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AI for Archives: Using Facial Recognition 

to Enhance Metadata 
 

Background 

 

Goal 

 

The goal of this research project was to determine the most effective facial recognition 

applications that could be implemented into digital archive image collections from libraries, 

museums, and cultural heritage institutions. Computer scientists and librarians at Florida 

International University collaborated to conduct qualitative assessments of both face detection 

and face search using photographs from FIU’s digital collections. Specifically, the facial 

recognition platforms OpenCV, Face++, and Amazon AWS were analyzed. This project seeks to 

assist LYRASIS community members who wish to incorporate facial recognition and other 

artificial intelligence technology into their digital collections and repositories as a method to 

reduce research time and enhance their collections with more complete metadata.   

 

Introduction 

 

This research seeks to address the long-standing challenges of incomplete metadata 

within archives and digital repositories, with the hopes of finding methods that can decrease the 

time involved in locating and matching images of varying archival subjects. This project builds 

upon previous research involving Artificial Intelligence (AI) methods in archival settings and 

aims to provide potential enhancements in regards to AI application within digital repositories. 

 

When it comes to creating descriptive metadata for photographs, the process is often 

time-consuming and relies on the evanescent expertise of the curator. This knowledge is key 

when it comes to developing an insightful and accessible experience for the end-user. However, 

correctly identifying images of individuals within photographic archives is particularly labor-

intensive and ultimately costly when it comes to the amount of time spent on processing a 

photographic collection; especially ones that have missing identifying metadata. Additionally, 

prominent individuals featured in collections may be known to archivists, librarians, and 

curators, but that resource is often lost when the institutional memory holders retire or leave. 

Lesser-known individuals within the repository may never be appropriately named if their 

identity is not quickly determined. Ultimately, in regards to preserving subject identity within 

repositories and archives, much of the information is heavily reliant on professional memory and 

achievable knowledge. 

 

Preliminary Study 

  

This study consisted of qualitative assessments of three facial recognition applications for 

accuracy and ease of use. By using photographs from digital collections held at FIU, the facial 

recognition software was analyzed in a real-world environment, including specific challenges 
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that come with digital archive images. This project sought to work primarily with facial 

recognition applications that were low-cost and easily accessible to librarians and archivists. 

Preliminary facial recognition applications that were reviewed included Adam Geitgey’s Facial 

Recognition API, OpenFace, and Microsoft Azure Face. Ultimately, the project moved forward 

to focus on three facial recognition applications: OpenCV, Face++, Amazon AWS. 

  

When it comes to the methodology of software such as OpenCV, Face++, and Amazon 

AWS, there are steps that the software utilizes to further analyze subjects. Face detection, which 

is the first step to facial recognition and analysis, refers to the ability of the software to identify 

the presence of a human face within a photograph or digital image. By using algorithms to search 

for facial features such as human eyes, nose, eyebrows, mouth, nostrils, and iris of the eyes, the 

software is able to present a thumbnail of what it assumes to be a human face. It can detect 

numerous faces within a group photo as well. Additional tests are then done to validate that the 

face that is separated is indeed human.  

 

Once the software isolates a subject’s face, facial recognition (a sort of identity 

recognition) ensues within the software. The process starts off with a human-curated database, in 

which human subjects are identified within photos so that the software can use that information 

to further identify other faces that are run through the program. Based on the database that is 

presented, the software can then analyze the face and essentially provide a similarity threshold 

with the images originally saved. Another step for recognition software is facial analysis, which 

is when the software itself analyses a subject's face for emotion, age, and gender. There are many 

differences in these software in regard to how many facial analyzation aspects there are; many 

software include factors such as age, gender, emotion, and things such as ethnicity and even skin 

quality. An additional feature is a confidence score, which lists the program’s confidence level 

when it comes to finding a human face, or similarity within a database for a searched image. 

 

When the research first began, database creation was incredibly important to allow 

adequate testing for the software being tested. The photographs used for this project came from 

the archives of the City of Miami Beach and the City of Coral Gables. All images used for this 

research were of photographs already uploaded and freely accessible to view in FIU’s Digital 

Collections on dPanther. Most were also aggregated to the broader platform of the Digital Public 

Library of America’s repository. The images consisted of photographs of public figures or 

municipal officials, in their capacity as politicians, real estate developers, or city officials. The 

oldest photographs came from the 1920s, and the most recent from the 1990s. All the images 

were free of copyright restrictions.  

 

For this project, 74 images were selected from two collections within FIU’s digital 

repository as a software training set. The images included a mix of TIFFs and JPEGs. Thinking 

in advance to the facial recognition portion of the research, varying images of groups and 

individuals were featured, though most of them consisted of photographs of groups and crowds. 

A total of 248 faces were identified within the training set, most of which the subjects were 

unknown. Of the 248 faces, 40 of them were known by librarians. Those 40 were featured 145 

times within the dataset and were manually cropped and labeled with their respective names. Of 

this group, 4 of them were women and 36 of them were men.  

 

http://dpanther.fiu.edu/dPanther/home
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Software Tested 

 

After much analysis, three different software were chosen for testing. Initially, we also 

tested Microsoft Azure, but the results were very similar to Amazon Rekognition, so we instead 

focused on software that had distinct benefits and drawbacks, and the results of Microsoft Azure 

are not included in this report. In the year since the research was proposed, there has been rapid 

development in the area of facial recognition software, and we believe these three applications to 

be the most appropriate and accessible programs for librarians and archivists to implement in a 

digital archive project. 

  

OpenCV (Open Source Computer Vision Library) 

  

 OpenCV is an open-source software that can be used to facilitate various machine 

learning and computer vision actions. Serving as a platform for creation, it comes with a pre-

established algorithm library that can easily be molded to an institution's preferences or work 

needs. One of the many pre-trained machine learning algorithms is a pre-trained deep learning 

face detector model, which can be trained and further edited through coding methods using 

Python, Java, C++, to name a few. It uses a local database rather than a cloud one like Amazon 

AWS and Face++. The deep learning face detection algorithm is the primary setup that will be 

used in the research for facial detection. This portion of the algorithm detects the human face, 

highlights it with a square, and lists the confidence percentage score right above it. For facial 

recognition, a local OpenCV model is used, working together with the facial detection aspect of 

it. Ideally, the facial detection model through OpenCV will scan varying facial features and 

structures, detect a face with a block around it, and list the confidence score as well as providing 

a face token within the code. 

  

Amazon Web Services (AWS) - Rekognition 

  

Amazon Rekognition is a cloud-based Software as a Service (SaaS) computer vision 

platform that was launched in 2016. AWS’s facial recognition algorithm is able to identify 

elements such as mood, eyes open/closed, hair color, and other facial geometric features, and can 

create metadata tags for features such as a similarity threshold and can also create a Face and 

Image Identification, which is assigned by the software. The program does not focus on an 

individual’s identity, but rather by the similarity of facial features. It can store 20 million 

different identities and has a maximum return search rate of 4096. AWS also uses its own 

security software by the name of Amazon Macie, which uses machine learning to enhance 

security around sensitive information (it also has its own separate cost). It has been sold and used 

by a number of United States government agencies, including ICE, Orlando and Florida police, 

as well as private entities. Using AWS in an archival and repository setting can prove to be 

helpful due to its metadata and ID creating elements. It also scans for things such as glasses, 

facial hair, emotion, and poses. AWS also offers a celebrity recognition aspect, which can detect 

celebrities through various settings—it can be helpful for identifying celebrities if any are found 

within a photo repository, though the extent of this celebrity database is unclear.  
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Face++ 

  

The most extensive of the three private software we tested was Face++, offering a wider 

range of detected information from subjects. Face++ is a cloud-based software that has various 

models used for human face and body recognition. This software provides data for elements such 

as ethnicity, skin color, and photo quality. Additionally, it boasts an unlimited amount of faces 

that can be stored within the program. These features seem to be the most beneficial when it 

comes to the vision of the program that is being created for the research - things like ethnicity, 

photo quality, and even skin color can help accentuate the similarity comparisons and can also 

prove helpful in the world of archiving, especially since a lot of the photographs being dealt with 

tend to be from times when photography wasn’t so advanced. Face++’s extensive range of 

operations would provide useful for a repository or archive that is dealing with numerous 

photographic subjects that need identifying and grouping, because of its large facial storage. It 

also offers more recognition factors in contrast to Microsoft Azure and AWS. With more 

accessibility points when it comes to subject recognition, there is more opportunity to create a 

diverse facial data set with a controlled room for error.   

  

Ethical/Privacy Concerns 

 

When working with AI and facial recognition in particular, the ethical implications and 

privacy concerns that surround the technology had to be considered. This project remained 

focused on the use of AI within the use of digitized archives, and the study had a narrow focus 

and singular goal. However, we took several steps to ensure that - to the extent it was possible - 

the applications were used responsibly and ethically, as they would ideally be used in a 

repository setting. We were also mindful of recent trends regarding facial recognition software, 

and emerging best practices for using AI within libraries. We would encourage any practitioners 

interested in using these technologies within their own collections to review Thomas Padilla’s 

Responsible Operations: Data Science, Machine Learning, and AI in Libraries and Ryan 

Cordell’s Machine Learning + Libraries A Report on the State of the Field for further guidance. 

 

The photographs used for this project came from the municipal archives, and as 

mentioned, were free of copyright restrictions. By choosing highly circulated and public images 

of officials, the research was able to use these subjects without having to worry that the person 

would expect privacy (due to their public personas and overall presence) and could therefore not 

object to their likeness being used for a project such as this one. However, because such care was 

taken to find appropriate images due to our lack of specific consent by the featured individuals, 

the dataset lacked diversity in regard to race, gender, and age. The majority of the photographs 

featured middle-aged to older white men. Though indicative of what local Miami politicians may 

have looked like at the time, this lack of diversity amplifies some of the chief concerns 

surrounding facial recognition software, and it’s known issues with correctly identifying the 

faces of both women and people of color. 

 

As we more recently know, many of these AI and facial recognition software are 

changing their standing about being deployed within law enforcement - Amazon AWS being one 

of them. Due to the recent protests and calls for defunding of the police by Black Lives Matter 

protesters and supporters, many AI software are pulling back their sales to law enforcement. As 
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stated by the New York Times, Amazon Recognition services are being pulled for a year from 

law enforcement applications, in order to give the United States Congress sufficient time to 

create regulation for ethical and lawful implementation of facial recognition software for civilian 

surveillance.  

 

The use of facial recognition when it comes to criminal prosecution and monitoring can 

be tricky, and dangerous. As the Washington Post reports, “Privacy advocates have long raised 

concerns that police use of facial-recognition could lead to the wrongful arrests of people who 

bear only a resemblance to a video image. And studies have shown that facial-recognition 

systems misidentify people of color more often than white people.”  These discrepancies in 

recognition can lead to wrongful convictions and arrests, and in most extreme cases uncalled 

police force on certain peoples. Implementation of AI facial recognition also begs the question of 

how ethically they are being used within police monitoring, and if they are being used as a way 

to spy on civilians and protesters.  

 

For professional use, programs like Face++ and Amazon AWS, do save photographs to 

create a database for similarity checks when searching for an individual’s identity. There is a 

limit in regards to how many variations of a face and subject can be preserved. However, the 

question of if there are different variations of these softwares for policing still remains, and if 

these variations have a cap when it comes to storing faces and photographs. This also begs the 

question of if there are any limitations to these software (as there is when it comes to 

professional and private use), and how these software could be used in unethical privacy-

infringement techniques by law enforcement. Despite the narrow scope of this research project, 

we found that ethical concerns of using AI, Machine Learning and Facial Recognition in the 

archived photographs had to be considered at almost every stage of our project. 

 

Literature Review 

 

Facial recognition has been recognized as a promising approach to efficiently identify 

needed materials with the least amount of staff time. Previous and continuing work on 

developing facial recognition suitable to archival quality photos are included in this literature 

review. 

  

Civil War Photo Sleuth (CWPS) is a collaboration between the Virginia Center for Civil 

War Studies and the Crowd Intelligence Lab at Virginia Tech and Military Images Magazine and 

contains photos from the mid-1800’s on, making it a perfect example of using old, lower quality 

photos for facial recognition. It uses 27 facial points in order to identify soldiers despite changes 

in hair, hats, facial hair, and different photographic angles. As people upload photos, other 

mystery photos can be identified, making this a continually growing collection. In order to 

improve metadata, CWPS also makes use of crowd-sourcing techniques, such as tagging, and is 

linked to the Digital Public Library of America (DPLA) with hundreds of digital archives. 

Currently, they can identify a photo in mere seconds. Their goal is to be the world's largest 

online archive of Civil War-era portraits, including soldiers, sailors and civilians. 

  

George Nott from Computerworld reviewed efforts to develop and use facial recognition 

in archives, not only in the U.S. but in the Netherlands and Australia. Photo fit is a tool designed 

https://www.civilwarphotosleuth.com/
https://bit.ly/3fcgKPj
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to recognize and retrieve images of a person’s face throughout the State Library of Australia’s 

New South Wales’ image collection and boasts a 95% confidence rate. Photo fit uses Amazon’s 

Rekognition facial detection software and stores the results as JSON files in S3. However, as of 

2019, further development was needed to achieve the results of attaching names to the images as 

found in Civil War Photo Sleuth. 

 

In the Netherlands, Vintage Cloud, using the programming interface, Clarifai is doing 

similar work with machine learning models and facial recognition that improve accuracy. Face-

rec.org provides researchers with a list of nearly 100 databases dedicated to faces and facial 

recognition. Some are publicly accessible, while others, such as the MORPH Longitudinal 

Database, are for commercial and academic use. MORPH is the largest facial recognition 

database in the world containing 202,038 unique images of 40,395 subjects. Microsoft had the 

largest public facial recognition data set in the world (MS Celeb) with over 10 million images of 

approximately 100,000 individuals, but deleted it in 2019 as it likely ran afoul of the European 

General Data Protection Regulation laws. 

 

Machine learning, as applied to facial recognition software, has made noteworthy 

advances during the current year. In their article, A Facial Expression Recognition Method Using 

Deep Convolutional Neural Networks Based on Edge Computing, authors Chen, Xing and Wang 

point out that of the three steps required for facial recognition, image preprocessing, feature 

extraction and facial expression classification, the last is the most problematic for current 

algorithms. To resolve this problem, the authors worked on developing deep neural networks, 

which adjust their behaviour and “learn” in ways similar to the human brain, making their 

computational power much faster and with better accuracy. 

 

 In July of 2020, scientists at the Graz University of Technology in Austria published an 

article addressing their research on high energy consumption of artificial neural networks' 

learning activities. Researchers Wolfgang Maass and Robert Legenstein have developed an 

algorithm they call e-prop (e-propagation) that uses spikes in order to communicate between 

neurons in an artificial neural network. Additionally, working online rather than offline, helps 

manage energy usage during processing. This was a problem addressed in this grant by using a 

dedicated machine just for facial recognition processing. However, this method may make 

dedicated machines unnecessary and the research less expensive to conduct.  

 

  

http://face-rec.org/databases
http://face-rec.org/databases
https://techxplore.com/news/2020-07-algorithm-significantly-applications-ai.html?fbclid=IwAR20Rbbv4J1NUBa-l1tWR2V3DfQDkpQyEJIAoP0GnOk0UTGUaPuSNqXq1B4
https://techxplore.com/news/2020-07-algorithm-significantly-applications-ai.html?fbclid=IwAR20Rbbv4J1NUBa-l1tWR2V3DfQDkpQyEJIAoP0GnOk0UTGUaPuSNqXq1B4
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Methodology 

 

In this research, we conducted face detection and face recognition with historical pictures 

from Florida International University's digital repository, dPanther. The research and testing of 

facial recognition software required developing both a photographic database and a cloud 

platform for the three facial recognition programs being studied: OpenCV, Face++, and Amazon 

AWS. The project’s workflow and developing process can be viewed in Figure 1, and each step 

of the process will be illuminated below.  

 

 

 
Fig. 1:  Project Workflow and Development 
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Facial Detection 

 

The first step of the project was to experiment with the facial detection function of each 

program. In order to build a baseline for this process, faces were first manually detected among 

the 74 raw photographs, as detailed in the Background section of this report. We then applied the 

face detection functions from OpenCV, Face++,  and Amazon AWS respectively to the same 

dataset and compared accuracy results, as well as performance.  

 

The second portion of testing was to build a facial recognition model by applying a face 

searching function. A face search allows the user to search the database for similar subjects. We 

used the three different facial recognition software to conduct this task, and compared their 

outcomes and performances. A labeled face dataset was also created during this task to be able to 

test the software’s accuracy when it came to recognizing subject identities.  

 

Ultimately, this step was divided into two branches: the local model build and the cloud 

model build. The local model build focused on OpenCV, as the program itself works with local 

databases. The cloud model portion pertained to Face++ and AWS, as these two software 

implement cloud-based libraries. For the local model, we tested with the pre-trained deep 

learning face detector model that comes within OpenCV’s algorithm library.  For the cloud 

model build, we uploaded our labeled face dataset to both the Face++ and AWS cloud platform 

and used their built-in models to conduct our experiments. A detailed look at the results of this 

portion of the experiment will be discussed below. The last task was to enable an application to 

access the facial recognition service built-in Task 2 by using RESTful APIs, or RESTful web 

service. It is our intention to develop a demonstration application in the dPanther platform that 

will implement this task in the future.  

 

Initial Face Detection Experiment 

  

 In this experiment, we gathered 74 pictures from dPanther’s archival photo collections of 

the City of Miami Beach and the City of Coral Gables. 248 faces from the 74 raw images were 

manually detected as the baseline for the experiment. The research then applied the face 

detection function from OpenCV, Face++, and Amazon AWS respectively to assess the 

performance of the three platforms: 

  

o OpenCV software: Out of the 248 faces, it detected 170; however, only 152 of 

them were correct detections. It also must be noted that OpenCV had a significant 

time advantage. The total time it took to produce the results was 7.5 seconds for 

the entirety of the facial dataset.  

 

o Face++ software: It had a superior performance advantage, with 183 of the 248 

faces being detected. Within these 183 detections, there were no inaccurate 

detections. However, in contrast to OpenCV, it took longer to provide its results. 

Face++ would take 67.2 seconds to run through the dataset. 

 

o AWS software: Upon its test, it returned 367 faces - well over the initial baseline 

that were manually detected. There were two detection errors: a missing detection 
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(Figure 2), and a false detection (Figure 3). Besides those two errors, the faces in 

the other pictures were appropriately recognized. The individual time spent per 

picture varied from 2 seconds to 7 seconds, and the overall time spent by AWS to 

provide results on the dataset was between 220 to 350 seconds. 

 

 
Fig. 2:  AWS’s Missing Detection, showing faces of people (and background) not being detected 

  

 
Fig. 3: AWS’s False Detection, showing a detected face in an elbow 

 

The final result of the Face Detection testing is summarized in Figure 4 below. In terms 

of faces detected, Amazon AWS outperformed the others with a total of 367 faces returned, 

surpassing the manual process of facial detection. It detected all the faces from background 

images such as paintings, artwork, and mirrors, which were not included in the manual process. 

Face++ came in next with the most faces detected, coupled with zero detection errors. Finally, 
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OpenCV was last with the least amount of faces detected, though it demonstrated a favorable 

amount of time spent in initial software facial detection, with the lowest processing time amongst 

the three. 

 

  Face Detected 

Time  

Spend (sec) False Detection 

Manual Detection 248 n/a n/a 

OpenCV 170 7.5 18 

Face++ 183 67.2 0 

AWS 367 220-350 2 

Fig. 4: Face Detection Summary Table 

  

Face Recognition 

  

After testing the face detecting capability of each software, tests were run on the three 

platforms to compare their face recognition and searching abilities. In total, there were 40 

different people in the manually created training dataset of raw images. Many of the people in 

the actual photographs are either deceased, or, are otherwise difficult to find additional online 

images of them in traditional search engines, despite the fact they are/were public officials in 

Miami. Due to this, 28 pictures of nine different people who had a more predominant web 

presence were gathered via Google search. They are: 

  

• Alex Daoud (4 pictures) 

• Carl Fisher (4 pictures) 

• David Dermer (6 pictures) 

• George Merrick (4 pictures) 

• Harold Rosen (1 picture) 

• Matti Bower (3 pictures) 

• Seymour Gelber (2 pictures) 

• Simon Cruz (2 pictures) 

• William Jennings Bryan (2 pictures) 

  

All of the pictures were grouped into a separate folder by the person’s name. Each 

individual face search across the programs would comb through the saved photos in the subjects’ 

folder. This dataset would be used for the trails in Face++, OpenCV, and Amazon AWS. After 

each trail, the data output from the programs was written in a text file for comparisons.  

  

The initial face recognition test was run on Face++. Using the created database, a face 

search was initiated.  Face++ would return a confidence score based upon the similarity of the 

search and the found individual, as well as a face token (a unique identifier) per person. With the 

given face token, the research was able to verify whether it was an accurate outcome pertaining 

to the person in the original search.  
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Fig. 5: One search example using Alex Daoud: Most similar result (Left), searched online 

pictures (4 on the right) 

 

 
Fig. 6: Example output of a search 

  

Face++ showed a great overall performance on accuracy and time used. Each individual 

search consisted from one to six photographs of the person. Out of the 28 searches, there were 

two errors, one of which was a false detection, and the other a missing detection. Other than 

these two errors, the remainder of the searches were correctly identified, with a confidence score 

for the accurate images averaging 84%.  Each search consumed about 0.4 seconds. Since Face++ 

is based off of a Cloud API, there was no interruption within the computer's central processing 

unit. Utilizing the program only required a short period of internet access. 

  

In testing OpenCV, there were a total of 8 instances with less than desirable results. Of 

the 28 photographs used, seven of them had a confidence value of less than 60%. Of those seven, 

OpenCV failed to recognize a subject. The average confidence of similarity suffered in 

comparison to Face++’s results, with OpenCV presenting a median confidence score of 68.1%. 

The speed of the facial searches within OpenCV averaged 3.1 seconds, which was a 2.7 second 

increase when compared to Face++. Considering that OpenCV is a local platform, prior to our 

testing it was estimated that the initial processing time would be less, however that was not the 

case.  

  

Our testing of Amazon AWS presented the most favorable results. When inputting an 

image, AWS returned a confidence value based on the similarity of the two images being 

compared during the process. By default, when the confidence value is less than 90%, AWS will 

not consider the faces to belong to the same individual. Of the 28 images within the photographic 

dataset, AWS returned 24 correct results. Referring back to AWS’s omission of those images 

that do not reach the threshold of 90%, three of them had confidence results of no less than 60%; 

therefore, not entirely disregarding the program’s ability to accurately match images and 

individuals. The three had a confidence score of 82.06, 89.70, and 69.09.  Ultimately, Amazon 
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AWS presented the highest average confidence percentage - a whopping 96.9%, topping both 

Face++ and OpenCV. However, the run time was an average of 31.8 seconds.  

  

  Correct 

Comparison 

False 

Comparison 

Average Time 

spend(s) 

Average 

Confidence 

Face++ 26 2 0.4 84 

OpenCV 20 8 3.1 68.1 

AWS 24 4 31.8 96.9 

 Fig. 7: Trail Outputs per Program 

  

Lessons Learned 

  

The two major approaches for facial recognition projects are an in-house trained model 

and cloud-based AI platform. For the experiments conducted in this study, we applied a sample 

photographic dataset from FIU’s dPanther collection to both the in-house trained model 

(OpenCV) and cloud-base AI platform (AWS and Face++). Analyzing the outcomes from the 

study showed that in-house trained models need significantly more computing resources and 

more training data to obtain the same quality of results when compared to the cloud-based 

platforms. However, the in-house model outperformed the cloud-based platform in regards to 

time taken per transaction. Since OpenCV is locally housed, all actions were able to be 

performed without being reliant on network speeds. On the other hand, the cloud-based 

platforms such as AWS and Face++ gave a quick start and low-cost alternative for the average 

institutional archive looking to implement AI facial recognition software.  

 

The tradeoff, however, is the scalability when a digital archives project is growing. Due 

to the fact that many archival image projects are always in rotation and aggregating new images, 

cloud-based API’s may be an issue in regards to storage limitations and pricing. In addition to 

this, many archives and digital repositories deal with large images that can range in file size 

before initial editing. Services like AWS and Face++ cannot provide flexibility, especially for 

massive expansions within the database. They also rely heavily on the strength and speed of the 

network for its overall performance. 

 

In general, for a small-scale project which does not have a large photographic dataset, or, 

in a situation where archivists and librarians do not have access to extensive IT resources, the 

cloud-based platforms are a good solution that provide an easy-to-start environment as well as an 

acceptable outcome for the project needs. However, for larger scale projects which have 

adequate IT resources as well as the continuously generated training data, an in-house trained 

model would be recommended. This will provide the most powerful and flexible environment for 

the project. Additionally, ethical issues regarding privacy are more pressing in the cloud-based 
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software, as the images are being used to train the data within a broader platform that provides 

less options for controlling the use of the images. 

  

Future Development 

  

Now that the testing of the facial recognition has concluded, the project is moving into an 

implementation phase. We are ready to experiment on how the software can be harnessed and 

used by digital archivists beyond the training set. In the coming months, we anticipate the 

creation of a sample application in the existing framework by applying Amazon Rekognition 

AWS’s facial recognition capabilities to photographs in dPanther. This will better allow us to 

determine how the software works can be utilized by librarians and archivists, as they implement 

the selected facial recognition technologies into a digital repository workflow. This will not 

require any additional resources for the framework and will introduce the face detection and face 

search capability to the digital repository. We hope to highlight the development of the sample 

application in our upcoming webinar with LYRASIS. At the same time, we will continue to train 

the OpenCV model that we have implemented in our research. Once we have more training data, 

we will test the model and monitor any changes in accuracy. 
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