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A Quantitative Assay for the Juvenile Hormones and
Their Precursors Using Fluorescent Tags
Crisalejandra Rivera-Perez, Marcela Nouzova, Fernando G. Noriega*

Department of Biological Sciences, Florida International University, Miami, Florida, United States of America

Abstract

Background: The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction,
development and behavior. The lipophilic nature of JHs and their precursors, in conjunction with their low concentration in
tissues and susceptibility to degradation had made their quantification difficult. A variety of methods exist for JH
quantification but few can quantify on the femtomole range. Currently applied methods are expensive and time
consuming. In the present study we sought to develop a novel method for accurate detection and quantification of JHs and
their precursors.

Methods: A sensitive and robust method was developed to quantify the precursor, farnesoic acid (FA) and juvenile hormone
III (JH III) in biological samples. The assay is based on the derivatization of analytes with fluorescent tags, with subsequent
analysis by reverse phase high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD). The
carboxyl group of FA was derivatized with 4-Acetamido-7-mercapto-2,1,3-benzoxadiazole (AABD-SH). Tagging the epoxide
group of JH III required a two-step reaction: the opening of the epoxide ring with sodium sulfide and derivatization with the
fluorescent tag 4-(N,N-Dimethylaminosulfonyl)-7-(N-chloroformylmethyl-N-methylamino)-2,1,3-benzoxadiazole (DBD-COCl).

Conclusions: The method developed in the present study showed high sensitivity, accuracy and reproducibility. Linear
responses were obtained over the range of 10–20 to 1000 fmols. Recovery efficiencies were over 90% for JH III and 98% for
FA with excellent reproducibility.

Significance: The proposed method is applicable when sensitive detection and accurate quantification of limited amount of
sample is needed. Examples include corpora allata, hemolymph and whole body of female adult Aedes aegypti and whole
body Drosophila melanogaster. A variety of additional functional groups can be targeted to add fluorescent tags to the
remaining JH III precursors.
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Introduction

The juvenile hormones (JHs) are sesquiterpenoid compounds

that play a central role in insect reproduction, development and

behavior [1]. They are synthesized and secreted by the corpora

allata (CA), a pair of endocrine glands with neural connections to

the brain [2]. The biosynthesis of JH is divided into early and late

steps [3]. The early steps follow the mevalonate pathway from

acetyl-CoA to farnesyl pyrophosphate (FPP). The late steps involve

the hydrolysis of FPP to farnesol [4], followed by oxidation to

farnesal [5] and farnesoic acid (FA) [6]. FA is finally converted to

JH III by means of a methyl transfer [7] and epoxidation [8].

The lipophilic nature of JHs, in conjunction with their low

concentration in tissues, susceptibility to degradation and their

tendency to bind non-specifically has made difficult their

quantification. Three methods have been traditionally employed

to quantify JHs from biological samples: 1) bioassays, 2)

radioimmunoassay (RIA) and 3) physicochemical assays [1]. In

addition, a radiochemical assay (RCA) has been used extensively

to measure JH synthesis in the isolated CA [9].

The first measurements of JHs were done using bioassays.

Biological extracts were injected into insects (mostly Lepidopteran

pupae) and hormonally induced phenotypes, such as disruption of

metamorphosis, were evaluated [10,11]. These assays were

valuable, but laborious and lacked specificity. Radioimmunoassays

(RIA) were developed in the 1980s as an alternative methodology

for JH quantification [12,13], but their high variability and the

cross-reactivity of antibodies against the various JHs has been

criticized [2,13]. Physicochemical methods include gas chroma-

tography coupled with mass spectrometry (GC-MS) [14,15], liquid

chromatography tandem mass spectrometry (LC-MS/MS) [16-

18], ion-trap MS operated in chemical ionization mode [19]

nuclear magnetic resonance [20], infrared spectroscopy [21] or

rapid direct analysis in real time mass spectrometry (DART-MS)

[22]. Analytical methods coupled to mass spectrometry provide

unequivocal identification and quantification of the compounds

and are therefore considered the most accurate for the analysis of
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JH [13,23]. However, MS approaches are expensive, complicated

and often have detection limits only in the picogram or nanogram

range [14,24,25]. The radiochemical assay (RCA) is a sensitive

technique for the precise determination of JH synthesis rates. It

measures the incorporation of the methyl group from [3H]methyl

methionine into JH in isolated CA [9,26,27]. The use of RCA is

limited to in vitro assays and problems such as contamination of

radiolabeled methionine and lack of accuracy have been reported

[28]. JHs and their precursors differ markedly in structure and

physical properties and finding simple alternative protocols for

quantification has been challenging [25,29–31].

High performance liquid chromatography coupled to fluores-

cent detection (HPLC-FD) is a well-established sensitive method

for the accurate detection of low concentration of metabolites [32].

Most analytes lack natural fluorescence, therefore derivatization

with fluorescent tags enhances the detectability of these com-

pounds to the low fmol range [33]. Various fluorescent labeling

reagents have been developed for tagging functional groups such

as carboxyl, hydroxyl and thiol [34,35]. In this study a sensitive

and robust method was developed to quantify FA and JH III in

biological samples. This assay combined the advantages of

fluorescent tag detection of the derivatized analytes with the use

of an HPLC coupled to a fluorescent detector to allow quantitative

analysis of the analytes. Extracted analytes are directly labeled

with fluorogenic labeling reagents in sealed reaction vials. Linear

responses were obtained over the range of 10–20 to 1000 fmols.

FA and JH III levels were quantified from corpora allata,

hemolymph and whole body of female adult Aedes aegypti. JH III

and JH III bisepoxide (JHB3) were detected in whole body extracts

of adult Drosophila melanogaster.

Materials and Methods

2.1 Insects
Aedes aegypti of the Rockefeller strain were reared at 28uC and

80% relative humidity under a photoperiod of 16 h light: 8 h dark.

Mated adults were offered a cotton pad soaked in 3% sucrose

solution. The cotton pad sucrose-fed adults are referred to as sugar

fed. Drosophila melanogaster w118 stocks were reared at 22uC on

standard agar molasses medium.

2.2 Reagents and chemicals
HPLC-grade methanol, acetonitrile, juvenile hormone III,

triphenylphosphine (TPP), 2,29–dipyridyl disulfide (DPDS), citro-

nellol and dichloromethane were obtained from Sigma-Aldrich

(St. Louis, MO). Farnesoic acid (Echelon, Salt Lake City, UT),

sodium sulfide nonahydrate (MP Biomedicals, Solon, OH), DBD-

COCl (4-(N,N-Dimethylaminosulfonyl)-7-(N-chloroformylmethyl-

N-methylamino)-2,1,3-benzoxadiazole) and AABD–SH (4-Aceta-

Figure 1. FA HPLC-FD chromatograms. FA (100 pmol) samples
before and after derivatization are superimposed. FA (black line) and FA
derivatized with AABD-SH (FA-tag, grey line). Left Y axes: UV
absorbance, right Y axes: fluorescence.
doi:10.1371/journal.pone.0043784.g001

Figure 2. The efficiency of FA derivatization with AABD-SH.
Fluorescence signal increases with time of incubation up to 15 minutes.
Each point represents the percentage of tagged FA peak area measured
by HPLC-FD. Data represent the means 6 SD of three independent
experiments.
doi:10.1371/journal.pone.0043784.g002

Figure 3. Effect of temperature on the opening of the epoxide
ring of JH III. JH III was incubated with sodium sulphide (100 mM) at
different temperatures. White bars indicate the percentage of intact JH
III after the reaction and dark bars indicate JH III with open rings after
the reaction. Data represent the means 6 SD of three independent
experiments.
doi:10.1371/journal.pone.0043784.g003

Figure 4. The efficiency of derivatization of the JH III epoxide
ring with DBD-COCl. Fluorescence signal increases with time of
incubation up to 40 minutes. Each point represents the percentage of
tagged JH III peak area measured by HPLC-FD. Data represent the
means 6 SD of three independent experiments.
doi:10.1371/journal.pone.0043784.g004
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mido-7-mercapto-2,1,3-benzoxadiazole) were from TCI-America

(Portland, OR). JHB3 was a gift from Dr. Stephen Tobe and was

synthesized from methyl farnesoate using m-chloroperbenzoic acid

in dichloromethane [36]. Diagnostic ions used for identification of

JHB III included m/z = 300, 283, 265, 251 and 301 as reported

by Yin et al. [37].

2.3 Stock solutions
Stock solutions were prepared as follow: AABD-SH (10 mM) in

dichloromethane, TPP (5 mM) and DPDS (5 mM) in acetonitrile

and DBD-COCl (1 mM) in chloroform. Solutions were protected

from light with aluminum foil and stored at 4uC until used. Under

these conditions, solutions were stable for at least one month.

Sodium sulfide was dissolved with water to a final concentration of

100 mM. Sodium sulfide solutions were stable for 3 days. Stock

solutions of JH III and FA were prepared in methanol and stored

at 220uC.

2.4 Fluorescent tagging of FA, JH III and JHB3

2.4.1 FA tagging. In a 2 ml glass tube 20 ml of FA was mixed

with 20 ml of 10 mM AABD-SH, 20 ml of 5 mM TPP and 20 ml of

5 mM DPDS. Vials were allowed to stand for 15 min at room

temperature and 20 ml of acetonitrile was added to a final volume

of 100 ml (Figure S1). Aliquots of the reaction mixtures were

analyzed by HPLC-FD.

2.4.2 JH III tagging. Tagging of JH III required a two-step

reaction. A) Opening of the epoxide ring: In a 2 ml glass tube 10 ml of

JH III were mixed with 100 ml of 100 mM sodium sulfide. Tubes

were heated in a water bath at 55uC for 30 min and then cooled to

room temperature. B) Derivatizing with a fluorescent tag.
After the epoxide ring was opened, 50 ml of 1 mM DBD-COCl in

chloroform were added and samples were incubated for 40 min at

room temperature, protected from light and slightly agitated.

Reactions were quenched with 90 ml of acetonitrile to a final

volume of 250 ml. (Figure S1). Aliquots of the reaction mixtures

were analyzed by HPLC-FD.

2.4.3 JHB3 tagging. For tagging JHB3 we used a similar

protocol to that described for JH III, with the following

modifications, 1 h incubation in 100 mM sodium sulfide at

55uC for opening of the epoxide rings and 1h incubation with

1 mM DBD-COCl in chloroform at room temperature for

derivatization.

Characterization of standards and tagged compounds were

performed by electrospray ionization-liquid chromatography-mass

spectrometry (ESI-LC/MS) using a LCQ Deca XP Max

Figure 5. JH III HPLC-FD chromatograms. JH III (100 pmol) samples
before and after derivatization are superimposed. JH III (black line) and
JH III derivatized with DBD-COCl (JH-tag, grey line). Left Y axes: UV
absorbance, right Y axes: fluorescence.
doi:10.1371/journal.pone.0043784.g005

Figure 6. Relationship between FA and JH III concentrations
after derivatization and fluorescence intensities. A) FA. B) JH III.
Data represent the means 6 SD of three independent experiments.
doi:10.1371/journal.pone.0043784.g006

Table 1. Intra-run, inter-run and day run precision of JH III
and FA quantification.

Compound
Intra-runa

(% RSD)
Inter-runb

(% RSD)
Day runc

(% RSD)

JH III 3.4 3.74 5.46

FA 1.53 5.57 3.89

aThree and six measurements of one sample respectively, b three separately
extracted samples, two determination each, c three measurements one day
after the reaction from three separately extracted samples, two determination
each. RSD: relative standard deviation.
doi:10.1371/journal.pone.0043784.t001

Table 2. Recovery of labeled FA and JH.

Compound
Input amount
(fmol)

Mean amount
(fmol/CA) % Recovery

FA 0 77.3062.42 -

50 128.0060.56 100.0

100 176.1066.90 99.37

1000 1058.3567.63 98.20

JH III 0 45.2562.42 -

50 91.2560.56 92.4

100 137.368.90 94.3

1000 102567.63 98.06

24h CA-CC (n = 10 for FA and n = 3 for JH). Measurements were done by
duplicate.
doi:10.1371/journal.pone.0043784.t002
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(Finnigan) ion trap mass spectrometer. Optimal conditions were

set as follows: capillary temperature 275uC with a 35 l/min flow

rate and ionization voltage of 5 kV. All spectra were obtained in

the positive ion mode over a mass range of m/z 150–1500.

2.5 In vitro labeling FA, JH III and JHB3 from biological
samples

2.5.1 Analysis of corpora allata-corpora cardiaca (CA-CC)

samples. CA-CC of female adult A. aegypti were isolated as

described by Li et al. [31]. For FA quantifications, 10 pairs of CA-

CC complexes were dissected into 150 ml of saline solution (2 ml

vials) and 500 ml of hexane were added. The vials were vortexed

for 1 min, sonicated for 5 min, vortexed again for 1 min and

centrifuged at 2000 g for 5 min at 4uC. The organic phases (upper

layer) were removed and transferred to new vials. The extracted

organic phases (,500 ml) were filtered with Nalgene 4-mm syringe

filters (0.2 mm nylon membrane, #176) and dried under a N2

atmosphere. Samples were stored at 220uC until used. The

samples were tagged as described in section 2.4.1 and aliquots of

the labeled reactions were analyzed by HPLC-FD.

For JH III quantification, 10 pairs of CA-CC complexes were

dissected and incubated for 4 h in the dark at 32uC under

continuous gentle agitation in tissue culture medium M-199

(Lavallette, NJ, USA) containing 2% Ficoll, 25 mM HEPES

(pH 6.5) and methionine (50 mM). After incubation 150 ml of

100 mM sodium sulfide was added and the epoxide ring was

opened by heating the biological extracts for 30 min at 55uC.

Afterwards, samples were extracted using hexane as described for

FA quantification. The recovered organic phase (,500 ml) was

filtered with a Nalgene filter (0.2 mm nylon membrane, #176) and

dried under N2 atmosphere. Samples were stored at 220uC until

derivatization. For fluorescent tagging, samples were reconstituted

with 25 ml of acetonitrile and 25 ml of 1 mM DBD-COCl were

added. Labeling mixtures were incubated at room temperature for

40 min and reactions were terminated by adding 50 ml of

acetonitrile. Aliquot of the reactions were analyzed by HPLC-FD.

2.5.2 Analysis of insect whole body extracts. For JH III

quantification, 10 adult female mosquitos (24 h after emergence)

were processed by the method described by Bergot et al. [14] that

includes an acetonitrile/pentane extraction and a C18 solid-phase

extraction cartridge purification (Figure S2). The recovered

organic fraction was reduced to a volume of a 100 ml and the JH

III epoxide ring was opened by the addition of 150 ml of sodium

sulfide and incubation at 55uC for 30 min. Samples were then

extracted with hexane; the recovered organic phase (,500 ml) was

filtered with a Nalgene filter (0.2 mm nylon membrane, #176),

dried under N2 and stored at 220uC until used. The labeling of

JH III with fluorescent a tag was done as described for CA-CC

(Figure S2).

2.5.3 Analysis of hemolymph samples. Hemolymph was

collected from 10 sugar-fed female mosquitos (24 h after

emergence) by perfusion with Aedes physiological saline as

described by Qayum and Telang [38] Hemolymph samples were

processed as described in section 2.5.1. The labeling of JH III with

a fluorescent tag was done as described for CA-CC.

2.6 HPLC-FD analysis
HPLC-FD was performed using a Dionex Summit System

(Dionex, Sunnyvale, CA) equipped with a 680 HPLC pump, a

TCC 100 column oven, a UV 170U detector and an UltiMate

3000 fluorescence detector connected in series and a Chromeleon

software version 6.8 SR10. The separation of tagged compounds

was performed on an analytical column Acclaim 120 C18

Figure 7. Detection of tagged FA in mosquito CA-CC by HPLC-
FD. Extracts of CA-CC from 24 h sugar-fed females derivatized with
AABD-SH. The fluorescent peak with a retention time of 40.9 min
represents FA (arrow).
doi:10.1371/journal.pone.0043784.g007

Figure 8. Detection of tagged JH III in mosquito samples by
HPLC-FD. Extracts of hemolymph (diluted 1:10), CA-CC and whole
body (diluted 1:20) from 24 h sugar-fed females were derivatized with
DBD-COCl. The fluorescent peak with a retention time of 51 min
represents JH III (arrows).
doi:10.1371/journal.pone.0043784.g008

Figure 9. Biosynthesis of JH III in vitro in sugar-fed females. CA-
CC complexes from sugar-fed females were dissected at different times
after emergence, incubated for 4 h, extracted and analyzed by HPLC-
FD. Radio chemical analysis (RCA) data are from Li et al. [31]. Data
represent the means 6 SD of three independent experiments. HPLC-FD:
(N), RCA: (#).
doi:10.1371/journal.pone.0043784.g009
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(25062.1 mm ID, particle size 5 mm) (Dionex), using isocratic

elution from 0 to 20 min (acetonitrile/water, 1 to 1 v/v), followed

by a linear gradient from 20 to 50 min (acetonitrile-water (50 to

95%, v/v) and another isocratic elution from 50 min (acetonitrile,

95%). Flow rate was 0.2 ml/min and column temperature was

25uC. The eluate was monitored with UV (214 nm) and

fluorescence detection with the following wavelengths for excita-

tion and emission: FA (lexcitation. 368 nm; l emission. 524 nm) and

JH III (l ex. 450 nm; l em. 560 nm).

2.7 Recovery efficiency for FA and JH III
The efficiency of sample recovery was investigated using two

independent strategies:

1) The addition of 100 ng of citronellol as an internal standard

to the samples before derivatization with subsequent analysis

of citronellol recovery using the UV detector (214 nm).

2) The spiking of a biological sample (CA-CC) before extraction

with known amounts of the analyte (0, 50, 100 and 1000

fmols of FA or JH III). The recovery was expressed as a

percentage and was calculated by subtracting the endogenous

amount of analyte from the amount found, divided by the

amount spiked and multiplying by 100.

2.8 Reproducibility of the HPLC-FD method
The linear relationship between analyte concentration and the

area of the HPLC-FD signal was verified by three replicate

analyses of three calibration standard curves (10–1000 fmols).

Intra-run analysis assesses the reproducibility between independent

HPLC runs of the same sample; this was done by 3–6 independent

measurements of FA and JH III of the same biological sample.

Inter-run variability was evaluated by extracting, tagging and

analyzing three different biological samples by duplicate. Day-run

reproducibility assesses the effect of analyzing samples for two

consecutive days. This was done by running three independent

biological samples on two consecutive days. Reproducibility was

calculated as the Relative Standard Deviation (RSD), obtained by

dividing the standard deviation by the average and then multiplied

by 100 to be expressed as a percentage.

Results

3.1 Optimal conditions for the addition of fluorescent
tags to FA and JH III

3.1.1 Tagging FA. FA was derivatized with AABD-SH at

room temperature in the presence of TPP and DPDS (Figure S2).

The process resulted in the formation of a higher-molecular-

weight fluorescent derivative. Retention time increased from

29.6 min to 39.6 min for FA with UV detection (214 nm) and

resulted in a retention time of 40.9 min with fluorescence

detection (Fig. 1). The delay of 1.2 min of the precursor FA

tagged between UV and FD signals is because the FD detector is

connected in series after the UV detector.

The optimal time for the derivatization reaction of FA was

determined to be 15 min. The amount of labeled FA reached a

plateau after 15 min, indicating that in the described conditions

the thiol group reacted rapidly with the carboxyl group of FA

(Fig. 2).

3.1.2 Tagging JH III. Tagging the epoxide group of JH III

required a two-step reaction: the opening of the epoxide ring and

derivatization with the fluorescent tag (Figure S2). Optimal

conditions for the opening of the epoxide ring were determined

by analyzing changes in temperature. Incubation in the presence

of 100 mM sodium sulfide at 55uC for 30 min resulted in over

98% of ring opening (Fig. 3). In addition, the JH III epoxide ring

could also be opened using either sodium sulfide titrated at pH 10

for 30 min at room temperature, 0.02 M HCl for 4 h at room

temperature or 0.05 N H2SO4 overnight at 40uC.

After the JH epoxide ring was opened, derivatization with the

fluorescent tag was done at room temperature with DBD-COCl.

The optimal time of labeling was 40 min (Fig. 4). The opening of

the epoxide ring increased JH III retention time from 26.5 min to

41.0 min (UV detector, 214 nm); the tagged JH III had a

retention time of 51 min on the fluorescence detector (Fig. 5).

The identities of JH III and tagged JH III were verified by LC-

MS. JH III was characterized based on the diagnostic ions (m/z

267, 249, 235, 217 and 189) as described by Chen et al. [25]. The

molecular ion of JH III after ring opening had a m/z 284 and after

labeling with DBD-COCl had a m/z = 928.9, suggesting that the

ring of JH III is transformed to the diol form and each hydroxyl

group is tagged with a molecule of DBD-COCl (theoretical mass:

928.7).

3.1.3 Tagging JHB3. Since JHB3 has two epoxide rings that

are targets for derivatization, we extended the reaction times for

ring opening and tagging to 1 h each. After derivatization two

main peaks with retention times of 50 and 60.3 min were observed

(Figure S3). The identity of the tagged JHB3 was verified by LC-

MS. The tagged JHB3 had an m/z = 944.4, suggesting that two

tags are linked to the molecule (theoretical mass: 943.4).

3.2 Reproducibility and limit of detection of the HPLC-FD
method

Calibration curves ranging from 10 to 1000 fmol had linear

relationships between fluorescent signal integrated peak areas and

FA or JH III concentrations (R2 of 0.99) (Fig. 6). Limit of

quantifications were 10 and 20 fmol for FA and JH III

respectively, with a signal to noise ratio of 7.

The reproducibility of the technique was evaluated by

measuring the amount of FA present in extracts of CA-CC

dissected from adult female mosquitoes 24 h after emergence and

by measuring the amount of JH III secreted into the medium

when similar CA-CC were incubated in vitro for 4 h. Reproduc-

ibility was evaluated by calculating the RSD. Intra-run, inter-run

and day-run changes were low, with RSDs below 6% for FA and

JH III (Table 1).

3.3 Recovery efficiencies for FA and JH III
FA recovery was 95% based on citronellol addition and 98%

when evaluated by measuring the amount of FA present in

extracts of CA-CC dissected from adult female mosquitoes 24 h

after emergence and spiked with increasing amounts of FA (0, 50,

100 and 1000 fmol) (Table 2). JH III recovery efficiency was over

90% when CA-CC were incubated in vitro for 4 h and then spiked

with increasing amounts of JH III (0, 50, 100 and 1000 fmol)

(Table 2).

3.4 Measurement of FA and JH III in biological samples
FA was quantified in CA-CC complexes dissected from adult

female mosquitoes 24 h after emergence, tagged with AABD-SH

for 15 min at RT and analyzed by HPLC-FD. FA was detected by

the fluorescence detector with a retention time of 41.0 min (Fig. 7).

The amount of FA in CA-CC extracts was 77.364.1 fmol/CA. JH

III levels were below detection range in CA-CC extracts because

JH III is secreted immediately after synthesis [31].

Tagged JH III was quantified in three types of female adult

mosquito samples: hemolymph, whole body extracts and incubat-

Juvenile Hormone Assay
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ed CA-CC + medium (Fig. 8). JH III levels in hemolymph and

whole body are expressed relative to mosquito wet weight and

were 1.460.04 pg/g for hemolymph and 80160.3 pg/g for whole

body extracts. In addition we analyzed the rates of JH III

biosynthesis of CA-CC dissected from sugar-fed adult female

mosquitoes at different times after adult emergence. These values

were very similar to those previously reported using the RCA [31]

(Fig. 9).

We also quantified JH III levels in whole body extracts of D.

melanogaster adult females (1.1760.06 pmol/g) (n = 2) and males

(0.9260.17 pmol/g) (n = 2). These values were the results of

pooled samples of adults of different ages (56 females and 26 males

respectively) and were similar to those previously reported [39].

Discussion

Fluorescence has emerged as a valuable tool in metabolomic

studies since it is possible to detect and quantify trace-level

compounds by their intrinsic fluorescence or after labeling them

with an extrinsic fluorophore [40]. Most compounds do not

possess natural fluorescence so derivatization with fluorescent

labeling reagents can be utilized to enhance their detectability.

Typically, fluorescent labeling reagents are composed of a highly

fluorescent group and a reactive group that reacts with the

functional group of the target compound. The detection limit of

the derivatized analyte is determined by the fluorophore

brightness allowing the detection in the fmol range.

4.1 Analysis of the precursors of JH biosynthesis
Our goal was to develop a sensitive, simple and robust

technique to measure JH III biosynthetic precursors in the

femtomole range. In the CA of mosquitoes there are 14 recognized

precursors of JH III. They are structurally diverse and have

different functional groups suitable for derivatization with

fluorescent tags. Carboxylic groups are one of the most common

functional groups in nature and excellent targets for tagging.

There are five precursors with carboxyl groups: hydroxymethyl-

glutaryl-CoA, mevalonate, mevalonate phosphate, mevalonate

diphosphate and FA. Farnesoic acid was chosen as a proof of

principle for the optimization of the technique. The HPLC-FD

protocol has high sensitivity (10 fmol), outstanding recovery and

excellent reproducibility allowing for the quantification of the FA

pool in a single CA. In labeling FA the correct sequence of

addition of the condensation reagents (TPP and DPDS) is

important; DPDS should be added last to the reaction, otherwise

tagging is not properly completed. A similar observation was

described by Uchiyama [41]. We also successfully tagged the

carboxyl groups of 4 additional precursors and detected hydro-

xymethylglutaryl-CoA, mevalonate, mevalonate phosphate and

mevalonate diphosphate in mosquito CA-CC extracts (Figure S4).

Additional unknown compounds are labeled, but identification of

the target compounds is conclusive based on retention times.

A variety of additional functional groups can be targeted to add

fluorescent tags to the other JH III precursors. We labeled and

detected the thiol group of acetyl-CoA and acetoacetyl-CoA, the

hydroxyl group of farnesol and the aldehyde group of farnesal

(Figure S4). The phosphate group of isopentenyl-PP, dimethylal-

lyl-PP, geranyl-PP and farnesyl-PP and the ester group of methyl

farnesoate could also be targeted for derivatization.

4.2 Analysis of JH levels
Choosing the right extraction method was critical for the success

of the technique. Several solvents have been described for the

extraction of JH: methanol-water-hexane [12,42], chloroform [43]

and isooctane [44]. When extracting JH III from CA-CC, hexane

was almost two-fold more effective than chloroform. For the

analysis of whole body insect extracts the protocol described by

Bergot et al [14] was 20-fold more efficient than methanol/hexane

(data not shown). Quantification by derivatizing epoxide groups

with fluorescent tags was previously reported by Sano and

Takitani [45]; their method was based on opening the epoxide

ring with hydrogen sulfide in the presence of sodium [46] and

converting the epoxide into a fluorescent isoindole adduct by

treating the derivative with o-phthalaldehyde (OPA) and taurine

[45]. Duchateau et al. [47] reported a HPLC method with a

detection limit of 2 pmol based in the same principle. Unfortu-

nately OPA derivatives are unstable and fluorescent products

degrade after 15 min [48]. We modified the tagging step of the

protocol in order to improve the stability, increase the sensitivity to

the femtomole range and detect JH III in biological extracts. We

are reporting for the first time the tagging of an epoxide ring using

DBD-COCl. We selected DBD-COCl instead of OPA, since

DBD-COCl can react with nucleophile groups under mild

conditions. The tagging produced a stable JH III derivative that

was readily detected by HPLC-FD. Epoxides are known to give

the corresponding thioglycol derivative when treated with

hydrogen sulfide [46]; the reaction involves a nucleophilic attack

at the sterically less hindered site of the epoxide generating a

sulfhydryl group at C11 and a hydroxyl group at C10 suitable for

tagging with DBD-COCl [49]. This protocol is very effective,

however a hydroxyl group suitable for tagging by production of a

diol form of JH III could also be achieved using HClO4 in

tetrahydrofuran [50] or H2SO4 [12].

Opening of the epoxide ring converts JH III into a diol form.

The diol is more hydrophilic and less adsorbed onto surfaces (less

‘‘sticky’’); it is also easier to separate from other lipids that are very

abundant in insect samples [12]. By opening the epoxide ring at

the beginning of the sample preparation, JH loses were

significantly reduced thereby achieving excellent recovery efficien-

cies. We believe this striking increase in the stability and recovery

of JH is one of the strengths of this protocol. Once the epoxide ring

has been opened samples can be stored or shipped without

significant losses.

Reported levels of JH in hemolymph or insect whole body

extracts vary between 20 and 4500 pg/ul [29,51] and levels of JH

biosynthesis by isolated CA are between 110 fmol and 50 pmol per

CA/h [52,53]. Our protocol works well in this range and was

validated by confirming JH levels previously reported using other

methods. The changes in levels of JH III synthesis by the isolated

CA-CC of adult female mosquito were similar to those previously

described using RCA by Li et al. [31], although HPLC-FD had

consistently higher values and less variability than RCA [31].

Variability when doing RCA is mostly the result of losses during

extractions, thin layer chromatography separations and scintilla-

tion cocktail quantification. The levels in whole body extracts were

similar to those reported using GC-MS for A. aegypti [29] and D.

melanogaster [39], emphasizing the usefulness of HPLC-FD for

analyzing JH levels in insect samples. The HPLC-FD protocol is

simple, fast and relatively inexpensive. When quantifying JH from

hemolymph or CA samples, the total time needed to extract the

sample, open the ring and derivatize the sesquiterpene was less

than 90 min and multiple samples can be processed simulta-

neously. Quantification from whole body samples is more

laborious and takes around 6 h, but extracting JH from whole

body extracts is cumbersome regardless of the analytical method

used afterwards to quantify sesquiterpenes.
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4.3 Conclusions
HPLC-FD offers several important advantages that include

sensitivity, specificity and reproducibility. By targeting different

functional groups all JH precursors can be labeled and quantified.

Most of them can be labeled with benzofurazan derivatives

allowing the simultaneous detection in a single HPLC run. The

HPLC-FD protocol described could be further optimized. New

chromatographic techniques, based on sub-micron particle sizes,

such as ultra-high performance liquid chromatography (UHPLC),

would allow rapid separations (5 min or less) with higher peak

capacities reducing the time of analysis and increasing resolution.

This protocol could also be adapted for the high-throughput

analysis of samples using multiwell plates and fluorescent

spectrophotometers as long as most of the fluorescent signal

corresponds to the targeted labeled analyte. In summary, this

technique promises to become a useful tool to the comprehensive

analysis of intracellular metabolites in insects.

Supporting Information

Figure S1 Fluorescent tagging of JH III and FA. Tagging

JH III: Tagging of JH III required a two-step reaction. First step:

Opening of the epoxide ring (blue) with sodium sulfide at 55uC to

form a JH diol. Second step: Derivatizing with DBD-COCl to

form a higher-molecular-weight fluorescent derivative (the fluo-

rescent tag is shown in blue). Tagging FA: The carboxylic group of

FA (blue) was derivatized with AABD-SH at room temperature in

the presence of triphenylphosphine (TPP) and 2,29-dipyridyl

disulfide (DPDS). The process resulted in the formation of a

higher-molecular-weight fluorescent derivative (the fluorescent tag

is shown in blue).

(PDF)

Figure S2 In vitro labeling JH III from biological
samples. I) Extraction protocol: Insect tissues were processed

by the method described by Bergot et al. (1981) that includes an

acetonitrile/pentane extraction and a C18 solid-phase extraction

cartridge purification. The recovered organic fraction was reduced

to a volume of a 100 ml and the JH III epoxide ring was opened by

the addition of 150 ml of sodium sulfide and incubation at 55uC for

30 min. Samples were then extracted with hexane; the recovered

organic phase (,500 ml) was filtered with a Nalgene filter (0.2 mm

nylon membrane), dried under N2 and stored at 220uC until

used. II) Opening epoxide ring: The epoxide ring was opened by

the method described by Duchateau and Jacquemin (1993). After

extraction, 150 ml of 100 mM sodium sulfide was added and the

epoxide ring was opened by heating the biological extracts for 30

min at 55uC. Afterwards, samples were extracted using hexane.

The recovered organic phase (,500 ml) was filtered with a

Nalgene filter (0.2 mm nylon membrane) and dried under N2

atmosphere. III) Labeling with a fluorescent tag: For fluorescent

tagging, samples were reconstituted with 25 ml of acetonitrile and

25 ml of 1 mM DBD-COCl were added. Labeling mixtures were

incubated at room temperature for 40 min and reactions were

terminated by adding 50 ml of acetonitrile. Aliquot of the reactions

were analyzed by HPLC-FD.

(TIF)

Figure S3 Tagging and detection of JHB3. JHB3 was a gift

from Dr. Stephen Tobe and was synthesized from methyl

farnesoate using m-chloroperbenzoic acid in dichloromethane

(Bendena et al., 2011). Isolated JHB3: JHB3 was derivatized with

AABD-SH. Two JHB3 fluorescent peaks with retention times of

50 and 60.3 were detected (arrows). Drosophila (whole body): JH

III and JHB3 detection in whole body extracts of a pool of 56 D.

Melanogaster adult females of different ages/JH III is marked with

a large arrow. The two JHB3 peaks are marked with small arrows.

(TIF)

Figure S4 JH pathway precursors derivatized with
fluorescent tags. A variety of additional functional groups can

be targeted to add fluorescent tags to the other JH III precursors.

We labeled and detected the thiol group of acetyl-CoA and

acetoacetyl-CoA with DBD-H ( = 4-(N,N-Dimethylaminosulfo-

nyl)-7-hydrazino-2,1,3-benzoxadiazole) at Exc/Em: 450/565 nm,

the hydroxyl group of farnesol with DBD-COCl (4-(N,N-

Dimethylaminosulfonyl)-7-(N-chloroformylmethyl-N-methylami-

no)benzofurazan) at Exc/Em: 443/546, the carboxyl group of

HMG-CoA, mevalonate, phosphomevalonate and diphosphome-

valonate with AABD-SH ( = 4-acetamido-7-mercapto-2,1,3-ben-

zoxadiazole) at Exc/Em: 368/524 nm, and the aldehyde group of

farnesal with NBD-H ( = 4-hydrazino-7-nitro-2,1,3-benzoxadia-

zole hydrazine) at Exc/Em: 450/565. The precursor were eluted

by reverse phase-HPLC coupled with a fluorometer detector at the

same conditions described for JH and farnesoic acid.

(TIF)
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