smaller, the performance improvement is almost

same for the BOPT sizes >256MB.

Write Buffer Variation

From our previous results, we pick an interval of 3 days and 1 day and BOPT size

of 2GB and 4GB for the developer and the SVN workloads respectively. We vary

the write buffer from 0-100%. Figure 3.15 (bottom) shows that for the developer

97

workload, not having a write buffer results in the lowest throughput. There is a

steady increase in performance, peaking at 50% write buffer. Thereafter, it starts

falling since read performance begins to degrade due to lesser available read cache.

For the write-intensive SVN workload, the performance increases with increase in

the write buffer size, since all the writes can be co-located in the BOPT partition.

Configuring BORG parameters

The above experiments indicate that configuring parameters incorrectly can lead

to sub-optimal performance improvements with BORG. Fortunately, iterative al-

gorithms can be easily employed to identify better parameter combinations in a

straightforward way. Exploring such iterative algorithms more formally is one as-

pect of our future work.

3.6.6 Alternate layout strategy - Hot block caching

We compare BORG against a hot block caching system that copies the most

popular blocks in a given workload in the BOPT, ignoring their access patterns. The

analyzer and planner components are modified, while the profiler, reconfigurator and

indirector components remain the same. The analyzer reads the input trace from

the profiler and creates a sorted list of LBAs in the order of frequency of block

accesses. The planner reads this list and allocates sequential LBAs for the most

popular blocks in the BOPT’s read cache. As before, the reconfigurator performs

the actual data movement.

We evaluate this layout under two workloads - the SVN server workload and the

developer workload. We use O2 as the host machine with the write buffer set to 20%

of the BOPT size in case of the SVN server workload and to 40% of the BOPT size

98

-20

 0

 20

 40

 60

 80

 100

N1 N2 N3 N4 N5Im
pr

ov
em

en
t i

n
bu

sy
 ti

m
es

 (
%

)

Phases

Developer
SVN

Figure 3.16: Percentage improvement in disk busy time with BORG during various
phases of the developer and the SVN workloads.

for the developer workload, based on results obtained in the previous experiments.

As before, the number of reconfigurations were set to 4.

Figure 3.16 shows the resulting improvement with BORG over the hot block

caching system. As can be observed, in most cases, the original BORG layout does

significantly better for both the reconfiguration and the non-reconfiguration phases.

For the non-reconfiguration phases, BORG outperforms hot block caching by up to

37% for the SVN and 24% for the developer workloads. This is because in BORG,

in addition to the advantage of reduced seek times due to colocation of data, using

the popular access patterns also improves the sequentiality. This is corroborated

from the analysis of the traces where the sequentiality in the hot blocks caching

method is lower by 3.3% for the SVN workload and 4.09% for the developer workload,

relative to BORG. It can thus be inferred that the performance improvement in

BORG is not only because of the co-location of the frequently accessed blocks, but

also because of the increased sequentiality obtained by allocating blocks contained

in popular access patterns on contiguous LBAs in the BOPT.

99

It should be noted that for the phase N4 the percentage improvement with BORG

reduces by 6%.

3.6.7 BORG on RAID

We evaluated BORG with the three most popular RAID configurations used to-

day:

- RAID-0, where data is evenly striped across two or more disks,

- RAID-1, which mirrors data on two or more disks, and

- RAID 5, where data is striped and parity for the stripe is distributed across three

or more disks.

We used the SVN and the developer workloads to quantify the disk busy times.

We also did a sensitivity analysis to understand the behaviour of BORG when

varying BORG parameters.

Experimental Setup: We used software RAID for each of the configurations.

All our RAID systems were setup using WD 360 disks of size 39 GB. The BOPT

partition was set to 2 GB for the developer workload and to 1 GB for the SVN

workload, based on previous sensitivity tests for single disk evaluation. The write

buffer was set to 50% of the BOPT for the developer and the SVN server.

Since we used multiple disks for these experiments, we used the average per disk

busy time as our metric which was calculated as the average of the disk busy times

for all the disks constituting the RAID configuration. For instance, for a RAID-0

system with 2 disks, sda and sdb, the average per disk busy time is the average of

the busytimes of sda and sdb, i.e. busytimesda+busytimesdb

2

100

3.6.8 Performance impact

To evaluate BORG on RAID systems, we did a trace replay using the btreplay tool

for the developer and the SVN workloads for each of the RAID configurations. We

performed 4 reconfigurations. The traces were played at 168X during the non-

reconfiguration periods and were reduced back to 1X during the reconfiguration

phases. For this experiment, the minimum number of disks required for each of

the RAID configuration were used, that is two for RAID-0 and RAID-1 and 3 for

RAID-5.

Figures 3.17 (a) and (b) shows the average per disk busy times for the BORG

non-reconfiguration phases for the RAID systems for the Developer and the SVN

workloads respectively, The first three clusters show the results for RAID-0, RAID-1

and RAID-5 systems respectively. The fourth cluster shows the results for the single

disk experiments and is included here for the sake of comparision.

As can be seen, BORG shows considerable improvement in performance for all

the RAID configurations. Since data is striped across the disks, BORG performs

best with RAID-0. RAID-1 mirrors data on a seperate disk and hence for the two-

disk configuration, the average busy times for both the devices are similar to those

of the single disk system. Data is striped across the disks in RAID-5, and hence its

shows an improvement in performance relative to the single disk systems. However,

it also incurs additional I/O overheads to maintain the parity information and hence

it does not perform as good as the RAID-0 system.

Figure 3.18 shows similar trends for the reconfiguration phases during the recon-

figuration phases, where the busy time is highest for RAID-1 systems and lowest for

RAID-0 systems.

101

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

RAID-0

RAID-1

RAID-5

Disk

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Configuration

Vanilla
BORG

(a) Developer Workload

 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

RAID-0

RAID-1

RAID-5

Single-Disk

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Configuration

Vanilla
BORG

(b) SVN workload

Figure 3.17: Disk busy times for Non-reconfiguration phases on different RAID
configurations

102

 0
 200
 400
 600
 800

 1000
 1200
 1400

RAID-0

RAID-1

RAID-5

Disk

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Configuration

Vanilla
BORG

(a) Developer Workload

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

RAID-0

RAID-1

RAID-5

Disk

D
is

k
bu

sy
 ti

m
e

(s
ec

)

Configuration

Vanilla
BORG

(b) SVN workload

Figure 3.18: Disk busy times for Reconfiguration phases on different RAID config-
urations

103

3.6.9 Sensitivity Analysis

We did a sensitivity study of the BORG parameters i.e. reconfiguration interval size

of the BOPT and the size of the write buffer on the different RAID configurations.

We replayed the SVN and the developer workload traces on the RAID configurations

for this study.

BORG parameters

For all the three RAID systems, RAID-0, RAID-1 and RAID-5, we followed the same

sequence of steps as in Section 3.6.5. In the first experiment, we set the BOPT size

to 1 GB and the write buffer to 25% and varied the reconfiguration interval. Next,

we choose the interval with the highest performance gain for each of the workloads

and varied the BOPT size. Lastly, we choose the best interval and BOPT size and

varied the BOPT write buffer.

The results for this experiment for a RAID-0 configurations are shown in Fig-

ure 3.19. As is evident, the results follow the same trend as in case of the single disk

sensitivity study. Similar results were obtained for the RAID-1 and the RAID-5

configurations.

It can be observed that RAID systems shows higher performance gains than

single disk systems. It is our surmise that this is because of the greater bandwidth

available in case of RAID systems. The increased sequentiality in BORG due to the

allocation of popular block access patterns to contiguous LBAs can better use the

higher bandwidths to deliver greater performance improvements.

104

-20

 0

 20

 40

 60

 80

 100

3 days

2 days

1 day
12 hrs

8 hrs

Reconfiguration Interval

Developer
SVN

(a)

-20

 0

 20

 40

 60

 80

 100

256M
B

512M
B

1GB
2GB

4GB
8GB

Size of BOPT

Developer
SVN

(b)

-20

 0

 20

 40

 60

 80

 100

0% 25%
50%

75%
100%

Write Buffer Fraction

Developer
SVN

(c)

Figure 3.19: A sensitivity analysis of BORG performance, on a RAID-0 system, to
its configurable parameters.

105

3.7 Related Work

Significant research has been done in dynamically adapting data layout on disk

drives to improve performance. Our work on BORG is primarily motivated by

several recent work, including IBM’s autonomic computing initiative [?], CMU’s

self-⋆ work [?], ALIS [?], and FS2 [?], and the early works of Vongsathorn [?],

Ruemmler [?], and Akyurek [?] on adaptive disk data layouts.

3.7.1 Block level approaches

Early work [?] on optimized data layout argued for placing the frequently accessed

data in the center of the disk. Vongsathorn et al. [?] and Ruemmler and Wilkes [?]

propose using Cylinder Shuffling. Ruemmler and Wilkes specifically demonstrated

via simulation studies that reducing the shuffling quantum and performing relatively

infrequent shuffling (once a week) led to greater improvement in I/O performance.

In Akyurek and Salem’s work [?], the frequently accessed blocks are copied to a

reserved space in the center of the disk. The authors demonstrated via simulation

studies the advantages of copying over shuffling and the importance of reorganization

at the block (rather than cylinder) level. These early data clustering approaches

emphasized on process- and access-pattern- agnostic block counts to perform the

data reorganization. Early work on mining disk access patterns at the block-level

addressed different end goals. Kuenning et al. [?] and Griffoen et al. [?] suggest

inferring frequently accessed data by more complex mining techniques for caching

in mobile systems and reducing file system latency respectively.

Researchers have also investigate self-optimizing RAID systems. Wilkes et al.

proposed HP AutoRAID [?], a controller-based solution, that transparently adapts

to workload changes by using a two-level storage hierarchy; the upper level provides

106

data redundancy for popular data while the lower level provides RAID 5 parity

protection for inactive data. Work on eager writing [?] and distorted mirrors [?] ad-

dress mirrored/striped RAID configurations primarily for database OLTP workload

(which are characterized by little locality or sequentiality) that choose to write to a

free sector closest to the head position on one more disk drives. Yu et al. [?] propose

a different approach for trading disk capacity for performance in a RAID system,

by storing several rotational replicas of each block and using a rotationally latency

sensitive disk scheduler. While we are yet to explore BORG’s use in multi-disk

systems, the optimizations used in BORG are different and mostly complementary

to the above proposals, whereby BORG attempts to capture longer-term on-disk

working-sets within a dedicated volume.

Hu et al.’s work on Disk Caching Disk citeHY95 uses an additional logging disk

(or disk partition) to perform writes sequentially and subsequently, destage to their

original locations. Write buffering in BORG is slightly different in that writes to

data already in the BOPT partition are written in place. The DCD work does not

optimize for data read operations; BORG optimizes reads as well so head movement

is substantially restricted.

Among recent work on block reorganization, Salmon et al. [?] describe a generic

two-tiered architecture that provides the framework for combining multiple heuris-

tics for data reorganization. BORG could possibly be re-factored to provide such

hints within this larger framework. C-Miner [?] uses advanced data mining tech-

niques to mine correlations between block I/O requests. They find the frequent

sequences from a set of short sequences which in turn infer the correlations between

blocks. Some of these techniques can be utilized in BORG to infer complex disk ac-

cess patterns. The Intel Application Launch Accelerator [?] reorganizes blocks used

during application start-up to be more sequential, but does not provide a generic

107

solution to improve overall disk I/O performance of the system. For throughput im-

provement, Schindler et al. have proposed free-block scheduling and track-aligned

extents [?, ?, ?, ?] which use intelligent I/O scheduling (rather than block reorgani-

zation); these are complementary techniques that can be used in conjunction with

BORG.

Among block level approaches, our work is closest to ALIS [?], wherein frequently

accessed blocks as well as block sequences are placed sequentially on a dedicated,

reorganized area on the disk, similar to the BOPT partition used in BORG. There

are differences in design and implementation. First, BORG incurs reduced space,

maintenance, and metadata overhead since it maintains at most one copy of each

data block. The multiple replicas in ALIS can become stale (and therefore unusable)

quickly in write-intensive workloads. Further, unlike BORG, ALIS does not optimize

write traffic. Finally, the evaluation of ALIS techniques is performed using a disk

simulator with trace playback. On the other hand, we implement and evaluate an

actual system, thereby having the opportunity to address a greater detail of practical

system implementation issues.

3.7.2 File level approaches

In one of the early file oriented approaches, Staelin et al. [?] proposed monitoring

file accesses and moving frequently accessed files (entirely) to the center of the

disk. Log-structured file systems (LFS [?]) offer superior performance for workloads

with large number of small writes by batching disk writes to the end of a disk-

sequential log. BORG writes all data to the BOPT partition to achieve a similar

effect, but also attempts to co-locate a majority of read operations with the writes.

Matthews et al. [?] proposed an optimization to LFS by incorporating data layout

108

reorganization to improve read performance. Their use of block access graphs is

similar to the process access graphs used in BORG. Their LFS-specific solution moves

blocks within the LFS partition storing exactly one copy of each block. Since BORG

stores two copies, it can optimize for sequential and application-driven deterministic,

non-sequential accesses simultaneously. Further, while their approach partitions the

graph for independent layout within each FS partition, BORG merges graphs and

uses a single BOPT partition to aggressively optimize seek overhead even when

multiple partitions are accessed simultaneously by applications.

Researchers have used data-specific layout mechanisms as opposed to the generic

and automatic techniques of BORG. Ganger and Kaashoek [?] have advocated col-

locating inodes and file blocks for small files in C-FFS. In a converse approach,

PLACE [?], a gray-box technique, exposes the underlying layout structure to ap-

plications, so they can perform custom data placement to improve the I/O perfor-

mance. Sivathanu et al. [?] propose semantically-smart disk systems (SDS) that

infer file system semantic associations for blocks. Performance improvement is a

secondary goal wherein they propose aligning files with track boundaries. File ac-

cess patterns can be used to predict future file accesses. Amer et al. [?] and Yeh

et al. [?] use such predictions for purposes of file caching and energy conservation

respectively. Similarly, in [?], file predictions are used to conserve energy in mobile

computers. Windows XP [?] uses the defragmenter for co-locating temporally corre-

lated file data for speeding up application start-up events. This file system specific

solution does not address the issues of shared data between applications. Simi-

lar to the Intel approach, it does not target generic I/O optimization for arbitrary

workload.

Among file level approaches, BORG is closest to the FS2 [?]. FS2 proposes

replication of frequently accessed blocks based on disk access patterns in file sys-

109

tem free space. This strategy, unfortunately, also restricts the degree of seek and

rotational-delay optimization due to the distribution of free space. Since FS2 may

create multiple copies of a block simultaneously, staleness, and consequently, space

and I/O bandwidth wastage, become important concerns (similar to those in ALIS);

BORG maintains at most one extra copy of each block and its strength is in be-

ing a non-intrusive, storage-stack friendly, and file system independent (portable)

solution.

3.8 Summary

We presented BORG, a self-optimizing layer in the storage stack that automati-

cally reorganizes disk data layout to adapt to the workload’s disk access patterns.

BORG was designed to optimize both read and write traffic dynamically by making

reads and writes more sequential and restricting majority of head movement within

a small optimized disk partition. A Linux implementation of BORG was evaluated

and shown to offer performance gains in the average case for varied workloads in-

cluding office and developer class end-user systems, a web server, an SVN server,

and a virtual machine monitor. Disk busy time reductions with BORG across these

workloads during non-reconfiguration intervals range from 6% (for the VM work-

load) to 50% (for the developer server workload), with even greater improvements

possible with careful parameter selection within BORG.

BORG performs occasionally worse than a vanilla system, specifically when a

read-mostly workload drastically shifts its working set. BORG is able to easily

address changing working-sets with a (possibly non-sequential) write workload, since

it has the ability to absorb and sequentialize writes inside the BOPT. A sensitivity

analysis revealed the importance of choosing the right configuration parameters for

110

reconfiguration interval, BOPT size, and the write-buffer fraction. In summary, we

believe that BORG offers a novel and practical approach to building self-optimizing

storage systems that can offer large I/O performance improvements in commodity

environments.

111

CHAPTER 4

DISCUSSION

We investigate static and dynamic layout mechanisms comprehensively in Chap-

ters 2 and 3. Although we implement and evaluate these strategies separately to

expose their impact on performance, we believe that a combination of these strate-

gies can also be used to improve performance. The choice of the best strategy is

contingent on the workload characteristics. An obvious question that arises is how

does a system administrator, the target user of the layout optimizations presented

in this thesis, determine the layout strategy that provides the most performance

benefits for her workload. The choice of the layout strategy depends on the work-

load characteristics of the system. Obtaining these characteristics is a simplified

task that involves analyzing workload traces. This Chapter describes some of the

workload characteristics that can be used to govern layout policies by the system

administrator and provides some insights into how these can be used.

4.1 Workload characteristics

Workload characteristics can be extracted through low overhead profiling of the

block level I/Os using easily available profiling tool such as as blktrace [?]. While

workloads exhibit numerous complex properties that can be obtained using sophis-

ticated tools or scripts, we identify some of the generic properties that can be easily

obtained and analyzed to make intelligent allocation choices.

It should be noted that the allocation policy of a system can be revised if the

workload characteristics change and performance degradation is noticed. Contin-

uous or periodic profiling can identify shifts in workload characteristics or perfor-

mance degradation and can potentially be used to change the allocation policies or

to disable them altogether and use legacy allocation schemes implemented by file

112

systems. We identify three categories of workload characteristics that can be used

by a system administrator to make the correct choice of the layout mechanisms best

suited to the workload.

• Temporal attributes - This category contains attributes that reflect when the

data is accessed from the disk drive. It is composed of attributes such as tem-

poral locality, explained in Section 3.2, that indicates how often the working

sets change and burstiness of requests, that indicates if I/O requests arrive in

batches and if the workload contains any idle time.

• Spatial attributes - Attributes that demonstrate how the data that is being

accessed is stored on the storage system fall in this category. I/O sequentiality,

partial determinism and non-uniform access frequency distribution constitute

this category. Sequentiality of the I/O requests indicate if data is stored

on contiguous locations on the disk drive. Partial determinism, described in

Section 3.2, identifies the non-sequential accesses in the I/O. Non-uniform

access frequency distribution, also described in Section 3.2, shows if the disk

contains regions of high frequency access and how these regions are spread

over the entire disk. The proposed layout mechanisms attempt to improve the

spatial locality of accesses and consequently reduce the seek and rotational

delays.

• Operational attributes - This indicates the types of requests such as reads or

writes that dominate the workload for durations when the workload access

patterns remain static.

The system administrator can infer the choice of the layout strategy based on

the knowledge of the above characteristics. A more accurate choice can be made if

all the information is available. Since no tool currently exists that automates the

113

Temporal Spatial Operational

Attributes Attributes Attributes

Temporal Partial Non-unif.

Locality Bursts Seq Determinism Freq. Dist. Reads Writes

Static layout - - ↓ ↑ ↓ ↑ ↓

Dynamic layout ↓ ↑ ↓ ↑ ↑ - -

Dynamic layout for ↑ ↑ ↓ ↑ ↑ - -

static accesses

Static + - ↑ ↓ ↑ - - -

Dynamic

Sequential - - ↑ ↓ ↓ - -

Table 4.1: Choosing the befitting layout strategy.

retrieval of workload access characteristics and predicting the appropriate layout

mechanism to be used, devising such a tool is a challenging future venture.

4.2 Choosing the right layout

This section provides some insight in to how the above mentioned characteristics can

be used to elect a suitable layout mechanism. Table 4.1 summarizes the properties

that affect the choice of the proposed layout strategies. The up or down arrow

indicates higher or lower degree of the specific characteristic in the given workload

respectively.

4.2.1 Static allocation mechanisms

Static layouts are better suited for workloads whose accesses are spread over the

entire disk area and the access patterns do not change as long as the application is

used. Queries to XML documents, database queries and operations such as search

or alignment over genomic strings are examples of such workloads. In general, these

layouts can be used for workloads that exhibit the following trends.

114

• Show a uniform access frequency distribution, where the data accessed is

evenly spread across the entire disk area.

• Temporal locality indicates that the access patterns remain static over the

lifetime of the application.

• Partial determinism indicates that non-contiguous data access patterns exist.

Since the proposed static layouts mechanisms do not optimize for updates to the

data that alter the structure of the tree, it is necessary for the workloads to be read

dominant to be able to use them. The tree-placement layout can handle updates if

they overwrite the tree node data without altering the tree structure.

4.2.2 Dynamic allocation mechanisms

Dynamic layouts can be used for workloads where access patterns change over a

period. A programmer workload, where the set of files being accessed are mostly

specific to the project under development is an example of such a workload. A

system administrator can choose dynamic mechanisms if workload analysis shows

the following properties.

• Accesses to data on disk drives indicate a non-uniform distribution of data on

the disk drive.

• Temporal locality indicates changes in working sets during the lifetime of the

application hours, days or weeks.

• Partial determinism indicates that non-contiguous data access patterns exist.

• I/O requests arrive in bursts which indicates there is some system idle time

during which the data can be reorganized.

115

The proposed self-optimizing, dynamic layout mechanism, BORG, can be used

effectively by tuning the read cache or write buffer sizes based on the ratio of reads

and writes in the workload. Also, reconfiguration phases can be triggered in idle

times, especially for workloads where the requests arrive in bursts, which is typical

of most common workloads today.

4.2.3 Dynamic layouts for static workloads

Dynamic layout strategies can also improve I/O performance for static workloads

in certain cases. For instance, BORG can be used to optimize accesses to tree-

structured XML data if the access patterns reflect the following. We recommend

using dynamic layout mechanisms for static workloads for the following cases.

• A non-uniform access frequency distribution where there are distinct hot re-

gions on the disk.

• Temporal locality shows access patterns for an application do not change.

• Partial determinism indicates that non-contiguous data access patterns exist.

BORG can be effectively used to optimize performance for XML data if the

blocks accessed by popular queries can be contained in the BOPT partition.

4.2.4 Combining static and dynamic mechanisms

A system administrator can also choose to use a both of static and dynamic layouts

for combined benefits, based on the system requirements. For instance, BORG

can be used to handle updates, that modify the XML tree structure, in the tree-

placement layouts by using the entire BOPT partition as a write buffer. A node can

be deleted from the original file system location. Nodes in the file system locations

116

can be overwritten as long as the tree structure is maintained. Nodes that alter the

tree structure can be written to the BOPT partition. The tree placement algorithm

can then be executed again to write the updates to the tree back to the file system

locations during system idle times. Since the size of the XML documents is typically

large, the overheads for re-execution of the tree placement algorithm can be high

and the system should have sufficient idle times to execute all the additional I/O

requests generated during data reorganization. This strategy may not be feasible

for workloads that do not show burstiness or that frequently update data.

4.2.5 Legacy allocation mechanism

Static or dynamic layout strategies can be used if the percentage of sequentiality

shows room for improvement and if the workloads exhibits some partial determinism.

However, workloads may also access data sequentially where the partial determin-

ism for randomly placed blocks is negligible and the degree of non-uniform access

frequency distribution is low where the entire disk is uniformly accessed. Exam-

ples of such access patterns include sequential streaming of multimedia data such as

video frames or audio files. Also, based on our results, BORG degrades performance

for read intensive workloads whose working sets change very frequently. Such work-

loads may benefit from the existing file system layout strategies that favor sequential

accesses.

117

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This Chapter presents concluding remarks for the work presented in this disser-

tation and directions in which this work can be extended.

5.1 Concluding Remarks

Processor speeds, network bandwidth and disk and memory capacities show steep

improvements every generation and this leads to an increase in application data.

However, disk performance improvements occur at a much slower rate mainly be-

cause of the challenges in reducing mechanical delays. This results in storage systems

being the bottleneck for most modern applications.

The results presented in this dissertation for both static and dynamic place-

ment strategies, suggest a promising approach to alleviate this bottleneck. It is

evident that using the same layout mechanisms across workloads with varying ac-

cess characteristics restricts increases the I/O access time latencies. However, I/O

performance can be substantially improved by using the knowledge of workload

specific access patterns to (i) reduce rotational latencies by matching workload spe-

cific access patterns to underlying disk geometry and (ii) reduce seek latencies by

co-locating frequently accessed data on disk drives.

The design and implementation of the strategies presented in this dissertation

was an iterative process that underwent numerous changes and refinements. These

improvements were the result of our increased understanding of the I/O subsystem,

implementation issues or even errors or bugs in the code. The following subsections

briefly touch some aspects of the development process for both static and dynamic

placement strategies and summarize the lessons learned from the same.

118

5.1.1 Static Layout Optimization

Development Process: The research presented here started with the design and

implementation of the static layout policies. To evaluate the performance of our

strategy, we created an analytical cost model to better understand how the char-

acteristics of the hard disk (seek time, rotational speed) and of the tree-structured

XML document (height and width) affect the performance of disk access sequences

typical to the application. Preliminary results showed up to 35% reduction in ac-

cess time with our tree-placement policies. Next, we created a prototype, where we

modified DiskSim to provide additional interfaces for tree layout, and extensively

evaluated the placement algorithms with common query patterns.

Lesson Learned: Our findings in this study serve to more closely examine and

evaluate layout techniques based on the nature and distribution of queries (i.e.,

access patterns). Further, based on our findings in this study, it can be inferred

that a single layout technique is unlikely to be optimal for navigating tree-structured

data; the optimality of any layout technique closely depends on the nature of the

workload. A prudent choice of the underlying data layout strategy can drastically

improve I/O access times if knowledge of the access patterns (e.g., query workload)

is available beforehand. The results obtained with the static layout optimizations

encouraged us to pursue similar optimizations for workloads that do not exhibit any

specific access pattern.

5.1.2 Dynamic Layout optimization

Development Process: BORG evolved over a period of more than two years.

File systems perform a critical task of providing a simple file abstraction to complex

storage devices where, each file or directory element is mapped to a set of LBAs.

119

This mapping is dictated by the data layout technique employed by the file system

and influences the performance of the system. Based on this premise, BORG was

initiated as a self-optimizing file system rather than a block layer solution. A prelim-

inary analysis of workload access characteristics portended promising improvements

in disk access times by copying a percentage of frequently accessed data on a small

contiguous, dedicated partition. However, an actual realization of a self-optimizing

file system is a lengthy and arduous task and instead of constraining performance

improvement due to BORG to a single file system, we decided to let make BORG

independent of the file system by implementing it as a module at the operating

systems block layer. This provided more flexibility to the user, where the user could

avail the advantages of the file system of their choice based on their requirements

and use BORG whenever desired. For greater performance improvement, we also

added a write buffer in the later stages to absorb all the new writes in the BOPT

and restrict the movement of the disk head to lower the access latencies.

Lesson Learned: Our results for optimizations for dynamic workloads show no-

ticeable improvement in disk busy times for most workloads. However, fast-changing

read workloads may either not show any improvement, since the blocks in the BOPT

are hardly accessed, or in some cases degrade performance when the disk-head alter-

nates between the BOPT and the file system partition and consequently incurs large

seek overheads. For all other workloads, by using the right choice of the configurable

parameters, BORG can be used at its maximum potential

We faced numerous challenges during its development of BORG some of which

were described in 3.5. Our experience made us realize that we spent most of the time

resolving bugs and handling other roadblocks in the Linux kernel space development

which are likely to be faced by other developers who build similar self-managing

extensions at the block layer. This lead to the inception of the Active Block Layer

120

Extensions (ABLE) project [?], an infrastructure that simplifies the development

and management of extensions within the storage stack. ABLE also facilitates inter-

operation of multiple extensions in the system.

5.2 Future Research Directions

This work demonstrates the potential of using different layout policies based on the

observed workload characteristics for both the static and dynamic access patterns.

The functioning of the proposed systems can be further improved by incorporating

the following optimizations.

5.2.1 Static Layout Optimization

A straightforward extension to using our approach would be to maintain two copies

of the data, one using the sequential layout and the other using the native lay-

out. Queries can be answered from one or the other depending on their class, thus

ensuring that deep-focused queries are also optimally answered.

As an important future direction, new indexing techniques for tree-structured

data can be explores that complement our native data layout strategies to further

improve performance. The work presented here focuses on exploring the effects of

the data placement and therefore we only consider no-index query execution plans

to make the comparison clear. Further, existing file system implementations can

be extended to support efficient access to such data . Finally, we plan to extend

an existing file system to support efficient access to such data. Past efforts on

providing additional application control of the storage system [?] indicate that a

similar approach for tree storage is feasible.

121

Another interesting direction would be to study the advantages of our strategy

with different caching techniques and caches of varying sizes. This work can also

be extended to multi-query and multi-user environments, and work on handling

updates within the tree-structured placement framework.

Finally, although, this work focuses on XML data, we believe that the tree-

structured placement strategies presented here are general enough to address place-

ment problems in other domains, such as directory-file tree-structures present in

general-purpose file systems, multi-resolution video data, and Bioinformatics Suffix-

Tree structures. The broader impact of this work surely needs further investigation.

One direction is to analyze different workload patterns, such as database queries or

suffix arrays in bio-informatics genomic strings, classify them based on their access

characteristics and make the storage interface more expressive so that it can utilize

information about the application access patterns and use appropriate techniques to

efficiently use the underlying storage devices and improve along a specific dimension

such as performance, reliability or security.

5.2.2 Dynamic Layout optimization

While our experiences with BORG have been largely positive, there are several

directions in which the current version can be either improved or extended. We

now discuss some of the significant directions that can serve as subjects of future

investigation.

Analyzer and Planner optimization. The current versions of the analyzer

(§ 3.4.2) and the planner (§ 3.4.3) components of BORG do not use the results

of past executions and therefore incur higher overheads for every subsequent recon-

figuration when using cumulative traces for training. Each of these components can

122

be substantially optimized by making them more intelligent. The analyzer can build

the master access graph incrementally rather than from scratch; likewise, the plan-

ner can incrementally create the new plan for BOPT reconfiguration during each

iteration.

Alternate BOPT layout strategies. The current version of BORG uses a simple

BOPT layout strategy starting from the most-connected vertex – the vertex with

the highest sum of its edge-weights – in the master access graph, and then choosing

the vertex most connected to it, and so on. Alternate layout strategies can be

envisioned that potentially yield greater benefit. For instance, the placement can

begin with the nodes connected to the highest weight edge, and then resorting to the

same incremental addition of vertices. Alternatively, a distributed layout algorithm

can be designed which uses many starting points for building the layout.

Configuring BORG parameters. BORG can be used to its maximum potential

by correct configuration of its parameters, i.e. the reconfiguration interval, the

size of the BOPT and the size of the write buffer. Fortunately, simple iterative

algorithms can be quite effective in identifying the right parameter combination; a

formal investigation of such an approach is an avenue for future work.

Timely reconfiguration. The current reconfiguration trigger in BORG is based

on a fixed interval. However, opportune times for performing reconfiguration are

during periods of no or low foreground I/O activity, especially for workloads that

exhibit obvious idle or peak periods of activity. More sophisticated triggers can use

alternate metrics to identify “unwanted” or “much needed” reconfiguration, such as

the BOPT hit rate or the percentage of sequential accesses pre- and post- indirection

to evaluate the effectiveness of the current BOPT layout. The above techniques

can help substantially reduce the impact of reconfiguration to foreground I/O and

123

increase the effectiveness of each reconfiguration operation.

Avoiding performance degradation. BORG can degrade performance for cer-

tain workloads, for instance, a read-intensive workload that has a very large or

unstable working-set (§ 3.6.2). Future versions of BORG can be made intelligent to

measure the impact of reconfiguration on such workloads by comparing the percent-

age sequentiality and the spatial locality for the accesses before (vanilla) and after

(BORG) the indirection operation. If these metrics degrade post-BORG, BORG can

be disabled. Such a mechanism will allow system performance to degrade gracefully

in the event that the workload is not conducive to benefit from block reorganization.

124

BIBLIOGRAPHY

[AAB+05] Serge Abiteboul, Rakesh Agrawal, Phil Bernstein, Mike Carey, Ste-
fano Ceri, Bruce Croft, David DeWitt, Mike Franklin, Hector Gar-
cia Molina, Dieter Gawlick, Jim Gray, Laura Haas, Alon Halevy, Joe
Hellerstein, Yannis Ioannidis, Martin Kersten, Michael Pazzani, Mike
Lesk, David Maier, Jeff Naughton, Hans Schek, Timos Sellis, Avi Sil-
berschatz, Mike Stonebraker, Rick Snodgrass, Jeff Ullman, Gerhard
Weikum, Jennifer Widom, and Stan Zdonik. The lowell database re-
search self-assessment. Commun. ACM, 48(5):111–118, 2005.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic local alignment search tool. J Mol Biol, 215(3):403–410, October
1990.

[ALPB02] ”A. Amer, D. Long, J. Paris, and R. Burns”. File Access Prediction
with Adjustable Accuracy. International Performance Conference on
Computers and Communication, 2002.

[AM06] Loredana Afanasiev and Maarten Marx. An analysis of the current
xquery benchmarks. In ExpDB, pages 9–20, 2006.

[AMM05] Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels. Mem-
ber: A micro-benchmark repository for xquery. In Stéphane Bressan,
Stefano Ceri, Ela Hunt, Zachary G. Ives, Zohra Bellahsene, Michael
Rys, and Rainer Unland, editors, Database and XML Technologies,
Third International XML Database Symposium, XSym 2005, Trond-
heim, Norway, August 28-29, 2005, Proceedings, volume 3671 of Lec-
ture Notes in Computer Science, pages 144–161. Springer, 2005.

[AS95] Sedat Akyurek and Kenneth Salem. Adaptive Block Rearrangement.
Computer Systems, 13(2):89–121, 1995.

[Axb07] Jens Axboe. blktrace user guide, February 2007.

[BBM+01] Denilson Barbosa, Attila Barta, Alberto O. Mendelzon, George A.
Mihaila, Flavio Rizzolo, and Patricia Rodriguez-Guianolli. Tox - the
toronto XML engine. In Workshop on Information Integration on the
Web, pages 66–73, 2001.

[BCJ+05] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Jim Kleewein,
George Lapis, Guy Lohman, Bob Lyle, Fatma Ozcan, Hamid Pirahesh,

125

Normen Seemann, Tuong Truong, Bert Van der Linden, Brian Vickery,
and Chun Zhang. System rx: One part relational, one part xml. In
SIGMOD, 2005.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In Proc. of the ACM SOSP, October 2003.

[BDL+] Stephane Bressan, Gillian Dobbie, Zoe Lacroix, Mong Li Lee,
Ying Guang Li, Ullas Nambiar, and Bimlesh Wadhwa. XOO7: Ap-
plying OO7 benchmark to XML query processing tool. pages 167–174.

[BFHR06] Medha Bhadkamkar, Fernando Farfan, Vagelis Hris-
tidis, and Raju Rangaswami. Efficient Native Storage
for Semi-structured Data (extended paper version). In
http://www.cis.fiu.edu/SSS/NativeXMLextended.pdf, 2006.

[BFRS02] Philip Bohannon, Juliana Freire, Prasan Roy, and Jérôme Siméon.
From XML Schema to Relations: A Cost-based Approach to XML
Storage. ICDE, 2002.

[BGC03] John Bucy, Gregory Ganger, and Contributors. The DiskSim Simu-
lation Environment Version 3.0 Reference Manual. Carnegie Mellon
University Technical Report CMU-CS-03-102, January 2003.

[BH06] Srikanta Bedathur and Jayant Haritsa. Search-optimized suffix-tree
storage for biological applications. In David A. Bader, Manish
Parashar, Sridhar Varadarajan, and Viktor K. Prasanna, editors,
12th IEEE International Conference on High Performance Comput-
ing (HiPC), volume 3769 of Lecture Notes in Computer Science, pages
29–39, Goa, India, October 2006. IEEE, Springer.

[BR01] Timo Böhme and Erhard Rahm. Xmach-1: A benchmark for xml
data management. In Datenbanksysteme in Büro, Technik und Wis-
senschaft (BTW), 9. GI-Fachtagung,, pages 264–273, London, UK,
2001. Springer-Verlag.

[BR03] Timo Böhme and Erhard Rahm. Multi-user evaluation of xml data
management systems with xmach-1. In Proceedings of the VLDB 2002
Workshop EEXTT and CAiSE 2002 Workshop DTWeb on Efficiency
and Effectiveness of XML Tools and Techniques and Data Integra-

126

tion over the Web-Revised Papers, pages 148–158, London, UK, 2003.
Springer-Verlag.

[CDA07] CDA. HL7 Clinical Document Architecture, Release 2.0. In
http://lists.hl7.org/read/attachment/61225/1/CDA-doc 20version.pdf.
2007, 2007.

[CDF+94] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton,
D. Schuh, M. Solomon, C. K. Tan, O. Tsatalos, S. White, and M. Zwill-
ing. Shoring up Persistent Applications. In ACM SIGMOD, 1994.

[CK99] G. Moerkotte C. Kanne. Efficient Storage of XML Data . Universitaet
Mannheim Technical Report, 1999.

[Cus94] Helen Custer. Inside the Windows NT File System. Microsoft Press,
August 1994.

[DAB+06] Dolin, Alschuler, Boyer, Beebe, Behlen, Biron, and Shabo Shvo. HL7
Clinical Document Architecture Release 2. J Am Med Inform Assoc.,
13(1), Jan-Feb 2006.

[DAYF] Fang Du, Sihem Amer-Yahia, and Juliana Freire. ShreX: Managing
XML Documents in Relational Databases.

[DFS99] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistruc-
tured Data with STORED. ACM SIGMOD, 1999.

[DKF+99] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and
S.L. Salzberg. Alignment of Whole Genomes. Nucleic Acids Research,
27(11):2369–2376, 1999.

[DR03] Zoran Dimitrijevic and Raju Rangaswami. Quality of Service Support
for Real-time Storage Systems. Proc. of International IPSI Conference,
October 2003.

[DRC+04] Zoran Dimitrijevic, Raju Rangaswami, Edward Chang, David Watson,
and Anurag Acharya. Diskbench: User-level Disk Feature Extraction
Tool. UCSB Technical Report TR-2004-18., April 2004.

127

[FHR07] Fernando Farfan, Vagelis Hristidis, and Raju Rangaswami. Beyond
lazy xml parsing. In Proceedings of International Conference on
Database and Expert Systems Applications (DEXA), September 2007.

[FJS96] Adam Finkelstein, Charles E. Jacobs, and David H. Salesin. Multires-
olution Video. Proc. of SIGGRAPH, pages 281–290, August 1996.

[Fra04] Massimo Franceschet. Xpathmark: An Xpath Benchmark For Xmark.
University of Amsterdam Technical Report PP-2004-04, 2004.

[Fra05] Massimo Franceschet. XPathMark: An XPath Benchmark for the
XMark Generated Data. 2005.

[GA94] James Griffoen and Randy Appleton. Reducing File System Latency
using a Predictive Apporach. Proc. of the Summer USENIX Confer-
ence, pages 197–207, June 1994.

[gal] Galax. http://www.galaxquery.org.

[Gan01] Gregory R. Ganger. Blurring the Line Between OSes and Storage
Devices. Carnegie Mellon University Technical Report CMU-CS-01-
166, December 2001.

[GK97] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files. Proc. of
the USENIX Technical Conference, 1997.

[GKP02] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Process-
ing XPath Queries. In VLDB, 2002.

[GML08] GML. Geography markup language. http://opengis.net/gml/, 2008.

[GNA+] Garth A. Gibson, Dave F. Nagle, Khalil Amiri, Jeff Butler, Fay W.
Chang, Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg,
and Jim Zelenka. A Cost-Effective, High-Bandwidth Storage Architec-
ture. Proceedings of the ACM ASPLOS, Oct 98.

[GS02] M.E. Gómez and V. Santonja. Characterizing Temporal Locality in
I/O Workload. Proc. of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, 2002.

128

[GSK03] Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman. Self-*
storage: Brick-based storage with automated administration. Carnegie
Mellon University Technical Report, CMU-CS-03-178, August 2003.

[GUB+08] Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo Koller, and
Raju Rangaswami. The case for active block layer extensions. SIGOPS
Oper. Syst. Rev., 42(6):3–9, 2008.

[HD96] M. Holton and R. Das. XFS: A Next Generation Journalled 64-bit
filesystem with Guaranteed Rate IO. SGI Technical Report, 1996.

[HHS05] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Performance and
Energy Consumption. Proceedings of ACM SOSP, pages 263–276, Oc-
tober 2005.

[HL708] HL7. Health level seven xml. http://www.hl7.org/special/Committees/xml/xml.htm,
2008.

[HSW+04] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, M. Satya-
narayanan, Gregory R. Ganger, Erik Riedel, and Anastassia Ailamaki.
Diamond: A Storage Architecture for Early Discard in Interactive
Search. Proc. of the USENIX Conference on File and Storage Tech-
nologies, March 2004.

[HSY05] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. The auto-
matic improvement of locality in storage systems. ACM Transactions
on Computer Systems, 23(4):424–473, Nov 2005.

[ID01a] Sitaram Iyer and Peter Druschel. Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in Synchronous
I/O. Proc. of the ACM SOSP, Sept 2001.

[ID01b] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in synchronous
i/o. In Symposium on Operating Systems Principles, pages 117–130,
2001.

[Int98] Intel Corporation. Intel application launch accelerator.
http://support.intel.com/support/chipsets/iaa/, 1998.

129

[JADAD06] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Antfarm: Tracking processes in a virtual machine environ-
ment. Proc. of the USENIX Technical Conference, May 2006.

[JAKC+02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan,
A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwat-
tana, Y. Wu, and C. Yu. TIMBER: A Native XML Database. The
VLDB Journal, 11(4):274–291, 2002.

[Jim05] Jim Gray. Greetings! From a File System User. Opening Keynote at
the USENIX Conference on File and Storage Technologies, December
2005.

[KBBA] Dave Kleikam, Dave Blaschke, Steve Best, and Barry Arndt. JFS for
Linux. http://jfs.sourceforge.net/.

[KBM05] Carl-Christian Kanne, Matthias Brantner, and Guido Moerkotte.
Cost-Sensitive Reordering of Navigational Primitives. SIGMOD, 2005.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F
Korth. Covering Indexes for Branching Path Queries. SIGMOD, 2002.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, January 2003.

[KM77] Sukhamay Kundu and Jaydev Misra. A Linear Tree Partition Algo-
rithm. In SIAM J. Comput., pages 6(1):151–154, March 1977.

[KM06] Carl-Christian Kanne and Guido Moerkotte. A Linear Time Algorithm
for Optimal Tree Sibling Partitioning and Approximation Algorithms
in Natix. In VLDB, 2006.

[KP97] Geoffrey H. Kuenning and Gerald J. Popek. Automated hoarding for
mobile computers. Proc. of the ACM SOSP, October 1997.

[KPH98] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A
Case for Intelligent Disks (IDISKS). SIGMOD Record, 27(3):42–52,
September 1998.

130

[LCSZ04a] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-Miner: Mining Block
Correlations in Storage Systems. Proc. of the USENIX FAST, April
2004.

[LCSZ04b] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and Yuanyuan
Zhou. C-Miner: Mining Block Correlations in Storage Systems. Pro-
ceedings of the USENIX Conference on File and Storage Technologies,
pages 173–186, March 2004.

[LM01] Q. Li and B. Moon. Indexing and Querying XML Data for Regular
Path Expressions. VLDB Journal, 2001.

[LS05] Chuanpeng Li and Kai Shen. Managing Prefetch Memory for Data-
Intensive Online Servers. Proc. of the USENIX FAST, December 2005.

[LSG02] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Free-
block Scheduling Outside of Disk Firmware. Usenix Conference on File
and Storage Technologies, January 2002.

[LSGN00] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger, and David F.
Nagle. Towards Higher Disk Head Utilization: Extracting Free Band-
with From Busy Disk Drives. Proc. of the OSDI, 2000.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and
Jennifer Widom. Lore: A database management system for semistruc-
tured data. SIGMOD Record, 26(3):54–66, 1997.

[MH04] Sergio L. S. Mergen and Carlos A. Heuser. Matching of XML Schemas
and Relational Schemas. In SBBD, 2004.

[Mic06] Microsoft Corporation. Fast System Startup for PCs Running Win-
dows XP. Windows Platform Design Notes, December 2006.

[MJLF84] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast File System
for UNIX*. ACM Transactions on Computer Systems 2, 3:181–197,
August 1984.

[MLLA03] Xiaofeng Meng, Daofeng Luo, Mong-Li Lee, and Jing An. Orientstore:
A schema based native xml storage system. In VLDB, pages 1057–
1060, 2003.

131

[MML08] MML. Medical Markup Language. http://www.ncbi.nlm.nih.gov/,
2008.

[MMM06] Ioana Manolescu, Cédric Miachon, and Philippe Michiels. Towards
micro-benchmarking xquery. In ExpDB, pages 28–39, 2006.

[MRC+97] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Ran-
dolph Y. Wang, and Thomas E. Anderson. Improving the Performance
of Log-Structured File Systems with Adaptive Methods. Proc. of the
ACM SOSP, 1997.

[NADAD03] James Nugent, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Controlling your PLACE in the File System with Gray-box
Techniques. Proc. of the USENIX Technical Conference, June 2003.

[Nam] Namesys, Inc. The ReiserFS File System. http://www.namesys.com/.

[NJ03] Matthias Nicola and Jasmi John. Xml parsing: A threat to database
performance. In Proceedings of the ACM International Conference
on Information and Knowledge Management (CIKM), pages 175–178,
2003.

[NKS07] Matthias Nicola, Irina Kogan, and Berni Schiefer. An xml transaction
processing benchmark. In SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pages 937–
948, New York, NY, USA, 2007. ACM.

[NLB+01] U. Nambiar, Z. Lacroix, S. Bressan, M. Lee, and Y. Li. Xml bench-
marks put to the test, 2001.

[NNP00] Igor Nekrestyanov, Boris Novikov, and Ekaterina Pavlova. An analysis
of alternative methods for storing semistructured data in relations. In
ADBIS-DASFAA, pages 354–361, 2000.

[NSL02] Markus L. Noga, Steffen Schott, and Welf Lowe. Lazy xml process-
ing. In Proceedings of the ACM Symposium on Document Engineering,
pages 88–94, 2002.

[ODS08] ODS. Open Document Specification v1.0. http://www.oasis-
open.org/committees/download.php/12572/OpenDocument-v1.0-
os.pdf, 2008.

132

[OOX08] OOX. Openoffice xml file format v1.0, 2008.

[PADAD03] Florentina I. Popovici, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Robust, Portable I/O Scheduling with the Disk
Mimic. Proc. of the USENIX Technical Conference, June 2003.

[PGG+95] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky,
and Jim Zelenka. Informed Prefetching and Caching. In Proc. of the
15th ACM SOSP, December 1995.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom.
Object Exchange Across Heterogeneous Information Sources. In ICDE
’95: Proc. of the Eleventh International Conference on Data Engineer-
ing, 1995.

[PS05] Athanasios E. Papathanasiou and Michael L. Scott. Aggressive
Prefetching: An Idea Whose Time Has Come. Proc. of the Workshop
on HotOS, June 2005.

[RFGN00] Erik Riedel, Christos Faloutsos, Gregory R. Ganger, and David F.
Nagle. Data mining on an OLTP system (nearly) for free. Proc. of the
ACM SIGMOD, May 2000.

[RFHR] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient
XML to relational mappings.

[RGF98] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active Storage For
Large-Scale Data Mining and Multimedia. Proc. of the VLDB, August
1998.

[RO91] M. Rosenblum and J. Ousterhout. The design and implementation of
a log-structured file system. Proc. of the ACM SOSP, October 1991.

[Rok01] Daniel Rokhsar. Computational Analysis of Genomic Sequence Data.
http://www.nersc.gov/news/annua reports/annrep01/sh BER 06.html,
2001.

[RP03] Lars Reuther and Martin Pohlack. Rotational-position-aware real-time
disk scheduling using a dynamic active subset (DAS). Proc. of the
IEEE RTSS, December 2003.

133

[RPJ+03] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and S. Al-Khalifa.
The michigan benchmark: Towards xml query performance diagnos-
tics, 2003.

[RW91] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical Report HPL-
CSP-91-30, Hewlett-Packard Laboratories, October 1991.

[RW93] Chris Ruemmler and John Wilkes. UNIX disk access patterns. Proc.
of the Winter USENIX Conference, 1993.

[RW94] Chris Ruemmler and John Wilkes. An introduction to disk drive mod-
eling. Computer, 27(3):17–28, 1994.

[SCO90] M Seltzer, P Chen, and J Ousterhout. Disk Scheduling Revisited. Proc.
of the Winter USENIX Technical Conference, 1990.

[SGLG02] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gre-
gory R. Ganger. Track-aligned Extents: Matching Access Patterns to
Disk Drive Characteristics. Proc. of USENIX FAST, 2002.

[SGM91] Carl Staelin and Hector Garcia-Molina. Smart Filesystems. In
USENIX Winter Conference, 1991.

[SO91] Jon A. Solworth and Cyril U. Orji. Distorted Mirrors. Proc. of PDIS,
1991.

[SPP+03] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. Proc. of the USENIX
FAST, March 2003.

[SS97] Margo Seltzer and Christopher Small. Self-Monitoring and Self-
Adapting Operating Systems. Proc. of the Workshop on HotOS, May
1997.

[SSP+05] Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis, Ming-
long Shao, Anastassia Ailamaki, Christos Faloutsos, and Gregory R.
Ganger. On Multidimensional Data and Modern Disks. Proceedings of
the 4th USENIX Conference on File and Storage Technology, Decem-
ber 2005.

134

[SSS+04] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Aila-
maki, and Gregory R. Ganger. Atropos: A Disk Array Volume Man-
ager for Orchestrated Use of Disks. Proc. of the USENIX Conference
on File and Storage Technologies, March 2004.

[STSG03] B. Salmon, E. Thereska, C. Soules, and G. Ganger. A Two-tiered Soft-
ware Architecture for Automated Tuning of Disk Layouts. Workshop
on Algorithms and Architectures for Self-Managing Systems, 2003.

[STZ+] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,
David J. DeWitt, and Jeffrey F. Naughton. Relational Databases for
Querying XML Documents: Limitations and Opportunities. In VLDB
1999.

[SVG08] SVG. Scalable vector graphics. http://www.w3.org/Graphics/SVG/,
2008.

[SWK+02a] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and
R. Busse. Xmark: A benchmark for xml data management, 2002.

[SWK+02b] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse. XMark: A Benchmark for XML
Data Management. VLDB, 2002.

[TADP99] Nisha Talagala, Remzi H. Arpaci-Dusseau, and David Patterson.
Microbenchmark-based Extraction of Local and Global Disk Charac-
teristics. UC Berkeley Technical Report, 1999.

[Twe98] S. C. Tweedie. Journaling the Linux ext2fs File System. The Fourth
Annual Linux Expo, May 1998.

[UGB+08] Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alarcon,
and Raju Rangaswami. EXCES: External caching in energy saving
storage systems. IEEE HPCA, 2008.

[VC90] Paul Vongsathorn and Scott D. Carson. A System for Adaptive Disk
Rearrangement. Softw. Pract. Exper., 20(3):225–242, 1990.

[WGPW95] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. Online Extraction
of SCSI Disk Drive Parameters. Proc. of ACM Sigmetrics Conference,
pages 146–156, 1995.

135

[WGSS95] John Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID Hierarchical Storage System. Proc. of the ACM SOSP, 1995.

[Won80] C. K. Wong. Minimizing Expected Head Movement in One-
Dimensional and Two-Dimensional Mass Storage Systems. ACM Com-
puting Surveys, 12(2):167–178, 1980.

[xal] Xalan-Java. http://xml.apache.org/xalan-j.

[XPa05] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 2005.

[xt] XT. http://www.blnz.com/xt/index.html.

[YGC+00] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and
T. E. Anderson. Trading Capacity for Performance in a Disk Array.
Proceedings of Operating Systems Design and Implementation, October
2000.

[YLB01a] Tsozen Yeh, Darrell Long, and Scott Brandt. Caching Files with a
Program-based Last N Successors. Workshop on Caching, Coherency
and Consistency (WC3 ’01), June 17, 2001.

[YLB01b] Tsozen Yeh, Darrell Long, and Scott Brandt. Conserving Battery En-
ergy through Making Fewer Incorrect File Predictions. IEEE Work-
shop on Power Management for Real-Time and Embedded Systems at
the IEEE Real-Time Technology and Applications Symposium, pages
30–36, May 29, 2001.

[YOK03] Benjamin B. Yao, M. Tamer Özsu, and John Keenleyside. Xbench -
a family of benchmarks for xml dbmss. In Proceedings of the VLDB
2002 Workshop EEXTT and CAiSE 2002 Workshop DTWeb on Effi-
ciency and Effectiveness of XML Tools and Techniques and Data In-
tegration over the Web-Revised Papers, pages 162–164, London, UK,
2003. Springer-Verlag.

[ZYKW02] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang. Configuring and
Scheduling an Eager-Writing Disk Array for a Transaction Processing
Workload. Proc. of USENIX FAST, January 2002.

136

APPENDIX A

Disk-drive Background

Data is stored in blocks on disk-drives where each block is identified by its

cylinder-head-sector number (CHS addressing) on the drive by the drive controller.

However, modern disk drives provide a logical block abstraction to the operating

system, which does not export information about the physical data layout, per-

formance characteristics, and internal operation of the disk drive. In this Logical

Block Addressing (LBA) every sector is identified as a fixed-size block in a linear

address space. The device driver receives the block I/Os as LBA definitions which

is passes to the drive controller which in turn translates this to the device specific

CHS address.

Latencies: Accessing data on a disk drive consists of three time components: seek-

time, during which the disk arm moves from the current cylinder to the target

cylinder, rotational-delay, during which the disk waits for the target block to rotate

and appear below the disk head, and transfer-time, during which data is read from

or written to the disk platter. The seek-time depends only on the distance between

the current cylinder and the target cylinder, but is a non-linear function. The

rotational-delay depends on the RPM of the disk (which is fairly constant, varying

less than 0.5%) and the angular distance of the target block from the block on which

the disk head lands after the seek operation. The transfer-time of the disk depends

on the RPM as well as the recording density of information on the target disk zone.

Accesses: Accesses to disk blocks can be of two types. Sequential, where con-

tiguous disk blocks are accessed and Random where non-contiguous disk blocks are

accessed. Sequential accesses are the most efficient since they do not incur any seek

or rotational delays. Random accesses are known to be two orders of magnitude

slower than sequential accesses [?].

137

VITA

MEDHA BHADKAMKAR

EDUCATION

Ph.D Florida International University
School of Computer and Information Sciences
2009

M.S Florida International University
School of Computer and Information Sciences
2006

B.E University of Pune, India
Electronics Engineering
2000

RESEARCH EXPERIENCE

TEACHING EXPERIENCE

PUBLICATIONS AND PRESENTATIONS

• Storing Semi-structured data on disk drives Medha Bhadkamkar, Fernando
Farfan, Vagelis Hristidis, and Raju Rangaswami ACM Transactions on Stor-
age, Vol. 5, Issue 2, May, 2009.

• BORG: Block-reORGanization for Self-Optimizing Storage Systems Medha
Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju
Rangaswami, and Vagelis Hristidis Proceedings of the File and Storage Tech-
nologies, FAST, Februrary 2009.

• The case for Active Block Layer Extensions Jorge Guerra, Luis Useche, Medha
Bhadkamkar, Ricardo Koller, and Raju Rangaswami Workshop on Storage
and I/O Virtualization, Performance, Energy, Evaluation and Dependability,
SPEED, February 2008.

• EXCES: EXternal Caching in Energy Saving Storage Systems Luis Useche,
Jorge Guerra, Medha Bhadkamkar, Mauricio Alarcon, and Raju Rangaswami
Proceedings of IEEE International Symposium on High-Performance Com-
puter Architecture, HPCA, February, 2008.

• Storing Trees on Disk Drives Medha Bhadkamkar, Fernando Farfan, Vagelis
Hristidis, and Raju Rangaswami Proceedings of the File and Storage Tech-
nologies WiP, December 2005.

138

• Feasibility, Efficiency, and Effectiveness of Self-Optimizing Storage Systems
Medha Bhadkamkar, Sam Burnett, Jason Liptak, Raju Rangaswami, and
Vagelis Hristidis Florida International University Technical Report TR-2007-
01-01, January 2007.

• A Case for Self-Optimizing File Systems Medha Bhadkamkar, Sam Burnett,
Jason Liptak, Raju Rangaswami, and Vagelis Hristidis Florida International
University Technical Report TR-2006-09-03, September 2006.

• Efficient Native Storage Systems for Semi-structured Data Medha Bhadkamkar,
Fernando Farfan, Vagelis Hristidis, and Raju Rangaswami Florida Interna-
tional University Technical Report TR-2006-09-01, September 2006.

• Efficient Native XML Storage Medha Bhadkamkar, Vagelis Hristidis, and Raju
Rangaswami Florida International University Technical Report TR-2005-04-
01, April 2005.

139

