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Geographical Dispersion of Consumer Search Behavior

Hakan Yilmazkuday�

April 26, 2017

Abstract

This paper investigates whether consumer search behavior di¤ers across zip codes

within the U.S.. As an application, daily gasoline price data covering virtually all gas

stations within the U.S. are employed to estimate the distribution of search costs in

each zip code. The results show that there are signi�cant di¤erences across zip codes

regarding the expected number of searches achieved before consumers purchase gaso-

line. In order to have a systematic explanation, such di¤erences are further connected

to geographic, demographic and economic conditions of the zip codes in a secondary

analysis. The corresponding results imply several strategies for gas stations in order

to maximize pro�ts/markups; suggestions follow for policy makers and regulators to

reduce redistributive e¤ects of information barriers across locations.
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1. Introduction

Prices for the very same (homogeneous) good can be di¤erent across retailers. This is

most apparent in the gasoline market where gas stations post alternative prices even within

the same zip code in the U.S.. For example, consider Figure 1 where the gasoline price spread

has a median value of 14 cents with a range between 0 and 98 cents.1 Since these retail prices

are already controlled for gas-station and time �xed e¤ects at the zip code level, they are

independent of any gas station characteristics such as their location, brand, competition

level, having a car wash or a convenient store as well as time-varying supply or demand

shocks. One potential explanation to these price spreads is then the lack of information

that consumers have, which has been connected to search costs in the literature following the

seminal article of Stigler (1961) followed by other in�uential studies such as by Varian (1980),

Burdett and Judd (1983), and Stahl (1989). In particular, if consumers do not search for

lower prices, retailers may easily charge higher markups or get involved in collusive behavior.

Accordingly, policy makers have considered this lack of information as a potential problem

reducing consumer welfare due to information frictions.2

Within this picture, we investigate the search behavior across consumers in di¤erent �ve-

digit zip codes within the U.S., where gasoline purchases account for approximately 5% of

consumer spending.3 First, we would like to know whether the search behavior of consumers

di¤ers across zip codes; we are particularly interested in the expected number of searches

achieved by consumers before making a purchase. Accordingly, by using retail level gasoline

price data obtained from virtually all gas stations with the U.S. as an application, we �rst

estimate the expected number of searches and the corresponding search cost distributions

at the zip code level. We achieve this by considering the implications of a non-sequential

consumer search model with heterogeneous search costs. The model is the multi-region

version of the model introduced by Moraga-Gonzalez and Wildenbeest (2008) which is an

oligopolistic version of the model proposed in Hong and Shum (2006) who have generalized

the non-sequential consumer search model of Burdett and Judd (1983) by adding search cost

heterogeneity. The results show that the expected number of searches have a median of

1.66 across zip codes, which implies that consumers do not search much on average before

1Gasoline price spread is de�ned as the di¤erence between the maximum and the minimum price in gas

stations in a given zip code after controlling for gas-station and time �xed e¤ects where the latter includes

both day and hour �xed e¤ects. See the data section below for further details.
2Consider the case of South Korea where gas stations are required to post their retail prices on Opinet.

Policy makers in other countries such as Austria, parts of Australia, Luxembourg or parts of Canada have

also adopted regulatory pricing rules for gas stations; see Haucap and Müller (2012).
3See Consumer Expenditure Survey, 2014, for example: http://www.bls.gov/cex/2014/combined/quintile.pdf
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purchasing gasoline. However, the estimates for the expected number of searches range

between 0.17 and 12.94 across zip codes; hence, there are signi�cant di¤erences in the search

behavior of consumers across zip codes.

Understanding the reasons behind this heterogeneity in the search behavior of consumers

across regions is the key to reduce the redistributive e¤ects of information frictions. In

particular, if information frictions are systematically higher in certain regions, policy makers

can reduce them only by achieving region-speci�c policies. Instead, if a common multi-region

policy is conducted, although it would reduce information frictions in all regions, it would not

necessarily reduce redistributive e¤ects of information frictions across regions.4 Accordingly,

in a secondary analysis, we investigate whether the heterogeneity in the estimated consumer

search behavior can be explained systematically across zip codes. In particular, we attempt to

connect the estimated expected number of searches to geographic, demographic and economic

conditions of zip codes. It is found that geographical frictions due to factors such as the

overall area of the zip code, population density or average distance between gas stations all

contribute positively to the expected number of searches achieved by consumers. On the

other hand, income and commuting time are shown to be negatively related to the expected

number of searches across zip codes, potentially capturing the opportunity cost of time for

making a search. Consumers in zip codes with individuals working in di¤erent industries

are shown to have di¤erent search behavior as well, with industries such as retail trade and

public administration contributing most to the expected number of searches. It is also shown

that consumers in zip codes with higher percentage of Black or African American people

search more compared to those with white or Asian people; consumers in zip codes with

higher percentage of females are also shown to search more compared to other zip codes.

Based on these results, several strategies are implied for gas stations in order to maximize

pro�ts/markups; suggestions follow for policy makers and regulators in order to reduce the

redistributive e¤ects of information frictions across locations.

This paper belongs to the literature estimating the search behavior of consumers by using

only price data. Within this picture, Hortacsu and Syverson (2004) have estimated search

cost distribution of the U.S. mutual funds market, Hong and Shum (2006) have estimated that

of online textbooks, and Moraga-Gonzalez and Wildenbeest (2008) and Moraga-Gonzalez et

al. (2013) have estimated that of computer memory chips. These papers have focused on

the estimation of a single market, while this study deviates from them by considering the

4A recent example of such a local policy (to reduce information frictions) has been achieved by Palm Beach

County, Florida (PBC) that has passed and put into e¤ect an ordinance regarding the size of cash versus

credit card prices at gas stations; however, this ordinance has been trumped by a common multi-location

policy of the State of Florida due to its new law that binds all counties within Florida.
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segmentation of the U.S. gasoline market based on the zip codes that the gas stations are

located at. Such a strategy in this paper is essential to investigate the relationship between

the consumer search behavior and geographic, demographic and economic conditions across

geographical locations.

This paper also belongs to literature based on the consumer search behavior in the retail

gasoline market. Studies such as by Marvel (1976), Lewis (2008), Chandra and Tappata

(2011), and Pennerstorfer et al. (2014) have investigated how the price dispersion in the

gasoline market can be connected to the models of costly consumer search. However, these

studies have been limited due to the reduced-form testing of the comparative static rela-

tionships implied by their models. In contrast, this paper considers the information coming

from the overall distribution of the consumer search behavior across zip codes within the

U.S.. Within this literature, Nishida and Remer (2015; NR henceforth) is the closest study

to this paper. By using the same estimation methodology, NR estimate the average and the

standard deviation of search costs across markets using a similar data set on gasoline prices.

Their results show that the distribution of consumer search costs varies signi�cantly across

geographic markets and that the distribution of household income is closely associated with

the search cost distribution. This paper deviates from NR in several dimensions. First and

most importantly, we focus how the expected number of searches changes across markets,

while NR focus on how the corresponding search costs change across markets. In other words,

while we focus on the quantity of searches across markets, NR focus on the price of searches.

Second, our data set, which is unique to this paper due to our e¤orts in collecting our own

data, covers virtually all gas stations within the U.S., while their investigation focuses only

on the states of California, Florida, New Jersey, and Texas by borrowing a subset of the data

set that has been previously utilized by Chandra and Tappata (2011). Third, we investigate

how the search behavior of consumers changes across zip codes, while NR focus on how the

search behavior of consumers changes across geographic markets de�ned as great circles with

a radius of 1.5 miles; having an investigation at the zip code level has the advantage of con-

necting zip code characteristics such as income, poverty, population density, commuting time,

industries worked, area, race and sex to the search behavior of consumers as we achieve in

this paper. Finally, while we control the retail level gasoline prices for retailer/station �xed

e¤ects and time �xed e¤ects, where the latter include both day and hour (of data collection)

�xed e¤ects, NR controls only for retailer/station �xed e¤ects. Regarding the testable im-

plications of the estimated model as discussed by Moraga-Gonzalez and Wildenbeest (2008),

missing to control for time �xed e¤ects may lead to biased results, because, according to

the model that is common between this paper and NR, (i) prices should be dispersed at any

given moment in time, (ii) there should be variation in the position of a typical retailer in the
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price ranking, and (iii) supply or demand shocks should be absent during the sample period.

These assumptions can only be satis�ed by controlling the retail level gasoline prices for time

�xed e¤ects, together with retailer/station �xed e¤ects, at the market level; accordingly, we

control the retail level gasoline prices for both retailer/station and time �xed e¤ects for each

zip code individually. However, NR controls retail prices only for retailer/station �xed e¤ects

across all gas stations in their sample (rather than market by market); this may create an

additional bias in their results due to not satisfying the assumptions mentioned above.

The next section introduces the consumer search model. Section 3 estimates the expected

number of searches together with the distribution of search costs across zip codes using the

daily gasoline price data. Section 4 connects the expected number of searches to the zip code

characteristics depending on geographic, demographic and economic conditions. Section 5

concludes by providing suggestions for both gas stations (in order to maximize pro�t) and

policy makers (for regulatory purposes).

2. Consumer Search Model

We employ a non-sequential consumer search model with heterogeneous search costs.

The model is the multi-region version of the model introduced by Moraga-Gonzalez and

Wildenbeest (2008) which is an oligopolistic version of the model proposed in Hong and

Shum (2006) who have generalized the non-sequential consumer search model of Burdett

and Judd (1983) by adding search cost heterogeneity. The economic environment consists

of regions that are inhabited by retailers and consumers. Unlike Moraga-Gonzalez et al.

(2013), who assume that di¤erent consumer markets have the same underlying search cost

distribution, we focus on market segmentation where each region has its own search cost

distribution; this is necessary to investigate whether consumer search behavior di¤ers across

zip codes within the U.S..

Region r is inhabited by Nr retailers who sell a homogenous good with a common unit

cost of mr, although the price charged by each retailer may be di¤erent. Consumers in each

region know the distribution of retail prices, however they do not know which retailer charges

which price; accordingly, they search for a subset of retailers to obtain information about

prices. In order to obtain any price information beyond the �rst price observed, consumers

in region r have to pay a randomly drawn search cost of cr that di¤ers across consumers in

that region according to the distribution of search costs given by F cr . Total search cost crir
of a consumer in region r is simply determined by the multiplication of the search cost cr
and the number of retailers sampled ir.

The symmetric mixed strategy equilibrium in region r is denoted by the distribution of
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prices F pr with density f
p
r (pr). Given the behavior of the retailers in region r, the consumer

decides on the optimal number of retailers to search according to the following expression:

ir (cr) = argmin
ir>1

cr (ir � 1) +
Z pr

pr

irpr (1� F pr (pr))
ir�1 fpr (pr) dpr (2.1)

where pr and pr represent the lower and upper bound of the support of F pr (pr). Since ir (cr)

must be an integer, Equation 2.1 corresponds to the partition of consumers in region r intoNr
subsets, each subset representing the fraction qir of consumers searching for ir (= 1; 2; :::; Nr)

retailers; it is implied that
PNr

ir=1
qir = 1.

In order to calculate the fraction qir in region r, consider the following search cost of a

consumer who is indi¤erent between searching ir retailers and ir + 1 retailers:

�i
r = Ep

1:ir
r � Ep1:ir+1r (2.2)

where Ep1:irr represents the expected minimum price in a sample of ir prices drawn from

the price distribution of F pr (pr). Since �
i
r is a decreasing function of ir, the fractions of

consumers sampling ir prices in region r as implied as follows:

q1r = 1� F cr
�
�1
r

�
qir = F

c
r

�
�i�1
r

�
� F cr

�
�i
r

�
, i = 2; 3; ::; Nr � 1 (2.3)

qNr = F
c
r

�
�N�1
r

�
where it is optimal for the retailers to mix in prices, given the search behavior of consumers.

The equilibrium price distribution in region r is obtained by considering the indi¤erence

condition that a retailer should obtain the same level of pro�ts from charging any price in

the support of F pr (pr):

(pr �mr)

"
NrX
ir=1

irq
ir
r

Nr
(1� F pr (pr))

ir�1

#
=
q1r (pr �mr)

Nr
(2.4)

where q1r represents the fraction of consumers who do not compare prices; thus, some of

them end up with paying the upper bound pr of the price distribution. It is implied that the

minimum price charged in region r is given by:

pr =
q1r (pr �mr)PNr

ir=1
irqirr

+mr (2.5)

where the �rst term on the right hand side represents the additive markup on the minimum

price. It is implied that the ratio of the maximum additive markup to the minimum additive

markup within region r is given as follows:

pr �mr

pr �mr

=
Sr
q1r
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where the numerator of the right hand side Sr
�
=
PNr

ir=1
irq

ir
r

�
is the expected number of

retailers searched in order to �nd lower prices, while the denominator is the fraction of

consumers who do not compare prices. This ratio would be equal to one when the minimum

price is equal to the maximum price (i.e., pr = pr), implying that none of the consumers would

compare prices (i.e., Sr =
PNr

ir=1
irq

ir
r = q1r = 1); this is due to having the same expected

minimum price across di¤erent number of retailers sampled when prices are the same. As the

maximum price gets higher compared to the minimum price (i.e., when the price dispersion

increases across retailers), the fraction of consumers who do not compare prices q1r would go

down (i.e., some consumers would start searching for lower prices); this is due to positive

potential gains out of making costly search. In an extreme case in which the price dispersion

goes to in�nity, q1r would go to zero, implying that all consumers would make some search

for lower prices.

We test the implications of this model on the dispersion of gasoline prices across gas

stations next.

3. Estimation of Search Costs

3.1. Data and Estimation Methodology

Using gasoline price data obtained at the retail (i.e., gas station) level, the regions in

the model are matched with �ve-digit zip codes within the U.S.. The gasoline prices have

been downloaded at midnight of each day from MapQuest (http://gasprices.mapquest.com/)

by using an automated procedure (written in Matlab) that scans the code of publicly avail-

able web pages, identi�es relevant pieces of gasoline price information, and stores the data.5

MapQuest receives gasoline prices from Oil Price Information Service (OPIS), a leading

provider of petroleum data collecting gas price data based on �eet transaction data.6 MapQuest

gas prices are updated as qualifying transactions are processed by OPIS. We consider the

daily gasoline price data for the whole month of July 2015. The data cover daily price ob-

servations from 112,515 gas stations within the U.S. for the whole month of July 2015 (i.e.,

for 31 days).

As shown by Hong and Shum (2006) and Moraga-Gonzalez and Wildenbeest (2008),

Equations 2.1-2.5 provide enough information for the maximum likelihood estimation of the

search cost distribution by using only retail price data; we refer the reader to these papers for

5This technique is commonly called �web scraping.�
6Focusing on other topics and time periods, earlier studies such as by Abrantes-Metz et al. (2006), Doyle

and Samphantharak (2008), and Chandra and Tappata (2011) have also used this data set.
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technical details of the estimation.7 Since we focus on the potential heterogeneity of search

cost distributions across zip codes, we achieve the estimation for each zip code individually.

In order to match the gasoline price data with the consumer search model, it assumed that

retailers in any zip code play a stationary repeated game of �nite horizon so, in every period,

the data should re�ect the equilibrium of the static game analyzed in the model section.

As shown by Moraga-Gonzalez and Wildenbeest (2008), this assumption has some testable

implications at the zip code level such as (i) prices should be dispersed at any given moment

in time, (ii) there should be variation in the position of a typical retailer in the price ranking,

and (iii) supply or demand shocks should be absent during the sample period. On top of these

assumptions, we also have an assumption coming from the consumer search model that the

investigated good (i.e., gasoline) is a homogenous good. However, in a particular zip code,

there are many factors that would violate these assumptions for retail level gasoline prices.

The �rst two assumptions, together with the homogeneity assumption, may be violated due to

some gas stations almost always setting higher prices due their brands and/or locations, while

the second assumption may be violated due to daily changes in gasoline prices. Accordingly,

we have to control for these factors before we can continue with the maximum likelihood

estimation. By following the standard practice in many structural auction models (e.g.

Haile et al., 2003; Bajari et al., 2006; An et al., 2010) and consumer search studies such

as by Wildenbeest (2011), we achieve this by controlling the retail level gasoline prices for

retailer/station �xed e¤ects and time �xed e¤ects, where the latter include both day and hour

(of data collection) �xed e¤ects.8 In particular, for gas stations located in a particular zip

code, we simply run a regression of gasoline prices on retailer/station �xed e¤ects and time

�xed e¤ects in that zip code; we consider the residuals of this regression (plus the estimated

constant that is speci�c to the zip code considered) as our measure of retail prices for the

rest of this paper.9

Finally, it has been shown by Moraga-Gonzalez and Wildenbeest (2008) that the mea-

surement error in the number of retailers may lead to biased estimates of the search cost

distribution. Accordingly, we have to make sure that the number of gas stations in our sam-

ple in fact matches with the number of gas stations within the U.S.. We �nd that the number

of gas stations (112,515) in our sample is very close to the number of gas stations in the 2013

County Business Patterns of the U.S. Census Bureau (i.e., the latest data available), which

is 112,458. Therefore, we can safely claim that our daily gasoline price data cover virtually

7The Matlab codes for the estimation of search costs can be found at

http://kelley.iu.edu/mwildenb/code.html.
8The approximate time of the gasoline price update is provided by MapQuest.
9Such a strategy is also important to control for gasoline markets that are inherently di¤erentiated by the

amenities o¤ered and their locations (see e.g. Houde, 2012; Langer and McRae, 2014).
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all gas stations within the U.S..

3.2. Estimation Results

The estimation is achieved for each zip code individually. The summary of the maximum

likelihood estimations is given in Table 1 where the results across zip codes have been sorted

with respect to the estimated expected number of searches Sr
�
=
PNr

ir=1
irq

ir
r

�
; the corre-

sponding percentiles of zip codes are depicted. The corresponding estimates of critical search

cost values across zip codes are given in Figure 2 (up to �10 to save space). Both Table

1 and Figure 2 show the importance of having an analysis at the zip code level, because

the estimated values, which are all signi�cant at the 5% level, are shown to be changing

signi�cantly across locations.

As is evident in Table 1, the median Sr across zip codes is 1.66 with range between 0.17

and 12.94. Therefore, on average, consumers do not search much for lower prices across

gas stations. The median Sr estimate of 1.66 is consistent with other studies in the litera-

ture such as by Moraga-Gonzalez and Wildenbeest (2008) who have estimated Sr as 1.45,

1.60, 1.62 and 1.93 for di¤erent computer memory chips by using price data obtained from

www.shopper.com. Compared to Hong and Shum (2006) who investigate the search costs

for several economics and statistics textbook and estimate Sr as 1.06, 1.25, 1.26 and 1.47,

however, the median Sr estimate of 1.66 in this paper is slightly higher.

In the zip code with the median Sr, the markups range between 7 cents and 22 cents.

When we consider all other zip codes, although markups di¤er across stations, the median

(across zip codes) di¤erence between the minimum price and the unit cost is about 5.7

cents, while the median di¤erence between the maximum price and the unit cost is about

24.13 cents. These markups, which have completely been obtained from the estimation of

the proposed model, is consistent with the average markups discussed in the media or by

organizations making research/surveys on gas stations; e.g., according to The Wall Street

Journal, "The station owners, in turn, set their gas prices for consumers so that the average

markup, or gross margin, on gas is typically around 15 cents or 16 cents a gallon."10 Similarly,

according to The National Association of Convenience Stores, "Over the past �ve years, the

retail mark-up has averaged 17.1 cents per gallon."11

By going into more details in Table 1, we observe that about 58% of consumers do not

search for lower prices in the zip code with the median Sr, although this percentage ranges

between 10% and 80% in the zip codes revealed in this table. This value is consistent earlier

10http://www.wsj.com/articles/SB10001424052702303299604577323661725847318
11http://www.nacsonline.com/YourBusiness/FuelsReports/GasPrices_2014/

Documents/2014NACSFuelsReport_full.pdf.
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studies in the literature such as by Hong and Shum (2006) who estimate q1r ranging between

0.364 and 0.633 for di¤erent textbooks, while it is higher compared to studies by Moraga-

Gonzalez and Wildenbeest (2008) or Moraga-Gonzalez et al. (2013) who estimate q1r ranging

between 0.22 and 0.34 for di¤erent computer memory chips.

Although these results are of interest by themselves, we particularly would like to focus

on their distribution across zip codes. More speci�cally, we would like to understand whether

the estimated expected number of searches Sr are systematically di¤erent across zip codes

based on zip code characteristics; we achieve such an investigation next.

4. Number of Stations Searched across Zip Codes

Consumer search patterns may di¤er across zip codes due to several zip code character-

istics. In this paper, we distinguish between such characteristics by focusing on geographic,

demographic and economic conditions of zip codes.

The geographic indicators that we consider include the area of the zip code (measured

in square miles) as well as the average distance between gas stations (measured in miles),

although the latter may also be considered as an economic condition. The demographic

indicators consist of population density (measured by workers over 16 years of age per square

mile) as well as the distribution of race and sex in zip codes. The economic indicators consist

of income and poverty level of individuals as well as their commuting time (measured in

minutes) and the industries that they work.

The data for zip code area have been obtained from the U.S. Gazetteer ZIP Code �le from

the U.S. Census Bureau. The average distance between gas stations has been calculated

using the gas station address information given in the OPIS data described above. The

demographic and economic indicators have been obtained from U.S. Census Bureau 5-Year

American Community Survey between 2009-2013.

4.1. Benchmark Case

We start with investigating the relationship between the dependent variable of log esti-

mated expected number of searches Sr and the independent variables consisting of average

distance between gas stations, area, population density, median income and average com-

muting time. The results of this regression is given in Table 2 where all variables enter the

regression signi�cantly. As is evident, consumers search more in zip codes where the average

distance between gas stations is longer. In particular, as the average distance (in miles) be-

tween gas stations increases by 1%, consumers on average search for more stations by 0.063%

across zip codes. This result suggests that consumers would double their expected number of
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stations searched when average distance goes up by about 15 times. Similarly, as the size of

the zip code increases in by 1% in square miles, consumers search for more stations by 0.48%,

suggesting that consumers would double their expected number of stations searched when

the zip code area is tripled. According to the consumer search model, the last two results

are mostly due to fact that gasoline price spreads (measured by the di¤erence between the

highest and the lowest prices) are higher in zip codes with spatially dispersed gas stations.12

Hence, as consumers search more, there will be positive potential gains out of making search,

which is in line with our discussion in the model section. Likewise, consumers would double

their expected number of stations searched when zip code population density goes up by 2.5

times, mostly due to lower search costs when there are more gas stations per square mile

(representing higher supply in such locations).

Median income is shown to be negatively related with the expected number of searches,

where the coe¢ cient is about �0:275; it is implied that consumers would halve their expected
number of searches when their income is quadrupled. This is obviously due to the opportunity

cost of searching for lower gasoline prices where higher income consumers do not �nd it

pro�table enough. The expected number of stations searched decrease with the commuting

time across zip codes. Speci�cally, consumers halve their expected number of searches when

commuting time is quadrupled. One possible reason may be the lack of time that consumers

with longer commuting time have, while another reason may be methodological. Regarding

the latter, we have so far employed average/median zip code characteristics in order to

explain the expected number of searches across gas stations. Nevertheless, such an approach

may suppress important information regarding the distribution of consumers having di¤erent

characteristics within a given zip code. Accordingly, we investigate potential nonlinearities

in some of our independent variables, below.

4.2. Income, Poverty and Industries Worked

We start with considering the e¤ects of di¤erent income groups (in percentage terms) on

the expected number of searches. We achieve this by keeping the benchmark case independent

variables (except for the median income) in the regression.13 The results are given in Table

3 where the benchmark case independent variables are still signi�cant and very close to their

12In this paper, the correlation (across zip codes) between log average distance between stations and log

price di¤erence between the most and the least expensive stations is about 0.19. Moreover, such a positive

correlation is not unique to this paper; e.g., studies such as by Chandra and Tappata (2011) have also shown

similar evidence.
13Within the overall set of income groups, we also drop one group in the regression analysis in order to

avoid any multicollinearity problem. We follow this strategy for the rest of tables in this paper.
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estimated values in Table 2.

As is evident in Table 3, zip codes with higher percentage of groups with annual income

between $10,000 and $34,999 search more, while other income groups do not contribute to

the expected number of searches. Within the groups that have income between $10,000

and $34,999, the group with an income between $10,000 and $14,999 search most with a

corresponding coe¢ cient of 0.015, followed by groups with income levels ranging from $25,000

to $34,999 and from $15,000 to $24,999. One interesting observation belongs to the income

group at the bottom of the income level with an annual income of at most $9,999. Potentially,

people within this income group are the ones who cannot a¤ord owning a car in the �rst place;

therefore, it is not surprising that zip codes with higher percentage of these low income

consumers do not search for lower gasoline prices compared to other income groups. Another

result in Table 3 refers to the consumers in zip codes that do not search more than other

zip codes due to having income levels higher than (or equal to) $35,000; this is due to the

insigni�cant coe¢ cients in front of such income groups. As in the benchmark case, this is

again due to the opportunity cost of searching for lower gasoline prices where higher income

consumers do not �nd it pro�table enough.

The results based on the relationship between the log expected number of searches and

poverty are given in Table 4. In terms of economic intuition, the results are similar to the

ones that we have in Table 3. In particular, consumers in zip codes su¤ering from poverty

search for more gas stations before purchasing gasoline, while consumers at or above 150

percent of the poverty level do not search more than other consumers.

Consumers working in di¤erent industries also have di¤erent search behavior, after con-

trolling for benchmark case variables, according to Table 5. As is evident, consumers in

zip codes that have higher percentage of individuals working in retail trade and public

administration search most with a signi�cant coe¢ cient of 0.019, followed by transporta-

tion/warehousing/utilities and information/�nance/insurance/real estate and rental. On the

other hand, consumers in zip codes with higher percentage of individuals working in wholesale

trade do not search more compared to other industries.

4.3. Commuting Time, Race and Sex

In this subsection, we further investigate the relationship between expected number of

searches and zip code characteristics regarding the commuting time of individuals, this time

by distinguishing among consumers having alternative commuting times within zip codes,

together with focusing on other zip code characteristics such as race and sex.

The results for commuting time are given in Table 6 where we keep the independent

variables in the benchmark case (except for the median commuting time). As is evident, the
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zip codes with higher percentage of consumers driving 10 to 14 minutes to work search most

with a highly signi�cant coe¢ cient of 0.013, followed by those driving 45 to 59 minutes, 15

to 19 minutes, 30 to 34 minutes and less than 10 minutes. Hence, although it is hard to talk

about a pattern across alternative commuting times, we can at least say that consumers in

zip codes with commuting times between 45 to 59 minutes search for more gas stations before

making a purchase compared to those with commuting times between 15 to 44 minutes or

less than 10 minutes.

The results based on race are given in Table 7, while those based on sex are given in Table

8. We observe in Table 7 that consumers in zip codes with higher percentage of white, Asian

and Black or African American people search for more stations compared to the other races,

after controlling for benchmark case variables. Within these groups, zip codes with higher

percentage of Black or African American consumers search most with a signi�cant coe¢ cient

of 0.012, followed by white and Asian consumers. In Table 8, we observe that consumers in

zip codes with higher percentage of female people search more compared to other zip codes

with a signi�cant coe¢ cient of 0.007, again after controlling for benchmark case variables.

5. Concluding Remarks and Policy Implications

Retail prices di¤er signi�cantly across retailers, even after controlling for retailer char-

acteristics and time-varying shocks. This paper has considered the heterogeneity in the

consumer search behavior as a potential explanation for the heterogeneity of retail price dis-

tributions across locations. Within this picture, we have focused on the determinants of the

expected number of searches (that consumers achieve before making a purchase) across zip

codes based on geographic, demographic and economic conditions. Based on the maximum

likelihood estimation of a consumer search model, we recover the distribution of search costs

for each zip code in the U.S. by considering the gasoline purchasing behavior of consumers

as an application for which we have daily price data covering virtually all gas stations within

the U.S..

The results have shown that geographical factors increasing the price dispersion across

gas stations such as the average distance between them, overall area of the zip code or

population density all contribute positively (across zip codes) to the expected number of

searches achieved by consumers before making a purchase. On the other hand, income

and commuting time have been shown to be negatively related to the expected number of

searches across zip codes, potentially capturing the opportunity cost of time for making a

search. Consumers in zip codes with individuals working in di¤erent industries have also

been shown to having di¤erent search behavior, with industries such as retail trade and
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public administration contributing most to the expected number of searches. We have also

shown that consumers in zip codes with higher percentage of Black or African American

people search more compared to those with white or Asian people. Finally, consumers in zip

codes with higher percentage of females have shown to search more compared to other zip

codes.

Retailers can charge higher markups if consumers do not search for lower prices, which is

one of the implications of the model used in this paper. Combining this information with the

fact that gasoline is a relatively inelastic product (according to the U.S. Energy Information

Administration14), it is implied by the results of this paper that gas stations can achieve

higher pro�t margins if they would be located in zip codes in which gas stations are closer

to each other; this partly explains why we observe gas stations located very close to each

other in certain zip codes. Similarly, higher pro�t margins can be achieved in zip codes with

smaller areas, lower population densities, higher income and/or higher commuting times;

e.g., gas station pro�ts would be maximized in zip codes with individuals having annual

income levels above $35K. On the other hand, such pro�ts would be lower in zip codes with

higher percentage of Black or African American individuals, followed by those with higher

percentage of white and Asian individuals. The pro�ts would be lower also in zip codes

with higher percentage of individuals working in industries such as retail trade and public

administration. Finally, zip codes with a higher percentage of male population are also good

locations to have a gas station in order to maximize pro�ts.

Policy suggestions directly correspond to the duality of the results based on gas-station

markups across zip codes. In particular, if the main objective is to reduce the redistribu-

tive e¤ects of information frictions across locations, the corresponding suggestion is that the

policy makers should consider the heterogeneity of consumer search behavior across markets

(where the heterogeneity has been shown to depend on geographic, demographic and eco-

nomic conditions) by conducting local policies rather than a common multi-location policy.

It is important to mention that all of these implications are robust to the consideration of

gas station characteristics (e.g., its location, competition level, brand, having a car wash or

a convenience store, etc.) as well as supply and demand shocks in the gasoline market, since

we control for all of these factors in the investigation. However, the results are not without

caveats. In particular, we are well aware of the situation that consumer search behavior may

not be segmented at the zip code level, although such a strategy was necessary in order to

understand whether the estimated expected number of searches change across zip codes and

whether such estimates can further be connected to geographic, demographic and economic

conditions. The attempts to address this issue in the literature in studies such as by Nishida

14See http://www.eia.gov/todayinenergy/detail.cfm?id=19191
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and Remer (2015) are encouraging; however, they are subject to very similar criticisms, since

they use other ad hoc market segmentation measures such as geographic markets de�ned

as great circles with a radius of 1.5 miles. Therefore, unless the corresponding data for the

market segmentation of consumers would be available (e.g., the geographical space covered

by each consumer in order to make a search before making a purchase), together with data

on geographic, demographic and economic characteristics of such consumers, the results in

this paper are not subject to any further improvement.
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Table 1 - Maximum Likelihood Estimation Results for Search Costs 

 Minimum 10th 
Percentile 

25th 
Percentile 

50th 
Percentile 

75th 
Percentile 

90th 
Percentile Maximum 

Expected Number of Searches ( rS ) 0.17 1.11 1.21 1.66 2.88 4.25 12.94 

Minimum Price ( rp ) 2.54 2.98 2.91 2.58 3.16 2.38 2.18 

Maximum Price ( rp ) 2.61 3.16 3.02 2.73 3.38 2.56 3.15 

1
rq  0.10 0.80 0.60 0.58 0.60 0.24 0.30 

2
rq  0.04 0.16 0.31 0.34 0.28 0.53 0.38 

3
rq  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4
rq  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5...10
rq  0.00 0.00 0.00 0.08 0.00 0.00 0.00 

11... rN
rq  0.00 0.00 0.00 0.00 0.12 0.23 0.32 

Unit Cost ( rm ) 2.54 2.76 2.86 2.51 3.10 2.37 2.16 

Number of Stations ( rN ) 3 7 7 5 14 13 37 

Sample Size 59 165 148 81 250 262 549 

Log-likelihood -88.70 -314.33 -345.44 -161.00 -473.67 -577.72 -508.69 

Corresponding Zip Code 55046 10468 19064 25315 95351 76903 38305 
Notes: The estimation has been achieved at the zip code level. The estimation results have been sorted across zip codes with respect to the 
estimated expected number of searches; the corresponding percentiles of zip codes are depicted in this table. All estimates are significant at the 5% 
level.  



Table 2 - Determinants of the Expected Number of Consumer Searches 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.063*** 

Gas Stations in the Zip Code (0.009) 

  

Log Zip Code Area  0.480*** 

(square miles) (0.013) 

  

Log Zip Code Population Density  0.398*** 

(workers per square mile) (0.011) 

  

Log Zip Code Median Income -0.275*** 

(US$) (0.027) 

  

Log Average Commuting Time  -0.252*** 

in the Zip Code (minutes) (0.032) 

  

Sample Size 4332 

Adjusted R-Squared 0.314 

  
Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 

 

 

 

 

 

 

 



Table 3 - Number of Consumer Searches and Income 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.060*** 

Gas Stations in the Zip Code (0.009) 
  

Log Zip Code Area  0.499*** 
(square miles) (0.014) 

  
Log Zip Code Population Density  0.415*** 

(workers per square mile) (0.011) 
  

Log Average Commuting Time  -0.268*** 
in the Zip Code (minutes) (0.033) 

  
$1 to $9,999 or less 0.001 

(percentage of workers) (0.002) 
  

$10,000 to $14,999 0.015*** 
(percentage of workers) (0.004) 

  
$15,000 to $24,999 0.006*** 

(percentage of workers) (0.002) 
  

$25,000 to $34,999 0.009*** 
(percentage of workers) (0.003) 

  
$35,000 to $49,999 0.003 

(percentage of workers) (0.003) 
  

$50,000 to $64,999 0.006 
(percentage of workers) (0.004) 

  
$65,000 to $74,999 -0.007 

(percentage of workers) (0.007) 
  

Sample Size 4323 
Adjusted R-Squared 0.323 

Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 



Table 4 - Number of Consumer Searches and Poverty 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  

Log Average Distance between 0.064*** 

Gas Stations in the Zip Code (0.009) 

  

Log Zip Code Area  0.483*** 

(square miles) (0.014) 

  

Log Zip Code Population Density  0.394*** 

(workers per square mile) (0.011) 

  

Log Average Commuting Time  -0.290*** 

in the Zip Code (minutes) (0.032) 

  

100 to 149 percent of the poverty 0.014*** 

level (percentage of workers) (0.004) 

  

At or above 150 percent of the poverty -0.003 

Level (percentage of workers) (0.002) 

  

Sample Size 4327 

Adjusted R-Squared 0.315 
Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 

 

 

 



Table 5 - Number of Consumer Searches and Industries Worked 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.053*** 

Gas Stations in the Zip Code (0.009) 
  

Log Zip Code Area  0.522*** 
(square miles) (0.015) 

  
Log Zip Code Population Density  0.427*** 

(workers per square mile) (0.013) 
  

Log Zip Code Median Income -0.301*** 
(US$) (0.046) 

  
Log Average Commuting Time  -0.311*** 

in the Zip Code (minutes) (0.039) 
  

Agriculture, forestry, fishing  0.008* 
and hunting, and mining (0.005) 

  
Construction 0.015*** 

 (0.005) 
  

Manufacturing 0.014*** 
 (0.004) 
  

Wholesale trade 0.008 
 (0.008) 
  

Retail trade 0.019*** 
 (0.005) 
  

Transportation and warehousing, 0.017*** 
and utilities (0.005) 

  
Information and finance and insurance, 0.016*** 

and real estate and rental (0.005) 
  

Professional, scientific, management, and 0.014*** 
administrative and waste management services (0.005) 

  
Educational services, and 0.008* 

health care and social assistance (0.004) 
  

Arts, entertainment, and recreation, 0.012** 
and accommodation and food services (0.005) 

  
Other services 0.019*** 

(except public administration) (0.007) 
  

Public administration 0.019*** 
 (0.006) 
  

Sample Size 3896 
Adjusted R-Squared 0.326 

Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 



Table 6 - Number of Consumer Searches and Commuting Time 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.049*** 

Gas Stations in the Zip Code (0.005) 
  

Log Zip Code Area  0.418*** 
(square miles) (0.008) 

  
Log Zip Code Population Density  0.348*** 

(workers per square mile) (0.007) 
  

Log Zip Code Median Income -0.204*** 
(US$) (0.019) 

  
Less than 10 minutes 0.002* 

(percentage of workers) (0.001) 
  

10 to 14 minutes 0.013*** 
(percentage of workers) (0.002) 

  
15 to 19 minutes 0.005*** 

(percentage of workers) (0.002) 
  

20 to 24 minutes 0.000 
(percentage of workers) (0.002) 

  
25 to 29 minutes 0.000 

(percentage of workers) (0.002) 
  

30 to 34 minutes 0.004** 
(percentage of workers) (0.002) 

  
35 to 44 minutes -0.002 

(percentage of workers) (0.002) 
  

45 to 59 minutes 0.005** 
(percentage of workers) (0.002) 

  
Sample Size 9301 

Adjusted R-Squared 0.343 
Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 

 



Table 7 - Number of Consumer Searches and Race 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.055** 

Gas Stations in the Zip Code (0.023) 
  

Log Zip Code Area  0.545*** 
(square miles) (0.040) 

  
Log Zip Code Population Density  0.453*** 

(workers per square mile) (0.036) 
  

Log Zip Code Median Income -0.345*** 
(US$) (0.076) 

  
Log Average Commuting Time  -0.409*** 

in the Zip Code (minutes) (0.088) 
  

White 0.008*** 
(percentage of workers) (0.002) 

  
Black or African American 0.012*** 

(percentage of workers) (0.003) 
  

Asian 0.007** 
(percentage of workers) (0.003) 

  
American Indian and Alaska Native 0.007 

(percentage of workers) (0.009) 
  

Native Hawaiian and Other Pacific Islander -0.012 
(percentage of workers) (0.013) 

  
Sample Size 957 

Adjusted R-Squared 0.260 
Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 

 

 



Table 8 - Number of Consumer Searches and Sex 

 Dependent Variable:  
Log Expected Number of Searches in a Zip Code 

  
Log Average Distance between 0.061*** 

Gas Stations in the Zip Code (0.009) 

  

Log Zip Code Area  0.485*** 

(square miles) (0.014) 

  

Log Zip Code Population Density  0.399*** 

(workers per square mile) (0.011) 

  

Log Zip Code Median Income -0.264*** 

(US$) (0.027) 

  

Log Average Commuting Time  -0.248*** 

in the Zip Code (minutes) (0.032) 

  

Female 0.007*** 

(percentage of workers) (0.002) 

  

Sample Size 4332 

Adjusted R-Squared 0.316 
Notes: *, ** and *** stand for significance at the 10%, 5% and 1% levels. Standard errors are given in 
parenthesis. All regressions include constants that are not shown here. The regression is by OLS. 

 

 

 

 

 

 



Figure 1 – Histogram of Gasoline Price Spreads in Zip Codes 

 

Notes: The horizontal axis shows the gasoline price spread, while the vertical axis shows the number of 
zip codes. Gasoline price spread is defined as the difference between the maximum and the minimum 
price in gas stations in a given zip code after controlling for gas-station and time fixed effects where the 
latter includes both day and hour fixed effects. 

 

 

 



Figure 2 – Histograms of Estimated Critical Search Cost Values 

 

Notes: The horizontal axis shows the search costs in U.S. dollars, while the vertical axes show the number 
of zip codes. 
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