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ABSTRACT OF THE DISSERTATIOIN 

MOTION CORRECTION ALGORITHM OF LUNG TUMORS FOR RESPIRATORY 

GATED PET IMAGES 

by 

Jiali Wang 

Florida International University, 2009 

Miami, Florida 

Professor Anthony J. Mcgoron, Major Professor 

Respiratory gating in lung PET imaging to compensate for respiratory motion 

artifacts is a current research issue with broad potential impact on quantitation, diagnosis 

and clinical management of lung tumors. However, PET images collected at discrete bins 

can be significantly affected by noise as there are lower activity counts in each gated bin 

unless the total PET acquisition time is prolonged, so that gating methods should be 

combined with imaging-based motion correction and registration methods.  

The aim of this study was to develop and validate a fast and practical solution to 

the problem of respiratory motion for the detection and accurate quantitation of lung 

tumors in PET images. This included: (1) developing a computer-assisted algorithm for 

PET/CT images that automatically segments lung regions in CT images, identifies and 

localizes lung tumors of PET images; (2) developing and comparing different registration 

algorithms which processes all the information within the entire respiratory cycle and 

integrate all the tumor in different gated bins into a single reference bin. Four 

registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and 

Optical Flow registration were compared as well as two registration schemes: Direct 
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Scheme and Successive Scheme. Validation was demonstrated by conducting 

experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest 

phantom imaged using a GE PET/CT System. Iterations were conducted on different size 

simulated tumors and different noise levels. Static tumors without respiratory motion 

were used as gold standard; quantitative results were compared with respect to tumor 

activity concentration, cross-correlation coefficient, relative noise level and computation 

time. Comparing the results of the tumors before and after correction, the tumor activity 

values and tumor volumes were closer to the static tumors (gold standard). Higher 

correlation values and lower noise were also achieved after applying the correction 

algorithms. With this method the compromise between short PET scan time and reduced 

image noise can be achieved, while quantification and clinical analysis become fast and 

precise. 

 

 vii



TABLE OF CONTENTS 

CHAPTER                                 PAGE 

1.  INTRODUCTION ....................................................................................................... 1 

2.  BACKGROUND ......................................................................................................... 3 
2.1.  Lung Cancer ..................................................................................................... 3 

2.1.1  Staging................................................................................................... 4 
2.1.2  Diagnosis and Treatment ....................................................................... 5 

2.2  Non-Invasive Imaging Modalities in Lung Cancer Management .................... 6 
2.2.1  Chest Radiography ................................................................................ 6 
2.2.2  Computed Tomography Imaging........................................................... 7 
2.2.3  18FDG-Positron Emission Tomography ................................................ 9 
2.2.4  Hybrid PET/CT Scanners .................................................................... 12 
2.2.5  Standardized Uptake Value ................................................................. 14 

2.3  Respiratory Motion Artifacts in 18FDG-PET.................................................. 16 
2.3.2  Respiratory Gating in Radiation Therapy............................................ 16 
2.3.3  Respiratory Gating of 18FDG-PET ...................................................... 18 
2.3.4  Non-gating Methods for Respiratory Motion Correction in PET........ 20 

2.4  Computer Simulation of Respiratory Motion in PET..................................... 24 

3.  STATEMENT OF PURPOSE.................................................................................... 26 
3.1  Objectives ....................................................................................................... 26 
3.2  Significance of the Study................................................................................ 28 

4.  RESEARCH DESIGN AND METHODS................................................................. 30 
4.1  Phantom Imaging............................................................................................ 30 
4.2  PET/CT Scans................................................................................................. 33 
4.3  Develop Computerized Phantom.................................................................... 33 

4.3.1  Simulation with Gaussian Distributed Noise....................................... 35 
4.3.2  Simulation with Poisson Distributed Noise......................................... 37 

4.4  Image Segmentation ....................................................................................... 37 
4.4.1  CT Image Processing........................................................................... 38 
4.4.2  Identification of PET Tumors.............................................................. 44 

4.5  Motion Track and Registration Schemes........................................................ 47 
4.5.1  Noise before Correction vs. Noise after Correction ............................ 49 
4.5.2  Intensity Based Registration................................................................ 50 
4.5.3  Centroid Based Registration................................................................ 50 
4.5.4  Optical Flow Based Registration......................................................... 51 
4.5.5  Rigid Body Registration ...................................................................... 58 

5.  RESULT .................................................................................................................... 61 
5.1  Image Acquisition........................................................................................... 61 
5.2  Image Segmentation ....................................................................................... 61 

5.2.1  CT Image Processing........................................................................... 61 

 viii



5.2.2  Identification of PET Tumors.............................................................. 64 
5.3  Motion Track and Registration Schemes........................................................ 65 

5.3.1  Intensity Based Registration................................................................ 66 
5.3.2  Centroid Based registration ................................................................. 73 
5.3.3  Rigid Body Registration ...................................................................... 78 
5.3.4  Optical Flow Based Registration......................................................... 85 
5.3.5  Comparison of Four Registration Methods ......................................... 90 

6.  DISCUSSIONS.......................................................................................................... 98 

7.  CONCLUSIONS...................................................................................................... 106 

REFERENCES ............................................................................................................... 107 

VITA............................................................................................................................... 115 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ix



LIST OF TABLES 

TABLE                                 PAGE 

Table 2.1 Stage determinations using TNM staging system............................................. 5 

Table 4.1 Volumes of different compartments in phantom ......................................... 30 

Table 4.2 Parameter settings in physical phantom experiments. ................................. 32 

Table 4.3 Selected parameters for Discovery LS PET/CT operation. ......................... 33 

Table 4.4 Detail parameter settings of NCAT computer phantom experiments. The 
experiments with 10.0 mm tumors (with Gaussian distributed noise) has been 
repeated three times to see if there are any statistic changes in the simulation. ....... 35 

Table 5.1 Results comparing the true tumor volume with the segmented tumor 
volume. Here the segmentation was performed on the static PET images so that 
we can compare our result with the true tumor volume (gold standard). ................. 65 

Table 5.2 Results comparing the true tumor volume with the segmented tumor 
volume....................................................................................................................... 71 

Table 5.3 Results comparing the true tumor volume with the segmented tumor 
volume....................................................................................................................... 77 

Table 5.4 Results comparing the true tumor volume with the segmented tumor 
volume....................................................................................................................... 83 

Table 5.5 Results comparing the true tumor volume with the segmented tumor 
volume....................................................................................................................... 89 

Table 5.6 Comparing of processing time for four registration methods and two 
registration schemes.................................................................................................. 95 

 
 
 
 
 
 
 

 x



LIST OF FIGURES 

FIGURE                                 PAGE 

Figure 2.1  X-ray machine and Posterio-anterior view of one chest radiography 
image.. ......................................................................................................................... 7 

Figure 2.2  CT scanner on the left and CT transaxial slice (through the lung) on the 
right.. ........................................................................................................................... 8 

Figure 2.3  Positron annihilation and two 511 keV photons generated at an angle of 
180˚ and detected by two opposing gamma ray detectors . ...................................... 10 

Figure 2.4  Structure of positron emitting isotope 18F-FDG . ....................................... 10 

Figure 2.5  PET scanner on the left and PET transaxial slice (through the lung) on 
right….. ..................................................................................................................... 11 

Figure 2.6  Hybrid PET/CT scanner on the left and PET/CT transaxial slice 
(through the lung) on the right. ................................................................................ 13 

Figure 2.7  Fused PET and CT coronal, saggital and transaxial slices taken using 
the Hybrid PET/CT, Discovery LS from GE Medical systems (courtesy of GE 
Medical Systems)...................................................................................................... 13 

Figure 2.8  SUV is determined by manual selection of voxel, the maximum or 
average FDG concentration value in a selected ROI. SUV measurement in 
combination with other parameters is used to make the final assessment of the 
disease status............................................................................................................. 15 

Figure 2.9  Patient setup in RPM acquisition mode. Plastic block (arrow) with two 
infrared passive reflectors is positioned on the abdomen of the patient. Infrared 
camera, positioned on the PET table, is used to trace the motion of reflectors and, 
thus, patient breathing motion [52]........................................................................... 18 

Figure 2.10  AZ-773V system: (a) PC system, (b) respiratory sensor. AZ-773V 
system monitors the respiratory movement by the strain gauge sensor and 
outputs the gating signals.......................................................................................... 18 

Figure 2.11  The POLARIS system uses four infrared-reflective spheres placed in 
a precisely known geometry. .................................................................................... 19 

Figure 2.12  (a) temperature sensor respiration gating system and (b) the nostril 
sensor piece was tested by a volunteer. .................................................................... 20 

Figure 2.13  Incorporation of the elastic motion (non rigid) compensation during 
reconstruction of the list-mode PET data ................................................................. 21 

 xi



Figure 2.14  A block diagram of imaging and convolution/deconvolution 
interaction. Tissue motion effects can be removed from images via 
deconvolution, which requires an estimate of patient motion (TLP) [63]. ............... 22 

Figure 2.15  On the left, patient setup in RCDPET acquisition mode. Point source 
is at the end of a low-density rod, extending into the tumor FOV, and rigidly 
attached to the block positioned on the abdomen of the patient [41]. On the right, 
position of point source moves in and out of user-selected reference position ........ 24 

Figure 2.16  Motion of different organs during inspiration simulated in the 4D 
NCAT phantom. Expiratory motion is modeled in the reverse direction [71]. ........ 25 

Figure 4.1  Elliptical Lung-Spine Body Phantom. On the left: the frontal view and 
on the right: the bottom view [75]. ........................................................................... 30 

Figure 4.2  Left: Hollow Sphere Set (Model ECT/HS/SET6). Outer diameter: 33.27 
mm, 26.82 mm, 21.79 mm, 17.69 mm, 14.43 mm, 11.89 mm. Spheres’ volume: 
16.0 mL, 8.0 mL, 4.0 mL, 2.0 mL, 1.0 mL, and 0.5 mL. Right: Micro Hollow 
Sphere Set Model ECT/MI-HS/SET4 Outer diameter: 5.94 mm, 6.95 mm, 8.23 
mm, 9.86 mm. Spheres’ volume: 31 μL, 63 μL, 125 μL, and 250 μL [75]. ............. 31 

Figure 4.3  Diagram for physical phantom experiments. Tumor FDG was 
approximately 0.7 mCi/L in the hollow spheres to simulate tumor FDG 
concentration. Background FDG concentration was approximately 0.11 mCi/L to 
simulate background FDG concentration. Spheres simulating tumors were driven 
by a stepper motor controlled by a PIC microcontroller........................................... 32 

Figure 4.4  Sagittal, Coronal and Transverse view of the raw data simulated by 
NCAT including tumor file and torso file, before any noise is included, showing 
the direction of X, Y, Z. ............................................................................................. 35 

Figure 4.5  Simulated PET images from Figure 4.4 after applying noise by 
including Gaussian distributed noise and by including blurring effect. ................... 36 

Figure 4.6  Simulated PET images from Figure 4.4 using analytical method to 
include Possion distributed noise and Point-spread-function. .................................. 37 

Figure 4.7  Framework of multi resolution analysis using discrete wavelet 
transforms. Here three level decompositions are shown. ......................................... 39 

Figure 4.8  Analysis and synthesis functions (Fj=Sj) for five resolution levels shown 
in frequency domain. ................................................................................................ 40 

Figure 4.9  Original CT slice and its corresponding third resolution level derived 
from one analysis/synthesis filter bank based on the 2D Frazier-Javerth 
transform. The low resolution image is used to segment the body by defining a 
threshold.................................................................................................................... 41 

 xii



Figure 4.10  Flow diagram for CT volume image processing..................................... 44 

Figure 4.11  Flow diagram describing the detection of tumors................................... 47 

Figure 4.12  The process flow of two registration/integration schemes. On the left 
is the Direct Scheme and on the right is the Successive Scheme. ............................ 48 

Figure 4.13  One example illustrating the optical flow method. The sphere is 
rotating from left to right, in the center is the generated optical flow field. ............. 53 

Figure 4.14  Flow chart of Multi-resolution algorithm used in estimating optical 
flow between two image data sets. ........................................................................... 57 

Figure 4.15  Calculation of the Rigid Body registration matrix: two centroid points 
determine the translation parameters, two vectors: centroid points to maximum 
points determine the rotation and scaling parameters............................................... 60 

Figure 5.1  Coronal, Sagittal and Transaxial view of the Physical phantom for CT 
images, PET images and fused images. .................................................................... 61 

Figure 5.2  Original CT Slice on the left and Binary CT slice on right ........................ 62 

Figure 5.3  Left: binary CT slice with only tissue and lungs. Right: binary CT slice 
with closed lung regions. .......................................................................................... 62 

Figure 5.4  Left: plot of number of pixels less than the iterative threshold vs. total 
number pixels and right: plot on the right was smoothed by cubic spline 
interpolation. ............................................................................................................. 63 

Figure 5.5  (a) binary templates of segmented CT lungs, (b) binary Templates of 
segmented lungs excluding tumor ............................................................................ 64 

Figure 5.6  Segmented lung regions in PET images ..................................................... 64 

Figure 5.7  Left: Ungated PET image of the physical phantom. Center: original 
gated PET image (one of the gated images). Right: motion corrected PET image 
after applying Intensity Registration......................................................................... 66 

Figure 5.8  (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using intensity based registration algorithm, 
before registration compared to after Direct Scheme and Successive Scheme. (b) 
Cross-correlation results of NCAT phantom with Poisson noise simulated (c) 
Cross-correlation results of physical phantom for 4 different size tumors.. ............. 68 

Figure 5.9  (a) NCAT phantom with Gaussian noise results, error bars with 10 mm 
tumor simulations are for standard deviation, N=3 (b) NCAT phantom with 
Poisson noise results and (c) physical phantom results, activity concentration of 

 xiii



Intensity registration algorithms with Direct and Successive Scheme, static PET, 
gated PET and ungated PET images, here gated PET means the average of all of 
the individual gates. All of the values are normalized to the static PET (gold 
standard).................................................................................................................... 70 

Figure 5.10  Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with 
Gaussian noise, error bars with 10 mm tumor simulations are for standard 
deviation, N=3 (b) NCAT phantom with Poisson noise, (c) Physical phantom. ...... 72 

Figure 5.11  (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Centroid based registration algorithm, 
before registration comparied to after Direct Scheme and Successive Scheme. 
The error bars with 10 mm tumor simulations are for standard deviation, N=3 (b) 
Cross-correlation results of NCAT phantom with Poisson noise simulated (c) 
Cross-correlation results of physical phantom for 4 different size tumors. .............. 74 

Figure 5.12   (a) NCAT phantom with Gaussian noise results, the error bars with 10 
mm tumor simulations are for standard deviation, N=3, (b) NCAT phantom with 
Poisson noise results and (c) physical phantom results, activity concentration of 
Centroid registration algorithms with Direct and Successive Scheme, static PET, 
gated PET and ungated PET images.. ....................................................................... 76 

Figure 5.13  Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with 
Gaussian noise, the error bars with 10 mm tumor simulations are for standard 
deviation, N=3, (b) NCAT phantom with Poisson noise, (c) Physical phantom. ..... 78 

Figure 5.14  (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Rigid Body registration algorithm, 
before registration comparing to after Direct Scheme and Successive Scheme. 
The error bars with 10 mm tumor simulations are for standard deviation, N=3. 
(b) Cross-correlation results of NCAT phantom with Poisson noise simulated (c) 
Cross-correlation results of physical phantom for 4 different size tumors. .............. 80 

Figure 5.15   (a) NCAT phantom results with random noise, the error bars with 10 
mm tumor simulations are for standard deviation, N=3. (b) NCAT phantom 
results with Poisson noise and (c) physical phantom results. Activity 
concentration of Rigid Body registration algorithms with Direct and Successive 
Scheme, static PET, gated PET and ungated PET images........................................ 82 

Figure 5.16  Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with 
Gaussian noise, the error bars with 10 mm tumor simulations are for standard 
deviation, N=3. (b) NCAT phantom with Poisson noise, (c) Physical phantom. ..... 84 

 xiv



 xv

Figure 5.17  (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Optical Flow registration algorithm, 
before registration comparing to after Direct Scheme and Successive Scheme. 
The error bars with 10 mm tumor simulations are for standard deviation, N=3 (b) 
Cross-correlation results of NCAT phantom with Poisson noise simulated (c) 
Cross-correlation results of physical phantom for 4 different size tumors. .............. 86 

Figure 5.18   (a) NCAT phantom with Gaussian noise results, the error bars with 10 
mm tumor simulations are for standard deviation, N=3. (b) NCAT phantom with 
Poisson noise results and (c) physical phantom results, activity concentration of 
Rigid Body registration algorithms with Direct and Successive Scheme, static 
PET, gated PET and ungated PET images................................................................ 88 

Figure 5.19  Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with 
Gaussian noise, the error bars with 10 mm tumor simulations are for standard 
deviation, N=3. (b) NCAT phantom with Poisson noise, (c) Physical phantom. ..... 90 

Figure 5.20  Cross-correlation results comparing four registration methods and two 
registration schemes, (a) NCAT phantom with Gaussian noise, the error bars 
with 10 mm tumor simulations are for standard deviation, N=3. (b) NCAT 
phantom with Poisson noise. (c) physical phantom.................................................. 92 

Figure 5.21  Average activity concentration results comparing four registration 
methods and two registration schemes, (a) NCAT phantom with Gaussian noise, 
the error bars with 10 mm tumor simulations are for standard deviation, N=3. (b) 
NCAT phantom with Poisson noise, (c) physical phantom...................................... 94 

Figure 5.22  Results of relative noise comparing four registration methods and two 
registration schemes, (a) NCAT phantom with Gaussian noise, the error bars 
with 10 mm tumor simulations are for standard deviation, N=3. (b) NCAT 
phantom with Poisson noise , (c) physical phantom................................................. 96 

Figure 5.23  Percentage degradation in cross-correlation result after (a) applying 
twice noise and (b) applying three times noise with NCAT phantom...................... 97 

 

  



1. INTRODUCTION 
 
Lung cancer is one of the most common types of cancers in the United States, with more 

than 161,000 deaths per year [1]. The early and most probable curable stage of the 

disease in all histological types is the solitary pulmonary nodule (SPN) [2, 3], a well-

circumscribed, small, rounded, dense pulmonary tumor. Five-year survival for post 

operation of stage I lung cancer and nodules smaller than 3 cm has been reported to be 

over 80% [4] . Each year there are approximately 150,000 SPNs being identified in the 

United States [2]. Of those, about 30% to 40% are malignant nodules [5]. Since the early 

treatment of a small SPN has a high probability of curability, accurate definition of tumor 

volume and position is especially important. Computed tomography (CT) is the most 

common imaging technique for providing anatomical and morphological information of 

tumors in the body. Since its advent, especially the helical or spiral CT, the sensitivity of 

detecting SPNs has increased significantly while decreasing the limit of the size of 

detected nodules to smaller than 3 mm [6-8]. However, a vast majority of small SPNs 

appear on CT as indeterminate tumors [9, 10]. In this situation molecular imaging with 

18FDG-PET as a non-invasive procedure for differentiating malignant from benign SPNs 

has been proposed and successfully used [11-15]. 

Molecular imaging with 18FDG-PET provides significantly higher sensitivity (87%) and 

specificity (91%) than CT (68% and 61%, respectively) in detection and characterization 

of malignant lung nodules [16-19]. It has become a popular imaging modality for lung 

cancer diagnosis, staging, monitoring response to treatments, and for differentiating 

tumor recurrence from scarring and other benign structures. The major advantage of 

18FDG-PET over other imaging modalities is that 18FDG-PET allows imaging molecular 
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processes in vivo. The radiotracer 18FDG is a glucose analogue that is trapped 

intracellularly during glucose metabolism [20, 21]. The increased glycolysis in cancer 

cells increases the number of glucose membrane transporters and consequently the uptake 

of 18FDG-PET molecules, so the accumulation of the radiotracer when imaged by PET 

easily distinguishes malignant from benign cells [22]. This fact has also lead to the use of 

molecular imaging fused with CT for defining a more accurate delineation of tumor 

volume in radiation therapy planning [19, 23]. 

Even with the advances of PET and CT, only about 15% of SPNs are being detected at an 

early stage[24-26]. One major inconvenience of 18FDG-PET imaging is the relatively 

long scan time (usually 5 to 7 minutes). Many clinical and research studies have shown 

that, in 18FDG-PET, respiratory motion degrades the quality of the images by blurring 

and distorting the real size, shape and position of the tumors , reducing SUV 

(standardized uptake value) and tumor-to-background ratio. Artifacts created by 

respiratory motion can negatively impact the application of 18FDG-PET for the detection 

and quantitation of small tumors, and for monitoring response to treatment and radiation 

therapy planning [27, 28].  At the present time there is no standard and validated practical 

methodology in the context of clinical PET studies to compensate respiratory motion.  
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2. BACKGROUND 
 
2.1. Lung Cancer 
 
Lung cancer is a disease caused by the rapid growth and division of cells in lung tissue. 

Despite the large development of medical science in last decades, lung cancer causes 

more deaths than any other cancer in the world. It accounts for 14% of all cancers and 

28% of all cancer deaths every year in the United States [1, 29]. For therapeutic, 

biological and clinical reasons, lung cancers are divided into two major groups, which 

make up more than 90% of all lung cancer cases: small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC). NSCLC is more common and can spread to different 

parts of the body. SCLC makes up about 15% to 20% of all lung cancer cases and is far 

more aggressive than NSCLC [20]. 

Approximately 30% of new cancers present as solitary pulmonary nodules. Determining 

the malignancy of an SPN is an integral and challenging part of diagnosis. The features 

indicating malignancy include [12, 20-22]: 

 Size: the larger the nodule the more likely it is to be malignant, however 42% of 

cancers are less than 2 cm at presentation. 

 Margin characteristics: malignant SPNs tend to be irregular lobulated or speculated, 

however 20% of cancers may have a smooth margin and appear benign. 

 Growth: the doubling time of a nodule in volume, ranging from 15 to 450 days. Any 

tumor that increases in size over a two-year period of observation, or less, must be 

considered malignant until proven otherwise. 

 Metabolism: neoplastic tissue demonstrates increased glucose metabolism compared 

to normal tissues.  
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Therefore better and more accurate estimation of size, growth rate, and metabolic activity 

of lung tumors may improve diagnosis. But in most cases, it is hard to detect the lung 

cancers early because symptoms usually do not appear until the disease is advanced. The 

tendency of early spread of lung cancer and a late diagnosis usually results in the 

increasing incidence of lung cancer. Survival from lung cancer is highly dependent on the 

clinical stage. Appropriate staging of the patient determines the surgical respectability 

and ultimately the prognosis [23, 27, 30].  

2.1.1 Staging 
 
Staging is the process of finding out how localized or widespread the cancer is [21, 22] It 

is usually based on the tumor size, whether lymph nodes contain cancer, and how far the 

cancer has spread within the lung and to other parts of the body. Staging is a major 

indicator of the curative potential and the limitations of available therapy for lung cancer 

to date. It distinguishes people with limited disease from those with distant metastases. 

The value of staging lies in its ability to identify consistent, reproducible, patient groups 

that may help the physician to choose appropriate treatment for each patient. 

The system used to describe the growth and spread of non-small cell lung cancer 

(NSCLC) is the TNM staging system as shown in Table 2.1 [31, 32] where T refers to the 

size of tumor, N represents regional node involvement and M represents metastasis 

status. Lung cancer treatment ultimately depends upon such staging. In general, the lower 

the stage, the more favorable is the individual's prognosis. This study attempts to improve 

the estimate of tumor size, which will improve the accuracy of its staging. 
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Stage TNM subset 

Stage 0 Carcinoma in situ 

Stage IA T1 N0 M0 

Stage IB T2 N0 M0 

Stage IIA T1 N1 M0 

Stage IIB T2 N1 M0, T3 N0 M0 

Stage IIIA T3 N1 M0, T1 N2 M0 T2 N2 M0 T3 N2 M0 

Stage IIIB T4 N0 M0, T4 N1 M0, T4 N2 M0, T1 N3 M0, T2 N3 M0 

Stage IV T (any) N (any) M1 

Table 2.1 Stage determinations using TNM staging system [31, 32]. 
 
2.1.2 Diagnosis and Treatment 
 
A wide range of diagnostic procedures and tests has been used to diagnose lung cancers: 

 Sputum can be collected and examined microscopically for the presence of malignant 

cells which have sloughed from the surface of the tumor.  

 Bronchoscopic is a visual examination of the windpipe and lung branches using a 

flexible scope. 

 Needle biopsy may be performed on suspicious areas in the lungs or pleura. A small 

sample is taken of the tissue for analysis. 

 Bone scan may also be performed to rule out suspicions of metastasis to the bones. 

Conventional noninvasive diagnostic techniques include chest radiography, Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emission 

Tomography (PET) [33]. 

Depending on the type and stage of the disease, lung cancer can be treated with surgery, 

chemotherapy, radiation therapy, or a combination of these treatments [23]. 

 Surgery: often used for non-small cell lung cancers which have not spread beyond the 

lung. Three surgical procedures have been commonly used: wedge resection (removal 
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 Chemotherapy: for patients whose tumors are somewhat more advanced, e.g., larger 

tumors that have not spread from the lung. 

 Radiotherapy: utilizing high-energy, ionizing radiation (e.g., gamma rays) to kill 

cancer cells, used in more aggressive or widespread tumors. It can be applied to 

shrink a tumor that is later removed by surgery, to relieve symptoms, or to destroy 

malignant cells in a tumor that cannot be removed surgically. 

Evaluation of the treatment result plays a major role in the management of lung cancer. It 

may help in avoiding unnecessary attempts at curative surgery in patients with un-

resectable mediastinal disease. Monitoring of anti-tumor therapy is conventionally 

performed by sequential determination of tumor size using morphological imaging 

modalities like CT/MRI. Early and accurate detection and staging can improve prognosis. 

2.2 Non-Invasive Imaging Modalities in Lung Cancer Management 
 
2.2.1 Chest Radiography 
 
X-ray imaging, also known as radiographs or roentgenograms has been developed over 

the past 100 years.  It is based on the absorption of X-rays as they pass through different 

parts of the body, interact with a detection device (such as X-ray film) and provide a 2-

dimensional projection image. The picture appears on the film as a "negative" type 

picture, the denser a structure is, the whiter it looks. For example, muscle or soft tissue 

appears dark on an X-ray film while solid tissue like bones appears very white. The chest 

X-ray is the most commonly performed diagnostic X-ray examination, used for initial 
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study for the diagnosis of lung cancer (Figure 2.1). It has excellent spatial resolution 

(0.17 mm) [34] and good penetration depth.  

Disadvantages: The chest X-ray is a 2D image, so no volumetric analysis can be 

performed on X-ray images. It has ionizing radiation, poor contrast among soft tissues. It 

overlooks 10% of lung cancer in non-calcified tumors and is also poor for detailing the 

primary tumor’s involvement with mediastinal structures or with the chest wall [34]. 

      
Figure 2.1 X-ray machine and Posterio-anterior view of one chest radiography image. 
(source: http://www.radiologyinfo.org/) 
 
2.2.2 Computed Tomography Imaging 
 
CT, also referred as "CAT scanning" (Computer Axial Tomography scanning), was first 

introduced by Hounsfield in 1971. He was awarded the Nobel Prize for this invention in 

1979 [14]. It is now the most common imaging technique for providing anatomical 

information on the size and location of tumors in the body. 

CT techniques enable 2D and 3D external and internal visualizations of objects. 

Conventional radiographs depict a three dimensional object as a two dimensional image, 

on which overlying tissues are superimposed [35]. CT overcomes this problem by 

obtaining images from different angles using special X-ray equipment, and then 

reconstructing them to create a cross-section of body tissues and organs. The CT image 
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preserves full spatial information, and it can show bone, soft tissues, and blood vessels in 

the same image [36]. Since the advent of CT, the sensitivity of detection significantly 

increased while the size of the nodule being detected reduced to less than 3 mm [35, 36]. 

The spatial resolution of CT is also very good (0.4 mm).  Faster spiral CT scan times 

(less than 1 second) and thinner collimation (1 to 2 mm) have allowed detecting small 

tumors that could be missed by conventional CT scanners because of respiratory motion 

and partial volume effect [37]. CT can identify the malignancy of a number of nodules 

according to their density, calcification, morphological features, growth and size [4]. 

Disadvantages: Volumetric analysis of CT requires a time consuming tracing of tumor 

contours in a stack of slices [38]. It has high ionizing radiation; i.e., a typical abdomen 

CT uses about 50 times the amount of radiation used for a chest X-ray [39]. The 

specificity of CT to distinguish malignant and benign tumors is generally low as CT can 

only measure anatomy not function, lots of malignant tumors appear on CT as 

indeterminate [21, 22, 30].  For lymph node size less than 1 cm diameter it may be 

difficult to identify its metastases or to differentiate between malignant and enlarged 

reactive nodes in clinical staging. Changes in function resulting from therapy often occur 

prior to changes in anatomy and these changes will not show in CT images [35].  

                            
Figure 2.2 CT scanner on the left and CT transaxial slice (through the lung) on the 
right (Source: http://www.wiproge.com/) 
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2.2.3 18FDG-Positron Emission Tomography  
 
Positron Emission Tomography (PET) is a type of nuclear medicine imaging technique 

that involves cross sectional data acquisition and reconstruction like CT. It has become an 

important technique in imaging certain diseases such as disorders of the brain, the heart, 

the lung, and other organs.  

PET imaging starts with the injection of a radioactive tracer isotope (e.g., 11C, l5O, 18F) 

[19, 40], which decay by emitting a positron. The emitted positron collides with a free 

electron usually within a few millimeters from the emission point. The annihilation of the 

two subatomic particles produces a pair of 511 keV gamma rays moving in two opposite 

directions, and is detected by an array of detectors surrounding the patient. This 

mechanism of positron annihilation and generation of the two photons is very well shown 

in Figure 2.3. Only when pairs of detectors register photons simultaneously is the 

annihilation event recorded and processed. After enough annihilation events have been 

collected, the positron emitting tracer distribution is computed by tomography 

reconstruction procedures. Two-dimensional images are then reconstructed by PET. 

Multiple two-dimensional image planes are stacked to form a three-dimensional volume. 
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Figure 2.3 Positron annihilation and two 511 keV photons generated at an angle of 
180˚ and detected by two opposing gamma ray detectors [28]. 
 
The most widely used radioactive isotope for PET in oncology is Fluorine-18-

fluorodeoxyglucose (18F-FDG) with a half life of approximately 110 minutes [25]. The 

development of 18F-FDG has been the major factor in expanding the clinical role of PET 

imaging and the development of PET instrumentation. 18F-FDG is relatively easy to 

synthesize with a high radiochemical yield. It is taken up by the cell, and not metabolized 

to CO2 and water. It remains trapped within tissue, which makes it well suited to use as a 

glucose uptake tracer because glucose supplies 90-95% of the energy to the brain and the 

other part of the body and is therefore used as an indicator of energy requiring brain/body 

functions. This is of interest in oncology because proliferating cancer cells have a higher 

than average rate of glucose metabolism. The structure of positron emitting isotope FDG, 

is as shown below [19]. 

 
Figure 2.4 Structure of positron emitting isotope 18F-FDG [19]. 
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The sensitivity of 18FDG-PET in identifying malignant nodules (greater than 1 cm) has 

been reported from 89% to 100%, specificity from 78% to 100%, positive predictive 

value from 86% to 94% and negative predictive value from 89% to 100% [7, 33, 37]. A 

negative 18FDG-PET scan could be an indication to observe and follow-up a nodule that 

otherwise would require biopsy or surgery. A positive 18FDG-PET scan indicates a high 

probability of malignancy and justifies an invasive management of the tumor [16, 17].  

Disadvantages: Long acquisition time: usually takes 5-7 minutes per body position. Lack 

of anatomical reference for metabolic images and inaccurate quantitation of the 

radiotracer uptake in tumors due to the photon attenuation by the surrounding tissue. 

Photons that scatter or are absorbed by the tissue lead to a loss in detected events, which 

would otherwise have been recorded, would lead to higher image noise and image non-

uniformity [33, 41]. Also PET images have low resolution (5 mm) due to the limitation of 

detectors, finite size of the voxels and the fact that the object structure varies rapidly over 

the region (tissue inhomogeneity) give rise to partial volume effect. 

                          
Figure 2.5 PET scanner on the left and PET transaxial slice (through the lung) on 
right. (Source: http://www.wiproge.com) 
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2.2.4 Hybrid PET/CT Scanners 
 
The powerful prognostic information provided by PET can be enhanced by the 

incremental information provided by CT assessment. Several co-registration techniques 

were developed to fuse morphological imaging studies with PET including the use of 

fiducial markers and software programs that enable the translation, rotation, scaling, and 

warping of image data sets, but they were time consuming and less reliable for head neck 

and abdominal regions. The Hybrid PET/CT scanner (Figure 2.6) has been developed to 

compensate for both the attenuation of photons and the lack of anatomical reference in 

PET. It generates accurately co-registered PET and CT images (Figure 2.6) that help 

discriminate areas of physiologic uptake from malignant tumors in situations where 

conventional PET or CT alone is unclear [42]. Precisely localized PET information can 

be used to plan surgical and medical therapy and in doing so, improve the management of 

patients with malignant disease. 

The advantages of the Hybrid PET/CT include: PET and CT are combined and the CT 

images can be used to construct an attenuation correction map. This attenuation map is 

noise-free, thus a practical solution is obtained for the need of a very rapid, low-noise and 

quantitatively correct method of PET attenuation correction. CT provides the anatomic 

framework needed for PET images. And PET and CT images can be automatically 

registered with sub-millimeter accuracy. 

Disadvantages: 

 The array of detectors detects two gamma rays with energy of 511 keV for PET 

imaging, whereas for CT imaging, the transmission energy is between 80 - 140 keV. 

Since the attenuation coefficients are energy-dependent, coefficients measured at CT 
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 CT acquisition only takes a few seconds while PET acquisition takes a few minutes.  

During long PET acquisition time, there will be respiratory motion, and this will 

make attenuation correction difficult because the images don’t match for organs that 

move with respiration. 

 Involuntary patient motion in the form of respiratory or cardiac motion might affect 

the automatic registration of PET and CT images [44, 45]. 

                     
Figure 2.6 Hybrid PET/CT scanner on the left and PET/CT transaxial slice (through 
the lung) on the right. (Source: http://www.wiproge.com/) 
 

 
Figure 2.7 Fused PET and CT coronal, saggital and transaxial slices taken using the 
Hybrid PET/CT, Discovery LS from GE Medical systems (courtesy of GE Medical 
Systems). 
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2.2.5 Standardized Uptake Value 
 
Positron Emission Tomography allows quantification of radioactivity concentrations 

inside the body which can be used to estimate glucose uptake of malignant tumors. There 

are many complex approaches to estimate glucose utilization rate, e.g. quantitative 

measurement of FDG, but the SUV (standardized uptake value) method is most 

commonly used. It is defined as a ratio of tissue radioactivity concentration of FDG 

(KBq/ml) in a structure encompassed by a ROI (region of interest) at time T (C(T)) 

divided by the injected dose (KBq) per gram body weight (kg), body surface area, or lean 

mass [45, 46]. 

weightBodydoseInjected

TC
SUV

/

)(
  , 

where C(T) = FDG concentration in tissue at time T. 

SUV is determined by the manual selection of voxels, and the maximum or average value 

of radioactivity concentration of FDG in a selected ROI, and these values need to be 

measured at a fixed time point. Calculations of SUV are computationally simple and 

require considerably less time than dynamic acquisition protocols. However they do 

require attenuation correction being performed as well as calibration of the system. 

SUV is the most clinically utilized quantitative parameter of FDG accumulation. It is a 

frequently used parameter to differentiate tumors as malignant or benign, to classify 

disease stage, and to monitor their response to treatment. Studies show that the SUV of 

FDG is significantly higher in recurrent tumors than in non-cancerous tumors. A SUV 

cutoff threshold, combined with other parameters like the tumor location and shape, may 
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indicate the tumor’s malignancy. Reports show that a SUV cutoff threshold for tumor 

malignancy ranging from 2.5 g/ml to 5.0 g/ml [47].  

 

CT                             PET 

ROI 

Figure 2.8 SUV is determined by manual selection of voxel, the maximum or average 
FDG concentration value in a selected ROI. SUV measurement in combination with other 
parameters is used to make the final assessment of the disease status. 
 
SUV > 2.5: associated with lung malignancy 

SUV > 5.0: prognostic value for recurrence NSCLC (Non-small cell lung cancers) stage I 

SUV > 10.0: prognostic value independent of clinical stage and tumor size [47, 48] 

One major disadvantage of SUV is its lack of precision. It is expressed by the maximum 

or average value of FDG concentration in an arbitrary region of interest that can include 

hypoxic or hypo-metabolic regions around the tumor’s viable mass. The great variance of 

data affects individualized diagnosis or prognosis [47]. Another limitation of the SUV 

method in monitoring therapy is that it is highly dependent on the time of measurement. 

The SUV value of a malignant tumor was shown to increase gradually up to 90 minutes 

post injection [26]. So SUVs should only be compared among different cases at the same 

time after tracer injection. 
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2.3 Respiratory Motion Artifacts in 18FDG-PET 
 
The use of combined PET/CT provide a convergence of metabolic and anatomic imaging, 

with an accurate anatomical framework for molecular imaging and a noise free CT map 

for more accurate attenuation correction and, consequently, quantitation of 18FDG uptake 

and characterization of lung tumors [37]. However, the relatively long acquisition time of 

18FDG -PET images, compared to the shorter CT collection time can produce some PET-

CT mis-registration as a consequence of respiratory motion [33].  

Many clinical studies and research papers have demonstrated how image quality is 

degraded by respiration [49]. Respiratory motion artifacts can distort target sizes and 

result in locating errors as different parts of the tumor move in and out of the image 

window during the patient’s breath cycle. Some studies have reported that typical lung 

tumor motion displacement with respiration can range from 3 to 22 mm. Fluoroscopic 

studies [29] have also demonstrated that the tumors next to the diaphragm can move in a 

range of 30 mm, which is more than four times the 5 to 6 mm full width half-maximum 

(FWHM) resolution of current PET scanners. 

2.3.2 Respiratory Gating in Radiation Therapy 
 
The breathing motion of lung tumors has received particular attention in radiation 

therapy. Treatment planning estimates boundaries surrounding the tumor large enough to 

ensure delivering dose to the target region. But breathing motion could result in 

overestimating the tumor volume, leading to an increase in the planning target volume. 

That can mean healthy tissues nearby receive more radiation exposure than is necessary, 

which may lead to treatment-related complications. 
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Different respiratory gating systems have been proposed to synchronize the radiation 

beam with the position of the tumor in order to reduce the planning target volume [49]. 

These systems have included the indirect detection of tumor motion with different 

sensors, fluoroscopic real-time tumor tracking synchronized with a linear accelerator and 

breath-hold gating techniques [50, 51]. The common objective has been to irradiate the 

tumor in a time bin within the respiratory cycle in which the tumor can be considered 

almost static. To allow irradiation of moving tumors only during time intervals 

predefined by the user, Varian Medical Systems (Palo Alto, CA) has developed the Real-

Time Position Management (RPM) Respiratory Gating System [52, 53] (Figure 2.9). The 

RPM tracks the vertical motion using an infrared video camera of two passive reflective 

markers on a plastic box placed on the patient’s abdomen. A PC with vendor software 

digitizes the video signal and allows the user to select a trigger pulse at a specific 

amplitude or phase within the respiratory cycle. A clear and concise description of the 

RPM system and its operation can be found in Nehmeh et al. [54, 55]. This system, 

originally designed for respiratory gating in radiation therapy, has been used by the group 

for preliminary testing and assessment of respiratory gated PET scans.  

Another respiratory gating system (AZ-773V) was developed in Japan in 2002 (Anzai 

Medical, Tokyo, Japan) [56, 57]. The AZ-733V System employs a respiratory sensor 

(strain gauge, Figure 2.10) which can be fastened around the patient’s abdomen or thorax 

by hook and loop tape. The sensor detects the mechanical expansion of the thoracic 

cavity resulting from the respiratory motion as the pressure changes of up/downward 

movement of the chest and abdomen. The system was interfaced with the Siemens linear 

accelerator via an open gating portal and it outputs the gating signal that triggers beam on 
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and off. With the gating signal radiation therapy equipment can control the radiation 

beams to be restricted within the target range, reducing the dose being delivered to 

surrounding healthy tissues. 

 

  
Figure 2.9 Patient setup in RPM acquisition mode. Plastic block (arrow) with two 
infrared passive reflectors is positioned on the abdomen of the patient. Infrared camera, 
positioned on the PET table, is used to trace the motion of reflectors and, thus, patient 
breathing motion [52]. 

 (a)        (b) 
Figure 2.10 AZ-773V system: (a) PC system, (b) respiratory sensor. AZ-773V system 
monitors the respiratory movement by the strain gauge sensor and outputs the gating 
signals. (Source: http://www.anzai-med.co.jp) 
 
2.3.3 Respiratory Gating of 18FDG-PET  
 
The requirement for effective attenuation correction, as well as improved spatial 

resolution, is that PET and CT data correspond to the same respiratory phase and spatial 

details. The gating of PET scans was initially investigated to compensate myocardial 
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motion in cardiac PET. Recently, Nehmeh et al [54, 55].  assessed lung motion artifacts 

in lung cancer and demonstrated more accurate quantitation and definition of PET tumors 

by dividing the breathing cycle into discrete time bins. The same group has acquired 

gated PET and CT data at discrete time bins within the respiratory cycle in a PET/CT 

scanner. They demonstrated higher accuracy of SUV determinations by reconstructing 

PET data with their corresponding binned CT data [41].  

POLARIS is a high-resolution tracking system being developed. It is an infrared (IR) 

optical-electronic motion tracking device using four IR-reflective spheres [58]. The 

system has the advantages that it is not sensitive to room lighting conditions and takes 

much less disk space to store the IR-tracker output compared to optical image sequences. 

There are also efforts reported recently by the group in the University of Texas M. D. 

Anderson Cancer Center, which utilized a solid-state thermometer to detect the 

temperature difference of the air flow in the nostril due to inhalation and expiration [41, 

59], as during expiration the air temperature in the nostril is expected to be higher than 

that during inspiration, since the exhaled air has been warmed by the lungs. 

  
Figure 2.11 The POLARIS system uses four infrared-reflective spheres placed in a 
precisely known geometry [58]. 
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 (a)      (b) 
Figure 2.12 (a) temperature sensor respiration gating system and (b) the nostril sensor 
piece was tested by a volunteer [59]. 
 
All these methods have demonstrated the quantitative and qualitative benefits of reducing 

the blurring of tumors by taking images at discrete time bins within the respiratory cycle, 

however they have some drawbacks such as patient discomfort, implementation 

complexity, or relatively high cost. Also, PET images collected at discrete time bins 

within the breathing cycle can be significantly affected by noise as only one gate is used 

for reconstruction [60]. To achieve the same radioactive count statistics as in the un-gated 

images, a proportionally larger amount of the radio-tracer must be administered to the 

patient or the total PET acquisition time must be prolonged which are not practical 

options under normal clinical circumstances. 

2.3.4 Non-gating Methods for Respiratory Motion Correction in PET 
 
Several image-based and projection-based algorithms have also been developed to correct 

for motion artifacts in PET without the need for gating. The advantage of these methods 

compared to gating is that they are not affected by low statistical counts and require no 

additional patient set-up time. There is a comprehensive review of motion correction 

methods in PET being published by Rahmim [58]. Most are for brain and heart studies. 

Lamare et al applied affine transformation to PET data in list mode to correct for 

respiratory motion without the need for gating [61]. Transformation parameters 
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accounting for respiratory motion were estimated based on maximizing the normalized 

mutual information between the reference data and the original data, and the 

transformation were then applied on the original list mode data. T The corrected and 

uncorrected list mode datasets were subsequently reconstructed using the One-Pass List 

mode Expectation Maximization (OPL-EM) algorithm.  Similar to this one, Qiao et al 

have also achieved motion correction by successfully applying non-rigid motion 

compensation to list-mode computer simulated PET data [62]. The advantage is that no 

additional instrumentation is required and it can be applied to correct the motion of other 

organs besides the lungs. While list mode collection is not generally implemented on 

clinical cameras, it is probably not a limiting obstacle.  

 
Figure 2.13 Incorporation of the elastic motion (non rigid) compensation during 
reconstruction of the list-mode PET data [62]. 
 
Deconvolution has been applied to reduce lung motion artifact with positive results [63]. 

A breathing motion model was used to locally estimate the location-dependent tissue 

location probability function (TLP) due to breathing. The deconvolution process is 

carried by an expectation-maximization iterative algorithm using the motion-based TLP.  

The method depends on an estimate of patient motion measured from 4D CT images. 

Generally, deconvolution methods are theoretically accurate for noise-less data, but 
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deconvolution tends to amplify the noise in real PET data.  

 
Figure 2.14 A block diagram of imaging and convolution/deconvolution interaction. 
Tissue motion effects can be removed from images via deconvolution, which requires an 
estimate of patient motion (TLP) [63]. 

Motion 
Field

Blur De-Blur TLP 
Convolution Deconvolution 

 
Recently, Qiao et al [64] presented a region of interest (ROI) based registration method, 

whereby only the motion map of a user-defined ROI is required and the incorporation of 

motion into the system model is solely performed within the ROI. Results from the 

NCAT phantom and a physical phantom show that this method enables faster extraction 

of motion information and has the potential to achieve more accurate motion 

compensation. The inconvenience of this method is that the ROI has to be selected 

manually which makes it subjective to user input. 

Another method proposed by Dawood et al [65, 66] using a global optical flow algorithm 

for motion correcting the individual gates and then combining the gates together. The 

optical flow tries to find the motion field between two data sets at each pixel position. In 

their method the entire data set was used to calculated the flow matrix. This is similar to 

Thorndyke et al’s method by retrospective stacking amplitude based binning of data 

acquired in small time intervals, with rigid or deformable image registration [67]. They 

reported reduced organ displacements and increased SNR. But these methods require 

computing over the whole data set which will decrease calculation efficiency. The image 
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transformation and registration problem continues to be a challenge. To date, such 

approaches are still being developed and have not been implemented clinically, compared 

to gating, which is currently being implemented to some extend. 

Nehmeh et al demonstrated that lung motion can be corrected without using gating by a 

method referred to as respiratory-correlated dynamic PET (RCDPET) [41] (Figure 2.13). 

A radioactive point source (68Ge) attached to a rigid foam block is set on the patient’s 

abdomen and is extended into the camera field of view at the level of the tumor by means 

of a low-density rod. The position of this source is used as an external reference to track 

respiratory motion through the consecutive dynamic frames. Image frames corresponding 

to a user-selected tumor position within the breathing cycle, in correlation with the point 

source position, are then identified after scanning and are retrospectively reconstructed. 

This method requires significantly more computation than does gating but does not 

require tracking hardware. It requires an external point source and the inherent poor 

spatial resolution of PET cannot match the resolution of cameras used for optical motion 

tracking. Also here is no motion correction in this method; it is rather a selection of 

“good” frames. Moreover the tumor position has to be known before scanning. 

The non-gating methods are promising because they need not interfere with the current 

operation of the imaging session, but methods based on external optical tracking are 

further in clinical application since they are less computationally intensive. Methods 

using external marker suffer from the disadvantage that the surrogate signal does not 

directly equate to movement of the tumor. Since gating methods inherently decrease the 

image signal-to-noise ratio, they should be combined with some imaging-based motion 

correction methods to register the set of gated images into a single image for analysis. 
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Figure 2.15 On the left, patient setup in RCDPET acquisition mode. Point source is at 
the end of a low-density rod, extending into the tumor FOV, and rigidly attached to the 
block positioned on the abdomen of the patient [41]. On the right, position of point 
source moves in and out of user-selected reference position (e.g., as defined by the 2 lines 
according to position of point source in first frame).  
 
2.4 Computer Simulation of Respiratory Motion in PET 
 
Respiratory mechanics has been simulated by the four-dimensional (4D) NURBS-based 

cardiac-torso (NCAT) phantom developed by Segars and Tsui at the University of North 

Carolina [9, 68-71]. It is a well established simulation program, originally developed to 

provide a realistic and flexible model of the human anatomy and physiology and is now 

widely used as a gold standard in nuclear medicine imaging research. The respiratory 

model was developed using 4D high-resolution respiratory-gated CT normal human data 

as its basis. The motion of the lung, heart, liver, abdominal organs and diaphragm 

involved in respiration, were incorporated into NCAT phantom as shown in Figure 2.14. 

There are many different user-defined parameters, like patient weight, motion extension 

of chest and diaphragm, heart size or tumor diameter. The NCAT data can hence be 

generated with great number of degrees of freedom in the simulated anatomy. Combined 

with accurate models of the imaging process, NCAT is capable of simulating imaging 

data close to that of real patients. It provides an excellent tool to study the effects of 

organ and patient movement in SPECT and PET images. 
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The NCAT phantom can be used to simulate 18FDG distributions of activity and lung 

tumors. Projection data can be generated using the SimSET or other Monte Carlo 

simulation programs [9]. The voxelized phantoms are saved as raw binary images 

without header. Each voxel value in an output image is stored as a 4 byte floating point 

number (Little Endian). Many applications capable of reading a raw image format can be 

used to view the phantom images. In this study, Amide [72], a freely available 

application was used for viewing the phantoms as 2D slices or as 3D volumes. 

 
Figure 2.16 Motion of different organs during inspiration simulated in the 4D NCAT 
phantom. Expiratory motion is modeled in the reverse direction [71]. 
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3. STATEMENT OF PURPOSE 
 
The importance of compensating respiratory motion artifacts in lung 18FDG-PET studies 

and the feasibility of practical solutions to this problem have been demonstrated by 

Nehmeh et al. and many other groups [54, 55]. However, at the present time only very 

few practical methodologies has been implemented in the clinical setting to compensate 

respiratory motion artifacts in 18FDG-PET scans, and those are vulnerable by less activity 

counts and higher noise.  This project is based on the division of the respiratory cycle into 

discrete time frames, such as proposed originally by Nehmeh et al. The innovative aspect 

is to develop an automatic motion track and integration algorithm that includes all the 

counts collected in the respiratory cycle into solely one reference bin. This proposed 

method has three major advantages: 1) PET scan time doesn’t need to be increased for 

reducing statistical noise and increasing the signal to noise ratio, 2) the computer-assisted 

automatic algorithm would facilitate the 3D quantitation of activity and the introduction 

of the procedure to the clinical practice, and 3) the integration of the information of 

different bins into one set of tomographic slices, would make easier, faster and more 

reproducible the clinical interpretation of 18FDG-PET scans. 

3.1 Objectives 
 
The overall goal of this study is to develop and validate a fast and practical solution to the 

problem of respiratory motion for the accurate interpretation and quantitation of 18FDG 

uptake of lung tumors in lung PET images.  
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Specific Aims 
 
1) To develop a computer-assisted algorithm for PET/CT images that automatically 

segments lung regions in CT images, and identifies and localizes focal increases of 

activity in lung regions of PET images by including the following steps: 

 To include an edge detection algorithm based on gradient and gray-level thresholding, 

in order to define more precisely the borders of the lung. 

 To define the optimal percentage of maximum counts to define the volume of tumors 

in PET scans. This was done experimentally by using the physical phantom and a set 

of hot spheres of known volume and activity. 

2) To develop and compare different integration/registration algorithms. These 

algorithms will process all the information within the respiratory cycle; and include all 

the tumor counts collected in different bins into solely one reference bin. 

3) To test, optimize, validate and verify accuracy of these objectives. These will be 

performed by conducting experiments with the computerized 4D NCAT phantom and 

with the physical dynamic respiratory phantom. 

Optimization is determined by comparing which integration/registration method produces 

the maximum correlation value between the number of counts of integrated and reference 

bins, requires less computation time and has a higher tolerance for noise. 

Validation using computerized 4D NCAT phantom 
 
Tumor volume and activity in computerized phantoms are the true and standard values to 

which to compare the result of calculations. The result of applying the algorithm must 

provide the equivalent activity and volume to those that are simulated. The robustness of 

the algorithm is tested by simulating tumors of different size and positions in the lung. 
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The minimum volume and tumor-to-background ratio that can be resolved as a lung 

tumor were determined. 

Validation using a physical dynamic respiratory phantom 
 
Data collection followed the same protocol commonly used for clinical studies. Three 

conditions were compared: the physical phantom simulating the respiratory motion for a) 

gated data collection, b) un-gated data collection, and c) data collection without tumor 

motion, this was used as a gold standard (true value) to be compared with results. Tumor 

variables to be controlled were: volume, total number of counts (activity), and maximum 

and average number of counts. These values will be considered the gold standard to 

which the results of the algorithm are compared. 

3.2 Significance of the Study 
 
One limitation of molecular imaging with 18FDG-PET for detecting, identifying and 

quantifying small tumors (< 1 cm) is the artifacts created by respiratory motion [40, 73]. 

Compensation of respiratory motion in lung PET image is a current research issue [54, 

55, 74] with broad impact on quantitation, diagnosis, accuracy, and clinical management 

of lung tumors. The major objectives of respiratory motion correction are to: 1) improve 

tumor detection by better identification of small tumors that move significantly during 

respiration, and 2) improve quantitation of lung tumors that move with respiration. The 

long term goal of this project is to improve radiation therapy by combining gated PET/CT 

information with gated beam irradiation.  

This research project proposed to develop and validate a computer-assisted method that 

can automatically localize SPN in lung PET images of discrete bins within the breathing 

cycle, followed by the algorithm of integrating all the information of a complete 
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respiratory cycle into a single reference bin. In this way, the best compromise between 

short PET scan time and reduced image noise could be achieved. The automatic 

algorithm and practical procedure can be used in a busy clinical setting, making 

quantitation and clinical analysis more precise and faster. 

All the developmental and research work of this project is oriented to the practical 

implementation of results into the clinical setting through the incorporation of software 

and hardware tools into commercial PET/CT systems. 
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4. RESEARCH DESIGN AND METHODS 
 
4.1 Phantom Imaging 
 
Experiments were conducted using a Lung-Chest phantom with simulated spherical lung 

tumors filled with 18FDG. In this study the Elliptical Lung-Spine Body Phantom (Model 

ECT/LUNG/P) was used [75], which is a fully tissue equivalent anthropomorphic 

phantom, including large, body-shaped lungs, which can be filled with Styrofoam beads 

or air to simulate lung tissue density. This phantom is designed to evaluate quantitative 

imaging intended to be applied to humans using SPECT and PET and it allows 

investigating the effects of imaging systems under conditions very similar to those in a 

patient.  

          
Figure 4.1 Elliptical Lung-Spine Body Phantom. On the left: the frontal view and on 
the right: the bottom view [75]. (Adapted from www.spect.com) 
 

Compartment Measured volume (liters) 

Left lung (w/o Styrofoam beads) 0.9 

Right lung (w/o Styrofoam beads) 1.1 

Left lung (w/ Styrofoam beads) 0.36 

Right lung (w/ Styrofoam beads) 0.44 

Background (empty cylinder w/o inserts) 10.3 

Cylinder with lung-spine insert 7.4 

Table 4.1 Volumes of different compartments in phantom [75] (www.spect.com) 
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Figure 4.2 Left: Hollow Sphere Set (Model ECT/HS/SET6). Outer diameter: 33.27 
mm, 26.82 mm, 21.79 mm, 17.69 mm, 14.43 mm, 11.89 mm. Spheres’ volume: 16.0 mL, 
8.0 mL, 4.0 mL, 2.0 mL, 1.0 mL, and 0.5 mL. Right: Micro Hollow Sphere Set Model 
ECT/MI-HS/SET4 Outer diameter: 5.94 mm, 6.95 mm, 8.23 mm, 9.86 mm. Spheres’ 
volume: 31 μL, 63 μL, 125 μL, and 250 μL [75].  
 
Phantom Experiment 
 
One sphere representing a tumor was inserted into one of the lungs of the phantom after 

being filled with a predetermined amount of activity of 18FDG. The movement of the 

sphere was driven by a stepper motor controlled by a PIC microcontroller that allows the 

user to select different tumor motion parameters, i.e., different frequency and different 

amplitude to simulate different respiratory periods and amplitudes [76]. Another stepper 

motor was used to simulate the motion of the chest. The simulated chest movement was 

monitored using Varian’s Real-Time Position Management (RPM) (Varian Medical 

Systems, Palo Alto, CA) camera and RPM software generated the gating signals for the 

PET. The RPM camera is mounted at the end of the scanner table, and captures an 

infrared signal coming from a reflective block as described in Chapter 2.3.2. Detail 

parameters of the experiments can be found in Table 4.2. 

Two concentrations of FDG were prepared. One concentration of FDG was first diluted 

into 1 liter water and then added to the hollow spheres to simulate tumor FDG 

concentration and another concentration of FDG was diluted into the phantom (10.3 
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Liter) to simulate background FDG concentration. In the experiments the body phantom 

was filled with approximately 0.11 mCi/L 18FDG as background concentration and the 

sphere was filled with 0.7 mCi/L 18FDG as tumor concentration, so the tumor to 

background ratio was approximately 6 to 1. 

 

Figure 4.3 Diagram for physical phantom experiments. Tumor FDG was 
approximately 0.7 mCi/L in the hollow spheres to simulate tumor FDG concentration. 
Background FDG concentration was approximately 0.11 mCi/L to simulate background 
FDG concentration. Spheres simulating tumors were driven by a stepper motor controlled 
by a PIC microcontroller. 

+ 

+ 

Tumor FDG was diluted into 1 liter 
water as tumor FDG concentration 
added into hollow spheres 

Background FDG was diluted into the 
phantom as background concentration Spheres and motion sensor controlled  

by step motors to simulate respiratory motion 

GE Discovery 
LS PET/CT  

 

Sphere diameter 
(mm) 

17.69, 14.43, 11.89, 9.86, 8.23 

Sphere volume 
(ml) 

2.00, 1.00, 0.50, 0.25, 0.13, 0.06  

Sphere position Left lung 

Respiratory cycle 
(second) 

4.0 

Respiratory amplitude 
(mm) 

20.0 

Tumor/background ratio (5.98, 6.35, 6.01, 5.80, 6.22 ) ≈ 6 

Image Acquisition 
Ungated & Static PET: 5.0 min 
Gated PET: 5.0 min for 10 gates 

Table 4.2 Parameter settings in physical phantom experiments. 
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4.2 PET/CT Scans 
 
All experiments with the dynamic physical phantom were done at Baptist Hospital of 

Miami using the Discovery LS PET/CT scan (GE Medical Systems) and Varian RPM 

Respiratory Gating System. This hybrid system incorporates the GE Light Speed multi-

slice CT and the Advance Nxi PET scanner in the same instrument. Emission and 

transmission images are automatically registered and the CT map is used for attenuation 

correction of PET data. The images are acquired in the DICOM format, which is a 

standard file format used in storing and transferring medical data. The parameters for 

PET/CT configurations are shown in Table 4.3. 

Discovery LS Advanced NXi PET Configuration 

Transverse field of view  (mm) 550 

Image dimension 128*128 

Number of Image Planes 35 

Slice Thickness  (mm) 4.25 

Mode 2D 

Number of gates 10 

Reconstruction Method OSEM 

Discovery LightSpeed multi-slice CT configuration 

Slice Thickness  (mm) 5 

Image dimension 512*512 

Number of Image Planes 35 

Acquisition mode 
Snapshot CT  

(fast helical mode) 

mA 90 

KVP 140 

Table 4.3 Selected parameters for Discovery LS PET/CT operation. 

4.3 Develop Computerized Phantom 
 
The 4D NCAT phantom is used to simulate different types of respiratory cycles, and to 

simulate PET/CT images with the tumor in different positions. The 4D NCAT phantom 
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has been developed for emission tomography studies. It integrates the anatomical data 

from the Visible Human dataset and the model of cardiac and respiratory motion to 

generate realistic and dynamic digital phantoms [9, 68-71].  

By using the respiratory model of the NCAT phantom, 3D phantoms were generated at 

different times within the respiratory cycle as volume arrays of 128128128 voxels, 

with pixel sizes and slice thickness equivalent to those obtained in clinical PET studies. 

Then, two sets of respiratory phantoms were created for each time bin. The first 

corresponds to a transmission phantom in which only soft tissue and lungs were 

differentiated. The value of the attenuation coefficient for lung at 511 keV (0.024 cm-1) 

was assigned to lung voxels. The rest of the voxels had a value equal to the attenuation 

coefficient of soft tissue at 511 keV (0.097 cm-1). The second set of phantoms represents 

the 18FDG distribution in lung and other structures. 

The parameters of the raw binary file simulated by 4D NCAT phantom are as following: 
 
 Pixel width: 3.125 mm 

 Lowest Image Pixel value: 0 (number of counts) 

 Highest Image pixel value: 75 (number of counts) 

 Rows: 128; Columns: 128 

Lung tumors were simulated assuming a spherical shape. Different volume tumors were 

assessed (diameters of 6 mm, 8.5 mm, 10mm, 20 mm and 25 mm), with similar range of 

activities encountered in clinical studies. Tumor-to-background ratio was 2.5. The 

respiratory cycle period was 4.0 seconds with 8 equally spaced time frames. The detail 

parameters of the NCAT phantom experiments can be found in Table 4.4. Here the 

maximum amplitude of diaphragm motion during respiration was set to 20 mm and the 
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maximum amplitude of AP (anteroposterior diameter of the ribcage) expansion was 12 

mm. These are normal values for normal tidal breathing [70, 71]. 

 
Figure 4.4 Sagittal, Coronal and Transverse view of the raw data simulated by NCAT 
including tumor file and torso file, before any noise is included, showing the direction of 
X, Y, Z. The motion of the tumor was modeled as two-way motion: Y and Z. 
 

Sphere diameter 
(mm) 6.0, 8.5, 10.0*, 20.0, 25.0 

Sphere position Left lung 
Respiratory cycle 

(second) 
5.0 

Respiratory amplitude 
(mm) 

20.0 

Tumor/background 
ratio 

3.0 

Table 4.4 Detail parameter settings of NCAT computer phantom experiments. * The 
experiments with 10.0 mm tumors (with Gaussian distributed noise) has been repeated 
three times to see if there are any statistic changes in the simulation. 
 
4.3.1 Simulation with Gaussian Distributed Noise 

The original NCAT phantom is noise free. To simulate practical data, two methods were 

implemented to add the noise to the original data. One is adding Gaussian distribution 

noise (Figure 4.5). The volume of the tumor was excluded from the lung region of 

interest in the studies with a tumor. By selecting regions of interest at different slices, the 

mean and standard deviation (SD) of counts could be determined for each structure of 
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interest (lung, soft tissue, liver). Simulated phantoms were created by assigning to the 

voxels v(i) of each structure the value: 

n

SDRND

n

mean
iv




(*)
)( , 

where mean is the average value of all the counts in each structure, meanSD  , n is the 

number of time bins used to simulate respiration [40] and RND(*) is a random number 

with Gaussian distribution (mean equal to zero and standard deviation equal to one).  

Finally, the blurring effect due to the finite resolution of PET images was included by the 

convolution of each transaxial slice with a Gaussian filter in which the FWHM in the X 

and Y directions correspond to the transaxial resolution of a typical PET scan. The axial 

blurring was performed by the convolution of the images in the axial direction with a 

one-dimensional Gaussian filter. For FWHM in the X, Y and Z directions, the values of 5 

mm was applied, which is the typical resolution of current PET scanners. In the NCAT 

phantom, data of pixel width = 3.125 mm, so the FWHM = 5/3.125 = 1.6 pixel was 

generated. 

 
Figure 4.5 Simulated PET images from Figure 4.4 after applying noise by including 
Gaussian distributed noise and by including blurring effect. 
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4.3.2 Simulation with Poisson Distributed Noise 

Another analytical method was implemented (Figure 4.6) using Matlab (The Mathworks, 

Natick, Massachusetts) to forward project the noise-free NCAT data to sonograms. 

Poisson distributed noise was added in the sonogram domain. And then the images were 

reconstructed with filtered-back-projection using Matlab’s "iradon.m" routine [77]. 

Finally, the blurring effect due to the finite resolution of PET images was introduced by 

the convolution of each transaxial slice with a Point-spread-function with FWHM of 5 

mm in the x and y directions, corresponding to the approximate resolution of the PET 

camera used. The axial blurring was performed by the convolution of the images in the 

axial direction with a one-dimensional Gaussian filter with 5 mm FWHM value. 

 
Figure 4.6 Simulated PET images from Figure 4.4 using analytical method to include 
Possion distributed noise and Point-spread-function. 
 
4.4     Image Segmentation 
 
GE's Discovery LS PET/CT system can produce high quality CT and PET images of the 

phantom in one study. These two image data sets are registered and fused to form a single 

data set that displays the anatomical and morphological information from CT along with 

the physiological information of PET. The set of DICOM files of PET and CT transaxial 

slices acquired from the hybrid PET/CT scanner were read into volume files. CT volume 
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files are used to segment lungs and PET volume files are used to identify the tumors and 

quantitate their activity. 

All the code software for processing these images and calculating the parameters has 

been developed using the Interactive Data language (IDL), Research Systems, Inc. 

(Boulder, CO). IDL is a matrix-oriented interpreter language designed specifically for 

processing large and complex datasets. It can create powerful visualizations easily and 

quickly, including simple 2D plots and 3D graphic displays. IDL includes a rich library 

of proven image processing and signal processing routines to help analyze the data. Data 

access in IDL is flexible. It has built-in support for a wide variety of general file formats, 

including raw binary files, BMP, TIFF, JPEG and DICOM images. 

4.4.1 CT Image Processing 
 
Image Filtering 
 
Since identifying lung tumors in PET images is the main objective of this research, and 

CT images are used only to define the lung region, the analysis of CT images was 

performed in a matrix size of 128   128 pixels. To remove the background and patient 

table from the image, the body was segmented by a threshold analysis on low resolution 

CT scans. Low resolution images were obtained by decomposing CT scans into five 

resolution levels using a wavelet analysis/synthesis filter bank based on the 2D Frazier-

Javerth transform [13] derived by Laine et al. [78]. These filters are isotropic, 

orthonormal and can provide a perfect reconstruction. Furthermore in this model the 

analysis and synthesis of these filters are the same and relatively easy to implement for 

computer calculations. The following equations are the analysis filter functions in the 
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frequency domain for an L-level multi-resolution decomposition [78]. Here it is 

equivalent for the analysis and synthesis of the filters ( ). )]()([ 1 vFvF ii
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where n is the radial frequency and nN is the Nyquist frequency of the projection.  

 
Figure 4.7 Framework of multi resolution analysis using discrete wavelet transforms. 
Here three level decompositions are shown.  

Input Image 

Wavelet 
Decomposition 

F1 

F2 

F3 

…

DC 

Wavelet 
Reconstruction 

Output Image 

 
Multi-resolution analysis decomposes an image into a coarse approximation and the 

image details for consecutive higher frequency bands or spatial resolutions. It was 

demonstrated by Mallat [8] that multi-resolution representations could be acquired by 

decomposing an image into orthogonal wavelet basis as shown in Figure 4.9. Multi-

resolution wavelet representation provides orthonormal bases whose components have 
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good localization properties in both spatial and frequency domains. The following figure 

graphically shows the two dimensional analysis and synthesis functions in the frequency 

domain. 

 
Figure 4.8 Analysis and synthesis functions (Fj=Sj) for five resolution levels shown in 
frequency domain. 
 
After applying the multi-resolution filters, the threshold definition for segmentation is 

more reproducible and constant than the original CT images, as the CT (Hounsfield unit) 

number varies because of the calibration of different CT scanners and other 

characteristics of the x-ray beams. This is why it is not reliable to select only one constant 

threshold for segmenting CT images [13]. Segmentation on low resolution CT images 

makes the threshold selection easier and more robust than the original CT images. 
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Figure 4.9 Original CT slice and its corresponding third resolution level derived from 
one analysis/synthesis filter bank based on the 2D Frazier-Javerth transform. The low 
resolution image is used to segment the body by defining a threshold. 
 
Lung Segmentation 
 
The algorithms to segment the tissue from the background are based on the continuity or 

discontinuity of the intensity values. Edge detection is based on continuity while region 

labeling and histogram thresholding are based on similarity and discontinuity measures. 

The CT image, which is characterized by two dominant modes (i.e. tissue and 

background), result in a bimodal histogram. In such a case, basic global thresholding 

which partitions the histogram of the image using a single global threshold “T” 

accurately differentiates body from background. The segmentation is accomplished by 

scanning the image pixel by pixel and labeling each pixel as object or background, 

depending on whether the gray level of that pixel is greater or less that the value of T. 

The success of this method depends on how well the histogram can be partitioned [79]. 

The algorithm of the thresholding is given in the steps listed below: 

a) An initial estimate for the threshold (T) is selected to be midway between the 

maximum and minimum gray levels. 
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b) The image is then segmented using the global threshold T. Two groups of pixels will 

be created: G1 consisting of all pixels with gray level values > T and G2 consisting of 

pixels with values T. 

c) The mean gray level values 1 and 2  are calculated for the pixels in regions G1 and G2. 

d) The new threshold T is equal to the following value: .2/)( 21  T  

e) Repeat steps b through d until the difference in T in successive iterations is smaller 

than a predefined parameter . 0T

Binary images of the CT volume slices were obtained by assigning zero to pixels below 

the threshold and one to pixels above the threshold. After segmenting the image using the 

global threshold, only body and background were retained in the binary templates. This 

was done by labeling the volume into different regions and blanking out all small regions 

except the two major regions, the body and the background. The function “label region” 

(IDL routine function) did the region labeling and sorted the regions in descending order 

of their size. Any tumors present in the lung were also blanked out during this process. 

The lung regions in the resulting binary templates were closed (their pixel value was 

made equal to that of the tissue) to obtain binary templates of the entire extent of body 

region in the CT slices. Using these binary templates an iterative threshold to segment the 

lungs was again calculated, considering only the pixels that fall in the body region. After 

obtaining the extent of the body region in the images, it is important to determine the 

range of CT slices in which the lungs are present. This reduces the load of image 

processing and also allows accurate segmentation of lung regions. 
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To find the limits for the appearance and disappearance of lungs in the volume file of CT 

images, the count of total number of pixels, which are less than the threshold and 

belonging to lungs, was determined for each slice in the volume file. A plot of these 

counts vs. slices resulted in a peak where the lungs appear in the volume file. In order to 

find the inflection points, the curve was first smoothed by fitting a polynomial to the 

curve and finding its differential. The inflection point at which the peak starts signified 

the slice at which the lungs start appearing and the inflection point at which the peak ends 

signified the slice at which the lungs start disappearing. For all further image processing 

purposes only the slices containing the lungs were considered. 

The lungs regions were extracted by applying the binary templates with closed lung 

region and the binary templates without closing the lung regions over the volume file of 

the original CT images. The iterative threshold determined for lung segmentation was 

applied to the extracted lung regions to obtain accurately segmented lung regions. The 

binary images of these lung regions cover the entire lung volume without distinguishing 

the tumor. 

Determination of Background 

The binary templates of CT slices without region labeling (in order to preserve the tumor 

region) and the binary templates with closed lung region were applied together to the 

original CT slices. This resulted in segmented lung regions which excluded the tumor 

regions. These masks of segmented lung slices excluding the tumors were applied on the 

PET images to calculate the average background activity. The flow diagram shown below 

explains the algorithm in further detail. 
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Figure 4.10 Flow diagram for CT volume image processing 
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4.4.2 Identification of PET Tumors 
 
Segmenting Lung Regions in PET Images 

The binary templates determined from the CT analysis were used to define the volume to 

search for the tumors in the electronically registered PET images. The CT binary 

templates were dilated by 3 pixels to account for the scatter of activity in PET images. 

The lung regions in PET images were segmented using these dilated binary templates of 

segmented lung CT regions. 

Calculation of Background Intensity 

Binary templates of segmented lung CT regions excluding the tumor (lung CT 

background) were used to define the background region in lung PET images. However 
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the PET tumors have spilled out activity around the tumor borders and result in a 

magnification of apparent tumor size. So the binary templates of lung CT background 

images were eroded further to exclude the entire tumor activity. The number of pixels 

needed to be eroded in order to remove the entire tumor and its spilled out activity was 

determined by comparing average background intensities with the number of pixels 

retained in the eroded lung region.  

The eroded binary lung CT regions were used to extract the background lung regions of 

PET images. The average background intensity in PET images was found by taking an 

average of all the pixels in the PET lung volume excluding the tumor or tumors. The 

standard deviation of these pixels was also found. The background intensity was 

determined as the total of average background intensity and three times the standard 

deviation between the pixels. 

Region Growing by Pixel Aggregation  

Region growing is a procedure that groups pixels or sub-regions into larger regions. The 

simplest of these approaches is pixel aggregation, which starts with a set of “seed” points 

and from these grows regions by expanding to those neighboring pixels that have similar 

properties. Another problem in region growing is the formulation of a stopping rule. 

When no more pixels meet with the criteria to be grouped in that region, the growing 

region stops [80]. 

In order to identify the tumors, first the maximum counts voxel was found in the 3D 

volume. This became the seed voxel that was used in a region growing algorithm to 

define the three dimensional extension of the tumor. The stopping criteria for the region 

growth was the average background intensity + three times the standard deviation 
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between the pixels (average + 3*SD) of eroded lung regions of PET images. Another 

stopping criteria was also evaluated, by initially using 40% of the maximum counts, and 

then using the iterative thresholding method to find the optimal stop criterion of the 

region growing algorithm. “Search3D”, a user-defined function written in IDL is called to 

perform the region growth. 

Voxels included in the tumor were defined as those connected with a number of counts 

higher than the background intensity of the lung regions in PET images. After 

determining the tumor volume, the total number of counts, volume and list of voxel 

coordinates with their corresponding number of counts, was saved into a text file. In 

cases there are more than one tumor, the first segmented tumor was “erased” from the 

PET images under analysis by replacing the number of counts of each voxel with the 

average lung background. After that, the search of a second local maximum was started 

again.  The algorithm stopped searching for any new tumors if the new local maximum 

value was below 40% of the original maximum counts. The entire flow chart of this 

process can be viewed in Figure 4.10 below. The final output of the automatic 

localization algorithm was a binary file with the voxel coordinates and number of counts 

of each voxel for each respiratory time bin. This was the basic information that would be 

used in the registration/integration algorithm. 
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Figure 4.11 Flow diagram describing the detection of tumors 
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4.5 Motion Track and Registration Schemes 
 
The basic idea is that, given a moved volume Vi at the bin i and a corresponding reference 

volume V0 at the reference time bin, find a registration such that the registered volume 

R[Vi] matches as well as possible the reference volume V0. Since the number of voxels 

involved in each tumor is relatively small and all the voxels are compacted around a 

maximum value, only simple matching methods were considered. There are two 

integration schemes used in this work, one is to register directly the target bin to the 

reference bin as shown in Figure 4.14 left, and the other is to register each bin one by one 
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as shown in Figure 4.14 right. Assume 2n is the total number of bins, the computational 

complexity for Direct Scheme is (2n-1) registrations and one addition while the 

computational complexity for Successive Scheme is n*n registrations and one addition (if 

the nth bin is select as the reference bin), so the Successive process requires more 

computation time. For the Successive Scheme, the discrepancy between each bin is less 

compared to the Direct Scheme, which could reduce the error while calculating the 

registration matrix. However, it requires more interpolation steps and thus could blur the 

resulting image and increase the computational cost.  

           

Bin1(1) Bin 1(2) ...... Bin 1(i)

Register 

Sum Bins 

...... Bin i Bin 1 Bin 2 Bin 1 Bin 2 .....

Bin1(1) Bin 1(2) ..... Bin 1(i)
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...
.
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Bin i-1

Bin i-2
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Register 
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Figure 4.12 The process flow of two registration/integration schemes. On the left is the 
Direct Scheme and on the right is the Successive Scheme. 
 
In order to reduce the radiation dose delivered to the patient, the snapshot CT was used 

instead of 4D CT. This could create the problem of a mismatch between the CT image 

and each gated PET image. To choose the “best” bin as the reference bin, the cross 

correlation values between segmented CT tumor and each gated PET tumors were 

evaluated so that the best match bin (with the highest correlation value) can be selected as 

the reference bin. 
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4.5.1 Noise before Correction vs. Noise after Correction 
 
Ideally, the voxel value in a reconstructed nuclear medicine image indicates the 

underlying radioactive decay activity in each voxel. In real images these voxel values are 

subject to image noise, which is the degree of variation of pixel values caused by the 

statistical nature of the detection process, reconstruction algorithm limitations, and 

radiotracer activity itself. The precise form of such noise depends on many factors, in 

nuclear medicine images the counting noise is Poisson noise, so that the pixel noise 

variance is equal to the mean number of counts expected in a given region of the image. 

The standard deviation is the square-root of the mean number of counts. 

The following equation assumes a simple voxel-by-voxel based model to simulate a 

realistic image by superimposing noise onto the original image.  

real_I(x, y, z) = I(x, y, z) + g(0; I(x, y, z)) 

where the noise g(0; I(x, y, z)) tends toward a Gaussian distribution with mean μ = 0 and 

standard deviation ),,( zyxI , I(x, y, z) is the number of radiotracer activities.  

Before gating, we have signal S after time T in a particular region, where the standard 

deviation of the noise in this region is S . After gating the signal S was divided into 

short time frames ∆ti, where ∑(∆ti) = T, to generate signals and noise deviations at each 

time bin: 
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When the gated image bins are combined/registered together, S∑ ≡ ∑Si = S, the standard 

deviation of the noise adds quadratically: 

 
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  )( 2

T

ti
i  

 
This shows that after registration restore the SNR can be restored to the ungated scenario 

without prolonging the total PET acquisition time. 

4.5.2 Intensity Based Registration 
 
This method takes into account voxel values. The voxel with the maximum number of 

counts at Vi was registered with the voxel with the maximum number of counts at V0. The 

same was performed for the second maximum and subsequent voxels. This is done by 

sorting all the voxels inside the tumor in descending order after segmenting the tumor and 

adding them one by one. The main inconvenience of this procedure is that Vi and V0 

include different number of voxels. Since respiratory motion is a continuous process, 

PET lung tumors within a discrete time bin can be blurred. In this case, some deformation 

in the extended volume is needed. One deformation that can be assessed is the 

compression of the peripheral voxels into the volume. That is to shrink the volume of the 

tumor by adding the peripheral pixels to their neighbors with lower counts. The shrinking 

process starts with those voxels of lowest activity. This process is applied previous to any 

other registration approach. 

4.5.3 Centroid Based Registration 
 
The centroid of each tumor volume was calculated from: 




i

i

w

zyxaw
zyxc

),,(
),,( .  

 50



where a is the x, y, or z coordinate of the i-th voxel and wi is the number of counts. The 

motion vector calculated from the 3D distance between the two centroids determines the 

motion vector (dx, dy, dz) that moves voxels in Vi to Vo:  

),,(),,( 0 zyxVdzzdyydxxVi   

The registered bins were evaluated with reference to the non-registered bins using the 

correlation coefficient. The correlation coefficient is defined as: 









ii
i

i
i

vzyxVuzyxV

vzyxVuzyxV

2
0

2
0

00

)),,(()),,((

)]),,(()),,([(
ncorrelatio  

Where  and  are the values from two datasets in the comparison and 

u, v are the mean values from the same. 

),,(0 zyxVi ),,( zyxVi

4.5.4 Optical Flow Based Registration 
 
Optical flow is a concept for estimating the motion vector of each pixel in a digital image 

sequence [81], typically it is represented by vectors originating or terminating at pixels. 

Optical flow methods try to determine the motion between two image frames which are 

taken at times t  and tt   at each pixel position. The method relied on two assumptions: 

(1) that corresponding pixels have constant grey values in the two images, and (2) that 

nearby points move in a similar manner. 

In the following discussion, yx,

,(x

 and  are the coordinates of the 3D PET data set, and t  

represents the index of the bins. Let a PET data set be denoted as , where f is the 

grayscale intensity at position  at time . After time

z

)

),,,( tzyxf

, zy t t , the corresponding position 

shifts to )z,,( zyyxx    and the function )( tyxf ,, tzzy,x    can be 

expressed in a [82] series expansion as: 
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where H.O.T represent second and higher order terms. 
 
The first assumption that corresponding pixels have constant intensities yields: 

),,,(),,,( tzyxfttzzyyxxf   . The second and higher-order terms in the 

equation can be ignored. Combining two equations and neglecting higher-order terms 
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which results in the “optical flow equation”: 0
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corresponding directions. The derivatives of and  are as follows: 
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

This is an equation in three unknowns. To solve this equation an additional constraint is 

needed. 

Lucas-Kanade Method 
 
The solution as given by Lucas and Kanade [83, 84] is a non-iterative method which 

assumes a locally constant flow. Assuming that the flow is constant in a small 

window of size  with  which is centered at voxel  and numbering 

the pixels as  results in a set of equations: 
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This system results in more than three equations for the three unknowns and thus an over-

determined system: 
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To solve the over-determined system of equations the least squares method is used: 
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Thus the optical flow can be determined by computing the derivatives of the image in all 

four dimensions: zyx ,,  and t . 

                                                                         

Figure 4.13 One example illustrating the optical flow method. The sphere is rotating 
from left to right, in the center is the generated optical flow field. 
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Horn-Schunck method 

Another iterative solution used in this project is the Horn-Schunck method [85]. The 

Horn-Schunck method combines the gradient constraint with a global smoothness term to 

constrain the estimate velocity field V = (Vx, Vy, Vz), minimizing: 
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where Ix, Iy, Iz are the derivatives of the image intensity values along the X, Y and Z 

dimensions, It is the derivative in the t (time-) direction, Vx = dx/dt, Vy = dy/dt, Vz = dz/dt 

is the optical flow vector in X, Y and Z directions, which describe the spatial change rate 

of the voxel with respect to time. The parameter α is a regularization constant, larger 

values of α lead to a smoother flow. This function can be solved by calculating the Euler-

Lagrange equations corresponding to the solution of the above equation. These are given 

as follows: 
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Solving these equations with Gauss-Seidel for the flow components Vx, Vy, Vz gives an 

iterative scheme: 
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where the superscript k+1 denotes the next iteration, which is to be calculated and k is the 

last calculated result.  

Multi-Resolution Algorithm 

The limitation of the optical flow algorithm is that it becomes inaccurate in calculating 

the deformations with increasing movement (greater than 1 voxel difference). Thus it is 

necessary to extend the algorithm to accommodate larger displacements by implementing 

a Multi-Resolution algorithm [65, 73]. With a larger voxel size at a lower resolution, the 

magnitude of the displacement between two image sets decreases. Using a 2D image for 

example: two images each contain 512×512 pixels with resolution of 1×1 mm per pixel, a 

displacement of 4 mm in the lateral direction for a given region in the two images is 

therefore represented by 4 pixels at the given resolution level. After reducing the image 

size to 256×256 pixels, the resolution becomes 2×2 mm per pixel. The 4 mm 

displacement is now represented by 2 pixels. At a resolution of 4×4 mm per pixel 

(128×128 pixels per image), the displacement becomes only 1 pixel. If the optical flow 

program is used to estimate the two images, the resulting motion field can be very 

accurate in a short calculation time. After this calculation at a coarse resolution level, 

linear interpolation is used to expand the resulting 128×128 displacement matrix to 

256×256. The optical flow program resumes the calculation at the 256×256 resolution 

level, starting with the expanded matrix representing the corrected and expanded images. 

The initial displacement at this resolution level is within 1 pixel instead of 2 pixels if the 
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lower-level registration is lacking. This procedure continues until the finest resolution 

level is completed as shown in Figure 4.16. In this example, the initial displacement at 

the finest resolution is within 1 pixel after the pre-calculation at coarser levels. The 

estimation with a multi-resolution feature is much more accurate and converges to the 

solution much faster. 

The multi-resolution feature implemented in this project was 3D, and thus it can start 

with fewer CT slices. The registration starts at a user-specified resolution level that is a 

2nth multiple multiple of the original resolution and increases hierarchically until the 

finest resolution is achieved. Figure 4.16 shows a flow chart of the multi-resolution 

feature. For the NCAT phantom data, the dimension was reduced from 128×128×128 to 

64×64×64 and then to 32×32×32, for the physical phantom data, the dimension was 

reduced from 128×128×36 to 64×64×18 and then to 32×32×9. Further reduction of the 

image dimension was not meaningful for image resolution lower than 32×32×32 or 

32×32×9. The initial Vx
(0), Vy

(0) and Vz
(0) were set to 0, and the value of α was set at 5. Bin 

4 was chosen as reference bin, iteration number was set to 50 for the first resolution lever, 

and less iteration were required as the resolution level increased. 
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Figure 4.14 Flow chart of Multi-resolution algorithm used in estimating optical flow 
between two image data sets. 
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4.5.5 Rigid Body Registration 
 
In this project, 3D rigid body registration was modeled as rotations around and 

translations along each of the three major coordinate axes , and scaling. For 

each point  in a data set, an affine mapping is defined into the co-ordinates of 

another space  [86], expressed as: 
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which is expressed by a simple matrix multiplication )( Mxy  : 
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Translations 
 
If a point x  is translated by  units, then the translation can be expressed by: L

 or  
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Rotations 
 
A rotation of 1  angles around the X  axis is represented via: 
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Rotations around the Y and Z axes are performed by the following equations: 
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Multiplying the three matrices together in an appropriate order generates the rotation 

matrix R . 

Scaling 

Scaling is needed to change the image size along orthogonal axes. The equation is 

expressed as: 
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Parameterizing a Rigid-body Registration 

When performing rigid body registration, nine parameters ( 321321321 ,,,,,,,, SSSLLL  ) 

of the registration matrix M need to be estimated: SRLM  , where 
































































1000

0100

00)cos()sin(

00)sin()cos(

1000

0)cos(0)sin(

0010

0)sin(0)cos(

1000

0)cos()sin(0

0)sin()cos(0

0001

33

33

22

22

11

11 









R , 





















1000

100

010

001

3

2

1

L

L

L

L  and . 





















1000

000

000

000

3

2

11

S

S

S

S

 
In this project, to simplify the algorithm of calculating the rigid body registration matrix, 

the three translation parameters are determined from two centroids in two tumors. The 
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three rotation parameters are determined from the angles between two vectors: centroid 

points to the maximum points. The three scaling parameters are also determined from the 

magnitude of two vectors: centroid points to the maximum points. The flow chart of this 

algorithm is shown in Figure 4.15 below. 

 

Rotation angle around Z 
 

Figure 4.15 Calculation of the Rigid Body registration matrix: two centroid points 
determine the translation parameters, two vectors: centroid points to maximum points 
determine the rotation and scaling parameters. 
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5. RESULT 

5.1 Image Acquisition 
 
The PET and CT DICOM images obtained from the hybrid PET/CT scanner were read 

into respective volume files. CT images, PET images and fused images of the physical 

phantom in Coronal, Sagittal and Transaxial views are displayed in Figure 5.1.   

 
Figure 5.1 Coronal, Sagittal and Transaxial view of the Physical phantom for CT 
images, PET images and fused images. 
 
5.2 Image Segmentation 
 
5.2.1 CT Image Processing 
 
The results of processing the CT volume file of the physical phantom to segment lung 

regions are shown below. The first step of segmenting dominant regions of the images, 

like body region and background was accomplished by the method of global 

thresholding, which partitions the histogram of the image using a single global threshold 
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T. Figures 5.2a and 5.2b illustrate the effect of global thresholding of a CT image on its 

histogram 

 (a)           (b) 
Figure 5.2 Original CT Slice on the left and Binary CT slice on right 
                                                                        
After segmenting the major regions (i.e. body and background) all the other small regions 

were blanked out by means of region labeling. Figure 5.3a shows the same CT slice in 

Figure 5.2b but with all the small regions (including tumors) blanked out. Figure 5.3b 

illustrates the step of closing the lung regions in-order to obtain the entire extent of body. 

 (a)           (b) 
Figure 5.3 Left: binary CT slice with only tissue and lungs. Right: binary CT slice 
with closed lung regions. 
 
After obtaining the extent of the body region in the images, the next step of determining 

the range of CT slices containing lungs was accomplished by plotting the total number of 

pixels falling below the threshold for each slice of the CT volume file (Figure 5.4). The 

plot can be divided into four distinct regions. The first region shows a plateau with an 

average of zero. This region corresponds to the CT slices in the volume file, which 

consist of purely tissue regions and have very few pixels below the iterative threshold. 
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The second region shows a constant increase till it reaches the peak. This region 

correlates with the appearance of the lungs (which have the maximum number of pixels 

falling below the threshold). The third region shows a constant decrease in the magnitude 

of the plot. This region correlates with the disappearance of lungs in the CT volume file. 

The fourth region is again a plateau consisting of purely tissue regions 

        
Figure 5.4 Left: plot of number of pixels less than the iterative threshold vs. total 
number pixels and right: plot on the right was smoothed by cubic spline interpolation. 
 
The curve on the right in Figure 5.4 was smoothed by fitting a polynomial of order 10, 

and its differential was obtained to determine the inflection points. The lungs first appear 

in the slice where the plot begins its constant increase towards the peak. The lungs 

completely disappear starting with the slice where the curve returns to an average value 

of zero. In the sample case of the physical phantom, the inflection points were calculated 

and it was determined that the lung appears at the 7th slice, lung disappears at the 45th 

slice and can be viewed very clearly at slice 22. All further image processing was done 

using the CT slices containing the lungs. 

The next step was to segment the lung regions in the CT volume file. Figure 5.5a shows 

the binary template of segmented lung regions obtained from Figured 5.2 and 5.3. This 

binary template does not differentiate the tumor that can be seen in Figure 5.2a. Figure 
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5.5b shows the binary template of the lung regions excluding the tumor, obtained using 

binary templates seen in Figures 5.5a, 5.2b and 5.3. 

 (a)          (b) 
Figure 5.5 (a) binary templates of segmented CT lungs, (b) binary Templates of 
segmented lungs excluding tumor 
 
5.2.2 Identification of PET Tumors 
 
The binary templates of segmented CT slices are used to segment lung regions from PET 

slices of the physical phantom. As PET images only depict functional activity and 

because of the lower consumption of FDG in the lung, the exact delineation of the lung 

regions cannot be seen in the PET slices.  It can be seen from the Figure 5.5 that only the 

tumors with the highest activity are clear. The rest of the region is filled with a 

background activity and appears black. 

 
Figure 5.6 Segmented lung regions in PET images 
 
The results comparing the actual tumor size with the computed size of the segmented 

tumors are shown in Table 5.1 for static tumors. We can see that the NCAT computer 

phantom gives very good results. For the physical phantom, the volume of one voxel is 

calculated as: Volume of one voxel = x × y × z 

where x and y are the pixel spacing in the horizontal and vertical directions respectively 

and z is the slice thickness. The segmented tumor volume is calculated by single voxel 

volume × total voxels in the tumor. The 6.95 mm size tumor is too small for the PET 
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scanner to identify. The mismatch between the segmented tumor and the true volume for 

the physical phantom is due to the partial-volume and spillover effects, and also the 

limitation of the spatial resolution of the PET scanner. 

Tumor diameter  
(mm) 

True Tumor 
Volume 

Segmented Tumor 
Size 

Percentage 
Difference 

6.0 17 pixels 20 pixels 17.6% 

8.5 33 pixels 38 pixels 15.2% 

10.0 44 pixels 48 pixels 9.1% 

20.0 230 pixels 244 pixels 6.1% 

NCAT  
Phantom 

(w/Poisson 
Noise) 

25.0 409 pixels 422 pixels 3.2% 

6.0 17 pixels 18 pixels 11.7% 

8.5 33 pixels 36 pixels 9.1% 

10.0 44 pixels 48 pixels 9.1% 

20.0 230 pixels 239 pixels 3.9% 

NCAT  
Phantom 

(w/Random 
Noise) 

25.0 409 pixels 415 pixels 1.4% 

8.23 0.13 ml / / 

9.86 0.25 ml 0.46 ml 84.0 % 

11.89 0.50 ml 0.72 ml 64.0% 

14.43 1.00 ml 1.13 ml 13.0% 

Physical 
Phantom 

17.69 2.00 ml 2.21 ml 10.5% 

Table 5.1 Results comparing the true tumor volume with the segmented tumor 
volume. Here the segmentation was performed on the static PET images so that we can 
compare our result with the true tumor volume (gold standard). / means the tumor is too 
small for the algorithm to identify.  
 
5.3 Motion Track and Registration Schemes 
 
The results after applying the registration/integration algorithm has been validated using 

the computer simulated NCAT phantom data and the physical phantom for different size 

tumors. Figure 5.7 shows one example of the PET images from the physical phantom 

after intensity based registration. Comparing the centered and right images in the figure, 

the blurring effect of the tumor due to motion has been reduced. 
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Figure 5.7 Left: Ungated PET image of the physical phantom. Center: original gated 
PET image (one of the gated images). Right: motion corrected PET image after applying 
Intensity Registration. 

 
5.3.1 Intensity Based Registration 
 
The following results show the correlation between the original tumor and the registered 

tumor. As intensity based registration algorithm automatically combined all other bins 

into a single bin, each bin was not compared one by one. Comparisons were carried out 

for different tumor sizes. Figure 5.8 shows the cross-correlation results of two NCAT 

phantoms (with Gaussian noise and with Poisson noise) and the physical phantom. Here 

the cross-correlation values refer to the correlation between the un-corrected data with the 

static PET data (gold standard) and the corrected data (after registration) with the static 

data. For the NCAT phantom with Gaussian Noise, the simulation of the 10 mm tumors 

was repeated three times to simulate experimental variability, and the error bars in the 

figures represents standard deviation, There isn’t much change in the correlation 

coefficients, activity concentrations and relative noise levels (less than 3% deviation from 

the mean value) using intensity based registration as seen from Figure 5.8 (a), 5.9 (a) and 

5.10 (a), and similar results were obtained using other registration methods showing no 

difference between each simulations as can be seen in the following chapters. 
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Intensity Based Registration
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Intensity Based Registration
(Physical Phantom)
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 (c) 
Figure 5.8 (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using intensity based registration algorithm, before 
registration compared to after Direct Scheme and Successive Scheme. (b) Cross-
correlation results of NCAT phantom with Poisson noise simulated (c) Cross-correlation 
results of physical phantom for 4 different size tumors. The 5th tumor of the physical 
phantom is too small for the algorithm to identify. 
 
The quantitative results of activity concentration are evaluated with reference to the static 

PET, ungated PET and gated PET as shown in Figure 5.9. Here the activity concentration 

is calculated as the average activity over the entire tumor region. Next the values were 

normalized to the static PET value (which is the gold standard for comparison). It can be 

seen that the activity concentrations after registration are closer to the true values.  
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Intensity Based Registration
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Intensity Based Registration
(Physical Phantom)
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 (c) 
Figure 5.9 (a) NCAT phantom with Gaussian noise results, error bars with 10 mm 
tumor simulations are for standard deviation, N=3 (b) NCAT phantom with Poisson noise 
results and (c) physical phantom results, activity concentration of Intensity registration 
algorithms with Direct and Successive Scheme, static PET, gated PET and ungated PET 
images, here gated PET means the average of all of the individual gates. All of the values 
are normalized to the static PET (gold standard). Here gated PET values come from the 
average value of all gated bin. 
 
The results of the actual tumor size with the computed size of segmented tumors are 

shown in Table 5.1, to compare gated tumors (average of all of the individual gates) with 

registered tumors (with Intensity Direct Scheme and Intensity Successive Scheme). After 

registration/combining of all gates, the tumor size doesn’t increase much compared with 

the gated tumor; some even became smaller compared with the gated tumor. This is due 

to the shrinking process before registration. 

Segmented Tumor Size Tumor diameter  
(mm) 

True Tumor 
Volume Gated 

Tumor 
Intensity 
(Direct) 

Intensity 
(Successive) 

6.0 17 pixels 20 pixels 18 pixels 18 pixels 

8.5 33 pixels 38 pixels 36 pixels 36 pixels 

10.0 44 pixels 48 pixels 45 pixels 45 pixels 

NCAT  
Phantom 

(w/Poisson 
Noise) 

20.0 230 pixels 241 pixels 237 pixels 237 pixels 
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25.0 409 pixels 424 pixels 420 pixels 420 pixels 

6.0 17 pixels 19 pixels 19 pixels 19 pixels 

8.5 33 pixels 38 pixels 39 pixels 39 pixels 

10.0 44 pixels 48 pixels 46 pixels 46 pixels 

20.0 230 pixels 244 pixels 244 pixels 240 pixels 

NCAT  
Phantom 

(w/Gaussian 
Noise) 

25.0 409 pixels 422 pixels 418 pixels 418 pixels 

8.23 0.13 ml / / / 

9.86 0.25 ml 0.48 ml 0.49 ml 0.49 ml 

11.89 0.50 ml 0.76 ml 0.79 ml 0.78 ml 

14.43 1.00 ml 1.17 ml 1.17 ml 1.19 ml 

Physical 
Phantom 

17.69 2.00 ml 2.29 ml 2.31 ml 2.33 ml 

Table 5.2 Results comparing the true tumor volume with the segmented tumor 
volume. / means the tumor is too small for the algorithm to identify. 
 
Relative noise levels are also compared. Lower noise is achieved after registration as 

shown in Figure 5.10 for both the NCAT phantom and the physical phantom. Here the 

relative noise level is estimated by the standard deviation of the tumor region over the 

average value of the tumor region. 
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Intensity Based Registration
(NCAT Phantom w/ Poisson Noise)
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Intensity Based Registration
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 (c) 
Figure 5.10 Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with Gaussian noise, 
error bars with 10 mm tumor simulations are for standard deviation, N=3 (b) NCAT 
phantom with Poisson noise, (c) Physical phantom. 
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5.3.2 Centroid Based registration 
 
Figure 5.11 shows the cross-correlation results of NCAT phantom and physical phantom 

using Centroid Based registration with Direct and Successive Schemes; similar results as 

Intensity registration were obtained.  
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Centroid Based Registration
(Physical Phantom)
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 (c) 
Figure 5.11 (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Centroid based registration algorithm, before 
registration comparied to after Direct Scheme and Successive Scheme. The error bars 
with 10 mm tumor simulations are for standard deviation, N=3 (b) Cross-correlation 
results of NCAT phantom with Poisson noise simulated (c) Cross-correlation results of 
physical phantom for 4 different size tumors.  
 
The quantitative results of activity concentration are also evaluated with reference to the 

static PET, non-gated PET and non-registered gated PET as shown in Figure 5.12 below. 

Here the activity concentration is calculated as the average activity over the entire tumor 

region then the values are normalized to the static PET value (which is the gold standard 

for comparison).  
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Centroid Based Registration
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Centroid Based Registration
(Physical Phantom)
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 (c) 
Figure 5.12  (a) NCAT phantom with Gaussian noise results, the error bars with 10 mm 
tumor simulations are for standard deviation, N=3, (b) NCAT phantom with Poisson 
noise results and (c) physical phantom results, activity concentration of Centroid 
registration algorithms with Direct and Successive Scheme, static PET, gated PET and 
ungated PET images. All of the values are normalized to the static PET (gold standard). 
Here gated PET values come from the average value of all of the gated bins. 
 
The results of the actual tumor size with the computed size of segmented tumors are 

shown in Table 5.2, to compare gated tumors (average of all gates) with registered tumors 

(with Centroid Direct Scheme and Centroid Successive Scheme). 

Segmented Tumor Size Tumor diameter  
(mm) 

True Tumor 
Volume Gated 

Tumor 
Centroid 
(Direct) 

Centroid 
(Successive) 

6.0 17 pixels 20 pixels 22 pixels 20 pixels 

8.5 33 pixels 38 pixels 41 pixels 41 pixels 

10.0 44 pixels 48 pixels 51 pixels 53 pixels 

20.0 230 pixels 241 pixels 252 pixels 255 pixels 

NCAT  
Phantom 

(w/Poisson 
Noise) 

25.0 409 pixels 424 pixels 426 pixels 430 pixels 

6.0 17 pixels 18 pixels 19 pixels 20 pixels 

8.5 33 pixels 36 pixels 37 pixels 38 pixels 

10.0 44 pixels 48 pixels 50 pixels 51 pixels 

20.0 230 pixels 239 pixels 238 pixels 244 pixels 

NCAT  
Phantom 

(w/Gaussian 
Noise) 

25.0 409 pixels 415 pixels 416 pixels 423 pixels 

Physical 8.23 0.13 ml / / / 
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9.86 0.25 ml 0.48 ml 0.55 ml 0.58 ml 

11.89 0.50 ml 0.76 ml 0.82 ml 0.82 ml 

14.43 1.00 ml 1.17 ml 1.21 ml 1.26 ml 

Phantom 

17.69 2.00 ml 2.29 ml 2.31 ml 2.32 ml 

Table 5.3 Results comparing the true tumor volume with the segmented tumor 
volume. / means the tumor is too small for the algorithm to identify. 
 
Relative noise levels are also compared. Lower noise is achieved after registration as 

shown in Figure 5.13 for both NCAT phantom and physical phantom.  
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Centroid Based Registration
(Physical Phantom)
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 (c) 
Figure 5.13 Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with Gaussian noise, 
the error bars with 10 mm tumor simulations are for standard deviation, N=3, (b) NCAT 
phantom with Poisson noise, (c) Physical phantom. 
 
5.3.3 Rigid Body Registration 

Figure 5.14 shows the cross-correlation results of the NCAT phantom and the physical 

phantom using Rigid Body registration with Direct and Successive Schemes; similar 

results as the two other registration methods before were obtained. The error bars of 

standard deviation indicating the variations of three simulations with 10 mm tumor are 

displayed in each figure, the standard deviation are within 3%. 
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Rigid Body Registration
(NCAT Phantom Exp w/ Gaussian Noise)
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Rigid Body Registration
(Physical Phantom Exp)
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 (c) 
Figure 5.14 (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Rigid Body registration algorithm, before 
registration comparing to after Direct Scheme and Successive Scheme. The error bars 
with 10 mm tumor simulations are for standard deviation, N=3. (b) Cross-correlation 
results of NCAT phantom with Poisson noise simulated (c) Cross-correlation results of 
physical phantom for 4 different size tumors. 
 
The quantitative results of activity concentration are also evaluated with reference to the 

static PET, non-gated PET and non-registered gated PET as shown in Figure 5.15 below. 

Here the activity concentration is calculated as the average activity over the entire tumor 

region, then the values are normalized to the static PET value (which is the gold standard 

for comparison).  
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Rigid Body Registration
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Rigid Body Registration
(Physical Phantom)
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 (c) 
Figure 5.15  (a) NCAT phantom results with random noise, the error bars with 10 mm 
tumor simulations are for standard deviation, N=3. (b) NCAT phantom results with 
Poisson noise and (c) physical phantom results. Activity concentration of Rigid Body 
registration algorithms with Direct and Successive Scheme, static PET, gated PET and 
ungated PET images. All of the values are normalized to the static PET (gold standard). 
Here gated PET values come from the average value of all gated bin. 
 
The results of the actual tumor size with the computed size of segmented tumors are 

shown in Table 5.4, to compare gated tumors (average of all gates) with registered tumors 

(with Rigid Body Direct Scheme and Rigid Body Successive Scheme). 

Segmented Tumor Size Tumor diameter  
(mm) 

True Tumor 
Volume Gated 

Tumor 
Rigid Body 

(Direct) 
Rigid Body 

 (Successive) 
6.0 17 pixels 20 pixels 20 pixels 20 pixels 

8.5 33 pixels 38 pixels 39 pixels 41 pixels 

10.0 44 pixels 48 pixels 46 pixels 48 pixels 

20.0 230 pixels 241 pixels 246 pixels 240 pixels 

NCAT  
Phantom 

(w/Poisson 
Noise) 

25.0 409 pixels 424 pixels 420 pixels 424 pixels 

6.0 17 pixels 18 pixels 18 pixels 19 pixels 

8.5 33 pixels 36 pixels 34 pixels 38 pixels 

10.0 44 pixels 48 pixels 47 pixels 49 pixels 

20.0 230 pixels 239 pixels 237 pixels 240 pixels 

NCAT  
Phantom 

(w/Gaussian 
Noise) 

25.0 409 pixels 415 pixels 413 pixels 415 pixels 
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8.23 0.13 ml / / / 

9.86 0.25 ml 0.48 ml 0.46 ml 0.44 ml 

11.89 0.50 ml 0.76 ml 0.76 ml 0.78 ml 

14.43 1.00 ml 1.17 ml 1.19 ml 1.22 ml 

Physical 
Phantom 

17.69 2.00 ml 2.29 ml 2.26 ml 2.23 ml 

Table 5.4 Results comparing the true tumor volume with the segmented tumor 
volume. / means the tumor is too small for the algorithm to identify. 
 
Relative noise levels are also compared. Lower noise is achieved after registration as 

shown in Figure 5.16 for both the NCAT phantom and the physical phantom.  

Rigid Body Registration
(NCAT Phantom w/ Gaussian Noise)

0

0.2

0.4

0.6

0.8

1

6 8.5 10 20 25
Tumor Size (mm)

R
el

at
iv

e 
N

oi
se

 L
ev

el

Rigid Body Method (Direct)

Rigid Body Method (Successive)

Before Registration

 (a) 

 83



Rigid Body Registration
(NCAT Phantom w/ Poisson Noise)
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 (c) 
Figure 5.16 Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with Gaussian noise, 
the error bars with 10 mm tumor simulations are for standard deviation, N=3. (b) NCAT 
phantom with Poisson noise, (c) Physical phantom. 
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5.3.4 Optical Flow Based Registration 
 
Figure 5.14 shows the cross-correlation results of the NCAT phantom and the physical 

phantom using Optical Flow registration with Direct and Successive Schemes; similar 

results as the two other registration methods before were obtained. 
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Optical Flow Registration
(Physical Phantom Exp)
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 (c) 
Figure 5.17 (a) Cross-correlation results of NCAT phantom with Gaussian noise 
simulated for 5 different size tumors using Optical Flow registration algorithm, before 
registration comparing to after Direct Scheme and Successive Scheme. The error bars 
with 10 mm tumor simulations are for standard deviation, N=3. (b) Cross-correlation 
results of NCAT phantom with Poisson noise simulated (c) Cross-correlation results of 
physical phantom for 4 different size tumors. 
 
The quantitative results of activity concentration are also evaluated with reference to the 

static PET, non-gated PET and non-registered gated PET as shown in Figure 5.18 below. 

Here the activity concentration is calculated as the average activity over the entire tumor 

region, and then the values are normalized to the static PET value (which is the gold 

standard for comparison).  
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Optical Flow Registration
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Optical Flow Registration
(Physical Phantom)
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Figure 5.18  (a) NCAT phantom with Gaussian noise results, the error bars with 10 mm 
tumor simulations are for standard deviation, N=3. (b) NCAT phantom with Poisson 
noise results and (c) physical phantom results, activity concentration of Rigid Body 
registration algorithms with Direct and Successive Scheme, static PET, gated PET and 
ungated PET images. All of the values are normalized to the static PET (gold standard). 
Here gated PET values come from the average value of all gated bin. 
 
The results of the actual tumor size with the computed size of segmented tumors are 

shown in Table 5.5, which compares gated tumors (average of all gates) with registered 

tumors (with Optical Flow Direct Scheme and Optical Flow Successive Scheme). 

Segmented Tumor Size Tumor diameter  
(mm) 

True Tumor 
Volume Gated 

Tumor 
Optical Flow 

(Direct) 
Optical Flow
(Successive) 

6.0 17 pixels 20 pixels 23 pixels 20 pixels 

8.5 33 pixels 38 pixels 43 pixels 38 pixels 

10.0 44 pixels 48 pixels 56 pixels 50 pixels 

20.0 230 pixels 241 pixels 267 pixels 247 pixels 

NCAT  
Phantom 

(w/Poisson 
Noise) 

25.0 409 pixels 424 pixels 438 pixels 420 pixels 

6.0 17 pixels 18 pixels 22 pixels 19 pixels 

8.5 33 pixels 36 pixels 40 pixels 34 pixels 

10.0 44 pixels 48 pixels 52 pixels 48 pixels 

20.0 230 pixels 239 pixels 253 pixels 233 pixels 

NCAT  
Phantom 

(w/Gaussian 
Noise) 

25.0 409 pixels 415 pixels 431 pixels 410 pixels 

Physical 8.23 0.13 ml / / / 
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9.86 0.25 ml 0.48 ml 0.50 ml 0.46 ml 

11.89 0.50 ml 0.76 ml 0.81 ml 0.76 ml 

14.43 1.00 ml 1.17 ml 1.27 ml 1.20 ml 

Phantom 

17.69 2.00 ml 2.29 ml 2.36 ml 2.21 ml 

Table 5.5 Results comparing the true tumor volume with the segmented tumor 
volume. / means the tumor is too small for the algorithm to identify. 
 
Relative noise levels are also compared. Lower noise is achieved after registration as 

shown in Figure 5.19 for both NCAT phantom and physical phantom.  
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Optical Flow Registration
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 (c) 
Figure 5.19 Comparing relative noise level before registration and after Intensity 
registration with direct and Successive Scheme: (a) NCAT phantom with Gaussian noise, 
the error bars with 10 mm tumor simulations are for standard deviation, N=3. (b) NCAT 
phantom with Poisson noise, (c) Physical phantom. 
 
5.3.5 Comparison of Four Registration Methods 

The comparison of four registration methods and two registration schemes are displayed 

in Figure 5.20 below for cross-correlation coefficient results. The difference in 

improvement after all these motion correction algorithms can be seen. 
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Cross-correlation Results of NCAT Phantom Exp
w/ Gaussian Noise (Comparing of Four Registration Methods)
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Cross-correlation Results of Physical Phantom Exp
(Comparing of Four Registration Methods)
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 (c) 
Figure 5.20 Cross-correlation results comparing four registration methods and two 
registration schemes, (a) NCAT phantom with Gaussian noise, the error bars with 10 mm 
tumor simulations are for standard deviation, N=3. (b) NCAT phantom with Poisson 
noise. (c) physical phantom. Here OF is the short of Optical Flow. 
 
The comparison of all four registration methods and two registration schemes in average 

activity concentrations are displayed in Figure 5.21 below. 
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Average Activity Results of NCAT Phantom Exp
w/ Gaussian Noise (Comparing of Four Registration Methods)
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Average Activity Results of Physical Phantom Exp
(Comparing of Four Registration Methods)

0.6

0.7

0.8

0.9

1

9.86 11.89 14.43 17.69
Tumor Size (mm)

A
ct

iv
ity

 C
on

ce
nt

ra
tio

n

Rigid (Direct)
Rigid (Successive)
OF (Direct)
OF (Successive)
Intensity (Direct)
Intensity (Successive)
Centroid (Direct)
Centroid (Successive)
Gated
Ungated

 (c) 
Figure 5.21 Average activity concentration results comparing four registration 
methods and two registration schemes, (a) NCAT phantom with Gaussian noise, the error 
bars with 10 mm tumor simulations are for standard deviation, N=3. (b) NCAT phantom 
with Poisson noise, (c) physical phantom. Here OF is the short of Optical Flow. 
 
Relative noise levels are compared for four registration methods and two registration 

schemes in Figure 5.22. In terms of noise reduction, all these eight methods appear to be 

similar. 

The computation time of four registration methods and two registration schemes are 

shown in Table 5.6. The computer to run all these algorithms is Intel Core 2 Duo @ 1.40 

GHz, 2GB memory. It can bee seen that Centroid and Intensity methods require the least 

processing time, while the Optical Flow with Successive Scheme is most time 

consuming. 

Computation 
Time (Second) 

Centroid 
 

Intensity 
 

Rigid 
Body 

Optical 
Flow 

Direct  10.3 10.1 29.5 195.0 

Successive  28.6 28.1 81.9 541.4 
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Table 5.6 Comparing of processing time for four registration methods and two 
registration schemes. 
 

Relative Noise of NCAT Phantom Exp
w/ Gaussian Noise (Comparing of Four Registration Methods)
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Relative Noise of Physical Phantom Exp
(Comparing of Four Registration Methods)
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 (c) 
Figure 5.22 Results of relative noise comparing four registration methods and two 
registration schemes, (a) NCAT phantom with Gaussian noise, the error bars with 10 mm 
tumor simulations are for standard deviation, N=3. (b) NCAT phantom with Poisson 
noise , (c) physical phantom. 
 
The sensitivity of noise for the four registration methods was tested by applying twice 

and three times noise level on NCAT phantom with random noise, and the results of 

percentage degradation in the cross-correlation result after noise are shown in Figures 

5.23 below. 
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Percentage Degradation after
Twice Noise Level
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Figure 5.23 Percentage degradation in cross-correlation result after (a) applying twice 
noise and (b) applying three times noise with NCAT phantom 
 

 97



6. DISCUSSIONS 

Improving the detectability of a malignant lung tumor in its initial stage will positively 

impact lung cancer patient care, which is a major health problem in the United States. For 

lung cancer detection, 18FDG-PET has been proven to have a higher sensitivity than CT 

[2]. However, because of the long duration of whole body PET scans, tumor and organ 

motion due to respiration can be a major challenge for accurate localization and 

quantification of 18PET-FDG images as the image will be blurred and the tumor smeared. 

The long-term goal of this research is to increase the sensitivity and prognostic value of 

molecular imaging with 18FDG-PET/CT of small malignant lung tumors that move 

significantly during respiration, and to improve the identification and accuracy of 18FDG 

uptake quantitation of small tumors. The overall goal of this study is to develop and 

validate a simple and practical solution to the problem of respiratory motion for the 

precise interpretation and quantitation of 18FDG uptake of lung PET images.  

Several papers appeared in recent years describing different image processing algorithms 

compensating for motion artifacts. There are comprehensive review papers of motion 

correction methods in PET by Rahmim [58], Nehmeh et al[87] and by Visvikis et al[44]. 

Qiao et al [62] achieved motion correction by successfully applying non-rigid motion 

compensation to computer simulated list-mode PET data; similarly, Lamare et al [61], 

Livieratos et al [88] also apply affine transformation to list-mode PET data. These 

correction approaches are performed during reconstruction process based on the list mode 

raw data, which is also a very promising area, however, as list mode collection is not 

generally implemented on clinical cameras, it is probably a limiting obstacle, also it 

requires more memory storage and processing time while our method is a post-
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reconstruction algorithm (in image domain), applicable to existing clinical 

reconstructions and is likely more computationally feasible.  Deconvolution has been 

reported to correct lung motion artifact with positive results [63]. An accurate estimation 

of respiratory motion from 4D CT images is required before performing the 

deconvolution, which is one limitation; also deconvolution itself tends to amplify the 

noise in real noisy PET data. Another attempt to solve to problem proposed by Dawood 

et al [66] utilizes a global optical flow algorithm for motion correcting images in 

individual gates. The method uses four assumptions to perform the deformable 

registration: intensity similarity, incremental transformation, smoothness, and error 

minimization, which could suffer from inaccuracy in the presence of high noise. Also the 

work from Thorndyke et al [67] corrects motion through retrospective stacking, where 

the entire data is stacked on top of one another to form a composite image. Most of these 

current correction approaches derive registration information from the entire image 

sequence of the moving object. Due to the elastic nature of the chest region, an 

elastic/deformable motion model is often required to characterize the respiratory 

movement. These elastic image registration approaches generally involve an optimization 

process over a large number of parameters, which could lead to lengthy computation time. 

In addition, the complexity of the movement within the chest and abdomen region often 

makes it difficult to achieve accurate registration for each image voxel position. It is 

often the case when applying deformable image registration to a large image region that, 

although the overall structures of the registered images can be reasonably aligned, some 

mis-matches at local detail levels are still present even after a lengthy optimization 

process. These mis-matches would then cause inaccurate motion compensation for the 
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corresponding image features, and would have adverse effects if those features are of 

interest. 

Different from these “whole-image” approaches, our algorithm intends to improve the 

speed and accuracy in estimating respiratory motion. We aim at a more general and 

practical solution to this problem by limiting our efforts to the “local region”: the 

segmented tumor part only, which is the region of most interest. Our work has some 

similarity to another paper by Qiao et al [64] using region of interest (ROI) motion 

compensation by incorporating motion information within that region into the system 

model, this will enable faster extraction of motion information, but they require manually 

selecting the ROI, while in our algorithm the tumor region can be automatically localized 

and identified. Unlike registering the entire image set, the “local” image registration only 

requires a simplified model to describe the motion (e.g., a centroid-based model, rigid 

body model with a few number of degrees of freedom). The fewer free parameters 

associated with the motion model and the reduced number of image voxels to be 

considered both contribute to the speedup of the image registration process compared 

with entire image registration methods. The local image registration method also has the 

potential to improve registration accuracy within the “local” region when considering the 

following aspects: the registration algorithm only focuses on the alignment of image 

contents within the tumor region, and would not be disturbed by other irrelevant image 

features; the optimization process would be more robust due to the reduced dimensions of 

the parameter space. 

The innovative aspect of this project is to develop a computer-assisted motion track and 

integration algorithm that includes all the counts collected in the respiratory cycle into 

 100



solely one reference bin. This method has the advantages: (1) the automatic track 

algorithm would simplify the calculations as the following integration algorithm will only 

be performed on the segmented tumor region; (2) PET scan time doesn’t need to be 

increased as the integration process will reduce statistical noise and increase signal-to-

noise ratio. The integration of the information of different time bins into one set of 

tomographic slices would facilitate the 3D quantitation of activity and the introduction of 

the procedure to the clinical practice. It could make the clinical interpretation of lung 

tumor 18FDG-PET scans easier, faster and more reproducible.  

The validation of the algorithm was performed on a simulated NCAT computer phantom 

and a dynamic physical phantom. One assumption about the simulated tumor is that the 

tumor is rigid and will move as a whole, there will be no deformation or change inside 

the tumor between each gated bins. Phantom studies often provide insight that is difficult 

or impossible to obtain, by using pre-defined, controlled parameters, and avoiding any 

un-controlled scanner- or patient-specific variability. Moreover, we know the “gold 

standard” in these cases, so that algorithm results can be compared to optimal goals under 

a wide range of well-defined conditions. In the future, these phantoms can also be 

implemented into related imaging research studies such as respiratory gating hardware 

design and acquisition protocol development.  

The experiments with both the NCAT software phantoms (with Gaussian noise and with 

Poisson noise) as well as with the physical phantom showed significant improvement in 

motion corrected data. Several independent criteria were selected to assess the 

improvement. For tumor activity concentration, the activity values are closer to the static 

tumor (real value) with reference to the ungated PET after all four registration methods 
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(except Optical Flow with Direct Scheme) (Figure 5.21), with improvements of 9.2%, 

6.5%, 10.1% and 0.1% for Intensity Registration, Centroid Registration, Rigid Body 

Registration and Optical Flow Registration with Direct Scheme respectively, and 

improvements of 9.7%, 7.9%, 10.3% and 12.8% for Intensity Registration, Centroid 

Registration, Rigid Body Registration and Optical Flow Registration with Successive 

Scheme respectively. For cross-correlation coefficient as shown in Figure 5.20, with 

Direct Scheme the average improvements of 27.7%, 19.2%, 29.6% and 13.8% were 

achieved with Intensity, Centroid, Rigid Body and Optical Flow method respectively. 

With Successive Scheme the average improvements of 29.4%, 22.3%, 31.8% and 36.6% 

were achieved with Intensity, Centroid, Rigid Body and Optical Flow method 

respectively. In the Optical Flow method, Successive Scheme improved 22.8% 

comparing with Direct Scheme, while for the other methods the improvements of the 

Successive Scheme were very small. 

Figure 5.22 demonstrates the analysis of noise reduction on the PET data, which is an 

indicator of the image quality and supports the conclusion from Chapter 4.5.1, that 

motion correction improves the SNR to ungated PET Data. For example, the average 

noise level in the NCAT phantom gated images is 0.518, and that for the data after Rigid 

Body registration it is 0.241, which is similar to the ungated data, 0.225. There is not a 

large difference between these four methods. An average reduction of 25.6%, 25.1%, 

23.9% and 24.8% in noise level was achieved for Intensity Registration, Centroid 

Registration, Rigid Body Registration and Optical Flow Registration with the Direct 

Scheme respectively, and an average of 24.1%, 23.7%, 23.1% and 21.9% in noise level 

reduction was achieved for Intensity Registration, Centroid Registration, Rigid Body 
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Registration and Optical Flow Registration with Successive Scheme respectively. The 

slightly higher noise level with the Successive Scheme compared with the Direct Scheme 

is probably due to more interpolation steps performed during motion correction. 

The simulation of NCAT phantom with Gaussian noise using the 10 mm tumors was 

repeated three times to simulate statistical experiment variability. The changes is minimal 

as can be seen from the results of cross coefficients, activity concentration and relative 

noise levels, the standard deviations between these results are within 3%. 

Two registration schemes were also compared: Direct Scheme vs. Successive Scheme. 

For Intensity Registration, Centroid Registration and Rigid Body Registration, average 

improvement of 1.7%, 3.1% and 2.2% in correlation coefficient after applying the 

Successive Scheme were observed, respectively. Similar small improvements of activity 

concentration of 0.5%, 1.4% and 0.3%, respectively, were observed. The improvement of 

the Successive Scheme compared with the Direct Scheme is minimal but it requires much 

more computational time and more interpolation steps, so it appears unnecessary to use 

the Successive Scheme for these three methods. For the Optical Flow method, it is 

obvious that the Successive Scheme is superior to the Direct Scheme, as there is a 21.1% 

improvement in the cross correlation coefficient and a 12.7% improvement in the activity 

concentration. This is because the optical flow algorithm can calculate the motion field 

with smaller displacement much more accurately than large displacement.  

The optical flow algorithm differs from other deformable registration methods in its ease 

of use as no user intervention is required to select matching control pixels and its 

precision in mapping the images. The Horn-Schunk method [85] uses spatio-temporal 

derivatives of the evolving image brightness function to determine the optical flow, the 
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assumption is made that the brightness of any part of the image changes very slowly and 

smoothly, which makes the algorithm very vulnerable when the images are very noisy. 

The comparison of all of the methods’ sensitivity to noise is demonstrated in Figures 5.23 

and 5.24 showing that the Optical Flow method is most sensitive to noise, while the other 

methods perform better in case of high noise level. 

In all the experiments with the NCAT computer phantom and the physical phantom, the 

tumors are always simulated as sphere shape. Possible degradation in the results could 

occur when implementing the algorithms with real irregular shaped tumors, as the rough 

boundaries are more sensitive to noise, and it will become more difficult for the 

algorithm to distinguish the tumor voxels from noise voxels. It is noticed that the results 

from the NCAT computer phantom are much better than the results from the physical 

phantom. Even after the Gaussian/Poisson distributed noise was added into the NCAT 

phantom data, it is still too ideal compared with real physical phantom data. Scattering 

events, random coincidence events and attenuation are not included into the NCAT 

phantom. Also no correction was made for the partial volume effect. Another possible 

reason for the better NCAT results compared with physical phantom results is that the 

spatial resolution of the NCAT phantom images is 3.125 mm per pixel, which is much 

higher than the spatial resolution of physical phantom images (3.75 mm per pixel). 

Incorporating attenuation correction was outside of the scope of this study. In this study 

all the image processing algorithms were performed on attenuation corrected PET data 

with physical phantom. Error could occur during the process of attenuation correction 

because only one snapshot of CT is taken during respiration while PET acquisition is a 

continuous process. Therefore, the CT images do not correlate exactly with the PET 
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images. This could only occur if they were acquired over the exact same period of the 

respiration. We have tried to minimize the error by selecting the reference PET bin as 

close as possible to match the CT transmission data with the highest correlation value, 

but the results cannot be validated unless 4D CT data is acquired. In future work, motion 

information could be extracted from non-attenuation-corrected image data sets, and then 

motion compensation applied to attenuation-corrected image data sets. In this way more 

accurate attenuation correction could be achieved. 

Final verification and demonstration of feasibility should be performed using some 

retrospective and archived clinical PET studies. This will be a future goal of this project: 

patients with a SPN will be evaluated by experienced radiologists, and also the algorithm 

proposed in this research will do the same automatically without intervention of any 

operators. The follow up biopsy could also be performed if possible to verify the findings 

from the images. The quantification of the tumor and staging of the lung cancer should 

match the radiologists’ diagnosis. 
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7. CONCLUSIONS 

In this research project, we developed and evaluated a computer-assisted method that can 

automatically localize tumors in lung PET images of discrete bins within the breathing 

cycle, followed by an algorithm that integrated all the information of a complete 

respiratory cycle into a single reference bin. Validation and comparison of the algorithms 

were performed by conducting experiments on a computerized NCAT phantom and on a 

dynamic physical phantom. Iterations were conducted on different size simulated tumors 

and different noise levels. Comparing the results of the tumors before correction with 

after correction, the tumor activity values and tumor volumes are closer to the static 

tumors (gold standard). Higher correlation values and lower noise are also achieved after 

applying the correction algorithms.  

Of the four registration methods and two registration schemes evaluated, the Optical 

Flow registration with Successive Scheme demonstrates the best correlation result but is 

more sensitive to noise. The Centroid based registration with Direct Scheme requires the 

least processing time but is less accurate than the other methods.  

With these motion correction methods the compromise between short PET scan time and 

reduced image noise can be achieved. The automatic algorithm and practical procedure 

can be implemented in a busy clinical setting; it will allow accurate quantification of 

tumor functional volume and accurate three-dimensional quantitative analysis of tumor 

activity concentration, making the clinical analysis precise and fast. 
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