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Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix 

composites for improved mechanical properties. However dispersion of carbon nanotubes 

(CNT) in the matrix has been a longstanding problem, since they tend to form clusters to 

minimize their surface area.  The aim of this study was to use plasma and cold spraying 

techniques to synthesize CNT reinforced aluminum composite with improved dispersion 

and to quantify the degree of CNT dispersion as it influences the mechanical properties.  

Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-

alloyed powder, which was used as feedstock for plasma and cold spraying. A new 

method for quantification of CNT distribution was developed. Two parameters for CNT 

dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter 

(CP) have been proposed based on the image analysis and distance between the centers of 

CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the 
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microstructure. Coating microstructure evolution has been discussed in terms of splat 

formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and 

CNT content on the reaction at CNT/matrix interface was thermodynamically and 

kinetically studied.  A pseudo phase diagram was computed which predicts the interfacial 

carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic 

aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-

23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated 

using nanoindentation and nanoscratch, microindentation and bulk tensile testing 

respectively. 

Nano and micro-scale mechanical properties (elastic modulus, hardness and yield 

strength) displayed improvement whereas macro-scale mechanical properties were poor. 

The inversion of the mechanical properties at different scale length was attributed to the 

porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix 

interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter 

(CP) in measuring degree of CNT distribution in the matrix. 
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1. INTRODUCTION 

The aim of the present work is to investigate Plasma spraying and Cold spraying 

techniques in fabricating CNT reinforced aluminum matrix nanocomposites having 

improved nanotube dispersion. Figure 1.1 summarizes the overall research work that has 

been carried out. 
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The need for lightweight, high strength materials has been realized since the 

invention of airplane. As the strength and stiffness of a material increases, the dimensions 

and consequently the mass of the material required for a certain load bearing application 

reduces. This leads to several advantages in the case of aircraft and automobiles like 

increase in payload and improvement of the fuel efficiency. The inadequacy of metals 

and alloys to provide both strength and stiffness to a structure has led to the development 

of metal matrix composites (MMC). In a MMC, the strength and ductility is provided by 

the metal matrix and the strength and/or stiffness is provided by the reinforcement which 

is either a ceramic or high stiffness metal based particulate or fiber. MMCs can also be 

designed to possess qualities like low coefficient of thermal expansion and high thermal 

conductivity which make them suitable for use in electronic packaging applications. 

Metal matrix composites today are extensively used for automobile and aerospace 

applications [1-4]. 

Extensive research has been carried out in the area of carbon fiber reinforced 

metal matrix composites. Since 1970, carbon fiber reinforced composites have been 

extensively used in wide array of applications like aircraft brakes, space structures, 

military and commercial planes, lithium batteries, sporting goods and structural 

reinforcement in construction. The new Virgin Galactic aircraft WhiteKnightTwo (WK2) 

which will ferry the spacecraft SpaceshipTwo boasts to be the largest all carbon 

composite aircraft with a 140 ft wing made of carbon composite [5]. Research in the field 

of carbon was revolutionized by the discovery of carbon nanotubes (CNTs) by Iijima in 

1991 [6]. Although CNTs might have been synthesized in 1960 by Bacon [7], it took the 

genius of Iijima to realize that they are tubes made by rolling a graphene sheet onto itself. 
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A multiwalled carbon nanotube (MWCNT) is made up of many single walled carbon 

nanotubes (SWCNT) arranged in a concentric manner. Experiments and simulations 

showed that CNTs have extraordinary mechanical properties over carbon fibers, e.g. 

stiffness up to 1000 GPa, strength of the order of 100 GPa [8-12] and thermal 

conductivity of up to 6000 W.m-1K-1 [13, 14]. These investigations showed that CNTs 

were the strongest fibers known to mankind. The use of CNTs could lead to tremendous 

improvement in the mechanical properties over the carbon fiber reinforced metal matrix 

composites. However, there are certain critical issues in this area and challenges to be 

overcome. 

 

1.1. Challenges in Fabrication of CNT Reinforced MMCs 

1.1.1. Dispersion of CNTs in Metal Matrix 

This is by far the most important as well as difficult challenge in the fabrication of 

CNT composites. CNTs have large specific surface area up to 200 m2.g-1 and hence they 

tend to agglomerate and form clusters due to van der Waals forces. Good dispersion of 

the reinforcement is a necessity for efficient use of the properties as well as for obtaining 

homogeneous properties. CNT clusters have lower strength, higher porosity and serve a 

as discontinuities.  Thus they increase the porosity of the composite. Several researchers 

have shown decrease in mechanical, electrical or thermal properties of the composite due 

to clustering phenomena [15-18].  Several methods have been suggested to improve the 

dispersion of CNTs which have their own advantages and limitations [19-22]. 

Improvement in mechanical properties has been reported due to improvement in 
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dispersion. Still a lot of work is needed to be done to improve dispersion during bulk 

composite fabrication.  

 

1.1.2. Stability of CNTs 

The next issue that is of concern is the stability of CNTs during the fabrication of the 

composite. Various processing routes like casting [23-25], hot pressing [26-28], extrusion 

[29-31] and thermal spraying [32-35] employ high temperatures which may cause 

damage to the CNT structure. Successful retention of CNTs during high temperature 

processes like plasma spraying and high velocity oxy-fuel spraying has been reported by 

our group in several previous works [32, 35]. Contact with the molten matrix could lead 

to interfacial reactions which may or may not be beneficial in transferring stresses to the 

CNT and in pinning CNTs to the matrix [31]. A good and strong interface makes a good 

composite. On the other hand, it could also lead to total conversion of the CNTs and 

deterioration of mechanical properties of the CNT [36, 37]. Several other processes like 

mechanical milling [22, 28], HVOF [32, 38] and equal channel angular pressing [39-41] 

could result in mechanical damage of the CNT structure. So it is necessary to assess 

processes based on the damage/changes they introduce in the CNTs. 

 

1.2. Focus of the Present Research Work 

The overall aim of the present research is to improve the dispersion of CNTs in the 

aluminum composite. Following are the specific objectives of this work. 

 Improve the dispersion of CNTs in the composite by employing a novel method 

of spray drying metallic powders with CNTs. 
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 Utilize plasma spraying and cold spraying for fabrication of the composite coating 

from spray dried powders. 

 Fabricate bulk near net shape structures using plasma spraying. 

 Study microstructural features and evolution for the two processes. 

 Study mechanism and quality of dispersion of CNTs in coatings synthesized from 

both the processes. 

 Development of a method for quantification/comparison of the quality of CNT 

distribution in composites. 

 Study the chemical and structural stability of CNTs in the coatings by 

thermodynamics and kinetic analysis of interfacial reactions and high resolution 

transmission electron microscopy. 

 Study the effect of CNT content on nano-mechanical properties of the coatings 

measured from nanoindentation of nanoscratch testing. 

 To study the bulk mechanical properties of plasma sprayed CNT composites 

through tensile and compressive testing of bulk samples in aas-sprayed and hot 

rolled conditions. 

The research work carried out in this study will be documented in this dissertation in 

various sections namely, introduction, literature review, experimental procedure, results 

and discussion, conclusion and recommendations for future work. The appendix includes 

the first page of the publications in peer reviewed international journals arising out of this 

research work. 
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2. LITERATURE REVIEW 

2.1. Development of Metal Matrix Composites (MMCs) 

It is difficult to obtain a single homogeneous material with all the desirable 

properties. Though metals and alloys have sufficient strength and large toughness, they 

have lower stiffness. From the design point of view in any structural application, the 

width of the parts/members is decided based on the elastic modulus and strength of the 

material. While the strength of the metal and alloys determine the forces that a structure 

can withstand, the deflections and deformation undergone under elastic loadings are 

dependent directly on the elastic modulus. A higher elastic modulus is essential for 

dimensional stability of the overall structure. One of the strategies to increase the strength 

of metals/alloys has been to decrease the grain size leading to the development of 

nanocrystalline materials [42-44]. However, there are a lot of challenges with fabrication 

of bulk materials having nanocrystalline structure like inhibition of grain growth [42].  

The other method of increasing the strength of metals/alloys, which is widely in use, is by 

modification of the microstructure by suitable heat treatment. But increase in elastic 

modulus is not easy to achieve since for a homogeneous material it is related to the forces 

between atoms. Ceramics materials on the other hand have a higher stiffness but a lower 

toughness. Great technological advance was brought about by the discovery and 

development of polymers in the fist half of twentieth century. They had the advantage of 

easy mold-ability and high specific strength and they were cost effective. However, the 

strength was lower it degraded very rapidly with increase in temperature. The need for 

materials with tailored properties has led to development of composite materials.  
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A composite material may be defined as one containing two or more physically 

distinct phases, with a matrix phase which is in large proportion and percolating and 

reinforcement phase(s) to bring about the desired property improvement. The 

reinforcement could be in the form of particulates, short fibers, whiskers or long fibers. 

Examples of composites are found in nature itself in the form of wood and bone. A lot of 

research has been carried out on particle and fiber reinforced metal matrix composites 

which can be partly ascribed to the development of ceramic fibers and whiskers of high 

strength and stiffness during the 1950s and 1960s. The metallic matrix provides ductility 

and toughness while the reinforcement provides strength and stiffness. The aim was to 

develop composites with desired properties like high strength, stiffness, wear resistance, 

machinability, high seizure resistance, large thermal conductivity and low coefficient of 

thermal expansion (CTE) coefficient. Table 2.1 shows typical properties of 

reinforcements in use [2, 45, 46]. The properties of pure aluminum and AA-2024 alloy 

have been included for sake of comparison. It is observed that the reinforcement phases 

have very high strength and elastic modulus and a lower CTE compared to the matrix. 

Aluminum and aluminum alloys have been the choice of material in automobile 

and aerospace industry due to their light weight and sufficient strength [1, 47]. Aluminum 

matrix composites have been developed and proposed for many applications. In the 

automobile industry they are proposed for connecting rods, bearings, cylinder inserts, 

piston rings, gears, brake pads and many more. The properties desired for such 

applications include high specific strength, wear and seizure resistance and machinability. 

In aerospace industry they have been used for truss elements, bus panels, antennas, wave 

guides, and parabolic reflectors. Aluminum matrix composites having low CTE are 
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suitable for these applications which see a lot of thermal cycling from temperature 

between +125oC to -125oC during a day. They have been also used extensively in 

sporting industries in the fabrication of light weight bicycles and rackets, and for 

electronic packaging as thermal management materials due to their increased thermal 

conductivity and low CTE. 

 

Table 2.1: Typical properties of some reinforcements used in MMCs 

Reinforcement
Density, 

g/cc 

Ultimate 
Tensile 

Strength, 
MPa 

Elastic 
Modulus, 

GPa 

Thermal 
Conductivity, 

W/m.K 

Coefficient of 
Thermal 

Expansion, 

10-6 /K 

Al2O3 (Saffil), 
short fibers 

3.29 2000 300 - - 

Boron Carbide 
(B4C), fibers 

2.35 2690 425 39 3.5 

SiC fibers 3.46 2280 450 - - 

SiC 
particulates 

3.21 - 448 120 3.4 

AlN 3.26 2100 310-345 150 3.3 

Si3N4 3.8 - 207 28 1.5 

Vapor Grown 
Carbon Fibers 

2.1 7000 700 1950 -1 

AA1010 alloy 2.71 90 69 222 23.6 

AA 2024 Alloy 2.78 485 73 193 23.2 
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2.2. Carbon Nanotubes as Reinforcement 

In 1960, Roger Bacon [7] demonstrated the formation of graphite whiskers 

(diameters ranging between fractions of a micron to couple of microns) which were 

flexible and had a tensile strength of up to 20 GPa. Subsequent research led to 

development of processes for large scale production of these fibers by carbonization of 

Rayon, poly-Acrilonitrile (PAN) or pitch. Manufacture of carbon fibers of high strength 

in the 1960s and 1970s made them the first choice for the manufacture of advanced 

composites for use in rocket nozzle exit cones, missile nose tips, re-entry heat shields, 

packaging and thermal management. Extensive research has been carried out in the area 

of carbon fiber reinforced metal matrix composites [48]. Since 1970, carbon fiber 

reinforced composites have been extensively used in wide array of applications like 

aircraft brakes, space structures, military and commercial planes, lithium batteries, 

sporting goods and structural reinforcement in construction. The new Virgin Galactic 

aircraft WhiteKnightTwo (WK2) which will ferry the spacecraft SpaceshipTwo boasts to 

be the largest all carbon composite aircraft with a 140 ft wing made of carbon composite. 

Such a thing has been possible due to the development of high strength composites 

employing carbon fibers.  

Research in field of carbon was revolutionized by the discovery of carbon 

nanotubes (CNTs) by Iijima in 1991 [6]. Oberlin et al. have reported carbon filaments by 

decomposition of benzene [49]. They reported hollow tubular like morphology of 

diameters 2-50 nm with carbon layers arranged parallel to the tube axis similar to “annual 

ring structure of a tree”. Figure 2.1 shows the images of carbon fibers/nanotubes obtained 

by Bacon, Oberlin and Iijima. Although CNTs might have been synthesized earlier [7, 
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49], it took the genius of Iijima to realize that they are tubes made by rolling a graphene 

sheet onto itself. A multiwalled carbon nanotube (MWNT) is made up of many single 

walled carbon nanotubes (SWNT) arranged in a concentric manner. Unless otherwise 

mentioned, CNT in this thesis refers to multi walled carbon nanotube. 

  Multiwalled carbon nanotubes have emerged as potential reinforcement for novel 

nanocomposites due to their extraordinary strength and elastic modulus [50-53]. 

Mechanical properties of carbon nanotubes have been experimentally measured by 

several methods viz. thermal vibrations in TEM, electromechanical resonance and in situ 

testing inside SEM using an AFM. A summary of experimentally measured mechanical 

properties of carbon nanotubes is presented in Table 2.2. Of all the tests mentioned in 

Table 2.2 only the last two have studied the fracture behavior of CNTs. Rest of the 

studies probed the CNT properties in the elastic regime only. 

 

 

Fig. 2.1 Carbon nano-fibers/nanotubes synthesized by a) Bacon [7], b) Oberlin et al. [49], 

and c) Iijima [6] 

 



 

Table 2.2: Summary of experimental measurements of Young’s modulus of CNTs 

Sl. No. Method Remarks Reference 

1 Amplitude of thermal 
vibrations of MWNTs at 
different temperatures in a 
TEM 

E = 0.4-4.15 TPa 

Avg. = 1.8 TPa 

Treacy et 
al. [8] 

2 Same as 1 for SWNTs E = 1.3-0.4/+0.6 TPa Krishnan et 
al. [12] 

3 Force-displacement curve of 
pinned MWNT using AFM 

E = 1.280.59 TPa Wong et al. 
[9] 

5 Shifts in D* peaks of the 
Raman spectra of CNT in 
epoxy composites 

E = 2.8-3.6 TPa for 
SWNT and 1.7-2.4 
TPa for MWNT 

Lourie and 
Wagner 
[54] 

6 Frequency of 
electromechanical resonances 

E = 1-0.1 TPa for 
MWNT 

Poncharal 
et al. [55] 

7 Bend test of simply supported 
MWNT 

E = 870 GPa for arc 
MWNT and 27GPa 
for CVD MWNT 

Salvetat et  
al. [56] 

8 Same as 7 for SWNT ropes E = 1 TPa Salvetat et  
al. [57] 

9 Tensile test of MWNT in 
SEM 

E = 270-950 GPa 

Strength = 11-63 GPa 

Yu et al. 
[10] 

10 Same as 9 for SWNT ropes E = 320-1470 GPa 

Strength = 13-52 GPa 

Yu et al. 
[11] 
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It is observed that multiwalled carbon nanotubes have strength up to 63 GPa and 

elastic modulus up to 970 GPa showing that they are strongest material known to 

mankind next to single walled carbon nanotubes. Also they have been shown to have a 

large thermal conductivity of 3000 W.m-1K-1 [14]. These properties make them excellent 

candidate for reinforcement in place of graphite fibers. A lot of work has been carried out 

on reinforcing polymer, ceramic and metal matrices with carbon nanotubes. Figure 2.2 

shows the number of publications in CNT reinforced polymer, ceramic and metal matrix 

composites in during 1997-2008.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2: Number of journal articles published in the area of CNT reinforced polymer, 

ceramic and metal matrix composites during 1997-2008. (source: www.scopus.com) 
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It is seen that majority of the research work is performed in the area polymer-CNT 

composites. This is due to the low processing temperatures and forces required for 

fabrication and ease of dispersion of reinforcement. Extensive research has helped in 

developing graphite fiber reinforced plastics (GFRP) as an established technology and 

today most of the aircraft interior is made of GFRP. However, the interest and efforts in 

synthesis of ceramic and metal matrix CNT composites have been steadily increasing in 

last five years as seen in Fig. 2.2. 

 

2.3. Processing of CNT Reinforced Metal Matrix Composites 

Metal matrix carbon nanotube (MM-CNT) composites are prepared through a 

variety of processing techniques. The main challenges include the retention of 

undamaged CNTs, achievement of homogeneous dispersion of CNTs, achievement of 

good interfacial bonding between CNTs and the matrix, elimination of porosity and 

fabrication of bulk composite. The various processes used for fabrication of MM-CNT 

composites have been summarized in Fig. 2.3. Powder metallurgy is the most popular and 

widely applied technique for preparing MM-CNT composites. Electrodeposition and 

electroless deposition are second most important techniques for deposition of thin 

coatings of MM-CNTs as well as deposition of metals on to CNTs. For low melting 

metals like Mg and bulk metallic glasses, melting and solidification is a viable route. Our 

research group has pioneered thermal spray techniques for fabrication of CNT 

reinforced aluminum composites. Apart from these techniques, scattered efforts have 

been made on indigenous methods for preparing MM–CNT composites. The following 

subsections will present all of these processing techniques. 
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Fig. 2.3: Processing routes used for fabrication of CNT reinforced metal matrix composites 
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2.3.1. Powder Metallurgy Techniques 

Most of the studies on Al-CNT and approximately half of the research work on 

Cu-CNT composites have been carried out using powder metallurgy method. A few 

researchers have also prepared CNT composites based on Mg, Ni, Ti, Ag, Sn, and 

intermetallics through this route. The basic process steps consist of mixing CNTs with 

metal powder by grinding or mechanical alloying followed by consolidation by 

compaction and sintering, cold isostatic pressing (CIP), hot isostatic pressing (HIP) or 

spark plasma sintering. 

 

2.3.1.1. Mixing and Sintering 

Some of the MM-CNT composites prepared using  sintering route are Cu-CNT 

[17, 58], Al-CNT [21], W-Cu-CNT [18], Mg-CNT [59] and Ag-CNT [60].  In some cases 

[22, 61-64], only mechanical alloying was used to prepare composite powder particle as 

the final product. In the preparation of Cu-CNT composites [17, 58] through mixing, 

compaction and sintering route, CNTs were coated with Ni using electroless deposition to 

achieve good interfacial bond strength. Density of the composites was comparable up to 8 

wt.% CNT addition beyond which it decreased drastically due to agglomeration. No 

interfacial product formation was observed. In order to obtain homogeneous dispersion of 

CNTs, He et al. [21]  have grown CNT by chemical vapor deposition (CVD) process on 

Al powders which were subsequently compacted and sintered at 913 K to obtain Al-

5wt.% CNT composite of high relative density of 96% and homogeneous dispersion of 

CNTs. CNT pullouts and bridges, revealed at fracture surface were responsible for 

increased hardness (4.8 times) and tensile strength (2.8 times) over pure Al. Yang et al. 
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[59] achieved homogeneous distribution of CNT in Mg matrix by mechanical mixing of 

the powders in alcohol and acid mixture followed by sintering at 823 K. In order to 

enhance adhesive bonding at the surface, CNTs have also been treated by acid to roughen 

the surface through oxidation and used for Ag matrix composite [60]. CNTs were 

shortened in length due to this treatment, but no damage on the wall was reported. Morsi 

and Esawi [22, 64] have used ball milling to disperse CNTs in Al matrix. Milling for up 

to 48 hrs lead to good dispersion of CNTs but resulted in formation of large spheres (> 1 

mm) due to cold welding. 

 

2.3.1.2. Spark Plasma Sintering 

Spark plasma sintering (SPS), a comparatively new and novel sintering technique, 

has also been explored by some researchers for synthesizing CNT-metal matrix 

composites. In this process, a pulsed direct current is passed through a die and the 

powder, producing rapid heating and thus greatly enhancing the sintering rate [65]. 

Efficient densification of powder can be achieved in this process through spark impact 

pressure, joule heating and electrical field diffusion. This method is, generally, suitable 

for consolidation of nano powders, without allowing sufficient time for grain growth. 

Most of the studies using SPS have been carried out in Cu-CNT [19, 66-68] and Al-CNT 

system [31]. Kim et al. [66] were the first to report SPS of Cu-CNT composites 

fabricated at 1023K at 40 MPa with better dispersion and improved density (97-98.5%). 

Sintered microstructure consisted of dual zones of CNT free matrix and CNT rich grain 

boundary regions.. Extraordinary strengthening of more than 3 times was achieved by 

SPS of molecular level mixing powder of Cu and 10vol.% CNT [19]. Microstructures of 
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the samples prepared by SPS of ball-milled powders and molecular level mixed powders 

are shown in Fig. 2.4. Enhancement in mechanical strength by 129% with addition of 5 

vol.% CNT has been reported for Al-CNT composite synthesized by SPS followed by hot 

extrusion of powders prepared by a nano-scale dispersion method (described in section 

2.3.4) [31]. Good dispersion and alignment of CNTs clusters in the matrix as well as 

improved interfacial bonding by formation of minor amounts of Al4C3 at the CNT-matrix 

interface were the prime reasons for improvement is mechanical properties. SPS has also 

been explored for synthesis of CNT reinforced Ni-Ti based shape memory alloys [69] 

and Fe3Al -CNT composites [70] with enhanced mechanical properties.  

 

 

powder mixtures. Researchers have found hot pressing method to be inappropriate for 

fabricating Al-CNT composites as it results in clustering of CNTs [26, 72]. Kuzumaki et 

Fig. 2.4: Microstructure of Cu-CNT samples prepared by SPS of a) ball-milled nano-

sized Cu-CNT mixtures [71] and b) Molecular level mixed Cu-CNT powder [19] 

2.3.1.3. Hot Pressing 

Instead of sintering, some researchers have used hot pressing consolidation of 
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al. [28] have optimized the milling time for mechanical mixing at 5 hrs to avoid damage 

to CNTs and fabricated Ti-CNT composite by hot pressing.  

 

Mg-CNT composites [73] and Fe3Al-CNT composites synthesized via hot-

pressing [74] have shown improved mechanical properties (hardness, compressive 

strength and bend strength) due to uniform distribution of CNTs. Hot pressing route has 

also been explored for processing CNT reinforced Ti-based BMG composite [75, 76]. 

Addition of CNT has been shown to increase in the glass transition and crystallization 

temperature in this composite which further assisted in decreasing the required cooling 

rate for glass formation, thus assisting BMG formation. 

 

2.3.1.4. Deformation Processing 

In most of these works, the composite compacts were subjected to post-sintering 

deformation processes like rolling, equi-channel angular processing (ECAP), extrusion 

etc. However, the approach was mainly confined to Cu-CNT [41, 71, 77-80] and Al-CNT 

[29, 30, 81-86] composites. Kuzumaki et al. [29] have synthesized Al-CNT composite 

through hot extrusion of powder compacts, at 873K. It was found that the CNTs were 

aligned along the extrusion direction and were strong enough to withstand the extrusion 

load. Rolling of Cu-CNT composites resulted in alignment of CNT clusters in the matrix 

[67, 77, 80]. Improvement in wear resistance and coefficient of friction was also observed 

in rolled samples [83]. Equal-channel angular processing (ECAP) was employed to 

successfully to synthesize Cu-CNT composites from powder compacts [41, 78, 79], with  

CNT content varying between 1-5 vol.%. ECAP, being a severe plastic deformation 
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technique, is expected to induce high amount of deformation to the constituent phases, 

thus damaging the CNTs. 

It is observed that most of the processing for all major MM-CNT systems except 

Ni-CNT has been done by powder metallurgy route. Application of high temperature 

deformation by hot pressing and hot extrusion lead to large improvement in properties. 

This indicates that the density and CNT-matrix bonding of the composites is very 

important factor in strength enhancement.  

 

2.3.2. Melting and Solidification Route 

Melting and solidification, the most conventional processing techniques for 

MMCs, has also been utilized for synthesizing CNT reinforced composites. The 

limitations of this route is that it is favored for composites having low melting point 

matrix and suspended CNTs tend to form clusters due to surface tension forces. Bian and 

co-workers were the first to synthesize CNT reinforced Zr-based bulk metallic glass 

(BMG) by this route [23, 87]. Pre-alloyed powders, mixed with CNTs and compacted 

into cylinders, were melted and cast to form Zr-BMG-10 vol.% CNT composite rods. 

Increase in crystallinity of the matrix has been attributed to ZrC formation at the CNT 

matrix interface as well as depletion of Zr from amorphous matrix. Mg, being a low 

melting point metal, has been suitably processed through melting and casting route [24, 

88-90].  

Yang and Schaller [59] have used infiltration technique to prepare Mg-CNT 

composite. CNTs were grown by CVD on a structure made by Al2O3 fibers and then the 

same was infiltrated with molten Mg under pressurized gas. This study reported 
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improvement in the high temperature (500K) shear modulus by 20%. Al-CNT composite 

has been synthesized by Zhou et al. [91] through infiltration of a porous preform made by 

pressing a ball milled mixture of Al, Mg powders and CNTs at 1073 K for 5 h. In a recent 

study, Uozumi et al. [92] have explored the possibilities of squeeze casting to fabricate 

CNT reinforced Al and Mg alloy composite with good dispersion of CNTs and without 

pores. 

 Melt spinning involves pouring a molten alloy drop by drop on to a rotating Cu 

wheel. The droplets are converted into ribbons which are amorphous due to the large 

cooling rates. CNT-Fe82P18 – bulk metallic glass composite ribbons of 40 m thickness 

have been prepared in this manner [93]. Retention of undamaged CNTs and amorphous 

nature of the composite was reported. One study by Hwang et al. [94]  reports about Ni-

10 vol.% CNT composite processed through laser deposition technique after roller 

mixing of CNT and Ni powder. Though the process incurs very high temperatures, still 

CNTs were retained. 

 Melt processing could be used for casting alloys having low melting points. Novel 

materials like bulk metallic glasses which are prepared by casting method have also been 

explored. Most of the metals and alloys do not wet CNT and hence this could lead to poor 

infiltration. Chemical stability of the CNTs during this kind of processing might be an 

issue due to the higher reactivity of molten metal/alloy. 

 

2.3.3. Electrochemical Route 

In terms of number of publications on metal matrix-CNT composites, 

electrochemical deposition is the second most popular route after powder metallurgy 
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techniques. The main difference between the two is that electrochemical method is 

primarily used for formation of thin composite coatings with a reported thickness of 20 to 

180 µm [95], though some of the studies on electrochemical deposition do not report 

coating thickness. This technique has also been used for coating CNTs with metals to 

produce one-dimensional composites– the projected application for which includes, but 

not limited to, different types of nano-sensors, electrodes, inter-connects and magnetic 

recorder head in computer applications. Both electrodeposition and electroless deposition 

have been used for MM-CNT fabrication.  

 

2.3.3.1 Electrodeposition 

Electrodeposition technique has been reported as a processing route for mainly 

Ni-CNT [95-112] and Cu-CNT [113-116] composites. Fig. 2.5 shows the mechanism of 

formation of coatings by electrodeposition. The first ever report on electrochemical 

deposition of MM-CNT composite coating was by Chen et al. [98] on co-deposition of a 

Ni- 14 vol.% CNT composite coating from electrolytic bath at a current density of 15 

A/dm2
  and CNT concentration of 2 g/l. It was found that the CNT content increased with 

an increase in CNT concentration of the electrolyte, current density and agitation rate of 

the bath [98, 99]. Guo et al. [109] have shown that pulse deposition produces smother 

surface and the CNT content of the Ni-CNT composite coating increases with increasing 

pulse frequency and reverse ratio. Ultrasonication and magnetic stirring have been used 

to keep the CNTs in suspension. 
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Fig. 2.5: Schematic showing composite coating formation during electrodeposition [101] 

 

Arai et al. have added polyacrylic acid to the bath to keep the CNTs in suspension [101, 

105, 107]. Ball milling of CNTs has been used to decrease their aspect ratio to help them 

being dispersed in the bath [96, 99, 103]. Acid cleaning and adding surfactants has also  

improved suspension of CNTs [100, 102]. Metal ions deposit on CNT surfaces by 

absorbing electrons [108, 117] and hence the large surface area provided by CNTs serves 

as a mechanism for reduction of grain size of electrodeposited coatings. Shi and co-

workers [102] have reported 250% reduction in grain size (42 nm to 17nm) of Ni-Co co-

deposited coatings. Guo et al. [109] have shown increase in the microhardness of Ni-

CNT composite coating by AC-deposition with increasing pulse reverse ratio and current 

density up to 8 A/dm2 of the bath. Another processing approach is filling the voids of 

aligned arrays of CNTs, used as cathode, with Cu by electrodeposition [118]. Composites 

with up to 40 vol.% CNT were produced having lower thermal resistance and electrical 



resistivity than unreinforced matrix making them suitable for interconnect and thermal 

management applications. 

 

2.3.3.2. Electroless Deposition 

Electroless deposition is a chemical technique in which a metal or its alloy is 

decomposed by catalytic action and deposited, without application of any current. This 

technique is mostly developed and employed for Ni-P or Ni-B alloys [17, 118-135]. 

There are only few studies on Co-CNT [21], Ni-Fe-P alloy [136] and Ni-Cu-P alloy 

[135]. Agitation of the bath during processing and ball milling of the CNTs prior to 

mixing in the bath have been proposed as solution for improved CNT dispersion [120, 

121, 124, 128]. The mechanism of deposition in electroless process is based on thermo-

chemistry of the system. Hence, the bath temperature and pH value plays a very critical 

role on the coating composition and morphology. Increasing beyond the optimized bath 

composition resulted in reduction of CNT content of coating due to agglomeration of 

CNTs in the bath. Uniformly distributed and deeply embedded CNTs were reported in 

some of the studies [127, 128, 130, 135], while some studies report presence of CNT-

clusters [118]. Other than coatings, synthesis of one-dimensional composites of CNT 

coated with Co [123] and Ni and Ni-alloys [121, 129] by electroless deposition technique 

have also been reported.  

 

2.3.4. Other Novel Routes 

 It is evident from the complexity of the length scales involved in the CNT 

composite systems that novel processing routes need to be developed. Several researchers 
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have adopted novel approaches for enhancement of dispersion and bonding in MM-CNT 

composites. Molecular level mixing is one such method which has been mostly used for 

Cu-CNT Composites [19, 68, 137-139], except one that deals with Sb and SnSb0.5 matrix 

composites [140]. This method is capable of producing composite particles or one 

dimensional nanostructure of CNT coated with metal. In this process, a CNT metal 

suspension is subjected to drying, calcination and reduction process, in series, to produce 

metal-CNT composite powder [19]. These nanocomposite powders are then used for bulk 

processing through powder metallurgy route [19, 68, 138, 139]. The aim is to obtain good 

dispersion and better bonding of CNTs with matrix in the final composite structure. 

Huang et al. [141] have tried to deposit several metals on CNT bundles using 

sputtering.  Au, Ag and Cu form array of nano crystals of ~10Å on the surface of CNTs, 

whereas Ti, Zr and Mo forms nanowires at the grooves of the CNT bundles. This 

difference in morphology has been explained in terms of interactions between carbon and 

respective metal atoms.  Particle formation in Au, Ag and Cu indicates a weak interaction 

of those metals with C, whereas strong interaction of C with Ti, Mo and Zr helps them in 

forming elongated islands. Ci et al. [37] have sputtered Al at the bottom surface of 

vertically grown CNTs detached from the quartz surface. Subsequent annealing in the 

temperature range of 723- 1223K leads to Al4C3 formation. It was shown that carbide 

formed at defect sites and amorphous regions of CNTs. 

 Researchers have also tried to prepare MM-CNT composites by putting alternate 

layers of CNT and metal like a sandwich structure and then consolidating by applying 

severe pressure [142, 143].  Li et al. [142] have arranged 20 layers of 10 µm Cu foil with 

alternate CNT layers of 450 nm thickness and cold rolled the assembly with intermittent 
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annealing steps to form a Cu-CNT composite. They have reported good bonding between 

CNT and Cu, and improvement of young’s modulus by 13±5% by addition of 3.1 vol.% 

of CNTs. Salas et al. [143] have explored shock wave consolidation of alternate layers of 

Al powder and CNTs to produce composite with 2 wt.% and 5 wt.% CNT content. 

Deterioration of mechanical properties was observed due to clustering of CNTs at splat 

boundaries. 

 There have been few studies on application of torsion or frictional force to weld 

CNT and metal together to form MM-CNT composite [144-146]. Tokunaga et al. [144] 

have severely deformed ultrasonicated mixture of Al powder and CNT under a torsion 

force of 2.5 GPa and rotation speed of 1 rpm. They could produce Al-5 wt% CNT 

composite of 98% theoretical density. A decrease in grain size by 80% was also reported, 

which has been attributed to the presence of CNTs in the matrix causing constrained 

movement of dislocation towards grain boundary and subsequent annihilation [124]. 

Morisada and co-workers [145] have adopted a similar process for producing Mg-alloy-

CNT composite. CNTs were kept in a groove of a bulk piece of Mg alloy. Subsequently, 

frictional force was applied inside the groove with a probe rotating at 1500 rpm with 

various travel speeds.  

Few research groups have used physical /chemical vapor deposition (PVD/CVD) 

techniques for processing one dimensional or particulate type of MM-CNT composites 

[21, 147-150]. Zhang et al. [147] coated CNTs by tungsten through PVD of a W filament 

heated to 2473K in H2 environment. They obtained non-uniform coating formation. Shu 

et al. [148] and Kim et al. [149] have reported processing of Si-CNT composite, to be 

used as Li-ion battery anode, by CVD technique.  Both the studies have grown CVD on 
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Si particles using Ni as catalyst. Wang et al. [151] have produced Si-coated CNT 

composite by decomposition of Silane (SiH4) in order to increase thermal stability of 

CNTs. Ishihara and co-workers [150] have produced Si particles coated with nanotubes 

by chemical decomposition and vapor deposition of tetramethyl silane ((CH3)4Si). CVD 

process has also been used to produce Al-CNT composite powder by growing CNT on Al 

particle using Ni catalyst. He et al. [21] have used this composite particle with 5 wt.% 

CNT to prepare bulk composite structure through powder metallurgy route. Hardness and 

tensile strength of these composites have also increased by 200% and 180%, respectively, 

than the composite made with blended powders.  

A nanoscale dispersion method has also been proposed that utilizes natural rubber 

(NR) to improve dispersion of CNTs in metallic powder [20]. A perform of CNT in NR 

and CNTs and metal mixture in NR is stacked alternatively. The stacks are compression 

molded into slabs at 80oC which are subsequently heated in N2 atmosphere at 800oC. This 

treatment burns off the rubber and melts the Al incorporating the CNTs into the 

composite in a dispersed manner. A seven-fold increase in compressive yield strength 

was reported by addition of 1.6 vol.% CNTs. In another study [31], NSD process was 

used to produce precursor Al powder on which CNTs were distributed uniformly. This 

powder was subjected to spark plasma sintering followed by hot extrusion for 

synthesizing 5 vol.% CNT composites which has a tensile strength (194 MPa) twice that 

for pure aluminum.   
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2.3.5. Thermal Spray  

To the best of our knowledge, all of the work on thermal spraying of CNT 

reinforced metal matrix composites have been carried out by our research group. Thermal 

spraying can be defined as the spraying of molten or semi-molten particles onto a 

substrate to form a coating/deposit by way of impact and solidification. Thermal spraying 

is now a 100 years old technique with the first patent being filed in early 1900 by Dr. 

Schoop [152]. Thermal spraying methods offer the advantage of large cooling rates as 

high as 108 K.s-1 during solidification which often result in the formation/retention of 

nanocrystalline structure in the coatings [153-155]. Based on the heat source, thermal 

spray processes can be classified into flame spraying, plasma spraying, high velocity oxy-

fuel spraying (HVOF) or cold spraying. 

 

2.3.5.1. Plasma and High Velocity Oxy-Fuel Spraying 

In Plasma spraying, the heat source is a plasma created by the ionization of an 

inert gas by an arc struck between a tungsten cathode and concentric copper anode (DC 

plasma spraying) or by high frequency radio waves (RF plasma spraying) [152]. Powders 

injected into the plasma (temperature ≈ 10000 – 15000K) absorb the heat as well as gain 

kinetic energy and are projected at high velocities onto the substrate to form coating. 

Particle velocities can be subsonic or supersonic in plasma spraying. In HVOF, the 

source of heat is high pressure combustion of fuel oxygen mixture. The fuel could be 

gaseous like propylene, methane, propane and hydrogen or liquid like kerosene. The 

velocities of the particles are considerably higher (up to 1500 m.s-1) in case of HVOF 

which leads to formation of dense coatings. Thermal spraying can also be used for near 
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net shaping of bulk nanocrystalline components [156, 157]. By spraying on rotating 

mandrels of complex geometries, parts with intricate shapes can be generated. The faster 

rate of deposition and the fabrication of components having shape close to the final shape 

offers tremendous advantages by way of savings in the machining costs.  

Laha et al. have studied the feasibility of spraying CNTs with Al-Si powders to 

form composite coatings [35]. Successful retention of undamaged CNTs in plasma 

sprayed aluminum coatings was observed. Laha et al. have also fabricated bulk free 

standing cylindrical structures of CNT reinforced Al-23% Si alloy using Plasma Spray 

Forming (PSF) and HVOF as shown in Fig. 2.6 [32]. These cylinders were prepared by 

spraying on a rotating 6061 aluminum mandrel.  

   

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 2.6: Free standing structures of Al-23 wt.% Si alloy containing 10 wt.% CNT 

produced by Plasma spray forming (PSF) and HVOF 
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 The thickness of the PSF and HVOF cylinders were 0.64 mm and 1.24 mm, 

respectively. The thickness of the cylinders was limited due to the fact that the 

flowability for blended (Al + CNT) powders was not good and lead to clogging of 

powder feed pipes. HVOF resulted in higher density coating (2.54 g.cm-3) compared to 

PSF (2.45 g.cm-3) due to the fact the higher velocities of the particles during HVOF lead 

to better compaction. Elastic modulus and hardness were found to be higher for the 

HVOF coating compared to the PSF which was attributed to the lower degree of porosity 

and higher dislocation density in HVOF coatings [32]. Interfacial phenomenon in PSF 

composite was studied and will be reviewed in detail in section 2.4.2. It was shown that 

2-5 nm layer of SiC is formed at the interface of the CNTs in case of Al-23 wt. % Si alloy 

[33].  

 

 

 

 

 

 

 

 

 

 

Fig. 2.7: Effect of sintering time on primary silicon porosity content of plasma and 

HVOF sprayed Al-23 wt.% Si coatings containing 10wt.% CNT [158]. 



Sintering of the HVOF and PSF composites in argon atmosphere at 400oC for up to 72 

hrs resulted in densification and increase in the size and fraction of primary silicon as 

shown in Fig. 2.6 [158]. No noticeable effect on the interfacial carbide morphology was 

observed. 

 

2.3.5.2. Cold Spraying 

 Cold spraying is a relatively new coating technique wherein powder particles are 

accelerated to supersonic velocities (600-1500 m/s) by a carrier gas flowing under large 

pressure difference (up to 3.5 MPa) through a de-Laval type of nozzle and made to 

impact onto a substrate [159]. It has unique advantages like minimal effects on the 

material sprayed like oxidation, grain coarsening or phase changes, produces highly 

dense coatings and that the substrate is not affected during the coating process. The 

disadvantage is that a large amount of carrier gas is lost, unless recycled, and that only 

plastically deformable materials can be deposited. There is no melting of the particles and 

the bonding is believed to be due to adiabatic shear instabilities arising from thermal 

softening at the particle/substrate and particle/particle interfaces which have been 

modeled using finite element method [160, 161]. Figure 2.8 shows the schematic of shear 

instabilities leading to curvature generation. The constitutive relations for plastic flow 

used in modeling the deformation and bonding take care of the dependence of the flow 

stress on the strain, strain rate, temperature and pressure. The parameters affecting the 

process and spraying efficiency are particle size, density of particles, temperature of gas, 

density of gas and spraying angle, and various models have been proposed for the effect 

of various parameters [162-164]. 
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metals like Al, Cu and Ti [166-170], alloys like Al-Cu, Cu-Ni and Al-Si [171-174] and 

composite materials like TiB2-Cu, Al-Al2O3 and W-Cu [175-178]. In all the above cases 

of spraying composite coatings, it was observed that the second phase was distributed 

uniformly within the matrix. Recently, there has been interest in cold spraying 

composites containing nano fillers as reinforcements by cold spraying [177, 178]. Cold 

spraying has not been used for spraying CNT composites. It is interesting to study the 

feasibility of high impact processes for CNT composite fabrication. The effect of impact 

and plastic deformation processes on CNTs has not been studied.  

 

2.3.5.3. Comparison of Plasma and Cold Spraying 

  Plasma and cold spraying have been used in this dissertation for fabrication of 

coatings and composites reinforced with CNTs. So a comparison of the basic nature of 

the processes in terms of the energy imparted to the particles is necessary. Thermal spray 

Fig. 2.8: Schematic showing curvature generation due to shear instability resulting in 

mechanical interlocking [165] 

  

Cold spraying has been used to deposit many types of materials including pure 
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provides an efficient way of incorporating and dispersing CNTs into coatings and bulk 

components as it is a layer by layer deposition technique. Addition of CNTs could lead to 

improvement in the wear resistance and thermal conductivity of the coatings. Also 

possibilities of rapid prototyping exist with thermal spray methods. Plasma and cold 

spraying are different processes in many fundamental aspects. The important parameters 

that influence the property of coatings are the particle temperature and velocity.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.9: Comparison of various thermal spray processes 

 

Figure 2.9 shows a comparison of various thermal spray processes based on the 

gas temperature and particle velocities. It is observed that the plasma and cold spraying 

represent extreme processes in terms of gas temperature and particle velocities 

respectively. Table 2.3 compares the various aspects of the two processes.  



Table 2.3: Comparison of various aspects in plasma and cold spraying for CNT 

composites 

Feature Plasma Spraying Cold Spraying 

Particle Temperature > 2000K RT-600K 

Particle velocity 100-200 m/s > 600 m/s 

Particle state Molten or semi-molten Solid 

Mechanism of 
coating formation 

Layer by layer deposition of 
splats from solidification of 
impacting droplets 

Plastic deformation of 
particles due to impact 
leading to splat formation 

Oxidation of matrix 
material 

Possible Not possible 

Retention of powder 
microstructure 

Not retained Retained 

Thermal damage to 
CNTs 

Possible Not possible 

Chemical stability of 
CNTs 

Reaction with the matrix 
material possible 

No chemical reaction 
possible 

Mechanical damage 
to CNTs 

Moderate damage possible Severe damage possible 

 

 

From Table 2.3 it is noted that there are several interesting phenomena that needs 

to be studied in fabrication of these coatings by the two processes. While oxidation and 

phase changes could occur during plasma spraying of Al-Si powders, cold spraying 

produces little change in the phase composition of the powder feedstock. Plasma spraying 

could cause changes in morphology of the CNTs due to thermal damage and chemical 

interaction with the molten matrix, while in cold spraying there is no melting involved. 
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Cold spraying involves extremely high velocity impact which can cause mechanical 

damage to CNTs whereas mechanical damage, though possible in plasma spraying is but 

less severe. The research work carried in this study addresses these issues. 

It is observed that interest in MM-CNT composite fabrication is increasing. 

Figure 2.10 shows pie chart of number of publication in various metal matrices.  

 

 

 

 

 

 

 

 

 

Fig. 2.10: Pie chart of no. of publications till 2008 on various MM-CNT systems 

 

Most of the work has been carried out on Ni-CNT composites where the effort has 

been mainly to synthesize coatings by electrochemical means. Aluminum and Copper are 

comparable and interest in this field has been in developing novel CNT reinforced 

composites for structural, electronic or thermal management applications. Novel methods 

are being designed to meet the challenges and overcome the issues. Table 2.4 shows the 

summary of major processing routes for fabrication of MM-CNT composites. As has 

been seen from the discussion on processing, the main objective is to achieve 
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homogeneous dispersion and good reinforcement of CNTs in the matrix. Electrochemical 

deposition techniques are the best for achieving the same. But, the main limitation for 

those techniques is that they can produce thin coatings and not thick coatings and free 

standing bulk composite structures. Casting techniques are suitable for only low melting 

point materials or amorphous structures though uniform dispersion of CNTs in the melt 

pool is still a challenge. Powder metallurgy is, by far, the most widely used and feasible 

route for preparing MM-CNT composites, but it needs immediate attention for both the 

dispersion and reinforcement issues.  Molecular level mixing technique and CVD method 

have shown promising improvement in preparation of starting powder for powder 

metallurgy route. If they are combined with SPS technique for sintering, MM-CNT 

composite with better mechanical properties may be produced. But, these techniques are 

still in their nascent stage and further studies are required to explore their possibilities as 

suitable method for preparing MM-CNT composites. Thermal spray methods like plasma 

spraying and HVOF have been shown to produce CNT reinforced coatings and near net 

shape structures. CNTs were shown to retain during high impact processes like cold 

spraying and explosive shock-wave consolidation. Thermal spray methods offer the 

advantages of rapid solidification and rapid prototyping for bulk composite fabrication as 

compared to extrusion or casting. 



Table 2.4: Summary of Processing Techniques utilized for MM-CNT composite fabrication 

Processing Sub-type Method summary Alloy systems Property Enhancement 

Sintering 

(Powders + CNT) 
mechanically 
alloyed/mixed followed 
by compaction and 
sintering 

Cu-CNT [17, 58]             
Al-CNT [21]                    
W-Cu-CNT [18]            
Mg-CNT [59] 

Ag-CNT [60] 

91% reduction in COF and 140% 
reduction in the wear rate in Cu-
16vol.% CNT [58] 

Wear rate and Friction coefficient 
decreased by 60% for Cu-12wt.% CNT 
[17] 

Increased hardness (4.8 times) and 
tensile strength (2.8 times) in Al- 5wt.% 
CNT [21] 

Hot pressing 

(Powders + CNT) 
mechanically 
alloyed/mixed followed 
by hot pressing 

Al-CNT [26, 72], 

Cu-CNT [179], 

Ti-CNT [28] 

Mg-CNT [73] 

Fe3Al-CNT [74]             
Ti-BMG-CNT [75, 76] 

450% increase in hardness and 65% 
increase in elastic modulus in Ti-CNT 
[28] 

9% increase in elastic modulus in Mg-
2wt.% CNT [73] 

Increased thermal stability and hardness 
(30%) in Ti-BMG-10wt.% CNT [75] 

Powder 
Metallurgy 

Spark 
plasma 
sintering 
(SPS) 

SPS of powders 
prepared by 
Mechanical 
alloying/novel 
dispersion methods 

Cu-CNT[19, 66-68] 

Al-CNT [31] 

129% increase in tensile strength in Al-
5vol.% CNT [31] 

200% increase in yield strength and 
70% increase in elastic modulus of SPS 
of molecular level mixed Cu-5vol.% 
CNT [19] 
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Deformation 
Processing 

Compacts processed by 
hot extrusion, rolling, 
ECAP 

Cu-CNT[41, 67, 77-80] 

Al-CNT[29, 30, 81-86] 

Mg-CNT [90, 180] 

100% increase in tensile strength in hot 
extruded Al-10vol.% CNT [29] 

71% reduction in wear loss in (sintered 
+ rolled) Cu-12vol.% CNT [80] 

15% increase in yield strength in 
(sintered + hot extruded) Mg 0.3wt.% 
CNT [87] 

Casting 
Pre-alloyed powders 
melt and cast 

Zr-BMG-CNT [23, 87] 

Mg-CNT [24, 88-90] 

12% increase in elastic modulus of Zr-
BMG-4vol.% CNT [87] 

 
Melting and 
Solidification 

Melt 
Infiltration 

Infiltration of porous 
CNT-metal powder 
compacts 

Mg-CNT [59]  

Al-CNT [91] 

20% increase in 500K shear modulus in 
Mg-CNT [59] 

67% increase in hardness, 28% decreas 
in wear rate in Al-20vol.% CNT [91] 

Thermal 
Spraying 

Plasma and 
HVOF 
spraying 

Spraying CNT-metal 
powder blends to form 
coatings/bulk structures

Al-CNT [32, 35, 38, 
181] 

72% increase in hardness and 78% 
increase in elastic modulus in Al-
10wt.% CNT [35, 181] 

 

 

 

 

Electro-

Electro-
deposition 

Deposition of Metal-
CNT coating from 
metal electrolyte 
containing CNTs by 
passing electric current 
(Pulsed + DC) 

Ni-CNT[95-112]         
Cu-CNT[113-116] 

250% reduction in grain size in Ni-Co-
CNT co-deposited coatings [102]  

320% and 270% increase in tensile 
strength of Ni-SWNT and Ni-MWNT 
[108]. 65% decrease thermal resitance 
and negligible electrical resistance in 
Cu-40vol.% CNT [114] 
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chemical  

Techniques 

Electroless 
deposition 

Deposition of Metal-
CNT coating by 
spontaneous 
decompostion of salt 
solution containing 
CNTs 

Ni-P-CNT or Ni-B-
CNT [17, 118-135] 

44% increase in hardness in Ni-2 vol.% 
CNT [118, 132] 

300% increase in hardness and elastic 
modulus in Ni-P-28.2vol.% CNT [133, 
134] 

83% reduction in wear volume and 60% 
reduction in COF in Ni-P-2vol.% CNT 
coating [118, 132] 

Molecular 
Level 
Mixing 

Dispersion of CNTs in 
salt solution followed 
by drying, calcination 
and reduction.  

Cu-CNT [19, 68, 137-
139] 

200% increase in yield strength and 
70% in elastic modulus Cu-5vol.% CNT 
[19]  

76.9% decrease in wear loss with 10 
vol.% CNT addition [68] 

Novel Routes 

Nanoscale 
Dispersion 

Mixing natural rubber 
(NR), CNTs and metal 
powders followed by 
curing to remove NR 

Al-CNT [31, 182] 

Seven-fold increase in compressive 
yield in Al-1.6vol.% CNTs [31] 

128% increase in tensile strength in SPS 
compacted and hot extruded Al-CNT 
[31] 

 



2.4. Critical Issues in CNT reinforced MMCs 

2.4.1. CNT Dispersion 

Uniform dispersion of CNTs has been the main challenge in CNT-reinforced 

composites be it polymer, ceramic or metal matrix. This is due to the fact that CNTs have 

tremendous surface area of up to 200 m2.g-1 which leads to formation of clusters due to 

attractive van der Waals force. The elastic modulus, strength and thermal properties of a 

composite are related to the volume fraction of the reinforcement added. Hence, a 

homogeneous distribution of reinforcement is essential as it translates into homogeneous 

properties of the composite. Clustering leads to concentration of reinforcement at certain 

points and this could lead to lowering of overall mechanical properties. 

 Most of the early research on fabrication of CNT composites used 

blending/mixing for adding CNTs to metals [35, 58, 60]. Blending is not effective in 

dispersing the CNTs. Several researchers have observed that mechanical properties 

(wear, hardness, tensile strength) deteriorate for composited made by blending of larger 

concentration of CNTs [58, 60, 80, 183]. The reduction in the properties is due to the 

inability to obtain uniform distribution of CNTs at large volume fractions. Several 

methods have been developed to uniformly distribute the CNTs in metal matrices. 

Noguchi et al. have suggested nanoscale dispersion (NSD) process which results in 

uniform dispersion of CNTs on Al powder [20]. A seven fold increase in the compressive 

yield strength was observed for 1.6 vol.% CNT addition. Esawi et al have shown that 

excellent dispersion of CNTs in Al powders can be achieved by ball milling [22]. 

However, large particles up to 1 mm in diameter resulted from the milling action, which 

can cause difficulty during consolidation. Choi et al. used hot extrusion for consolidating 
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ball milled powders and aligning the CNTs in the extrusion direction [30]. Cha et al. have 

developed a novel molecular-level mixing method for dispersing CNTs [19]. He et al. 

[21] have used CVD method to grow CNTs on Al powders which were then used to 

fabricate a 5 vol.% composite by pressing and sintering. Figure 2.11 shows the dispersion 

achieved by different methods.  

 

Fig. 2.11: a) TEM image of CuO/CNT powder prepared by molecular level mixing 

method [19], b) SEM image of the fracture surface of Al/CNT powder prepared by ball 

milling for 48 hours [22], c) SEM image of Al-5 wt.% CNT powder prepared by 

nanoscale dispersion method [31], and d) SEM image of CNTs grown on aluminum 

powder [21] 



The methods suggested above have their own drawbacks. The NSD process leads to good 

dispersion of CNTs on the particle surface. So the level of dispersion is dependent on the 

particle size used. Ball milling leads to excellent dispersion but might result in the 

damage to CNTs. Molecular level mixing method might lead to oxide impurities due to 

incomplete reduction of the powders. While the quality of dispersion is important, the 

processes used should also be amenable for large scale production of powders. 

 Quantification of the degree or quality of CNT reinforcement is also important. It 

helps in comparing various microstructures and the effectiveness of various methods for 

dispersion of CNTs in composites. Dirichlet tessellation has been used in the 

quantification as well as to study the effect of dispersion in composite materials [184-

186]. But there has been hardly any study in the quantification of dispersion in carbon 

nanotube composites. Majority of the researchers mention uniform CNT dispersion in the 

composites which is based on mere visual examination of the microstructure. Recently, 

Luo and Koo proposed a method based on the statistical distribution of horizontal and 

vertical separation distances between the peripheries of the particles/carbon fibers in a 

cross sectional image of the composite [187]. A lognormal distribution was found to fit 

the distribution obtained.  Two parameters D0.1 and D0.2 were defined representing the 

probability that the values lied between   0.1 and   0.2 of the values respectively, 

 being the average distance. The larger the values of D0.1 and D0.2 the better the 

distribution was since it means uniform separation of the filler materials. Recently, Pegel 

et al. [188] have used spatial statistics on TEM images of polymer CNT composite to 

study the variation of the area fraction of CNTs as a function of radius of the nanotubes. 

They show that the variation of the area and spherical contact distribution function 
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converged to 100% faster in case of clustered CNT configurations. Use of the above 

methods is very useful in differentiating processes based on their ability to disperse CNTs 

in the microstructure. However, there is a necessity to develop simpler methods for 

quantification of CNT distribution. 

 

2.4.2. Interfacial Phenomena and Chemical stability of CNTs 

Interfacial phenomena and chemical stability of the CNTs in the metal matrix is 

critical for several reasons. The fiber-matrix stress transfer [189] and the interfacial 

strength [53] play an important role in strengthening. The applied stress is transferred to 

the high strength fiber through the interfacial layer.  So a strong interface would make the 

composite very strong but at the expense of ductility of the composite. A weak interface 

would lead to lower strength and inefficient utilization of fiber properties by facilitating 

pullout phenomena at low loads due to interface failure. Wetting of the fiber by the liquid 

metal is essential. Non-wetting will lead to poor interfacial bonding. Interfacial reactions 

leading to formation of interfacial phase can improve wetting if the liquid has a lower 

contact angle with the phase forming due to the reaction. A lot of work has been carried 

in reinforcing aluminum matrix with carbon fibers. Interfacial reactions and degree of 

wetting of the fibers have been shown to affect the properties of the composite [190-192]. 

Formation of aluminum carbide (Al4C3) has been observed at the interface in liquid metal 

infiltrated Al-Si alloy composites reinforced with carbon fibers containing 7 wt.% [193] 

and 13 wt.% Si [194]. Vidal-Setif et al. have shown reduction in the strength and 

premature failure of 75 vol.% carbon fiber reinforced A357 alloy due to formation of 

Al4C3 and presence of brittle Si particles [195]. So formation of Al4C3 needs to be 
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avoided. However, there have been reports of improvement of properties of Al-SiCp 

composites due to limited amounts of Al4C3 [196]. In case of CNT reinforced aluminum 

composites, Kwon et al. suggest that the Al4C3 helps in load transfer by pinning the 

CNTs to the matrix [31]. The extent and nature of chemical reactions can be changed by 

either by controlling the chemistry of the matrix [197] or by using coatings on 

reinforcements [198, 199]. 

 CNTs are expected to be quite stable chemically compared to carbon fibers due to 

their perfect structure. Unless otherwise specified CNT in this section refers to multi-

walled CNT. It is obvious that reaction of single walled CNTs with metal leading to 

carbide formation would lead to destruction of the tubular structure. Comparison of the 

intensity of (111) peak of the XRD pattern of Cobalt, after a 10 hr annealing treatment 

with various forms of carbon at 1000oC shows that the chemical interaction of layered 

graphite was the lowest followed by single walled CNT, multi-walled CNT and activated 

carbon in respective order [200]. Layered graphite has perfect structure of sp2 hybridized 

carbon atoms arranged in ABABAB… stacking sequence which would make it less 

reactive chemically. Defects in activated carbon and in CNTs provide sites for chemical 

reactions to occur. Reaction of CNT with metal matrices leading to carbide formation has 

been observed by many researchers. In fact, Dal et al. have utilized reactions between 

volatile oxides/halides with CNTs as a means of synthesis of  various carbide nanorods 

viz. TiC, NbC, Fe3C, SiC and BCx [201]. Shi et al. have synthesized WC-CNT 

composites by reduction and carbonization of WO3 precursors produced after a molecular 

level mixing followed by calcination [202]. Kuzumaki et al. have observed formation of 

TiC in hot pressed Ti-CNT composites [28]. Ci et al. have shown the formation of Al4C3 
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on annealing CNTs, on which aluminum was deposited by magnetic sputtering process, 

at temperatures above the melting point of aluminum [37]. It was found that carbide 

formed at amorphous areas of CNT due to incomplete graphitization. The small size and 

amount of Al4C3 formed was due to the smaller availability of defective sites and 

amorphous carbon. The formation of carbide also depends on the processing techniques. 

Some researchers have reported no formation of Al4C3 in case of solid state processes 

like extrusion [30]. In our research group, Laha et al. has shown formation of SiC due to 

reaction between Al-23 wt.% Si alloy and CNTs [33]. SiC formation was justified based 

on the fact that its free energy of formation was lower than Al4C3. But when molten Al-Si 

alloy is in contact with CNTs the free energy of formations will depend on the activities 

of each constituent which was not taken into account. An in-depth study is required for 

the effect of Si content on interfacial reaction. A study on the chemical stability of CNT 

with temperature in Al (2024 alloy)-CNT composite has been carried out by Deng and 

co-workers [36]. They found no existence of CNT in the matrix when heated up to 1073K 

and XRD results show that CNT fully converts to Al4C3. Figure 2.12 shows the TEM 

images of CNT matrix interfaces in various composites. Different interfacial carbides 

may result in significantly different mechanical properties of the composites since the 

shear strength of the carbides determines the stress that could be transferred to the CNTs. 
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Fig. 2.12: TEM images of CNT-Matrix interface from various composite systems namely 

a) annealed Al-deposited on CNT showing Al4C3 [37], b) SiC layer in Al-23 wt.% Si 

composite containing 10wt% CNT [33], c) Al4C3 in composites obtained by hot extrusion 

of spark plasma sintered samples [31], and d) Al4C3 formation in a mixture of CNT and 

2024 alloy heated to 1000K in DSC [36] 
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An important aspect of composite fabrication is wetting of the reinforcement by 

the liquid alloy. Wetting is related to the surface energies of the interacting species by the 

Young’s equation and the Young-Dupre relation given below.  

LV

LSSV







cos       Equation 2.1 

  cos1 LVAW       Equation 2.2 

Here  is the contact angle and SV, LS and LV are the solid-vapor, solid-liquid and liquid 

vapor surface energies and WA is the work of adhesion between the liquid and the 

substrate. Carbide nucleation and growth was discussed by Landry et al. [203] and it was 

applied to Al-23 wt.% Si composites reinforced with CNTs by Laha et al. [33] The 

critical thickness for carbide nucleation is given by the equation 

fMCrit G
Vt







      Equation 2.3 

Here VM is the molar volume of the carbide formed, ΔGf is the free energy of formation 

per mole of carbide and CNTAlloyAlloyMCCNTMC ///    is the increase in total 

surface energy as a result of formation of new interfaces. MC stands for metal carbide. 

When carbide thickness reaches tCrit, further growth is energetically favorable. This might 

result in the decrease in contact angle and improvement in wetting. Smaller tCrit values 

therefore indicate easy formation of carbide as well as better wetting. The surface tension 

of CNTs (SV) is 45.3 mJ.m-2, which is similar to carbon fiber [204]. It has been shown 

that a liquid with surface tension between 100-200 mN.m-1 results in good wetting with 

CNT [205, 206]. Molten Al-Si alloys have surface tension of ~800 mN.m-1. Hence, it is 

expected that the wetting between Al-Si alloys and CNTs will be poor.  It has been 
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experimentally observed in the sessile drop experiments by Landry and co-workers that 

Al-Si alloys do not wet graphite in the beginning and exhibit a large contact angle of 

~160o [203, 207]. Al4C3 and SiC formation reduces contact angle to 45o and 38o 

respectively. Hence, formation of interfacial carbides favors wetting which would 

promote infiltration of liquid melt into CNT performs. The reaction at the triple point 

between liquid alloy and CNT leads to formation of carbide and subsequent spreading of 

metal. Minimal reaction of CNT is desirable in order that efficient stress transfer can 

occur without much damage to the CNT structure.  

 

2.4.3. Strengthening Mechanisms in MM-CNT Composites 

The objective of addition of fibrous reinforcements like CNTs is twofold: (i) to 

increase the tensile strength and (ii) to increase the elastic modulus of the composite. 

Both these effects are due to the fact that the CNTs have higher stiffness and strength 

compared to the metal matrix. The mechanisms for enhancement of mechanical 

properties will be discussed below. 

 

2.4.3.1. Tensile Strength of MM-CNT Composites 

Understanding the strengthening mechanisms in fiber reinforced composite 

materials has been a focus of research for almost 50 years now. The shear lag 

models[208] used in case of conventional fiber reinforced composites have also been 

applied to CNT composites. The stress is transferred to the fiber (f) via the interface and 

is related to the shear stress (mf) between the fiber and matrix given by: 
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f

f

f

D

l



2

        Equation 2.4 

where lf and Df are the length and diameter of CNT respectively. CNTs with a larger 

aspect ratio will assist larger load transfer and hence efficient utilization of 

reinforcement.  For a critical length lc, the value of f becomes equal to the fracture 

strength of CNTs. For nanotube lengths l < lc, the fracture strength of the composite 

(denoted by superscript Frac) is given as 
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l

l
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








2
    Equation 2.5 

Choi et al [30] concluded that equation 2.5 holds good for Al-CNT composites prepared 

by extrusion of ball milled powders. Coleman et al. [53] reviewed the strengthening 

models for CNT composites. In case of MM-CNT composites, reaction with the metal 

matrix might lead to interfacial carbide product.  The stress transfer to the CNT is then 

affected by the shear strength of the carbide phase. When the stress exceeds this value, 

the fracture occurs along the carbide layer leading to fiber pull out phenomena. Coleman 

et al. have derived the strength of the composite in the presence of an interfacial layer as 

follows[209] 

     mfmShearc VDbDlDb   /21//21   Equation 2.6 

Where Shear is the shear strength of the interface and b is the width of the interfacial 

layer and D is the diameter of CNT. Laha et al. [181] have found that the value of 

strength calculated by this formula (226 MPa) is quite large compared to experimentally 

measured value (83.1 MPa) which is due to reasons like porosity, uniformity of 

interfacial product, and clustering of CNTs which are not considered in the model. Kim et 
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al. have observed elongated clusters of CNT in the microstructure of Cu-CNT composites 

produced by spark plasma sintering of ball milled powders followed by cold rolling [67]. 

The stress-strain curve of the composite showed a two stage yielding process. Figure 

2.13a shows the microstructure and 2.13b shows the corresponding stress strain curve.  

 

Fig. 2.13: a) Microstructure of CNT-Cu composites produced by spark plasma sintering 

and cold rolling and b) Stress strain curves showing two stage yielding process [71] 

 

The first (y,1) was matrix yielding and second (y,2) yield strength was CNT 

cluster yielding and both could be modeled by following equations 

meff
mf

y S
V




 
21,       Equation 2.7 

where 

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
 


S

SSeff  is the effective aspect ratio of an 

elongated CNT cluster oriented at an angle  to the loading direction. The average Seff is 

given as 
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     Equation 2.8 

Where F() is the probability distribution function of the misorientation of the CNT/Cu 

clusters which was obtained by image analysis. The second yield stress is given as 

  fffyy VV   11,2,      Equation 2.9 

 Yeh et al. [210] have shown that a modified Halpin-Tsai equations fits the 

properties of phenolic-based composites well which could be used for MMC-CNT 

composites too. 
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  Equation 2.10 

The coefficients  and  can be determined and are influenced by the degree of 

dispersion of the CNTs in the matrix. The properties of the CNT composites are also 

affected by nanotube waviness as suggested by some FEM simulations [211]. 

Strengthening due to dislocation generation by thermal expansion mismatch and 

precipitate strengthening by Orowan looping mechanism has been suggested as a 

mechanism of strengthening in Al-CNT composites [81] although observance of such 

mechanisms have not been made yet.  But the most important factor in achieving the 

predicted theoretical strengths is uniform dispersion of CNTs in the matrix [19]. 

 

2.4.3.2. Elastic Modulus of MM-CNT Composites 

Improvement in the elastic modulus of the composite is a result of the large 

tensile modulus of 350-970 GPa of CNTs [10]. Most of the research has been done on 

polymer CNT composites which can be applied to metal matrices too. Various 
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micromechanical models have been proposed to predict the elastic modulus of composite 

materials and they have been applied to CNT composites also [53, 186, 212, 213]. Some 

of the most commonly used models are discussed below. In the equations that follow, E 

stands for elastic modulus,  stands for yield strength, V stands for volume fraction, k 

stands for bulk modulus,  stands for rigidity modulus,  stands for Poisson’s ratio and 

the subscript m corresponds to matrix while f corresponds to fiber (CNT).  

 

a) Combined Voigt – Reuss Model 

The elastic modulus for randomly oriented fibre composites is given by 

 EEE
8

5

8

3
||       Equation 2.11 

Where   mfff EVEVE  1||

  

 is the longitudinal modulus (along the direction of the 

fibers) and
fmff

mf

VE

EE
E


 1 VE

 is the transverse modulus (along the direction 

normal to the fibers).  

 

b) Cox Model 

Elastic modulus of the composite according to this model is given by[212, 214] 

 fmffL VEVEE  1
5

1      Equation 2.12 
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Where l and r are the length and radius of the fiber reinforcement. 
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c) Halpin-Tsai Equations 

Qian et al. [215] have used the Halpin-Tsai equations[216] to obtain the elastic 

modulus of randomly oriented fibre composites as follows: 

 
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   Equation 2.13 

Where 
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T EE

EE
 and l and D represent the length and 

diameter of the CNT respectively. Halpin Tsai equations have been found to closely 

predict mechanical property in case of small CNT concentrations in polymer and metal 

matrix CNT composites [53, 210, 217]. 

 

d) Hashin Strikman Model 

This model based on variational principles[218, 219] provides the upper and 

lower bounds for the elastic modulus of a composite. It is independent of the shape of the 

particle. Laha et al. [32] found that experimental elastic modulus for Al-CNT composites 

prepared by PSF and HVOF and sintered for various times ranged between the upper and 

lower bounds.  

 

e) Modified Eshelby Model 

Chen et al. [220] have used modified Eshelby model to relate the properties in 

CNT composites to the volume fraction of CNTs as well as porosity. The longitudinal 

elastic modulus value is given by the formula 

      Equation 2.13   1
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The values predicted by the model were higher than those observed experimentally which 

were ascribed to the poor bonding between CNT and matrix.  

 

f) Dispersion Based Model 

All the above equations assume that the CNTs are distributed uniformly which is 

seldom the case, especially at large concentrations. Recently, Villoria and Miravete[221] 

have developed a model to take into account clustering phenomena in CNT composites. 

They have developed a model to compute the properties of CNT clusters which could be 

applied to any type of fiber reinforcement where clustering is present. The overall 

properties of the composite are obtained by considering it as a dilute suspension of the 

clusters (properties with subscript dsc) in matrix. 
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Where cc refers to the volume fraction of clusters which is related to the overall CNT 

fraction by cff ccV . , cf being the CNT concentration in of a cluster. This model has 

been shown to predict the values more accurately compared to Cox model in case of 

epoxy CNT composites [221]. 
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2.5. Mechanical Properties of MM-CNT Composites 

2.5.1. CNT Reinforced Aluminum 

Kuzumaki et al. [29] were the first researchers to show a 100% increase in the 

tensile strength with 10 vol.% CNT addition. Deng et al. have reported a 41% increase in   

elastic modulus and 36% increase in tensile strength in 2024 alloy reinforced with 1 wt.% 

CNT prepared by cold pressing and hot extrusion [83]. On the contrary, Salas et al. [143] 

have reported deterioration in hardness in shock wave consolidated Al-5 vol.% CNT 

composite. Agglomeration of CNTs in the matrix and weak interface bonding led to drop 

in properties. CNT reinforcement to composite coatings prepared by Laha et al. [32, 35, 

181] using thermal spraying methods, have been shown to improve the hardness by 72%, 

elastic modulus by 78%, marginal improvement in tensile strength and 46% decrease in 

ductility with 10 wt.% CNT content. Sintering (673 K, 72 hrs) of the sprayed coating has 

been reported to further increase the elastic modulus of the composite coating by 80%, 

which has been attributed to reduction in porosity and residual stress [158].  

Noguchi et al. [20] have reported 350% increase in the compressive yield strength 

with 1.6 vol.% CNT addition, which, is due to a very homogeneous distribution of CNTs 

obtained by the nano-scale dispersion method. He et al. [21] have achieved 333% 

increase in hardness and 184% increase in tensile strength with 6.5 vol.% CNT addition 

in a composite prepared by using powders on which CNTs were grown by CVD 

technique [21]. Hence, it is clear that homogeneous distribution of CNTs and strong 

bonding with the matrix are the main areas to control the mechanical properties of the 

MM-CNT composites. The only report on wear properties of Al-CNT composite 
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processed through pressureless infiltration technique shows 22% decrease in COF  and 

25% decrease in the wear rate with 20 vol.% CNT addition [91]. 

 

2.5.2. Other metallic systems 

Reports on Cu-CNT systems deal with improvement in mechanical as well as 

electrical properties. Powder metallurgy technique, comprising of compaction and 

sintering, helps increasing the hardness up to 20% with 15 vol.% CNT addition [77, 

80].CNT reinforcement coated with Ni improved bonding with the Cu matrix and 

resulting in  ~80-100% increase in the hardness for 9-12 vol.% CNT addition [17, 222, 

223]. Spark plasma sintering (SPS) of Cu-10 vol.% CNT composite has improved the 

hardness by 79% with a further improvement up to 207% resulted from rolling of the SPS 

composite. This improvement is attributed to better dispersion and reinforcement induced 

by SPS and rolling [66, 67]. Molecular level mixing resulted in an improvement of 200% 

in the yield strength and 70% in elastic modulus. Cu-CNT composite, processed by cold 

rolling of sandwiched layers of metal and single walled CNT shows 8% improvement in 

tensile strength and 12.8% increase in elastic modulus [142]. Tu and co-workers [17, 

103] have reported a maximum improvement of wear properties in a Cu-CNT composite 

processed through powder metallurgy technique using Ni-coated CNTs.. They have 

obtained 91% reduction in COF and 140% reduction in the wear rate with 16 vol.% CNT 

addition. Molecular level mixing technique has also helped improving the wear properties 

of Cu-CNT composite by resulting 76.9% decrease in wear loss with 10 vol.% CNT 

addition [68]. 
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 C.S. Chen et al. [128] and X. Chen et al. [122] have reported the maximum 

improvement in the hardness by 68% for the Ni-CNT composite coating deposited by 

electroless technique.  Deng and co-workers have reported improvement of hardness of 

the electroless composite coating by 44% with addition of 2 vol.% CNT. [118, 132] On 

the contrary, Chen et al. [124] have reported to improve the hardness by only 11% with 

12 vol. % CNT addition. This might have been caused by agglomeration of CNT in the 

bath due to increase in concentration. Shen et al. [133, 134] observed an extraordinary 

300% improvement in the hardness and elastic modulus of Ni-CNT composite coating 

prepared by electroless deposition technique for MEMS application. The improvement in 

mechanical properties is attributed to the acid oxidative method used for surface 

modification of the CNTs that keep them dispersed and suspended uniformly in the bath 

and in the coating. Sun et al. [108] achieved a significant increase in the ultimate tensile 

strength of 320% for SWCNT and 270% for MWCNT addition in electro-deposited Ni 

films. Deng and his group [118, 132] have reported a maximum of 83% decrease in the 

wear volume for electroless plated Ni-P-CNT composite coating with 2 vol.% CNT 

content, whereas the coefficient of friction (COF) reduced by 60%. It has been noted that 

COF continues decreasing with increasing CNT content in the composite but the wear 

rate starts increasing after a critical concentration [17]. 

Number of reports on Mg-CNT composite is fewer as compared to Al, Cu and Ni-

CNT composites. Some of these studies are restricted to effect of CNT addition on 

hydrogen storage properties of the composite [63].  Li et al. [88] have reported a 

maximum of 150% increase in the tensile strength of the Mg-CNT composite with 0.55 

vol.% CNT prepared through melting and casting route. Such high increase in mechanical 
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properties is attributed to Ni-coating on CNTs before addition which helps in improving 

wetting with the matrix. Morisada et al. [145] have prepared Mg-CNT composite through 

friction stir welding and reported 90% increase in hardness, though the CNT 

concentration and its gradient is not mentioned. Goh et al have reported 15% increase in 

yield strength for 1 vol. % CNT composite prepared through casting route [24]. They 

have also studied to fatigue behavior of Mg-CNT composite to find out that CNT 

addition decreases number of cycle to failure [90].  A recent study on Mg- 0.1 wt% CNT 

composite through casting route have reported 36% increase in the compressive strength 

[25]. 

 Ti-CNT composite, produced by powder metallurgy, shows 450% improvement 

in the hardness and 65% increase in elastic modulus, though the CNT content of the 

composite was not mentioned [28]. Zeng and colleagues also have observed 200% 

increase in the hardness of Ti-Ni shape memory alloy with 4.5 wt.% CNT addition [224].  

Researchers have used CNTs as reinforcement in bulk metallic glasses (BMG) also. Ti-

based BMG-CNT composites, processed by powder metallurgy, have shown 53% 

increase in hardness [75, 76].  CNT reinforced Zr-based BMG prepared by melting and 

casting technique, show ~10% improvement in hardness and elastic modulus [23, 87]. 

Kumar et al. [225] have achieved 50% increase in tensile strength for their soldering 

alloy with only 0.01 wt.% SWCNT content. Pang and co-workers have reported 30% and 

11% increase in hardness and compressive strength, respectively, of Fe3Al intermetallic, 

with 3 wt.% CNT addition through powder metallurgy[70, 74]. 

 Figure 2.14 plots the improvement in the mechanical properties for various MM-

CNT systems. It is observed that novel techniques seem to be more successful in 
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improving mechanical properties of the composites due to improved dispersion and 

 

 

Fig. 2.14: Improvement in mechanical properties of different MM-CNT composites as a 

function of CNT content classified depending on processing routes employed 

interface bonding. In general, there is lot of scatter in data and there is poor correlation

between CNT content and improvement in mechanical property which is due to presence 

of defects induced by various processing techniques and lack of uniformity in mechanical 

testing methods.  



 

Most of the mechanical property data reported on CNT reinforced 

nanocomposites has been based on microhardness, nanoindentation, miniaturized sample 

or computational theories. Though CNTs have excellent properties, but the nanoscale 

properties are not translated into bulk mechanical properties of the composite. 

Inhomogeneous CNT distribution and insufficient CNT metal bonding are some of the 

reasons and these are affected by the processing techniques. Kuzumaki et al [29] obtained 

the yield strength of 80 MPa for 5-10 vol% CNT whereas Deng et al. [84] reported yield 

strength of 336 MPa for mere 1 wt. % CNT addition to Al matrix. It is evident that the 

tensile properties of CNT reinforced aluminum composites synthesized by different 

processes display a wide scatter in the mechanical properties attributed to the variance in 

the microstructural features, defects, porosity level caused by processing and lack of 

consistency in mechanical testing techniques and samples.  

 

2.6. Other Properties of MM-CNT Composites 

Owing to excellent electrical properties, evinced by the current carrying density of 

~4 × 109 A.cm–2 (three orders of magnitude higher than Cu or Al),[226] CNTs have been 

used for enhancement of electrical properties. Al- 12.5 vol.% CNT composite prepared 

by powder metallurgy [26] displayed increased electrical resistivity by 66%. Authors 

have also reported an abrupt drop in resistivity to almost ‘0’ at 80K– though no suitable 

explanation for this behavior was provided. A recent study by Yang et al. [110] shows 

that the electrical resistivity of Cu-CNT composite remains same as that of pure Cu, up to 

10 vol.% single walled CNT addition. The observation by Feng et al. [60] for Ag-CNT 
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composites also shows marginal increase in the electrical resistivity up to 10 vol.% CNT 

addition. The sharp increase in the electrical property beyond 10 vol.% CNT is attributed 

to the increase in interfacial area and strain in the matrix due to presence of CNT cluster 

– both of which hinders electron transfer through the composite. 

CNTs are known to have very high thermal conductivity[18] of 1812  300W/mK 

and very low coefficient of thermal expansion [85] (CTE) ~ 0. Hence, MM-CNT 

composites have a great potential to be used for thermal management.  Tang and co-

workers [16] reported 63% decrease in CTE with 15 vol.% CNT addition to Al matrix. 

Further increase in CNT content increases CTE, which has been attributed to the 

agglomeration of CNTs.  Deng et al. [85] have obtained 12% reduction in CTE with 1.28 

vol.% CNT addition in Al,  which has been attributed to the larger surface area of CNTs 

that creates larger interface and thus restricts thermal expansion of the metal matrix. Goh 

et al. [90] have shown the gradual decrease in CTE of the Mg matrix composite with 

CNT addition up to 0.30 wt. % where the CTE is decreased by 9% of the base material. 

Increase in the thermal conductivity of Ni- 0.7 wt.% CNT composite by 200% with  has 

been attributed excellent dispersion and bonding of CNTs forming defect free interface 

with matrix by electro-deposition technique. W-Cu alloy also shows 27.8% increase in 

thermal conductivity with 0.4 wt.% CNT addition [18]. Ngo et al. [116] and Chai et al. 

[114] have shown decrease of thermal resistance by ~ 62% when Cu is filled up in the 

voids of CNT arrays.  

Another important effect of CNT addition is on corrosion resistance. Most of the 

corrosion studies are preformed on electrodeposited Ni-CNT composite coatings [62, 63, 

100, 109, 125, 126] with a single study on Zn-CNT composite coating [227]. 
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Electrodeposited coatings are more prone to corrosion due to the presence of pores and 

voids. All the studies have shown increase in the corrosion resistance of the composite 

coatings with CNT addition. Yang et al. [125, 126] have reported increase in pitting 

potential by 24% with 5 wt.% CNT addition, whereas, Chen and colleagues [100] have 

reported a 75% increase of the same without mentioning CNT content. Chen et al.103 have 

also measured the corrosion rate of the composites to be 5 times lower than the Ni 

coating.  Praveen et al. [227] have reported the service life of Zn-CNT composite to be 

more than double of that of only Zn coating. All these studies indicate the improvement 

in corrosion resistance due to two reasons. Firstly, the chemical inertness of the CNTs 

that helps forming a passive layer on the coating surface. Secondly, CNTs help filling up 

voids and pores of electrodeposited coatings leaving no place for initiation of localized 

corrosion.  

Hydrogen storage capacity has been studied for MM-CNT composites by very 

few researchers. Chen et al. [63] reported the effect of CNT content on the hydrogen 

storage capacity of Mg-CNT composite. Mg-CNT composite has better hydrogen storage 

capacity and absorption-desorption rate than other hydrogen storage materials. At higher 

temperatures, composite with 5 wt.% CNT shows better hydrogen storage capacity than 

20 wt.% CNT, which has been attributed to the breakage and amorphous carbon content 

of the CNTs in the latter. However, Huang and co-workers [62] did not observe any 

improvement in hydrogen storage capacity of Mg-based composite with addition of CNT 

over carbon black and graphite. Ishihara et al. [150] have reported large hydrogen storage 

capacity of Si-CNT composite material formed by chemical vapor deposition of 
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tetramethylsilane. Research about the hydrogen storage capacity of metal matrix -CNT 

composites is at an early stage with very little available information [46]. 

It is observed that efforts to develop MM-CNT composites have significantly 

increased in last 5 years. Several novel methods have been developed to address the 

issues like obtaining uniform dispersion of nanotubes. In this research work, novel CNT 

dispersion method by spray drying has been used for developing high strength Al-CNT 

coatings and bulk structures. The details of the experimental methods used will be 

described in the next section.  
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3. EXPERIMENTAL PROCEDURE 

This section focuses on the processing details for synthesis of the CNT reinforced 

aluminum coatings and bulk structure. The various characterization techniques and the 

respective equipment used for obtaining information on microstructure and mechanical 

properties are also described. 

 

3.1. Powder Feedstock 

The powder feedstock characteristics are very important for thermal spraying as it 

determines the coating properties. Powder characteristics like particle size distribution, 

particle shape and phase composition determine many aspects like flowability of the 

powder, temperature and velocity attained by the powder and the degree of melting of the 

powder. 

 

3.1.1. Materials 

Aluminum – silicon (Al-Si) eutectic alloy powder of composition Al – 11.6% Si - 

0.14% Fe by weight obtained by inert gas atomization process and having a mean particle 

size 2.41.2 m (D90 = 3.8 m) was obtained from Valimet Inc. (Stockton, CA, USA). 

These fine sized Al-Si powders were utilized for spray drying as described in next 

section. Gas atomized Al-Si powder of the same composition as above but particle size 

14  9 m (D90 = 26 m) was used for fabrication of pure Al-Si coating without any 

nanotubes and will be referred to as Al-Si hereafter. Al powder of purity 99.7% and 

particle size 2613 μm were obtained from Alpoco (Minworth, UK). Multiwalled carbon 
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nanotubes (CNT), obtained from Inframat Advanced Materials (Willington, CT, USA), 

had a purity of more than 95% and diameter of 40-70 nm and length 1-3 m.  

 

3.1.2. Spray Drying 

Spray drying process transforms a feed of liquid or slurry material (solution, 

dispersion or paste) into a dried particulate agglomerate by spraying the feed into a hot 

drying medium. Figure 3.1 shows a schematic of the processes. 

 

 

Fig. 3.1: Schematic of spray drying process 

 

Spray drying is a very popular technique in food and pharmaceuticals industry. Spray 

dried powders are usually spherical in shape and thus have good flowability. Balani et al. 



from our research group has used spray drying to disperse CNTs in nanocrystalline 

aluminum oxide particles [228]. Uniform dispersion of CNTs in the powders was 

observed. Spray drying has not been used for dispersing CNTs in metallic powders. In the 

present work, an aqueous slurry is made with the fine size Al-Si powders and CNTs with 

a little amount of poly vinyl alcohol (PVA) as binder. Two compositions containing 5 

wt.% CNT and 10 wt.% CNT were prepared. The slurries are then subjected to spray 

drying which results in formation of agglomerated powder particles. The resulting 

agglomerates were named SD Al-5CNT and SD Al-10CNT powder based on their CNT 

content. The agglomerated powders are utilized for coating fabrication. Spray drying was 

performed at a commercial facility Inframat Advanced Materials (Farmington, CT, 

USA).  

 

3.2. Plasma Spraying of Al-Si-CNT Coatings 

3.2.1. Coatings 

The agglomerated Al-Si-CNT powders (SD Al-5CNT and SD Al-10CNT) were 

used for plasma spraying to obtain coatings on the mild steel substrate. The substrate was 

grit blasted in order to make it rough for the coating to stick. A Praxair SG-100 gun 

(Praxair Inc., Danbury, Connecticut, USA) was used. Powders were internally fed in 

radial direction into the plasma. Figure 3.2 shows a schematic of the gun. It has a 

thoriated tungsten cathode (Part # 02083-730) and a concentric copper anode (Part # 

01083A-720). Table 3.1 shows the plasma processing parameters. The powder feed rate 

was calculated by spraying without the plasma power switched on and collecting the 

powder in a bag. The gun was mounted on a Velmex robot which was programmable 
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using software. Several passes were carried out to generate the coating of desired 

thickness. Coatings obtained from Al-Si, SD Al-5CNT and SD Al-10CNT powders are 

named as Al-Si, Al-5CNT, and Al-10CNT coatings respectively. 

 

Table 3.1: Plasma processing parameters for the coating synthesis 

 Item Type Quantity 

Plasma gas Argon 40 psi (42.5 SLPM) 

Secondary gas Helium 80 psi (30.5 SLPM) 

Carrier gas Argon 30 psi (11.9 SLPM) 

Stand off distance - 4 in (100 mm) 

Plasma power - ~22 kW (550 Amps 40 Volts) 

Powder feed rate Praxair 1264 feeder Al-SI: 12 g.min-1, SD Al-
5CNT: 7 g.min-1 and SD Al-
10CNT: 6 g.min-1 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Schematic of the SG-100 plasma spray gun 



3.2.2. Single and Multiple splats 

Molten droplets form splats on impacting the substrate. It is very important to 

understand the microstructure of the single and multiple splats in order to understand the 

evolution of the coating microstructure. Single splats from individual powder 

agglomerate were obtained by making a single sweep of the plasma gun on a glass 

substrate. The plasma parameters were kept same as that for the coating so that splats 

were representative of those present in the coating.  

 

3.2.3. Near Net Shape Fabrication 

One of the aims of the study was to fabricate the bulk near net shape CNT 

composites using plasma spraying. Mechanical testing of bulk samples will provide the 

insight into over all effect on properties due to CNT addition. Bulk cylinders were 

fabricated by plasma spray forming (PSF) on a rotating mandrel using the same 

processing parameters as in table 3.1. The spraying time was up to 20 minutes which led 

to the formation of 5 mm thick coating on the mild steel pipe used as the mandrel.  The 

pipe surface was grit blasted prior to deposition of coating.  

 

3.3. Cold Spraying of Al-CNT Composites 

Cold spraying experiments were carried out at the University of Nottingham, 

Nottingham, UK, which has an in-house built system comprising a high pressure gas 

supply, high pressure powder feeder, a converging-diverging nozzle and a X-Y traverse 

unit [229]. Figure 3.3 shows a picture of the cold spray set up. 
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The powder feeder used was a Praxair 1264HP (Praxair Surface Technologies, 

Indianapolis, IN) which has a maximum pressure capability of 3.4 MPa.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Picture of the cold spray nozzle set up 

 

Helium gas was used as the main gas and for the current work, a main gas 

stagnation pressure of 2.9 MPa was employed. Nitrogen gas was used as the powder 

carrier gas and the pressure was kept 0.1 MPa higher than that of the main gas in order to 

facilitate the injection of the powder into the jet. The nozzle was fixed to a frame and the 

substrate was fixed onto an X-Y traverse table, the movement of which was 

programmable using a computer. Cold spraying was carried out with various powder 

mixtures given below in Table 3.2. Eight layers were sprayed to build up the coating 

thickness. The substrate used was 6061 aluminum alloy which was grit blasted prior to 

spray deposition. 



Table 3.2: Composition of powder blends used for cold spraying 

Powder Mixture Coating Nomenclature 

Pure Al Al 

Al-Si + 10wt.% SD Al-5CNT Al-Si-0.5CNT 

Al-Si + 20wt.% SD Al-5CNT Al-Si-1CNT 

Pure Al + 10wt.% SD Al-5CNT Al-0.5CNT 

Pure Al + 20wt.% SD Al-5CNT Al-1CNT 

 

 

3.4. Microstructural and Phase Characterization 

In this section, the procedure for various microstructural and physical property 

measurement methods will be outlined.  

 

3.4.1. Density Measurement 

Density was measured using the water displacement method which works on the 

Archimedes principle. This method gives the apparent density of the sample which takes 

into account the closed porosity present in the sample. The density of calculated using the 

following 

YX

X
app 

  

Where app is the apparent density in g.cm-3, X is weight of the sample in air and Y is the 

weight of the sample when immersed in water. Special care is taken while measuring Y, 

since it takes time for water to fill into the open pores. Sufficient time was allowed for the 
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weight to stabilize before noting the value. Also samples were taken as large as possible 

so that errors in measurement had little effect on the values. A Denver instruments 

microbalance with a precision of 1 mg was used. 

 

3.4.2. Optical Microscopy 

 To examine and study the microstructure of the cross sections of cold sprayed Al-

CNT composite coatings, samples were cut using a high speed cutting saw and were 

mounted in hot mounting resin. They were then ground and polished to a 0.1 μm finish 

using colloidal silica. For examination in an optical microscope they were etched in 

Keller’s reagent (5 ml HNO3, 3 ml HCl, 2 ml HF and 190 ml H2O). Porosity was 

determined from the optical micrographs of the polished cross-sections of the coatings by 

calculating the fractional area occupied by the pores. A total of seven micrographs at 

magnifications ranging from 100x to 400x were analyzed using image analysis software 

Image J. For plasma sprayed composites, samples were prepared by grinding and 

polishing up to a 0.1 μm finish using diamond suspension. Samples were etched with 

Keller’s reagent before observing under the microscope.  

 

3.4.3. X-ray Diffraction 

 X-ray diffraction was carried out to study the phase composition of the sprayed 

coatings. Coating top surfaces were ground using a 600 grit paper to remove the top 

layer. XRD was carried out using CuK (=1.542Å) radiation in a Siemens D-500 X-ray 

Diffractometer operating at 40kV and 20mA at a scan rate of 1.2 deg./min. XRD was 

carried out only for plasma sprayed coatings since there was no scope for phase changes 
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in cold sprayed samples. The peaks obtained were matched with Al, Si, Al2O3, SiO2, 

Al4C3, SiC and various aluminum silicon carbides and aluminum silicon oxy-carbides to 

see what phases were present in the coating. Phase fractions were calculated by taking the 

ratio of the sum of the area under the X-ray peak for all peaks of a phase to the total area 

under the XRD plot.  

 

3.4.4. Scanning Electron Microcopy (SEM) 

 SEM was carried out to study the powder and CNT morphology and particle size 

distribution. SEM was also used to study the coating cross sections. The main use of 

SEM was in studying the fracture surfaces of the coatings and tensile specimens 

fabricated out of them. The large depth of focus of SEM at low magnifications makes it 

the only technique to obtain information from rough fracture surfaces on the mechanisms 

of failure of the composite. The large depth of focus also helps in getting good images of 

the powders for determination of particles size distribution while optical images are 

always blurred and inaccurate. Coating fracture surfaces were prepared by breaking a part 

of the coating under tension. Some of the microscopy for cold sprayed coatings and 

powder morphology were carried out using a FEI XL 30 FEG – SEM. All the SEM 

characterization of plasma sprayed coatings and some of the cold sprayed coatings were 

carried out using a JEOL JSM 630OF FEG-SEM. Samples were sputter coated with gold 

for 30 sec prior to investigation inside SEM to avoid artifacts due to charging.  
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3.4.5. Transmission Electron Microscopy (TEM) 

 TEM is very important characterization tool for CNT reinforced composites. It 

gives information on the structure of CNTs. The mechanical damage to CNTs can be 

studied using high resolution TEM images. Lattice fringe images show the reactions 

occurring at CNT metal interface. . Selected area diffraction images can be obtained to 

identify and confirm the crystal structure of various phases obtained. A Philips/FEI 

Tecnai F30 field emission gun transmission electron microscope (TEM) operating at an 

accelerating voltage of 300 kV was used to study the high resolution microstructure of 

the matrix and the nanotubes. The samples for TEM were in the form of a 3 mm disc,  

which were punched from the coating less than 100 m thick prepared by grinding on a 

600 grit abrasive paper, followed by dimpling at the center using a dimple grinder (Model 

656 Mk3, Gatan, Inc., CA, USA). The final thinning was carried out by twinjet polishing 

(Model 110, E.A. Fischione Instruments, Inc., PA, USA) using a 30 vol.% mixture of 6N 

HNO3 in ethanol as the electrolyte until a hole was formed. 

 

3.4.6. Raman Spectroscopy 

 Raman spectroscopy has emerged as a very important technique for studying 

CNTs in composites. Raman spectra originate due to the interaction of radiation with the 

vibrational modes of a molecule. It is very weak and the Raman intensity is around 10-5 

to 10-7 of the incident beam. Incident beam energy is reduced by the atomic bond 

vibrational energies characteristic of the molecule and the reflected beam consists of 

beams which have wavelengths shifted by the amount characteristic of the bond 

vibration. The intensity of the reflected radiation can be plotted against the shift in the 
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wave number compared to incident wave. This plot known as Raman spectra provides lot 

of information on the species present in the sample and stress state of the CNTs. Micro-

Raman spectroscopy was carried out in the backscattering mode using an Argon ion laser 

of wavelength 514.5 nm and 18 mW to compare CNT structure in powder and coating. 

The spot size is typically 5 m. Thus, this technique enables study of Raman spectra from 

various microstructural features like CNT clusters.  

 

3.5. Mechanical Property Testing 

3.5.1. Vickers Microhardness 

 Increase in the hardness of the composites reflects the resistance to plastic 

deformation and provides an idea about the strengthening due to addition of CNTs. 

Microhardness measurements were made on metallographically polished coating cross 

sections. Microhardness measurements on cold sprayed coatings were made using a 

LECO M-400 microhardness tester. A load of 200 g and a dwell time of 15 sec were 

chosen so that the indent formed was of sufficiently large size so that hardness values 

represented the average values. Microhardness of the plasma sprayed coatings was 

measured using a Vickers microhardness Tester (Shanghai Taiming Optical Instrument 

Co. Ltd., model HXD-1000 TMC, Shanghai, China). A load of 200 g was applied for a 

dwell time of 15 seconds for the purpose. The average value of at least 6 indents was 

reported.  
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3.5.2. Nanoindentation 

 Nanoindentation technique is a relatively new technique which has been brought 

about by the advancements in precision measurement of forces and displacements in the 

range of few micro-Newtons and nanometers respectively. In nanoindentation, the load 

and depth of penetration are recorded during loading and unloading. Figure 3.4 shows the 

indent formed underneath a Berkovich tip and the typical load displacement curve. Oliver 

and Pharr have proposed a simple method to for calculating the reduced elastic modulus 

 

Fig. 3.4: a) Schematic of the indent formed by a Berkovich tip, and b) typical load depth 

curve obtained in nanoindentation 

 

We have 

and hardness from the initial slope of the unloading portion of the curve [230]. 

S

P
hhhh sc

max
maxmax      Equation 3.1    



where  is is a constant that depends on geometry ( = 0.72 for conical, 0.75 for 

paraboloid of a revolution and 1 for flat punch) and S is the slope of the unloading 

portion of the curve at maximum load. The reduced modulus and hardness are given by 

the following equations: 

A

P
H max       Equation 3.2 

AES r
 2

      Equation 3.3 

where H and Er refer to hardness and elastic modulus and  is a correction factor close to 

unity. 

 The nano-mechanical properties were measured by carrying out nanoindentation 

using a Hysitron Triboindenter TI 900 (Hysitron Inc., Minneapolis, MN, USA). A 

Berkovich type diamond indenter having tip radius of 100 nm was used. Nanoindentation 

was carried out on polished cross section of both coatings. For cold sprayed coatings, 

indentations were carried out at a load of 600 N.  The load function comprised a linear 

increase in load up to 600 N in 10 s followed by a 10 s halt at maximum load and 

followed by a linear decrease in load to zero in 10 s. A matrix of 7 x 7 indentations (49 

indents) was made for cold sprayed for Al-0.5CNT coating. Each indent was 10 m 

apart. Hence these values are obtained from an area of 70 m x 70 m. A matrix of 5 x 5 

indentations (25 indents) representing an area of 50 m x 50 m was made for Al-1CNT 

coating. Fewer indents were made for the Al-1CNT coating because there was a lower 

spread in the values. For the plasma sprayed coatings, indentations were carried out at 

loads of 2000 N, 3000 N and 4000 N. The load was applied linearly up to the 
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maximum load in 5 s followed by a halt of 2 s at the maximum load followed by 

unloading in 5 s. Nine indents were made for each load on the matrix part of the 

nanocomposite coating, which makes it a total of 27 values of hardness and elastic 

modulus per sample. It was found that the results were consistent and nine values at each 

load were sufficient to generate an average value for the properties. 

 Scanning probe microscopy (SPM) images of the indent were obtained using the 

same Berkovich tip by rastering over the surface with a contact load of 2 N. The 

resultant scanning probe microscopy (SPM) images were analyzed using the SPM image 

processing software SPIPTM (Image Metrology A/S, Horsholm, Denmark).  

 

3.5.3. Nanoscratch Testing 

 Nanoscratch testing was also carried out on the polished cross sections using 

Hysitron Triboindenter TI 900 (Hysitron Inc., Minneapolis, USA). It has a horizontal 

capacitive transducer for applying normal load and two vertical capacitive transducers for 

measuring the lateral force experienced by the indenter during scratching. From plasma 

sprayed coatings, scratches of length 20 m were made at loads of 1000, 2000 and 3000 

N using a Berkovich tip.  During the loading cycle, the indenter moves 10 m to one 

side of the mean position after which the load is applied. During this movement the 

indenter records the surface profile from which the tilt of the sample is measured. The 

correct instantaneous depth is obtained by subtracting the tilt from the measured values. 

After the load has reached the set value, the indenter starts scratching at a speed of 0.67 

m s-1. When the scratch length has reached 20 m, the load is released. The Berkovich 

tip is in the form of a triangular pyramid with total included angle of 142.3o and has a tip 
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of radius of curvature equal to 100 nm.  After the scratching has been performed, the 

same tip was used to image the surface by applying a contact load of 2 N. The resultant 

scanning probe microscopy (SPM) images were analyzed using the SPM image 

processing software SPIPTM (Image Metrology A/S, Horsholm, Denmark). Depth profiles 

were taken along lines parallel and perpendicular to the scratch using SPIPTM. The 

scratches were also examined using a JEOL JSM 630F scanning electron microscope 

employing a field emission electron gun in the secondary electron imaging mode. For 

cold sprayed samples, 10 m scratches were made using a Berkovich tip at a load of 1000 

N. 

 

3.5.4. Bulk Tensile Testing 

 Samples for tensile testing were machined out from the bulk cylindrical samples 

fabricated by plasma spray forming. Tensile specimens (all dimensions in mm) were 

machined along the axis as shown in Fig. 3.5 using wire electro-discharge machining 

(EDM). The spray direction was perpendicular to the axis of the specimens. Tensile 

samples were obtained from plasma-sprayed Al-Si, Al-5CNT and Al-10CNT cylinders. 

Tensile tests were carried out using an MTS model 858, servo-hydraulic test system. 

Hydraulic wedge grips were used to clamp the sample. The tests were run at a constant 

crosshead rate of 0.0085 mm.s-1. The engineering stress in the sample was calculated by 

dividing the load by the original area of cross section. To measure the strain in the 

sample, a strain gage was attached to the center of the specimens using glue. Minimum 

amount of glue was used in order to not add to the strength of the composite. A total of 4 

samples were tested for each composition for getting an average value and to check 
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reproducibility. The fracture surface of the tensile samples was examined under SEM to 

study the mechanism of failure under tension. 

 

Fig. 3.5: Schematic of the tensile specimen prepared from the bulk spray formed cylinder 

(all dimensions are in mm) 

 

3.5.5. Compression Testing 

 Compression testing was carried out cube shaped samples of edge 4mm cut from 

the bulk cylinder as shown in Fig. 3.6. Tests were carried out on Al-Si, Al-5CNT and Al-

10CNT Samples. Tests were carried out on three samples each and the best results were 

reported. The loading direction was along the cylinder axis so that load was applied 

parallel to the splats.  



 79

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: Picture of the compression sample. The loading direction is parallel to the axis 

of the hollow cylinders. 

 

As the specimen is loaded, the load varies linearly with displacement. When failure 

occurs, there is sudden drop in load. The engineering stress was calculated by the 

dividing the load by original area of cross section. The strain was calculated by dividing 

the distance moved by the crossheads by the original height of the cube. The proportional 

limit and the fracture strength of the materials under compression were used to compare 

the strength of the three materials. The fractured pieces were obtained and observed 

under SEM to study the deformation and failure mechanisms in compression. 
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4. RESULTS AND DISCUSSION 

4.1. Characterization of Feedstock Powders 

Powder feedstock morphology and its characteristics have very significant effect 

in thermal spraying. The distribution of CNTs in the powder feedstock will influence the 

coating characteristics which will be reflected in the microstructure. Figure 4.1 shows the 

SEM micrographs of the gas atomized fine sized Al-11.6 wt.% Si alloy powders and the 

multiwalled carbon nanotubes.  

 

Fig. 4.1: SEM images of the a) fine sized Al-Si alloys powder, and b) multi-walled 

carbon nanotubes 

 

The fine sized Al-Si particles have a mean particle size of 2.41.2 m.  Aqueous slurry of 

fine sized Al-Si powder and multi-walled carbon nanotubes shown in the figure above 

was subjected to spray drying. Figure 4.2 shows SEM images of the large size Al-Si 

particles used for plasma spraying of Al-Si coating without nanotubes and the spray dried 



agglomerates. The Al-Si powders are almost spherical. The spray dried agglomerates are 

roughly spherical in shape and are made up the fine sized Al-Si particles.  

 

Fig. 4.2: SEM images showing the powder morphologies of a) Pure Al powder, b) Al-Si 

powder, c) SD Al-5CNT powder, and d) SD Al-10CNT powders 

 

The particle size distribution of the three powders has been shown in Fig. 4.3. The 

average particle size of Al-Si, SD Al-5CNT and SD Al-10CNT powder was found to be 

equal to 14  9 m, 57  21 m and 39  15 m respectively. A more rigorous way of 

specifying the particle size distribution is by the size of particles such that a certain 

fraction of the total particles are less than or equal to it. Typically, the fractions specified 
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are 10% (named D10), 50% (named D50) and 90% (named D90). Table 4.1 shows the 

particle size distribution parameters in detail. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3: Particle size distribution of powders 

 

Table 4.1: Particle size distribution of the powders 

Powder D10, m D50, m D90, m Mean size, 
m 

Standard 
Deviation, m 

Pure Al 9 22 40 26 13 

Fine size Al-Si 0.8 1.9 3.8 2.4 1.2 

Al-Si 5 10 26 14 9 

SD Al-5CNT 28 50 80 57 21 

SD Al-10CNT 17 31 54 39 15 
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Figure 4.4 shows the XRD plot of the powders. It is observed that the peaks correspond 

to Al and Si. There is a peak corresponding (002) basal plane of graphite in SD Al-

10CNTcoating that is due to presence of CNTs.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: XRD plots of the powders showing peaks for Al, Si and graphite 

 

Spray drying results in formation of large spherical agglomerates of sizes up to 50 times 

of the constituent particles. Spherical shape of the particle causes low inter-particle 

friction and hence leads to excellent flowability. Figure 4.4a and 4.4b show the high 

magnification SEM image of the outer surface of SD Al-5CNT and SD Al-10CNT 

agglomerate. Figure 4.4c and 4.4d show the inside of broken agglomerate of SD Al-

5CNT and SD Al-10CNT powders, respectively.  



 

Fig. 4.5: SEM micrographs showing a) outer surface of a single SD Al-5CNT powder, b) inside 

view of fractured SD Al-5CNT powder, c) outer surface of a single SD Al-10CNT powder, and d) 

inside view of fractured SD Al-10CNT powder. 

 

It is concluded from figure 4.5a and 4.5b that in case of SD Al-5CNT powder, CNTs are 

distributed uniformly on the surface as well as inside of the agglomerate. From figure 

4.5c, it can be seen that there is dense network of CNTs forming a mesh on the outer 

surface of the SD Al-10CNT agglomerate that holds Al-Si particles on the surface. There 

is no mesh formation on the inside of the agglomerate (Fig. 4.5d). During spray drying, 

where the CNT-metal slurry is atomized into droplets, the CNTs have a tendency to 
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segregate on the surface of the droplets, owing to their non wetting property. Shrinkage 

caused by drying of the droplets brings CNTs closer. Also during drying, the movement 

of vapor from inside the droplet to outside would lead to transport of low density CNTs 

to the surface. This leads to mesh formation in the SD Al-10CNT powder. Mesh 

formation is not seen in SD Al-5CNT due to the lower concentration in CNTs.  

In powder metallurgy route, dispersion of the carbon nanotubes in the starting 

powder is one of the most critical steps that affect the CNT distribution in the final 

product. Physical blending [35], nanoscale dispersion [182], molecular level mixing [19] 

and mechanical alloying [22] have been used for dispersing CNTs in the metallic powder. 

Blending often uses a turbula mixer or a rotating mill which is not effective in dispersing 

CNTs in the matrix powder [22, 35]. It has been reported that ball milling of the blended 

aluminum-CNT powders [22] for 48 hours resulted in excellent dispersion.  However, the 

particle size reached in excess of 1 mm after the ball milling process, which cannot be 

used for thermal spraying as well as most powder metallurgy based fabrication methods. 

Also, CNTs break and undergo damage due to impact from the milling media.  Molecular 

level mixing and nanoscale dispersion method were described in section 2.3.4. Though 

molecular level mixing provides promising results in terms of CNT dispersion [19], it is a 

multi-step process which is time consuming and expensive. Also there are chances of 

presence of oxide inclusions due to improper reduction. Nanoscale dispersion method 

[182] is effective in dispersing CNTs in larger particles (~28 µm), which are an order of 

magnitude larger than those used in the present study. Since the starting powder in this 

study is finer (1-3 micron), the CNT dispersion can be considered at a better resolution in 

the present case of spray drying. Spray drying not only provides improved CNT 
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dispersion but also improves the flowability of the powder due to the spherical nature of 

the agglomerates which is very advantageous in thermal spraying. Thus we can conclude 

that spray drying offers a simple and economical process for dispersing CNTs uniformly 

at the scale of a micrometer which can be utilized for large scale manufacturing of CNT 

reinforced nanocomposites by thermal spraying as well as other methods. 

For cold spraying, mixtures of powders as shown in table 3.2 were prepared by 

blending a mixture of Al, Al-Si and SD Al-5CNT powders. The samples were mixed in a 

turbula mixer for 1 hour. Figure 4.6 shows the SEM images of the powder mixtures. The 

mixing was found to be very effective and a homogeneous mixture was obtained. The Al 

powders are elongated as compared to the near spherical Al-Si powders. Also it is 

observed that mixing has not caused damage to the spray dried agglomerates indicating 

that these agglomerates have some green strength. 

 

Fig. 4.6: SEM images of mixtures of a) Al-Si and 10 wt.% SD-Al-5CNT and b) Al and 

10 wt.% SD-Al-5CNT 
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4.2. Plasma Sprayed Al-Si-CNT Composites 

The Al-Si, SD Al-5CNT and SD Al-10CNT were used for plasma spraying with the 

parameters shown in Table 3.1. Coating, single splats and bulk structures were generated 

which will be discussed below. 

 

4.2.1. Microstructure of Plasma Sprayed Al-Si-CNT Coatings 

The coatings containing 0 wt.%, 5  wt.% CNT and 10 wt.% CNT will be referred 

to as Al-Si, Al-5CNT and Al-10CNT respectively. Figure 4.7 shows the picture of the 

plasma sprayed coatings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7: Picture of plasma sprayed coatings on to mild steel substrate 
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It is observed that as the CNT content goes on increasing, the coatings become more dark 

in color. Figure 4.8 shows the SEM micrograph of the cross sections of the three 

coatings. The coatings are uniform, dense and adherent to the substrate. The thickness of 

the Al-Si, Al-5CNT and Al-10CNT coatings was equal to 580, 1100 and 550 m 

respectively.   

 

Fig. 4.8: SEM images of the coating cross sections showing the microstructure and 

thickness of a) Al-Si, b) Al-5CNT and c) Al-10CNT coatings 
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The microstructure of Al-5CNT and Al-10CNT is two phase and the CNT dispersion is 

bimodal in nature. It consists of (i) matrix containing dispersed CNTs and (ii) CNT rich 

clusters. The degree of CNT clustering is higher in the Al-10CNT coating as compared to 

Al-5CNT coating. The higher degree of clustering in Al-10CNT coatings is attributed to 

mesh formation in the corresponding SD Al-10CNT powder. When the spray dried 

powder gets molten, the poly vinyl alcohol binder evaporates. The surface tension of 

molten Al-Si alloy generates capillary forces which lead to collapse of the mesh structure 

by agglomeration of CNTs to form CNT cluster.  This is schematically shown in Fig. 4.9. 

The degree of CNT clustering is low in Al-5CNT coating due to lower concentration of 

CNTs in SD Al-5CNT powder.  The porosity present in the coatings is located in vicinity 

of CNT clusters. The densities of the Al-Si, Al-5CNT and Al-10CNT coating as 

measured by water immersion technique was found to be 2.44, 2.36 and 2.35 g/cc which 

corresponds to a density of 90%, 88% and 90% of the theoretical density respectively. 

 

 

 

 

 

 

 

Fig. 4.9: Schematic showing mechanism of cluster formation during plasma spraying of 

spray dried powders 
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Figure 4.10 shows high magnification images of the CNT clusters in Al-5CNT 

and Al-CNT coating. It is observed that the CNT clusters and neighborhood surrounding 

clusters contain lot of porosity.  

coating and corresponding spray dried powder agglomerates and are shown in Fig. 4.11. 

The micro-Raman spectra of the CNT cluster in Al-5CNT coating shows a strong Si peak 

at a Raman shift of 520 cm-1 while the CNT cluster in Al-10CNT has a weak Si peak. 

This indicates that the CNT cluster in Al-5NT was metal infiltrated while the cluster in 

Al-10CNT was not. The presence of D and G peaks in the powder, coating matrix and 

 

Fig. 4.10: SEM images showing a) metal infiltrated CNT cluster in Al-5CNT coating, and 

b) a CNT rich cluster in Al-10CNT coating 

 

The CNT cluster in Al-5CNT shown in Fig. 4.10a is infiltrated with molten Al-Si alloy, 

while the CNT rich cluster from Al-10CNT coating in Fig. 4.10b is not. Micro-Raman 

spectra were taken from the matrix, the clustered CNT region of the cross section of the 
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CNT clusters indicates that the CNT structure remains intact after spray drying and 

plasma spraying. Most of the clusters in both the coatings were not infiltrated with metal. 

that the CNTs are distributed uniformly within the splats as well as splat interfaces in Al-

5CNT coating. In case of the Al-10CNT coating, CNT clusters can be seen on the 

fracture surface and in the splat interfaces. At some places where the fracture occurred 

under tensile stresses, strengthening phenomena like CNT pullout and crack bridging 

were observed as shown in Fig. 4.13. XRD patterns of the top surface of the coating are 

shown in Figure 4.14. Aluminum carbide (Al4C3) formation was observed. The fraction 

of Al4C3 formed was calculated by ratio of the sum of the area under all the peaks of a 

 

Fig. 4.11: Micro-Raman Spectra taken from matrix, CNT cluster and spray dried powder 

for a) Al-5CNT and b) Al-10CNT coating 

 

 SEM was further carried out on the fracture surfaces of the coatings. Small 

portion of the coating was broken under tension and bending forces for the purpose. 

Figure 4.12 shows the SEM images of the fracture surfaces of the coatings. It is observed 
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given phase to the area under all the peaks. The amount of Al4C3 formed was found to be 

7.8% and 15.8% by vol. for Al-5CNT and SD Al-10CNT coatings respectively. From the 

SEM of fracture surface or the coating cross section, no typical features corresponding to 

Al4C3 formation were found for Al-5CNT coating. But for Al-10CNT coating, Al4C3 

could be exclusively seen. Figure 4.15a and 4.15b show the SEM images of Al-10CNT 

coating’s cross section and fracture surface respectively. Al4C3 needles are formed near 

CNT clusters where the activity of carbon is high. 

 

e 

t 

Fig. 4.12: SEM images of fracture surfaces showing the a) and b) splats of Al-Si in th

Al-5CNT coating with CNTs uniformly distributed within the splats and in the interspla

region, and c) and d) CNT clusters on the fracture surface and intersplat regions 
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Fig. 4.14: XRD plots taken from the top surface of the three coatings showing Al4C3 

formation 

 

 

Fig. 4.13: SEM images of fracture surface showing a) CNT pullout in Al-5CNT coating, 

and b) CNTs bridging a crack in Al-10CNT coating 
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Fig. 4.15: SEM images showing Al4C3 formation in Al-10CNT coating on a) Cross 

section, and b) fracture surface 

 

It is observed in Fig. 4.15a that the surface of the cluster seems to be made of 

carbonaceous mass resulting from damaged CNT due to reaction. In case of SD Al-

10CNT powder, the large CNT content leads to mesh formation and there is large surface 

area available for reaction. The CNT rich clusters which are poorly infiltrated with metal 

undergo more damage due to direct interaction with the plasma plume. This will lead to 

generation of more defects on the CNTs which will lead to increase in reaction sites for 

carbide formation. These are the reasons for increased amount of Al4C3 formed in Al-

10CNT coating.   

For further study of the microstructure, transmission electron microcopy was 

carried out on the coatings. Figure 4.16a shows TEM image of fine grained structure in 

Al-10CNT coating. Inset shows the SAD pattern confirming the presence of Al4C3.  

 



 

Fig. 4.16: TEM images showing a) fine grained microstructure of Al-10CNT coating, 

inset shows the diffraction pattern showing Al4C3, Al and Si b) metal coated and reacted 

CNT in Al-10CNT coating, inset shows the diffraction pattern indicating Al4C3 

formation, c) undamaged CNT in Al-5CNT coating, and d) undamaged CNT in Al-

10CNT coating with some reaction products on the surface 
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Fig. 4.16b shows a metal coated CNT in Al-10CNT coating which has undergone 

some reaction with the matrix The inset shows the diffraction pattern which indicates 

Al4C3 formation. Figs. 4.16c and 4.16d show HR-TEM images of undamaged CNTs in 

Al-5CNT coating and Al-10CNT coating, respectively. CNT surface is smooth in case of 

Al-5CNT coating (Fig 4.16c) whereas discontinuous reaction product is formed on the 

CNT surface in Al-10CNT coating (Fig. 4.16d). Surface walls of CNT shows slightly 

damaged structure in case of Al-10CNT as compared to Al-5CNT coating. Table 4.2 

shows the in-flight properties of the particles and indicates that the SD Al-10CNT 

powder experienced higher temperature and velocity. This was due to the smaller size of 

the powders and CNT mesh formation which increased the thermal conductivity and 

emissivity of the powder, resulting in damage to outer walls of CNTs.  

 

Table 4.2: Properties and in-flight temperature and velocity of the particles 
 

Powder Specific 
Surface Area 

m2/g 

Temperature 

K 

Velocity 
m/s 

Particle 

Size, µm 

Approximate 
Flight Time 

ms 

Al-Si 1.44 2309  34 109  3 14  9 0.9 

SD Al-5CNT 4.50 2287  3 168  1 57  21 0.6 

SD Al-10CNT 5.90 2308  6 180  2 39  15 0.6 

 
 

The high thermal conductivity of CNTs [14] helps in conducting heat to the 

interior of the cluster thereby assisting the damage. It was shown earlier that metal 

infiltration into the CNT cluster was more prominent in Al-5CNT coating.  The molten 
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layer acts as a protective layer shielding the CNT clusters and helps prevent damage to 

CNTs in Al-5CNT coating. Figure 4.17 shows a schematic of the heat transfer in metal 

coated and uncoated clusters. The heat transfer in coated clusters would be only by 

conduction and convection and the metal layer will shield the CNTs from the radiation of 

the plasma plume. So it can be concluded that wetting of CNTs by molten alloy is critical 

in establishing dispersion as well as stability of CNTs. 

 

 

 

 

 

 

 

Fig. 4.17: Schematic showing heat transfer mechanisms in the clusters 

 

In the present study, fabrication of bulk structures were also carried out using plasma 

spray forming. Plasma spraying was carried out on a rotating mandrel to generate thick 

cylindrical structure of bulk CNT reinforced composite. Figure 4.18 shows a composite 

cylinder made by plasma spraying of SD Al-10CNT powder. The dimensions of spray 

deposited cylinder are: 27 mm inner diameter, 5 mm wall thickness and 100 mm length. 

This cylinder was spray formed in 20 minutes which proves that composite with high (10  

wt.%) CNT content can be rapidly fabricated by plasma spraying. Similar cylindrical 

structures were spray deposited using SD Al-5CNT and Al-Si powder.  It is emphasized 
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that thick coatings could be deposited due to the fact that spray dried spherical 

agglomerates assist the plasma spraying process without clogging the powder feeding 

system. Thick coating could not be deposited in our previous work [35] where blended 

CNT and aluminum powder feedstock caused clogging and inconsistent powder flow due 

to high surface forces between CNTs. 

 

 

 

 

 

 

 

 

Fig. 4.18: Plasma spray formed Al-10CNT cylinder with a wall thickness of 5 mm and 

100 mm length 

 

To understand the mechanism of formation of the microstructure and clustering of 

CNTs single splats for the spray dried particles were studied which is described in next 

section. 

 

4.2.2. Microstructural Evolution in Single Splat 

Studying the mechanism of microstructure evolution is essential as it gives 

knowledge about clustering. A thorough understanding of the clustering phenomena is 
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essential for creating new strategies to avoid it. Plasma sprayed coatings are formed by a 

layer by layer deposition of splats. Splats are formed when the molten/semi-molten 

droplets impact the substrate and solidify.  Two kinds of splat morphologies namely 

fingered and disc shaped splats are observed for the SD Al-5CNT powder as shown in 

Figures 4.19 and 4.20 respectively. 

 

 

Fig. 4.19: SEM images showing a) Fingered splat from SD Al-5CNT powder, b) splat 

finger showing CNT cluster infiltrated with metal marked by rectangles, c) and d) high 

magnification images of the CNT infiltrated cluster 



 

Fig. 4.20: SEM images showing a) Disc splat of Al-5CNT powder showing CNT rich 

cluster, and b) CNT rich cluster with poor metal infiltration  

 

Splats were mostly irregular disc type for Al-10CNT powders as shown in Fig. 

4.21. A CNT rich cluster that has not been infiltrated with metal is also seen. 
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Fig. 4.21: SEM images showing a) Disc splat from SD Al-10CNT powder showing CNT 

rich cluster, and b) high magnification image of the CNT rich cluster with poor metal 

infiltration 



It was observed that the fingered splats are smaller than the disc splats indicating 

that they are formed from smaller powder particles. This could be due to the fact that 

small particles undergo complete melting and contain low CNT content due to which the 

viscosity is low. Larger particles could exhibit higher viscosity due to higher CNT 

content which inhibits spreading and splashing. Viscosity of the droplet from composite 

particles can be given as [231] 

 PC
e RR /11 



      Equation 4.1 

Where e is the effective dynamic viscosity,  is the dynamic viscosity of the 

liquid phase, RC is the radius of CNT clusters and the RP is the droplet size and  is the 

CNT fraction. Considering RC/RP<<1, equation 4.1 predicts 6.5% and 13.8% increase in 

viscosity of the molten Al-Si alloy due to addition of 5 wt.% and 10 wt.% of CNTs 

respectively. Most of the splats in Al-10CNT are disc shaped which is due to the increase 

in the viscosity of the melt caused by increased CNT content. The splat sizes ranged from 

70 – 190 m for Al-5CNT and 50 – 160 m for Al-10CNT powder. This is in accordance 

with the starting powder sizes. The fingers represent the last material that solidifies 

during splat formation. The CNTs flow in radial outward direction along with the molten 

particle on impact. It is seen from Fig. 4.19b that CNTs are found in the finger area 

indicating that they retain the thermal energy and keep the melt molten. This is deduced 

from the fact that the specific heat capacity of C (Graphite) and Al-12%Si alloy at 2300K 

is equal to 2.145 J.g-1.K-1 and 1.152 J.g-1.K-1 (taken from thermo-chemical software and 

database FactSage) respectively.  It is concluded from the magnified images (Fig. 4.19c 

and 4.19d) that the CNT clusters in the fingers have been infiltrated by the molten alloy. 
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Distribution of CNTs in each of the fingers is very uniform. Figure 4.20 shows a disc 

splat of SD Al-5CNT and a CNT rich cluster (Fig. 4.20b) which has been partially 

infiltrated with molten Al-Si alloy. The disc splat is larger (150 µm) compared with 

fingered splat (75 µm) for reasons explained earlier. Figure 4.21 shows a disc splat from 

SD Al-10CNT particle showing CNT clusters which are partially infiltrated with metal. 

The size of the CNT clusters observed within a splat is between 10 -30 µm which is same 

as the size of CNT clusters observed in the coating cross sections Fig. 4.8). A few 

clusters of size up to 50 µm are observed in the Al-10CNT coating cross section, which 

form due to contiguity of the CNT clusters from individual splats.   

Landry et al. [232] have shown that the wetting of Al-Si alloys on graphite 

improves with time i.e., the contact angle diminishes from 160 to 40 degrees with time 

due to formation of interface carbide layer over a period of 105 s at a temperature of 

1190K. This indicates that reaction products forming at the interface promote wetting and 

hence infiltration. The pressure induced infiltration of porous compacts is governed by 

the Darcy’s law given by [233] 

  0
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      Equation 4.2 

where h is the infiltrated depth of the metal into the porous compact, kp is the intrinsic 

permeability of the compact,  is the viscosity of melt, t is the infiltration time, Vp is the 

particulate volume fraction and P is the applied pressure. P0 is the threshold pressure for 

infiltration to occur and is governed by the capillary forces and is given by [234] 

 p

p
LV V

V

D
P




1
cos

6
0        Equation 4.3 

 102



where  is a parameter dependent on the particulate shape, LV is the liquid vapor surface 

tension of the infiltrating liquid and  is the contact angle. From eq. 4.2 and 4.3 it can be 

seen that lower the viscosity and surface tension of the infiltrating liquid, larger will be 

the infiltration depth. During plasma spraying, the impact of molten particles on the 

substrate could also lead to pressure infiltration of the CNT clusters. P0 was computed ~ 

67-200 MPa with following values used for computation: CNT diameter (D) = 60 nm,  

= 1 for spherical shape particle,  = 40o [232], Vp assumed ~ 0.50-0.75 and LV = 0.889 

N.m-1 (for A356 alloy [235]). Assuming that an Al-Si droplet of 50 m diameter 

travelling at 200 m.s-1 comes to rest in 1 s forming a splat of 100 m, the pressure 

generated due to impact is found to be ~4 MPa, which is orders of magnitude smaller 

than P0. Hence, it is concluded that infiltration of the CNT clusters during impact is rather 

unlikely. Table 4.1 showed the powder properties along with the in-flight temperature 

and velocity. Considering the stand-off distance as 100 mm, the flight time has been 

calculated and shown in Table 1.  The particle flight time is less than 1 ms. The measured 

temperature of the particles during flight is of the order of 2300 K.  It is anticipated that 

infiltration would be limited due to the small interaction time between the CNT cluster 

and the molten metal. But under such high superheated conditions, the viscosity and 

surface tensions would be very low which will promote infiltration.  Since in Al-10CNT 

a larger amount of CNT clusters are observed (due to higher CNT content), it is expected 

that there would be more clusters which have not been infiltrated with metal (Figure 

4.21b). Also it is observed that there is lot of porosity within each CNT cluster. This 

accounts for the low density of the coatings.  
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 So in order to improve the dispersion of CNTs in the coatings, CNTs must wet the 

molten alloy and remain dispersed during the melting stage. This can be possible if there 

is a limited reaction between the alloy and the CNT so that the CNTs wet the alloy. 

Plasma spraying can be used for obtaining densified powders. However, air plasma 

spraying is not suitable as it will lead to oxidation the powders. 

 

4.3. Cold Sprayed Al-CNT Composites 

The other process used for synthesizing CNT composites in this study was cold spraying. 

Cold spraying has its own advantages compared to plasma spraying which were 

highlighted in table 2.3. There are some studies on cold spraying of metallic composites 

with nano-sized fillers. But there is no study on cold spraying of metal-CNT composites. 

So this study has been carried out to study the feasibility of using cold spraying for 

depositing CNT-reinforced coatings. Several powder mixtures as specified in table 3.2 

have been cold sprayed to synthesize coatings on 6061 alloy.  

 

4.3.1. Microstructure of Cold Sprayed Al-Si-CNT Coatings 

 There are some studies on cold spraying Al-Si alloys. Table 4.3 shows the 

parameters used in this study. The SD Al-5CNT was sprayed onto 6061 steel substrates. 

But it did not result in formation of a deposit. This was attributed to the fact that the 

agglomerates fractured on impact and disintegrated. A part of the kinetic energy was 

absorbed in the process. The resulting fines did not have much kinetic energy and the 

impact was not enough to cause plastic deformation. Al-Si powders could be easily 
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sprayed to form coatings. So these SD-Al-5CNT powders were mixed with Al-Si 

powders and sprayed. This resulted in coating formation. 

Table 4.3: Cold spraying parameters used in the present study 

Item Quantity 

Process gas (Helium) 29 bar pressure 

Powder carrier gas 30 bar pressure 
(Nitrogen) 

Rotation speed of powder 
feeder 

4 RPM 

Vibration pressure of feeder 2 bar 

Stand off distance 20 mm 

 

Figure 4.22 shows the SEM image of the cross section of Al-Si-0.5  wt.% CNT coating. It 

is observed that the thickness of the coating is just 80 m. 

 

Fig. 4.22: SEM image of cross section of Al-Si-0.5 wt.% CNT coating showing a) back 

scattered image of coating microstructure, and b) CNTs at inter-splat boundaries 
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The coating is made up of splats of Al-Si particles with CNTs/carbonaceous materials at 

the splat interfaces. The coating thickness did not increase beyond 80 m. The coating 

was successively forming and getting removed due to poor interfacial adhesion between 

the splats. Figure 4.23 shows SEM images of the fracture surface of the coating 

indicating very uniform distribution in the coatings. This is brought about due to the fact 

that the spray dried agglomerates disintegrate on impact and release the CNTs in an 

uniform manner which are then trapped by the particles impacting at that instant. Since 

the thickness was limited to only 80 m, due to limited ductility of Al-Si powders, the 

Al-Si powders were replaced by pure Al and cold sprayed. These coatings will be 

discussed in the next section. 

 

Fig. 4.23: SEM images of fracture surface of Al-Si-0.5  wt.% CNT coating showing a) an 

entrapped spray dried particle and b) uniformly distributed CNTs on the fracture surface 

 

4.3.2. Microstructure of Cold Sprayed Al-CNT coatings 

 Cold spraying of the powder mixtures were carried out onto AA6061 substrate. 

The mixture of Al and SD Al-5CNT sprayed well. This is attributed to the high 



deposition efficiency of non-porous and readily deformable Al powder. It is possible to 

entrap the Al-Si particles and the nanotubes resulting from the disintegration of the spray 

dried agglomerates in between the deforming Al particles. Composite coatings containing 

an overall nominal CNT content of 0.5 wt.% and 1  wt.% and having a thickness of ~ 500 

m were successfully prepared as shown in Fig. 4.24.  
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Fig. 4.24: Optical micrographs of polished and etched cross sections of a) Al-0.5CNT and 

b) Al-1CNT coatings 

 

These cold sprayed coatings will be referred as Al-0.5CNT and Al-1CNT hereafter. 

Figure 4.25 shows a schematic illustration of the powder pretreatment steps involved in 

the fabrication of the composite coating.  The velocity attained by the particles during 

cold spraying is given by Dykhuizen [236] as 

m

xAC
VV pD

p


        Equation 4.4 

Where V is the gas velocity, CD is the drag coefficient, Ap is the cross section area of the 

particle, m is the mass of the particle and x is axial position. The energy of the impact is 
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absorbed in disintegration of the agglomerates with only a fraction of the kinetic energy 

 

Fig. 4.25: Schematic of the steps involved in the fabrication of the composite 
 

There are only a few studies on the impact breakage of agglomerates [237, 238]. In these 

studies, breakage of agglomerates has been simulated using Distinct Element Method 

(DEM). Thornton and co-workers [237] have simulated the breakage of an agglomerate 

of 1000 particles having a radius, solid density, Young’s modulus and Poisson’s ratio of 

100 μm, 2650 kgm-3, 70 GPa and 0.3 respectively which are close to the properties of the 

Al-Si eutectic alloy. The coefficient of friction and surface energy were assumed as 0.35 

available for plastic deformation of individual Al-Si particles.  
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and 3.0 Jm-2 -1 there is 

extensive dam gh velocity 

(~600 ms-1  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.26: High magnification optical micrographs of the cold sprayed coatings 

 respectively.  It was concluded that for velocities of impact of 1 ms

age to the structure [237]. Hence, it is expected that under the hi

) impact in cold spraying the spray dried particles will disintegrate. 

 

 

 



Figure 4.26 shows the high magnification optical micrographs of the polished and 

etched cross sections of the Al-0.5CNT and Al-1CNT coatings. It can be seen that thick 

and dense coatings were formed by cold spraying. Three distinct features seen in the 

optical micrographs are: deformed Al particles; Al-Si particles from collapse of the spray 

dried particles; and porosity. The Al-Si particles were found in between the deformed Al 

particles. Al particles had undergone a large amount of plastic flow to form elongated 

disc like particles which are often referred to as splats. Papyrin and coworkers [239] have 

measured the plastic strain (p) in the individual particles from the deformed shape of 

cold spray deposited single particles and have correlated it empirically to the material 

properties and the velocity of the particles as follows. 













2
4.1exp

pp

p
p

H


       Equation 4.4 

Here p is the strain in the particle, Hp is the hardness of the particle (MPa) and ρp and νp 

are the density and velocity of the particles on impact respectively. The velocity of the Al 

particles measured by laser particle image velocimetry under similar conditions was 

found to be 63620 ms-1 [240]. The measured hardness of the aluminum powder particles 

was found to be 315 MPa and so from equation 4.4 the corresponding plastic strain in the 

particles comes out to be 0.66 which is a very significant degree of plastic deformation. 

Under similar conditions, the strain of an Al-Si particle having a hardness of 1260 MPa 

comes out to be 0.19. So it is expected that the Al-Si particles will have undergone much 

lower amounts of deformation due to impact (assuming that the particles adhered and did 

not disintegrate or rebound).  
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The porosity for the Al-0.5CNT and Al-1CNT coatings were found to be 

1.60.5% and 2.30.9% respectively. This indicates that dense coatings can be sprayed 

which is one of the main advantage of cold spraying. Two types of pores are seen. The 

first type is between the Al particles and the second type which happens to be the major 

one is present adjacent to locations where the spray dried agglomerate is entrapped. 

When the spray dried particles get entrapped between deforming Al splats, the porosity is 

squeezed out which gets entrapped as the second type of porosity. Kang et al. [175] have 

used cold spraying to deposit spray dried agglomerates of tungsten and copper. It was 

 

Fig. 4.27: SEM micrograph of Al-0.5 CNT coating showing a) entrapped spray dried 

particle in Al matrix, and b) high magnification image showing embedding of Al-Si 

particles in Al matrix 

 

Figure 4.27 shows the SEM of the fracture surface of the Al-0.5CNT coating. 

Figure 4.27a shows an entrapped spray dried particle. Many Al-Si particles are also seen 

found that the porosity was mostly found at the coalesced tungsten particles and that 

while the spray dried particle had 75 wt.% W, the coating had only 37  wt.% W in it. 
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due to disintegration of spray dried particles. Figure 4.27b shows Al-Si particles 

embedded in aluminum matrix with a mechanical bond apparently existing between the 

two. It is seen that the Al-Si particles penetrates into the Al matrix (marked by the arrow) 

owing to their high hardness of 1260 MPa, which has an effect of indenting the softer Al 

 

Fig. 4.28: SEM of fracture surface showing a) good distribution of nanotubes, and b) 

CNTs embedded in Al particle 

 

As a consequence of the disintegration of the spray dried powder, CNTs are 

fragmented and are evenly distributed in the matrix. It is seen from figure 4.28a that 

CNTs appear to be homogeneously distributed between the Al splats.  Figure 4.28b 

shows CNTs embedded in Al matrix forming a mechanical bond. The bonding between 

Al and CNTs might not be strong. This is expected since there is no thermal energy input 

and the occurrence of a chemical reaction between Al and CNT will require some 

minimum activation energy. Interfacial bond formation is a prerequisite for shear stress 

matrix. However, most of Al-Si particles are not well bonded to the Al matrix due to the 

lower amount of energy available after disintegration of the agglomerate.  



transfer and reinforcement of the matrix which is the basis of the shear-lag theory for 

short fiber reinforced composites. In a recent research, Salas et al. have consolidated Al – 

CNT mixtures using a shock wave technique [143]. It was observed that most of the 

CNTs were found at the Al particle triple points. CNTs formed an agglomerated 

carbonaceous mass and displayed extensive damage. Cold spraying also involves high 

impact consolidation though less aggressive than shock wave techniques. 

Figure 4.29 shows high magnification TEM images of the cold sprayed Al-1CNT 

coating. The microstructural characteristics of cold sprayed aluminum were discussed by 

Balani et al. in case of cold sprayed Al 1100 alloy [165]. From Fig. 4.29a it is observed 

that there is sub-cell type structure formation. Cold spraying is a high velocity impact 

severe deformation process and leads to generation of lots of dislocations. These 

dislocations might rearrange to form cell structure. An inter-splat interface between two 

deformed particles is also seen. There are a lot of free graphene sheets too. These are 

more clearly visible in Fig. 4.29b. These graphene sheets are a result of mechanical 

damage of CNTs due to shearing forces between particles. The deformation and damage 

of carbon nanotubes in cold sprayed coating is discussed in the section 4.6.2. 

It has been shown that cold spraying can be successfully used for generating 

CNT-reinforced coatings. Spray dried powders could not be directly deposited. 

Advantage of the high ductility and deposition efficiency of pure aluminum powders was 

made use of and the spray dried powders were entrapped between deforming Al particles. 

Very good CNT distribution was obtained due to disintegration of the spray dried 

agglomerates. 
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Fig. 4.29: TEM micrographs of Al-1CNT coating showing a) sub-cell structure and inter-

splat interface and b) free graphene layers generated due to damage of CNTs 



4.4. Quantification of CNT Distribution in Composites 

The main challenge in processing CNT composites remains to obtain 

homogeneous distribution of CNTs in the matrix. It has been shown that there is 

deterioration of properties due to clustering and inhomogeneous distribution of CNTs at 

large fractions of reinforcement [60, 80]. Cha and coworkers [19] have obtained more 

than 200% increase in yield strength by employing powders obtained using a molecular-

level mixing method. They have attributed the success to the homogeneous distribution 

of carbon nanotubes obtained by molecular mixing. However, the degree of distribution 

of CNTs was not defined or quantified. The elastic modulus, strength and thermal 

properties of a composite are related to the volume fraction of the reinforcement added. 

Hence, a homogeneous distribution of filler/reinforcement is essential as it translates into 

homogeneous properties of the composite. The quantification of dispersion of second 

phase materials is of interest in many fields of science. There has been hardly any study 

in the quantification of dispersion in carbon nanotube composites. Majority of the 

researchers mention uniform CNT dispersion in the composites which is based on visual 

examination of the microstructure. Attempts to quantify the CNT distribution have not 

been made in any of the works.  

In the present study, two methods are suggested to quantify the spatial distribution 

of carbon nanotubes in nanocomposite. Two dispersion parameters are presented, one 

based on the image analysis and the second based on the distance between nearest 

neighbors (obtained by constructing the Delaunay triangulation of the centers of the 

nanotubes). We believe this is more appropriate as well as effective while studying the 
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extent of clustering. The CNT dispersion scheme has been developed using SEM images 

of cold sprayed coatings and will be finally applied to plasma sprayed coatings. 

 

4.4.1. Image Analysis Method 

The CNT distribution in a given micrograph has been quantified using image analysis. It 

is difficult to obtain binary image of micrographs for CNT composites using thresholding 

since the contrast is generally low and thresholding leads to errors in demarcation of 

CNTs from the matrix. Figure 4.30 shows the fracture surface of a cold sprayed Al-

0.5CNT coating. The fracture surface represents the splat surfaces since the fracture 

occurred between the splats. It can be seen that the carbon nanotubes (CNTs) are 

distributed “uniformly”. Figure 4.30b shows a binary image obtained by manually 

drawing over the CNTs. The black lines represent the CNTs. Only intact and undamaged 

CNTs were taken into account. Carbonaceous matter or highly damaged CNTs are not 

taken into account which is another advantage of the present method. The thickness of all 

the lines was taken to be same and approximately equal to the average value of the CNT 

diameter (66 nm). Figure 4.30b has been used for further analysis. Figure 4.30b can be 

converted into a binary image file, which consists of values of 0 or 1 for each pixel 

depending on whether it was white or black respectively. Then the image is divided into a 

number of parts or cells and the carbon nanotube (CNT) fraction in each cell is measured 

in terms of the fraction of pixels that are black. The CNT fraction in each cell is then 

plotted as a function of the location of the cells on the micrograph. This gives an idea of 

how the CNTs are spatially distributed in the micrograph. 
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Fig. 4.30: a) SEM micrograph of the fracture surface of the CNT reinforced Al coating, 

and b) schematic of the CNTs distributed in the micrograph 



The number of divisions used in the present case was 225. So each cell has a width and 

height that is 1/15th that of the total width and height of the micrograph. The number 225 

was chosen because it leads to a maximum cell dimension of approximately 1 m. So it 

can be said that the CNT distribution was quantified down to an area of 1 square 

micrometer. The spatial distribution of the area% occupied by CNT has been plotted in 

Figures 4.31a and 4.31b that represent 3-dimensional surface plot and 2D contour maps, 

respectively. All dimensions in the contour maps are in micrometers. The x-dimension 

represents the width while y-dimension represents the height of the micrograph. The 

contour lines in Fig. 4.31b are the traces of the planes cutting the surface shown in Fig. 

4.31b at the respective CNT area%. This provides a way of quantifying the CNT area% at 

various locations in a micrograph. It can be seen that CNT percent varies from 0 to 40% 

over the micrograph on the scale of a micrometer. Figures 4.32 and 4.33 represent the 

same analysis carried out on two more SEM micrographs of the same composite. The 

overall CNT area% in figures 4.30a, 4.32a and 4.33a are 9.4%, 9.1% and 9.1% 

respectively. Microstructures shown in figures 1a, 3a and 4a will be referred to as 

micrograph 1, 2 and 3 respectively from now onwards. 

  

(i) Effect of Number of Divisions 

 It is obvious that a uniform distribution of CNT would result in the area fraction 

of CNT in each of the cells to be nearly equal. In such a case, a statistical analysis of the 

CNT area fraction of all the cells would result in the variance close to zero. The variance 

of the values of CNT area fraction of the cells depends on the scatter of the data and 

hence is an indicator of the quality of the distribution. A higher value of variance 
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indicates a poor distribution since it indicates a large scatter in the values of CNT fraction 

in different parts or cells of the microstructure. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.31: Plots showing a) 3D surface of the CNT fraction variation across the 

micrograph, and b) 2D contour map of the CNT fraction distribution 
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Fig. 4.32: a) SEM micrograph of the fracture surface, and b) contour map of CNT 

fraction distributed in the micrograph 
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Fig. 4.33: a) SEM micrograph of the fracture surface, and b) contour map of CNT 

fraction distributed in the micrograph 
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As the number of cells into which a micrograph is divided increases, the 

dimension of each cell reduces. Since the dimension of CNT remains the same, the 

fraction of a cell that is occupied by the CNT will increase with an increase in number of 

cells. Thus the range of measured values for CNT fraction in a cell will increase on 

increasing the number of divisions. Also the maximum CNT fraction recorded for a cell 

will increase as the cell size is reduced. But, the mean value of the CNT fraction of all the 

cells would remain same, which is equal to the overall CNT content regardless of the 

number of divisions. Consequently, the variance of the values of the CNT fraction in a 

cell also increases with the number of cells.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34: Plots showing the standard deviation of CNT volume fraction in the cells and 

maximum CNT fraction in a cell with the number of divisions carried out 

 



Figure 4.34 shows the plot of the variance and maximum volume fraction measured for a 

cell as a function of number of divisions of the micrograph. It is seen that the values of 

variance and maximum CNT fraction of a cell increases rapidly with the number of 

divisions during initial stages but the rate decreases afterwards. The curves are almost 

similar for the three micrographs indicating similar and consistent kind of distribution. 

 We define CNT cluster as an area/cell containing more that 90% CNT. The extent 

to which the micrograph must be divided in order that one or more cells show a CNT 

fraction of 0.9 indicates the size of CNT cluster. The higher is this number of divisions, 

the smaller is the cell and hence CNT cluster size and hence better is the distribution. 

Further divisions of the micrograph after that are expected to result in more and more 

cells having 90% CNT area or more. So for a given overall CNT fraction, the critical 

number of divisions leading to observance of clustering indicates the extent of 

distribution of CNT.  The width of the image is 14.6 m and the mean diameter of the 

nanotube is 66 nm which is approximately 1/220th part of the width. This means that if 

the image is divided 220 x 220 = 48400 times, at least one cell would cover a CNT and 

will show a CNT fraction of 100%. This is the case of uniform distribution when all the 

CNTs are not touching and are separated. But when they are clustered, a lesser number of 

divisions would result in at least one cell having 100% CNT. The extent of dispersion or 

distribution can be estimated by a dispersion parameter DP which is defined below taking 

into account the overall CNT fraction.  

 
 

  FractionCNTOverallxdiameterCNTequalssizeCellN

fractionCNThasCellOneLeastAtN
DP

9.0
  Equation 4.5 
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Here N refers to number of divisions. Division by the overall CNT fraction makes the 

parameter independent of the CNT fraction. From Fig. 4.34 it is seen that the number of 

divisions for which CNT fraction of a cell reaches 90% is approximately 4489, 3025 and 

4900 for three microstructures in Figs. 4.30a, 4.32a and 4.33a respectively. Thus, DP 

equals 1.07, 0.74 and 1.20 for three micrographs respectively. It can be concluded that 

Figure 4.33a has most uniform distribution amongst all and micrographs Figure 4.32a has 

least uniform CNT distribution. The average value of DP for the Al-CNT nanocomposite 

is 1.0. This value indicates an overall uniform distribution as also observed in the three 

micrographs. The exact dependency of DP on CNT fraction is difficult to be determined 

since it will require the analysis of micrographs of similar dispersion but different overall 

CNT fractions, which are hard to obtain due to processing technique limitations.  

 

(ii) Effect of Aspect Ratio and Orientation 

 Carbon nanotubes have a varying aspect ratio and random orientation in most of 

the nanocomposites. To study the effect of the aspect ratio and orientation of the CNT 

filler material, model structures were drawn as shown in Fig. 4.35.  Figures 4.35a, 4.35b, 

and 4.35c have uniformly aligned reinforcement with increasing L/D ratio from 1 to 4 

while filler material has random orientation in figure 4.35d. The fraction of filler material 

is kept the same in all the schematics and is equal to 9.5 area % which is close to the 

CNT fraction in the actual micrographs 1, 2 and 3. This will help in comparing values of 

the dispersion parameters obtained for experimental micrographs (Fig. 4.30a, 4.32a and 

4.33a) and the schematics (Fig. 4.35).  
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Fig. 4.35: Model microstructures of composites of filler materials having a) L/D = 1 

aligned, b) L/D = 2 aligned, c) L/D = 4 aligned, and d) L/D = 4 random orientation 

 

Figure 4.36 plots the maximum CNT fraction measured for a cell and the variance 

of the values of CNT fraction in the cells as a function of number of divisions of the 
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figures. It is seen that the graphs of maximum CNT fraction in a cell vs. number of 

divisions for L/D = 1 and L/D = 2 are significantly different from L/D = 4.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.36: Plot of the variation of standard deviation and maximum CNT fraction in a cell 

with no. of divisions for the model structures 

 

The diameter of the reinforcement is more significant in determining the dispersion 

parameter. It is obvious that it takes less number of divisions for the CNT fraction in a 

cell to reach 100 percent when L/D =1 as compared to when L/D = 4 since the size of a 

square that just fits into a circle is larger than that for an ellipse of same area.  Hence, it 

will affect the value of dispersion parameter DP. It indicates that our analysis holds 

accurate for nanocomposites with narrow diameter range for the CNTs. Most of the 

CNTs found in the microstructure had a diameter between 40 – 80 nm which is a spread 



of 40 nm (less than 0.5% of the width of the micrograph). Hence, assuming that all the 

CNTs have a diameter same as the mean value of 66 nm does not affect the calculations 

significantly. The spatial arrangement of the CNTs will be reflected in the value of DP 

when long CNTs are curved or broken down so that they form clusters. It is observed that 

orientation does not have much affect on the curves as seen in the plots for Figs. 4.35c 

and 4.35d which almost overlap in Fig. 4.36. The value of DP for Figs 4.35a, 4.35b and 

4.35c are equal to 9.3, 10.5 and 9.6 respectively, which are quite large as compared to 

that calculated for the micrographs 4.30a, 4.32a and 4.33a. This is attributed to the 

uniform distribution and the small aspect ratio of the filler materials in Fig. 4.35.  

 

4.4.2. Delaunay Triangulation Method 

 Delaunay triangulation of a set of points is the construction of triangles 

connecting the points such that no point falls inside the circumcircle of any triangle. This 

gives rise to triangles connecting a point to its nearest neighbors. The sides of the 

triangles then represent the distances between nearest neighbors. These distances are 

related to the manner in which the points are distributed in space. Also the number of 

nearest neighbors gives information about the coordination. Delaunay triangulation has 

been used extensively in fields for characterizing distribution in particulate reinforced 

composites [241], distribution of pores [242] and in hard sphere packing [243]. However, 

such studies have been made on model microstructures and there is no study on the use of 

Delaunay triangulation for CNT composites. In the present work, a simple method is 

proposed to quantify clustering phenomena in CNT composites based on the actual 

micrographs. Here, points are taken at the center of the nanotubes as shown in Fig 4.37a.  
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Fig. 4.37: a) Schematic of the way the points are taken for the nanotubes, and b) the 

Delaunay triangulation of the points 



In cases where the nanotube is long and curved, points are taken on the center of each 

linear part of the nanotube. Then a Delaunay triangulation is performed as shown in Fig. 

4.37b. The sides of the triangles when collected give the distance between nearest 

neighbors counted twice. But for the triangles situated at the periphery, the side making 

the periphery is counted only once. So a convex hull operation is carried out which gives 

the polygon making up the periphery. Then the sides of the polygon are measured and 

included in the group containing the sides of the triangles. This leads to a group 

containing the distance between all nearest neighbors counted twice. A statistical 

distribution of this group is then carried out. The mean and standard deviation of the 

values then characterize the distribution of the points or nanotubes. For a given overall 

CNT fraction, the large value for the mean spacing of the points and a small value of the 

standard deviation indicate a better and uniform distribution.  

 Delaunay triangulation was carried out on the three micrographs shown in Fig. 

4.30a, 4.32a and 4.33a. Subsequently, statistical analysis is performed to analyze the 

distribution of the values of the sides of the triangles. Figure 4.38 plots the distribution of 

the distances between the nanotubes for the three micrographs. It can be seen that a 

lognormal distribution fits the distribution well. The lognormal distribution is defined by 

the following. 
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         = 0                            for x  0 

 

Where  
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and ,  

 

 is the mean and  the standard deviation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.38: Plots showing the distribution of distance between CNT centers for the three 

micrographs 

It is interesting to note that Luo and Koo [187] also found that the lognormal 

distribution fitted well for the values of the inter-particle spacing as defined by them. In 

their analysis, the distances were chosen in horizontal or vertical directions, due to which 

there is a sense of directionality involved. But when clustering is considered, the 

distances between particles or fibers must be considered irrespective of the direction. To 

be more precise, nearest neighbor distances must be considered. A uniform distribution 
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corresponds to a uniform separation between nearest neighbors. Also the nearest neighbor 

concept presented here can be extended to three dimensions while the distances used by 

Luo and Koo are strictly for two dimensional analysis.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.39: Calculation of clustering parameter for distribution of the distance between 

CNT centers 

 

A new parameter is defined here which defines the degree of clustering observed 

in a micrograph. This clustering parameter, CP, is defined based on the fraction of the 

distances between CNT centers which are less than or equal to 5 times the CNT diameter. 

A larger value of overall CNT fraction will ensure that the CNTs are closely packed and 

will lead to an increase in the CP. Hence, CP can be defined as following: 



 
FractionCNTOverall

DToEqualOrThanLessncestasDiOfFractionCumulative
CP CNT.5

   

         Equation 4.7 

where DCNT is the mean diameter of CNT (66 nm in the present case). A large value of 

CP will indicate the presence of more clustering. Figure 4.39 shows the plot of the 

variation of cumulative fraction of values with distance between CNT centers. The inset 

is a magnified view of the graph at low values of the distance between CNT centers. It 

can be seen that the fraction of values less than or equal to 0.33 m for micrograph 1, 2 

and 3 is 0.13, 0.16 and 0.13 respectively which leads to a value of CP of 1.38, 1.76 and 

1.43 respectively. It is observed that micrograph 2 which had relatively poor CNT 

distribution shows the highest value of CP too. T 

 

Comparison of the Two Methods 

Table 4.4 represents the dispersion and clustering parameters (DP and CP) for 

three microstructures in figures 1a, 3a and 4a.  

Table 4.4: Dispersion and Clustering parameter for CNT distribution in the micrographs 

Micrograph Overall CNT % DP CP 

1 (Fig. 4.30a) 9.4 1.07 1.38 

2 (Fig. 4.32a) 9.1 0.74 1.76 

3 (Fig. 4.33a) 9.1 1.20 1.43 
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DP is a parameter which is obtained from the image directly and represents dispersion, 

while CP is the derived parameter obtained from the distances between nanotubes and 

represents clustering. A higher value of DP and lower value of CP is indicative of good 

CNT distribution. Based on DP, it was earlier concluded that dispersion is relatively 

better in micrograph 3 (Fig. 4.33a) and relatively poor in micrograph 2 (Fig. 4.32a) which 

can be verified visually from the SEM micrographs. The CP values of micrographs 1 and 

3 are low and nearly same (1.38 and 1.43) suggesting better and similar degree of 

dispersion. The CP value of micrograph 2 is higher (1.76) showing relatively poor 

dispersion.  Hence, it is concluded that DP and CP serve as consistent parameters in 

describing the extent of CNT dispersion and clustering in a given micrograph.  

 

4.4.3. Comparison of CNT distribution in Plasma and Cold Sprayed Coatings 

The CNT distribution quantification was carried out for plasma sprayed coatings 

also. Figs. 4.12b and 4.12d were used and binary images file of CNT distribution on the 

microstructure was analyzed. Figure 4.40 shows the images obtained by quantification 

process. It is seen that the CNT fraction in a cell reaches 0.9 after 2116 and 2209 

divisions for figs. 7a and 7b respectively. The overall CNT fraction in Figs. 4.40a and 

4.40b are 0.18 and 0.14 respectively. Considering the CNT diameter to be 66 nm, DP 

values are 1.4 and 1.1 for micrographs Figs. 4.12b and 4.12d respectively. This indicates 

that distribution of CNT is better in case of Figs. 4.12b as compared to Figs. 4.12d. This 

is in accordance with the distribution observed in the splats. It is also observed in general 

that clustering is high in Al-10CNT (hence relatively poor CNT distribution) due to 

higher CNT content. 
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Fig. 4.40 a) and b) Binary schematic images of SEM images 4.12c and 4.12d, c) and d) 

plot of the corresponding CNT distribution with contours indicating areas of same CNT 

fraction, and e) plot of maximum CNT fraction in a cell and variance of the CNT fraction 

in one cell with the number of division carried out 



When compared to cold spraying, plasma spraying involves molten alloy and there is 

larger chance of CNT agglomeration. The CNT distribution with splats indicates that 

distribution in Al-5CNT is good and comparable to cold sprayed coatings. The 

determination of CNT coatings requires good binary images to be obtained that resemble 

as close as possible to the actual micrographs. Use of advanced image processing 

techniques has to be explored to obtain such images. The proposed quantification 

technique based on such images would yield better results. 

 

4.5 Chemical Stability of CNTs in Plasma Sprayed Al-Si-CNT Composites 

In cold spraying, there is no thermal energy input. So reaction between CNT and 

aluminum cannot occur. The bonding is purely mechanical between the CNT and 

aluminum matrix. Aluminum carbide formation was observed from XRD peaks in Fig. 

4.14 in plasma sprayed Al-5CNT and Al-10CNT coatings where the matrix was Al-11.6 

wt.% Si alloy. Laha et al. had observed the formation of SiC in case of 10 wt.% CNT 

reinforced Al-23 wt.% Si alloy composite. So the alloy composition has a string effect on 

the interface. This study highlights the effect of CNT and Si content on the interfacial 

reaction in Al-Si composites. Thermodynamic and kinetic analysis is used to predict 

which carbide will form for a given processing temperature and alloy composition. 

Particular interest is devoted to the interfacial phenomena occurring in Al–11.6 wt.% Si 

alloy and CNT composite. Thermodynamic calculations were done using thermo-

chemical software and database FactSageTM [244]. Images of the crystal structures were 

obtained using the free software Mercury 1.4.2 developed by the Cambridge 

Crystallographic Data Centre (Cambridge, UK) while the crystallographic information 
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file for Al4C3 was obtained from the International Union of Crystallography (IUCr) 

database. High Resolution Transmission Electron Microscopy has been carried out to 

study the interfacial reactions to validate the theoretical predictions. 

 

4.5.1. Thermodynamic Analysis of Carbide Formation 

When molten aluminum silicon alloy reacts with carbon in CNT, there is a 

possibility of formation of silicon carbide (SiC) or aluminum carbide (Al4C3) at the 

matrix/reinforcement interface. The chemical reactions and the corresponding free 

energies have been represented by the equations below: 
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Here the square [ ] brackets represent that Al and Si are in the molten Al-Si solution and 

ΔG0 refers to the standard free energy of formation per mol of carbon, ‘a’ denotes 

activity, R the universal gas constant and T the absolute temperature at which the reaction 

takes place. Representing the equations per mole of carbon makes it easy to study which 

carbide will form preferentially.  For a given alloy composition and temperature, only 

one of the reactions 4.7 or 4.8 will occur depending on which has a more negative free 

energy change. The thermodynamic properties of CNTs were assumed equal to graphite 

due to lack of the data for CNTs. This gives us a comparative analysis for the two 
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competing reactions which might be accurate for the CNT-alloy system as well, because 

for both graphite and CNTs the reacting planes are the same (the  basal and the  0001

 0110  prism planes). It is assumed that CNTs are pure and activity of carbon can be 

taken as 1. The activity of Al4C3 and SiC can also be taken as unity since there was no 

evidence of formation of ternary aluminum silicon carbides which would affect the 

activity of any of them. The activity (‘a’) is equal to atom fraction (‘X’) only for ideal 

solutions. From the reported thermodynamic values for the Al-Si system [245, 246] it is 

observed that both Al and Si show negative deviation from ideality. Figure 4.41 shows 

the plot of activity vs. atom fraction for Al-Si alloy at 1700oC [245]. Using the activity of 

Al and Si for various alloy compositions at different temperatures [246], the free energy 

of formation of Al4C3 and SiC was computed using the ‘Reaction’ module of FactSage.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.41: Variation of activities of Al and Si with mole fraction at 1700oC 
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Figure 4.42 shows the free energy of formation of the carbides per mole of carbon 

as a function of alloy composition at different temperatures.  It is observed that at an 

experimentally measured temperature of 2300K, which is typically attained by the molten 

particle during plasma spraying (Table 4.2), the free energy of formation of Al4C3 

increases with increasing Si content and becomes positive  for Si content > 34.8  wt.% 

(34 atom%).  This indicates that Al4C3 formation is thermodynamically not feasible at 

2300K for Si content > 34.8  wt.%. Also it is seen that the free energy of formation of 

SiC becomes more and more negative with increasing silicon content of the alloy. It is 

observed that at 2300K, for alloys with Si content < 21.6  wt.% (21 atom%),  is 

positive which indicates that the formation of SiC is thermodynamically not feasible.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.42: F 4 3

alloy composition at various temperatures 

f
SiCG

ree energy of formation of Al C  and SiC per mole of carbon as a function of 
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The open circles on Fig. 4.42 indicate the alloy compositions where the values of 

the free energy of formation of Al4C3 and SiC are equal for the given temperature. These 

points of intersection of the two curves have been obtained for a series of temperatures 

and plotted in Fig. 4.42. Figure 4.43 is a pseudo-phase diagram which shows the 

equilibrium carbide forming at the interface for a given alloy composition and 

temperature of processing. For any given temperature of reaction, Al4C3 will form with 

all alloy compositions to the left of this line while SiC will form for compositions to the 

right of the line.  

 

 

ation of 

compositions to the left of the line will lead to formation of Al4C3 while alloy 

compositions to the right will show formation of SiC 

 

 

 

 

 

 

 

 

 

Fig. 4.43: Plot showing the alloy compositions for which free energy of form

either carbide at various temperatures are equal. For a given temperature of reaction, all 



It is seen that Fig. 4.43 predicts Al4C3 formation for Al-11.6 wt.% Si alloy. It also 

validates the observance by Landry et al. [232] of formation of SiC with Al-20 wt.% Si 

alloy with graphite at 1190K.  It is observed that at 2300K, Al4C3 formation is predicted 

with 23 wt.% Si alloy. But for reactions occurring below a temperature of 1960K, SiC 

formation is predicted from the figure. Laha et al. from our research group previously 

observed SiC formation in case of 23  wt.% Si alloy [33]. Although the temperature of 

the particles was not measured experimentally in the Al-23 wt.% Si alloy case, it is 

expected to be lower than 2300K as observed for the spray dried agglomerates in present 

case. This is due to the fact that the uniform distribution of CNTs in the spray dried 

agglomerates particles would lead to better thermal absorption and hence higher particle 

temperature. 

 Further equilibrium analysis was carried out using ‘Equilib’ module of FactSage. 

This module calculates the equilibrium phases that would be present when a mixture of 

Al, Si and C is allowed to equilibrate at a given temperature. This is done by calculating 

the free energies for formation of all possible reaction products and then selecting the 

final reaction products that minimize the Gibbs free energy of the system. It is to be noted 

that when Al reacts with C to form Al4C3, the Si percent in the liquid melt increases. 

Increase in the activity of Si will tend to favor SiC formation. For example from Fig. 

4.42, at 2300K Al will react and form Al4C3 until the  wt.% of Si in the melt becomes 

equal to 26.7% (26 atom%). After that SiC formation is favored. Both the reactions will 

go on in this manner until all the carbon has been consumed. Various composition of Al-

Si alloys were equilibrated with 5wt% and 10wt% CNTs at different temperatures and the 

final products formed were calculated using ‘Equilib’ module. It was found that at 
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temperatures above the liquidus temperature of the Al-Si alloy, the products formed were 

a mixture of SiC, Al4C3 and Al liquid containing dissolved Si and C.  Figure 4.44 plots 

the equilibrium mol.% of SiC and Al4C3 vs. temperature for Al-11.6 wt.% Si alloy and 

Al-23 wt.% alloy. Al-23 wt.% Si with 10 wt.% CNT was chosen for the sake of 

comparison because it was the composition that was reported in previous research from 

our group [33].  

 

posite 

composition with temperature of processing 

 

It can be seen for the Al-11.6% Si alloy that below the eutectic temperature of 

850K, SiC is the major carbide formed. This is consistent with the observations in 

aluminum composites reinforced with SiC particulates produced by liquid metal 

 

 

 

 

 

 

 

 

 

 

Fig. 4.44: Variation of mole fraction of Al4C3 and SiC for in different com



infiltration, where the reaction between aluminum and SiC leading to formation of Al4C3 

is favored by increased temperature of molten aluminum [247]. It can be seen that as 

equilibrium temperature increases, the amount of Al4C3 formed increases and SiC 

decreases. But at higher temperatures solubility of carbon in Al increases. This will lead 

to dissolution of Al4C3 in molten Al-Si. The temperature of intersection of the Al4C3 and 

SiC mol.% curves are shown by the circles. It is seen that the cross over between the 

curves takes place at 1940K for 23 wt.% Si  alloy while it take place at 900K for 11.6 

wt.% Si alloy indicating that Si content plays an important role in the composition of the 

final product.  

The equilibrium mole fractions of the two carbides were collected at different 

temperatures for different Al-Si alloy composition with 10 wt.% CNT. The fraction of 

total carbides that was Al4C3 is plotted as a function of Si content for various 

temperatures in Fig. 4.45. It can be seen that at any given temperature as the silicon 

percent goes on increasing, the Al4C3 fraction reduces. Also for a given silicon percent in 

the alloy, higher temperatures result in higher equilibrium fraction of Al4C3. All these 

results indicate that given sufficient time, CNTs will react with Al-Si alloy and result in 

formation of the carbide. This is undesirable as it leads to formation of Al4C3 and 

possible loss of the CNT reinforcement. In reality, only few outer walls of multi-walled 

CNTs react to form carbide of nanometer thickness. It has been shown through SEM 

images of fracture surface that a majority of CNTs are retained and intact without any 

damage. Retention of undamaged CNTs has been successfully observed by our group 

even when the matrix was a high temperature ceramic like hydroxyapatite [248] and 

aluminum oxide [228, 249, 250]. The retention of undamaged CNTs during plasma 
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spraying is attributed to rapid kinetics. The kinetic aspects of these reactions are 

discussed next. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.45: Equilibrium mole fraction of Al4C3 v. Si wt% in the alloy at various 

temperatures for 10wt% CNT composites 

 

4.5.2. Kinetics and Reactive Wetting 

The interaction time of powder particle with the heat source during plasma spraying is 

very small (0.1-1 ms) compared to the time required for other synthesis processes (e.g. 

hot pressing, sintering, extrusion etc.). Hence, kinetics becomes very important in 

predicting CNT/Al-Si matrix interface reaction during plasma spraying. Landry and 

coworkers observed that Al-Si alloys do not wet graphite in the beginning and exhibit a 
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large contact angle of ~160o. It is noted that contact angle strongly depends on the 

temperature, substrate surface roughness and the atmosphere during the test. In the case 

of Al-Si alloys and graphite, the contact angle reduces with the formation of Al4C3 or SiC 

as interfacial reaction product. Al4C3 and SiC formation reduces contact angle to 45o and 

38o respectively [232]. Hence, formation of interfacial carbides favors wetting and 

infiltration of liquid melt into CNT clusters. Figure 4.46 shows a CNT cluster that has 

been infiltrated by Al-11.6 wt.% Si melt suggesting occurrence of reactive wetting. Thus 

reactive wetting is an important phenomenon for infiltration of the clusters. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.46: SEM im

 

The mechanism of growth of SiC in case of Al-23 wt.% Si alloy was discussed by 

Laha et al [33]. A similar kind of mechanism will hold true for the growth of Al4C3 at the 

interface of Al-Si alloy and CNTs. This is illustrated in the schematic in Fig. 4.47. When 

age of a splat finger in Al-5CNT showing Al-Si infiltrated CNT cluster 
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carbide thickness reaches tCrit as defined by equation 2.3, further growth is energetically 

favorable this results in the decrease in contact angle and increase in reactive wetting.  

 

 

 

 

 

 

 

 

 

 

Smaller tCrit values therefore indicate easy formation of carbide as well as better wetting. 

But once Al4C3 is formed, it acts as a barrier for further reaction to occur. Further 

reaction leading to growth of Al4C3 is possible by two mechanisms. The perpendicular 

growth of the carbide will occur by reaction at the a) Al4C3/CNT interface that will be 

governed by the diffusion of Al through Al4C3, and b) at the Al4C3/Al-Si alloy interface 

which will be governed by the diffusion of C through Al4C3. The atomic radius of Al 

atom is 0.125 nm while that of carbon is 0.07 nm. Hence, it is expected that diffusion of 

the smaller carbon atoms from the CNT to the Al4C3/ Al-Si alloy interface would be the 

dominating mechanism for perpendicular growth of Al4C3. The data on diffusion of Al 

and C in Al4C3 is not available.  The lateral growth of the carbide is governed by the 

Fig. 4.47: Mechanism of growth of Al4C3 



reaction at the triple points. So the larger the spreading, the larger will be the area of the 

triple points and hence the extent of reaction and formation of Al4C3. 

It is evident from equation 2.3 that large negative free energy (ΔGf) of formation 

and small increase in interfacial energy (∆) will yield smaller tCrit and better wetting. A 

lower value of carbide/CNT and CNT/molten alloy )( / AlloyMC)( / CNTMC interfacial 

energies will result in lower ∆. Lower carbide/CNT interfacial energy is possible in case 

of coherent interfaces which will promote oriented growth of carbides over the CNT. 

There is a lack of experimental data for the interfacial energy values. The surface 

energies of a compound can be computed using ab initio methods [251] for 

crystallographic planes terminated by different kind of atoms.  

From the compilation of activity vs. atom% by Desai [245] for Al-Si alloys and using 

FactSage, the value of ΔGf per mole of Al4C3 and SiC were calculated and then tCrit was 

calculated. Δ has been assumed to be 1000 mJ.m-2 [33, 203]. Figure 4.48 shows the 

variation of critical carbide thickness with alloy composition at 1700K. It is observed that 

for Al-11.6 wt.% Si alloy, Al4C3 has lower critical thickness compared to SiC while the 

reverse is true for Al-23 wt.% Si alloy. The tCrit values indicate that Al4C3 formation is 

favored from the kinetics point of view for an alloy composition of 11.6 wt.% Si while 

SiC is favorable when alloy composition is 23 wt.% Si. This justifies the experimentally 

observed formation of the type of carbide with different silicon content of matrix in our 

present study and Laha et al.  
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Fig. 4.48: Plots showing variation of critical carbide thickness and the free energy per 

mole of carbide formation with alloy composition for Al4C3 and SiC at 1700K 

 

4.5.3. Experimental Validation of Results 

It has been shown in our previous work that SiC is formed in case of Al-23wt% Si 

alloy [25] while Al4C3 is formed when matrix is Al-11.6wt% Si alloy. The amount of SiC 

formed was too low to be detected by XRD. Thin layer of SiC, 2-5 nm in thickness has 

been observed on the CNT surface in HRTEM images in case of Al-23wt% Si 

composites as shown in Fig. 2.11b. In the present case formation of Al4C3 is quite evident 

from XRD plots. This could be due to the fact that, in case of spray dried powders, the 

CNTs are uniformly distributed and have a higher probability of coming in contact with 

the molten alloy and reacting to form carbide phase. Further experimental verification of 
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Al4C3 formation in Al-11.6wt% Si matrix composites reinforced with 5wt% and 10wt% 

CNT was carried out using SEM of fracture surfaces and High-resolution Transmission 

Electron Microscopy (HRTEM). Figure 4.49 shows the SEM of the fracture surface of 

Al-11.6%Si coating containing 10wt% CNTs, in which formation of clusters of Al4C3 

needles can be seen.  

 

Fig. 4.49: S wt% 

CNTs showing formation of clusters of Al4C3 needles 

 

HRTEM images of the plasma sprayed Al-11.6wt% Si composite containing 

5wt% CNT are shown in Fig. 4.50. A coated and reacted CNT is seen in Fig. 4.50a where 

the alloy and reaction products on the CNT are marked by the arrows. There is an 

approximately 6 nm thick coating on the nanotube surface which is more than the critical 

 

 

 

 

 

 

 

 

 

 

EM image of fracture surface of Al-11.6wt% Si coating containing 10
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thickness for Al4C3 formation at 1700K (~ 0.65 nm). This indicates that reactive wetting 

occurs resulting in uniform coating of the CNT with the molten alloy. Figure 4.50b shows 

an Al4C3 particle formed on the nanotube.  

calculations presented previously. Figure 4.51b shows the formation of Al4C3 at the Al-

 

Fig. 4.50: TEM micrographs of Al-11.6wt% Si alloy reinforced with 5wt% CNT showing 

a) a coated CNT showing reaction products and adhering alloy marked by arrows, and b) 

Al4C3 layer on the CNTs 

 

Figure 4.51 shows HRTEM images from plasma sprayed Al-11.6 wt% Si 

composite containing 10wt% CNT coating. A clean interface between Si and CNT in Fig. 

4.51a is observed which indicates that no reaction has taken place between CNT and Si, 

even when they are in intimate contact. This proves the predictions from thermodynamic 
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CNT interface in the composite. The thickness of the carbide layer as shown by the white 

arrow is found to be approximately 6 nm. 

 

 

 

Fig. 4.51: TEM images showing a) CNT-Si interface, and b) Al4C3 formation at the 

interface of Al-11.6wt% Si alloy containing 10wt% CNT 

 

No orientation relationship between Al4C3 carbide and CNTs was observed. This 

is in contradiction to observed orientation relationship of     340003||0002 CAlC  [41] in 

carbon fiber aluminum composites. Growth of carbide phase is attributed to the crystal 

structure of Al4C3, which has a rhombohedral (space group mR3 ) structure as shown in 

Fig. 4.52. It is made up of alternating layers of Al2C and Al2C2 with Al atoms having 

tetrahedral C coordination. C atoms have octahedral (C1 in Fig. 4.52) and trigonal 
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bipyramidal (C2 in Fig. 4.52) coordination with Al atoms [252].  Al2C layer is close 

packed with C in octahedral voids formed by close packed aluminum atoms. So it is 

expected that the lateral diffusion of carbon atoms by an interstitial mechanism would be 

favored through the Al2C2 layer. As seen from the figure, (0003) plane of Al4C3, has a 

hexagonal arrangement of carbon atoms similar to that in graphite.  However, it is to be 

remembered that the C-C distance in graphite is 1.42 Å while it is 3.33 Å in Al4C3. Thus 

Al4C3/CNT interface is expected to be strained without any orientation relationship.  

 

Fig. 4.52: Crystal structure of aluminum carbide showing alternate layers of Al2C and 

Al2C2. Also it can be seen that the (0003) plane is the carbon terminated plane which is 

similar to the graphene layers of CNTs 

 

 

 

 

 

 

 

 

 

 

 



Formation of limited amount of nano-size layer of Al4C3 at the interface has been 

shown to be beneficial for the mechanical properties for Al-SiC composites by increasing 

the interfacial bonding [253]. Kwon et al have suggested that Al4C3 formation helps in 

load transfer to CNTs by pinning the nanotubes to the matrix [31]. So the formation of 

controlled amount of interfacial products might help in the improvement of the 

mechanical properties. Tensile testing of bulk samples in future may answer the effect of 

Al4C3 on the macro-scale properties of the composites. 

 

4.6. Structural Stability of CNTs in the Coatings 

 A lot of changes occur in the CNTs due to the nature of the fabrication process. 

Some of them may be desirable, like formation of thin carbide layer for instance, while 

some may deteriorate the properties of the CNTs. In this section the changes in CNT 

morphology due to thermal and mechanical interactions during plasma and cold spraying 

have been highlighted. 

  

4.6.1. Structural Stability of CNTs in Plasma Spraying 

 The CNTs are subjected to very severe environment in plasma spraying. The 

temperature in the core of the plasma ranges between 10000 and 15000K. Direct 

exposure of CNTs to the plasma can cause evaporation of CNTs. This has been recently 

observed by Anup et al. our group [254]. When suspension of CNTs and alumina 

nanoparticles in ethenol was sprayed, no CNTs were observed in the deposit formed due 

to evaporation of the CNT. This was due to direct contact between CNT and plasma. 

However, in case of spraydried powders, the molten alloy shields the CNTs from the 
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plasma as shown in Fig. 4.17. Figure 4.53 shows the HRTEM image of two damaged 

CNTs. 

 

Fig. 4.53: HRTEM images of CNTs from a) Al-5CNT and b) Al-10CNT coating 

 

It can be seen that the CNTs are not uniform and layers of graphene are quite distorted. 

This could be due to oxidation at the high temperatures. CNT layers can also be 

consumed in formation of Al4C3. It is quite possible that the damaged CNTs shown in 

these images are weak mechanically. High temperature may also cause amorphisation of 

the outer walls. There have been reports of synthesis of amorphous CNTs or CNTs with 

amorphous outer walls [255] due to high temperature synthesis by CVD. More damaged 

CNTs were found in case of Al-10CNT coating. This was due to the fact that there was 

CNT mesh formation in case of SD Al-10CNT powder. Most of the CNTs formed a mesh 

on the outer surface of the powder. This increases the probability of exposure of CNTs to 

the plasma and hence increased damage. It is to be noted that most of the CNTs were 
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retained without damage as can be seen from fracture surfaces were retained without 

damage.  

 

4.6.6. Cold Spraying 

During cold spraying, CNTs are subjected to severe mechanical stresses that 

include impact and shear. So there is likelihood of damage to the CNT structure. It was 

observed in most of the fracture surface micrographs that CNT could be retained and 

uniformly distributed. Most of the visible damage observed was shortening of the length 

of the nanotubes. Figure 4.54a and 4.54b shows the length and diameter of the nanotubes, 

respectively, as measured from the series of SEM micrographs.  

 

Fig. 4.54: Distribution of a) CNT length and b) CNT diameter in powder and cold 

sprayed coatings 

 

The values of the mean and standard deviation of length and diameter of the 

CNTs during various stages of the processing are tabulated in Table 4.5. It can be seen 



that there is a decrease in the length of CNT after spray drying. This shortening happens 

during mixing operation for the preparation of the slurry used in spray drying. The 

milling action due to rubbing Al-Si particles might cause breakage of CNT. Chen et al. 

[256] have also observed shortening of CNTs due to milling in a two roller mill, the 

extent of which increases by addition of PMMA particles. Also the CNT are observed to 

be thicker in the spray dried powder. This is because they are covered with the binder 

used for spray drying. After cold spraying, there is a decrease in the value of both the 

length and diameter of the CNT. The decrease in diameter means that the binder is ripped 

off the CNT due to the gas flow, impact and disintegration of the agglomerate and during 

the rubbing action between particles. There is a noticeable decrease (~30%) in length of 

the nanotubes.  

 

Table 4.5 Length and diameter of CNTs during various stages of the processing 

CNT considered Length, m  Diameter, nm 

As-received CNT 2.10.4 477 

In Spray dried agglomerate 1.30.6 7819 

In Al-0.5CNT coating 0.80.4 6615 

In Al-1CNT coating 0.850.4 6815 

 

 

 Figures 4.55a and 4.55b show TEM micrographs of fractured end or tips of two 

different CNTs. As seen in Fig. 4.55a, after the impact there is a systematic fracture of 

the concentric tubes which progresses inward until the innermost tube has broken. On the 
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other hand, Fig. 4.55b shows the fractured tip of a CNT that is uneven or asymmetric 

with respect to tube axis. Two mechanisms are responsible for the fracture surfaces 

observed. They are by impact and by shear which are schematically described in Fig. 

4.55c and 4.55d respectively.  

 

Fig. 4.55: Transmission electron microscope images showing a) tip of CNT broken due to 

impact, and b) tip of a CNT broken due to shearing. Schematic showing the two main 

mechanisms for fracture of CNTs during cold spraying namely by (c) impact and (d) 

shear 



 When the spray dried agglomerate strikes the substrate/coating, there is a 

possibility of a CNT being crushed in between the incoming Al-Si particle and the 

preceding splat. Depending on whether the Al-Si particle strikes a horizontal or an 

inclined surface, it will exert impact or shear forces on the nanotube. Both impact and 

shear is expected to cause fracture in CNT.  Impact is expected to result in CNTs with 

fracture surface that is normal or symmetric to the longitudinal axis while shearing will 

result in broken CNTs with fracture surfaces that are inclined or asymmetric to the 

longitudinal axis. A CNT might undergo multiple events of fracture before getting 

embedded or entrapped within two particles or in porous area between particles created 

as a result of insufficient deformation. 

 Further analysis of the deformation and fracture mechanism under high 

velocity impact was carried out. Figure 4.56 shows the TEM of a MWNT that has 

undergone impact. It is seen that impact loading at the point shown by the white arrows 

lead to fracture at the point of impact and a generation and propagation of an axial shock 

wave or a ripple along the length of the MWNT. Ripple formation is seen marked by 

formation of kinks. Rippling has been observed by many researchers during bending of 

thick nanotubes [55, 257, 258]. This phenomenon has been attributed to the variation of 

elastic modulus in different directions [55]. It has been shown [257] that the rippling 

caused during bending leads to lower restoration forces than predicted by linear elasticity 

theory. Lourie et al. [258] observed buckling of MWNT embedded in a polymer matrix, 

under compressive stresses for MWNT having the ratio of wall thickness to the radius 

greater than 0.6. But it was not clear whether the deformation was plastic or recoverable 
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(elastic). Bower et al. [259] have also observed such ripples or buckle in the nanotubes. It 

was reported that the buckles formed were reversible and elastic for strains as high as 8%.  

 

 

Fig. 4.56: TEM of CNT fracture due to impact and shockwave formation 

 

The ripples observed in Fig. 4.56 are different compared to the ripples formed due 

to bending due to following reasons. Firstly, fracture of CNT due to bending has not been 

reported till date and the kinks here are observed to be permanent. Bending induced kinks 

should be recoverable after the release of stresses due to fracture. Secondly, there is a 

periodicity in the occurrence of the kinks which is measured to be around 43 nm which is 

 

 

 

 

 

 

 

 

 

 

 

 



quite close to the average diameter of the tube which is equal to 45 nm. On the other 

hand, the spacing between the kinks occurring due to bending is small and up to 50% of 

the diameter of the tube [55, 258]. The rt/

NT and t is the wall thickness)

259]. In the present case the 

 ratio (where  is the periodicity of the 

ripples, r is the radius of MW  has been found to be 1 for 

most of the MWNT in bending [ rt/  ratio is equal to 2.1 

( =43 nm, r =22.5 nm, t =19 nm as shown in Fig. 4.56). It is acknowledged that the 

periodicity based on two wavelengths may lead to some ambiguity in lack of an image 

showing longer length of nanotube. Hence, there is a possibility that bending also plays a 

role in ripple formation. But the fracture is attributed to impact as observed by the 

curving of the CNT layers at the fracture point (top left in Fig. 4.56). The kinks might 

develop into deep cracks in case of severe shock loading. Internal cap formation is also 

observed just below the kinked regions attributed to axial compressive deformation. 

Internal cap cannot form due to bending and has not been observed in bent nanotubes in 

the literature. These observations indicate that under shock loading there is a possible 

tendency of MWNTs to breakdown into secondary pieces having length equal to their 

diameter. The internal cap formation at location of kink formation further indicates that 

there is a tendency of these pieces to form closed shell structures like carbon onions. It 

has been suggested that carbon onion structure is thermodynamically more stable [260] as 

compared to an open ended MWNT of aspect ratio equal to one since the latter would 

require the presence of many broken bonds. Li et al. [261] have in fact observed that ball-

milling of MWNT with 1 μm sized iron particles for 15 minutes lead to formation of 

carbon onion like particles. Wei et al. [262] have also observed transformation of MWNT 
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into diamond under laser irradiation. It was proposed that disorder is created by the laser 

followed by ordering of the innermost layer to form a closed structure, which is followed 

by the successive layers resulting in formation of carbon onion. The internal capping 

observed in the present case is the first step in such a process.  

Figure 3.57 shows a fractured MWNT due to impact. It can be seen that the 

MWNT has undergone plastic deformation prior to fracture. The MWNT had undergone 

a necking kind of phenomena followed by a cup and cone kind of fracture. This kind of 

failure is common in moderately ductile materials like low carbon steel. To the authors’ 

knowledge, such kind of failure has not been reported till date for CNTs. It is to be kept 

in mind that the MWNT has not yet fractured into two parts although most of the layers 

of this nanotube have fractured.  The link between the two parts might consist of layers 

that have undergone pull out. Also the angle at which these layers are inclined is around 

35o, as indicated by the arrow which suggests the presence of torsion forces after fracture. 

Yakobson et al. [263] have studied the high strain rate fracture of single and double 

walled CNT using molecular dynamics. It was observed that the nanotubes fracture and 

rearrange to form a single chain thus leading to large breaking strains. They also show 

that failure of double walled CNT occurs after formation of two monoatomic chains. It 

could be possible that there are some monoatomic chains connecting the two fractured 

parts. The reduction in area at fracture can be calculated from the initial area and the area 

of the necked region at failure. The diameter of the initial CNT is 59 nm while the 

diameter of the necked region is 33 nm which leads to a reduction in area of around 70%. 

The reduction in area for annealed 1020 mild steel is around 66% [264]. This indicates 

that MWNTs show ductility comparable to mild steel.  
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Fig. 4.57: TEM image showing necked CNT due to impact. The circle shows the plastic 

bending of individual layers 

ld spraying involves impact of successive powder particles (containing Al and 

MWNT in this case) onto the substrate at supersonic velocity. The contact time (tc) 

between two colliding elastic spheres is approximated by Kil’chevskii [239] as 
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Where is the velocity of longitudinal waves in the medium, p 

is the Poisson’s ratio, dp is the diameter of the particles, E the elastic modulus and p is 

the density. For aluminum-silicon particles of average size 2.4 m, E=70 GPa and 

p=2700 kg.m-3, tc is calculated to be the order of 10-7 s. Considering that the particle is 

moving at an average velocity of 636 m.s-1 (experimentally measured) and assuming that 

all the momentum is lost on impact, it corresponds to a force of impact of the order of 

~100 N. Assuming, that the load is applied over an area of d2 on the CNT, where d = 66 

nm is the average diameter of the CNT, an impact stress of  ~20 GPa is obtained. This 

value is within the range of experimentally measured fracture strength of MWNTs [10]. It 

is seen from Fig. 4.57 that there is a gradual curving of the concentric graphene cylinders 

which results in the necking behavior. After a critical strain value is reached, the MWNT 

fractures due to fracture of the individual layers. In such loading conditions, the 

outermost tubes will experience tensile forces while the inner tubes would be in 

compression. So the fracture of outermost tubes is quite probable and such kind of 

fracture is seen at some points as marked by the arrows. The approximate average true 

strain in the nanotubes can be calculated by taking the natural logarithm of the ratio of the 

final curved length (L) and initial length (L0, taken to be projected length on the axis of 

the tube) of the central tube. Using Image analysis software Image J, L and L0 were found 

to be equal to 29.6 nm and 25.8 nm respectively, which gives a true strain of 

approximately 14%. The large reduction in the area before fracture suggests that 

nanotubes can be engineered under high strain rate conditions to design a nano-piping 
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network with varying diameters.  Such structure could be utilized to design nano syringes 

for drug delivery and nanofluidic applications.  

 There are some reports on the fracture behavior of CNTs. Wagner et al. [265] 

reported the fragmentation of MWNT in polymer matrix composite with several breaks 

along the nanotube length. However, high magnification images were not obtained due to 

loss of contrast in the presence of the polymer. It was reported that the MWNT failed by 

telescopic fracture. Hwang et al. [266] have observed the fracture of a MWNT inside a 

TEM, bridging a crack in PMMA matrix, occurring due to tensile forces generated by 

electrostatic repulsion. A gradual increase in the length of the MWNT with time was 

observed. This was attributed to the breakage of the outermost layer followed by sliding 

between the layers to some distance followed by fusion of the outermost layer to the layer 

below. This breakage, sliding and fusion process continued until MWNT fractured. It 

was followed by termination of the broken ends due to cap formation. While this 

mechanism is significant, it remains to be understood what factors govern the sliding 

distance and fusion process and the number of tubes that undergo breakage in one 

instance. Troiani et al. [267] have observed the breakage of SWNT in TEM. It was found 

that SWNT thins down progressively until a single chain of carbon atoms are formed 

joining the broken ends. Marques et al. [268] have shown that MWNT formed from an 

amorphous carbon film using an electron beam in a TEM, thins down successively to 

form SWNT before fracturing into two. It is evident that the deformation mechanism of 

MWNT under high velocity impact conditions is significantly different compared to 

relatively slow strain rate conditions studied previously 

 163



 164

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.58: Peeling mechanism in outer walls of MWNT due to shearing between 

aluminum particles 

 

Figure 4.58 shows the high magnification TEM image of a MWNT that has 

undergone shearing between two aluminum particles. It is seen that peeling of MWNT 

layer can occur due to shear stresses generated by the rubbing action between particles. 

This is an important phenomenon since it leads to generation of free graphene sheets and 

exposing underlying layers of MWNT. The graphene sheets have been shown in Fig. 

4.29. The peeling of phenomena does not require much force. Once these sheets are torn 



off the tubes the only force required to peel them off would be the force required to 

overcome the van der Waals forces between the tubes. The van der Waals forces have 

been found to be very weak ~ 0.035 ev/atom [269] and described by Lennard-Jones 

potential [270] as shown in equation 2.  
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      Equation 4.10 

Where R is the interlayer distance and  = 0.0556 kcal.mol-1 and  = 0.34 nm are the 

Lennard-Jones parameters. Cummings and Zettl [28] have demonstrated very low friction 

between the nanotube layers suggesting their application as frictionless bearings. It was 

shown that the friction forces calculated based on the van der Waals forces were three 

orders of magnitude lower than that calculated for conventional materials [271]. Li et al. 

[272] have produced bulk carbon nanotube materials by spark plasma sintering (SPS). 

Graphitization and peeling off was observed while polishing the sintered samples. Fig. 4 

shows clearly that peeling off of graphene layers is the mechanism of damage or 

graphitization as a result of application of shear stresses caused due to a rubbing of 

MWNT between two particles. Peeled graphene layers could reduce the coefficient of 

friction of MWNT reinforced coatings.  

 

4.7. Mechanical Property Measurements at Multiple Length Scales 

Mechanical properties of the coatings were measured at the multiple length scales using 

different techniques. For cold sprayed coatings, only nanoindentation and nanoscratch 

studies were performed due to sample limitations. For plasma sprayed coatings, tensile 

and compression tests were carried out on free-standing bulk samples, in addition to 
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nanoindentation and nanoscratch testing. Fig 4.59 is a chart of the mechanical property 

testing carried out. 

 

Mechanical Properties of CNT Composites 

Fig. 4.59: Chart showing the mechanical properties evaluated for the CNT composites in 

this study 

 

4.7.1. Microhardness of Coatings 

Fig. 4.60 shows the variation of microhardness of the cold sprayed Al-CNT 

coatings. The average value of Vickers microhardness was found to be 56.1±2.6 VHN, 

58.7±3.2 VHN and 60.9±2.8 VHN for the Al, Al-0.5CNT and Al-1CNT coatings 

respectively. These values are high compared to the powder (31.5 GPa [229]). This is due 
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to the fact that the powders are severely deformed during cold spraying, which causes 

work hardening.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.60: Variation of microhardness of cold sprayed coatings with CNT content 

 

Addition of CNTs does not produce significant increase in microhardness. This is due to 

the fact that the amount of CNTs added is very small. Also the CNTs are concentrated in 

the inter-splat regions only leading in less effective hardening. 

Figure 4.61 shows the variation of microhardness of the plasma sprayed Al-Si-

CNT coatings. It is observed that plasma sprayed Al-Si coating has higher hardness than 

the cold sprayed Al-CNT coatings due to the present of fine Si. The hardness of 99.999% 

pure Al is 13 kg.mm-2 where as that of silicon on 1127 kg.mm-2 (from 

www.matweb.com
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Al-Si eutectic alloy, the silicon is intimately distributed in the eutectic phase, the 

hardening effect is even higher. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.61: Variation of Vickers hardness of plasma sprayed Al-Si-CNT coatings with 

CNT content 

 

The hardness values were found to be 87±3, 135±5 and 210±4 VHN respectively for Al-

Si, Al-5CNT and Al-10CNT coating respectively. It is observed that addition of CNTs 

leads to a significant increase in hardness of the coatings. This increase in hardness is 

attributed to the CNTs in the intersplat regions which restrict the plastic flow and hence 

deformation of the material. The hardness increase could also be due to presence of 

Al4C3. 
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4.7.2. Nanomechanical Properties by Nanoindentation 

4.7.2.1. Elastic Modulus and Hardness of Plasma sprayed Al-Si CNT coatings 

Indentations were carried out on the matrix portion of polished cross section 

samples at loads of 2000 N, 3000 N and 4000 N using a Berkovich tip of tip radius 

100 nm. Nine indents were made for each load on the matrix part of the nanocomposite 

coating, which makes it a total of 27 values of hardness and elastic modulus per sample. 

It was found that the results were consistent and nine values at each load were sufficient 

to generate an average value for the properties. Figure 4.62 shows the scanning probe 

microscopy (SPM) images of the indents from Al-Si, Al-5CNT and Al-10CNT coatings, 

respectively.  

 

Fig. 4.62: SPM images of the indents on three PSF coatings at 2000 N load 

 

The decreasing size of the indents suggests strengthening effect due to addition of 

CNTs. Figure 4.63a shows the representative load displacement curves for the three 

coatings at a load of 2000 N. The decrease in maximum displacement (hmax) and the 

residual depth (hr) indicates strengthening due to addition of CNTs. Figure 4.63b shows 

the depth profiles taken along the median of the indent. Pile-up of material occurs on the 
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surface of the indenter and is observed on the edges of the triangle shaped indent. The 

pile-up height for Al-Si, Al-5CNT and Al-10CNT coating are approximately 19 nm, 

15nm and 8 nm, respectively. The reduced depth of the indent and pileup also indicates 

strengthening effect of CNT addition on the composite.  

data is due to the localized nature of the nanoindentation test in which the values are 

influenced by the local CNT/Si content. Table 4.6 shows the elastic modulus and 

hardness values for the coatings. It is seen that the standard deviation of the hardness 

values obtained by nanoindentation were less than 4% of the average value indicating 

that the values are consistent.  

 

Fig. 4.63: a) Load displacement curves obtained during nanoindentation of plasma 

sprayed Al-Si-CNT coatings and b) depth profile along a median of the triangular indents 

 

Figure 4.64a shows the variation of hardness and reduced elastic modulus of the 

coatings, calculated by the Oliver and Pharr method [230], as a function of CNT content. 

There is a consistent increase in the elastic modulus with CNT addition. The scatter in the 



 

Fig. 4.64 a) Variation of elastic modulus and hardness of the plasma sprayed Al-Si-CNT 

coatings with CNT content and b) variation of strength ratio and elastic recovery with 

CNT content 

 

Also the standard deviation of the elastic modulus values of the CNT composites 

obtained by nanoindentation were less than 6% of the average value indicating 
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consistency in the measured values. The nano-hardness values were found to increase by 

45% and 80% by addition of 5 wt.% and 10 wt.% CNT, respectively. The values of 

hardness obtained by nanoindentation are larger compared to that obtained by 

microindentation. This is attributed to the localized nature of the nanoindentation test. 

Values of mechanical properties obtained from microindentation involve several splats 

and are influenced by several features like inter-splat porosity and splat sliding [273, 

274]. 

 



Table 4.6: Mechanical properties of plasma sprayed Al-Si-CNT coatings from 

nanoindentation 

Coating CNT 
Vol.% 

Nanohardness

GPa 

Elastic 
Modulus

GPa 

We/Wt y 

GPa 

0.29 

GPa 

Al-Si 0 1.61 ± 0.20 90 ± 9.5 0.17  0.02 32.6 ± 
2.0 

38.3 ± 
2.7 

Al-
5CNT 

6.2 2.33 ± 0.2 
(45%) 

107 ± 6 
(19%) 

0.23  0.03 
(35%) 

38.3 ± 
1.9 

44.1 ± 
1.3 

Al-
10CNT 

12.4 2.89 ± 0.27 
(80%) 

125 ± 7 
(39%) 

0.33  0.02 
(94%) 

41.5 ± 
1.8 

59.1 ± 
3.0 

 

 

Elastic modulus shows an improvement of 19% and 39% by addition of 5 wt.% 

and 10 wt.% of CNTs, respectively. Further analysis of the load displacement curves was 

carried out using the method used by Chen et al [275]. The strength and elastic properties 

of the coatings has been calculated using the following relations: 
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   Equation 4.14 

where We and Wt refer to the elastic work and total work done during indentation, hmax 

and hr are the maximum depth and residual depth, Pmax is the maximum load, y is the 
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yield strength, 0.29 is the stress at strain of 0.29, E is the elastic modulus and M1 = 6.618 

and M2 = -0.875 are constants for Berkovich type indenter. The We/Wt ratio provides a 

measure of the elastic energy recoverable from the material. It can be seen from Table 4.6 

that the values of y calculated from nanoindentation are quite large. Strengthening effect 

is reflected by the increase in the values of y and 0.29 on addition of CNTs. The ratio of 

the strength of the composite coatings to that of Al-Si coating and the We/Wt ratio has 

been plotted in Fig. 4.64b. There is an increase of 17.5% and 27% in y due to addition of 

5 wt.% and 10 wt.% CNTs. The increase in We/Wt ratio with increase in CNT content 

indicates improvement of elastic properties of the composites.  

 

4.7.2.2. Elastic Modulus and Hardness of Cold Sprayed Al-CNT Coatings 

Nanoindentation was carried out on polished cross section of cold-sprayed Al-

0.5CNT and Al-1CNT coatings. A matrix of 7 (x) 7 indentations (49 indents) was made 

for Al-0.5CNT coating.  Each indent was 10 m apart. Hence these values are obtained 

from an area of 70 m x 70 m. A matrix of 5 (x) 5 indentations (25 indents) 

representing an area of 50 m x 50 m was made for Al-1CNT coating. Fewer indents 

were required for the Al-1CNT coating because there was a lower spread in the values. 

Figure 4.26 shows that an area of 50 m x 50 m is representative of multiple splats and 

features present in the coating that includes, pure Al, Al-Si eutectic, porosity and CNTs. 

In both cases, it was found that there was a distribution in the values of the elastic 

modulus ranging from 40-220 GPa, though majority of the values ranged between 40-120 
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GPa.  Figure 4.65 shows the load vs. depth curves for the lowest, highest and close to 

mean values obtained during the tests for the two samples.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.65: Load vs. depth curve obtained from nanoindentation of polished cross section 

of a) Al-0.5CNT, and b) Al-1CNT coating 
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The values obtained by nanoindentation are specific to the local microstructure where the 

indentation was performed. Figure 4.66 plots the values of the elastic modulus measured 

at different locations within the coating in the form of histograms. The mean elastic 

modulus in both cases is close to 69 GPa which is the elastic modulus of polycrystalline 

aluminum [276] that makes up for most of the coating microstructure. The elastic 

modulus of polycrystalline silicon is 115 GPa [276] which is close to the maximum value 

of elastic modulus measured. Thus an indentation on the Al splat will give a value of 69 

GPa but on a Al-Si region will yield a value anywhere between 40 and 115 GPa based on 

the degree of porosity.   

Fig. 4.66: Histogram of measured values of elastic modulus by Nanoindentation for a) 

Al-0.5CNT, and b) Al-1CNT 

 

It is observed from Fig. 4.66 that a larger fraction of measured values fall between 40 and 

60GPa (24% for Al-0.5CNT and 44% for Al-1CNT) and 90 and 120 GPa (9% for Al-

0.5CNT and 19% for Al-1CNT) range for 1wt.% CNT containing coating. This is due to 

the fact that the volume fraction of porous regions as well as Al-Si particles in the 1wt.% 

 

 

 

 

 

 

 



coating is higher. So statistically it is more probable to encounter such regions while 

carrying out nanoindentation testing in case of 1wt.% CNT containing coating.  

Some large values for elastic modulus (155 – 229 GPa for Al-0.5CNT and 141 – 

191 for Al-1CNT) were also obtained during nanoindentation of the present coatings. 

These modulus values are significantly higher than the elastic modulus of pure aluminum 

or silicon. This is due to the presence and the reinforcement action of CNT present in the 

region. There are four factors which influence the overall elastic modulus at a given 

location. They are the volume fraction of Al, Al-Si, CNT and porosity present in the 

coating. The overall volume fraction of silicon in the composite is 0.014 and 0.028 

respectively for 10 wt.% and 20 wt.% addition of Al-Si powder to Al. Considering the 

rule of mixtures to hold true for the reinforcement due to silicon, the value of the elastic 

modulus of the matrix without CNT is calculated to be 70 GPa. So the reinforcement is 

mostly due to the presence of CNTs in the matrix. The elastic modulus of the CNT 

containing composites calculated using various micromechanical models is presented in 

Table 4.7. The elastic modulus value for CNT has been assumed as 950 GPa [10].  It is 

found that the predicted values from Halpin –Tsai equations and the modified Eshelby 

[220] method are close to the mean of the measured value. Coleman et al. [53] have 

observed that the Halpin – Tsai equations for random fiber orientation fit the 

experimentally measured values well at low volume fraction of reinforcement. Some of 

the measured values of elastic modulus are low compared to the predicted value. 
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Table 4.7: Elastic modulus of the cold sprayed Al-CNT composite calculated using 

different micromechanical models 

Calculated Elastic Modulus of Composite, GPa Model used 

Al-0.5CNT Al-1CNT 

Rule of Mixture [277] 75 81 

Mori Tanaka [278] 85 86 

Hashin-Strikman [218] Lower Bound – 85 

Upper Bound – 88 

Lower Bound – 86 

Upper Bound – 91 

Halpin Tsai [53] 72.5 75 

Modified Eshelby Method [220] 71.5 73.5 

 

 

In these calculations the porosity has not been taken into account. The porosity in 

the present coatings is 1-3 vol. % which is low and is going to have small effect on the 

overall modulus. However the localized increase in the fractional porosity might have 

significant effect on values obtained by nanoindentation which is difficult to model. The 

higher values obtained from nanoindentation reflects the values at different locations 

which might have an increased concentration of CNTs. Ling and Hou [279] have carried 

out the nanoindentation of Al2O3 – SiC composites and have found a decrease in the 

average elastic modulus with an increasing SiC content and a large scatter in data due to 

porosity. Kim et al. [68] have fabricated fully dense CNT reinforced Cu composites by 

spark plasma sintering of CNT-Cu powders obtained by molecular level mixing. It was 

observed that Vickers hardness increases almost linearly by 80% for a 10 vol% addition 
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of CNTs [68]. Salas et al. [143] have reported a decrease in the Rockwell hardness (Scale 

E) due to addition of CNT in shock consolidated aluminum. It was found that the CNTs 

formed carbonaceous aggregates which served as easy sites for failure and delamination 

[143]. These studies have confirmed that dispersion of CNTs and porosity are very 

important factors determining the extent of reinforcement achieved.  

 

Correlation of Elastic Modulus Distribution with CNT Distribution 

One of the purposes of the quantification of CNT distribution is to determine its 

effect on the mechanical properties of the nanocomposite. The local volume fraction of 

CNT reinforcement will have an effect on the localized mechanical properties. Models 

have been proposed for the effect of clustering on the global or macro properties of the 

composite. Kim et al. [71] have observed two step yielding behavior in copper-CNT 

composites fabricated by Spark Plasma Sintering of ball milled powders, which was 

attributed to the two phase microstructure made of CNT clusters and the matrix. Villoria 

and Miravete [221] have proposed a model to take into account the clustering in CNT 

composites which can be applied for any fiber reinforced composite showing having a 

two-phase microstructure. Both the models show that the macroscopic or global 

properties are determined by the microscopic or local properties of the clusters and the 

matrix. The localized mechanical properties of the nanocomposite can be measured by 

nanoindentation. The radius of the elasto-plastic region beneath a Berkovich indent is 

given by the relation [280] 

max0.3
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c


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        Equation 4.15 
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Where ‘c’ is the radius of the elasto-plastic region around the indent, Fmax is the 

maximum force used for indentation, y is the yield stress. For a value of Fmax = 600 N 

and y = 125 MPa for 1060 aluminum alloy in H18 condition, the diameter of the elasto-

plastic region comes out to be 2.4 m. The micrographs in Fig. 4.30a, 4.32a and 4.33a 

were divided into 25 parts so that each cell had an area of approximately 2 m by 3 m 

(similar to the size of elasto-plastic region).  CNT percent of each cell was measured. 

Figure 4.67 shows the distribution of the values of the CNT percent in a cell.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.67: showing the frequency distribution of the values of CNT percent in a cell 

 

 A normal distribution given by the following equation was found to fit the data 

approximately. 
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     Equation 4.16  

It is seen that the CNT percent values follow the normal distribution curve 

approximately. Thereafter, elastic modulus of the cells is computed according to the CNT 

fraction present in them. Halpin-Tsai equations (eq. 2.13) were used to calculate the 

elastic modulus. For aluminum matrix of elastic modulus EM = 69GPa and multiwalled 

CNT as fiber reinforcement with EF = 970GPa and  = 2x800/66 = 24, L = 0.34 and T 

= 0.81. Figure 4.68 shows elastic modulus values computed using Halpin-Tsai method 

utilizing CNT fraction data from the different cells (each cell of size 2 m by 3 m). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.68: Plot of calculated and experimentally measured frequency distribution of 

elastic modulus values for the composite 
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 It also shows experimentally measured elastic modulus values using 

nanoindentation technique. The nanoindentation data shown in Fig. 4.66a was used in 

4.68. The values obtained were statistically analyzed which resulted in the curve in Fig. 

4.68. In Fig. 4.68, the plots have been normalized for a total of 100 values.  

 It was observed that even though the overall CNT volume percent was 0.6%, very 

large values of elastic modulus were obtained by nanoindentation testing. This was 

attributed to the local nature of the test and to the fact that CNT fraction could be large 

locally due to clustering effects. It is seen that the current analysis successfully predicts 

the existence of regions of high stiffness as observed by nanoindentation. This is 

indicated by the overlap in the values measured and predicted values as shown in Fig. 

4.68. But it is seen that the frequencies do not match with computed values. The lower 

values of elastic modulus obtained by nanoindentation were ascribed to the local 

variations of porosity and splat interface defects, which are not included in Halpin-Tsai 

model. Also, most of the composite coating is made up of pure aluminum. It is only at the 

places where the CNT is present and where the regions are dense that this analysis would 

hold true. It is also observed that the general nature of the curves is similar. It is believed 

that if porosity and splat sliding [281] are taken into consideration, the computed values 

will be lower to provide a better match with experimental values. The current analysis 

shows how CNT distribution could affect the local mechanical properties of the 

nanocomposite. 
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4.7.3. Nanoscratch Measurements 

4.7.3.1. Methodology for Computation of Wear Volumes 

A novel method was devised to analyze nanoscratch data in terms of nano-scale 

wear resistance. The nanoindenter measures the instantaneous depth penetrated by the 

indenter (represented by hinst) as it moves along the surface. So, there is a contact volume 

(VC) associated with scratching which depends on the instantaneous depth of penetration 

of the indenter during scratching. But after the indenter passes, elastic recovery processes 

take place. So the true depth of a scratch (represented by htrue) is expected to be smaller 

than the instantaneous depth of penetration during scratching. Hence, the true volume 

(VT) of material removed due to scratching depends on the true depth of the scratch 

which can be measured after the test has taken place. The true depth of a scratch can be 

measured from the SPM image. Figure 4.69 shows the variation of the instantaneous 

depth (hinst) during scratching and the true depth (htrue) after the scratching for plasma 

sprayed Al-Si coating using a Berkovich tip. The inset shows the SPM image of the 

scratch showing the line along which true depth profile was obtained. It is observed that 

htrue < hinst, which is attributed to elastic recovery process. The difference between htrue 

and hinst at a given point is a measure of elastic recovery of the material. The Contact 

wear volume and True wear volume have been calculated according to the methodology 

described below. 

 For the Berkovich tip, it is noted that the orientation of the tip with respect to the 

scratch direction is very important. Figure 4.70 shows the top view of a Berkovich 

indenter and the scratch direction. As the indenter scratches, total volume swiped by the 
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indenter will depend on the projected area of the indenter along the scratch axis which is 

shown as the side view in Fig. 4.70.  

Fig. 4.69: Plot showing the variation of the true and instantaneous depth during 

nanoscratch of Al-Si coating using a Berkovich tip. The inset shows the SPM image of 

the scratch along with the line along with the true depth profile was obtained  

 

In case of a perfectly plastic material, the resulting scratch groove will have a 

cross section equal to the side view of the indenter. The triangular cross section is 

characterized by the angles  and  as shown in Fig. 4.70, which in turn are dependent on 

the tip orientation angle . The angle  can be experimentally determined from SPM 

images. The area of cross section is given by 

 

 

 

 

 

 

 

 

 

 

   2.tantan
2

1
hChhhA        Equation 4.17 
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Where       tantan
2

1
fC  can be defined as the Area factor which varies 

with angle . Values of  and  have been measured for several tip orientations and C 

was calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.70: Figure showing the top view and side view of Berkovich indenter 
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Figure 4.71 shows images of the top view and side view from of a Berkovich indenter 

with the corresponding values of  and .  

 

Fig. 4.71: Images showing the top view and side view of the Berkovich tip at various 

orientation and the corresponding angles 

 =0o  =10o  =20o  =30o

 =40o  =50o  =60o  =70o

 =80o  =90o  =100o  =120o 
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The values of ,  and C as a function of the orientation angle  has been plotted 

in Fig. 4.72. It is interesting to note that the values of C and  have a periodicity of 60o 

while  has a periodicity of 120o with  which arises from the three fold symmetry of the 

Berkovich indenter. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.72: Plots showing the variation of ,  and C for the Berkovich tip with the 

orientation angle  

 

When the indenter is scratching in edge forward ( = 0o) and face forward 

direction ( = 60o), the scratch groove has the same dimensions but the force required 

may differ due to the fact that the contact area is different. From the graph above it is 

seen that C varies between 3.26 and 3.77. Taking C to be mean value of 3.52 will lead to 

a maximum error of 7.8% in calculation of the cross sectional area of the groove. The 
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value of  varies from 142.3 to 150.3 while   varies from 65.3 to 77.1. From known 

angle , C can be obtained from Fig. 4.72 and the Contact volume can be calculated by 

the following equation 

     Equation 4.18 

 

For calculation of True wear volume (VT) , the angles the angles  and  can be 

determined from the SPM images from the line profile taken transverse to the scratch 

direction as shown in Fig. 4.73.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.73: Depth variation along the cross section of the scratch obtained using a 

Berkovich tip. The depth profile was obtained along the line shown in the SPM image 

(inset) perpendicular to the scratch length 
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The line profile shows pile-up on the sides of the scratch and the true depth of the scratch 

is also indicated. By calculating the dimensions of the triangle,  and  can be obtained 

by rule of cosines shown in Fig. 4.73 and C can be calculated. The true volume is then 

calculated equation 4.16 but using htrue values instead of hinst.  

 

4.7.3.2. Nanoscratch Behavior of Plasma Sprayed Al-Si-CNT Coatings 

The nanoscratch tests were carried out on the matrix portion of the polished cross 

sections of the coating approximately perpendicular to the splats. The splat thicknesses 

range between 1-5 m. Figures 4.74 shows SPM images of the scratches made with 

Berkovich tip for different loads and coatings. It can be inferred from the width of the 

scratches that as load goes on increasing from left to right, the wear volume increases for 

a particular coating. As we go from top to bottom, for a given load the wear volume goes 

on reducing with an increase in the CNT content. This clearly shows that addition of 

CNTs leads to reduction in wear volume at the nano-scale. The orientation angle  for 

the tip was found to be 3o which leads to a C value of 3.67. To calculate true volume of 

the scratches, average of ten values of  and  were calculated for Al-Si, Al-5CNT and 

Al-10CNT coatings are tabulated in Table 4.8 where the Area factor C is also tabulated. 

It is observed that the theta values are almost similar for the three coatings and are larger 

than that for the Berkovich tip which is due to the elastic recovery processes. Using the 

values of C from Table 4.68 and the htrue values, VT is calculated from equation 4.16. The 

arithmetic mean of the contact and true volume for two scratches each made at a load of 

1000, 2000 and 3000 N (total 6 scratches per coating) have been tabulated in Table 4.9. 
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Fig. 4.74: Representative SPM images of the scratches obtained with Berkovich tip for a) 

Al-Si, b) Al-5CNT and c) Al-10CNT coatings. The scale bar shown corresponds to 5 m 

 

Table 4.8: Average values of  and  for scratches obtained with Berkovich tip 

Sample       tantan
2

1
C  

Al-Si 162 80 6.4 

Al-5CNT 162 80 6.4 

Al-10CNT 163 81 6.7 

 



The percentage decrease in the wear volumes as compared to the corresponding 

values for the Al-Si coating has also been shown. The effect of various factors on the 

values of VC and VT is discussed below. 

 

Table 4.9: Values of the Contact and True wear volume calculated for scratches on the 

coatings using Berkovich tip. The percentage reduction in wear volume compared to Al-

Si coatings is shown in the brackets 

Avg. Wear Volume, µm3 
Reduction in Wear Vol. 
compared to Al-Si (%) Sample 

Load, 
µN 

Contact (VC) True (VT) Contact (VC) True (VT) 

1000 0.70±0.06 0.56±0.04 - - 

2000 2.0±0.15 1.46±0.03 - - Al-Si 

3000 2.56±0.10 2.51±0.12 - - 

1000 0.43±0.01  0.31±0.01  38 54 

2000 1.48±0.20  1.14±0.11  26 21 Al-5CNT 

3000 2.12±0.14  1.41±0.36  17 34 

1000 0.39±0.03  0.21±0.01  45 62 

2000 0.77±0.07  0.59±0.03  62 60 Al-10CNT 

3000 1.28±0.13  0.73±0.07  50 71 
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Effect of the CNT Content 

Figure 4.75 shows the variation of the contact (VC) and true wear volumes (VT) as 

a function of applied load for scratches. As the load increases, the contact and true 

volume values increase which is obvious due to the increased depth. It is also observed 

that the contact and true volumes decrease with increase in CNT content which indicates 

an improvement in the nano-scale wear resistance. As compared to the Al-Si coating, 

there is up to 71% decrease in the true wear volume by addition of 10 wt. % CNT which 

corresponds to an increase in nano-scale wear resistance by almost 4 times. The true 

volume of the scratches is found to be smaller than the contact volume indicating that 

elastic recovery processes take place.  

Fig. 4.75: Variation of a) contact volume and b) true volume of the scratches with the 

applied load for the three coatings 

 

The effect of CNTs on the wear properties is two-fold. The first aspect is that 

addition of CNTs causes an increase in the hardness of the coatings. The nano-hardness 

of the Al-Si, Al-5CNT and Al-10CNT coatings was found to be reported to be equal to 
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1.61 ± 0.20, 2.33 ± 0.27 and 2.89 ± 0.27 GPa respectively. The increase in the hardness 

with an increase in CNT content results in the reduction of contact depth, and hence, 

contact and true volumes. The hardness and strength increases because CNTs resist the 

flow of material and impede dislocation motion. Archard has given a simple theory of 

mechanical wear relating the wear volume to the load, which can be represented by the 

simple relation when the average size of the contact area and wear particles are same 

[282] as 









H

P
k

l

V
         Equation 4.19 

Where V is the wear volume, l is sliding distance, k is wear coefficient, P is the applied 

load and H is hardness of material. The wear coefficient (k) is a measure of the 

probability that a contact event results in material removal thereby causing wear.  

 

 

 

 

 

 

 

 

 

Fig. 4.76: Variation of contact volume per unit scratch length with the ratio of applied 

load and hardness of the three coatings for the three loads with Berkovich tip 



Figure 4.76 shows a plot of the contact wear volume per unit length (VC/l) as a function 

of the ratio of load to hardness of the coatings (P/H) for the three loads for Berkovich tip. 

A straight line was fit to the data on Contact wear volume per unit scratch length and P/H 

at a given load for the three coatings and the wear coefficient was measured from the 

slope of the line. The wear coefficient is equal to 0.091, 0.120, and 0.119 for 1000, 2000 

and 3000 N load respectively which are quite large values corresponding to cases of 

severe wear [282]. 

The second important effect of addition of CNTs is on the elastic recovery 

property of the coating. A lot of work has been done in quantification of the elastic 

response of a material from the load-depth curves obtained from nanoindentation. Most 

of the work has been in correlating the ratio of elastic work to total work (WE/WT) of 

indentation to the ratio of Hardness to Elastic modulus (H/Er). Cheng and Cheng [283] 

have combined finite element simulation and analytical formulation and obtained linear 

relation between WE/WT and H/Er. Giannakopoulos and Suresh [280] have used  

 as a measure of WE/WT where hr is the residual depth and hmax is the 

m depth during nanoindentation. During nanoindentation the actual contact depth 

easured by indenter due to elastic deformation of the surface. 

284, 285] have derived a recovery resistance parameter based on this elastic 

response which is given as , where Rs is the recovery resistance. Most 

of the results show a linear relation between WE/WT and H/Er, although recently a 

nonlinear relation has been derived for the perfect conical tip [286]. The values of various 

parameters relating to WE/WT obtained from nanoindentation have been tabulated in 

 max/1 hhr

maximu

is lower than the depth m

Bao et al. [

HER rs /263.2 2
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 max/1 hhrTable 4.10. From Table 4.10, the increase in H/Er and  values clearly 

indicates that there is enhancement of elastic properties by addition of CNT. The Rs 

values are more or less same indicating that it is not a sensitive param ter to CNTs. From 

Table 4.9, it can be seen that the true wear volum

contact wear volumes for all the coatings which is tic recovery after the 

scratching process.  

 

Table 4.10: Variation of the Recovery parameters with C  the coatings  

Coating H/Er 

e

es of the coatings are lower than the 

 due to elas

NT content of

 max/1 hhr  HEr /2Rs 263.2

Al-Si 0.018 0.17  0.02 11570±1340 

Al-5CNT 0.022 0.23  0.03 11250±2180 

Al-10CNT 0.024 0.33  0.02 11880±1680 

 

It is to be noted that, the actual contact depth hc tantaneous 

depth hinst as in case of nanoindentation and is given by  

        Equation 4.20 

where hs is a displacement of the surface at the perimeter of contact with the indenter as 

shown in Fig. 13. In case of nanoindentation, we have [230]   

 is lower than the ins

sinstc hhh 

S

P
hh instc         Equation 4.21 

Where P is the applied load, S is the slope at maximum load of the unloading portion of 

the load-displacement curve during nanoindentation and  is a factor depending on the 

geometry of the indenter. The value of  is equal to 1 for flat punch, 0.72 for a conical 
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indenter and 0.75 for a paraboloid of revolution [230]. Thus, the actual contact volumes 

are expected to be lower than those calculated based on hinst.  

 

Experimental Evidence of Increased Recovery 

Figure 4.77 shows the SEM images of a scratch on Al-5CNT coating at a load of 

2000 N. The corresponding SPM image of the scratch obtained with the Berkovich tip is 

shown below the SEM image.  

Fig. 4.77: SEM and SPM image of the scratch on Al-5CNT coating made with a 

Berkovich tip at 2000 N load. The variation of the instantaneous and true depth is also 

shown. High magnification SEM images from the wear track are shown 



The graphs at the bottom show the variation of the instantaneous depth (hinst) as well as 

true depth (htrue) and the coefficient of friction (COF) along the scratch distance. The 

scratch is made from right to left and the indenter encounters CNT rich regions in 

between. A metal infiltrated CNT rich cluster can also be seen towards the end which is 

darker in contrast to the Al-Si regions. The CNT cluster is soft due to the inter-tube 

porosity which causes deeper penetration of the indenter tip resulting in generation of 

crack as seen from the magnified SEM image 1. The true depth as measured from SPM 

images is lower than the instantaneous depth which is due to elastic recovery processes. It 

is seen that the elastic recovery is greater for the regions between the two dashed lines. 

The region between the two dashed lines contains more CNTs as shown in the magnified 

SEM images 1 and 2. From SEM image 3 which corresponds to an intersplat region 

where CNTs are present (as evidenced by the darker contrast), the recovery is found to 

increase in the intersplat region. These observations provide direct evidence for 

increased recovery due to the “presence” of CNTs. The inverted spike in the variation of 

coefficient of friction with CNTs (marked by the arrows in Fig. 4.77) will be described 

later. 

Figure 4.78 shows the SEM image of a scratch on Al-10CNT made with 2000 N 

load. A large CNT rich cluster which is partially infiltrated with Al-Si (during plasma 

spraying) is seen at the center of the scratch. The CNT cluster is softer than the matrix 

due to the inter-tube porosity and the indenter penetrates deeper as compared to the 

matrix. It is observed that in the area between the dashed lines, there are CNTs as seen in 

the magnified SEM image 1 the recovery is larger. Compared to Al-5CNT in Fig. 4.77, 

the true depths are smaller and the recovery is larger in Al-10CNT coating as indicated 
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by the difference between the true and the instantaneous depth. The recovery is observed 

to be larger in the CNT cluster. These observations indicate recovery increases with 

“increase” in CNT content.  

 

Fig. 4.78: SEM images showing a scratch on Al-10CNT coatings with a Berkovich tip at 

2000 N load. The indenter encounters a CNT cluster  

 

The increase in the elastic recovery at CNT clusters and CNT rich regions are due 

to the elastic properties of the CNT and interaction with the stress field below the 

indenter. Figure 4.79 shows a schematic of CNTs present just below the indenter tip. 
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Depending on the orientation of the CNT, the stress acting on it could cause it to buckle 

(CNT1), bend (CNT2) or undergo radial compression (CNT3). In case, the tip is over a 

CNT cluster, some or the other CNTs in the cluster will be undergoing buckling, bending 

or radial compression.  

 

 

 

 

 

 

 

Fig. 4.79: Schematic of indenter tip-CNT interaction in the composite during scratching 

 

Bending of CNTs has been observed to occur by rippling [55]. Bower et al. [259] have 

observed that the onset strain for rippling was ~5% and that bending completely 

recovered for strains as high as 8%. Buckling of CNTs under axial load have been studied 

computationally and experimentally and it has been found to occur by ‘column’ buckling 

for long CNTs (L/D ~100) and by ‘shell’ buckling for shorter nanotubes (L/D < 20) 

where L/D is the aspect ratio [287-289].  Jeng et al. [288] have measured the critical 

stress for buckling of individual nanotubes between 12-16 N, while Waters et al. [289] 

have measured the force to be 2.5 N. While the buckling might not result in increase in 

elastic response of the coatings, it is expected to increase the resistance to deformation. 

Muthaswami et al. [290] have measured the radial elastic modulus of CVD grown 



MWNTs to be between 21±7 GPa using ultrasonic force microscopy, which shows that 

the radial compression and collapse of nanotubes can happen at smaller loads. 

Nevertheless, CNTs under radial compression still serve as obstacles to material flow and 

would help in increasing the hardness. So these mechanisms lead to the increased 

hardness and elastic recovery due to addition of CNTs. 

 

Coefficient of Friction of Plasma Sprayed Al-Si-CNT Coatings 

The other important aspect of wear is the coefficient of friction which is discussed 

in this section. Figure 4.80 shows the variation of the value of the coefficient of friction 

with scratch distance for the three coatings. The coefficient of friction (COF) has been 

calculated by the ratio of the instantaneous lateral force and normal force during 

scratching. It is observed that the values display localized variation with scratch distance 

as seen in Figs. 4.77 and 4.78. At some instances the lateral force reduces to very low 

values making the friction coefficient also very small and resulting in inverse spikes. 

Inverse spikes in coefficient of friction curve were found at several places where there 

were micro-cracks on the wear track or fracture of piled-up material. The scratching 

process happens in a stick-slip fashion with slip occurring at places where there is micro-

crack generation or fracture of piled up material. There is sudden decrease in the lateral 

force during such slip process which results in formation of inverted spike. The 

coefficient of friction with the Berkovich tip is almost similar for the three coatings. 

From Figs. 4.77 and 4.78, it is observed that the local COF values at places where 

dispersed CNTs exist, are slightly lower.  At some inter-splat regions where CNTs are 
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concentrated as in case of SEM images 2 and 3 in Fig. 4.78, small decrease in COF 

values was observed. 

Fig. 4.80: Variation of the friction coefficient with CNT content of the coatings with the 

scratch distance at various loads of a) 1000 N, b) 2000 N, and c) 3000 N 

In general, the COF values are similar for all the loads. This is in accordance with 

Amonton’s law for macro wear [291] which states that the friction coefficient is constant 

and independent of macroscopic area of contact. With increase in the applied force, the 

  

a b 

c 



 aspAtotal contact area between the asperities ( ) increases and this leads to a increase in 

the fiction force which can be expressed as fF aspA , where Ff is the friction force 

and  is the shear strength. The linear relationship between friction force to the applied 

load does not hold true for single asperity contact in which Aasp is not linearly related to 

applied load.  Recently, Mo et al. [292] have shown that Amonton’s law is also valid for 

nano-scale contacts where atomic scale roughness comes into picture similar to 

roughness in macro-scale. Deviation from the Amonton’s law can occur in the case of 

adhering surfaces.  According to Lafaye and Troyon [293] the frictional forces arise from 

adhesion between the surfaces in contact and the ploughing action.  The friction 

coefficient can be written as: 

ploughadh          Equation 4.22 

Adhesion forces between the tip and coating surface play significant role in increasing 

the frictional forces. According to the Johnson Kendall Roberts theory [294] the adhesive 

force is given as 

Aadh rWF 
2

3
        Equation 4.23 

where r is the contact radius of curvature and WA is the work of adhesion. Taking WA to 

be equal to 1000 mJ.m-2, Fadh is calculated ~ 1 N for the Berkovich tip which is very 

small compared to the applied load (~1000-3000 N) suggesting that adhesion forces do 

not play significant role in determining the coefficient of friction values.    

From Fig. 4.80 it is seen that the average COF values slightly increases for 5 wt. 

% CNT and then decreases for 10 wt. % CNT coatings. This is because the effect of 
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CNTs is two-fold. There is strengthening due to the addition of CNTs which increases the 

lateral force required for scratching due to increase in the critical shear strength . On the 

other hand, presence of CNTs might lead to lowering of the friction coefficient by acting 

as lubricant. The possible explanation could be that the increase of COF due to 

strengthening effect is more pronounced in Al-5CNT coating, while in the Al-10CNT 

coating the decrease in COF due to lubrication phenomena dominates. This could be due 

to better dispersion of CNTs in Al-5CNT as was observed in Fig. 4.12. The small effect 

of CNT content on friction coefficient is due to the fact that the CNTs are intact and 

lubrication mechanism of graphite are not applicable unless there is extensive damage to 

CNTs and generation of graphite like debris. This effect is more pronounced in macro-

scale wear experiments as in case of Ni-P-CNT [118] and Al2O3-CNT composites [295]. 

 

4.7.3.3. Nanoscratch Behavior of Cold Sprayed Al-CNT Coatings 

Scratches of 10 m length were made on the polished cross section of the cold 

sprayed Al-CNT coatings at a normal load of 1000 N. Figure 4.81 shows the SPM 

images of the scratches on the three coatings. 

 

 

 

 

Fig. 4.81: SPM images of the scratches on cold sprayed Al-CNT coatings made using a 

Berkovich tip at 1000 N load 
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Figure 4.82 shows the variation of true depth and instantaneous depth along the 

scratch distance for the three coatings. 

 

Fig. 4.82: Variation of hinst and htrue along the scratch for the cold sprayed Al-CNT 

coatings 

 

 It can be observed that the true depth reduces as the CNT content increases. Also 

from the separation between the hinst and htrue curve it is observed that the elastic 

recovery properties also increases with addition of CNTs. It is seen that the recovery in 

Al-1CNT is slightly greater than Al-0.5CNT coating. The orientation angle of the tip was 

 

 

 

 

 

 

 

 

 

 

 

 

 

-6 -4 -2 0 2 4 6
-200

-175

-150

-125

-100

-75

-50

-25

0

2

1

Al 1  h
true

2  h
inst

N
o

rm
al

 D
ep

th
, 

n
m

Scratch Distance, m

-6 -4 -2 0 2 4 6
-200

-175

-150

-125

-100

-75

-50

-25

0

2

1

1  h
true

2  h
inst

Al-0.5CNT

N
o

rm
al

 D
ep

th
, n

m

Scratch Distance, m

-6 -4 -2 0 2 4 6
-160

-140

-120

-100

-80

-60

-40

-20

0
Al-1CNT

2

1

1  h
true

2  h
inst

S
cr

at
ch

 D
e

p
th

, n
m

Scratch Distance, m



18o which leads to a value of C = 3.57 from Fig. 4.72. The values of  and  were 

calculated from the depth profile of the scratches as described previously. Although the 

angles  and  varied from 151-154o and 71-74o respectively, the average values were 

found to be same for all the coatings. The average value of ,  and C were equal to 152o, 

73o and 4.21 respectively. The contact volume and true volume have been calculated 

using the information above and have been tabulated in the Table 4.11. The values 

reported are the average value of three scratches. 

 

Table 4.11: Calculated values of the contact and true wear volumes for cold sprayed Al-

CNT coatings 

Coating Contact Volume 
(VC), m3 

True Volume 
(VT), m3 

Reduction in VT 
compared to Al 
coating (%) 

Al 0.490.08 0.460.02 - 

Al-0.5CNT 0.580.04 0.400.07 (13%) 15% 

Al-1CNT 0.500.12 0.330.02 (28%) 28% 

 

 

The values of the wear volumes have been plotted in Fig. 4.83 below. It is observed that 

there is not much difference in the contact wear volume due to addition of CNTs. This is 

due to the fact that the hardness of the coatings is not significantly affected by the 

addition of CNTs. The true volume however shows a reducing trend with addition of 

CNTs. The reason for this is increased elastic recovery of the coatings as shown in Fig. 

4.82. Increased elastic recovery reduced the htrue values which in turn reduced the true 
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volume of the scratches. Based on the true volume it can be said that the nano-scale wear 

resistance of pure Al improves by 40% by addition of 1 wt.% CNTs. 

Fig. 4.83: Variation of a) Contact and b) True wear volumes of the cold sprayed Al-CNT 

coatings as a function of CNT content 

 

Coefficient of Friction of Cold Sprayed Al-CNT Coatings 

 Coefficient of friction was calculated as the ratio of the instantaneous lateral 

and normal forces. Figure 4.84 shows the variation of the friction coefficient with CNT 

content. Figure 4.82 shows that there is not much variation in the coefficient of friction of 

the coatings. This is partially due to the fact that the CNT content is low and the fact that 

they are concentrated mainly in the inter-splat regions. The average coefficient of friction 

was found to be 0.170.01, 0.190.01 and 0.180.02 for Al, Al-0.5CNT and Al-1CNT 

coating respectively. The coefficient of friction was found to be more or less similar to 

the plasma sprayed Al-Si-CNT coatings. So it can be said that CNT addition does not 

bring significant change in coefficient of friction as measured in a nanoscratch test.  
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Fig. 4.84: Variation of Coefficient of Friction with CNT content of the coatings 

 

4.7.4. Summary of Nanomechanical Tests 

 In has been shown that nano-mechanical tests like nanoindentation and 

nanoscratch are very useful and provide a lot of information of on the mechanical 

behavior of CNT composites. Due to the localized nature of the tests, the scatter in the 

data is usually high indicating the anisotropic nature of the plasma sprayed coatings. 

Scatter in data can also be related to the dispersion of CNTs in the microstructure. 

Nevertheless, the average values are a good indicator of the strengthening effect of 

CNTs. Nanoscratch test are very important in quantifying surface wear properties. 

Comparing the hinst and htrue values gives information on the effect of CNT addition on 

the elastic recovery of the coatings. Also the true volumes of the scratches are a good 

indicator of the nanoscale wear resistance. SPM and SEM imaging of the scratches can 
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further provide information in correlating the microstructural features with wear 

resistance and coefficient of friction.  

 

4.8. Bulk Mechanical Properties of Plasma Sprayed Al-Si-CNT Coatings 

 Macro scale mechanical properties were measured in tension and compression 

for large samples machined out of the bulk spray formed cylindrical structure.   

 

4.8.1. Tensile properties of Plasma sprayed Al-Si-CNT composites 

 Tensile tests were carried out on flat dog bone type samples machined out of 

the spray deposited cylinder, schematic of which was shown in Fig. 3.5. Figure 4.85 

shows the representative pictures of the machined tensile specimen and the fractured 

specimens. It is observed that the CNT reinforced samples have failed outside the gauge 

length indicating that they have higher notch sensitivity. The position of failure indicates 

that the CNT containing samples might be more notch sensitive. Esawi et al. [296] has 

also reported higher notch sensitivity of Al-2wt% CNT composites prepared by hot 

extrusion of ball milled Al-CNT powder mixture in the un-annealed condition. It was 

observed that the samples consistently failed outside the gauge length. Fig. 4.86 shows 

the representative engineering stress strain curves for the Al-Si-CNT composites in the 

as- sprayed condition.  
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Fig. 4.85: Pictures of the machined and fractured tensile samples made from plasma 

sprayed Al-Si-CNT composite 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.86: Representative engineering stress strain curves for plasma sprayed Al-Si-CNT 

composites 
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The values of elastic modulus, fracture strength and the strain to failure have been 

tabulated in Table 4.12. The variation of the properties with CNT content has been 

presented in Fig. 4.87. 

 

Table 4.12: Mechanical properties of bulk Al-Si-CNT composites in as-sprayed condition 

obtained from tensile test 

Sample 
Elastic 

modulus
GPa 

Average
E, GPa 

Fracture 
Strength

MPa 

Average
f 

Failure 
Strain

% 

Average
f 

54.6 162 0.65 

57.0 166 0.59 

56.8 162 0.55 

Al-Si 

 

56.6 

56.3±1.1 

159 

162±3 

0.51 

0.58± 

0.06 

43.2 121 0.4 

43.8 127 0.43 

43.3 121 0.4 
Al-5CNT 

43.6 

43.5±0.3 

(-23%) 

122 

123±3 

(-24%) 

0.39 

0.41± 

0.02 

(-29%) 

44.5 115 0.31 

47.4 117 0.29 

46.9 124 0.33 

 

Al-10CNT 

47.2 

46.5±1.4 

(-17%) 

127 

121±6 

(-25%) 

0.33 

0.32± 

0.02 

(-45%) 
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Tensile tests indicate that there is a 23% and 17% decrease in elastic modulus, 

24% and 25% decrease in fracture strength and 29% and 45% decrease in fracture strain 

by addition of 5 wt.% and 10 wt.% CNTs. Thus addition of CNTs reduces the ductility of 

the Al-Si alloy and reduces the strength and stiffness by considerable amount. These 

results are in contradiction with previously reported research from our group where 

plasma sprayed Al-23 wt.% Si alloy composite reinforced with 10 wt.% CNTs displayed 

strengthening [181].  To understand this contradiction in context with available studies in 

the literature, mechanical property testing of bulk Al-CNT samples carried out by others 

researchers is tabulated in Table 4.13. 

 

w
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Fig. 4.87: Variation of mechanical properties of bulk plasma-sprayed tensile samples 

ith CNT content 



Table 4.13: Bulk mechanical properties of metal matrix CNT composites 

Fabrication Sample size Microstructure Properties obtained Reference 

Al powders (99.99% pure, 40 m 
size) mixed with 5 and 10 vol.% 
CNT by stirring in ethanol hot 
compaction (at 873 K) hot 
extrusion (25:1 ratio at 773 K) 

Cylindrical, 
3 mm dia. 
15mm gauge 
length,  

Clustering 
observed, no 
Al4C3 formation 

Al: f = 88 MPa, f = 41%, ρ = 99.6% 

Al-5vol.% CNT: f = 84 MPa, f = 28%, 
ρ = 94%  

Al-10vol.% CNT: f = 80 MPa, f = 
17%, ρ = 96.2% 

T. 
Kuzumaki 
et al. [29]  

Al powders (200 mesh) ball milled 
with CNT compacted and 
sintered (853K) hot extrusion 
(833K) 

Bulk sized, 
but exact 
dimensions 
not 
mentioned 

No Al4C3 
formation, no 
discussion on 
clustering  

Al: E = 70 GPa, y = 80 MPa 

Al-0.5vol.% CNT: E = 78.1 GPa, y = 
86 MPa, UTS = 134 MPa  

Al-2vol.% CNT: E = 85.85 GPa, y = 
99 MPa, UTS = 138 MPa 

R. George 
et al. [81] 

 

a) Ni particles (1 wt.%) on Al 
produced by precipitation 
calcinationCNT grown by CVD 
pressed (600 MPa)sintered 
(913 K for 3 hrs)repressing 
(2GPa) 

b) Al-Ni powders and 5 vol.% 
CNT ball milledsame 
consolidation as a)  

Dog bone 
shape, 20 
mm gauge 
length, 5.5 
mm wide, 
thickness not 
mentioned 

No Al4C3 
formation, good 
Al-CNT 
bonding, 
homogeneous 
dispersion of 
CNT and Ni 
particles 

Al: f = 140 MPa, ρ = 99.6% 

Al-5vol.% CNT (a): f = 398 MPa, ρ = 
96.2% 

Al-5vol.% CNT (b): f = 213 MPa, ρ = 
95.4% 

C. He at 
al. [21] 
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1 wt.% CNT (refluxed with HNO3) 
ball milled with 2024 Al powders 
(50 m size) cold isostatic 
pressing (300 MPa) hot 
extrusion (733K to 12 mm dia. 
rods) 

Dog bone 
specimen of 
15 mm 
gauge 
length, dia. 
not 
mentioned 

No Al4C3 
formation, good 
Al-CNT bond-
ing, homo-
geneous disper-
sion of CNT, Al-
CNT bonding 
poor in 2wt.% 
composite 

Al: E = 72 GPa, y = 289 MPa, f = 
384 MPa, f = 19.8%, ρ = 98.6% 

Al-1wt.% CNT: E = 102.1 GPa, y = 
336 MPa, f = 521.7 MPa, f = 18.8%, 
ρ = 99.1% 

 Al-2wt.% CNT: E = 86.5 GPa, f = 351 
MPa, f = 3.4%, ρ = 96.4% 

C. Deng et 
al. [82, 84] 

500g Al (99.85% pure, 15 m 
size), 10g Mg (99.8% pure, 50 m 
size) and 20g CNT (dia. 15 nm, 
length 30 m) mixed with natural 
rubber heat in N2 at 773K for 2 
hr Nanoscale dispersed powder 
hot extrusion at 673K 

Not 
mentioned, 
dia. = 4.7 
and 3.4 mm 
for extrusion 
ratio =10 
and 20 
respectively 

CNT at Al grain 
boundaries, 
alignment for 
extrusion ratio = 
20, no Al4C3 
formation 

Al: f = 150 MPa, f = 11% 

Al-1.6vol.% CNT (extrusion ratio =10): 
f = 170 MPa, f = 8% 

Al-1.6vol.% CNT (extrusion ratio =20): 
f = 230 MPa, f = 6% 

 

J. Yuuki et 
al. [297] 

Al powder (99.7% pure, 75 m 
size) –CNT (140 nm dia., 3-4 m 
length) mixed in planetary mill 
(300 rpm)  fill in copper 
cancold rolling (50% reduction) 
sintering in vacuum (573K for 3 
hrs)sintering in air (823K for 45 
min) 

Flat tensile 
specimen, 
25mm gauge 
length, 6mm 
wide, 0.4 
mm thick 

CNT uniformly 
distributed up to 
0.5wt.% CNT, 
cluster-ing in 1 
wt.% CNT 
fracture surface, 
clustering 
eliminated for 
400 rpm mixing 

Al: y = 70 MPa, f = 130 MPa, f = 
26%, ρ = 98.6% 

Al-0.5wt.% CNT: y = 100 MPa, f = 
135 MPa, f = 18%, ρ = 99% 

Al-1wt.% CNT: y = 69 MPa, f = 104 
MPa, f = 7%, ρ = 99.2% 

Al-1wt.% CNT (400 rpm): f = 135MPa 

Al-2wt.% CNT: y = 43 MPa, f = 63 
MPa, f = 2%, ρ = 97.5% 

A. M. K. 
Esawi et 
al. [86] 
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NSD Al-CNT powderSPS 
(873K max. temperature for 20 
min. at 50 MPa)hot extrusion (at 
673K, extrusion ratio = 20)  

3mm dia. 
samples 

CNTs at Al 
grain boundaries 
in SPS compact, 
Al4C3 formed, 
CNT bundles 
breakdown and 
alignment on 
extrusion 

 

Al: f = 85 MPa, f = 16.5% 

Al-5vol..% CNT: f = 194 MPa, f = 
10.1% 

 

H. Kwon 
et al. [31] 

Al-23wt% Si powder (15-45 m 
size) blended with 10wt.% 
CNTplasma spray forming 

 

26mm gauge 
length, 6mm 
wide, 0.635 
mm thick 
samples, 
slightly 
curved 

 

CNT between 
splats, very thin 
layer SiC 2-5 nm 
at interface, 
good density 

Al-23wt.% Si: E = 67.5 GPa, f = 79.8 
MPa, f = 0.192% 

(A-23wt.% Si)l-10wt..% CNT: E = 
120.4 GPa, f = 83.1 MPa, f = 0.088% 

 

T. Laha et 
al. [33, 35, 
181] 

 

Al (99.9% pure, 325 mesh size)-
CNT mixturehigh energy 
milling (5hr) compaction and 
vacuum sintering (873K for 3hr) 
hot extrusion (into 10 mm dia. 
rods at 773K, extrusion ratio = 16) 

 

Dog bone 
type, 30mm 
gauge length 

Al4C3 formation 
seen from XRD, 

Al: y = 105 MPa, f = 160 MPa, f = 
19.5% 

Al-1wt.% CNT: y = 150 MPa, f = 192 
MPa,  

Al-2wt.% CNT: y = 180 MPa, f = 252 
MPa, f = 16%,  

R. P-. 
Busta-
mante et 
al. [298]  
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Al (99.7% pure, 200 mesh size) 
mixed with 2 wt.% CNTball 
milled (200 rpm for 3h and 6 
h)cold compaction ( 475 
MPa)hot extrusion (at 773K, 
extrusion ratio = 4)annealing 
(673K and 773K for 10h) 

20 mm 
gauge 
length, 4 mm 
dia.,  

No Al4C3 from 
XRD, small 
crystallite size of 
annealed Al-
2wt.% CNT  
samples (milled 
3h = 93 nm and 
6h = 72 nm)  

Al(milled 3hr, annealed 773K): f = 
284.5 MPa, f = 8.6% 

Al(milled 6hr, annealed 773K): f 
=348.5 MPa, f = 8.4% 

Al-2wt.% CNT (milled 3hr, annealed 
773K): f = 345 MPa, f = 5.7% 

Al-2wt.% CNT (milled 6hr, annealed 
773K): f = 348 MPa, f = 7.9% 

A. M. K. 
Esawi et 
al. [296] 



Several of the above listed studies found considerable strengthening by addition of CNTs. 

The contradictory results in the present research work are attributed to several factors: (i) 

presence of porosity in the coating, (ii) poor inter-splat adhesion, (iii) CNT clustering and 

(iv) Aluminum carbide (Al4C3) formation in significant quantity. The effect of each of 

these factors is elucidated in detail below.  

 

1) Porosity of the coatings 

This is one of the main reasons for reduction in bulk properties. It is observed that 

most of the studies in Table 4.13 reported significant increase in strength on dense 

samples produced by extrusion [31, 81, 82, 297, 298] or sintering and repressing [21].  

Studies where the density is low have reported poor properties [29].  The density of the 

plasma-sprayed Al-Si, Al-5CNT and Al-10CNT coatings was found to be 2.44, 2.36 and 

2.35 g/cc which correspond to 90%, 88% and 90% of the theoretical density respectively. 

This is very high porosity as compared to the samples obtained by other methods (density 

> 96%) shown in Table 4.14. It is also observed that the fracture strain is very small and 

reduces with addition of CNTs. Plasma sprayed coatings contain macro pores as well as 

micropores between splats due to splat curvature and insufficient melting and inter-splat 

bonding. Inter-splat pores act as sharp cracks and weaken the composite considerably. 

Growth and coalescence of the inter-splat pores with macro pores might cause premature 

failure of the composite. Figure 4.88 shows the optical micrographs of the Al-5CNT and 

Al-10CNT coatings. It is observed that the macro porosity is mainly concentrated in the 

neighborhood of CNT clusters.  
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Fig. 4.88: Optical micrographs of plasma sprayed Al-CNT coating cross sections 

showing CNT clusters and porosity 

 

It is seen that the amount of CNT clusters is more in Al-10CNT. The area fraction of the 

CNT clusters was calculated for five (5) images and the mean was found to be 10.4% and 
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18.8% for Al-5CNT and Al-10CNT coating respectively. Fig. 4.89 shows the low 

magnification SEM images of the fracture surface of the plasma-sprayed composites. It is 

observed that the porosities on surface act as notches and sites for crack nucleation. Also 

the coalescence of pores could lead to bulk de-cohesion of the matrix. The porosities 

reduce the effective area that bears the load under tension. Thus porosity in bulk samples 

is very much deleterious for the mechanical properties of the composite.  



 

Fig. 4.89: Low magnification SEM images showing various features of the fracture 

surface of a) Al-Si, b) Al-5CNT and c) Al-10CNT composites. The thick arrows indicate 

the spray direction and the load was applied perpendicular to the fracture surface 

 
2) Inter-splat Adhesion and Bonding 

Fig. 4.89 shows poor inter-splat adhesion and absences of perfectly flat lamella. 

Un-melted particles seen in the Al-Si and Al-10CNT composite have weak bonding with 

the matrix and serve as easy paths for pull out and crack propagation. It is seen in Al-

10CNT coating (Fig. 4.87c) that the cracking and de-bonding has occurred where fine 

sized un-melted Al-Si particles are present. In the Al-5CNT coating, fracture occurred in 
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the inter-splat regions. Tensile samples were fabricated along the length of the cylindrical 

deposit, and hence the splats are arranged along the longitudinal axis of the tensile 

specimen. Figure 4.90 shows the schematic of the stress state in the composite and the 

nanotubes. It is seen that most of the splats are arranged parallel to the axis.  

parallel to the axis. For CNTs entrapped between splat interfaces which are normal to 

applied stress the case will be tensile as shown in the CNT on the left. These CNTs act as 

link between the two splats. Reaction at the interface leading to chemical bonding is 

 

Fig. 4.90: Schematic showing the stresses acting at CNT-splat interfaces under various 

orientations 

 

The stress is transferred to the CNTs through the interface as shown in the CNT on the 

right. For effective strengthening, a large interfacial stress () transfer is required which 

can be brought about if there is some interfacial product layer or mechanical interlocking 

between the CNT and matrix. However, not all splats in the composite will be arranged 



necessary for obtaining a strong bond. Mechanical bonding is possible, but the surface of 

the CNT must be rough (brought about by oxidation treatment) and the surfaces must be 

intimately in contact as in case of high density composite. Lack of bonding between CNT 

and splat will lead to easy inter-splat failure. Figure 4.12 showed the SEM images of 

fracture surfaces indicating that CNTs are present uniformly on the inter-splat regions. 

Lack of bonding between CNTs and the splats will translate into poor overall inter-splat 

bonding. Bonding between CNTs and matrix is brought about by reaction between the 

prismatic planes or defect sites leading to carbide formation which was discussed in 

chapter 4.5. Such carbide formation can be helpful in pinning the CNTs to the splats [31]. 

Figure 4.91 shows the high magnification SEM images fracture surfaces of Al-5CNT and 

Al-10CNT. Flat fracture surfaces were observed at some places in Al-5CNT and Al-

10CNT coatings, which indicate weak regions. Fig. 4.91 shows that some of the flat 

regions consisted of CNT rich regions and the CNTs are roughly parallel to the fracture 

surface. Most of the CNTs have a clean surface indicating that they have not reacted. 

Presence of unreacted CNTs or un-bonded CNTs in the inter-splat region would lead to 

failure at low strains and stresses.  

 

3) CNT Clustering 

Plasma sprayed composites displayed biomodal distribution behavior of CNTs 

which include (i) dispersed CNTs in the interpslat region and (ii) CNT clusters.  CNT 

clusters are formed due to the interaction of the CNTs with molten Al-Si alloy during 

plasma spraying. 
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Fig. 4.91: High magnification SEM images of fracture surfaces of a) Al-5CNT and b) Al-

10CNT coating showing CNTs parallel to the fracture surface 



Porosities are found in the intersplat regions as well as in the CNT clusters. Inter-

splat porosities are very fine (1-3 m) as seen in optical micrographs while ultrafine 

porosities are not visible in optical micrographs. Region surrounding CNT clusters 

contain most of the porosity and act a discontinuity. These pores are large in size (5-20 

m) and readily visible in optical micrographs in Fig. 4.86. Clusters and porosities reduce 

the effective area of cross section and hence the elastic modulus, since they don’t 

contribute to load bearing. Clustering has been previously shown to reduce the density 

and the strength of Al-CNT composites [29]. Villoria and Miravete have provided a 

model to take into account clustering of CNTs [221]. The model was briefly mentioned in 

chapter 2.4.3.2. According to the model, the overall properties of the composite are 

obtained by considering it as a dilute suspension of the clusters (properties with subscript 

dsc) in matrix. 
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Where cc refers to the volume fraction of clusters which is related to the overall CNT 

fraction by . But this model is suitable for equations where the clusters are 

infiltrated with the matrix. In the present coatings and composites, it has been shown that 

cff ccV .
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the clusters are not fully infiltrated with metal. They are more or less discontinuities in 

the matrix and occur in conjunction with the macro pores. 

If it is assumed that the CNT clusters do not contribute towards load bearing, then 

the strength of elastic modulus of the Al-CNT composites can be given by the rule of 

mixtures as 

 CSiAlC V  1        Equation 4.26 

       Equation 4.27 

Here, σAl-Si and EAl-Si are the strength and elastic modulus of the plasma sprayed Al-Si 

coatings without any CNT clusters and VC is the CNT cluster volume fraction. The 

values of σAl-Si and EAl-Si are obtained from the tensile test (Table 4.12).  EAl-Si and σAl-Si 

is equal to 56.3 GPa and 162 MPa respectively. The volume fraction of the porous CNT 

cluster region was calculated using image analysis of optical micrographs.  The 

calculated and experimentally obtained values of the mechanical properties of plasma 

sprayed Al-Si-CNT composites are tabulated in Table 4.14 below. 

 

Table 4.14: Calculated and experimentally measured values of the mechanical properties 

of plasmas sprayed Al-Si-CNT composites 

Sample CNT 
Cluster 
Fraction, VC 

Calculated 
E, GPa 

Measured  
C, GPa 

Calculated 
C, MPa 

Measured  
C, MPa 

 CSiAlC VEE   1

Al-5CNT 0.104 50.4 43.5 145.1 123 

Al-10CNT 0.188 45.7 46.5 131.5 121 
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It is observed that the calculated values of elastic modulus match closely with the 

measured values. The calculated values of the strength are higher than measured ones. 

This is due to the fact that intersplat bonding is not taken into account in the calculations. 

Figure 4.92 shows a SEM image of the fracture surface of Al-10CNT composite showing 

fracture occurring at a CNT cluster. Such clusters with poor bonding with splats tend to 

reduce the strength of the composite.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.92: SEM image of fracture surface indicating poor intersplat bonding due to a CNT 

cluster that has not been metal infiltrated 

 

4) Aluminum Carbide Formation 

It is noted that in all the studies mentioned in Table 4.13, significant strengthening 

was achieved in cases where Al4C3 formation was not observed. Al4C3 formation is 
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minimized in solid state processes and the reaction rate between Al and CNTs increases 

significantly above the melting point of Al [37]. Bustamante [298] and Kwon [31] have 

observed strengthening in the presence of carbide formation. In those composites, hot 

extrusion was used which breaks down the CNT clusters and possibly the Al4C3 phases 

formed and distributes them uniformly and aligned to the extrusion direction. This might 

be alleviating the harmful effects of Al4C3 formation. Besides that, a controlled amount 

(nano layer) of Al4C3 formation might help in bonding the CNT with matrix and help in 

load transfer. This effect has been observed in Al-SiC composites [196].  

In the present study, area under the XRD peaks suggested the formation of 

significantly large amount of Al4C3. It was observed that the 7.8% and 15.8% Al4C3 by 

volume was formed in case of Al-5CNT and Al-10CNT coating.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.93: Aluminum carbide needles/platelets forming a flower like morphology on the 

fracture surface of Al-10CNT composite 
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Al4C3 was also observed on the fracture surface of Al-10CNT coating (Fig. 4.15), 

in the vicinity of CNTs. Figure 4.93 shows the fracture surface of Al-10CNT tensile 

specimen showing presence of Al4C3. The flower like morphology suggests that it has 

formed due to reaction of a spray dried particle with the CNTs. Brittle fracture of Al4C3 

will reduce the strain to failure and will act as sites for crack nucleation.  

 

4.8.2. Compressive Properties 

Mechanical properties were tested in compression to study the strengthening 

effect of CNTs under compressive load. Stresses on CNTs reverse under compression 

and interfacial bonding between CNT and splats is not as critical since compressive 

forces lead to crack closure.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.94: Representative engineering stress-strain curves for plasma sprayed Al-Si-CNT 

composites under compression 
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Figure 4.94 shows the representative engineering stress strain curves under compression 

for plasma sprayed Al-Si-CNT samples and the mechanical properties have been 

tabulated in Table 4.15. It is observed that the Al-Si sample did not fail under 

compression. It went on deforming until it was transformed into a flat button and started 

to crack at the edges due to work hardening. Compressive load was applied parallel to the 

splats direction. So the loading direction was perpendicular to spraying direction. Initial 

non-linearity of the stress strain behavior is due to densification occurring due to 

compaction. Once the pore closure occurs, further deformation occurs by deformation of 

splats and sliding of the splats past each other. It is observed that there is slight decrease 

(-6%) in elastic modulus for Al-5CNT composite while the Al-10CNT composite shows 

8% increase in compressive elastic modulus compared to Al-Si composite. It can be said 

that the elastic modulus are more or less the same. 

There are two competing effects taking place due to addition of CNTs. There is 

creation of porosity due to presence of CNT clusters. This has the effect of redcing the 

stiffness since the closure of pores and compaction of the clusters under the compressive 

load will lead to large deformations. On the other hand, CNTs between splats in both the 

cases shown in Fig. 4.12 will serve as obstacles to splat sliding and increase the elastic 

modulus. It is observed from Fig. 4.12 (b and d) that more CNTs are present within splats 

in Al-10CNT compared to Al-5CNT. The porosity was measured to be 12% and 10% for 

Al-5CNT and Al-10CNT coatings respectively. 

 



Table 4.15: Mechanical properties of Al-Si-CNT composites obtained by compression test. The percentage values in the brackets 

indicate improvement over Al-Si 

Sample 

Elastic 
modulus

GPa 

Average 

E 

Yield 
Strength 

MPa 

Average 

y 

Fracture 
Strength 

MPa 

Average 

f 

Failure 
Strain 

% 

Average 

f 

Al-Si 5.1 196   

Al-Si 5.4 
5..25±1.5 

232 
214±18 

 
- 

 
- 

Al-5CNT 5 265 294 11 

Al-5CNT 4.9 

4.95±0.05 

(-6%) 284 

275±10 

(28.5%) 315 
305±10 

12 
11.5 

Al-10CNT 6.7 386 386 10 

Al-10CNT 4.6 

5.65±0.95 

(8%) 317 

352±34 

(64.5%) 317 
352±34 

11 
11 
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The values of elastic modulus in compression reflect the effect of porosity. But 

the volume fraction of porous CNT clusters was found from image analysis to be 10.4% 

and 18.8%. Based on this it can be said that CNT clusters do no effect the elastic modulus 

in a significant manner in compression as they do in tension. It is to be noted that the 

elastic modulus in compression is an order of magnitude lower than that in tension. 

Compression involves the closure of pores in clusters as well as inter-splat porosity 

which results in larger displacements/strains for a given amount of stress. Thus the 

compressive modulus is smaller than the tensile modulus. The deformation behavior of 

CNT reinforced Al-Si coating is markedly different than Al-Si coating. It is observed that 

there is a two stage deformation processes. This is marked by 1 and 2 in Fig 4.94.  When 

the sample is deformed, compaction progresses and the porosities are eliminated and 

CNT clusters get compacted. Splat sliding also occurs till its maximum limit and after 

that the splats start deforming. Deformation of Al-Si splats is difficult due to their brittle 

nature and the stress goes on accumulating and when critical limit is reached the 

composite fails. In some cases, the cracking happens in the maximum shear stress planes 

oriented at 45o to the normal stress and pieces of the sample chip off along the planes. 

The load falls drastically as the effective area reduces. This leads to stage 1 of failure. 

Again the remaining sample starts to get deformed under the load leading to a small 

plateau in the load displacement curve. Finally, there is total failure of the sample during 

stage 2 when it crumbles into pieces. 
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Fig. 4.95: SEM images showing a) edge cracks in Al-Si sample, b) chipping failure at 

approximately 45o to normal force at maximum load in Al-5CNT composite, and c) 

fracture surface of chip showing brittle failure in Al-10CNT composite 

It is observed that as compared to the Al-Si, the Al-5CNT and Al-10CNT 

composites have 28.5% and 64.5% increased yield strength in compression which is due 

to the reinforcement of CNTs. Figure 4.95 shows the fracture surfaces of the plasmas-

sprayed composites under compression. Fig. 4.95a shows the edge cracks generated 

towards the end of deformation in Al-Si sample. Fig. 4.95b shows failure at maximum 
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load at 45o angle to the applied force in case of Al-5CNT composite. In case of Al-

10CNT composite, a chip that has broken under sudden delamination failure is shown in 

Fig. 4.95c. The crack front is smooth and flat indicating brittle failure.  Figure 4.96 shows 

higher magnification SEM images from fracture surface of Al-5CNT and Al-10CNT 

composite. 

crack closure and bridging by CNTs. This is one of the mechanisms that lead to increased 

compressive strength of the Al-CNT composite over Al-Si. 

 

 

  

Fig. 4.96: SEM images of fracture surface of a) Al-5CNT showing splat sliding and b) 

Al-10CNT composite showing crack bridging 

 

Figure 4.96a shows evidence of splat sliding during compression test. Individual splats 

could be seen which have moved relative to each other and some splat delamination is 

also observed. Figure 4.96b shows the fracture surface of Al-10CNT composite showing 



4.9. Comparison of Nano and Macro scale Mechanical Properties of Plasma 

Sprayed Al-Si-CNT Composite 

 Nanoindentation indicated an increase in elastic modulus by 19% and 39% in 

case of plasma sprayed Al-5CNT and Al-10CNT coating over the Al-Si coating. But 

macro scale bulk tensile testing shows a decrease in tensile modulus by 23% and 17% for 

Al-5CNT and Al-10CNT coating respectively.  Moreover, the absolute values of elastic 

modulus obtained by bulk tensile tests were smaller (less than half for CNT containing 

coatings) as compared to nanoindentation. It is observed that there is an inversion in 

mechanical properties with the scale of measurement. Several factors are responsible for 

this phenomenon. In nanoindentation, the size of elastic-plastic region beneath the 

indenter has a diameter of around 5 m. The depth is limited to a maximum of 300 nm. 

So the mechanical response is obtained from a few splats. Phenomena like splat sliding 

and improper bonding do not affect much the results. Also, CNT distribution was found 

to be uniform in the intersplat region and within the splats. Hence nano-scale 

strengthening obtained by dispersed CNTs is not nullified by the deleterious effect of 

CNT clustering and intersplat porosities. 

On the other hand, in case of bulk tensile tests, porosity, CNT clustering, inter-

splat bonding, CNT splat adhesion, aluminum carbide formation, microstructural 

anisotropy etc. affect the properties measured. Nanoscale mechanical properties thus may 

not reflect the bulk mechanical properties in case of plasma sprayed coatings. However, 

several steps can be taken to improve the bulk mechanical properties to match them with 

the properties at nanoscale. The main idea is to get rid of defects like poor interfaces, 

porosity, poor bonding etc. Thermo-mechanical treatments are required which not only 
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will densify the structure but will cause the breakdown of the splat structure. Effective 

use of CNTs requires there successful integration into the structure with proper bonding 

for efficient load transfer. Improper bonding may make the same CNTs as defects and 

cause delamination or serve as sites for nucleation of cracks. Several researchers have 

obtained properties better than those measured by nanoindentation in this study as shown 

in Table 4.13. By being able to meet the criteria mentioned above, bulk properties of 

plasma sprayed composites can also be enhanced. 
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5. CONCLUSIONS 

Several important conclusions could be drawn from the work done in this 

dissertation. The salient conclusions have been classified in terms of (i) processing, (ii) 

microstructure (iii) CNT dispersion (iv) mechanical properties (micro scale),  (v) 

mechanical properties (micro scale), and (vi) Mechanical properties (macro scale).     

 

(i) Processing 

1. Spray drying is an effective method for dispersing CNTs at the scale of a 

micrometer size powder. The quality of dispersion obtained is a significant 

achievement over blending processes.. CNTs tend to form a mesh on the surface 

of the agglomerate for higher content.   

2.  Plasma spraying has been successful in fabricating Al-Si, Al-5CNT and Al-

10CNT composite coatings and bulk structures with a thickness ranging from  

500m- 5mm.  The spraying time for 5 mm thick samples was just 20 minutes 

indicating the possibility of rapid prototyping of bulk CNT nanocomposites. The 

Al-Si, Al-5CNT and Al-10CNT composites were 90, 88 and 90% dense.  

3. Cold spraying was successfully used in fabricating 500 m thick Al-CNT 

coatings from blended mixture of pure Al and spray dried Al-5CNT powders. 

Two compositions containing overall CNT of 0.5wt.% (Al-0.5CNT) and 1wt.% 

(Al-1CNT) were prepared. Cold spraying of mixture of Al-Si and spray dried Al-

5CNT powders (without pure Al matrix) resulted in coatings of maximum 

thickness 80 m due to poor deposition efficiency of Al-Si powders.  
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(ii) Microstructure 

4. Plasma sprayed coatings had a two phase microstructure of a matrix with 

uniformly distributed CNTs and CNT clusters. Regions containing clusters 

contained most of the porosity. CNTs were uniformly distributed in the intersplat 

region and within splats. CNT clustering occurs due to non wetting nature of Al-

Si alloy on nanotube surface. . 

5. Cold sprayed coatings had high density (> 98%). The spray dried particles either 

disintegrated on impact and released the CNTs or were entrapped in between Al 

splats. Porosity was observed with splats and in entrapped spray dried particles. 

CNTs were distributed homogeneously in the intersplat region. Some CNTs were 

entrapped within the Al splats. .  

6. Rigorous thermodynamic analysis of the reaction between Al-Si alloys and CNT 

was carried out using FactSageTM. A pseudo phase diagram was generated which 

predicts the reaction product that will form for a given silicon content in alloy at a 

particular processing temperature. It was shown that Al4C3 formation is feasible 

for Al-12 wt.% Si alloy while SiC formation is feasible for Al-23wt.% Si alloy. 

Also critical thickness calculations at 1700K showed that the critical thickness for 

Al4C3 formation was lower than SiC for Al-12 wt.% Si alloy while the reverse 

was true for Al-23wt.% Si alloy. XRD and high resolution transmission electron 

microscopy were used to validate the thermodynamically computed results.  

7. Most of the CNTs were retained in plasma sprayed coatings and composites.  

Some of the CNTs had undergone thermal damage by the exposure to plasma 

plume. . The extent of CNT damage was more in Al-10CNT coating. The CNT 
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mesh formed in case of spray dried Al-10CNT powder was more prone to direct 

interaction with plasma plume.  

8. In cold sprayed coatings, length of the CNTs reduced from 1.30.6 m in the SD 

Al-5CNT powder to 0.80.4 and 0.850.4 m in the Al-0.5CNT and Al-1CNT 

coating. The fracture was due to impact and shear on CNTs between Al-Si 

particles. Period ripples were formed along CNT length formation due to axial 

shock waves on impact. Necking kind of failure was also seen for the first time. 

Shearing of CNTs between deforming particles had a peeling effect leading to 

generation of graphene sheets. Reaction between CNTs and aluminum was not 

possible due to the low temperature of the process. 

 

(iii) Carbon Nanotube Dispersion Quantification 

9. A new method for the quantification of CNT distribution in a given composite 

was developed. Two parameters which are complimentary in nature were defined 

which express the degree of CNT distribution. A Dispersion Parameter (DP) was 

defined based on the cluster size and was obtained from the image analysis. The 

larger the value of DP, the better was the distribution. A Clustering Parameter 

(CP) was defined based on the distances between CNT centers obtained by 

Delaunay triangulation method. The smaller the value of CP, the better was the 

distribution. The method was applied to SEM images of the fracture surfaces of 

cold sprayed Al-CNT and plasma sprayed Al-Si-CNT coatings. The Dispersion 

parameter was shown to be very effective measure of CNT distribution having 

better sensitivity that Clustering parameter. 
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(iv) Mechanical Properties (Micro-scale) 

10. The microhardness of plasma sprayed Al-Si, Al-5CNT and Al-10CNT coatings 

were measured to be 87±3, 135±5 and 210±4 VHN respectively. There is a 

considerable increase in the microhardness which could be due to indentation 

resistance produced by CNTs and aluminum carbide formation. Microhardness of 

cold sprayed Al, Al-0.5CNT and Al-1CNT coatings were 56.1±2.6, 58.7±3.2 and 

60.9±2.8 VHN respectively showing that there is only small increase in the 

hardness. The hardness was considerably higher than that of Al powder (31.5 

VHN) due to the severe work hardening during cold spraying. 

 

(v) Mechanical Properties (Nano-scale) 

11. Nanoindentation measurements on the matrix portion of the polished cross section 

indicated that the elastic modulus increased from 90 ± 9.5 GPa for the Al-Si to 

107 ± 6 GPa for Al-5CNT and 125 ± 7 GPa for Al-10CNT coating. This 

corresponds to an increase of 19% and 39% by addition of 5 wt.% and 10 wt.% 

respectively. Elastic recovery values were calculated from the maximum depth 

and residual depth of the indentation. There was increase in elastic recovery 

values by 35% and 94% for Al-5CNT and Al-10CNT coating as compared to Al-

Si indicating that there was tremendous improvement in elastic recovery 

properties due to addition of CNTs. The nanohardness of Al-Si, Al-5CNT and Al-

10CNT coatings were found to be 1.61 ± 0.20, 2.33 ± 0.2 and 2.89 ± 0.27 GPa 

respectively which corresponds to increase of 45% and 80% by addition of 5 and 

10wt.% CNT respectively. 
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12. Elastic modulus measurement of cold sprayed Al-CNT coating indicates a lot of 

scatter in data with mean value around 69 GPa which is that for pure aluminum. 

This was explained based on localized nature of the test resulting in values 

corresponding to areas of different amount of porosity, Si content and CNT 

content. 

13. Nanoscratch experiments were carried out using Berkovich tip. SPM images of 

the scratch indicated decrease in scratch width and depth with increase in CNT 

content. Calculations of contact and true wear volumes indicated that the wear 

resistance of the coatings improves by 4 times for Al-10CNT coating. The 

reduction in wear volume is ascribed to increase in the hardness and elastic 

recovery of the coatings due to addition of CNTs. Increase in elastic recovery 

during scratching in CNT rich regions was shown by correlating the SEM images 

of the scratch to the true and instantaneous depth as measured by the 

nanoindenter. Recovery was found to be larger for Al-10CNT coating compared 

to Al-5CNT coating. The coefficient of friction values were found to be similar 

for all the three coatings. Correlation with SEM images showed that the friction 

was slightly lower at regions where CNTs ere concentrated like inter-splat 

regions.   

14. Nanoscratch measurements on cold sprayed coatings indicated up to 40% increase 

in wear resistance in the Al-1CNT coatings. The contact volumes were more or 

less similar but the increased recovery property due to CNT addition decreased 

the true volumes of the scratches for Al-0.5CNT and Al-1CNT coating compared 
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to Al coating. The coefficient of friction was found to be similar for all the three 

coatings. 

 

(vi) Mechanical Properties (Macro-scale) 

15. Bulk tensile testing on large samples machined from plasma spray formed 

cylinders showed that the macroscopic mechanical properties of the coatings were 

poor. The Young’s modulus of Al-Si, Al-5CNT and Al-10CNT coatings were 

found to be 56.3±1.1, 43.5±0.3 and 46.5±1.4 GPa respectively. The decrease in 

tensile modulus was due to CNT clustering and associated porosity. The volume 

fraction of the CNT clusters in Al-5CNT and Al-10CNT was found to be 10.4 and 

18.8% respectively. The fracture strength reduced from 162±3 MPa for Al-Si to 

121±6 for Al-10CNT.. The strain to failure reduced from 0.58±0.06% for Al-Si to 

0.32±0.02% for Al-10CNT.  r. The decrease in the tensile strength is attributed to 

porosity,, poor inter-splat adhesion,, CNT clustering and Al4C3 formation. Tensile 

samples consistently failed outside the gauge length indicating that they might be 

notch sensitive. 

16. Compression tests indicated that the yield strength in compression increased from 

214±18 MPa for Al-Si to 374±43 MPa for Al-10CNT. The strengthening is due to 

presence of CNTs in the inter-splat region which obstructs the plastic flow of the 

material. The elastic modulus was found to be an order of magnitude smaller than 

in tensile test. The elastic modulus of Al-Si, Al-5CNT and Al-10CNT under 

compression was equal to 5.25±1.5, 4.95±0.05 and 6.8±2.3 GPa respectively. The 
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lower values of the elastic modulus were ascribed to collapse of CNT clusters and 

splat sliding. 

 

Above listed specific conclusions suggest that mechanical properties of CNT reinforced 

composites can be further enhanced at macro-scale by making improvement and 

modifications in the processing method to obtain (i) high density (ii) improved CNT 

dispersion and (iii) improved CNT/matrix interface bonding.  Hence, recommendations 

for the future improvement have been made to further develop the field of CNT 

reinforced metal matrix composites.  
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6. RECOMMENDATIONS FOR FUTURE WORK 

Several important conclusions were drawn from the research in the previous 

chapter. The open ended nature of the research suggests that further improvement in 

macro-scale mechanical properties of metal matrix-CNT composites could be achieved 

by improving the density, CNT dispersion and CNT/matrix interface bonding. 

Implementing the knowledge gained through this research work for future studies has 

been outlined below. 

 

6.1. Optimization of Plasma Spray Parameters 

Density of the coatings obtained in this study was low (~88-90%). Although 

optical microscopy and SEM images indicate that that there was no macro porosity, there 

could be very fine inter-splat porosity in case of Al-Si coating. These kinds of pores 

could also be present in Al-Si-CNT coatings. In order to get rid of such pores, plasma 

processing has to be optimized. A detailed parametric study should be carried out to see if 

the density of the coatings can be maximized. Based on our recent experiments, it has 

been found that the plasma power, primary gas flow rate, powder feed rate and the stand-

off distance are the most significant parameters that effect the density of the coating. 

These parameters need to be optimized. This will need lot of experimentation with 

simultaneous measurement of density and study of microstructure. Table 6.1 summarized 

the parameters to be played with. If 3 values of plasma power, 3 values of primary gas 

flow rate, 3 values of powder feed rate and 2 values of stand-off distance are considered 

the total number of experiments turns out to be 54 experiments. 
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Table 6.1: Matrix showing plasma spray parameters for optimization experiments 

Parameter Plasma Power Primary Gas 
Flow Rate 

Powder Feed 
Rate 

Stand-off 
Distance 

Plasma Power Variable Constant Constant Constant 

Primary Gas 
Flow Rate 

Constant Variable Constant Constant 

Powder Feed 
Rate 

Constant Constant Variable Constant 

Stand-off 
Distance 

Constant Constant Constant Variable 

 

Optimization of plasma parameters might lead to improvement in density and 

mechanical properties. 

 

6.2. Dense Powder Feedstock with Excellent CNT Dispersion 

Spray dried powder feedstock had excellent CNT dispersion but suffered with 30-

40%porosity. Some of these agglomerates explode during plasma spraying resulting in 

incomplete melting of Al-Si particles, which cause porosity, poor intersplat adhesion and 

easy path for crack propagation. A dense powder feedstock with excellent CNT 

dispersion could result in plasma sprayed coating with similar features.  

High density powder with excellent CNT dispersion could be achieved by plasma 

densification. In plasma densification, the powders are sprayed in a confined column and 

collected in a container. The particles undergo melting and solidification to form dense 

powders. Plasma densification could have many advantageous effects. Firstly, use of 

densified powders could result in dense coatings. Secondly, the reaction between CNTs 
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and matrix could lead to formation of small amount of Al4C3 which will help in pinning 

the CNTs to the molten metal. This will help in avoiding CNT clustering during 

subsequent plasma spraying. Plasma densification was tried at our laboratory by air 

plasma spraying, but it resulted in oxidation of the powders. To avoid oxidation, vacuum 

plasma spraying needs to be utilized.  

An alternate method to produce high density powder feedstock with improved 

CNT dispersion could be achieved by direct chemical vapor deposition (CVD) growth of 

CNTs on dense, micron size aluminum powder.  Though slow kinetics of CVD process 

and scale-up limitations could be an impediment to produce large amount of powder 

feedstock for plasma spraying.  

 

6.3. CNT Pre-treatment 

Treatment of CNTs by coating them with metal prior to spray drying could be 

helpful in many ways. Firstly it may enhance wetting with the molten matrix and hence 

avoid clustering. Secondly, it will reduce the extent of Al4C3 formation which is could 

bring about drastic improvement in the mechanical properties. Silicon and Nickel coating 

can be employed. Both the coatings on the CNTs could be applied by chemical vapor 

deposition. Nickel coatings on CNTs can also be obtained by electro- and electroless 

deposition techniques. Silicon coatings could result in silicon carbide formation at matrix 

CNT interface which might enhance the mechanical properties of the composite. 
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6.4. Manipulating Matrix Composition 

The matrix has a strong effect on the interfacial reaction as was shown by 

thermodynamic calculations. The addition of strong carbide formers like titanium to the 

Al-Si alloy could retard Al4C3 formation. Ti can be added in many ways. CVD routes 

could be explored for deposition of thin coatings of Ti on Al-Si particles. Alternatively, 

Ti can be incorporated in the alloy powders during inert gas atomization. Blending of fine 

Ti powders with Al-Si powders before spray drying could be done. This might lead to 

preferential reaction of Ti with CNTs leading to formation of TiC, which is not 

detrimental like Al4C3. 

 

6.5. Post –Spray Densification of Plasma-Sprayed Composites 

Densification of plasma-sprayed coatings and bulk structures can be done by 

application of pressure and temperature. Application of pressure is expected to collapse 

the CNT clusters and align them. Hot-isostatic pressing (HIP) can be used. It has the 

advantage of application of uniform force which helps in densification through out the 

composite with complex shapes. The pressure and temperature have to be optimized in 

order to get good density. Sintering could be used for densification. Sintering would lead 

to breakdown of splat microstructure which will improve the properties and reduce the 

anisotropic nature. Sintering might also lead to improvement in bonding between CNT 

and matrix and lead to strengthening. Another way of consolidation is by hot rolling. Hot 

rolling could help in densification as well as alignment of the CNT clusters in the rolling 

direction.  
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6.6. Exploration of Other Consolidation Processes 

Spray dried powders were shown to have very good CNT distribution. In plasma 

spraying, the CNTs get clustered in the molten droplet and the distribution is lost to a 

great extent, especially at higher CNT content. The use of other consolidation processes 

could be explored for spray dried powders. Spark plasma sintering is a rapid sintering 

technique which can lead to retention of the CNT distribution and can minimize the 

formation of Al4C3. Other methods like hot extrusion of compact can lead to dense 

structures with minimum formation of Al4C3.  

 

6.7. Macro-scale Wear Resistance  of Al-Si-CNT coatings 

Nanoscratch results showed significant improvement in nano-scale wear resistance of 

the plasma-sprayed Al-CNT coatings at a nanoscale. It is yet to be established if this 

nanoscale property improvement translates into macro tribological properties. The effect 

of splat adhesion and CNT inter-splat bonding on wear resistance has to be studied. 

Correlation between nano scale and micro scale wear properties should be established 

similar to mechanical properties.  

 

6.8. Efficacy of CNT Dispersion Quantification Model  

A new method for CNT distribution quantification was developed which can be 

applied to all kinds of CNT composites and to SEM and TEM micrographs. The 

parameters suggested should be utilized to compare processes or variation of distribution 

within various samples in a given process. It will establish the efficacy of the CNT 

dispersion quantification model in the present work.  
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Abstract 

This review summarises the research work carried out in the field of carbon nanotubes 

(CNT) metal matrix composites.   A lot of research has undergone in utilising CNTs as 

reinforcement for composite material.  However CNT reinforced metal matrix 

composites has received least attention. These composites are being projected for use in 

structural applications for their high specific strength as well as functional materials for 

their exciting thermal and electrical characteristics.  The present review focuses on the 

critical issues of CNT-metal matrix composites that include processing techniques, 

nanotube dispersion, interface, strengthening mechanisms, and mechanical properties. 

Processing techniques used for synthesis of the composites have been critically reviewed 

with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix.  

The mechanical property improvement achieved by addition of CNTs in various metal 

matrix systems has been summarized. The factors determining strengthening achieved by 

CNT reinforcement have been elucidated.   The structural and chemical stability of CNTs 

in different metal matrices and importance of CNT/metal interface has been reviewed.  

Importance of CNT dispersion and its quantification has been highlighted. Application of 

CNT metal matrix composites as functional materials has been summarized. Scope for 

future work that needs attention is addressed. 
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