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ABSTRACT OF THE DISSERTATION 
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by 
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Professor Malek Adjouadi, Major Professor 

 
This dissertation established a state-of-the-art programming tool for designing and training 

artificial neural networks (ANNs) and showed its applicability to brain research. The developed 
tool, called NeuralStudio, allows users without programming skills to conduct studies based on 
ANNs in a powerful and very user friendly interface.  

A series of unique features has been implemented in NeuralStudio, such as ROC analysis, 
cross-validation, network averaging, topology optimization, and optimization of the activation 
function’s slopes. It also included a Support Vector Machines module for comparison purposes. 
Once the tool was fully developed, it was applied to two studies in brain research. In the first 
study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. 
This analysis involved extracting features from the spectral power in the gamma frequencies. In 
the second application, a unique method was devised to link EEG recordings to epileptic and non-
epileptic subjects. The contribution of this method consisted of developing a descriptor matrix 
that can be used to represent any EEG file regarding its duration and the number of electrodes.  

  The first study showed that the inter-electrode mean of the spectral power in the gamma 
frequencies and its duration above a specific threshold performs better than the other frequencies 
in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity 
of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately 
relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and 
specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of 
activity at over 99.99 % certainty. 

It was demonstrated that 1) the spectral power in the gamma frequencies is highly 
effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to 
epileptic and non-epileptic subjects. These two studies required high computational load and 
could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the 
merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio 
has been recently awarded a patent (US patent No. 7502763). 
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CHAPTER 1 

1. INTRODUCTION 

 
This dissertation proposes a research platform for the application of artificial neural 

networks (ANNs) in pediatric epilepsy. This research platform is designed with a 

generalized topology that will allow researchers to apply ANNs in different research 

disciplines. Given the strong collaboration between FIU and MCH, the research 

methodology and the practical implications of this dissertation focus on brain research 

towards a better understanding of seizures and their causality.  

The first part of this dissertation dwells in the design approach taken in establishing the 

artificial neural network platform we call NeuralStudio (NS). The novelty of this 

platform has lead to a U.S. patent that has been granted in March 2009 [Ayala and 

Adjouadi 2009].    

In order to assess the research and practical merits of this NeuralStudio, new algorithms 

have been developed within this research platform to address the problems associated 

with the complex problems of detection and ultimately prediction of epileptic seizures. In 

this research endeavor, the key aspects in establishing ANN architectures with the 

optimal weights for all the necessary decision functions are provided in details. What is 

unique in this approach is that it allows researchers to make use of this NeuralStudio to 

deliberate on what constitutes optimal decision planes and optimal decision functions.  

The term Artificial Intelligence (AI) refers to a group of computerized methods that 

emerged in the 1950s and use non-conventional techniques to solve practical problems in 
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Engineering that were otherwise impossible to solve with conventional mathematics 

[Fogel et al. 1966] [Rich and Knight 1991] [Winston 1992]. Advances in AI are a direct 

consequence of the invention of computers, and of a constant improvement in their 

performance as well as their massive use in education and research. Areas which 

experienced the highest progress and have to date made the most impact are genetic 

algorithms, fuzzy logic, and artificial neural networks. 

In the 1950s, the first ideas of what would be later called the theory of genetic algorithms 

(GAs) [Barricelli 1954] [Barricelli 1957] [Fraser 1957] were published. Soon after that, 

the theory experienced a fast development and became very attractive due to its 

applicability to solve practical real life problems [Fraser 1970] [Rechenberg 1973]. The 

theory of GAs was considerably improved by the works of John Holland in the 1970s 

[Holland 1975] and it has become an important tool to perform system optimization 

[Goldberg 1988] [Goldberg 1989] [Fogel 2006]. 

Genetic algorithms are optimization algorithms that use heuristic search methods that 

manipulate the variables resembling concepts found in Genetics such as mutation, cross-

over, and selection [Fogel 2000] [Langdon and Poli 2002] [Grosan and Abraham 2007] 

[Goldberg 2007]. Genetic algorithms are suitable for constrained optimization problems 

and are widely used in the automated design of industrial equipment, automotive 

components for crashworthiness, sophisticated trading systems in the financial sector, 

water distribution systems, distributed computer network topologies and electronic 

circuit, among others. They have been also applied to gene expression profiling analysis, 
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marketing analysis, container loading optimization, code-breaking and the search for 

hardware bugs.  

In 1965, the foundations of the Fuzzy Logic (FL) theory were established in a paper by 

Lotfi Zadeh [Zadeh 1965]. In the beginnings, the theory was received with skepticism, 

but with time it attracted the attention of the scientific community as it showed its 

undisputable usability in solving many practical problems, especially real-time control 

problems. Zadeh showed that many complex real-world problems lack precise 

information and therefore do not need to be modeled by traditional system analysis 

techniques. Instead, FL could be used to obtain model results that would be as accurate as 

desired and at the same time, of great practical use. In the subsequent years, the FL 

theory was enriched and strongly associated with the solution to many control problems 

[Zadeh 1965] [Zadeh 1968] [Zadeh 1989] [Zadeh 1976] [Yen and Langary 1994]. FL has 

extended its applications to robotics, consumer products (vacuum cleaners, rice cookers, 

refrigerators), the automotive industry (power train and transmission control, engine 

control), Industrial process control (embedded control applications, manufacturing) and 

also aerospace. Other areas of application have been information processing, financial 

banking and trading, decision making, and pattern recognition [Klir and Yuan 1995] 

[Dimitrov and Korotkich 2002].  

In the meantime, the creation of the perceptron by Rosenblatt in 1958 [Rosenblatt 1958] 

constituted the starting point of the development of the theory of ANNs [Minsky and 

Papert 1969] [Widrow and Lehr 1990], and thereafter, different types of networks were 

created, such as the ADALINE [Specht 1990]  [Piche 1995] [Chan et al. 2003] [He et al. 



 4 

2005] and MADALINE nets [Winter and  Widrow 1988] [Widrow and Lehr 1990], as 

well as the self-organizing maps, also called Kohonen features maps by the name of its 

inventor, the Finnish professor Teuvo Kohonen [Ferrán et al. 1994] [Santini 1996] 

[Kohonen 2001]. Further advances led to the design of other types of nets, such as 

clustering nets [Pal et al. 1993], pattern association nets [Nooralahiyan et al. 1994] and 

fixed weight nets [Feldkamp et al. 1996], among others. Each of them was developed in 

an effort to model different types of real-world problems. What is so attractive about the 

perceptron and ANNs in general is that they resemble the way biological neurons interact 

to process information. 

Many practical problems can be indistinctly solved either with FL, ANNs, and even GAs 

as in the case of control systems [Patrikar and Provence 1993] [Shibuchi et al. 1994] 

[Chen et al. 1995] [Chung and Chiang 1997] [Hagan et al. 2002] [Ayala et al. 2002a] 

[Ayala et al. 2002b] [Ayala and Adjouadi 2003] [Pal et al. 2003] [Pal et al. 2003]. A 

classic example is the traveling salesman problem which can be solved with GAs, FL and 

ANNs [Braun 1991] [Favata and Walker 1991] [Xu and Vukovich 1993] [Julstrom 1995] 

[Budinich 1996] [Li and Kwan 2003]. An example of how to set up a FL system using 

GAs is given in [Shibuchi et al. 1994]. Similarly, many problems of pattern recognition 

and classification can be solved with FL and ANNs [Kandel 1982] [Kwan and Cai 1994] 

[Lo et al 1995] [Ripley 1996] [Rowley et al 1998] [Baraldi and Blonda 1999] [Osowski 

and Linh 2001] [Bishop 2005] [Ajiboye and Weir 2005]. 

Beyond the countless industrial applications of AI algorithms, it is in the biomedical field 

where especially ANNs have clearly outperformed the other areas. Their applications 

have increased in proportion to the development of screening technologies such as 



 5 

Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT) as well as 

with the extended usage of flow cytometry, to name a few. Besides segmentation of MRI 

images [Hall et al. 1992] Reddick et al. 1997], such applications are mainly targeted to 

the recognition of patterns that are indicative of diseases, such as: 

- Leukemia [Kothari et al. 1996] [Zong 2005] [Zong 2006] 

- Cancer [Khan et al. 2001] 

- Breast cancer [Wilding et al. 1994] [Chen et al. 2000] 

- Brain tumors [Reddick et al. 1998],  

- Pulmonary cancer and related diseases [Gurney and Swensen 1995] [Scott et al. 

2000] [Eng 2002] 

- Alzheimer [Horn et al. 1993] [Kippenhan et al. 1994] [Warkentin et al. 2004] 

[Tandona et al. 2006] 

- Hepatitis [Ozyilmaz and Yildirim 2003] 

- Heart diseases [Das et al. 2009] 

Especially in epilepsy research, a focus of this dissertation, many AI applications deal 

with the automation of the detection of epileptiform activity (EFA) from 

Electroencephalograph (EEG) recordings. Epilepsy has become a critical area of research 

and has received great attention from medical and scientific institutions in the last two 

decades. This attention is due to the overwhelming number of persons suffering from that 

disease, which reportedly affects over 3 million people in the United States [Epilepsy 

Foundation of America 2008]. It is estimated that in about 80 percent of those diagnosed 

http://www.journals.elsevierhealth.com/periodicals/artmed/article/PIIS0933365705001223/abstract#aff1#aff1�
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with epilepsy, seizures can be controlled with some medicines. In the remaining cases, 

surgical intervention is mostly the only alternative, and the precise detection of seizure 

focus becomes the most critical part of the pre-surgical evaluation due to its sensibility to 

surgery outcome. Seizure focus localization is then performed by tracking EFA, which is 

done with different modalities in order to assure high accuracy. Despite being a relatively 

old technique, EEG is still the key tool in epilepsy treatment and research. Computer 

aided algorithms are used to automate focus localization process and make it free from 

subjectivity [Yaylali 1991] [Gabor 1992] [Tarassenko et al. 1998] [Adjouadi and Ayala 

2003] [Subasi 2006]. 

This dissertation is devoted to the crucial role that ANN-based EFA detection methods 

play in epilepsy research. For that reason, the aforementioned NS programming tool, 

which was originally designed and developed to target a general scientific audience, will 

be presented. The tool was later improved over the years to be suitable for use in 

detecting EFA from EEG recordings. This dissertation will present two methods for 

detecting seizures and classifying EEG recordings, which have been designed and 

modeled with the NS tool. 

Chapter 2 of this dissertation provides the research foundation of ANN-based algorithms 

for detecting EFA, with emphasis in the extraction of features from EEG in time and 

frequency domain. After a review of existing detection methods, the bases of the method 

used for performance evaluation are described. 

Chapter 3 presents an overview of the design and functionality of the NS tool and will 

give special attention to the ability of designing and training ANNs to detect EFA. 
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In Chapter 4, the experimental setup that was used as a basis for all methods is presented. 

Additionally, a seizure detection method is discussed and presented, emphasizing its 

modeling with the NS tool. A performance evaluation analysis of the detector is made. 

Chapter 5 proposes a new methodology to analyze feature trends in EEG files and 

compares non-epileptic with epileptic patients as an attempt to delineate the differences 

between them. This methodology is evaluated using Receiver Operating Characteristics 

(ROC) analysis within the NS tool. 

Concluding remarks are provided in Chapter 6. 
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CHAPTER 2 

2. PHYSIOLOGY AND DETECTION OF EPILEPTIFORM ACTIVITY 

2.1. Processing Epileptiform Activity in EEG 

2.1.1. Basics 

EEG plays a decisive role in epilepsy research and treatment. EEG was first applied by 

Hans Berger in 1929 in Germany in an attempt to demonstrate that the measured activity 

changes depending on the brain status (epilepsy, anesthesia, sleep). In its basic 

representation, an EEG is a plot of the measurements of electric signals from the scalp as 

illustrated in Figure 2.1. The measurements, usually in microvolt, are taken from 

electrodes that are placed on the scalp and fixed to it with some type of material of high 

conductivity. One electrode always serves as ground or reference and the others are 

placed in specific locations on the scalp. Most EEG recordings include an electrode to 

record electrocardiogram (ECG) activity. This is done with the intent of using that signal 

to cancel its interference in the EEG [Tong et al. 2001]. 

EEG was initially plotted directly on paper-rolls (analog), but nowadays, EEG recordings 

are digitally recorded and displayed using computers, usually in a referential montage, 

and stored for subsequent processing and analysis.  

Through the years, the number of electrodes has been standardized, with the 10-20 

system (Figure 2.1) [Homan et al. 1987] and the Modified Combinatorial Nomenclature 
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(MCN) montage (Figure 2.2) [Gevins and Remonds 1987] [Adjouadi et al. 2004b] 

[Adjouadi et al. 2004c]  [Cambier et al. 2001] being the most used ones. 

 

 

Figure 2.1: An EEG of a patient showing epileptiform activity (Interictal spikes) in some channel pairs 
(courtesy of Miami Children’s Hospital) 

 

The 10-20 system is however more practical for its simplicity of use and for the bigger 

spacing between electrodes which reduces the possibility of inter electrode interference. 

Since EEG records voltage differences between each electrode and a ground electrode, 

the plots thus represent a voltage difference between two electrodes. By simple 

transformations, the raw plot of one live electrode vs. ground (referential montage) can 

be always transformed into another representation to show the voltage difference of two 

specific live electrodes (bipolar montage). This allows personalizing the analysis without 

the need of repeating the recordings. 
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Figure 2.2: Location of the electrodes in the 10-20 system 

 

 

Figure 2.3: Location of the electrodes in the modified combinatorial nomenclature MCN 
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In the 10-20 system, each channel location has a label and/or number to identify its sub-

cranial lobe and hemispherical location. For example, “FP” as the Front-Polar or 

prefrontal lobe,  “F” as Frontal lobe, “T” as Temporal lobe, “C” as Central lobe, “P” as 

Parietal lobe, and “O” as Occipital lobe. There are two important reference landmarks 

known as nasion, which is in the front of the head (point between the forehead and nose) 

and inion which is located at the back of the skull. To simplify and standardize electrode 

placement, caps are used which have a maximum number of openings to place as much 

electrodes as needed (Figure 2.4).  

 

Figure 2.4: An EEG cap with complete set (Image taken with the permission of a student volunteer from 
the CATE lab at FIU). 

 

As opposed to MRI, CT, PET and SPECT, EEG is a relative inexpensive technology to 

estimate locations of tumors and epileptic foci in the brain. By reading EEG, experts can 

find specific patterns which are indicative of seizure activity. If these patterns 

consistently repeat in specific electrodes (or channels), then the approximate location of 

the seizure focus is expected to be in a region enclosing these electrodes. Therefore, EEG 

provides a simple way of roughly locating the seizure focus. 

With time, procedures to study epilepsy have become more sophisticated and, when 

necessitated, invasive. For example, part of the pre-surgical evaluation of persons with 
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refractory seizures is the implantation of electrode arrays [Tran et al. 1997] which are 

placed in the cortex of the brain called Electrocorticography (ECoG). The placement of 

these arrays coincides with the location where the seizure focus was suspected by using 

scalp EEG. ECoG is considered in clinical practice the golden standard for locating 

epileptogenic zones due to its high spatial resolution and lower degrees of noise than the 

scalp EEG, whose recordings are attenuated due to high scalp inductivity [Ferree et al. 

2001]. Figure 2.5 shows an electrode grid as it is implanted in the brain of a patient. 

 

Figure 2.5:  An electrode grid being implanted on the cortex of the brain of a patient (Courtesy of the Brain 
Institute at Miami Children’s Hospital). 

 

EEG is also used clinically to diagnosis coma and encephalopathy conditions as well as 

to monitor anesthesia, to name a few. Regardless of these merits of EEG, other 

technologies such as MRI are often used in parallel before surgical treatment of epileptic 

patients to improve surgical success. 

Most EEG is nowadays digitally sampled between 256 and 512 Hz, although higher 

frequencies are used sometimes for research purposes. The recordings are then low-pass 

filtered to remove low-frequency artifacts (usually between 0.5 and 1 Hz) and high-pass 
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filtered to remove high-frequency artifacts (usually between 35 and 70 Hz). However, 

most EEG machines have configurable noise cancellation options already built-in. 

As opposed to scalp EEG, ECoG is typically recorded at higher sampling rates since 

higher frequencies are better revealed in subdural signals. 

2.1.2. Epilepsy: A Synopsis 

Epilepsy is a chronic neurological disease manifested by abnormal electric discharges in 

the brain leading to seizures [Adams and Victor 1989]. It affects people of all ages, 

although it is predominantly a pediatric disorder, with the mean age of epilepsy onset 

defined in the range between 8 and 10 years. Epilepsy is considered as one of the most 

common neurological disorders affecting 3 million people in the United States alone. 

According to Centers for Disease Control and Prevention, one out of 100 adults has 

active epilepsy [CDC 2008]. According to the World Health Organization, it is estimated 

that 50 million people worldwide have epilepsy, especially children and adolescents, with 

millions more that go unreported in poor and developing countries.  

It is estimated that 30% of the epileptic population has poor response to medication 

[Cascino 1994] [Engel 1996], and around 10% undergo surgical intervention [Epilepsy 

Foundation of America 2008].  

Treatment options for intractable seizures are limited with some resorting to focal 

resections of abnormal brain tissue when the epileptogenic region can be accurately 

defined; a critical task that may require intracranial EEG recordings of seizures to define 

their onset and region of involvement. More recently, an alternative treatment option has 

evolved where chronic intracranial implants apply electrical stimuli directly to the brain 
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surface with the ultimate aim of preventing or aborting seizures. The implants 

continuously record the EEG activity and apply the stimuli when seizures are detected or 

are presumed to be imminent.  

Although congenital factors, head traumas and vascular diseases are considered risk 

factors, the etiology of epilepsy is unknown for approximately three fourths of all cases 

[Hauser and Kurland 1975]. Patients with epilepsy are initially treated with 

anticonvulsant medication; but in difficult clinical cases, surgery becomes the only 

alternative for them.  

2.1.3. Epileptiform Activity  

According to [Chatrian 1994], epileptiform activity (EFA) is a term used in EEG to 

describe waves that are clearly distinguishable from the background activity and are 

similar to the waves found in EEG from epileptic subjects. EFA refers to the waves 

recorded in the interictal activity (the time between seizures) but not during the seizure 

itself. 

According to [IFSCN 1974], EFA can be divided in spikes, sharp waves, spike-and-slow-

wave complex, and multiple spike-and-slow-wave complexes. The distinctions are as 

follows: 

- A Sharp wave is a transient distinguishable from EEG background which lasts 70 

to 200 milliseconds 

- A Spike is a sharp wave with a duration of 20 to 70 milliseconds 
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- A Spike-and-slow-wave complex is a spike followed by a slow wave, whereas the 

later has usually higher amplitude  

- Multiple spike-and-slow-wave complex is a concatenation of spike-and-slow-

wave complexes 

In practice, however, it is more important to distinguish them from the background 

activity than to detect their morphological distinctions. 

2.1.4. Interictal Spikes  

Interictal spikes are spikes recorded in the time between seizures, while the subject is not 

having any seizures. Their detection is shown experimentally to be critical in locating the 

seizure focus. Interictal spikes usually occur in neighboring electrodes (spatio-temporal 

context) and at the same time, as depicted in Figure 2.6. Key aspects of the morphology 

of an interictal spike are illustrated in the RPF wave in Figure 2.7, consisting on raising 

and falling amplitude and duration. In [Gevins and Remond 1987], an excellent overview 

of the interictal spike morphology is presented. The conditions under which a spike can 

be considered an interictal spike are summarized in detail in [Adjouadi et al. 2005a].  

Medical experts and neuroscientists [Jayakar et al. 1989] have established several criteria 

as necessary conditions to declare the existence of an interictal spike, and their detection 

and extraction were successful using algorithms that exploit such characteristics 

[Adjouadi et al. 2004a] [Adjouadi et al. 2005a]. 
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Figure 2.6: Interictal spikes occurring synchronously in four distinct electrodes or channels 

 

 

Figure 2.7: Characterizing features of an interictal spike 
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2.1.5. Seizures  

Brain discharges lasting more than a few seconds usually represent ictal activity (called a 

seizure) rather than EFA. During a seizure, the EEG clearly shows high activity in most 

channels, often manifested with much higher frequencies and amplitudes as shown in 

Figure 2.8. The reader can clearly observe the increase in frequency and amplitude during 

the seizure or ictal state.  

Usually, signs of the seizure are first observed in specific channels, called “channels that 

initiate the seizure”. In Figure 2.8, electrode pairs FP1-F7, F7-T3, T3-T5, F8-T4, and T4-

T6 initiate the seizure. It has been recently found [Cabrerizo et al. 2009] that these 

channels are closer to seizure focus or tumor and have much lower coherence than the 

remaining channels.  

 

Figure 2.8:  An EEG containing the transition from interictal to ictal state, showing electrode pairs that 
initiate the seizure (courtesy of Miami Children’s Hospital) 
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As explained earlier, during pre-surgical evaluation, an electrode grid is usually 

implanted in the brain of patients for a better localization of the seizure focus. Patients are 

then put in an observation room until it is deemed that sufficient data containing interictal 

spikes or seizures is collected. On occasions, this process may last for more than a week. 

Then, the patient is sent to the operation room for surgery. But before that, an EEG expert 

has to visually scan the EEG to find the interictal spikes and seizures, if any.  

Considering that EEG recording sessions can last for days, reviewing such EEG data can 

be an exhausting process, besides that it is prone to subjective assessment. However, the 

detection of seizures during monitoring is crucial for the surgery outcome since the grid 

electrodes that initiate the seizure are consequently used to pinpoint the seizure focus 

more accurately. For that reason, methods for the automated detection of interictal spikes 

and seizures can serve as valuable tools for the scrutiny of EEG data in a more objective 

and computationally efficient manner.  

2.1.6. Feature Extraction in Time Domain  

EEG sampled at a specific rate would obviously yield the same amount of data points in 

each and every second. At 512 Hz, the prevalent frequency used in this dissertation, one 

second would thus be made up of 512 data points. Just as in any real-world problem, 

large amounts of data would increase the computational load that often lead to detection 

algorithms that are time consuming.  However, in many practical cases, there is no need 

to evaluate each data point as in the specific case of interictal spike detection. In this case, 

only inflection points and their distance to each other will be sufficient to detect the 
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spike. In a more general sense, signals can be represented by a reduced number of so-

called features which, depending on the case at hand, can help in identifying a specific 

pattern. 

Since EEG is a time series, one can subdivide the recording in windows (let’s say of one 

second) and then extract some statistical parameters (called features) out of each window. 

In doing so, each window can be represented in time as a set of features, and the change 

of these features over time can serve as means to forecast or identify a specific pattern or 

event of interest. Since the amount of features is often much less than the raw data used 

to compute them, this helps at reducing the computational load and simplifying the 

detection procedure.  

Time-domain EEG features can be grouped in the following categories:  

- Statistical features (average, standard deviation, moments) 

- Hjorth’s descriptors (activity, mobility, complexity) 

- Non-linear features (correlation dimension, Lyapunov exponent) 

- Other features obtained from convolution kernels, Principal Component Analysis 

(PCA), autocorrelation, and entropy 

 

2.1.7. Statistical Features  

Results form empirical evaluations indicated that the easiest way to assess the merit of 

the aforementioned features is to make use of the following statistical parameters: 

- Minimum value in the window 

- Maximum value in the window 
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- Spread (difference Maximum-Minimum) in the window 

- Average value in the window 

- Standard deviation of all values in the window 

- Signal-to-noise ratio (average to standard deviation ratio) 

- Skewness: Is the 3rd standardized moment and is computed as 
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Most of the related studies use the signal-to-noise ratio because as it combines the ratio of 

these two critical signals. Often, only a combination of such features could produce 

desired outcomes that can be validated. For example, in [Adjouadi et al. 2005b], a 

method is described, which extracts average, standard deviation, kurtosis and skewness 

from the raw data from blood samples and applies Support Vector Machines [Vapnik 

1995] [Cristianini and Taylor 2000] to detect leukemia. The raw data of that study was so 

huge that it was impossible to be handled without feature extraction.  

2.1.8. Hjorth’s Descriptors   

Neurologists to this day have relied on the use of the so-called Hjorth’s descriptors 

[Hjorth 1970] in assessing EEG activity. These parameters are widely used and have been 

specifically designed to describe EEG patterns.  
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Hjorth’s parameters are described as follows: 

- Activity which defines the variance of the signal in the window 

- Mobility which is the 1st derivative of the STD of the signal in the window 

- Complexity which is the 2nd derivative of the STD of the signal in the window 

Although the use of the Hjorth’s parameters is a common practice, researchers have 

created additional, less conventional features to assess brain activity using nonlinear 

features as described next.  

2.1.9. Non-Linear Features   

Non-linear features are relatively new to EEG analysis and are still in a development 

state, given by the constant variation and increased sophistication of methods that have 

been lately developed. Some of the most important non-linear parameters are described 

below: 

- Correlation dimens ion: Important studies on epilepsy [Pritchard 1992] [Theiler 

1995] [Martinerie et al. 1998] [Lehnertz and Elger 1998] [Stam 2005] have applied 

chaos theory [Alligood 1997] to analyze EEG signals. A fundamental measure in 

chaos is the correlation dimension (also used in Fractal theory), which characterizes 

how chaotic a system is.  

The correlation dimension has been extensively used to describe chaos in EEG in 

different studies, such as in [Frank G et al. 1990] [Iasemidis and Sackellares 1996] 

and [Guevara 1997]. In [Grassberger and Procaccia 1983], a numerical technique was 

introduced to compute an estimate of the correlation dimension, however, it is widely 
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accepted by the scientific community that the numerical techniques for computing the 

correlation dimension are not easy to implement. 

The correlation dimension is computed through the correlation integral )(C : 

2lim)(
N
NC V
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where VN   is called correlation sum and represents the total number of reconstructed 

vectors )(iV  in a data segment whose difference is less than a small distance  . The 

reconstructed vectors are obtained from the raw data with some arrangement of 

equidistant data points ix  such that  )(),...,(),()( 21 ixixixiV m . When the number of 

points tends to infinity and VN to zero, the correlation integral )(C converges to v . 

Power v  is called the correlation dimension. 

Numerical techniques to compute the correlation dimension are difficult to 

implement. However, when comparing EEG segments of constant N , )(C  becomes 

only dependent of VN . Therefore, the correlation sum may represent an alternative to 

look for changes in the correlation dimension of signals. 

In an effort to overcome computational load and improve the accuracy, [Tito and 

Adjouadi 2007] used the correlation sum to detect seizures in EEG segments. 

-  Lyapunov exponent: Another significant non-linear parameter is the Lyapunov 

exponent, which measures how fast signal trajectories separate from each other. The 

Lyapunov exponent has been used to some extent in EEG analysis [Iasemidis and 

Sackellares 1991] [Pradhan and Sadasivan 1996] [Osowski et al. 2007] and even in 
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seizure prediction [Moser et al. 1999] [Isaemidis et al. 1998] [Iasemidis and 

Sackellares 2001]. However, the use of the Lyapunov exponent for the particular case 

of seizure prediction remains controversial to this day [Lai et al. 2003] [Lai et al. 

2004]. In the challenging area of seizure prediction, our research group in the CATE 

center at FIU is trying to consolidate key findings reported in the literature and 

augment the current knowledge through an extensive investigation on several patients 

that have been monitored under pre-surgical evaluations combining both intracranial 

EEG (iEEG) and MRI modalities. Our preliminary results suggest the following: (1) 

that the coherence behavior in frequencies from 30 to 60 Hz is suitable to classify 

electrodes that initiate the seizure; and at the time of the seizure there is a significant 

decrement of the coherence values between frequencies from 30 to 60 Hz; and those 

electrodes that initiate the seizure keep their low coherence values until at least 10 

minutes before a seizure onset. (2) The standard deviation of the power of the 

frequency bands, calculated in epochs of 8 seconds, using files of 30 to 40 minutes of 

duration before and during a seizure varies across frequencies. There is an evident 

decrement in the standard deviation of the power from Delta to Gamma prior to an 

ictal state. (3) Using orthogonal transformations of the iEEG activities, there is a 

significant difference of the standard deviation for those electrodes that initiate a 

seizure in contrast to those that do not, and that a few seconds prior to an ictal state, 

interlocking between all electrodes is experienced. 
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2.1.10. Other Features   

Apart from the aforementioned features, there are several types of parameters that are 

also increasingly applied to EEG analysis. Some of them are listed below: 

- Convolution kernels : Convolution kernel are operators that are passed through the 

data sample by sample, usually producing one single output, as it is the case of the 

derivatives and filters. In [Adjouadi et al. 2005a], the Walsh transform (which can be 

regarded as a configurable derivative) is used as a convolution kernel for interictal 

spike detection from EEG recordings of 31 patients with focal epilepsy, yielding a 

precision of 92%. 

- PCA Analysis : Principal Component Analysis is an important de-correlation 

technique that processes multidimensional data (EEG channels) aiming at finding 

uncorrelated variables or dimensions in another space so as to reduce data covariance. 

PCA involves matrix operations known as eigenvalue or singular value 

decomposition. Closely related to PCA are independent component analysis 

techniques, which are used to separate mixed variables into independent ones. The use 

of this technique is extensive and is described in detail in several books, with an 

excellent explanation in [Jolliffe 2002]. [Cabrerizo et al. 2006a] use PCA in 

conjunction with power spectrum to validate functional brain mappings associated 

with auditory/comprehension tasks. [Jung et al. 1997] use PCA on EEG power 

spectrum to train an ANN to estimate levels of alertness in volunteers performing 

auditory tasks. [You et al. 2008] use PCA to automatically classify Functional 

Magnetic Resonance Imaging (fMRI) patterns. Since EEG is recorded simultaneously 
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at different channels, this technique has major applications since it can find the degree 

of correlation between channel signals. The technique has been used in separating 

artifacts from channel recordings [Barlett et al. 1995] [Congedo et al. 2008], to 

approximately locate focus of temporal brain activity [Gomez-Herrero et al. 2008], 

and to automate seizure onset detection [De Vos et al. 2007] [Hesse and James 2005], 

among other applications. 

- Autocorrelation: Algorithms that apply the autocorrelation function to EEG analysis 

are moderately reported in the literature. In [Creutzfeldt et al. 1985], it is shown that 

the autocorrelation produces different outcomes when segmenting normal and 

abnormal EEG patterns. [Tito and Adjouadi 2007] have also used it to automatically 

detect seizures. 

- Entropy: There are several definitions of entropy, and some of them differ in 

formulation. Entropy in information theory measures the degree of uncertainty in 

systems. Therefore, it is used to model the chaotic nature of EEG. In EEG studies, the 

Shannon entropy [Shannon 1948] is applied in most cases. The Shannon entropy of a 

signal y(t) is defined as: 
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where K is some constant. [Steuer et al. 2004] apply the Shannon entropy to 

determine activity changes in long term EEG monitoring. Entropy can also be used in 

conjunction with the power spectrum (Spectral entropy) [Anderson and Jakobsson 

2004] during anesthetic induction. 
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The Kolmogorov-Sinai entropy is yet another parameter that allows classification of 

signals by their information contents. In [Micheloyannis et al. 1998], this version of 

entropy is successfully used in characterizing EEG changes in volunteers performing 

different mental tasks. [Pezard et al. 1994] have shown that this parameter can detect 

variations in the EEG of individuals performing different tasks (closed eyes at rest, 

closed eyes and counting even numbers, staring at a spotlight, passive and active 

auditive odd-ball tasks). 

 The so-called approximated entropy is a derivation of the Kolmogorov-Sinai entropy 

and it has been applied to investigate how the level of anaesthesia in patients is 

reflected in their EEG activity [Bruhn et al. 2000]. [Abásolo et al. 2005] use it to 

compare EEG background of subjects with Alzheimer’s disease and normal 

individuals in the same age range. 

2.1.11. Feature Extraction in Frequency Domain 

Another important domain from which features are usually extracted is the frequency 

domain. Since EEG is a digitized time series, it can be represented as a superimposition 

of signals of different frequencies. Therefore, patterns that are not visible in the time 

series may be revealed in the frequency domain.  

Frequency related features are extracted from the frequency spectrum, as obtained using 

the Fourier transform. In the case of a time series such as EEG, it is always better to 

divide the time in windows and then extract features from the spectrum of each particular 

window, rather than computing the spectrum of the whole time series.  
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A windowed Fourier transform done in time is called short-time Fourier transform and is 

one way to increase time resolution in frequency analysis of time series. The spectrum of 

each window is computed by the Fourier transform and generates as many coefficients as 

there are data points in the window, whereas for one-second windows, only half of the 

coefficients may be used due to the Nyquist criterion [Shannon 1949]. It is common 

practice to represent the spectrum in frequency bins rather than Fourier coefficients, 

where frequency bins and Fourier coefficients are related by:  
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where N is the number of Fourier coefficients (equal to the samples in the window), Fs is 

the sampling rate, and f is the frequency bin that corresponds to the kth Fourier 

coefficient. However, due to the Nyquist criterion, the maximum frequency analyzed may 

never exceed half of the sampling rate (Fs / 2).  

2.1.12. Power Spectrum and Relevant Frequency Bands 

The most common parameters extracted from EEG spectrums are: the power spectrum, 

the mean and peak frequency, spectral entropy, coherence, and spectral phase. They are 

listed below: 

- Power spectrum: A measure of how much of the signal varies in a specific frequency 

range is given by the power spectrum. The power spectrum is computed the 

conventional way: by squaring all Fourier coefficients that fall in a specific frequency 
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range (f1, f2), and adding them. Since the Fourier coefficients are complex numbers, 

squaring is substituted by the norm as follows: 
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where f1 and f2 are the lower and upper bounds of the desired frequency range and S(f) 

is the power spectrum at frequency bin f.  

In EEG analysis, the following established frequency ranges have been thoroughly 

investigated in this dissertation: 

- Delta (< 4  Hz): These waves are normal in adults during sleep, although are the 

dominant rhythm in infants up to 1 year of age. 

- Theta (4 - 8 Hz ): Theta waves are strong during alertness and meditation and 

reflect the transition from sleep to wakefulness. They are normal in children up to 

13 years old. 

- Alpha (8 - 13 Hz ): These waves are observed by closing the eyes and by 

relaxation. 

- Beta (13 - 36 H z): Beta waves reflect active concentration and are dominant in 

adults who are alert and have their eyes open. This band has a relative large band 

and it has been subdivided in several sub-bands: low beta or SMR (13-15 Hz), 

midrange beta (15-18 Hz) and high beta (>18 Hz). A subdivision into beta I (13-

20 Hz) and beta II (20-36 Hz) is also found in the literature.  

- Gamma (3 6 - 44 Hz ): Are present in almost all areas of the brain and it is 

associated with perception and consciousness. It is also sometimes defined as the 
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frequencies above 36 Hz.  In [Niedermeyer 2004] it is defined between 36 and 70 

Hz. 

The use of power spectrum in EEG studies is almost a golden rule. A study found in 

[Adjouadi et al. 2004b] shows how the power spectrum obtained from scalp EEG of 

patients performing auditory/comprehension tests during pre-surgical evaluation is useful 

in mapping critical brain regions that control speech and language functions. In [Tito et 

al. 2007], a comparative study is performed on the behavior in time of the power 

spectrum in the aforementioned frequency bands prior to seizure onset. In this study, 

other linear and non-linear parameters are also compared as well. Algorithms using 

power spectrum to automatically detect seizures are described in [Murro 1991] 

[Hopfengartner et al. 2007] and [Friedman et al. 2008], to cite a few.  

2.1.13. Spectral Features 

Other useful features that have been investigated include: 

- Mean Spectral Frequency: This feature is the average frequency of the spectrum and 

it can be computed as: 
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The mean frequency divides the spectrum in two parts of approximately equal areas. 

The summation in Eq. (2.7) starts intentionally at k=1 to avoid adding the DC-value at 

k=0, where N is the total number of Fourier coefficients or half of the sampling rate. 
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For example, in a study by [Jeong 2004] it has been found that EEG abnormalities of 

patients with Alzheimer’s are characterized by slow mean spectral frequency. 

- Peak Spectral Frequency : This feature is the frequency with the most impact in the 

spectrum and corresponds to the highest Fourier coefficient. As an example, a study 

on the variability of the peak alpha frequency involving epileptic and non-epileptic 

subjects is found in [Larsson and Kostov 2005]. 

- Spectral en tropy: Entropy as formulated earlier in Eq. (2.4) is also applied to the 

power spectrum as a way of measuring how chaotic a signal is. In [Anderson and 

Jakobsson 2004], an interesting algorithm computes the entropy from power spectra 

to classify the level of anesthesia in patients. 

- Coherence: The use of this parameter is still in its early states, and relevant findings 

using this rather important measure are not well documented in the scientific 

literature. Coherence measures how similar the spectra of two signals by evaluating 

the level or extent of synchronization between them. The coherence between two 

electrode signals x and y at a specific frequency f is computed as follows: 
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where Fxy( f ) is the cross-spectrum of time-domain signals x and y at frequency f, and 

Fxx( f ) and Fyy ( f ) are the auto-spectra of time domain signals x and y, respectively, at 

frequency f. When computing coherence for a specific frequency band, numerator and 

denominator of Eq. (2.8) are substituted by summation signs over all frequencies in 

the specific range.  An excellent study that shows an evident change in the coherence 
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of electrode initiating the seizure can be found in [Cabrerizo et al. 2009]. A method 

that applies coherence to estimate the extent of seizures from EEG of patients 

performing specific tasks is proposed in [Towle et al. 2007]. An application of 

coherence to noise cancellation from EEG is found in [Wahlberg and Lantz 2002]. 

- Spectral Phase: Spectral phase is computed as the arctangent (arctan) between the 

imaginary and the real part of the Fourier coefficients. It can be used to detect 

dynamical changes in EEG.  In a study involving 8 children with medical refractory 

seizures, [Ayala et al. 2009] report that the phase diagram of the signal of electrodes 

that initiate the seizure clearly differs from those of the remaining electrodes 

Wavelets are yet another way of extracting features from EEG. They allow a 

representation of signals in both time and frequency. When an event in a signal is 

represented in the time-frequency plane, it will mark a region instead of a point. As 

opposed to conventional methods of frequency analysis (such as the short time Fourier 

transform), Wavelets allow for a low to fine resolution in the time and frequency scales. 

Similarly to the Fourier transform, wavelets generate coefficients which are used directly 

as features or for feature extraction. For example, in [Kiymik and Subasi 2004], the 

wavelets coefficients are taken as inputs to an ANN to detect alertness from EEG. In [Li 

2006], a method is proposed to automatically detect seizures from EEG recordings using 

wavelet spectral entropy. 

There are many other methods that can used in assessing EEG functionality which are 

less frequently found in the scientific literature, and which will not be described as they 
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are beyond the context of this dissertation.  In retrospect, in all the methods that are based 

on the spectrum, frequencies are always analyzed up to Fs/2.  

In relation to the window size, it should be also noted that most research studies divide 

the recordings into one-second windows, although some neurologists and neuroscientists 

tend to use up to 8-second windows in an attempt to assess EEG dynamics with added 

context. 

2.2. Overview of Methods for the Automated Detection of EFA and Seizures 

2.2.1.  Basic Operational Steps of Existing Methods 

The simplest detection of EFA and seizures is performed on EEG by searching for 

patterns that are similar to valid EFA or seizure patterns. All detection methods have in 

common the need to “learn” the conditions under which a pattern may be considered an 

EFA or a seizure. One set of rules use imitative means of representation (i.e, mimetic) on 

individual channels and the other set takes into account the spatio-temporal aspects of 

multichannel EFA. After the rule base has been extracted with some method, the 

algorithm is tested on unknown data to evaluate its performance.  

The steps undertaken in the context of this dissertation can be generalized in the 

following way:  

1) Data collection and pre-processing (including data partitioning for pattern 

extraction and later testing) 

2) Feature extraction 
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3) Rule extraction (training) 

4) Event detection/classification (testing) 

For the detection of patterns, rules are implemented in the time domain. There are many 

ways of detecting such patterns: either by rule extraction or by using more sophisticated 

methods such as artificial neural networks (ANN).  

The two most reliable characteristics for the detection of interictal spikes are their fast 

rise and decay and the peak sharpness. These characteristics have been assessed by 

simple rule-based methods in [Birkemeier et al. 1978] [Gevins and Remond 1987] 

[Glover et al. 1989] [Gotman 1985]. More accurate methods include the spatio-temporal 

aspect of the interictal spikes, which have been assessed in several studies, such as in 

[Dingle et al. 1993] [Jayakar et al. 1991]. In [Gotman and Wang 1992], a detection 

algorithm is implemented based on the subject state (sleep, wakefulness, etc). 

The patterns are usually extracted mainly with some specific technique. For example, an 

implementation of the Walsh transform to spike detection is provided by [Adjouadi et al. 

2004a]. A detection method based on Wavelet theory is given in [Calvagno et al. 2000] 

and [Popescu 1998]. In [Barreto et al. 1993], a study is described for the detection of 

interictal spikes using electrocorticographs and Lagrange derivatives. 

Methods implementing ANNs have been proposed by [Subasia and Ercelebi 2005] 

[Ayala et al. 2004] [Hellmann 1999] [Ko and Chung 2000] [Kurth et al. 2000] 

[Tarassenko et al. 1998] [Gabor and Seyal 1992] and [Acir et al. 2005], to cite a few. 

[Gulera et al. 2005] proposes an interesting EEG signal classification and seizure 

prediction algorithm that uses Lyapunov exponents and ANNs.  
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Also in [Ubeyli and Guler 2004], ANNs are feed with Lyapunov exponents in order to 

assess EEG changes in epileptic patients. Expert systems have also been applied in 

[Davey et al. 1989] and [Dingle et al.., 1993].  It is also common to combine several 

algorithms in detecting dynamical changes in EEG activity as exemplified in [Jerger et al. 

2001].  

When comparing detection or classification algorithms in terms of performance, some 

sort of criterion is needed in order to select the best algorithm. Testing such algorithms 

produces different types of errors, which makes any comparison difficult. Next section 

will describe how the algorithms are evaluated in terms of performance. 

2.2.2.  Performance Evaluation of Detection Algorithms 

Evaluation of the Performance of detection algorithms is usually performed with 

Receiver Operating Characteristics (ROC) Analysis [Kohavi et al. 1998] [Tilbury et al. 

2000]. Such analysis begins by establishing a confusion matrix which contains 

information about the actual classification of the data being tested and the outcome of the 

classification system. Table 2.1 shows the main entries of the confusion matrix for a two- 

class classifier. 

Table 2.1: Entries of a confusion matrix 

 Detected as 
 Negative Positive 
Negative TN FP 

Actual 
Positive FN TP 
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The four table entries are defined as follows: TP (true positives) is the number of correct 

classifications that an instance is positive; FN (false negatives) is the number of incorrect 

classifications that an instance is negative; FP (false positives) is the number of incorrect 

classifications that an instance is positive; and TN (true negatives) is the number of 

correct classifications that an instance is negative. 

Positive and negative refers to the outcome given by the classifier, whereas true and false 

refers to the correctness of this outcome (i.e. right or wrong with respect to the actual 

state of the patient). The sum of the first and second row is the total number of positive 

and negative instances being under test, respectively, whereas instances are just all data 

values to be classified, regardless of their class. Similarity, the sum of the first and second 

column is the total number of positive and negative detections by the system, 

respectively. The grand total is the total number of instances being classified.  

Rows and columns summarize to the following: 

- Nneg is the total number of negative instances:          FPTNNneg   (2.9) 

- Npos is the total number of positive instances:           FNTPN pos   (2.10) 

- Cneg is the total number of negative classifications:  FNTNCneg   (2.11) 

- Cpos is the total number of positive classifications:      FPTPCpos   (2.12) 

- Ntot is the total number of instances being detected:  

FNFPTNTPCCNNN posnegposnegtot     (2.13) 
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The following quantities can be extracted from the confusion matrixes: 

- Correct Classification Rate (CCR, also called accuracy): Is the proportion of all 

correct classifications to the total number of instances: 

FNFPTNTP
TNTP

N
TNTPCCR

tot 





    (2.14) 

- Misclassification Rate (MCR): Is the proportion of all incorrect classifications to 

the total number of instances: 

CCR
FNFPTNTP

FNFP
N

FNFPMCR
tot








 1    (2.15) 

- True Positive Fraction (also known as Sensitivity, hit rate or recall): Is the 

proportion of TP to the total number of positive instances: 

FNTP
TP

N
TPTP

pos
f 

     (2.16) 

- True Negative Fraction (also known as Specificity): Is the proportion of TN to the 

total number of negative instances: 

FPTN
TN

N
TNTN

neg
f 

     (2.17) 

- True Positive Rate (also known as Precision): Is the proportion of TP to the 

number of positive classifications: 

FPTP
TP

C
TPTP

pos
r 

     (2.18) 
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- True Negative Rate: Is the proportion of TN to the number of negative 

classifications: 

FNTN
TN

C
TNTN

neg
r 

     (2.19) 

- False Negative Rate: Is the proportion of FN to the number of positive instances: 

f
pos

r TP
FNTP

FN
N
FNFN 


 1    (2.20) 

- False Positive Rate (also called False Alarm Rate): Is the proportion of FP to the 

number of positive instances: 

FPTN
FP

N
FPFP

neg
r 

     (2.21) 

The reader should note that with FNr and FPr, low values are better than high values.  

When two classifiers are being compared and the results of only one test are available, 

accuracy plays the most important role, unless one wants to favor TP or TN, which is 

common in the medical field. In these cases, sensitivity or specificity should be used 

instead. 

Varying a classifier threshold can have contradictory effects. Increasing the TP rate can 

also increase the FP rate, which is an undesired collateral effect. This trade-off is best 

given by the so-called ROC curves [Marcum 1960], which are parametric curves that are 

constructed based on the values of the TP and FP rate. In Figure 2.9, two ROC curves 

from two different classifiers are plotted. Observe that the classifiers excel each other in 

different regions of the plot.  
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Depending on the problem at hand, any particular ROC measure can be chosen in favor 

of another. For example, if one prefers to maximize TP and minimize FN, then TPf is the 

best choice. Sometimes, the compromise is made by using the area under the ROC curve, 

and the classifier with the highest area under the ROC curve is said to be the best. 

Depending on the problem at hand, this dissertation will select the appropriate measure 

for algorithm evaluation.  

 

 

Figure 2.9: Two ROC curves plotted from the confusion matrixes of two classifiers, showing how erratic 
their performance can be. 

 

As mentioned earlier, the methods for feature extraction can be combined to produce 

more robust classifiers. Once features are extracted, the algorithms used to create the 

classifier can differ from each other. For example, once the power spectrum of an EEG is 

extracted, it can be used to feed a Fuzzy system, an expert system, an ANN, or even a 

combination of them in order to train a classifier to detect EFA or seizures. 

For the reasons given in Chapter 1, this dissertation chooses ANNs to create the 

classifiers. Given the difficulty in designing optimal ANNs, a computational tool named 
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NeuralStudio has been created in the context of this dissertation to support researchers in 

the design and training of ANNs. Therefore, the methods that are described in the next 

chapters are implemented and tested using NeuralStudio. As such, the next chapter will 

provide a detailed overview of this newly created tool. 
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CHAPTER 3 

3. DESIGN AND IMPLEMENTATION OF NEURALSTUDIO: AN ARTIFICIAL 
NEURAL NETWORKS DESIGN AND EVALUATION TOOL 

3.1. Introduction 

Recent advances in artificial intelligence have benefited from the problem solving 

capabilities of ANNS in such areas as time series prediction, pattern recognition, data 

classification, and decision theory [Widrow and Lehr 1990] [Specht 1990] [Patrikar and 

Provence 1993] [Joyce 1999]. Artificial neural networks have also been relied upon in 

applications such as forecast studies, object identification, and process control, to name a 

few [Hagan et al. 2002].  Indeed, the wide range of applications enabled by artificial 

neural networks has not been limited to a few specialized-context problems, but rather 

expanded into different industrial applications and in the development of various 

commercial products. 

Artificial neural network theory can only be applied to practical problems with the use of 

computers.  Various programming tools haven been developed and are available in the 

market. However, despite the wide use of ANNs, the tools available for designing 

artificial neural networks are in general limited either in functionality, user friendliness, 

or both.  Efforts to provide user friendly tools may be complicated by aspects of artificial 

neural network theory, including the complex mathematics involved.  Nonetheless, past 

programming tools often complicate the process further by requiring programming in 

proprietary script or other languages.  The user must first master a programming language 

or script before designing and training ANNs.  Such requirements and other non-user 
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friendly details may then obscure aspects and features of ANNs to the user in training, as 

well as frustrate implementation and use for more experienced users. 

The data processing requirements of ANNs have likely been another source of 

complications for designing ANNs.  More specifically, a considerable amount of data 

often needs to be processed to train an ANN.  Efforts that would benefit from observation 

and analysis of the processing steps directed toward one network, or preferably many 

networks, may be impeded by difficulties arising from the creation, handling and 

processing of the training data.  In fact, the inability to teach students with examples has 

limited the usefulness of current ANN software design solutions.  Thus, the entry, 

handling and other processing of the data sets have acted as a barrier against effective 

teaching of ANN theory. 

One widely used ANN programming tool is provided as a toolbox within the MATLAB 

software package available from The MathWorks, Inc. (Natick, MA, 

www.mathworks.com).  Unfortunately, knowledge of MATLAB’s script language is 

generally required in order to access the full suite of programming options and features of 

the toolbox.  Making matters worse, the tool user is forced to enter the script language 

instructions via a command line.  Thus, the design and other programming of ANNs are 

at times inconvenient and slow, even when the scripting language may be familiar to the 

user. 

The MATLAB toolbox also provides a network/data manager to support the 

implementation of certain programming tasks outside of the command line.  

Unfortunately, the network/data manager does not present or support all of the 
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functionality available via the toolbox, thereby forcing the user to utilize the command 

line at times.  As a result, the network/data manager is primarily useful as a preliminary 

interface for users designing networks and data sets of relatively low complexity. 

More generally, the ANN programming tools commercially available for use in research, 

industry or educational settings often fail to provide comprehensive coverage of the ANN 

field in the sense that, for instance, not all network types are supported or, for those types 

that are supported; the designs are limited due to the absence of design options, training 

features, etc.  For example, ALNfit Pro, a software tool available from Dendronic 

Decisions Ltd. (Edmonton, Alberta, www.dendronic.com), generally supports one 

network type, an adaptive logic network (ALN), that utilizes a single type of multilayer 

perceptron, or feedforward network, for application only to Boolean function-based 

computations.  Moreover, the graphical user interface generated by ALNfit Pro provides 

a limited number of options for configuration and training.  The programming interface 

provided by Attrasoft, Inc. (Savannah, GA, attrasoft.com), and its Attrasoft Boltzmann 

Machines (ABM) software, is similarly limited, insofar as the software supports only two 

network types, the Hopfield Model and the Boltzmann Model. 

3.2. Significance of the NeuralStudio Design 

From educational and scientific points of view, currently available ANN tools present 

issues that prevent them from being widely used. There are also problems that are related 

to their accessibility.  
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A summary of the issues is as follows:  

- There are no tools for unlicensed use in academia, 

- There are not enough academically oriented tools albeit licensed that are of value 

to the student, 

- There is lack of information about the features and the use of the tools (users 

guide being difficult to read, and lacking concise descriptions of desirable 

features), 

- Some tools are not designed to run under the Windows operating system (often 

opting for UNIX, LINUX or other platforms), 

- Some tools are only suited for specific areas of study (e.g., economics, business), 

and 

- No open source tools have been found to the best knowledge of this dissertation 

author. 

On the other hand, an assessment of desired design and operational characteristics for an 

educational tool could be summarized as follows: 

- Convenient and user-friendly interface: The windows should allow users to 

interact with the system primarily through mouse clicks, making keyboard inputs 

only occasionally. 

- Removed requirement for programming: This feature is necessary to remove the 

constraints imposed by powerful tools such as MATLAB, which provides a neural 

networks toolbox, but still requires knowledge on a pseudo-language based on C. 
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- Open source: Easy to understand source code of key calculation processes must 

be made available from within the application. 

- Demonstration modules: Examples on how to use the programming tool must be 

given such as to alleviate the difficulties encountered in the mathematical details 

or in terms of implementation. 

- Freeware: Enhanced accessibility for educational institutions must be provided. 

- Compatibility with Windows operating system: The software designed needs to 

run under the Windows operating system, as it is widely used in academia. 

- Stopping options: Options to stop the calculations at specified points of the 

algorithms need to be included (to allow viewing intermediate results to test for 

convergence issues or for additional debugging opportunities). 

- Stand-alone application: The stand-alone application ensures that the tool box is 

not dependent of another application. 

- Configurable display: Configurable display capabilities (graphics, charts, plots, 

and options to turn the software into a high-speed calculation tool) should be 

made available. 

Seeking to realize these aforementioned design and operational characteristics as 

described above in an integrated teaching and research tool for ANNs was precisely the 

motivation for developing NeuralStudio (NS). This development constitutes one the main 

contribution of this dissertation. This integrated programming tool is proposed to be used 

by researchers and academia due to simplicity of use and the characteristics that make it 

an excellent platform to learn and apply ANNs to real-world problems. In this 

dissertation, the applications of this tool will focus on epilepsy research, as it will be 
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shown in chapters 4 and 5. The focus on this research topic is intentional, given the 

strong and ongoing collaboration with Miami Children’s Hospital (MCH) through the 

joint FIU-MCH Neuro-engineering program.  In subsequent sections, the tool will be 

described, giving special emphasis to its enhanced features.  

3.3. General Description and Functionality 

NS was primarily developed for use in postgraduate teaching, but with time, further 

improvements were made especially in speeding up calculations providing different types 

of graphical outputs, and analyzing and pre-processing data.  In retrospect, the 

programming platform that was chosen for developing the application was Borland 

Delphi [Pacheco et al. 2001] which uses object PASCAL [Rachele 2000], a code easy to 

understand. The Delphi language was deemed appropriate for this work because its 

graphical user interface provides a large library of efficient components for easily 

creating charts and other graphical outputs with short and simple programming code. The 

compiled Delphi code is also fast and computationally efficient under the proposed 

design configuration. 

NS includes network configuration modules to provide display interface to support 

configuration of different types of ANNs, such as feedforward nets, self-organizing maps, 

clustering nets, pattern association nets, and fixed weight nets. Additionally, a pattern 

data module is included to provide a display interface to support establishment and 

modification of pattern data sets for training and testing the ANNs. 
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Support modules for the simulation of ANNs are provided, consisting on an activation 

function editor and a performance evaluation module. Help and wizard modules are also 

provided, as well as a module to simulate Support Vector Machines. The latter has been 

included with the purpose of comparing its efficiency with the ANNs designed and 

implemented.  

NS’s main window is illustrated in Figure 3.1 and consists of an editor for a multilayer 

network, information panels, and a table for network input and a corresponding results 

table. NS users are able to freely design the network, and to customize the neurons as 

well as their interconnections. Interconnections can be established by drag and drop 

operations between neurons. Neurons are represented with circles and interconnections 

are represented by lines drawn between pairs of neurons.  

 

Figure 3.1: NS‘s main window, displaying a main menu and tool bar that gives access to all network 
designing tools as well as to the patterns editor, the activation functions, the performance evaluation 

module, and an option and help menu, among others. 
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The natural flow of a working session in NS is straightforward: The NS user can open the 

module of the particular network to design its topology and configure neurons and 

weights. Once done, the user can enter the input data that will be used for training. 

Because there are several options to facilitate data entry, there is a specific module called 

“patterns module” for that particular purpose, which is accessible from the network 

design module. 

After all data has been entered, the user can exit the module and start the training. For 

backpropagation networks, training is performed in a module different from the design 

module. For the rest of the networks, both design and training are in the same module. 

Once training is concluded, the user can go back to the pattern module to test the trained 

network with unknown data, which is data that was eventually entered as testing data in 

that module.  

Another module of singular importance is the performance evaluation module. This 

module can be used to evaluate a network that has been tested several times on different 

data, particularly by means of ROC analysis [Kohavi et al. 1998] [Tilbury et al. 2000]. 

The main window of NS contains a menu for accessing the rest of the NS modules, 

having the structure described below: 

- Networks: This option provides access to the different types of networks, which are 

the following: 

 Feedforward nets 

 Self-organizing maps 
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 Clustering nets 

 Pattern association nets 

 Fixed weight nets 

 Support vector machines (SVM), included for comparative purposes 

- Patterns: This option opens the pattern module, where the user can edit the training 

and testing patterns.  

- Tools: This command provides access to the following support modules: 

 Activation functions: This command opens the activation functions module, 

where the activation functions can be chosen and customized. 

 Performance metric: This module provides tools to perform an ROC analysis 

on the networks. 

 Random number generator: This window allows defining the settings of the 

random number generator. The settings can be changed at any time during the 

working session with NS.  

 Average networks: This option allows loading a group of networks with 

similar topologies to compute their average weights and biases. 

- Options: Available options through this command are:  

 Number format: It allows defining the precision of the number outputs. 

 Code insight: It gives access to a module where the code of the most 

important algorithms used in NS is shown. 

 



 49 

- Help: This command gives access to different help files:   

 Show Assistant: It opens a small assistant window that guides the user in the 

use of NS. 

 Contents: It loads and shows the NS help file. 

 Demo: It opens the demo module. 

 About: It shows NS copyright information. 

Shortcut icons for the most frequently used commands are placed in a tool bar below the 

main menu. 

3.4. Design of the Graphical User Interface 

3.4.1. Data Entry and Preprocessing 

Input data entry is done via a pattern module, which not only provides a data editor, but 

also includes a series of supporting tools to visualize and manipulate the data as well as to 

check it for inconsistencies, redundancies and other characteristics revealed in the so-

called sensitivity analysis. 

In this module, the data is entered in two different tables, the training set table and the 

testing set table, and it can be plotted. Figure 3.2 shows a snapshot of the module, where 

all data points are plotted on the right panel so as to provide a better insight into the 

complexity and overlap of the data. Common editing button in the toolbar are available 

for inserting, deleting and sorting data. 
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Sensitivity analysis as included in NS allows the data to be primarily audited against 

inconsistencies. A tab for this purpose (Figure 3.3) directs the user to a panel where a 

cross-analysis of the data set is performed, specifically row-wise as well as column-wise. 

The first option allows identifying duplicative or conflicting patterns in the data.  

 

Figure 3.2: Pattern window with a particular data set entered and plotted. A toolbar facilitates data editing 
and also grants access to different supporting tools to preprocess the data. In this case, there is only one 

input and one output, i.e. two variables. 

 

Although similar patterns are harmless and can be (but do not need to be) removed from 

the data set, contradictory patterns contain similar inputs but different outputs. Such 

patterns considerably affect the performance of the training and need to be detected and 
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removed from the data set prior to training. NS provides a fast and simple way of getting 

rid of such unwanted data.   

    
(a)                                                (b) 

Figure 3.3:  Sensitivity tools as given in NS provide an easy way to dispose unwanted data: (a) 
Contradictory patterns search option, giving a warning of all data that is contradictory. (b) Column-wise 

analysis, where all variables are checked for similarity. 

 

As opposed to pattern checking, variable checking can be also performed in the second 

tab. Clicking on the “Get similar columns” button alerts the user that one particular 

variable is similar to another one and is therefore unnecessary. This option is crucial for 

cleaning up the dataset and reducing dimensionality. 

The pattern module also provides a panel to generate 2D data by mouse pointer 

movements. A snapshot of this panel is depicted in Figure 3.4 and the option is of 

particular interest for teaching self-organizing maps. 
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Figure 3.4: 2D map generation in NS allows creating data points by using the mouse pointer.  

 

The data generated here can be easily exported to the patterns module to be used for 

training self-organizing maps. 

The last option included in this module is reserved for configuring the network training, 

which actually occurs in the training module. It is called “Generalization Techniques” 

(see Figure 3.5) and allows configuring the training procedure such that it is stopped at 

the moment where the network starts to memorize the data and loses its ability to 

generalize when unknown data is presented.  



 53 

 

Figure 3.5: A set of options are provided to configure the k-fold cross-validation algorithm. 

 

NS uses four different ways to handle the memorization-generalization trade off:  

1. k-fold cross-validation: The data is divided into k subsets of (approximately) equal 

size. The network is trained k times, each time leaving out one of the subsets from 

training, but using only the omitted subset to compute whatever error criterion is of 

interest (refer back to Figure 3.5). 

2. leave-one-out: The network is trained as many times as there are samples in the set, 

each time leaving out one sample from training, but using only the omitted sample to 

compute whatever error criterion is of interest. 

3. hold-out-sample: Only a single subset (the validation set) is used to estimate the 

generalization error instead of using k different subsets; i.e., there is no "crossing". 
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4. bootstrapping: Instead of repeatedly analyzing subsets of the data, only subsamples 

of the data are repeatedly analyzed. Each subsample is a random sample (see Figure 

3.6). 

 

Figure 3.6: The bootstrapping technique is configured with only two options. 

 

From these 4 options, only the first and the last are configurable, the other two options 

have fixed configurations and therefore can not be changed by the user. By clicking on 

the 2nd and 3rd tab, information will be provided on how the algorithm will be performed 

to comply with that particular type of training. No user interaction is performed here.  

3.4.2. Creating and Training Neural Networks 

3.4.2.1. Feedforward Networks Design and Training 

Feedforward networks as considered in NS are multilayer perceptrons [Minsky and 

Papert 1969] [Widrow and Lehr 1990] with connections only between neurons of 
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adjacent layers. Feedback connections are not allowed from any neuron back to neurons 

of prior layers or to layers others than the next layer. Similarly, no connections between 

neurons from the same layer are allowed. This type of network is easy to train by means 

of the much-cited backpropagation algorithm, which is based on successive optimization 

by backpropagation of errors. The foundations of this unique mathematical approach 

were laid by Paul Werbos in his groundbreaking 1974 Harvard doctoral thesis, whose full 

text is published in [Werbos 1994]. The algorithm is one of the most used by scientists, 

engineers and researchers involved in neural networks. 

NS’s feedforward networks module is illustrated in Figure 3.7 and is designed to contain 

an editor for a multilayer network. It also consists of information panels, editing and 

processing tools as well as a table for network input and a corresponding results table. NS 

users are able to freely design the network, and to customize the neurons as well as their 

interconnections. Interconnections can be established by drag-and-drop operations 

between neurons. Neurons are represented with circles and interconnections are 

represented by lines drawn between pairs of neurons.  

Details of the network components (neurons and their interconnections) as well as global 

configuration features can be viewed and edited in the network inspector (NI). Selections 

can be done by clicking on components in the drawing area as well as by selecting 

objects from a list in the NI. Once a specific neuron or weight is selected, the NI shows 

the features of the selected object. The object can also be selected using the selection box 

located at the top of the NI. Clicking on the drawing surface somewhere outside all 

neurons and weights takes the user back to the network configuration panel. Supervised 
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training occurs when the network outputs are compared with the targets and the resulting 

output errors are used as reference for updating weights and biases. 

 

Figure 3.7: Feedforward networks module, displaying the network editor and the input/output panel 

 

NS applies the back-propagation method to train the feed-forward networks designed in 

the main window. Training is performed in a training module as shown in Figure 3.8, 

however, the information about how to perform training is taken from the training 

module as well as from the network design module. The data used for training is taken 

from the pattern module.  
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Figure 3.8:  Snapshot of the supervised training module during a training session to approximate a cosine 
function. 

 

Graphical outputs can be customized in the training module depending on the nature of 

the problem addressed. For example, the problem of approximating a multidimensional 

input/output relation can be visualized by plotting a pair of input/output neurons. In 

classification problems, animated charts enhance the results by showing classification 

regions with multiple boundaries. Errors of different types can be graphically traced 

along the iterations. 

One important feature of NS is its ability to approximate different one-dimensional 

mathematical functions and provide animated training. These functions can be 
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parameterized and used for network training. During this process, animated graphical 

outputs can be obtained, helping NS users in understanding the training process and 

showing how the network’s ability to generalize is influenced by the number of iterations. 

The training module also allows customizing several output charts. Additionally, recall 

that the training can be temporarily stopped at any time, thus allowing NS users to look 

into intermediate results, such as current status of neurons and weights. 

The training module for the feedforward networks is based on the topology of the 

network as established in the network editor window. Training is performed here to 

optimize the weights and biases so as to better accommodate the network outputs to the 

targets. While the number of input and output neurons is always dictated by the specific 

problem to be modeled by the network and can not be changed, the number of hidden 

layers and the number of neurons contained in each layer can always be arbitrarily chosen 

by the NS users. Less hidden neurons require less training time but make convergence 

slower. Because the total number of neurons determines the duration of the training 

process, NS incorporates a topology optimization option as shown in Figure 3.9, by 

which the number of neurons in each hidden layer can be optimized.  
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Figure 3.9: View of the topology optimization panel for backpropagation networks 

 

The best topology is one whose average pattern error is the smallest. Before training, the 

user can select in the stopping conditions window whether the pattern error is computed 

in the training, in the validation, or in the testing set. The topology optimization is 

heuristic, i.e. NS generates all topologies in a specific range and computes for each one a 

specific performance measure that is always compared to the previous one to determine if 

the new topology is better or worse than the best so far. 
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3.4.2.2. Self-Organizing Maps 

As opposed to backpropagation networks, which are used to model input-output 

relationships from a black box, other types of neural networks can work with only input 

data, without the need of having an output set which indicates some input-output 

relationship. In this case, there are ANNs that can be used to extract statistical 

information out of the input data, such as average, standard deviation, clusters, etc. 

Because there are no targets associated to the input patterns such that penalty/rewards to 

the network weights can be applied, these networks are trained without supervision.  

During unsupervised learning, the network is not trained towards specified outputs. 

Instead, the network seeks to find patterns or regularity in the input data. The mapping 

implies clustering of the data. NS offers two separate modules for this type of training: 

the self-organizing map and the clustering networks. They are applied when no output 

data to correlate with is available. 

The self-organizing map (SOM) [Kohonen 2001] (also called Kohonen feature map) is a 

map resulting from plotting the 2D weights of the neurons in a special type of network. 

No supervision is performed during training.  

The map itself consists of a 2D grid arrangement of neurons, where each node is 

considered a neuron with its two weights, one in each dimension. The nodes act as cluster 

centroids, i.e. if an arrangement of 2x2 neurons is selected, there will be 4 clusters in the 

network. The training procedure is a winner-takes-all algorithm configured as follows: 

after selecting the desired number of nodes, each input pattern is sequentially presented to 

the grid. Each time a pattern is presented, the node that is closest in Euclidean distance to 
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that pattern is selected as the winner neuron and its weights are slightly moved towards 

the input pattern at a ratio dictated by the learning rate (see Figure 3.10). To stabilize the 

weight update and assure network convergence, the learning rate is set to gradually 

decrease with the number of iterations. SOM have proven to be of great use for its many 

practical applications, especially in parameter identification in industrial processes hard 

to model, where statistical features are extracted. 

 

Figure 3.10: Representation of the winner-takes-all algorithm implemented in NS. The node closest to the 
input pattern is selected as the winner neuron and its weights are partially adapted according to the input 
pattern weights. Graphically, the weight update makes the winner neuron move towards the input pattern. 

The main window of the SOM module is as shown in Figure 3.11. NS supports up to 

50x50 maps and provides an animation during network training, such that the user can 

stop the iterations at any moment. The training set can be taken from the pattern module 

as well as from a training set generator available in the module. Once the SOM is 

configured, the training session can be started. Typically, the number of nodes is selected 

according to the intended search objective. The amount of nodes can be set from the 

beginning to the maximum (50x50) and then gradually decreased according to how the 

nodes visually arrange to create a specific amount of clusters and optimally accommodate 

them. The basic training procedure used in this window is similar to the one used in 

clustering networks, as described in the next session. Figure 3.12 shows a partially 



 62 

concluded training session where the input data is circular in 2D. In this module, a set of 

parameters is used to configure the training and the visualization, such as drawing neuron 

interconnections. 

 

Figure 3.11: Configuration panel of SOM 
module, where basic map features and input 

source are selected 

 

Figure 3.12: NS’s module for self-organizing 
maps during training  

 

3.4.2.3. Clustering Networks 

This approach clusters the data together into groups, attempting to put similar ones 

together. This can reveal patterns hidden in the data. Predictions can then be made by 

comparing recent data with the different identified clusters. This type of training requires 

only the input and determines by itself which classes exist in the input and which input 

belongs to which class. The technique used here is to calculate a multidimensional feature 

map where each neuron represents one cluster. As with the self-organizing maps, the 



 63 

winner-takes-all method is used. The algorithm finds the clusters and their centroids. In 

Figure 3.13, a dataset example is grouped into 7 different clusters.  

 

Figure 3.13: A snapshot of NS’s module for clustering networks during a training session. The user can 
customize the training by setting the amount of clusters and deciding which clustering method to use. 

 

In a second program stage, the algorithm is recalled and all the patterns are presented to 

the clusters and assigned to the best matching cluster using the Euclidean distance as 

grouping criterion. 
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3.4.2.4. Pattern Association Networks 

NS introduces also a module dedicated to memory association, which allows auto-

association as well as hetero-association of patterns. A view of this module is given in 

Figure 3.14. The module imposes no limit on network size, and lets the user choose from 

a list the weight adjustment rule as well as the type of activation functions.  

 

Figure 3.14: Module for pattern association while performing character codifications 
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3.4.2.5. Fixed-Weight Networks 

An additional module for simulating fixed weight networks such as Boltzmann and 

Cauchy machines is provided in NS.  

The options provided in this module as illustrated in Figure 3.15 are as follows: 

- Number of neurons in each dimension 

- Weight setting between neurons 

- Cooling schedule (initial temperature and temperature decrement) 

 

Figure 3.15: Module of the fixed weight networks while performing an optimization 
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By selecting appropriate weights between the neurons, many practical problems can be 

simulated and solved, especially transport problems with constraints as detailed in [Aarts 

and Korst 1987] [Aarts and Korst 1989a] [Aarts and Korst 1989b] [Teoh et al. 2008]. 

3.4.3. Activation Function Module 

The selection of type and parameters of the activation function (AF) for the neurons of 

the feedforward networks is done in the activation function module. This module, as 

shown in Figure 3.16, provides options to assign parameters to the following AFs:  

- logistic sigmoid (logsig), parameterized as follows: 
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- tangent sigmoid or hyperbolic tangent (tansig), parameterized as follows: 
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- linear (purelin), with output = input 

- binary, with outputs = [0,1] 

- bipolar, with outputs =[-1,1] 

- linear normalized (purelinnorm), with any real outputs in range from -1 to 1 

- trivalent, with integer outputs =[-1,0,1] 
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In Eq. (3.1) through (3.3), the m, a, and b parameters are real numbers (usually in the 

range from 0.1 to 5) that are set such that the output range of the functions includes the 

training targets. 

Of all these functions, the logsig, Gaussian and tansig functions are mostly applied in 

backpropagation networks, since their slope is not constant and therefore provide a very 

effective way of updating weights depending on the extent of the gradient of the error. In 

addition, the logsig is popular since its slope y’ can be expressed in terms of its output as 

y’ = y(1-y), which makes it very practical for the backpropagation algorithm. The input 

and output neurons of feedforward networks can have linear AFs as long as there exists a 

hidden layer with logsig, Gaussian and tansig activation functions. For classification 

networks, it is recommended to use Gaussian or logsig AFs at the output layer.  

 

Figure 3.16: Activation functions module displaying options to assign parameters to the logistic sigmoid 
function 
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The purelinnorm function is linear in the range from -1 to +1 and then becomes either -1 

or +1, depending on whether it is on the left side (-1) or the right side (+1) of the y-axis. 

This range can be made wider or inverted if multiplied by a constant. The function is 

useful to avoid instability during network training. 

The trivalent function has three possible values: -1, 0, and +1, where the values can be 

multiplied by a constant if desired. Once all AFs are configured in this module, the user 

only needs to enter the name of the AF for each neuron in the feedforward networks 

module without the need to specify their parameters. This way, the configuration of the 

neurons in the network design module is simplified. 

3.4.4. Support Vector Machines Module 

As earlier explained, NS provides Support Vector Machines module as shown in Figure 

3.17 for comparative purposes during network training and testing.  

This module allows selecting four different kernels for the training and provides different 

visualization options. The results table shows the support vectors as well as the Lagrange 

multipliers of each data point. 
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Figure 3.17: A snapshot of the SVM module during training 

 

3.4.5. Code-Insight Module 

A desired feature for learning purposes is to give NS users access to the code, especially 

the utilized formulas and programming steps. A code-insight module as shown in Figure 

3.18 has been created specifically to make available the code related to the most 

important NS tasks. This possibility is useful for advanced NS users as well as for users 
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who need details about a specific algorithm so as to improve their knowledge and 

programming skills. 

 

Figure 3.18: The code-insight module provides pseudo-code based in PASCAL for programming-interested 
users. 

 

The code-insight module can be accessed with the “Options/Code-Insight” menu option. 

It is divided into the following pages: - Backpropagation, - Self-organizing maps , -

Clustering, - Pattern association, - Fixed Weight Nets, and - Support Vector Machines. 

Each page shows the most important code corresponding to the specified NS task. The 

code shown is the same code used for developing NS and has been written in Delphi, an 

easy to read object PASCAL code. Hence, the code is easy to understand. 
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3.4.6. Performance Metric Module 

The Evaluation of the network performance is done in the Performance Metric Module 

given in Figure 3.19, which provides a platform that runs an ROC analysis with the 

testing results of the designed feedforward networks. The module consists of a window 

with three pages to show a demo and compute two-class or multi-class confusion matrix. 

The first page serves as an introduction to ROC and provides a figure with sliders to 

change statistical parameters of two histograms that are displayed. When NS users 

interact with these sliders, they can see the effect in the ROC results. A detailed 

explanation of the terms TP, TN, FP and FN is also included.  

A 2x2 table is provided in the second page for the user to enter the classification results 

of the current study and performs all ROC calculations automatically. It explains all 

terms used to measure performance in detail, which have been previously addressed in 

Chapter 2 of this dissertation.  

Finally, the third page provides a nxn table that can be filled up with results obtained 

when there are more than 2 classes involved, where n is the number of classes. This page 

computes other performance metrics that are of interest in this type of cases. 
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Figure 3.19: A snapshot of the performance metric module, showing the first page with a demo that allows 
users to understand the basic concepts of ROC. 

 

 
3.4.7. Help Module 

NS’s main help module can be accessed from the main window and consists of a contents 

and a help file as shown in Figure 3.20 and Figure 3.21, respectively. The help project 

was developed using Microsoft’s Help Workshop and the rtf file used for the compilation 

consists of 11 pages. The help file is accessed via the “Help/Contents” menu option, 
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which opens the contents file (Figure 3.20). Clicking on each of the entries opens a 

specific page in the help file, as shown in Figure 3.21. 

 

Figure 3.20: NS’s help contents file, opened to the full extent 

 

Figure 3.21: NS’s help file, showing a specific topic previously selected from the contents file. 

 

All NS modules provide a link to their corresponding help page in the help file.  
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The modules included in NS were provided as a result of recommendations of students 

who have used NS in graduate courses at FIU as well as researchers who have applied it 

to flow-cytometry data for leukemia blood sample classification, to EFA and seizure 

detection, and to security risk modeling of information systems. The modules have been 

designed such that each of them has the minimum set of options needed to perform the 

tasks and share information with other modules. Once NS was fully designed and tested 

for functionality, it was used to implement several methods for epilepsy analysis.  

Due to the ongoing and strong collaboration between FIU and Miami Children’s 

Hospital, the next two chapters will focus on the merits of the application of the NS tool 

to two examples in brain research using EEG data. 
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CHAPTER 4 

4. AN APPLICATION OF NEURALSTUDIO TO THE DETECTION OF 
EPILEPTIC SEIZURES FROM SUBDURAL EEG 

4.1. Objectives 

The intent of this research endeavor is initially focused on developing an automated 

algorithm for the detection of seizures offline, based on intracranial EEG (iEEG) data that 

would satisfy the two primary aims: (1) a high sensitivity (i.e., minimum number of false 

negatives), and (2) a high specificity (i.e., minimum number of false positives). A 

stopping condition for delineating seizure from non-seizure files assumes therefore the 

highest accuracy attainable to ensure that that both primary aims are concurrently met.  

Seizures occur intermittently and unpredictably. Hence, whether the planned treatment 

option is focal brain resection or chronic stimulation implants, massive amounts of EEG 

or iEEG data needs to be analyzed offline to detect seizures; a challenge that can only be 

met through reliable and computationally efficient seizure detection paradigm.  

Over the past two decades, several automated seizure detection paradigms focusing 

mainly on EEG recorded from the scalp surface have been reported with different degrees 

of success and inherent challenges [Adjouadi et al. 2004a] [Bragin et al. 2005] [Calvagno 

et al. 2000] [Chander et al. 2006] [Gotman 1982] [Gotman 1999] [Smart et al. 2007]. 

These studies include the use of multi-channel trends, application of neural networks, use 

of orthogonal transforms, genetic programming, and all dwell in either time or frequency 

domains.  
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The scalp EEG however is known to have a much lower signal to noise ratio compared to 

EEG recorded directly from the cortical surface of the brain. In the area of epilepsy, 

where one of the most important goals is to detect and ultimately predict seizures, the use 

of many measures has been practiced by various research groups for many years with 

varying degrees of success.  In the context of this study, many of the methods currently 

available in the specialized literature have been tested yielding different results.  The 

experience gained through the different implementations reveal that the issue of 

contention is not in the implementation of such measures, but in determining which ones 

are more suitable. In this initial assessment, it was determined that the correlation sum is 

the temporal measure that performed best, while the gamma power is found to be the 

most revealing frequency range for seizure detection purposes. 

EEG and iEEG signals have played an important role in the modeling of the brain's 

cortical dynamics and have been analyzed over the past two decades with much effort 

towards a better understanding of the functional characteristics of the brain, including the 

complex and yet to be resolved problem of seizure prediction [D’Alessandro et al. 2003] 

[Good et al. 2007] [Iasemidis et al. 1998] [Iasemidis and Sackellares 2001] [Lai et al. 

2003]. Researchers have thus considered different approaches using a diversity of linear 

and nonlinear parameters in order to automate processes of seizure detection, eliciting a 

better understanding of the chaotic dynamics in biological systems [Bezerianos et al. 

2003] [Frank et al. 1990] [Guevara 1997] [Iasemidis et al. 1994], and where promising 

results have been substantiated [Abend et al. 2008] [Adjouadi et al. 2005a] [Gabor 1998] 

[Martinerie et al. 1998] [Shoeb et al. 2004]. 
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In using iEEG data in this study, it was considered that scalp EEG has a much lower 

signal to noise ratio compared to EEG recorded directly from the cortical surface of the 

brain. Furthermore, because of the considerable attenuation effect of the skull, the scalp 

EEG generally reveals very little fast activity exceeding the beta range [>30 Hz], limiting 

as a result the application scope of seizure detection algorithms that rely on scalp EEG 

recordings.  

A seizure detection algorithm should then be sufficiently sensitive and specific, and any 

detection paradigm will thus need to capture the main features characterizing the ictal 

transformation that differentiate it from the interictal state in between seizures. The latter 

state shows relatively random distribution of frequencies over a broad range from 0-30 

Hz. These frequencies may also be seen during a seizure but show considerable inter-

subject and intra-subject variability. By contrast, a sustained increase in the very high 

frequency activity exceeding 30 Hz, defined here are the gamma band, is seen only at 

ictal onset and during early evolution of the seizure.  These empirical facts served as the 

foundation of this research endeavor. 

In this study, the role of the gamma frequency band is explored in order to develop a 

reliable offline seizure detection algorithm for EEG recorded intracranially. For this 

purpose, ANN architecture in NS is established and a training procedure is implemented 

to confront the complex nature of iEEG data. The proposed method is based on 

aggregating the power in the 36-44 Hz frequency range and analyzing its behavior in 

time, looking for patterns indicative of seizure evolution.  The performance of the 

algorithm, which was evaluated by means of the ROC terminology, relied on two primary 
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aims: (1) establishing a decision space most suitable for iEEG data classification, and (2) 

implementing an ANN that is trained to generate the weights for the highest classification 

accuracy possible. 

The proposed method looks at all seizure and non-seizure files together with the purpose 

of creating an inter-patient classifier that would be applied irrespective of the particular 

patient under test.  

Also it should be mentioned that since all data was collected only from epileptic and not 

from both epileptic and non-epileptic subjects, the seizure detector only should be applied 

to detect seizures on EEG recordings of epileptic patients. 

4.2. Experimental Setup 

The data used in each one of the methods described in this study was obtained 

sequentially from a significant sample of 14 patients who underwent two-stage epilepsy 

surgery with subdural recordings. The age of the subjects varied from 3 to 17 years. The 

number and configuration of the subdural electrodes differed between subjects, and was 

determined by clinical judgment at the time of implantation.  Grid, strip, and depth 

electrodes were used, with a total number of contacts varying between 20 and 88. The 

amount of data available for analysis was influenced by recording duration, and by the 

degree to which the interictal EEG was “pruned” prior to storage in the permanent 

medical record. The intracranial EEG (iEEE) data was recorded at Miami’s Children 

Hospital (MCH) using XLTEK Neuroworks Ver.3.0.5, equipment manufactured by Excel 
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Tech Ltd. Ontario, Canada. The data was collected at 500 Hz sampling frequency and 

filtered to remove the DC component.  

4.3.  Data Preprocessing 

The file length for all patients was approximately 10 minutes. Out of the total 157 files 

considered, 35 (21 interictal and 14 ictal) iEEG data files or 22% were selected randomly 

and used initially in a training phase to ascertain the reliability of the gamma power in the 

seizure detection process. The remaining 122 iEEG data files or 78% were then used in 

the testing phase to assess the merits in selecting gamma power as means to detect a 

seizure. The 35 files selected for training are from patients 1 to 7, and patients 8 to 14 

were those used subsequently in the testing phase in order to validate the classifier’s 

ability to perform well on an inter-patient level.  

The ictal and interictal files used for each patient are summarized in Table 4.1. Files 

containing a seizure were considered to be “ictal” files. Otherwise, the files were 

considered to be “interictal”. It is worthy to note that even though a file was classified as 

“ictal”, the files usually lasted longer than an individual seizure. Therefore, it was 

possible for “ictal” files to include some interictal data, which nonetheless the classifier 

needed to handle correctly. Each file was categorized by whether or not it contained a 

seizure, and were randomly assigned to avoid unwanted biases to either the small training 

set (22% of the data) or the large testing set (the remaining 78% of the data). 
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Table 4.1: Data set organization for the study, showing the amount of interictal and ictal files used from 
each patient to train and test the classifier. 

(Nneg = number of interictal files, Npos = number of ictal files) 

Training Files Testing Files 
Patient 

Nneg Npos Nneg Npos 
Total 
Nneg 

Total 
Npos 

Total 

1 0 3 0 2 0 5 5 
2 0 1 0 1 0 2 2 
3 0 2 0 1 0 3 3 
4 0 1 0 1 0 2 2 
5 6 3 30 3 36 6 42 
6 5 2 10 1 15 3 18 
7 10 2 5 1 15 3 18 
8 0 0 12 2 12 2 14 
9 0 0 9 5 9 5 14 

10 0 0 15 2 15 2 17 
11 0 0 4 2 4 2 6 
12 0 0 5 3 5 3 8 
13 0 0 1 1 1 1 2 
14 0 0 4 2 4 2 6 

Total 21 14 95 27 116 41 157 
 

 

4.4. Extracting the Power Spectrum in the Gamma Band 

The gamma frequency power of each electrode was calculated from the EEG data using 

consecutive one-second windows (500 samples).   

Due to the high volume of information contained in the pre-filtered iEEG data files, two 

key preprocessing steps were performed in order to (1) reduce the data to be analyzed, 

minimizing as a consequence the computational requirements, and (2) seek a 

transformation of the raw iEEG data in order to enhance the accuracy, specificity and 

sensitivity of the seizure detection algorithm. In step (2) the transformation chosen is that 

of gamma frequency component after a thorough evaluation of several other standard 

parameters in the time domain such as mobility, complexity and activity [Hjorth 1970a], 

as well as in the frequency domain by evaluating all other frequency ranges.  The iEEG 
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data files were further analyzed with one second (1-sec) timed windows and the power of 

the gamma frequency component was extracted for all these 1-sec windows and for each 

electrode.   

The power spectrum of the gamma frequency band was computed as given in Eq. (4.1): 
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where startb  and endb  are its starting and ending frequencies in the 36 to 44 Hz band, with 

)(wF defining the complex fast Fourier coefficient at frequency w. 

Figure 4.1 shows the gamma power near the time of seizure onset using iEEG data from 

four different patients. It shows the intricate and yet informative nature of the gamma 

power signal. At the time of seizure onset (vertical red line), there is an abrupt change in 

magnitude almost in synchrony for all electrodes. The vertical red line represents the 

seizure onset previously labeled at the observation room by the EEG expert.  It should be 

noted that the onset as marked by the EEG expert and the results of the synchronized 

increment in magnitude of the gamma frequency do not coincide exactly in time, which 

only heightens the relevance and need for an automated seizure detection process. Further 

clinical evaluations reveal that the synchronized increment in power spectrum in the 

gamma band does actually coincide with the actual clinical onset of the seizure.  This is 

viewed as another interesting finding of this study. Note in this figure that the scales are 

different for the different subjects, making absolute thresholds impossible to use.  This is 

another important issue that is addressed and resolved in this study. 
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Figure 4.1: An illustrative example of gamma power for all electrodes versus time (shown in terms of 
samples) for 4 different seizures from different patients. The vertical red line is the seizure onset as 

identified by medical experts.  Note that the scales are different for the different subjects, thus making 
absolute thresholds impossible to use. 

 

4.5. Aggregating Features 

In order to handle the variable number of electrodes used from patient to patient, the 

power spectrum in the gamma band across all electrodes was averaged. This averaging 

process, which is referred to as the inter-electrode mean, was used as input to the 

classifier.  The use of the inter-electrode mean is a result of the experimental studies 

[Albano et al. 2000] [Arnhold et al. 1999] [Cabrerizo et al. 2006b] [Larter and Speelman 
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1999] that reveal that electrodes tend to interlock in behavior at the onset moment of a 

seizure. Therefore, this average process of all electrodes did not distort the results, and 

yet allowed for uniformity in the implementation process across patients independent of 

the varied number of electrodes used for each. 

With this fact, it is emphasized that the concept of averaging for a representative signal 

does not sidetrack from the main intent of detecting a seizure with the highest accuracy, 

specificity, and sensitivity possible. At the same time, such a step minimizes to a great 

extent the computational burden [Cabrerizo et al. 2007] that would have been required in 

dealing with all of the iEEG data as input to the classifier, and simplifies greatly the 

seizure detection process as only one representative signal is fed into the ANN-classifier. 

Figure 4.2 illustrates this assertion by comparing the contributions of individual 

electrodes to the behavior of gamma frequency for every single electrode used for a 

particular patient, and the results obtained using averaging or the so-called inter-electrode 

mean signal S  for an arbitrary section of iEEG. 

4.6. Establishing the Inputs of the ANN 

A threshold had to be established before the inter-electrode mean of the power spectrum 

in the gamma band can be used to detect a seizure.  If the threshold was crossed at any 

point during a file, then the entire file is classified as a possible “seizure” file. If the 

threshold was never crossed, then it was classified as a “non-seizure” file.   

The seizure detection method tests a threshold based on the inter-electrode mean 

signal S , which has a natural variability even in a single patient, and even in the absence 
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of a seizure. Using the same threshold in many patients makes the variability even 

greater, but increases the clinical usefulness of the test. This is essentially a dilemma that 

is faced due to unreliable and changing thresholds and varying standard deviations that 

can be experienced even within a single patient.  

 

 

Figure 4.2: Top figure shows the behavior of the gamma power for each of the 48 electrodes used for 
subject 1, seizure 5, and the bottom figure displays its respective inter-electrode mean signal. Seizure onset 

is around 100 seconds. 

 

With these observable facts, the problem becomes difficult to contain not only in terms of 

these noted variations, but also in ascertaining in a meaningful way the performance 

evaluation of the classifier. The example given in Figure 4.3 illustrates perfectly this 

dilemma.  Note how different is the variation of the magnitude of the inter-electrode 
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mean signal between patient 1 and patient 2. However if one is to rescale the y axis for 

patient 2 it will reveal that an ictal change similar to that of patient 1 is indeed present, 

which only amplifies that a singular threshold computed on the basis of patient 1 would 

have missed the ictal change in patient 2 observed after rescaling.  

 

Figure 4.3: Illustration of the variation of the inter-electrode mean signal S  within the same patient: (a) 

seizure 1 of patient 1, (b) seizure 2 of patient 2, (c) zoomed in view of seizure 2 of patient 2. 
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As a consequence of this observation, a generalized statistical threshold was established 

for the power spectrum of the gamma band that can work across all patients 

independently of the signal’s magnitude. This threshold is thus defined by the average of 

inter-electrode mean plus one standard deviation of the inter-electrode mean signal as 

defined in Eq. (4.2) 

  ST      (4.2) 

The suitability of the average spectral power between electrodes for seizure detection has 

been proved in an early study by [Tito et al. 2007]. 

In terms of the proposed classifier, any point which exceeded the threshold was 

considered a point belonging to a potential seizure, with all subsequent consecutive 

points exceeding this threshold defining the duration of such a seizure. Such a 

determination constitutes a first and most critical requirement for the proposed algorithm. 

The next stage of the algorithm was to determine additional means to validate that such 

potential seizure can indeed be declared an actual seizure. At this stage of the 

investigation, two measurements were taken into consideration. The first measurement is 

the duration in time in which the signal S  was consistently above the aforementioned 

threshold, and the second measurement is found to be the maximum value of S  in that 

interval. These two measurements were deemed sufficient for the detection algorithm to 

work properly. 

With these two measurements in place, a table was constructed to train the seizure ANN-

based detector. The table contains as many records as data files were used in the training, 
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whereas each record contains three values: the two aforementioned measurements and 

also a target (+1 for seizure file and -1 for non-seizure file). Recall that non-seizure data 

files that did not meet the first requirement (not having a single point that passed the set 

threshold) were not used in this table to begin with, since they were already identified as 

true negatives. 

 

Figure 4.4: Positive (ictal files) and negative (interictal files) points used for training (a) and testing (b). 
The x-axis represents the duration in seconds (normalized with respect to the maximum), whereas the y-

axis represents the maximum value of the inter-electrode gamma power (also normalized). Color code: red 
and purple: ictal files for training and testing, respectively; blue and gray: interictal files for training and 

testing, respectively. 

 

Figure 4.4 helps in visualizing the geometrical placement of the two pattern classes in the 

input space, for both training and testing set. In this 2D space, the x-axis represents the 

duration which was divided by a normalization factor of 1000 in order to accelerate the 

convergence of the ANN, and thus facilitate the determination of the optimal weights of 

the network; while the y-axis represents the maximum of S  in the interval above the 

threshold.  
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When this 2D space is chosen appropriately, which was the most challenging part of this 

research problem, patterns of the same class will tend to cluster together and the 

classification algorithm is logically expected to yield optimal results. 

4.7. ANN Configuration 

To address this problem and begin its implementation steps, a 3-layer ANN with two 

inputs, 5 hidden neurons and 1 output was designed with NS as illustrated in Figure 4.5. 

The 5 hidden neurons were initially chosen following an empirical rule that proposes for 

the number of hidden neurons twice the number of inputs plus one, whereas the exact 

number of neurons will be later investigated by a heuristic approach. To simplify the 

study, only three types of activation functions were considered: linear (L), logsig (S), and 

Gaussian (G), as they provide the three basic shapes of activation functions. These 

functions were used for the hidden and output layer, while the input layer was set to have 

always linear activation with zero bias.  

To comply with the bipolarity of targets, the parameters of the activation functions were 

set such that their output falls in a range from -1 to +1.  
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Figure 4.5: The 2-5-1 ANN topology chosen in NS to detect seizures based on the power spectrum in the 
gamma band. 

 

4.8. Training Procedure 

Training was performed with the backpropagation algorithm and finalized with early 

stopping (a cross-validation strategy) as a regularization procedure to avoid network 

memorization. The procedure was set as follows: every 3 iteration loops, the average 

square error on the validation set is computed and compared to the previous 5 values 

computed thus far. If the last error is higher, the iteration is stopped, because this could 

represent an increasing error trend. 
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NS offers different options to define misclassification. Since the targets in this study are 

either -1 or +1, misclassification was defined to happen when the sign of the output 

differs from the sign of the targets. 

For comparison purposes, different topologies with two (2-1) and three layers (2-X-1) 

were sequentially trained, using in each layer either the linear (L), logsig (S), or the 

Gaussian (G) activation function, with exception of the input layer for which linear 

activation functions were used at all times. The hidden neurons were varied in a range 

from 1 to 10. When creating all combinations, a total of 3 possible 2-1 topologies (two 

inputs and 1 output), were trained, namely: L-L, L-S, and L-G. In the 2-X-1 topologies, a 

total of 9x10 = 90 possible combinations were created and trained, where 9 is the number 

of allowed combinations of activation functions across the layers (L-L-L, L-L-S, … , L-

G-G) and 10 is the number of topologies created for each activation combination (2-1-1, 

2-2-1, …, 2-10-1).  

During an exploratory training phase on a group of networks, the shape parameters of the 

logsig and Gaussian activation functions (in both cases, the “a” parameter) were varied 

from 0.1 to 5 in steps of 0.1, yielding no significant variation in the results, i.e., the 

weight update algorithm always yielded the same results regardless of the parameter 

value. Therefore, the shape parameter was set to a=5 for the logsig (positioned in the 

numerator of the power) and a=0.5 for the Gaussian (positioned in the denominator of the 

power). 

Figure 4.6 shows a snapshot of NS performing a topology search loop, where each 

topology is trained until the cross-validation condition is satisfied. 
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Figure 4.6: NS’s training module while performing a topology optimization in the 2-X-1 group with linear 
activation in the first two layers and logsig in the last layer. The number of hidden neurons is being varied 

from 1 to 10. 

 

The data set was arranged in two ways as defined in Table 4.2. Data processing details of 

arrangement A were given earlier in section 4.3., where 50 % of the patients (1-7) were 

used for training and another 50 % (8-14) for testing. The training set was sub-divided 

into pure training and cross-validation subset. Additionally to this data setup, 

arrangement B was prepared in which data from all subjects was used for training and 

testing.  

The reason of these two arrangements was to confront two very different scenarios: One 

in which testing occurs on patients not involved in training, and another in which all 
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patients are involved in training and testing as well. The key question with the first 

arrangement was to elucidate whether the dynamics of iEEG during the transition to 

seizure onset are somewhat similar regardless of the patient. If a detector trained in this 

way performs well on files from other patients, then one can assume that the power 

spectrum in the gamma band is an excellent instrument to detect seizures offline since it 

is not restricted to the dynamics of the EEG of any particular patient.  

Another hypothesis is that if the detectors trained with the two arrangements don’t differ 

substantially from each other in terms of performance, than it can be concluded that the 

dynamics of the power spectrum in the gamma band in the transition to seizure is patient-

independent. Table 4.2 shows how the data was distributed for the two arrangements. In 

both arrangements, the intent was to use about 20 % of the training files for cross-

validation and not for weight update, whereas that proportion was difficult to obtain due 

to the insufficient amount of ictal and interictal files per patient. In general, training on 

the pure training subset was performed 3 times before validation in the cross-validation 

subset. 

Table 4.2: Setup of two arrangements with indication of the files pertaining to the training, cross-validation 
and testing (Nneg= number of interictal files, Npos= number of ictal files, Ntotal= total number of files). 

 
Training 

Validation (20% of 
training set) 

Testing 

Arrangement 
A 

Patients 1-7 (subset) 
Nneg=17 = 21 – 4 (20%) 
Npos=11 = 14 –3 (20%) 
Ntotal = 28 = 35 – 7 

Patients 1-7 (subset) 
Nneg= 4 
Npos= 3 
Ntotal = 7 

Patients 1 – 14 (subset) 
Nneg=116-21 = 95 
Npos=41 – 14 = 27 
Ntotal = 157 – 35 = 122 

Arrangement 
B 

Patients 1 – 14 (subset) 
Nneg= 59 
Npos= 19 
Ntotal = 78 

Patients 1 – 14 (subset) 
Nneg=12 
Npos=6 
Ntotal = 18 

Patients 1 – 14 (subset) 
Nneg=45 
Npos=15 
Ntotal = 60 
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After training all 93 possible topologies, they were compared to each other in terms of 

performance on the validation set. For simplification, selection of the best topology was 

done with the average pattern square error on the validation set rather than with ROC 

terminology. Also the limited amount of data did not allow generating ROC curves to 

compare the performances of all topologies. The pattern square error is the square of the 

difference between the network output and the target for a specific pattern, and the 

average is taken after each iteration loop across all patterns in the table.  

In the course of the training, several preliminary findings concerning network topology 

and data set organization were made. They will be presented before discussing the 

classification results. 

4.9. Training Results 

4.9.1. Findings Regarding the Number of Hidden Neurons 

In [Berry and Linoff 1997] [Blum 1992] [Boger and Guterman 1997] [Swingler 1996], 

different rules for selecting the number of hidden units are proposed. Intuitively, 

increasing the number of identical hidden neurons represents adding more degrees of 

freedom to the backpropagation algorithm in a multilayer perceptron trained with early 

stopping. To investigate the effect of adding hidden neurons, all topologies between 1 

and 40 hidden neurons with all possible combinations of activation functions were 

initialized with random weights and trained with early stopping. This type of analysis was 

easily done because NS allows for automatically training and modifying a network 
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topology several times. A snapshot of the training module performing this action is 

illustrated in Figure 4.7. 

To make this discussion independent of how misclassification is defined, approximation 

errors rather than misclassification errors will be shown. In total, 10 trials were 

performed for each specific topology. The grand average of the average pattern square 

errors across all trials for the L-L-L and L-S-S topology groups and for both training and 

validation set are shown in Figure 4.8, where in the training set it is hard to observe any 

clear trend, because of the recurring peaks. This proved that adding more hidden neurons 

(as reflected by the x-axis) does not considerably help reduce the error on the training set. 

This phenomenon could be possibly associated to the use of numerical methods which 

always require a starting solution that can trap networks in local minima. Also, note that 

the recurring peaks in the validation errors tend to increase in value, which reduces 

generalization ability. If the starting weights were kept the same, the error would 

certainly reduce in trend. However, there is no way to know in advance which initial set 

of weights will yield the lowest error, and as a conclusion, it is possible for a topology 

with less hidden units to achieve lower errors than one with more hidden units, if the 

starting point is different. 

This proves that the conclusions made by [Barron 1993] [DeVore et al. 1989] [Lawrence 

et al. 1997] [Sarle 1995] [Tetko et al. 1995] and [Weigend 1994] regarding the 

convenience of adding more hidden units to a multilayer perceptron, trained with 

backpropagation and early stopping in order to find a better local minimum and reduce 
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both training and generalization error, do not always apply because of drawbacks related 

to random selection of starting solution. 

 

Figure 4.7: NS while performing topology variation training in a loop, showing the plot of the average 
accuracy after ten trials in each set for every specific amount of hidden neurons. 

 
 L-L-L topologies L-S-S topologies 

Error in 
training 

set 

Error in 
valid. 

set 

Figure 4.8: Behavior of the grand average of the mean pattern square error (in training and validation set) 
vs. the number of hidden neurons in L-L-L (left) and L-S-S (right) topologies. Color code: blue and red: 

training and validation errors, respectively. 
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Since the optimum number of hidden neurons was impossible to obtain empirically, it 

was opted to include between 1 and 10 hidden neurons. Considering the facts stated 

above, different trials were performed in order to find the best ANN in each arrangement. 

4.9.2. Findings Regarding Data Arrangement 

After training the networks in the two arrangements, the optimum topologies were sorted 

in descending order of the average validation set error. Table 4.3 shows the five best 

performing topologies, placing the 2-5-1(L-S-S) topology on top in arrangement A and 

the 2-10-1(L-S-S) topology in arrangement B. As it can be noted from this table, the error 

difference with respect to the next four best networks within the arrangements is 

insignificant for a classification network. However, the differences between the two 

arrangements are noticeable. 

When sorted by the validation error, arrangement B proved to be more convenient, 

because the average pattern square errors in the validation set were in average about 21 % 

smaller than in the A arrangement. However, the average pattern square errors in the 

training set for arrangement A were about 19 % smaller than in arrangement B.  

Table 4.3: Five best performing topologies and their performance in arrangements A and B, sorted in 
descending order of the average pattern square error on the validation set (L: linear activation, S: logsig 

activation, G: Gaussian activation). Best values are in bold. 

 Best 5 topologies Error on training set Error on validation set 

2-5-1(L-S-S) 0.08266383 0.01977263 

2-6-1(L-S-S) 0.06727370 0.01983868 

2-8-1(L-S-S) 0.07115250 0.02405285 

2-8-1(L-L-S) 0.09079637 0.02775257 

2-5-1(L-L-S) 0.09733627 0.02964879 A
rr

an
ge

m
en

t A
 

Avg. error 0.08184453 0.02421310 
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 Best 5 topologies Error on training set Error on validation set 

2-10-1(L-S-S) 0.09466055 0.01484767 

2-9-1(L-L-S) 0.09908852 0.01838150 

2-9-1(L-S-S) 0.10115675 0.02043153 

2-3-1(L-S-S) 0.10267141 0.02076315 

2-5-1(L-L-S) 0.10312260 0.02119864 A
rr

an
ge

m
en

t B
 

Avg. error 0.10013997 0.01912450 
Ratio 

 
Avg(A) / Avg(B) 

= 0.8173 
Avg(B) / Avg(A) 

= 0.7898 
 

The conclusion that validation is better for arrangement B proves that omitting patients 8-

14 from the training set affects the performance of the detectors when tested on the same 

patients, which reflects that there are significant variations in the EEG dynamics from the 

validation files used. Summarizing, sorting all networks by their performance on the 

training and testing set yielded the ranking given in Table 4.4., best being on top.  

Table 4.4: Five best performing topologies on both arrangements when sorted in descending order of the 
average pattern square error on training and validation set. 

 Sorted by 
performance on 

training set 

Sorted by 
performance on 
validation set 

2-6-1(L-S-S) 2-5-1(L-S-S) 
2-8-1(L-S-S) 2-6-1(L-S-S) 
2-5-1(L-S-S) 2-8-1(L-S-S) 
2-8-1(L-L-S) 2-8-1(L-L-S) A

rr
an

ge
-

m
en

t A
 

2-4-1(L-S-S) 2-5-1(L-L-S) 
2-10-1(L-S-S) 2-10-1(L-S-S) 
2-9-1(L-L-S) 2-9-1(L-L-S) 
2-9-1(L-S-S) 2-9-1(L-S-S) 
2-3-1(L-S-S) 2-3-1(L-S-S) A

rr
an

ge
-

m
en

t B
 

2-8-1(L-S-S) 2-5-1(L-L-S) 
 

Because the validation set is data not used for the weight update, performance on this set 

was given priority when deciding which topology to select. From Table 4.4, the 2-10-

1(L-S-S) topology performs better on arrangement B for the validation set, whereas for 

arrangement A, the 2-5-1 L-S-S topology performs better on the same set. Referring back 
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to Figure 4.8, the reader should observe that the plots shown are indeed proof that adding 

more hidden neurons does not lower errors, because all starting solutions were purposely 

randomized in order to avoid local minima. Therefore, it can be concluded that there is a 

possibility that the 2-10-1 topology could have performed better in another 5 trials. But 

again, due to the uncertainty inherent to the numerical problem at hand, the course of the 

investigation had to be based on one choice, and this choice was the 2-5-1 topology. 

After selecting the two ANNs, they were trained with early stopping on the 

corresponding arrangements, and then tested on the corresponding testing data for a 

complete analysis. Next section presents the ROC analysis performed on the testing 

results. 

4.10. Testing Results 

After training the 2-5-1 and 2-10-1 L-S-S networks on arrangements A and B, 

respectively, they were tested on the testing data as well as re-tested on the training and 

validation data of the corresponding arrangements. Results of the test in ROC 

terminology are given in Table 4.5, which for simplification purposes, only shows 

accuracy, sensitivity, and specificity. In this table, keep in mind that there are two 

networks (one for each arrangement) rather than only one network, thus the three value 

columns of this table were obtained with one network and the remaining columns with 

another network with the same topology, but whose weights are different. 
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Table 4.5: Errors obtained after training and testing the corresponding topologies on the three subsets of 
arrangements A and B: pure training, cross-validation, and testing. Best values are in bold. 

 Performance of  
2-5-1 (L-S-S) ANN on the 

Arrangement A Sets 

Performance of  
2-10-1 (L-S-S) ANN on the 

Arrangement B Sets 
 Training Validation Testing Training Validation Testing 

TP 8 3 22 18 3 15 
TN 17 4 93 52 13 48 
FP 0 0 2 1 0 2 
FN 3 0 5 2 1 2 

Accuracy 89.29 % 100.00 % 94.26 % 95.89 % 94.12 % 94.03 % 
Sensitivity 72.73 % 100.00 % 81.48 % 90.00 % 75.00 % 88.24 % 
Specificity 100.00 % 100.00 % 97.89 % 98.11 % 100.00 % 96.00 % 

 

Table 4.5 shows how the optimum networks perform in each set. A closer observation 

reveals inconsistency in the behavior of the indicators. For example, while accuracy and 

sensitivity are lower in the training set of arrangement A as compared to arrangement B, 

specificity is better. If one turns the attention to the most important set, i.e. the testing set, 

the following can be noticed: 

- accuracy is better in arrangement A 

- sensitivity is worst in arrangement A 

- specificity is better in arrangement A 

This inconsistency made it impossible to change the balance in favor of one arrangement 

or the other, not even when arrangement A is supposed to be less biased since it included 

unseen patients as testing data, besides having a testing set which is more than 4 times 

bigger than the training set. This proved that there is no substantial difference in the 

gamma power spectrum of the EEG of the seizure between patients and therefore, no 

specific proposition can be done as to which arrangement to select. It is therefore 

concluded that the spectrum in the gamma band is an excellent instrument to detect 

seizures offline at inter-patient level and is not restricted to EEG dynamics of any 
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particular patient; in other words, it is patient-independent. Further analysis was 

intentionally done using arrangement A since a test on data from unseen patients is the 

most adverse condition for a classifier.  

Despite the numerical analysis that was performed, neither the number of hidden neurons 

nor the data arrangement yielded particular results. One should also expect that a 

particular data arrangement can change network performance significantly. For example, 

one arrangement with overlap in the training set and perfect separation in the testing set 

will yield a network that performs much better in the testing than in the training set. For 

all these reasons, it was opted to disregard the topology/arrangement analysis during the 

study of the remaining frequency bands, and use only the 2-5-1 L-S-S topology within 

arrangement A. 

The reader will notice that the analysis is done qualitatively rather than using any 

particular indicator. A complete analysis could only be done if the classifiers were tested 

on different data sets and under different circumstances, which would allow generating 

ROC curves for each one and compute the area under the curves as an overall 

performance criterion.   

Considering that this study is applied to clinical data that involves seizures from different 

patients, the performance of this ANN-based seizure detector is within acceptable 

standards.  The selection of the adequate arrangement could be only achieved with the 

features and computation speed of the NS tool. 
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4.11. Comparative Analysis under Different Frequency Bands 

In order to demonstrate the superiority of the spectral power in the gamma range, other 

frequency bands were also analyzed and compared in terms of their classification 

performance. Six 2-5-1 ANNs were constructed, trained from random starting solutions 

and tested in their corresponding data sets. The gamma-based classifier was also trained 

again. From Table 4.6 it can be observed that the gamma band yielded the most accurate 

seizure detector.  

Table 4.6: Testing errors obtained after training a 2-5-1 topology on the data set extracted for each 
frequency band. Best values are in bold. 

 Alpha Beta I Beta II Delta Gamma Theta 
TP 17 19 23 16 25 14 
TN 93 90 90 94 92 94 
FP 2 5 5 1 3 1 
FN 9 6 3 11 2 11 

Accuracy 90.91 % 90.83 % 93.39 % 90.16 % 95.90 % 90.00 % 
Sensitivity 65.38 % 76.00 % 88.46 % 59.26 % 92.59 % 56.00 % 
Specificity 97.89 % 94.74 % 94.74 % 98.95 % 96.84 % 98.95 % 

 

In comparing the results obtained for the gamma frequency band, it was noted that 

equivalent methods developed in recent years have a tendency to use sensitivity as 

performance criterion. [Navakatikyan et al. 2006] apply a wave-feature extraction 

algorithm to scalp EEG from 55 neonates and obtains sensitivity ranging 83 % to 95 %. 

[Hopfengärtner et al. 2009] attain 85.2 % to 90.8 % analyzing two frequency bands of 

intracranial EEG of 15 patients. Another method by [Chan et al. 2008] uses SVM on 

features extracted from five frequency bands, resulting in sensitivities between 80% and 

98%. [Deburchgraeve et al. 2008] attain 88 % sensitivity when applying correlation and 

frequency activity to scalp EEG of 26 neonatal patients. Also an algorithm by [Schad et 

al. 2008] reports sensitivities up to 63 % and 72 % at scalp and intracranial level, 
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respectively. When compared to these methods, the 92.59 % sensitivity displayed in 

Table 4.6 for the gamma frequency band of the method proposed in this dissertation is 

more than satisfactory. 

At this juncture it is important to note that even though different ROC terms are listed in 

Table 4.6, one should consider accuracy as one of the most important descriptor since it 

measures the degree in which correct classifications were done without favoring either 

TP or TN classifications. Favoring TP assures high sensitivity, whereas by favoring TN, 

one would opt for higher specificity. Note that even though delta yielded best specificity, 

if performs poorly in terms of sensitivity. It can be concluded that in general the gamma 

frequency range performed better across the board in terms of accuracy, sensitivity and 

specificity over the remaining frequency bands.  

4.12. Conclusion of the Method 

This study demonstrated the feasibility of detecting seizures on intracranial EEG using an 

ANN based on the gamma frequency band for classification purposes. It was shown that 

the power measurement in the gamma range from 36 to 44 Hz contains the information 

needed to discriminate seizure files from non-seizure files with an accuracy of 95.90%, a 

sensitivity of 92.59%, and a specificity of 96.84%. 

These results were obtained with a 2-5-1 network topology with linear activation 

functions in the input layer and sigmoid activation functions in the 2nd and 3rd layer. The 

two most discriminating features that constituted the 2-D decisional space were 

determined to be : (1) The time duration (the number of consecutive points) where the 
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value of each given point in the inter-electrode mean signal S  exceeded the set 

statistical threshold   ST , and (2) The maximum value of S  in that specific 

interval.  

Of particular value is the generalized nature of the algorithm, and its feasibility in the 

absence of patient-specific training data. This feature is demonstrated most clearly by the 

test characteristics in patients who were not part of the training data. In general it is worth 

mentioning that although only 29% (35/122) of the files were used randomly for training 

the detector, high measures in sensitivity, specificity, and accuracy were still achieved in 

the remaining files which were subsequently used for testing.  

By investigating as to what constitute the optimum number of hidden units and which 

arrangement of data will be more useful, the following interesting observations can be 

made: 

(1) No particular number of hidden neurons could be found to minimize the testing 

error. The reason probably lies in the nature of the training algorithm, which is a 

numeric method that starts with random solutions.  

(2) Excluding patients from the training set did not have significant impact in the test. 

This fact clearly proved that the gamma-based classifier is effective even when 

tested on unseen patients. 
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The computational requirements for creating the ANNs during the training phase and the 

ensuing results during the testing phase reveal additional findings that are quite 

interesting:  

(1) the data clusters of seizure-files seem more spread out than those data clusters of 

files without seizures, which clearly proves that seizures which are atypical events 

obviously vary greatly among subjects. 

(2) the choice of the ANN is critical for delineating such wide-ranging behaviors, as 

long as the appropriate decisional space is cautiously established.  

The study has so far included 14 patients who underwent two-stage epilepsy surgery with 

subdural recordings, and whose iEEE data were obtained sequentially.  More insight will 

be gained into the findings of this study as more patients in the future will consent to be 

included, since the more data is collected, the more influential will be the clustering 

characteristics of epileptogenic data.   

Another interesting question that can be posed, along the same reasoning adopted thus 

far, is whether an it can be determined if an EEG recording can be associated to epileptic 

subjects or to non-epileptic persons who have never experienced an epileptic seizure. In 

the next chapter, a method is proposed to address this problem through a newly designed 

algorithm and applying the same NS tool.  The intent of such a new approach is to 

position this research towards the ultimate goal of seizure prediction. 
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CHAPTER 5 

5. AN APPLICATION OF NEURALSTUDIO TO THE CLASSIFICATION OF 
EPILEPTIC AND NON-EPILEPTIC SUBJECTS FROM SCALP EEG 

 
 
5.1. Objectives of the Method 

The main objective of this method was to associate EEG file segments to non-epileptic or 

epileptic subjects by means of an ANN. The purpose was to identify potential epileptic 

subjects based on aggregated features before running any algorithm to detect interictal 

spikes.  

With the empirical experience thus gained, the research method of this chapter will be 

focused on the investigation of following EEG features: 

- activity 

- mobility 

- complexity 

- spectral power in each of the frequency bands (delta, theta, alpha, beta I, beta II, 

and gamma) 

The ANN classifier will analyze EEG file segments in text format and classify them as 

“non-epileptic” or “epileptic” to provide an automatic evaluation to medical doctors. For 

this purpose, a method will be proposed to extract features from EEG segments in such a 

way that they are independent of the number of electrodes and the duration of the 

recordings.  
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5.2.Data Preprocessing 

For this study, scalp EEG recordings from three non-epileptic subjects and three epileptic 

patients were used.  For an efficient comparison of files, the segments from the epileptic 

patients were extracted from sections without seizures. Recordings were performed at 

Miami Children’s Hospital using XLTEK Neuroworks Ver. 3.0.5 equipment and sampled 

at 512 Hz and 500 Hz for non-epileptic subjects and epileptic patients, indistinctly. 

Electrode setup followed the 10-20 system.  

In total, 10 to 30 segments were extracted from each recording. To prevent biasing the 

analysis, all segments were free of artifacts and mostly without observable epileptiform 

activity. As mentioned above, the file segments from epileptic patients contained only 

interictal data, i.e. they did not have seizures. All files were 4 to 45 seconds long. An 

overview of the subjects’ information is given in Table 5.1. 

Table 5.1: Subjects’ information and data used 

Subject Status Age Gender Diagnosis Number 
of files 

Sampling 
rate (Hz) 

1 Non-epileptic 15 Female - 10 512 
2 Non-epileptic 10 Male - 15 512 
3 Non-epileptic 47 Male - 20 512 
4 epileptic 7 Male Focal area of epileptogenesis 

within the left frontal  
region involving the frontal pole 

and posterior frontal  
lobe near the midline region 

primarily. 

20 512 

5 epileptic 4 Female Intractable seizures over the right 
frontocentro-temporal 

epileptogenicity 

30 500 

6 epileptic 15 Female Medically intractable seizures 
with epileptogenicity involving 

both frontal regions 

10 500 

 

 



 107 

5.3.Feature Extraction 

As stated earlier, EEG recordings can be analyzed and compared to each other by 

extracting features in time and frequency domains. One problem associated with feature 

extraction is that EEGs from different subjects and recorded at different times can have 

different numbers of electrodes. Furthermore, these electrodes also can be arranged in 

different locations and could be placed either on the scalp or at the subdural level. This 

fact makes pair-to-pair electrode recording comparison impossible.  

The standard way of feature extraction in time domain when different electrodes are 

present is illustrated in Figure 5.1(a). For each time window, the entire window recording 

is replaced by a particular feature of interest. In the example, Hjorth’s parameter 

“activity” is extracted out of 1 second windows for each electrode. 

 
Figure 5.1: (a) First step in feature extraction from EEG recordings, illustrating the extraction of EEG 

activity from 1-second time windows for a set of electrodes. Window activity A(Ek) is computed for each 
electrode Ek for each time window. (b) Second step in feature extraction, using inter-electrode average as 
statistical parameter to analyze EEG activity in time independent of the number of electrodes. (c) Last step 
of the proposed feature extraction procedure, using grand average over time of the inter-electrode average 

as overall parameter to analyze EEG activity of a specific EEG recording file. 
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As can be seen from Figure 5.1(a), extracting electrode features has the disadvantage of 

generating a set of values which depends on the number of electrodes. To cope with this 

issue, statistical parameters such as average, standard deviation, and signal to noise ratio 

can be computed across all electrode features for each time window. This is depicted in 

Figure 5.1(b), using the grand average across all electrodes as a representative feature.  

Since the purpose of this method is the analysis of EEG recordings regardless of how 

much time they take, further statistical parameter extraction can be performed along the 

time axis to provide a single feature descriptor for the whole EEG file. Figure 5.1(c) 

illustrates this last step using the grand average of the inter-electrode average activity.  

In general, all steps of the global feature extraction procedure for any particular feature 

are illustrated in Figure 5.2, where it can be observed that the entire EEG segments can 

be described by a single global value for the specified feature.  

In Figure 5.2, Param1 represents a statistical parameter such as average or standard 

deviation, which is applied to all electrodes within a time window. Likewise, Param2 is 

also a statistical parameter such as average or standard deviation which is applied to the 

time series of the aforementioned parameter Param1. 

The statistical parameters chosen at this point to extract global features from EEG file 

segments are the average (AVG), standard deviation (STD) and signal to noise ratio 

(SNR) as shown in Figure 5.3.  
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Figure 5.2: Compilation of all steps needed to extract a global descriptor for a particular feature for an 

entire EEG file. Param1 is an inter-electrode statistical parameter, and Param2 is a statistical parameter of 
the time series of Param1. 

 

These parameters will be extracted across electrodes as well as over time. To 

differentiate, uppercase is used for the inter-electrode parameters, and lower case is used 

for time series parameters. Since there are three parameters across electrodes and another 

three for each resulting time series, there are in total nine parameters, as shown in Table 
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5.2, starting with the avg(AVG), i.e., the average over time (avg) of the inter-electrode 

average (AVG), and ending with snr(SNR). 

 

 
Figure 5.3: Proposed approach to feature extraction from EEG data segments, reduced to a 3x3 matrix 

obtained from the common statistical parameters avg, std and snr. 
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Table 5.2: Segment descriptor matrix for a particular feature 

 avg std snr 
AVG avg(AVG) std(AVG) snr(AVG) 
STD avg(STD) std(STD) snr(STD) 
SNR avg(SNR) std(SNR) snr(SNR) 

 
 

With this approach, whole EEG segments will be assigned a feature descriptor matrix for 

each particular feature. For example, activity, mobility and complexity will each have a 

corresponding segment descriptor matrix. The same applies to the spectral power in the 

different frequency bands. In total, for the 9 features that will be focused on, there are 9 

matrixes, or 9x9=81 variables that will be used to classify EEG segments. 

In general, besides avg, std and snr, any other type of statistical parameter could have 

been used (such as skewness and kurtosis), because it was not known beforehand which 

one would be best for discriminating EGG segments. However, for simplification 

purposes, the analysis was limited to these three parameters. The two dimensions of the 

global feature descriptor come from the fact that both electrode and timing information 

are represented by statistical parameters. Likewise, if one were to compute a descriptor 

for an entire group of subjects with a specific health condition, a third dimension would 

be required, as is shown in Figure 5.4. Generalizing, if the number of statistical 

parameters n is kept the same in each of the d dimensions, then the number of elements of 

the descriptor would amount to nd. 
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Figure 5.4: A generalization of the global descriptor with three dimensions (feature cube): one vertical for 
the inter-electrode aggregation, one horizontal for the time aggregation, and another for the statistics across 

subjects. Keep in mind that additional parameters can be used. 

 

Following the procedure previously explained, the descriptor matrices for all 105 files 

and each feature were obtained using a general window size of 1 sec in each file. 

equipped with these descriptors, a classifier for each feature could be created. The next 

section will explain in detail how the inputs of the classifiers were determined. 

5.4. Dimensionality Analysis 

Before creating the classifiers, the descriptor matrices of all files and features were put in 

tables with a structure as shown in Table 5.3 containing 9 columns. The first column 

corresponded to avg(AVG), the second to std(AVG) and so on, up to the ninth, which has 

the value for snr(SNR). The last column was reserved for the target, codified as -1 for 

files of non-epileptic subjects and 1 for files of epileptic patients. This setup allows the 

global feature of each EEG file to be represented by a 9-dimensional point. In total, 9 

tables were obtained, one for each feature (activity, mobility, complexity, and spectral 
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power in delta, theta, alpha, beta I, beta II and gamma). Each table contained 105 rows 

(45 for non-epileptic subjects and 60 for epileptic patients). 

Table 5.3: Common header structure of training, cross-validation and testing tables, including the nine 
statistical parameters proposed and the target column 

File  
# 

avg(AVG) Std(AVG) snr(AVG) avg(STD) std(STD) snr(STD) … 

1 … … … … … … … 
2 … … … … … … => 
3 … … … … … … … 
… … … … … … …  

 
… avg(SNR) std(SNR) snr(SNR) Target 
… … … … … 
=> … … … … 
… … … … … 
… … … … … 

 

The tables obtained would require the use of 9-dimensional classifiers. A first attempt to 

deal with this data was to question whether all 9 dimensions were necessary so as to 

reduce data dimensionality. At this juncture, all tables were displayed in 2D plots by 

using all 36 possible pairs of dimensions for the 9 dimensions that were considered. 

Figure 5.5 shows all plots for the spectral power in gamma. The reason why the gamma 

feature is shown is because of the suitability of this frequency range for seizure detection 

purposes, as was proved in the previous Chapter. 

In Figure 5.5, files from non-epileptic subjects are represented by blue dots and files from 

epileptic patients are represented by red crosses. From the first view, plots involving 

dimensions 3, 6, 7, 8, 9 in Figure 5.5 show in general a wider spread of clusters and better 

separation. Most of these clusters are somewhat organized and separated from each other.  
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Figure 5.5: Plots of the gamma descriptors for all 105 files together, showing combinations of dimension 
pairs (dimension1-dimension2) with different clustering abilities. Files from non-epileptic and epileptic 

subjects are represented by blue dots and red crosses, respectively. 

 

However, because of the presence of outliers, it was suspected that the remaining plots 

could still show clear clusters if they were properly magnified. Figure 5.6 shows the 
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original 1-2 plot and the zoom in that excludes the two outliers in the center and the 

upper right. 

 
Figure 5.6: Zoom in of plot 1-2 of Figure 5.5, showing a better cluster organization once outliers have been 

excluded. 

 

Figure 5.6 clearly shows better cluster organization after outliers were excluded. Plots of 

the remaining features are not provided here for space consideration, but closer 

examination revealed the same issue. This fact proved that the plots cannot be used to 

find suitability of axes. Therefore, the study had to include all nine dimensions and leave 

it up to NeuralStudio to find the best classifier. 

Another reason why all nine dimensions were kept is because the accuracy obtained by 

the 9D classifier cannot be lower than the highest accuracy obtained by any of these 36 

2D classifiers. For example, the 8-9 plane in the gamma descriptor plot of Figure 5.5, 

despite having high overlap, does not affect the overall accuracy of the 9D classifier, 

which in turn can be higher than the maximum accuracy of any of the 36 2D classifiers. 

Moreover, if one removes a dimension, despite having too much overlap, the accuracy of 

the 9D classifier could be reduced.  
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Once the dimensionality of the problem was established, training was performed. Details 

are provided in the next section.  

5.5. Training Setup 

5.5.1. Data Organization 

After determining that all nine dimensions would have to be used, all files were selected 

for training, cross-validation or testing. For this study, about half of the files were 

reserved for training and the other half for testing, whereas when possible, about 20 % of 

the training files were kept for cross-validation, as shown in Figure 5.7. In this setup, 

distribution was done so that each subject had approximately the same balance of files for 

training, cross-validation, and testing, as can be observed in Table 5.4. 

 The procedure of data selection for training, cross-validation and testing is automated in 

NS to allow fast preparation of files. A snapshot of the pattern window is illustrated in 

Figure 5.8. By selecting the “Tools/Management/Split Table” menu option, a panel is 

visualized on the right, containing instructions so as to step-by-step separate all data 

available into training, cross-validation, and testing tables. 

 

Figure 5.7: Ratio of file usage during classifier training.  
This ratio was used for all subjects. 
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Table 5.4: Data arrangement for training purposes 

Subject File usage 
ratios 

Training 
Files 

Cross-
validation 

files 

Testing 
Files 

Total 

Subject 1 (non-epileptic) 4/1/5 First 4 Next 1 Remaining 5 10 
Subject 2 (non-epileptic) 7/1/7 First 7 Next 1 Remaining 7 15 
Subject 3 (non-epileptic) 8/2/10 First 8 Next 2 Remaining 10 20 

Subject 4 (epileptic) 8/2/10 First 8 Next 2 Remaining 10 20 
Subject 5 (epileptic) 12/3/15 First 12 Next 3 Remaining 15 30 
Subject 6 (epileptic) 4/1/5 First 4 Next 1 Remaining 5 10 

Total  43 10 52 105 
 
 

 

Figure 5.8: Automation of table separation in NeuralStudio. The user can load the whole data into a table 
and from there make a selection, row by row, of where to send each row. By entering 1, 2, or 3 in the last 
column provided, the rows can be sent automatically to the training, cross-validation and testing tables, 

respectively.  

 

By using this feature of NS, the tedious task of opening four text files at once (the whole 

table and the three tables for training) and performing manual distribution of rows across 

the 4 files was fully automated in order to avoid human errors. 
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5.5.2. ANN Configuration and Training Procedure 

For the problem at hand, a 9-19-1 topology was selected. The reason why 19 and no other 

number of hidden units was selected was because of the experiments that have been 

reported in section 4.1, which indicated that an optimization of the number of hidden 

units was unpractical. A well-known rule of thumb was used, which advises to use twice 

the number of input units, plus one more. 

The input units were assigned linear activation functions, and the hidden and output units 

were assigned logsig functions, with the same parameters that were used in section 4.1. 

The cross-validation strategy implemented in this case was similar to the one applied in 

section 4.1. Training was stopped once an increment in the cross-validation set for 5 

consecutive times was detected. Under normal conditions, a training error can be 50% 

higher or lower than the previous one. By allowing the error no more than 5 consecutive 

times to increase, one is assuming that the error will keep increasing with a probability of 

1 - (0.5)5 = 1 - 0.03125 = 0.96875, which is a high-confidence value. The learning rate 

was set in all ANNs to 0.0001. 

Because the minimum error obtained by an ANN depends on the starting condition, there 

is no way to know in advance which will be the best set of weights that will lead the 

network to a global minimum. The only way is to perform several trials, each starting 

with random weights, and to store the set of weights that yielded the best solution. This 

study opted to find the best solution for each ANN after a number of trials. 

Each ANN was trained 10 times in different trials as follows: 
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- 4 times (each 10 repetitions), with 1 minute maximum for each repetition, 

generating 4 best solutions 

- 2 times (each 10 repetitions), with 2 minutes maximum each repetition, 

generating 2 best solutions 

- 1 time (each 10 repetitions), with half a minute maximum each repetition, 

generating 1 best solution 

- 1 time (each 10 repetitions), with 15 seconds maximum each repetition, 

generating 1 best solution 

The intent of this approach with so many repeated trainings is to rule out the possibility 

that any differences in the results are just by chance (analogous to the t-Test). 

Since cross-validation was performed, all training repetitions were stopped either by the 

cross-validation stop criterion or by reaching the time limit that was set. The procedure 

was applied consistently across all 9 ANNs. In general, each ANN was allocated a time 

span of 40*1 + 20*2 + 10*(1/2) + 10*(1/4) = 87.5 minutes for training, thus totaling 13 

hours and 7.5 minutes for training all 9 ANNs. 

The reason why 15 seconds of maximum duration was also considered was to avoid the 

testing error to become too large. As it is known, cross-validation stops only when the 

validation error starts to increase, as shown in Figure 5.9. But before reaching that point, 

the error on the testing set can either increase or decrease, although most of the times this 

error is expected to follow the trend of the cross-validation error, at least for the first few 

iterations. In this experiment, this tendency was observed in most trainings iterations, but 
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not in all. Because the training algorithm has purposely no feedback from the testing 

error, limiting the search time is a good way to avoid high testing errors. 

 
Figure 5.9: Illustration of the cross-validation criterion for training stop. The point where the network starts 
memorizing and loosing its generalization ability is signalized by Ncritical. The testing error can have any 

behavior but is not part of the stop procedure. 

Figure 5.10 shows the panel in the training window where all ANN files can be loaded at 

once and trained repeated times.  

 
Figure 5.10: Screenshot of NeuralStudio’s training window, showing a panel that allows the user loading 
multiple ANN files at once and train each of them several times.  In this process, the best networks are 

automatically stored in the interface and also saved to disk. 
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During training, each time the performance was better than before, the solution was 

stored in the interface as the best one so far. After training the networks as many times as 

defined, the best performing ANN was stored and properly named for later use. 

5.6.Testing Results 

The discussion about the suitability of the descriptors will focus exclusively on the results 

obtained in the testing set as this was the set that was not used for weight update.  

Before proceeding with the analysis, it is important to recall that these classifiers could 

not be tested on other data than the testing data that was available for the study. For that 

reason, ROC curves can not be constructed to find the best classifier. 

The difficulty associated with the selection of the best descriptor is because there are in 

total three performance metrics, namely accuracy, sensitivity and specificity. Although 

accuracy is a widely accepted metric, medical doctors tent to favor sensitivity and 

specificity. In this section, the intention was to include all terms at once. At this juncture, 

an approach different to the one implemented in section 4.1 was followed. The solution  

is a MaxMin procedure in which the best candidate descriptor was considered the one 

whose lowest performance metric was the highest among all descriptors, and which, at 

the same time, has the highest possible performance metric among others of similar or 

higher minimum performance. This procedure is represented in Table 5.5. 
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Table 5.5: Procedure implemented to generate the 10 solutions per network after random starts. Accuracy, 
sensitivity and specificity are represented by X1, X2, and X3, respectively. 

(1) (2) (3) (4) (5)  

Repetition 
number 

X1 X2 X3 

Minimum 
of 

Columns 
(2) to (4) 

 

1 … … … …  
2 … … … …  
3 … … … …  
4 … … … … Maximum of column (5) 
5 … … … … = best solution of 
6 … … … … trial 
7 … … … …  
8 … … … …  

9 … … … …  

10 … … … …  

 

With this criterion at hand, 8 trials were performed for each network, as explained in the 

previous section. In each trial the network was trained 10 times and the best solution was 

stored for further analysis. The best solutions for each trial are presented in Table 5.6. 

To be consistent with the criterion applied to find each one of the solutions presented in 

Table 5.6, the same criterion was used to select the best descriptor from the table. It can 

be easily found that the highest minimum corresponds to activity with a minimum of 

0.9667 and a maximum of 1.000 followed by delta with a minimum of 0.9000 and a 

maximum of 0.9091. These values are highlighted.  However, further investigation was 

needed at this point in order to know how much certainty there was to affirm that the 

activity is much better than the other descriptors. 
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Table 5.6: Best solutions found in all trials.  Within each group, the best solution is in bold. 

 Accuracy Sensitivity Specificity Minimum Maximum 
0.8846 0.9333 0.8182 0.8182 0.9333 
0.9615 0.9667 0.9545 0.9545 0.9667 
0.9423 0.9333 0.9545 0.9333 0.9545 
0.9615 0.9667 0.9545 0.9545 0.9667 
0.9615 0.9667 0.9545 0.9545 0.9667 
0.9808 0.9667 1.0000 0.9667 1.0000 
0.9423 0.9667 0.9091 0.9091 0.9667 

Activity 

0.9423 0.9667 0.9091 0.9091 0.9667 
0.7885 0.8000 0.7727 0.7727 0.8000 
0.8846 0.8000 1.0000 0.8000 1.0000 
0.8846 0.8333 0.9545 0.8333 0.9545 
0.8462 0.8667 0.8182 0.8182 0.8667 
0.8462 0.9000 0.7727 0.7727 0.9000 
0.8462 0.8333 0.8636 0.8333 0.8636 
0.8269 0.8667 0.7727 0.7727 0.8667 

Mobility 

0.7115 0.7333 0.6818 0.6818 0.7333 
0.7885 0.8667 0.6818 0.6818 0.8667 
0.7885 0.8333 0.7273 0.7273 0.8333 
0.7885 0.8000 0.7727 0.7727 0.8000 
0.7115 0.7000 0.7273 0.7000 0.7273 
0.7500 0.7667 0.7273 0.7273 0.7667 
0.7308 0.8333 0.5909 0.5909 0.8333 
0.7308 0.7667 0.6818 0.6818 0.7667 

Complexity 

0.6923 0.6333 0.7727 0.6333 0.7727 
0.9231 0.9667 0.8636 0.8636 0.9667 
0.8462 0.9000 0.7727 0.7727 0.9000 
0.8462 0.8667 0.8182 0.8182 0.8667 
0.9038 0.9333 0.8636 0.8636 0.9333 
0.8654 0.9000 0.8182 0.8182 0.9000 
0.8846 0.9000 0.8636 0.8636 0.9000 
0.9038 0.9000 0.9091 0.9000 0.9091 

Delta 

0.9231 1.0000 0.8182 0.8182 1.0000 
0.7885 0.7333 0.8636 0.7333 0.8636 
0.7308 0.6667 0.8182 0.6667 0.8182 
0.6154 0.6000 0.6364 0.6000 0.6364 
0.7308 0.6667 0.8182 0.6667 0.8182 
0.6923 0.6333 0.7727 0.6333 0.7727 
0.7308 0.6333 0.8636 0.6333 0.8636 
0.6731 0.6667 0.6818 0.6667 0.6818 

Theta 

0.7115 0.7000 0.7273 0.7000 0.7273 
0.7115 0.7000 0.7273 0.7000 0.7273 
0.7692 0.8000 0.7273 0.7273 0.8000 
0.7885 0.8333 0.7273 0.7273 0.8333 

Alpha 

0.8077 0.8667 0.7273 0.7273 0.8667 
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 Accuracy Sensitivity Specificity Minimum Maximum 
0.7885 0.8667 0.6818 0.6818 0.8667 
0.7692 0.8000 0.7273 0.7273 0.8000 
0.7885 0.8667 0.6818 0.6818 0.8667 
0.7692 0.8000 0.7273 0.7273 0.8000 
0.8846 0.9000 0.8636 0.8636 0.9000 
0.7885 0.7667 0.8182 0.7667 0.8182 
0.8269 0.8000 0.8636 0.8000 0.8636 
0.8269 0.8000 0.8636 0.8000 0.8636 
0.8269 0.8667 0.7727 0.7727 0.8667 
0.8077 0.8000 0.8182 0.8000 0.8182 
0.8077 0.7667 0.8636 0.7667 0.8636 

Beta I 

0.8269 0.8333 0.8182 0.8182 0.8333 
0.9038 0.8333 1.0000 0.8333 1.0000 
0.8269 0.7667 0.9091 0.7667 0.9091 
0.8846 0.8333 0.9545 0.8333 0.9545 
0.8846 0.8333 0.9545 0.8333 0.9545 
0.9231 0.8667 1.0000 0.8667 1.0000 
0.8846 0.8000 1.0000 0.8000 1.0000 
0.8846 0.8000 1.0000 0.8000 1.0000 

Beta II 

0.8846 0.8333 0.9545 0.8333 0.9545 
0.7500 0.7667 0.7273 0.7273 0.7667 
0.7885 0.8000 0.7727 0.7727 0.8000 
0.8077 0.8333 0.7727 0.7727 0.8333 
0.8077 0.7667 0.8636 0.7667 0.8636 
0.8462 0.8667 0.8182 0.8182 0.8667 
0.8077 0.8000 0.8182 0.8000 0.8182 
0.8462 0.8667 0.8182 0.8182 0.8667 

Gamma 

0.8269 0.8667 0.7727 0.7727 0.8667 

 

 

5.7.Statistical Analysis of the Results 

To overcome the aforementioned limitation regarding the inability of conducting ROC 

analysis, a large number of trainings stages was performed for each descriptor. Repeating 

the training with the same data made sense since training was always started from 

random solutions so as to have better changes not to always fall in local minima. By 

generating a large number of solutions, statistical tests can be applied to validate the 
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hypothesis that the activity descriptor is better than the others for the classification 

problem at hand. 

At first glance, it can be concluded that the activity is by far the most appropriate 

descriptor for the classification problem discussed here, with less than 5% error in the 

metrics. However, to rule out the possibility that the results are just by chance, a t-Test 

was applied on the minimum metrics, which revealed that it is above 99.99 % (1 -  

1.836425*10-6) certainty to say that the activity is indeed better than the remaining 

descriptors. Table 5.7 displays all results of this test.  In other words, the hypothesis that 

the difference that was found in the performance between activity and the other 

descriptors can be ascribed to chance alone can now be rejected. 

Table 5.7: t-test results that prove that the minimum metric found for the activity descriptor is significantly 
higher than the remaining metrics.  For a 0.05 significance, the critical t-value is 1.795885, but the 

computed t-value was much higher (8.495415) representing a one-tail p-value of only 1.836425*10-6. 
P(x>=t Critical) is the probability that an observation x is higher than t Critical if the null hypothesis is true, 

whereas the null hypothesis is that the minimum metrics for activity and the remaining descriptors do not 
differ in average. The test assumes unequal variances. 

 Activity Rema ining 
descriptors 

Mean 0.924988 0.761266 
Variance 0.002333 0.005106 
Observations 8 64 
Pooled Variance 0.004829  
Hypothesized Mean Difference 0  
Degrees of Freedom 70  
t Statistics 8.495415  
P(x>=t Critical) one-tail 1.836425*10-6  
t Critical one-tail 1.795885  

 

To further examine if the difference in the minimum metrics obtained between the 

descriptors is not just by chance, ANOVA (analysis of variance) test was applied, with 

results displayed in Table 5.8. In this case, the test yielded that the descriptors are 

different with a certainty degree of almost 100 % (1 - 1.42*10-19) as depicted in Table 
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5.8. These results of the ANOVA test are not surprising considering the clear variation in 

the mean of the nine descriptors as can be observed from Figure 5.11. 

Table 5.8: ANOVA test results that prove that the variance of the minimum metrics between the descriptors 
is not different by chance (df: degrees of freedom, SS: sum of squares, MS: mean of squares or variance) 

   
SUMMARY 

 
   

 G roups Count Sum Average Variance  
 Activity 8 7.3999 0.924988 0.002333  
 Mobility 8 6.2847 0.785588 0.002442  
 Complexity 8 5.5151 0.689388 0.00327  
 Delta 8 6.7181 0.839763 0.001604  
 Theta 8 5.3 0.6625 0.001726  
 Alpha 8 5.7001 0.712513 0.000448  
 Beta I 8 6.3879 0.798488 0.001046  
 Beta II 8 6.5666 0.820825 0.000932  
 Gamma 8 6.2485 0.781063 0.000918  

       
       
       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.42562 8 0.053203 32.53271 1.42E-19 2.089185 
Within Groups 0.103027 63 0.001635    

       
Total 0.528648 71     

 

 

Figure 5.11: Variation of the nine descriptors. The box plot suggests the size of the F-statistic and the p-
value. Large differences in the center lines of the boxes correspond to large values of F and 

correspondingly small values of p. 
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Table 5.9 shows all descriptors sorted in descending order of their performance.  

Table 5.9: All descriptors, sorted in descending order of their minimum performance for EEG 
classification. 

 Accuracy Sensitivity Specificity Minimum Maximum 
Activity 0.9808 0.9667 1.0000 0.9667 1.0000 

Delta 0.9038 0.9000 0.9091 0.9000 0.9091 
Beta II 0.9231 0.8667 1.0000 0.8667 1.0000 
Beta I 0.8846 0.9000 0.8636 0.8636 0.9000 

Mobility 0.8846 0.8333 0.9545 0.8333 0.9545 
Gamma 0.8462 0.8667 0.8182 0.8182 0.8667 

Complexity 0.7885 0.8000 0.7727 0.7727 0.8000 
Theta 0.7885 0.7333 0.8636 0.7333 0.8636 
Alpha 0.7885 0.8333 0.7273 0.7273 0.8333 

 

As clearly shown in Table 5.9, the difference in performance between activity and delta is 

remarkable. Then, beta II and beta I have almost the same minimum metrics, followed by 

mobility. Gamma, as opposed to the results presented in section 4.1, performs poorly in 

classifying the EEG, and is followed by complexity and theta. The worst descriptor 

turned out to be alpha. 

Note that considering the fact that the input for the statistical tests are best solutions that 

were obtained after a total of 80 trials for each descriptor, such values follow an extreme 

value distribution and have therefore smaller STD. In this study, where the minima were 

obtained out of 3 values, it was experimentally found that the STD of the distribution of 

the minima was about 75 % of the STD of the distribution of the original values. For this 

reason, the assertion that activity is most suitable for EEG classification is much stronger, 

and it can be concluded that the certainty of this hypothesis is actually higher than the 

already high certainty (around 100 %) obtained in these statistical tests. 
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5.8. Concluding Remarks 

A combination of solutions has made this study possible. First, from the viewpoint of 

computation, the use of NeuralStudio proved crucial in automating the optimization 

which otherwise would have taken weeks due to the presence of multiple network files 

and solutions. NeuralStudio’s training module provided the right options that facilitated 

network optimization and made computations easy and fast. 

Second, the approach proposed here to link EEG recordings to non-epileptic or epileptic 

subjects are, to the knowledge of the author, unique. Prior to developing the algorithm, a 

thorough search in the literature was done, but no equivalent EEG classification methods 

could be found. Therefore, the method was developed entirely in a unique way. 

The uniqueness of the method is that it proved that a new descriptor can be extracted 

from a scalp EEG segment in order to associate it to either a non-epileptic or a epileptic 

subject. The study describes how to obtain the descriptor as a 3x3 matrix whose great 

advantage is that it is irrespective to the number and location of the electrodes, as well as 

the duration of the recording. These matrixes constitute the simplest way of comparing 

EEG recordings. While one can assume that the grand AVG of the activity across all 

electrodes and time windows can be compared between EEG files, this method expanded 

this reasoning to STD and SNR along both time and electrodes. By doing this, a 3x3 

matrix is constructed, which can detect differences in EEG patterns better than just 

averaging them. 

After applying these descriptors to the time and frequency domain features, the method 

proved that Hjorth’s parameter activity is by far the best feature to link EEG to non-
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epileptic or epileptic subjects. When training this classifier 80 times with cross-

validation, accuracy, sensitivity and specificity on the testing set were all above 0.9667. 

The delta classifier ranked second, with minimum performance metric of 0.9000. The 

worst was found to be the alpha classifier, with a minimum performance of 0.7273. 

The superiority of the activity descriptor was then reiterated by means of the t-Test, 

which showed that activity is with 99.99 % certainly better than the remaining features 

when used to relate EEG recordings to non-epileptic or epileptic subjects. 

This method represents a first solution to the classification problem and can be enhanced 

in several ways. For example, it is important to investigate whether other features which 

have been used lately in EEG analysis, such as coherence and entropy, could also be 

suitable. Also, window sizes other than 1 sec should be investigated to see if they affect 

the results. It is also important to add more subjects to the analysis in the future, rather 

than using more segments from each subject. Investigations have been started on this 

matter. Based on this line of thought, some of the empirical results that were obtained 

lead us to believe that some course of action can be taken to begin addressing the 

complex problem of seizure prediction. Figure 5.12, Figure 5.13, and Figure 5.14 

illustrate the dynamics of different frequency bands in interictal EEG and iEEG data 

comparing EEG of a subject with no history of seizures (Figure 5.12) to both EEG and 

iEEG of a epileptic patient.   
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Figure 5.12: A representation of the spectral power of a non-epileptic person’s EEG in the delta, theta, 
alpha, beta I, beta II, and gamma frequencies is given in (a) through (e), respectively. No trend can be 

observed as the frequency band changes. 
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Figure 5.13: A plot of the spectral power of an epileptic patient’s scalp EEG in the delta, theta, alpha, beta 
I, beta II, and gamma frequencies is given in (a) through (e), respectively. A narrowing of the plots is 

observable as the frequency band changes. 
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Figure 5.14: A plot of the spectral power of an epileptic patient’s iEEG in the delta, theta, alpha, beta I, beta 
II, and gamma frequencies is given in (a) through (e), respectively. A narrowing of the plots is observable 

as the frequency band changes. 
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Based on these empirical evaluations, the following observations can be made on the 

challenging problem of seizure prediction: 

(1) There is an evident decrement in the standard deviation of the spectral power from 

delta to gamma prior to seizure; (2) There is a significant difference of the standard 

deviation for those electrodes that initiate a seizure in contrast to those that do not, and 

(3) a few seconds prior to seizure, interlocking between all electrodes is experienced.  

It is hoped that combining these findings with the approach presented in this dissertation 

will be beneficial for future development of seizure prediction algorithms. 
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CHAPTER 6 

6. CONCLUSIONS 

The main intention of this dissertation was to present the NS tool and show its 

applicability to two specific neuroscience problems which were also fully addressed from 

a medical application perspective and related mathematical framework.  

The NS tool developed is capable of simulating and training ANNs in a user friendly 

interface, offering modules to select the best alternatives out of a large number of 

solutions which were otherwise impossible to create by other available software tools. 

One of the most attractive features of NS is that it can be operated without any 

programming skills and without knowing the mathematical details inherent to the design 

of ANNs. As shown in Chapter 3, NS users can generate ANNs easily just by knowing 

how many inputs and outputs are needed, and they can use a pattern module to load and 

edit the training data. The training module is fully configurable and can provide visual 

feedback on the training progress while operating at high speed. For its capabilities, NS 

has been granted a patent from the US Patent Office (Patent # 7502763, issued on March 

10, 2009). 

Chapter 1 of this dissertation gives an overview of recent applications of Artificial 

Intelligence to neuroscience problems. A foundation in algorithms for detecting 

epileptiform activity was provided in Chapter 2, which describes the most common 

features used in EEG analysis. This chapter was crucial for understanding the basics of 

the methods later developed in this dissertation. 
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A description of the NS tool was presented in Chapter 3, emphasizing the modules 

related to design, training and data management.  

In pursuing practical applications in neuroscience, Chapter 4 described the design and 

implementation of a method aimed at detecting seizures in subdural EEG files from 

epileptic patients. The data was provided by MCH and involved 14 patients who 

underwent two-stage epilepsy surgery with subdural recordings. The approach 

implemented consisted of extracting the spectral power in different frequency bands and 

using both average and time information as features to identify seizures in subdural EEG 

files. More specifically, the 2 dimensions of the ANN were defined as 1) the inter-

electrode mean of the spectral power and 2) the time duration in which the inter-electrode 

mean of the spectral power is above its AVG + one STD in the entire file. 

It was found that the classifier performed better when using the gamma frequency band 

(36 - 44 Hz), yielding 95.90 % accuracy, 92.59 % sensitivity, and 96.84 % specificity. It 

was proved that blind selection of files for training, validation and testing did not 

considerably change the final results. Even testing the classifiers in files from patients 

who were never used for training did not affect the results. This confirms that the patterns 

found in the 2D plane by means of the spectral power in the gamma frequencies are 

patient independent. 

Increasing the number of hidden neurons did not improve the results. This observation 

was made after a large number of training iterations, all stopped with cross-validation. 

Possible explanations for this can be as follows: 1) starting points for the iterations are 

always different and 2) local minima are always possible. Since the backpropagation 
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algorithm used in training the networks is always started from random solutions to avoid 

local minima, it is perfectly possible to achieve higher testing and even training errors if 

more hidden units are added. To reach this conclusion, up to ten repetitions were done 

and averaged in each topology. More repetitions could have been performed for each 

topology, however, with increasing data size and number of neurons, the time needed for 

the optimization increases so that the test becomes impractical.  

This algorithm might be capable of making a substantial contribution to the diagnostic 

gain of long-term EEG monitoring during presurgical assessment. 

In Chapter 5, an innovative solution has been conceived that allows linking scalp EEG 

recordings to either persons who have never experienced a seizure or to epileptic patients. 

For this method, scalp EEG was recorded at MCH from 3 volunteers and 3 epileptic 

subjects. The method was based on establishing a descriptor matrix for any EEG feature 

which proved to be unique in terms of simplicity and robustness. The algorithm for 

computing the matrix is straightforward and involves statistical operations on features 

across electrodes and along time. The matrix used was limited to the AVG, STD and 

SNR. The attractiveness of this matrix is that it can be used to represent and compare 

EEG files with different duration and number of electrodes, which could also be placed in 

different locations. 

This study investigated time features (Hjorth’s parameters) as well as frequency features 

(all frequency bands). The matrixes were computed in all EEG files and were then used 

as inputs of an ANN that was trained to distinguish EEG recordings from normal and 

epileptic subjects. The analysis was performed for one different feature at a time. 
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Training all ANNs yielded interesting results: the activity-based ANN performed by far 

better than the other features, with accuracy, sensitivity and specificity all above 96.67 %. 

Statistical tests confirmed the superiority of activity with a certainty degree higher than 

99.99 %. 

The results obtained in these two studies provide clues as to which EEG characteristics 

can be addressed for seizure detection and EEG classification analysis. 

The aforementioned results were all achieved with the ability of NeuralStudio (NS) to 

automatically generate and optimize a large number of topologies in a short time. It has 

been shown that the NS tool is efficient in solving practical neuroscience problems such 

as the ones that have been described here, namely: 1) detecting seizures from intracranial 

EEG and 2) associating EEG recordings to non-epileptic and epileptic subjects. 

Besides the features that make NS capable of performing state-of-the-art studies with 

ANNs, the two methods described here are unique and represent, to the knowledge of the 

author, a contribution to the study of epilepsy as it can be used by doctors for patient 

evaluation and medical assessments, and for researchers in the field to pursue these 

findings further towards the ultimate goal of seizure prediction. 
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