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Quorum Sensing Signal Production and Microbial
Interactions in a Polymicrobial Disease of Corals and the
Coral Surface Mucopolysaccharide Layer
Beth L. Zimmer1,2, Amanda L. May3, Chinmayee D. Bhedi1, Stephen P. Dearth3, Carson W. Prevatte3,

Zoe Pratte1, Shawn R. Campagna3, Laurie L. Richardson1*

1 Department of Biological Sciences, Florida International University, Miami, Florida, United States of America, 2 Atkins North America, Miami, Florida, United States of

America, 3 Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America

Abstract

Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can
lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria
with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and
antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as
well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of
apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and
for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community)
samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for
AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the
concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most
common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted
among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD
isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one
exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings
demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD
and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral
microbiome.
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Introduction

Coral diseases are widely believed to play a key role in the

deterioration of coral reefs on a global basis [1,2], with black band

disease (BBD) identified as one of the major coral diseases

contributing to this decline [1,3]. BBD is easily distinguished in the

reef environment (Figure 1), manifesting as a dark-colored band

separating healthy coral tissue from recently exposed coral

skeleton. The band migrates horizontally across the surface of a

coral colony, causing coral tissue necrosis at a rate of approxi-

mately 3.0 mm per day [4]. The tissue loss on an individual colony

infected with BBD can be substantial and can result in total colony

mortality [5,6,7]. Massive reef-building corals are susceptible to

BBD [2,4,8], which exacerbates the impact of the disease on reef

ecology and function [6].

The BBD mat consists of a microbial consortium dominated by

filamentous cyanobacteria [7,9,10,11,12,13]. Mechanisms of BBD

pathogenicity include anoxic conditions within the BBD mat in

combination with sulfide production by BBD sulfate reducing

bacteria [14], and BBD cyanobacterial toxin (microcystin)

production [15,16,17,18]. A recent microscopic study [19]

documented cellular necrosis (i.e., loss of tissue confluence, cell-

to-cell adhesion, cytoplasmic disintegration, nuclear breakdown,

and the presence of autophagous bodies, pyknotic nuclei, and

apoptotic bodies) in the coral tissue surrounding cyanobacterial

filaments in active BBD infections. These microscopic observations

support the previous studies demonstrating the role cyanobacterial

toxins in BBD pathogenicity.

A meta-analysis of 87 published BBD clone libraries from

the Caribbean and Indo-Pacific [20] detected a common
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cyanobacterial sequence, recently characterized as Roseofilum
reptotaenium gen. et sp. nov. [21], as present in 78% of the clone

libraries. In contrast to the low diversity of BBD cyanobacterial

taxa, the meta-analysis also revealed an extremely high diversity of

heterotrophic BBD bacteria, with 73% of all sequences detected

present as singletons (only 1 copy in the 87 clone libraries). Very

little is known about the role of BBD heterotrophic bacteria, the

one exception being that BBD has a well-documented and very

active sulfur cycle generated by sulfate reducing bacteria within

the disease consortium [22,23].

BBD infections occur on the surface tissues of infected coral

colonies, which are also known to be microbially diverse. In

particular, the coral surface mucopolysaccharide layer (SML)

supports a dynamic microbial community [24,25] which is

believed to play an important role in coral disease resistance

[26]. Interactions between several bacterial coral pathogens and

the microbial community of the coral SML have been the subject

of multiple studies (reviewed in [26]), and the coral SML and its

associated microbes have been shown to produce antimicrobial

agents and biofilm inhibitors that may be acting to protect corals

from pathogen growth [27,28,29,30,31]. However, relatively little

is currently known about the interactions between microbes within

the SML.

Chemical signaling in tropical and subtropical coastal environ-

ments is a relatively unexplored area that may be important in

coral health and disease. Quorum sensing (QS), a density

dependent form of bacterial cell-cell communication, is one

mechanism by which coral pathogenic bacteria and SML bacteria

may be interacting [32]. Acyl-homoserine lactones (AHLs) and

autoinducer-2 (AI-2) are two of the more well-characterized

groups of QS signaling molecules [33]. The latter (AI-2) is a family

of related molecules derived from (S)-4,5-dihydroxy-2,3-pentane-

dione (DPD) [34]. AHLs are considered to be intraspecies

signaling molecules [35], although it has been shown that cross-

talk between bacteria using these molecules can occur (e.g.,

[36,37,38]). AHL production has been well documented among

members of the proteobacteria [39,40], a group that is commonly

detected in BBD clone libraries [10,13,41,42,43], making AHL

production a prime target for BBD research. AI-2 signaling is

widely recognized as having an important role in interspecies

communication [35,44,45,46], since DPD production is common

in both Gram-negative and Gram-positive bacteria [47,48]. AI-2

signaling may also play a role in the complex bacterial

communities of both BBD and coral SML. Overall, QS is

associated with a wide range of interactive social responses in

bacteria (see [44,49]) and has been shown to regulate virulence in

both Gram-positive and Gram-negative pathogens [35], including

upregulation of antibiotic biosynthesis [50,51]. AHL production

has been observed in coral-associated bacteria isolated from the

SML of healthy corals [52], isolates from other marine inverte-

brates and their endosymbiotic dinoflagellates [27], and from the

tissues of 10 cnidarian species (all healthy) examined recently [53].

Vibrio spp. isolated from the mucus of healthy and diseased corals

have been shown to produce both AHLs and DPD [54]. In one

study, QS was proposed to play a major role in the pathogenicity

of the coral pathogen Vibrio coralliitycus [55]. With the exception

of the study presented here, the in situ presence of QS signals in

active coral disease has not yet been demonstrated. The roles of

these signals in the coral microbial community and in coral disease

remain unknown.

Materials and Methods

Field sampling
Black band disease and coral mucus samples were collected

from reefs in Ft. Lauderdale, Florida under Florida Fish and

Wildlife Conservation Commission sampling license SAL-11-

1344-SRP and from Florida Keys reefs under permits FKNMS-

2007-026 and FKNMS 2009-045-A3. Freshly collected BBD mat

as well as both bacterial (N = 191) and cyanobacterial (N = 8)

isolates from BBD and coral mucus samples were examined for

production of autoinducers in this study (Table 1). The bacterial

isolates included 182 newly isolated strains cultured from colonies

of Montastraea cavernosa, Colpophyllia natans, and Diploria
strigosa located on the Florida Reef Tract [Ft. Lauderdale,

Florida, USA (26u 11.359 N, 80u 5.499 W); Horseshoe Reef,

Florida Keys, USA (25u 08.3629 N, 80u 17.6419); and Algae Reef,

Florida Keys, USA (25u 08.7999 N, 80u 17.5799 W)] (Table 1).

Thirty-nine of the 191 bacteria were newly isolated from Diploria
strigosa on a reef of Curaçao (Water Factory 3, 12u 06.7799 N, 68u
57.6629 W). Samples were collected using sterile, needleless 10 ml

or 60 ml syringes. SML from apparently healthy areas of BBD-

infected colonies (designated BSML) was sampled at the farthest

distance (minimum of 20 cm) from the BBD mat. SML samples

were also collected from apparently healthy colonies (HSML) of

the same coral species located in the near vicinity of BBD-infected

corals. To collect SML, the coral surface was gently agitated using

the syringe tip (to cause mucus secretion) and the resulting mucus

aspirated into the syringe. The BBD mat was easily collected by

syringe as it is loosely attached to the coral surface.

Syringes with freshly collected samples were held in coolers at

ambient seawater temperature during transport to the laboratory,

where the SML sample syringes were inverted to allow sampled

mucus to settle to the syringe tip for collection. BBD samples

clumped within the syringe shortly after aspiration (a behavioral

response of the filamentous cyanobacteria) and each clump was

directly collected and transferred into sterile 2.0 ml cryovial. Each

SML sample was extruded into a sterile 2.0 ml cryovial to limit the

Figure 1. Black band disease infection on a colony of Diploria
strigosa on a reef of Curaçao. The dark-colored black band disease
microbial mat separates apparently healthy coral tissue from white,
denuded coral skeleton. Photograph provided by Abigael Brownell.
doi:10.1371/journal.pone.0108541.g001
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amount of seawater in the sample. Autoclaved artificial seawater

was then added to each cryovial. Samples were mixed by vortexing

and spread plated, after a standard dilution series, onto plates

containing the following media: Difco marine agar (MA), 1/10

strength MA, Thiosulfate Citrate Bile Salts Sucrose (TCBS;

Vibrio-specific, BD) agar, and Sea Water Tryptone (SWT) agar.

Plates were incubated at room temperature (,23uC) and unique

colonies were selected on the basis of color and morphology for

further isolation and evaluation.

In addition to the above isolates, 17 previously isolated BBD

bacteria (N = 9) and cyanobacteria (N = 8), collected in the Florida

Keys, Bahamas, and Philippines were tested for QS signal

production (Table 1). The nine bacterial cultures (strains BBD-

216-1b, BBD-216-2d, BBD-216-3d, BBD-216-4a, BBD-216-4e,

BBD-217-2b, BBD-217-2d, BBD-217-2g, and BBD-217-3m, all

documented in [42,43]) were maintained on MA slants at room

temperature. The eight cyanobacterial cultures (strains BBD 1991,

HS 217, HS 223, W-1, FLK BBD1, Phil 2b-2, 102a-1, and 96-2)

are all members of the genera Geitlerinema and Leptolyngbya and

were collected on various reefs in the Florida Keys, Bahamas, and

the Philippines. Information about these isolates is detailed in

[8,12,15,17,56,57]. The cyanobacterial cultures were maintained

in 125 ml Erlenmeyer flasks in algal mineral media ASNIII or

marine BG11 at 26uC under a 12:12 h light:dark cool white

fluorescent light regime at an intensity of 20 mE m22 s21.

Cell-Free Culture Filtrates
Cell-free culture filtrates (CFs) from the bacterial isolates were

collected for use in QS assays. Isolates were grown in sterile Difco

marine broth (MB) that was filtered twice (Whatman 1 paper

filters, 5.5 cm) to remove the medium precipitate. The cultures

were grown to stationary phase at 29uC with shaking. This

temperature is ecologically relevant, since BBD is most active in

the wider Caribbean when surface water temperatures are above

approximately 28uC [8,58,59,60,61]. Bacterial cell concentrations

were monitored by measuring the optical density at 600 nm

(OD600) using either a Modulus Microplate Multimode Reader

(Turner BioSystems, Sunnyvale, CA, USA) or a Thermo UV1

Spectrophotometer (Thermo Electron Ltd., Cambridge, UK) with

sterile MB as a zero/blank.

At early stationary phase, CF samples were prepared by

centrifugation at 12,000 g for 10 min, and the supernatant was

divided into two, 1.0 ml aliquots. Because alkaline conditions have

been shown to result in AHL lactonolysis [62,63,64], prior to

division of the sample the pH of the supernatant was measured

using a Jenco Model 60 Digital pH meter (Jenco Electronics, Ltd.,

Taipei, Taiwan). Since AHLs have been shown to remain stable

for extended time periods at pH 5.0–6.0 [65], the pH of the

supernatant to be used in the AHL assays was adjusted to this pH

range using a sterile HCl solution (1 N). Each CF was then filter

sterilized (0.22 mm membrane, Millipore, Billerica, MA, USA) and

the CFs were stored at 220uC. For the cyanobacterial strains, CFs

were prepared by obtaining a 2.0 ml aliquot from an active

cyanobacterial culture. The culture was vortexed and cells were

removed using a combination of centrifugation (12,000 g for

10 min) and filter sterilization. The cyanobacterial CFs were used

immediately in the QS assays (with no acidification).

AHL Reporter Strain Assays
Chromobacterium violaceum CV026 and Agrobacterium tume-

faciens NTL4(pZLR4) reporter strains were used to detect the

presence of short-chain and medium- to long-chain AHLs, as

indicated in Table 2. The C. violaceum CV026 assay used in this

study follows the protocol of [66] with slight modification. C.

violaceum CV026 was cultured in sterile Difco Luria-Bertani (LB)

broth overnight at 30uC and used to prepare the assay plates. The

assay plates (triplicates) contained a base of 1.5% Difco LB agar

with an overlay of 100 ml of the C. violaceum CV026 culture

(OD600 = 1.0) in 5.0 ml of 0.7% LB agar. Samples tested for the

presence of short-chain AHLs consisted of both CFs and biomass

(colonies from a plate) of the 199 bacterial and cyanobacterial

isolates, as well as freshly collected (full community) BBD mat

(Table 3). To test the bacterial CFs, wells were punched in the

assay plates using the wide end of a sterile pipette tip. To each

experimental well, 75 ml of the appropriate CF was added. To test

the BBD mat material, a portion of each BBD sample was placed

in 1.0 ml of sterile seawater. The mixture was shaken on a

vortexer and 75 ml of the solution was placed into an experimental

well in each assay plate. Each assay plate contained a positive

control (i.e., 0.01 ml of 50 mM N-hexanoyl-L-homoserine lactone

spotted on the agar surface) and a negative control (i.e., a well

containing 75 ml of sterile MB for the CF assays or a well

containing 75 ml of sterile seawater for the BBD mat assays). The

assay plates were incubated for 24 h at 30uC and then examined

for purple coloration (violacein) surrounding the wells which

indicated a positive result. For the bacterial isolate patch tests,

each isolate was streaked onto a plate containing MA and

incubated at 29uC until colonies were visible. Colonies were

collected using a sterile loop and transferred to the surface of C.
violaceum CV026 assay plates. In the case of the cyanobacterial

strains, clumps of cyanobacteria were selected from the culture

flask using sterile forceps and transferred to the surface of the assay

plates. Each experiment was conducted in triplicate with positive

and negative controls, incubated for 24 h at 30uC, and then

assessed for violacein presence.

The Agrobacterium tumefaciens NTL4(pZLR4) assay used in

this study follows the protocol of [67] with slight modification. A.
tumefaciens NTL4(pZLR4) from frozen glycerol stock was

streaked on a plate containing autoinducer bioassay minimal

(ABAt) agar (i.e., 3 g/L K2HPO4, 1 g/L NaH2PO4, 1 g/L NH4Cl,

0.3 g/L MgSO4?7H2O, 0.15 g/L KCl, 0.01 g/L CaCl2,

0.0025 g/L FeSO4?7H2O; [68]), along with 5 g/L mannitol

(0.5%) and gentamicin (30 mg/ml) and grown at 28uC until

colonies were visible. A single colony was transferred via sterile

loop to 1.0 ml of ABAt medium with gentamicin (30 mg/ml) and

grown overnight at 28uC with shaking. The day of the assay, a

fresh solution of ABAt medium with gentamicin (3 mg/ml) was

prepared, inoculated with 50 ml of the overnight culture, and

grown to late exponential phase at 28uC with shaking. The assay

plates contained a base of 1.5% ABAt agar (0.5% mannitol) with

an overlay that included 500 ml of the A. tumefaciens
NTL4(pZLR4) culture in 5.0 ml of 0.7% water agar with

gentamicin (30 mg/ml) and 5-bromo-4-chloro-3-indolyl-b-D-ga-

lactopyranoside (X-gal; 40 mg/ml). As above (for the C. violaceum
CV026 reporter strain), assay plates were used to test both CFs

and biomass (colonies) of the 199 bacterial isolates, as well as

freshly collected BBD mat (Table 3). As a positive control, A.
tumefaciens NTL4(pTiC58DaccR), which produces C8-3-oxo-

AHL, was grown in ABAt broth at 28uC with shaking. An aliquot

of the culture was centrifuged at 12,000 g for 10 min, and the

resulting supernatant was filter sterilized. The negative control well

on each plate contained either 75 ml of sterile MB for the CF

assays or 75 ml of sterile seawater for the BBD mat assays. The

assay plates were incubated for 24 h at 28uC and then assessed for

the presence of blue coloration (X-gal cleavage) surrounding the

wells, which would indicate a potential positive result. To detect if

any of the isolates produced an extracellular factor that hydrolyzes

X-Gal, isolates that produced a blue coloration in the patch test
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were retested on a plate containing only ABAt agar (0.5%

mannitol) with X-Gal (40 mg/L). Isolates producing blue colora-

tion on these plates were considered a false-positive result in the A.
tumefaciens NTL4(pZLR4) assay and the result was scored as

negative.

AHLs were extracted from those isolates that tested positive in

at least one AHL reporter strain assay. Extracted AHLs were then

analyzed using liquid chromatography–tandem mass spectromet-

ric (LC-MS/MS), which allows for the determination of the AHL

chemical structure. The extraction and LC-MS/MS methods are

described below.

AI-2 Reporter Strain Assay
The V. harveyi BB170 reporter strain was used to screen for the

presence of AI-2 (Table 2) in 153 bacterial CFs (Table 3). The AI-

2 assay used in this study follows the protocol developed by [69]

with slight modification. A modified autoinducer bioassay (ABVh)

medium was prepared (1 L solution of 0.3 M NaCl, 0.05 M

MgSO4, and 0.2% casamino acids) and adjusted to pH 7.5. This

solution was autoclaved (121uC) and the following components

were added to the cooled solution from sterile stocks: 0.05 M

K2HPO4 (pH 7.0), 0.001 M L-arginine, and glycerol (to 1.0%).

Fresh ABVh medium was inoculated with an aliquot of the V.
harveyi BB170 frozen glycerol culture, which was then grown

(30uC with aeration, shaking) until turbid and showing obvious

luminescence in a darkroom. This culture was then diluted 1:5,000

in fresh ABVh medium and used to prepare the assay plates. The

CF from the V. harveyi BB152 mutant strain served as a positive

control in the AI-2 assay (Table 2). V. harveyi BB152 was cultured

overnight in ABVh medium (30uC with aeration, shaking),

centrifuged (12,000 g, 10 min), and the supernatant was filter

sterilized and stored at 220uC. AI-2 assays were conducted in

sterile 96-well microtiter plates (BD Falcon 353219 - black plate

with a clear, flat bottom and lid). Each assay plate contained

triplicate experimental wells, control wells, and reference wells, all

with final well volumes of 100 ml. The prepared plates were

incubated at 30uC with shaking over the course of the 7 h assay.

Optical density (OD600) and luminescence (490 nm) readings were

conducted every 15 min using a BioTek Synergy HT Multi-Mode

Microplate Reader linked directly to a PC with Gen5 software

(BioTek Instruments, Inc., Winooski, VT, USA). Because some

growth media components have been shown to induce lumines-

cence in the V. harveyi BB170 reporter strain (e.g., borate and

glucose [70,71,72]), medium control wells were included to

monitor possible growth media effects on reporter strain lumines-

cence. Media reference wells were monitored during the AI-2

assays to determine background luminescence output for each of

the media tested.

AI-2 activity was determined at the optimal time point (OTP) of

the V. harveyi BB170 assay, defined as the time point immediately

preceding self-induction by the V. harveyi BB170 reporter strain

[69]. The OTP represents the time when the mean luminescence

of the medium control wells was lowest during the course of the

assay. The percentage of AI-2 (% AI-2) activity is expressed as a

percentage of the positive control luminescence at the OTP [73].

The % AI-2 activity was calculated as the fold induction of the

sample, i.e., the fold change between the sample luminescence and

the corresponding reference luminescence (MB for the bacterial

CFs and BG11 for the cyanobacterial CFs) divided by the fold

induction of the positive control (the fold change between the

positive control luminescence and the corresponding reference

luminescence, which was ABVh medium for the positive control

CF). The luminescence at the OTP for each sample was used to

calculate the induction of luminescence, which is expressed as a

fold induction of the sample in comparison to the luminescence of

the positive control. The induction of luminescence was calculated

by dividing the sample luminescence by the positive control

luminescence at the OTP [69,74].

AHL Extraction from Isolates in Marine Broth Cultures
Fresh 25 ml aliquots of half strength MB in 125 ml Erlenmeyer

flasks were inoculated with 500 ml of cultures grown overnight in

the same medium. Duplicate cultures were then grown at 25uC for

24 h with shaking (200 rpm). At this point, 10 ml aliquots of each

culture were filtered through 0.22 mm nylon filters (GE Magna) in

duplicate to generate a total of four samples per isolate. The filtrate

was transferred to a separatory funnel, and the flask was washed

with ,1 ml water and added to the funnel. The filtrate was then

extracted twice with 5 ml of 1.0% acetic acid in ethyl acetate (H+/

EtOAc). The combined organic layers were then dried with

MgSO4 and filtered. The filtrate was concentrated in vacuo and

the resulting oil was then resuspended in 300 ml of H+/EtOAc and

transferred to an autosampler vial. Samples were immediately

analyzed via LC-MS/MS [75].

AHL Extraction from Isolates on Marine Agar Plates
Fresh 25 ml aliquots of half strength MB in 125 ml Erlenmeyer

flasks were inoculated with 500 ml of cultures grown overnight in

the same medium. Triplicate cultures were then shaken at

200 rpm at 25uC for 1 h. At this time, a 5.0 ml aliquot of each

Table 2. Quorum sensing reporter strains and positive control strains used in this study.

Name Strain characteristics Reference

Chromobacterium violaceum CV0261 Detects short-chain AHLs (i.e., C4-AHL, C6-3-oxo-AHL, C8-AHL, C8-3-oxo-AHL) [66]

Agrobacterium tumefaciens
NTL4(pZLR4)2

Detects medium- to long-chain AHLs (i.e., C6-AHL, C10-AHL, C12-AHL, C14-AHL,
C6-3-hydroxy-AHL, C8-3-hydroxy-AHL, C10-3-hydroxy-AHL, all 3-oxo-AHLs)

[112]

Agrobacterium tumefaciens
NT1(pTiC58DaccR)2

Synthesizes C8-3-oxo-AHL which is recognized by A. tumefaciens NTL4(pZLR4). Culture
filtrates of this strain were used as positive control in the A. tumefaciens NTL4(pZLR4) assay

[113]

Vibrio harveyi BB1703 Detects the DPD and the CAI-14 signals [114,115]

Vibrio harveyi BB1523 Synthesizes the DPD signal. Culture filtrates of this strain were used as positive control
in the DPD assay.

[116]

1Strain obtained from K. Mathee, Florida International University.
2Strains obtained from S.K. Farrand, University of Illinois.
3V. harveyi strains BB170 (ATCC BAA-1117) and BB152 (ATCC BAA-1119) obtained from the American Type Culture Collection.
4CAI-1 is the Vibrio-specific QS signal (S)-3-hydroxytridecan-4-one [117].
doi:10.1371/journal.pone.0108541.t002
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culture was filtered through a 0.45 mm nylon filter (GE Magna),

which was placed cell side up on half strength MA plates and

incubated at 25uC for 24 h, after which the filter was removed and

the agar was minced and transferred to a 250 ml Erlenmeyer flask.

A 100 ml aliquot of ethyl acetate (EtOAc) was added to each flask,

and the suspension was stirred for 3 h. Once extraction was

complete, the organic layer was collected. The flask was rinsed

once more with 5.0 ml EtOAc, which was added to the previous

organic layer. The combined organic fractions were then dried in
vacuo and the resulting oils were redissolved in 300 ml of EtOAc,

transferred to an autosampler vial, and immediately analyzed via

LC-MS/MS [75].

LC-MS/MS Analysis of AHLs
Analysis of extracted AHLs was performed using an LC-MS/

MS method optimized for AHL detection [75]. Samples were kept

at 4uC before injection, and 10 ml of each was injected onto a

reverse-phase C18 core-shell column (Phenomenex Kinetex,

Torrance, CA, USA) via a Thermo Electron Surveyor auto-

sampler (Thermo Fisher Scientific, Waltham, MA, USA). Sepa-

ration was obtained using a gradient of 0.1% acetic acid in water

and 0.1% acetic acid in acetonitrile at a flow rate of 200 ml/min.

The eluent was introduced into a TSQ Quantum Ultra Triple

Stage Quadrupole mass spectrometer (Thermo Scientific) using

electrospray ionization, and detection was achieved using multiple

reaction monitoring (MRM) in positive ion mode. This method

screens for 54 unique parent m/z–fragment m/z pairs and relies on

the neutral loss of the acyl chain to give a reproducible and

characteristic 102 m/z fragment to confirm that the molecule was

an AHL. All possible chain lengths ranging from 4 to 20 carbons,

including both even and odd numbers of carbons, were included in

the method, and the potential to have a hydroxyl or ketone at the

3 position, with or without a single double bond in the chain, was

also taken into account. Note: this method is unable to distinguish

between potential AHL structures that have the same parent m/z-

fragment m/z pairs (e.g., 3OC6-HSL and C7-HSL). Therefore,

the AHLs were named according to their most likely identity based

on reported precedence, e.g., odd chain AHLs are rare and the

previous example would be listed as 3OC6-HSL.

The RAW files collected from the instrument were converted to

.mzML files using MSconvert from Proteowizard [76] and then

imported into MAVEN an open-source software program for

interactive processing of LC-MS/MS data that detects and reports

peak intensities to produce an extracted ion chromatogram (EIC)

for each parent m/z – fragment m/z determined by the user [77].

An EIC extraction window of 200 ppm was used to visualize the

peaks, and the areas for each AHL were integrated. The relative

percentage of each detected AHL was calculated from the areas.

DPD Quantitation from Isolates in Marine Broth Culture
DPD analysis was performed as previously described with slight

modification [78]. Briefly, duplicate 300 ml aliquots of culture

supernatants were transferred to 1.5 ml centrifuge tubes contain-

ing 10 ml of a 13C-labeled DPD (13C-DPD) internal standard,

prepared according to [79] (final internal standard concentration

of 500 nM). Each tube was mixed thoroughly by vortexing for 5 s

and then centrifuged for 1.5 min at 16.1 rcf to pellet cells. The

supernatants (260 ml) were transferred to new 1.5 ml centrifuge

tubes containing 25 ml of a 5 mg/ml DPD derivatizing solution

[78]. The contents were thoroughly mixed by vortexing and

allowed to react for 45 to 60 min. The resulting solutions were

then extracted twice with 130 ml of EtOAc and the combined

extracts were transferred to 300 ml autosampler vials. The samples

were kept at 4uC until LC-MS/MS analysis.
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LC-MS/MS Analysis of DPD
Samples were placed in an autosampler tray cooled to 4uC and

10 ml of each was injected onto a Kinetex 5 m C18 100 Å 100 6
2.10 mm column. Separation was performed with an isocratic

gradient of 95% 0.1% acetic acid in HPLC grade water and 5%

HPLC grade Acetonitrile with a flow rate of 200 ml/min for

4 min. The eluent was introduced into a TSQ Quantum Ultra

Triple Stage Quadrupole mass spectrometer (Thermo Scientific)

using electrospray ionization, and a positive mode selected

reaction monitoring protocol was used for detection [78]. The

parent m/z–fragment m/z pairings used for endogenous DPD and
13C-DPD were 381 m/z–202 m/z and 382 m/z–203 m/z, respec-

tively. A collision energy of 43 was used for both.

The peaks were automatically integrated with manual adjust-

ments using the Xcalibur software (Thermo Electron Corpora-

tion). A correction factor was applied to account for natural

isotopes [78], and DPD concentration was then calculated by

comparing the peak areas of endogenous DPD to the peak areas of

the 13C-DPD and multiplying by the internal standard concen-

tration.

16S rRNA Gene Sequencing
Genomic DNA was extracted from those isolates that tested

positive for AHL production using at least one of the reporter

strains assays either by placing a single colony in 100 ml of sterile

phosphate buffered saline (PBS), heating to 99uC for 10 min, and

centrifuging at 5,000 g for 10 min, or alternatively by bead-

beating using the FastDNA Spin Kit for Soil (Qbiogene, Vista,

CA, USA) according to manufacturer’s protocol. DNA was then

PCR-amplified using the universal bacterial primers 27F 59-AGA

GTT TGA TCM TGG CTC AG-39 and 1492R 59-TAC GGY

TAC CTT GTT ACG ACT T-39 ([80]; Integrated DNA

technologies, Coralville, IA, USA). The final concentration for

PCR reactions was 1x PCR Buffer, 2.5 mM MgCl2, 0.25 mM of

each deoxynucleotide triphosphate, 0.5 mM of each forward and

reverse primer, 0.25 U GoTaq Flexi DNA Polymerase (Promega),

0.1% bovine serum albumin, DNA-grade sterile water, and 1–

2 ng genomic DNA. PCR was carried out in a Peltier Thermal

Cycler (PTC-200, MJ Research, Waltham, MA, USA) under the

following conditions: 94uC for 3 min, followed by 28 cycles of

94uC for 1 min, 55uC for 30 s, and 72uC for 30 s, with a final soak

at 72uC for 20 min. The amplified bacterial 16S rDNA was

cleaned using an ExoSAP-IT PCR cleanup kit (USB Corp.,

Cleveland, OH, USA) and sequenced with an ABI Prism 3100

genetic analyzer (Applied Biosystems, Foster City, CA, USA) at

the DNA Core Facility at Florida International University using

the BigDye Terminator version 3.1 (Applied Biosystems) with the

27F and 1492R primers. The sequences were trimmed, cleaned,

aligned, and assembled using DNA Baser Sequence Assembler

(v3.2.5). The nearly full-length sequences (covering the V1–V9

variable regions of the 16S rRNA gene) were then analyzed using

the BLAST queuing system [81] to identify their closest relatives in

NCBI GenBank. Sequences were submitted to the GenBank

database under accession numbers KF494426, KF494427, and

KF148595-KF148603.

Growth Challenge Assays
To determine whether a subset of BBD and SML isolates

produce secondary metabolites that impact the growth of other

BBD and SML bacteria, CFs from 19 isolates were used to

challenge the growth of the other members of this group of

isolates. The 19 isolates consisted of nine that tested positive for

AHL in at least one of the C. violaceum CV026 and A.
tumefaciens NTL4(pZLR4) reporter strain assays, and an addi-

tional 10 isolates that were randomly selected from the pool of

isolates that tested negative in both assays. These isolates were also

examined for synthesis of DPD. A total of 342 growth challenges

was conducted (i.e., each of the 19 CFs were tested against the 18

other isolate cultures). The bacterial growth challenges were

conducted in sterile 96-well microtiter plates (BD Falcon 351172).

Each isolate was grown in sterile MB overnight at 29uC (shaking)

and added to the appropriate wells. Assay plates contained

triplicate experimental wells, control wells, and blank wells, with a

single reference well for each CF tested to ensure that the CFs

were sterile. The final volume in each well was 100 mL. Plates were

incubated at 29uC (shaking) and OD600 readings were conducted

every 30–60 min using the Modulus Microplate Multimode

Reader until the bacterial isolate culture control reached

stationary phase. The mean growth rate constant and mean

generation time were calculated over the linear portion of the

growth curve for the untreated control culture and the experi-

mental treatments. Only statistically significant effects on culture

growth will be discussed (t-test, p,0.05).

Results

AHL Production Detected using Reporter Strains
Nine BBD mat (full community) samples, collected from two

Caribbean coral species (Montastraea cavernosa and Diploria
strigosa), were examined using both the C. violaceum CV026 and

A. tumefaciens NTL4(pZLR4) patch test assays. Each test was

positive, revealing that both short-chain and medium- to long-

chain AHLs are present in freshly collected, active BBD mat.

A total of 199 bacterial isolates (BBD and SML) were examined

using the C. violaceum CV026 assay. Of these, four (2.0%) tested

positive for the patch test and none for the CF test (Table 4). A

subset of isolates (N = 153) was also examined using the A.
tumefaciens NTL4(pZLR4) assay and of these, nine (5.9%) tested

positive for either the patch or CF test (Table 4). In total, 11

(5.5%) of the 199 isolates strains were positive for at least one of

the two AHL reporter strain assays, and two of these isolates (i.e.,

BBD-FTL-6j and BBD-FTL-8c) tested positive in both assays.

These two isolates were both positive in the patch test with the C.
violaceum CV026 assay and the CF test with A. tumefaciens
NTL4(pZLR4), indicating that they produce short-chain AHLs

when grown in benthic form (on MA) and medium- to long-chain

AHLs when grown in planktonic form (in MB). The two isolates

that tested positive for both assays were each a 99% (16S rRNA

gene) sequence match in GenBank to one strain of Vibrio
rotiferianus; however, they were obtained from BBD infections

on two separate coral colonies and exhibited different colony

morphologies when grown on agar. Five of the 11 isolates tested

positive in both the patch and CF assays with A. tumefaciens
NTL4(pZLR4), indicating that these isolates produced medium- to

long-chain AHLs when growing in planktonic or benthic form.

Two isolates were positive only for the A. tumefaciens
NTL4(pZLR4) patch tests.

Of the 11 AHL-positive isolates, five were from BBD samples

(collected from five separate BBD-infected coral colonies), two

from BSML samples, and four from HSML samples. None of the

eight BBD cyanobacterial strains tested positive in either AHL

reporter stain assay.

AI-2 Production
More than half (84, or 55%) of the 153 CFs tested positive in the

AI-2 reporter strain assay (summarized in Table 5). Figure 2

shows results of a representative experiment using the CFs of four

isolates, including two that tested positive (BSML-FTL-7m and
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BSML-FTL-7q) and two that tested negative (BSML-FTL-7h and

BSML-FTL-7k). The positive results indicate that isolates

produced DPD-like molecules (or a CAI-1 signal specific to

certain Vibrio spp.) that can be detected by the V. harveyi BB170

reporter strain used in this study. The AI-2 activity induced by CFs

from the positive isolates ranged widely, from approximately 28%

to 346% of the positive control luminescence (Table S1) with the

triplicate readings within 30% of the mean luminescence values,

expressed in relative light units (rlu). The induction of lumines-

cence over the positive control was calculated for each CF tested

and ranged from 0.22–2.8 fold. 70% of the BBD CFs, 68% of the

BSML CFs and 33% of the HSML CFs tested positive for AI-2

production (Table 5). None of the cyanobacterial CFs tested

positive in the AI-2 assay.

The media used in this study did not in any case stimulate light

production in the AI-2 assay prior to self-induction by the V.
harveyi BB170 reporter strain (example shown in Figure 3). The

slight rise in luminescence near the end of the experiment depicted

in Figure 3 is likely the result of light contamination from adjacent

wells.

Figure 2. Representative experiment showing light production over time in the AI-2 reporter strain assay. The curves generated by the
cell-free culture filtrates (CFs) from BSML-FTL-7m and BSML-FTL-7q (both positive in the assay) follow the positive control curve. The curves generated
by the CFs from BSML-FTL-7h and BSML-FTL-7k (both negative in the assay) follow the Marine Broth (MB) medium control curve. Dashed vertical line
indicates the optimal time point (OTP) of the assay, which is the time point immediately preceding self-induction by the V. harveyi BB170 reporter
strain and the time when the mean luminescence of the medium control wells was lowest during the course of the assay. Data at the OTP is used to
calculate the percentage of AI-2 (% AI-2) activity and the induction of luminescence over the positive control.
doi:10.1371/journal.pone.0108541.g002

Table 5. Autoinducer-2 activity detected using the Vibrio harveyi BB170 reporter strain presented according to isolate type.

Isolate Type No. CFs Tested No. and % Positive CFs Percentage of Total Positive Results

BBD 63 44 (70%) 52%

BSML 37 25 (68%) 30%

HSML 45 15 (33%) 18%

Cyanobacteria 8 0 0%

Totals 153 84 (55%) 100%

doi:10.1371/journal.pone.0108541.t005
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AHL Identification and Quantitation
With one exception (BSML-FTL-7l), each of the 11 isolates that

were examined for identification of AHLs by LC-MS/MS

produced AHLs under both planktonic (MB) and benthic (MA)

conditions (Table 6), a result that is in contrast to the variable

results obtained using the reporter strains. Note that of these 11

strains, 10 were discussed previously in terms of reporter strain

results (see Table 4). One strain (HSML-FTL-10a) was not

analyzed by LC-MS/MS because this strain failed to grow at

the time of the LC-MS/MS analysis. Also note that Table 6

includes an additional isolate (BBD-FLK-1M2) not previously

discussed. This isolate tested negative for AHL production using

the reporter assays (thus, it is not included in Table 4); however, it

is the subject of current physiological studies of BBD bacteria (data

not included here), and thus was included in the LC-MS/MS

analysis.

The most common AHL variant produced among the 11

isolates was C6-HSL, produced by five (45%) of the strains in

liquid culture and seven (64%) of the strains grown on plates

(Table 6). This signal accounted for 50–92% of the AHLs

produced (per strain) and was produced by all of the AHL-

positive strains isolated from BBD and two strains from the SML

of (two) apparently healthy corals (HSML samples). The second

most common AHL was 3OC4-HSL, detected in five (45%) of the

strains (isolated from 3 BBD, 1 BSML, and 1 HSML sample). This

variant accounted for a maximum of 52% of AHL detected for

strain HSML-FTL-9c (range of 11–52%). Additional AHLs were

produced by fewer strains, but in some cases were the majority of

the variant detected (e.g., for strains HSML-FTL-9e and HSML-

FTL-9i grown in broth culture, 3OHC10-HSL accounted for 75%

and 70% of AHLs produced, respectively). Other AHLs were

produced in smaller amounts (see Table 6), including 3OC20-

HSL which constituted 5% of AHLs produced by two isolates. To

our knowledge, this AHL has not been reported in the literature.

DPD Quantitation
LC-MS/MS was also used to assess the presence and

concentration of DPD produced by the 11 isolates discussed

above. As seen in Table 6, all of the isolates produced DPD at

concentrations that ranged from 0.31 to 1.41 mM. All six of the

BBD isolates produced high amounts of DPD (average of

1.11 mM) while, with one exception, the SML isolates (both

HSML and BSML) produced much less (approximately one third

to one half of the amount produced by BBD isolates). The

anomalous isolate (HSML-FTL-9c), which produced the highest

concentration of DPD detected for any strain independent of

source, was a 99% match to Vibrio harveyi, a well-known AI-2

signaling species. The other five isolates produced an average of

0.37 mM DPD.

Growth Challenge Assays
Of the 342 growth challenges, 92 (27%) resulted in significant

(see methods) inhibition and eight (2.3%) resulted in significant

stimulation of isolate growth (Table 7). When considered by isolate

source and the number of isolates tested per source, the CFs

(culture filtrates) of HSML isolates inhibited the most growth at

Figure 3. Light production of the media control wells and media reference wells in the AI-2 reporter assay. The medium control curves
indicate that the three growth media used in this study did not stimulate light production prior to self-induction by the Vibrio harveyi BB170 reporter
strain. The luminescence of the medium reference wells, which contained sterile growth media, remained minimal over the course of the AI-2
reporter assay, although some minor increases in light were measured in these wells at the end of the assay due to light contamination from adjacent
wells. Arrow indicates time of self-induction by the reporter strain, after which the luminescence of the reporter strain increases rapidly.
doi:10.1371/journal.pone.0108541.g003
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32% of challenges (29 of 90 tests), followed by the CFs of BSML

isolates (26%, or 28 of 108), and CFs of BBD isolates (24%, or 35

of 144). Growth stimulation by CFs occurred for approximately

4% of challenges with BSML isolates, 2% of BBD isolates, and 1%

of HSML isolates (Table 7). Independent group t-tests revealed

that there was no significant difference (p.0.05) between the

numbers of cultures inhibited or stimulated by CFs from any

combination of the three isolate types.

The 19 isolates examined in the growth challenges included

nine AHL-positive isolates (Table 7). Five of these nine also tested

positive for AI-2 activity using the V. harveyi BB170 reporter

strain assay, and eight produced DPD detected by LC-MS/MS

(Table 6). Of the 10 AHL-negative isolates, nine tested positive for

AI-2 activity. Table 8 examines the correlation between the

presence/absence of AHL, AI-2 activity, and DPD among isolates

that caused inhibition of growth. Strain HSML-FTL-10a (which

inhibited seven strains and stimulated one; Table 7) was not

included in this data set because it did not grow during the LC-

MS/MS experiments. Although HSML-FTL-10a was negative for

AI-2 activity using the reporter strain, three additional strains that

also tested negative for the reporter strain assay produced

detectable DPD (Table 6), thus we cannot rule out that HSML-

FTL-10a also produces DPD. The resulting data set therefore

consists of 81 challenges (using 18 isolates) that resulted in

inhibition of growth. Of these, nine strains produced AI-2/DPD

(positive for at least one of these assays) but no AHL, and were

responsible for 49% of the 81 cases of growth inhibition. Eight

strains produced both AI-2/DPD and AHL, and inhibited 43% of

the 81 cases. One strain (BBD-FTL-6d) did not produce AI-2/

DPD or AHL and inhibited six isolates. There was no statistically

significant difference (independent group t-tests, p.0.05) between

the number of cultures inhibited by isolates producing AI-2/DPD

only and those that produced both AHL and AI-2-DPD.

Discussion

Quorum Sensing Signals in BBD and Coral-Associated
Bacteria

This study revealed the presence of AHLs in nine freshly

collected BBD microbial mat samples from two Caribbean coral

species. In each case, the full BBD community was present. The

immediate questions that rise from these results are: 1) what

microbial constituents within this pathogenic polymicrobial

community are synthesizing AHLs?; 2) are the AHL producers

in BBD also present in the coral microbiome?; 3) what are the

structures of the AHLs produced?; and 4) do BBD and SML

bacteria also produce AI-2? We addressed each of these questions

in the present study.

The observation that all (full community) BBD samples

examined using the AHL reporter strains were positive for the

presence of AHLs is in agreement with previous studies on QS

signal production in cyanobacterial-dominated communities in

other environments. These include Trichodesmium colonies in the

North Atlantic [82], marine stromatolites in the Bahamas [83],

and cyanobacterial mats in Swiss alpine wetland ponds [84]. On

the other hand, although cyanobacterial isolates have been

reported to produce AHLs in the laboratory [85], none of the

eight BBD cyanobacterial isolates examined in this study tested

positive in either AHL reporter strain assay. We note that our

cyanobacterial culture medium had a pH of ,8 (or higher during

photosynthesis), and that alkaline pH has been demonstrated to

degrade AHL signals [62,64]. Furthermore, it is possible that the

AHL reporter strain assays yielded false-negative results for a

variety of other reasons (e.g., the AHL produced was undetectable

by the reporter strains, AHL concentrations were below the

detectable levels of the reporter strains, AHL production was

inhibited by the laboratory conditions used in this study, the isolate

was also producing quorum quenching molecules that inhibited

detection of AHLs, and/or other abiotic factors besides pH

Table 6. AHLs detected via LC-MS/MS after 24 hour incubation.

Isolate AHLs Detected in Liquid Culture1,3,4 AHLs Detected on Agar2,3,4
DPD Conc
(mM)1,5

BBD-FTL-6j C6 (78%), 3OC4 (13%), 3 others (9%) C6 (74%), 3OC4 (11%) 3 others (15%) 0.9960.32

BBD-FTL-8c C6 (70%), 3OC4 (11%), 6 others (9%) C6 (50%), 3OC6 (21%), C4 (13%), 4 others (16%) 0.9460.09

BBD-FLK-1d C6 (69%), 3OHC10 (9%), 9 others (22%) C6 (61%), 7 others (39%) 1.0860.28

BBD-CUR-3M8 C6 (92%), 3 others (8%) C6 (69%), 3OC4 (31%) 1.1060.49

BBD-CUR-3S11 C6 (86%), 3 others (14%) C6 (80%), 3 others (20%) 1.3860.19

BSML-FTL-6w C14 (45%), C10 (26%), 3OHC4 (23%) 3OC20 (5%) C10 (39%), 3OHC8 (23%), 3OHC4 (18%), 3 others (20%) 0.3260.13

BSML-FTL-7l 26 AHLs measured (ranging from 0.6–14%) ND6 0.4860.09

HSML-FTL-9c 3OC4 (52%), C14(31%), 3OC18:1(12%), 3OC20 (5%) 3OHC9:1 (79%), 3OHC4 (21%) 1.4160.16

HSML-FTL-9e 3OHC10 (75%), 7 others (15%) C6 (65%), 3OHC10 (22%), 4 others (13%) 0.3760.02

HSML-FTL-9i 3OHC10 (70%), 3OHC18 (14%), 2 others (16%) C6 (51%), 3OHC10 (36%), 3OC4:1 (14%) 0.3160.08

BBD-FLK-1M27 3OC6 (29%), 3OC18:1 (19%), C14 (19%), 3OHC10 (12%), 7 others (21%) 3OHC10 (100%) 1.1960.12

1Results are an average of four samples (two cultures sampled twice).
2Results are an average of six samples (three cultures injected twice).
3Percentages represent relative abundance within the culture.
4AHLs are comprised of a homoserine lactone ring attached to an acyl side chain (generally between 4–20 carbons in length) and may have a keto or hydroxy
substituent at the C3-position. Abbreviations: CX = AHL contains ‘‘X’’ carbon molecules in the acyl chain; 3OCX – AHL has a keto substituent at the C3-position; 3OHCX –
AHL has a hydroxyl substituent at the C3-position.
5Error is reported at standard deviation.
6Not detected.
7Isolate BBD-FLK-1M2 was identified through 16S rRNA gene sequencing as a 100% match to Ferrimonas sp. EF3B-B688 (Accession No. KC545309.1). This isolate tested
negative in the Chromobacterium violaceum CV026 patch test and was not tested using the Agrobacterium tumefaciens NTL4(pZLR4) assay.
doi:10.1371/journal.pone.0108541.t006
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degraded the AHL signal). These same scenarios could explain

false negative results in any of the reporter strain assays used to

detect QS signals in this study.

To investigate the identity of culturable BBD bacteria that are

capable of producing AHLs (as well as DPD), we tested bacterial

isolates from the complex microbial communities that constitute

BBD, the apparently healthy SML of BBD-diseased colonies, and

the SML of healthy colonies. We found that 11 of 199 (5.5%)

isolates, all bacterial, from BBD, BSML, and HSML are able to

produce QS signals under laboratory conditions. This result is

similar to the 4% observed in a study [27] in which more than 300

bacterial cultures isolated from marine invertebrates (i.e., coral

SML, other marine invertebrates, and dinoflagellate symbionts)

were screened using a variety of reporter strains that detect AHLs

of varied chain lengths. We also showed that 55% of CFs tested

positive for AI-2 activity (or the CAI-1 signal specific to some

Vibrio spp.), as detected by the V. harveyi BB170 reporter strain.

The high percentage of isolates capable of AI-2 activity is not

unexpected, as this molecule is considered to be an interspecies

signal molecule [46,86]. It should be noted that AHL and AI-2

production in some bacteria may be specific to a certain portion of

the bacterial growth phase [87,88]. For the bacterial isolates

Table 7. Isolates that elicited inhibition and stimulation of growth according to isolate source and production of AHLs or AI-2
activity based on reporter strain data and DPD (LC-MS/MS).

Isolate Source CF Tested AHL AI-2 DPD No. Cultures Inhibited No. Cultures Stimulated

BBD (144 challenges) BBD-FTL-6j + + + 6 0

BBD-FTL-8c + + + 3 0

BBD-FLK-1d + 2 + 3 0

BBD-FTL-1h1 2 + NT 4 0

BBD-FTL-6d1 2 2 NT 6 1

BBD-FTL-6n1 2 + NT 5 0

BBD-FTL-6p1 2 + NT 6 1

BBD-FLK-1e1 2 + NT 2 1

N and % of Challenges2 35 (24%) 3 (2.1%)

BSML (108 challenges) BSML-FTL-6w + + + 3 1

BSML-FTL-7l + 2 + 9 0

BSML-FTL-6u1 2 + NT 3 1

BSML-FTL-7d1 2 + NT 5 2

BSML-FTL-7q1 2 + NT 4 0

BSML-FLK-1d1 2 + NT 4 0

N and % of Challenges2 28 (26%) 4 (3.7%)

HSML (90 challenges) HSML-FTL-9c + + + 3 0

HSML-FTL-9e + 2 + 4 0

HSML-FTL-9i + + + 4 0

HSML-FTL-10a1 + 2 NT 11 0

HSML-FTL-10r1 2 + NT 7 1

N and % of Challenges2 29 (32%) 1 (1.1%)

Total Challenges (342) 92 (27%) 8(2.3%)

1Not tested. These strains were not analyzed for DPD production using LC-MS/MS (refer to Table 6).
2The percent value here is the percent of the total challenges (144 BBD strains, 108 BSML strains, and 90 HSML strains) that resulted in inhibition or stimulation of
growth in each isolate source category.
doi:10.1371/journal.pone.0108541.t007

Table 8. Correlations between autoinducer production and inhibition of growth.

Source of Isolate and Autoinducer Produced No. Isolates that Elicited Inhibition (No. Test Strains Inhibited) % of Inhibition1

Source of Isolate BBD BSML HSML

AI-2/DPD 4 (17) 4 (16) 1 (7) 49.4

AHL and AI-2/DPD 3 (12) 2 (12) 3 (11) 43.2

Neither 1 (6) 0 0 7.4

Total 8 (35) 6 (28) 4 (18) 100%

1Percent of 81 assays that resulted in growth inhibition. Isolate HSML-FTL-10a not included (see text).
doi:10.1371/journal.pone.0108541.t008
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investigated in this study, all CFs were collected during early

stationary phase. Thus, an isolate producing QS signals during a

different growth phase may have produced a negative result in the

reporter strain assays. Based on subsequent 16S rRNA gene

sequencing, all 11 AHL-producing isolates most closely aligned

with members of the Alpha- and Gamma-proteobacteria (Table 4).

Five of these were closely related to Vibrio spp. Vibrio fischeri and

V. harveyi represent the archetypal system for AHL- and AI-2-

regulated gene expression [33,89], and a variety of Vibrio spp.

have been documented to produce AHLs [90,91,92]. Vibrios have

been routinely detected in BBD [42,93,94], and it has been

suggested that proteolytic activity by Vibrio spp. might play a role

in BBD pathology [93]. Vibrio strains isolated from both healthy

and diseased corals have also been shown to produce AHLs [54].

Two AHL-producing isolates (BBD-FLK-1d and BSML-FTL-

6w) were most closely related to strains belonging to the

Rhodobacteraceae, also commonly detected in BBD and coral

SML communities [42,43]. AHL production by members of the

Roseobacter-Ruegeria subgroup of the Alpha-proteobacteria has

been previously demonstrated [95,96,97]. Isolates BSML-FTL-7l

and HSML-FTL-10a were most closely related to the genus

Pseudoalteromonas, also previously documented to produce AHLs

[98,99]. Isolate HSML-FTL-10a was most closely related to P.
luteoviolacea strain NCIMB 1893 (99% similarity) and, consistent

with the description of this strain as a producer of violacein [100],

isolate HSML-FTL-10a produced a dark purple pigment. P.
luteoviolacea has been documented to have antibacterial activity

[100], and antibiotic activity has also been demonstrated for

violacein [101].

QS Signals in the BBD Mat and Coral SML
Within the BBD mat, an exopolysaccharide (EPS) matrix

surrounds the diverse members of the BBD microbial community.

High concentrations (.600 mM) of AHLs have been measured

within Pseudomonas aeruginosa biofilms [102], suggesting that

bacterial EPS may effectively sequester QS signals. Because the

surface of the BBD mat is exposed to seawater, and thus diffusion,

advection, and dilution [103], accumulation of QS signals would

likely be greater in the depths of the BBD mat than on the mat

surface. In a similar manner, coral mucus forms a protective

coating over the coral surface and is present as a thin layer that

can be considered as a biofilm. While the chemical composition of

coral mucus varies between species, the basic structure of the SML

consists of an insoluble, hydrated glycoprotein [11,104]. The gel-

like nature of coral mucus would likely concentrate particularly

hydrophobic signal molecules similar to EPS.

Within BBD, the persistence of QS signals may be impacted by

the local chemical and physical microenvironment to a greater

extent than within non-cyanobacterial associated biofilms. Alka-

line conditions may result in hydrolysis of the AHL lactone ring

[62,64] with short-chain (, C10) AHLs appearing to be more

susceptible [64,83]. The BBD mat contains pronounced biogeo-

chemical microgradients of oxygen, pH, and sulfide [22,23] which

fluctuate based on changes in the predominant metabolic

pathways occurring within the BBD mat. During daylight, when

oxygenic photosynthesis dominates, the pH in the BBD mat ranges

from 7.58–8.13 [23], while in darkness, when predominant

metabolic pathways shift to respiration and fermentation, pH

values drop to 7.33–7.49 [23]. Based on the relative stability of

AHLs in terms of pH [83,105], microbial mats in general could

use both short- and longer-chain AHL signaling during the night

and longer-chain AHL signaling during the day. Coral mucus itself

is acidic (pH of 5.5 to 7.7) in comparison to surrounding seawater

[106]; thus, AHL signals within the coral SML would likely remain

stable enough for signaling to occur both night and day. We found

both short- and long-chain AHLs in this study, including variant

3OC20-HSL produced by two isolates. To our knowledge this

AHL has not been reported in the literature.

The implications of abiotic and biotic influences on AI-2

signaling and the impact of the natural environment are not well

understood at this time. Like AHLs, production of DPD may be

dependent on the particular strain, the growth phase, or the

culture medium [88,107]. DPD appears to be relatively stable in

comparison to the AHLs [82]. We found that 70% of the CFs from

BBD isolates and 68% of the CFs from BSML isolates tested

positive for AI-2 activity, compared to only 33% of the CFs from

HSML isolates. All of the 11 isolates we examined for DPD

production produced detectable amounts of this precursor to AI-2,

with BBD isolates producing two to three times as much as the

SML isolates (Table 6). It is possible that AI-2 signaling may be

occurring more frequently within the BBD microbial consortium

as compared to the coral SML, if AI-2 signaling is indeed

occurring within these environments.

Interactions among Isolates from BBD and SML
Results of the growth challenges revealed that 27% of 342

challenges resulted in significant inhibition of bacterial growth.

While others have detected increased antimicrobial activity by the

mucus of healthy corals, as opposed to diseased corals [28,29], this

study found no significant difference in antimicrobial production

based on isolate source (BBD, BSML, or HSML). Toxins have

been documented previously to be produced by BBD cyanobac-

teria [15,16,17,18] and antimicrobials by coral-associated bacteria

[29,30,108,109], and it is likely that antimicrobial production

contributes to the temporal and spatial dynamics occurring in

BBD [110]. Interestingly, only 2% of the 342 growth challenges

exhibited significant growth stimulation by the culture filtrates.

The vast majority (,88%) of these stimulatory CFs were from

BBD isolates. Thus, cooperation between microbes may be more

common in interactions among members of the BBD than among

SML bacteria.

Almost all (,93% of cases) of the growth inhibition documented

in the challenge study was caused by the CFs of isolates that were

positive for AI-2 activity and/or production of DPD. AI-2 is

widely recognized for its involvement in interspecies signaling and

has been linked to the upregulation of antibiotic biosynthesis

[50,51]. Regulation of bacterial relationships within complex

microbial communities is another proposed role of DPD in the

natural environment [35]. Our findings are in complete agreement

with this proposal. For example, isolates that produced AI-2/DPD

(with some also producing AHLs) were cultured from BBD,

BSML, and HSML, and were shown to inhibit growth of isolates

from all three of these sources. Thus, if present and active within

these natural environments, it is possible that AI-2 could regulate

both pathogenic and probiotic microbial populations with

communication between such populations. Only one strain that

caused growth inhibition produced neither AI-2/DPD nor AHL.

Further research is needed to determine if this is a pattern that

holds true for bacterial members of complex communities in

general.

Potential Roles of QS Signal Production in Coral Health
and Disease

This is the first report of the presence of AHLs in samples

freshly collected from in situ coral disease. Only one previous

study [54] has directly and empirically addressed the potential role

of QS in coral health and disease. Similar to our study, Tait et al.
[54] used reporter strains (as well as thin layer chromatography) to
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detect AHLs and AI-2 production by bacteria (Vibrio spp. and

Photobacterium rosenbergii strains) isolated from or near corals.

Twenty-nine isolates were tested, of which 17 produced AHLs and

29 (100%) produced AI-2. Six of the 29 strains were isolated from

the tissue of ‘‘diseased’’ corals, although the disease was not

identified; of these, three were positive for AHL production. Three

strains were isolated from bleached corals (two from tissue, one

from mucus), with both tissue samples positive for AHL

production and the mucus sample negative. An additional 11

samples are identified as from the water in association with specific

coral species; however, the distance of the sample from the coral

surface is not provided; of these, six were positive for AHLs.

Finally, of nine isolates from tissue or mucus samples associated

with presumably healthy corals (only one identified as such), five

(two tissue and three mucus) produced AHLs. These results [54]

suggest that QS may be an active process in the coral microbiome

(and coral environment), and our findings support their conclu-

sion.

Despite nearly 40 years of research, the etiology, pathogenesis,

and pathobiology of BBD remain unresolved. Mechanisms of BBD

mat formation and organization, the mode of microbial recruit-

ment to the BBD community, and the factors leading to initiation

of the pathogenic, migrating band are not understood. It is,

however, well known that AHLs produce and control similar

virulence factors in other systems, including in laboratory

experiments using the coral pathogen Serratia marcescens [111].

Although there has been little work on DPD production by coral-

associated bacteria, AI-2 signaling is also known to be associated

with disease function in pathogenic bacteria in general (reviewed

in [35,46]).

If QS is indeed occurring within BBD, the potential roles of

AHL and/or AI-2 signals with regard to virulence, biofilm

structure, and community composition makes QS an important

aspect of future study for BBD as well as other coral diseases. QS

between potential pathogens and the healthy coral microbiota may

contribute to disease processes as well. Future research to elucidate

the roles that QS signaling molecules play in coral health and

disease will require thorough investigations targeting specific

effects of QS signals on regulatory and physiological systems, as

well as gene expression.

Supporting Information

Table S1 Percentage of AI-2 activity (± standard
deviation) and induction of luminescence values for the
84 CFs that tested positive in the AI-2 assay. The data are

presented in descending order based on percentage of AI-2

activity. The induction of luminescence was calculated by dividing

the sample luminescence by the positive control luminescence at

the optimal time point of the assay.

(XLSX)
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