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EXECUTIVE SUMMARY 

This report serves as a summary of our efforts to date in the execution of the Water Quality 

Monitoring Project for the FKNMS as part of the Water Quality Protection Program.  The period of 

record for this report is Apr. 1995 – Dec. 2015 and includes data from 82 quarterly sampling events 

within the FKNMS (20.5 years).  This annual report reflects funding cutbacks in 2012 resulting in 

reduction of spatial sampling from 155 to 112 sites.  

Field parameters measured at each station (surface and bottom at most sites) include salinity 

(practical salinity scale), temperature (ºC), dissolved oxygen (DO, mg l-1), turbidity (NTU), relative 

fluorescence, and light attenuation (Kd, m-1).  Water quality variables include the dissolved nutrients 

nitrate (NO3
-), nitrite (NO2

-), ammonium (NH4
+), and soluble reactive phosphorus (SRP).  Total 

unfiltered concentrations include those of nitrogen (TN), organic carbon (TOC), phosphorus (TP), 

silicate (SiO2) and chlorophyll a (CHLA, μg l-1). 

The EPA developed Strategic Targets for the Water Quality Monitoring Project (SP-47) which state 

that beginning in 2008 through 2015, they shall annually maintain the overall water quality of the near 

shore and coastal waters of the FKNMS according to 2005 baseline.  For reef sites, chlorophyll a should 

be less than or equal to 0.35 µg l-1 and the vertical attenuation coefficient for downward irradiance (Kd, 

i.e., light attenuation) should be less than or equal to 0.20 m-1.  For all monitoring sites in FKNMS, 

dissolved inorganic nitrogen should be less than or equal to 0.75 µM (0.010 ppm) and total phosphorus 

should be less than or equal to 0.25 µM (0.0077 ppm).  Table 1 shows the number of sites and 

percentage of total sites exceeding these Strategic Targets for 2015.  

We must recognize that the reduction of sampling sites in western FKNMS (less human-impacted 

sites) and the increase in inshore sites (heavily human-impacted sites)  introduces a bias to the dataset 

which results in a reporting problem, perhaps requiring a revision of SP-47 to correct this deviation.  To 

avoid such complications, we have not included the recently added locations (#500 to #509) in the 

calculation of compliances.
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Table 1: EPA WQPP WQ Targets derived from 1995-2005 Baseline 
 
For reef stations, chlorophyll less than or equal to 0.35 micrograms liter-1 (ug l-1) and vertical attenuation coefficient for downward 
irradiance (Kd, i.e., light attenuation) less than or equal to 0.20 per meter; for all stations in the FKNMS, dissolved inorganic nitrogen 
less than or equal to 0.75 micromolar and total phosphorus less than or equal to 0.25 micromolar; water quality within these limits is 
considered essential to promote coral growth and overall health.  The “number of samples” exceeding these targets is tracked and 
reported annually.  Values in green are those years with % compliance greater than 1995-2005 baseline.  Values in yellow are those 
years with % compliance less than 1995-2005 baseline. 
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Important Results Realized from this Monitoring Project 
 

1. Land-based Influence on Water Quality 
We documented elevated nutrient concentrations (DIN, TN, TP, and SiO2) in waters close to 

shore along the Keys, and their corresponding responses from the system, such as higher 

phytoplankton biomass (CHLA), turbidity, as well as lower salinity and DO in the water column.  These 

changes, associated to human impact, have become even more obvious by the addition of 10 stations 

located close to shore, (SHORE, within the 500 m Halo; FDEP 2011) sampled since Nov 2011 (Fig i).  

 

 

Figure i. Nutrient and response changes along transect from shore sites to reef-track  
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This trend, especially for DIN was evident from our first sampling event in 1995 and was not 

observed in a comparison transect from the Tortugas (no human impact).  This pattern suggests a land-

based, freshwater nutrient source.  In summary, this type of distribution would imply a relatively 

nutrient-rich land source which is diluted by low nutrient Atlantic Ocean waters. 

 

2.  Trend analysis – 20 years! 
Surface DO has increased in all areas of the FKNMS (Fig. ii).  Greatest increases in surface DO were 

generally observed on the Atlantic side of the Keys and in some inshore areas on the Bay side.  Bottom 

DO trends showed a similar pattern as surface with more increased DO than surface sites (Fig. iii).  

Increased DO is beneficial for animal life.   

 

 
Figure ii.  Total change in DO of surface waters for 20 year period calculated from significant trends. 

 

 
Figure iii.  Total change in DO of bottom waters for 20 year period calculated from significant trends. 
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Water column turbidity (cloudiness) declined throughout the FKNMS during the 20 year period 

(this is good thing).  There was no significant change in turbidity in bottom waters.  The largest declines 

in turbidity occurred in western Florida Bay and west of the Marquesas (Fig iv).   

 

 
Figure iv.  Total change in Turbidity in surface waters for 20 year period calculated from significant trends. 

 

Although Kd did not show significant trend, decreased turbidity affected the amount of light 

reaching the bottom (Io in %). Io increased at most reef sites throughout the Keys (Fig. v).  More light on 

the bottom is beneficial to corals, seagrass, and algae.  Interestingly, the Backcountry area of the lower 

Keys experienced increases in Kd which lead to corresponding decreases in Io. 

 

 
Figure v.  Total change in bottom Io for 20 year period calculated from significant trends. 

 

No significant trends in TP were observed, however very small increases in SRP, up to 1.5 ppb over 

20 years, were observed most surface waters (Fig. vi).  Concentrations of SRP are generally an order of 

magnitude lower than TP and usually below kinetic uptake threshold of phytoplankton, meaning not all 

SRP is accessible.   
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Figure vi.  Total change in SRP in surface waters for 20 year period calculated from significant trends. 

 

The largest sustained monotonic trend has been the decline in surface TOC, especially in the 

Backcountry and the Marquesas (Fig. vii).  This is part of a regional trend in TOC observed on the SW 

Shelf, Florida Bay, and the Everglades mangrove estuaries.  This decline could be considered favorable 

given that TOC corresponds with CDOM (an important driver of water color and light penetration), but 

could also be an indication of decreased upstream primary production. 

 

 
Figure vii.  Total change in TOC in surface waters for 20 year period calculated from significant trends. 

 

The large scale of this monitoring program has allowed us to assemble a much more holistic view of 

broad physical/chemical/biological interactions occurring over the South Florida hydroscape.  This 

confirms that rather than thinking of water quality monitoring as being a static, non-scientific pursuit it 

should be viewed as a tool for answering management questions and developing new scientific 

hypotheses.  We continue to maintain a website (http://serc.fiu.edu/wqmnetwork/) where data and 

reports from the FKNMS are integrated with other available programs. 

http://serc.fiu.edu/wqmnetwork/
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1. Project Background 
The Florida Keys are an archipelago of sub-tropical islands of Pleistocene origin which 

extend in a NE to SW direction from Miami to Key West and out to the Dry Tortugas (Fig. 1).  In 

1990, President Bush signed into law the Florida Keys National Sanctuary and Protection Act 

(HR5909) which designated a boundary encompassing >2,800 square nautical miles of islands, 

coastal waters, and coral reef tract as the Florida Keys National Marine Sanctuary (FKNMS).  The 

Comprehensive Management Plan (NOAA 1995) required the FKNMS to have a Water Quality 

Protection Plan (WQPP) thereafter developed by EPA and the State of Florida (EPA 1995).  The 

original agreement for the water quality monitoring component of the WQPP was subsequently 

awarded to the Southeast Environmental Research Program at Florida International University 

and the field sampling program began in March 1995.   

 

 
 

Figure 1:   Map of original FKNMS boundary including collapsed segment numbers and common names. 

Modified after Klein and Orlando (1994) 

 

The waters of the FKNMS are characterized by complex water circulation patterns over both 

spatial and temporal scales with much of this variability due to seasonal influence in regional 

circulation regimes.  The FKNMS is directly influenced by the Florida Current, the Gulf of Mexico 

Loop Current, inshore currents of the SW Florida Shelf (Shelf), discharge from the Everglades 

through the Shark River Slough, and by tidal exchange with both Florida Bay and Biscayne Bay 

(Lee et al. 1994, Lee et al. 2002).   

Advection from these external sources has significant effects on the physical, chemical, and 

biological composition of waters within the FKNMS, as may internal nutrient loading and 

freshwater runoff from the Keys themselves (Boyer and Jones 2002).  Water quality of the 
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FKNMS may be directly affected both by external nutrient transport and internal nutrient 

loading sources (Gibson et al. 2008).  Therefore, the geographical extent of the FKNMS is one of 

political/regulatory definition and should not be thought of as an enclosed ecosystem.  

A spatial framework for FKNMS water quality management was proposed on the basis of 

geographical variation of regional circulation patterns (Klein and Orlando, 1994).  The final 

implementation plan (EPA 1995) partitioned the FKNMS into 9 sub-areas which was collapsed 

to 7 for routine sampling (Fig. 1).  Station locations were developed using a stratified random 

design along onshore/offshore transects in sub-areas 5, 7, and 9 or within EMAP grid cells in 

sub-areas 1, 2, 4, and 6.   

Sub-area 1 (Tortugas) includes the Dry Tortugas National Park (DTNP) and surrounding 

waters and is most influenced by the Loop Current and Dry Tortugas Gyre.  Originally, there 

were no sampling sites located within the DTNP as it was outside the jurisdiction of NOAA.  

Upon request from the National Park Service, we initiated sampling at 5 sites within the DTNP 

boundary.  Sampling in the Dry Tortugas was finally halted since 2011 due to budget 

constraints. Sub-area 2 (Marquesas) includes the Marquesas Keys and a shallow sandy area 

between the Marquesas and Tortugas called the Quicksands.  Sub-area 4 (Backcountry) 

contains the shallow, hard-bottomed waters on the gulfside of the Lower Keys.  Sub-areas 2 and 

4 are both influenced by water moving south along the SW Shelf.  Sub-area 6 can be considered 

as part of western Florida Bay.  This area is referred to as the Sluiceway as it strongly influenced 

by transport from Florida Bay, SW Shelf, and Shark River Slough (Smith, 1994).  Sub-areas 5 

(Lower Keys), 7 (Middle Keys), and 9 (Upper Keys) include the inshore, Hawk Channel, and reef 

tract of the Atlantic side of the Florida Keys.  The Lower Keys are most influenced by cyclonic 

gyres spun off of the Florida Current, the Middle Keys by exchange with Florida Bay, while the 

Upper Keys are influenced by the Florida Current frontal eddies and to a certain extent by 

exchange with Biscayne Bay.  All three oceanside segments are also influenced by wind and 

tidally driven lateral Hawk Channel transport (Pitts, 1997).   

We have found that water quality monitoring programs composed of many sampling 

stations situated across a diverse hydroscape are often difficult to interpret due to the “can’t 

see the forest for the trees” problem (Boyer et al. 2000).  At each site, the many measured 

variables are independently analyzed, individually graphed, and separately summarized in 

tables.  This approach makes it difficult to see the larger, regional picture or to determine any 

associations among sites.  In order to gain a better understanding of the spatial patterns of 

water quality of the FKNMS, we attempted to reduce the complicated data matrix into fewer 

elements which would provide robust estimates of condition and connection.  To this end we 

developed an objective classification analysis procedure which grouped stations according to 

water quality similarity (Briceño et al. 2013, Fig. 2).   
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Figure 2:  Map of FKNMS showing segments derived from Factor and Cluster Analysis of biogeochemical 

data: OFF=Offshore; MAR=Marquesas; BKS=Back Shelf; BKB= Back Bay; LK= Lower Keys; MK= Middle 

Keys; UK= Upper Keys 

 

Although the original quarterly sampling of 155 stations was cut back to 112 (Fig. 3), it still 

provides a unique opportunity to explore the spatial component of water quality variability in 

the FKNMS, but eliminates the possibility of linking the Sanctuary’s water quality to external 

sources of variability. 
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Figure 3.  The SERC Water Quality Monitoring Network showing the distribution of fixed sampling 

stations within the FKNMS for 2015 sampling. 

 

 

2. Methods 

2.1. Field Sampling 

The period of record of this study was from March 1995 to December 2015 which included 

82 quarterly sampling events.  For this year, field measurements and grab samples were 

collected from 112 fixed stations within the FKNMS boundary (Fig. 3).  Depth profiles of 

temperature (°C), salinity (practical salinity scale), dissolved oxygen (DO, mg l-1), 

photosynthetically active radiation (PAR, µE m-2 s-1), chlorophyll a specific fluorescence (FSU), 

turbidity (NTU), depth as measured by pressure transducer (m), and density (σt, in kg m-3) were 

measured by CTD casts (Seabird SBE 19).  The CTD was equipped with internal RAM and 

operated in stand-alone mode at a sampling rate of 0.5 sec.  The vertical attenuation coefficient 

for downward irradiance (Kd, m-1) was calculated at 0.5 m intervals from PAR and depth using 

the standard exponential equation (Kirk 1994) and averaged over the station depth.  This was 

necessary due to periodic occurrence of optically distinct layers within the water column.  

During these events, Kd was reported for the upper layer.  To determine the extent of 

stratification we calculated the difference between surface and bottom density as delta Sigma-t 

(t, in kg m-3), where positive values denoted greater density of bottom water relative to the 

surface.  A t >1 is considered weakly stratified, while any instances >2 is strongly stratified.   

In the Backcountry area (Sub-area 4, Fig. 1) where it is too shallow to use a CTD, surface 

salinity and temperature were measured using a combination salinity-conductivity-

temperature-DO probe (YSI 650 MDS display-datalogger with YSI 6600V2 sonde).  DO was 

automatically corrected for salinity and temperature.  PAR was measured every 0.5 m using a 
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Li-Cor LI-1400 DataLogger equipped with a 4π spherical sensor (LI-193SB).  PAR data with depth 

was used to calculate Kd from in-air surface irradiance. 

Water was collected from approximately 0.25 m below the surface and at approximately 1 

m from the bottom with a Niskin bottle (General Oceanics) except in the Backcountry and 

Sluiceway where surface water was collected directly into sample bottles.  Duplicate, unfiltered 

water samples were dispensed into 3x sample rinsed 120 ml HDPE bottles for analysis of total 

constituents.  Duplicate water samples for dissolved nutrients were dispensed into 3x sample 

rinsed 150 ml syringes which were then filtered by hand through 25 mm glass fiber filters 

(Whatman GF/F) into 3x sample rinsed 60 ml HDPE bottles.  The resulting wet filters, used for 

chlorophyll a (CHLA) analysis, were placed in 1.8 ml plastic centrifuge tubes to which 1.5 ml of 

90% acetone/water was added (Strickland and Parsons 1972).   

All samples were kept on ice in the dark during transport to the laboratory.  During 

overnight stays in the Lower Keys sampling, filtrates and filters (not total samples) were frozen 

until further analysis. 

 

2.2. Laboratory Analysis 

Samples were analyzed for ammonium (NH4
+), nitrate+nitrite (N+N), nitrite (NO2

-), total 

nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP), total organic carbon 

(TOC), silicate (SiO2), chlorophyll a (CHLA, µg l-1), and turbidity (NTU) using standard laboratory 

methods.  Dissolved nutrients were defined using Whatman GF/F filters with a nominal pore 

size of 0.8 µm.  A 60 ml sample was collected from a Niskin bottle using a syringe and filtered 

through a 25 mm Whatman GF/F filter.  The filtrate was collected in a 60 ml high density 

polyethylene (HDPE) bottle and the filter stored in a vial with 90% acetone for extraction of 

CHLA.  An additional 120 ml sample was collected directly from the Niskin bottle for analysis of 

TN, TP, and turbidity.  

NH4
+ was analyzed by the indophenol method (Koroleff 1983).  NO2

- was analyzed using the 

diazo method and N+N was measured as nitrite after cadmium reduction (Grassoff 1983a,b).  

The ascorbic acid/molybdate method was used to determine SRP (Murphy and Riley 1962).  

High temperature combustion and high temperature digestion were used to measure TN 

(Frankovich and Jones 1998; Walsh 1989) and TP (Solórzano and Sharp 1980), respectively.  TOC 

was determined using the high temperature combustion method of Sugimura and Suzuki 

(1988).  Silicate was measured using the heteropoly blue method (APHA 1995).  Samples were 

analyzed for CHLA content by spectrofluorometry of acetone extracts (Yentsch and Menzel 

1963).  Protocols are presented in EPA (1993) and elsewhere as noted.  All elemental ratios 

discussed were calculated on a molar basis.  DO saturation in the water column (DOsat as %) was 

calculated using the equations of Garcia and Gordon (1992). Some parameters were not 

measured directly but calculated by difference.  Nitrate (NO3
-) was calculated as N+N - NO2

-; 

total dissolved inorganic nitrogen (DIN) as N+N + NH4
+., and total organic nitrogen (TON) as TN - 

DIN.  All variables are reported in ppm (mg l-1) unless otherwise noted. 



 15 

In accordance with EPA policy, the FKNMS water quality monitoring program adhered to 

existing rules and regulations governing QA and QC procedures as described in EPA guidance 

documents.  The FIU-SERC Nutrient Laboratory maintained NELAP certification during this 

project. 

 

2.3. Box and Whisker Plots 

Typically, water quality data are skewed to the left (low concentrations and below detects) 

resulting in non-normal distributions.  Therefore it is more appropriate to use the median as the 

measure of central tendency because the mean is inflated by high outliers (Christian et al. 

1991).  Data distributions of water quality variables are reported as box-and-whiskers plots.  

The box-and-whisker plot is a powerful statistic as it shows the median, range, the data 

distribution as well as serving as a graphical, nonparametric ANOVA.  The center horizontal line 

of the box is the median of the data, the top and bottom of the box are the 25th and 75th 

percentiles (quartiles), and the ends of the whiskers are the 5th and 95th percentiles.  The notch 

in the box is the 95% confidence interval of the median.  When notches between boxes do not 

overlap, the medians are considered significantly different.  Outliers (<5th and >95th percentiles) 

were excluded from the graphs to reduce visual compression.  Differences in variables were 

also tested between groups using the Wilcoxon Ranked Sign test (comparable to a t-test) and 

among groups by the Kruskall-Wallace test (ANOVA) with significance set at p<0.05.   

 

2.4. Contour Maps 

In an effort to elucidate the contribution of external factors to the water quality of the 

FKNMS and to visualize gradients in water quality over the region, we combined Keys and Shelf 

data into contour maps (ArcView, ESRI) of specific water quality variables until 2011, when 

monitoring of the Shelf was dropped.  We used  kriging as the geostatistical algorithm because 

it is designed to minimize the error variance while at the same time maintaining point pattern 

continuity (Isaaks & Srivastava, 1989).  Kriging is a general method of statistical interpolation 

that can be applied within any discipline to sampled data from random fields that satisfy the 

appropriate mathematical assumptions.  Kriging is a global approach which uses standard 

geostatistics to determine the "distance" of influence around each point and the "clustering" of 

similar samples sites (autocorrelation).  Therefore, unlike the inverse distance procedure, 

kriging will not produce valleys in the contour between neighboring points of similar value. 

 

2.5. Trend Analysis 

Temporal trends (unit yr-1) were quantified by simple linear regression.  Trend graphs were 

drawn only for those variables for which 15% of individual station trends were significant 

(p<0.10). In an effort to show trend impact, significant trends are reported as the total change 

in concentration over the period of record.  
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3. Results 

3.1. Overall Water Quality of the FKNMS in 2015 

Summary statistics for all water quality variables from calendar year 2015 sampling events 

are shown as number of samples (n), minimum, maximum, and median (Table 1).  Overall, the 

region remains warm and euhaline with a median temperature of 26.4 °C and salinity of 36.3; 

dissolved oxygen saturation of the water column (DOsat) was relatively high at 97.1%.  On this 

coarse scale, the FKNMS exhibited very good water quality with median NO3
-, NH4

+, TP, and SiO2 

concentrations of 0.0028, 0.0049, 0.0057, and 0.008 mg l-1, respectively.  NH4
+ was the 

dominant DIN species in almost all of the samples (~70%).  However, DIN comprised a small 

fraction (7.5%) of the TN pool (0.115 mg l-1) with TON being the bulk (median 0.107 mg l-1).  SRP 

concentrations were low (median 0.0011 mg l-1) and comprised 19% of the TP pool (0.0057 mg 

l-1).  CHLA concentrations were also low overall, 0.28 µg l-1, but ranged from 0.07 to 8.76 µg l-1.  

TOC was 1. 46 mg l-1; a value higher than open ocean levels but consistent with coastal areas.   

Median turbidity was higher than usual (0.31 NTU) compated to last year’s median of 0.06 

NTU.  Interestingly, Kd was still low (0.225 m-1), slightly up from last year.  Overall, 33.7% of 

incident light (Io) reached the bottom, which is down from last year’s 38.1%.  Molar ratios of N 

to P suggested a general P limitation of the water column (median TN:TP = 45.2) but this must 

be tempered by the fact that much of the TN may not be bioavailable.   
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Table 1.  Summary statistics for each water quality variable in the FKNMS for the calendar year 

2015.  Data are summarized as number of samples (n), minimum value (Min.), maximum value 

(Max.), and Median.  

 

Variable Depth n Min. Max. Median 

NO3
- Surface 407 0.0001 0.0175 0.0028 

(mg l-1) Bottom 279 0.0001 0.0163 0.0027 

NO2
- Surface 407 0.0001 0.0027 0.0004 

(mg l-1) Bottom 279 0.0001 0.0020 0.0004 

NH4
+ Surface 407 0.0004 0.0240 0.0049 

(mg l-1) Bottom 279 0.0008 0.0273 0.0047 

TN Surface 407 0.0081 0.3930 0.1154 

(mg l-1) Bottom 279 0.0001 0.2576 0.0986 

DIN Surface 407 0.0018 0.0341 0.0087 

(mg l-1) Bottom 279 0.0016 0.0297 0.0085 

TON Surface 407 0.0001 0.3727 0.1067 

(mg l-1) Bottom 279 0.0001 0.2529 0.0899 

TP Surface 407 0.0009 0.0241 0.0057 

(mg l-1) Bottom 279 0.0012 0.0218 0.0054 

SRP Surface 406 0.0001 0.0133 0.0011 

(mg l-1) Bottom 279 0.0001 0.0077 0.0010 

CHLA (µg l-1) Surface 406 0.07 8.76 0.28 

TOC Surface 407 0.78 4.93 1.46 

(mg l-1) Bottom 279 0.75 2.96 1.29 

SiO2 Surface 407 0.0001 0.937 0.008 

(mg l-1) Bottom 279 0.0001 0.487 0.005 

Turbidity Surface 390 0.01 6.09 0.31 

(NTU) Bottom 265 0.01 5.18 0.30 

Salinity Surface 401 32.22 39.38 36.31 

  Bottom 401 32.22 39.36 36.41 

Temp. Surface 401 22.64 32.97 26.43 

(°C) Bottom 401 22.61 32.98 26.18 

DO Surface 401 5.73 9.09 6.49 

(mg l-1) Bottom 401 5.84 9.16 6.55 

Kd   402 0.001 1.102 0.225 

TN:TP Surface 407 2.9 362.5 45.2 

Si:DIN Surface 407 0.0 47.8 0.5 

DO Saturation Surface 401 85.1 135.2 97.1 

(%) Bottom 401 88.2 136.1 97.5 

Io (%) Bottom 400 1.3 99.1 33.7 

t   401 -0.028 2.118 0.017 
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The recently implemented stations close to shore were not used for this classification.  In 

their short life-span they have displayed a common tendency to be nutrient-enriched and at the 

lower salinity extreme, as compared to the rest of the sites.  Hence, we have grouped these ten 

stations as an additional class (SHORE), not for mapping purposes at this time, but for 

comparison and exploration of human impacts on water quality. 

Most differences among segments were rather subtle, BKB, BKS and SHORE are the most 

nutrient-enriched segments while the UK and OFF were at the less-enriched extreme.  The BKB 

zone was composed primarily of stations located inside and north of the Lower Keys and 

extending to the Sluiceway (Fig. 4).  This class was highest in nutrients, especially TN, TON, TOC, 

SiO2, TP, TOC and DIN, leading to high CHLA and turbidity.  In the shallow BKB sites we expect 

that either nutrient transport from the SW Shelf and south Florida Bay and/or benthic flux of 

nutrients might be more important than anthropogenic loading.  The BKB also had highest 

salinity and DO, relative to other regions.  The BKS is located to the north of BKB and includes 

sites most influenced by water moving south from the SW Florida Shelf and exchange with BKB 

waters.  It was highest in TP and relatively high in TN, TON, SRP, SiO2, TOC, DO, turbidity and 

salinity. 

The MAR zone was made up of sites between Key West and Rebecca Shoals.  This is an area 

of relatively shallow water with complex circulation pattern which separates the SW Shelf from 

the Atlantic Ocean.  The water quality of MAR is very low in TOC and relatively low in all N 

species and SiO2, but displays relatively high TP and SRP, and the highest values and the largest 

range of variability in CHLA and turbidity, perhaps linked to shallow waters and sediment re-

suspension. 

There is a general nutrient gradient from higher levels at LK to MK to the UK, the less 

enriched one.  Additionally, these three segments, closer to the islands, have higher nutrient 

levels than those offshore (OFF), underscoring the impact on water quality from the Keys and 

the strong control exerted by the Loop and Florida currents.  The LK, MK and UK  included the 

innermost sites of the Keys, which are shallow, closest to any possible anthropogenic nutrient 

sources, and typically more turbid than reef zones (OFF) from beach wave re-suspension.  

These sites were slightly elevated in DIN, TN, TON, SiO2 and TOC relative to the OFF sites. 

The OFF zone was made up of all Hawk Channel and reef tract sites of the mainland Keys 

and all sites west of Rebecca Shoal, including those in Dry Tortugas National Park.  This zone 

had very low nutrients, TP, CHLA, and turbidity. 
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Figure 4.  Box-and-whisker plots of surface samples showing median and distribution of water quality 

parameters as stratified by water quality cluster.  Notches in the box that do not overlap with 

another are considered significantly different. 
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3.2. Trend Analysis 

We must always keep in mind that trend analysis is limited to the window of observation; 

trends change with continued data collection.  In addition, water quality in the Keys is largely 

externally-driven and may fluctuate according to climatic or disturbance events of longer 

periodicity.  Trends may even reverse during a period of record.  Examples of this are shown in 

Figures 5-7, where trends can be seen to be 1) monotonic, 2) episodically driven, and 3) 

reversing with change point.  

 

 
Figure 5.  Monotonic trend in TOC at Carysfort Reef. 

 

 
Figure 6.  Episodically (hurricane) driven pattern in NH4

+ at The Elbow. 

 

 
Figure 7.  Reversing trend in DO at Carysfort Reef. 

 

Least squares regressions for each water quality variable were calculated for the 20 year 

period of record.  Only slopes having significant trends (p < 0.10) in ppm yr-1, or as noted were 

reported; non-significant trends were coded as slope = 0.  Some of the slopes are very small, 
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but to get an idea of total change over the period of record, the annual slopes were multiplied 

by number of years samples and plotted as contour maps of Change for 20 year period (Fig. 8-

18).  Only those variables with >20% of sampling sites having significant slopes were displayed.   

Surface DO has increased in all areas of the FKNMS (Fig. 8).  Greatest increases in surface 

DO were generally observed on the Atlantic side of the Keys and in some inshore areas on the 

Atlantic side.  Bottom DO trends showed a similar pattern as surface with more increased DO 

than surface sites (Fig. 9).  Increased DO is beneficial for animal life.   

 

 
Figure 8.  Total change in DO of surface waters for 20 year period calculated from significant trends. 

 

 
Figure 9.  Total change in DO of bottom waters for 20 year period calculated from significant trends. 

 

Water column turbidity (cloudiness) declined throughout the FKNMS (a beneficial result) 

during the 20 year period (Fig 10).  There was no significant change in turbidity in bottom 

waters.  The largest declines in turbidity occurred in western Florida Bay and Marquesas.   

 



 22 

 
Figure 10.  Total change in surface turbidity for 20 year period calculated from significant trends. 

 

Although Kd did not show significant trend, decreased turbidity increased the amount of 

light reaching the bottom (Io in %). Io increased mostly at reef sites throughout the Keys (Fig. 

11).  More light on the bottom is beneficial to corals, seagrass, and algae.  Interestingly, the 

Backcountry area of the lower Keys experienced increases in Kd which lead to corresponding 

decreases in Io and therefore less light on the bottom. 

 

 
Figure 11.  Total change in bottom Io for 20 year period calculated from significant trends. 

 

No significant trends in TP were observed, however very small increases in SRP, up to 1.5 

ppb over 20 years, were observed most surface waters (Fig. 12).  Concentrations of SRP are 

generally an order of magnitude lower than TP and usually below kinetic uptake threshold of 

phytoplankton, meaning not all SRP is accessible.   

 



 23 

 
Figure 12.  Total change in SRP in surface waters for 20 year period calculated from significant trends. 

 

Clearly, there have been some changes in the FKNMS water quality over time, but the 

largest sustained monotonic trend has been the decline in surface TOC concentration.  There 

were strong declines in surface TOC throughout the FKNMS, especially in the Backcountry and 

the Marquesas (Fig. 13).  This is part of a regional trend in TOC observed on the SW Shelf, 

Florida Bay, and the mangrove estuaries draining the Everglades.  This decline could be 

considered favorable given that TOC corresponds with CDOM (an important driver of water 

color and light penetration), but could also be an indication of decreased upstream primary 

production. 

 

 
Figure 13.  Total change in TOC in surface waters for 20 year period calculated from significant trends. 
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4. Overall Trends 
Several important results have been realized from this monitoring project.  First we 

documented elevated nutrient concentrations (DIN, TN, TP, and SiO2) in waters close to shore 

along the Keys, and their corresponding responses from the system, such as higher 

phytoplankton biomass (CHLA), turbidity, as well as lower salinity and DO in the water column 

(Figure 14).  These changes, associated to human impact, have become even more obvious by 

the addition of 10 stations (# 500 to #509) located very close to shore, sampled since Nov 2011 

(SHORE). 

Clearly, there have been some changes in the FKNMS water quality over time, and some 

sustained monotonic trends have been observed, however, we must always keep in mind that 

trend analysis is limited to the window of observation.  Trends may change, or even reverse, 

with additional data collection.  This brings up an important point that, when looking at what 

are perceived to be local trends, we find that they may occur across the whole region at more 

subtle levels.  This spatial autocorrelation in water quality is an inherent property of highly 

interconnected systems such as coastal and estuarine ecosystems driven by similar hydrological 

and climate forcing.  It is clear that trends observed inside the FKNMS are influenced by 

regional conditions outside the Sanctuary boundaries.  
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Figure 14: Nutrient and response changes along transect from close-to-shore sites to the reef-track  

 

4.1. Strategic Targets 

The EPA developed Strategic Targets for the Water Quality Monitoring Project which state 

that beginning in 2008, annually maintain the overall water quality of the near shore and 

coastal waters of the FKNMS according to 2005 baseline.  For reef sites, chlorophyll a should be 

less than or equal to 0.2 micrograms/l and the vertical attenuation coefficient for downward 

irradiance (Kd, i.e., light attenuation) should be less than or equal to 0.13 per meter.  For all 

monitoring sites in FKNMS, dissolved inorganic nitrogen should be less than or equal to 0.75 

micromolar (0.010 milligrams/l) and total phosphorus should be less than or equal to 0.2 

micromolar (0.0077 milligrams/l).  Table 2 shows the number of sites and percentage of total 

sites exceeding these Strategic Targets for 2014. 
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Table 1: EPA WQPP WQ Targets derived from 1995-2005 Baseline 
 
For reef stations, chlorophyll less than or equal to 0.35 micrograms liter-1 (ug l-1) and vertical attenuation coefficient for downward 
irradiance (Kd, i.e., light attenuation) less than or equal to 0.20 per meter; for all stations in the FKNMS, dissolved inorganic nitrogen 
less than or equal to 0.75 micromolar and total phosphorus less than or equal to 0.25 micromolar; water quality within these limits is 
considered essential to promote coral growth and overall health.  The “number of samples” exceeding these targets is tracked and 
reported annually.  Values in green are those years with % compliance greater than 1995-2005 baseline.  Values in yellow are those 
years with % compliance less than 1995-2005 baseline. 
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5. 2015 Condition Discussion 
Water quality is a subjective measure of ecosystem well-being.  Aside from the physical-

chemical composition of the water there is also a human perceptual element which varies 

according to our intents for use (Kruczyinski and McManus 2002).  Distinguishing internal from 

external sources of nutrients in the FKNMS is a difficult task.  The finer discrimination of internal 

sources into natural and anthropogenic inputs is even more difficult.  Most of the important 

anthropogenic inputs are regulated and most likely controlled by management activities, 

however, recent studies have shown that nutrients from shallow sewage injection wells may be 

leaking into nearshore surface waters (Corbett et al. 1999; Shinn 1999a, 1999b; Paul et al. 1995, 

1997; Reich et al. 2001; Briceño et al. 2015).  Advective transport of nutrients through the 

FKNMS was not measured by the existing fixed sampling plan.  However, nutrient distribution 

patterns may be compared to the regional circulation regimes in an effort to visualize the 

contribution of external sources and advective transport to internal water quality of the FKNMS 

(Boyer and Jones 2002).   

Circulation in coastal South Florida is dominated by regional currents such as the Loop 

Current, Florida Current, and Tortugas Gyre and by local transport via Hawk Channel and along-

shore Shelf movements (Klein and Orlando 1994).  Regional currents may influence water 

quality over large areas by the advection of external surface water masses into and through the 

FKNMS (Lee et al. 1994, Lee et al. 2002) and by the intrusion of deep offshore ocean waters 

onto the reef tract as internal bores (Leichter et al. 1996).  Local currents become more 

important in the mixing and transport of freshwater and nutrients from terrestrial sources 

(Smith 1994; Pitts 1997, Gibson et al. 2008).   

Spatial patterns of salinity in coastal South Florida show these major sources of freshwater 

to have more than just local impacts (Fig. 15).  In Biscayne Bay, freshwater is released through 

the canal system operated by the South Florida Water Management District; the impact may 

sometimes be seen to affect northern Key Largo by causing episodic depressions in salinity at 

alongshore sites.  Freshwater entering NE Florida Bay via overland flow from Taylor Slough and 

C-111 basin mix in a SW direction.  The extent of influence of freshwater from Florida Bay on 

alongshore salinity in the Keys is less than that of Biscayne Bay but it is more episodic.  

Transport of low salinity water from Florida Bay does not affect the Middle Keys sites enough to 

depress the median salinity in this region but is manifested as increased variability.  The 

opposite also holds true; hypersaline waters from Florida Bay may be transported through the 

Sluiceway to inshore sites in the Middle Keys. 

On the west coast, the large influence of the Shark River Slough, which drains the bulk of 

the Everglades and exits through the Whitewater Bay - Ten Thousand Islands mangrove 

complex, clearly impacts the Shelf waters.  The mixing of Shelf waters with the Gulf of Mexico 

produces a salinity gradient in a SW direction which extends out to Key West.  This freshwater 

source may sometimes affect the Backcountry because of its shallow nature but often follows a 

trajectory of entering western Florida Bay and exiting out through the channels in the Middle 
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Keys (Smith 1994).  This net transport of lower salinity water from mainland to reef in open 

channels through the Keys is observed as an increase in the range and variability of salinity 

rather than as a large depression in salinity.  All these forces have large influence on other 

water quality variables, especially DO (Fig. 16).  Lowest DO concentrations tend to develop 

inside the Backcountry during warmest months. 

In addition to surface currents there is evidence that internal tidal bores regularly impact 

the Key Largo reef tract (Leichter et al. 1996; Leichter and Miller 1999).  Internal bores are 

episodes of higher density, deep water intrusion onto the shallower shelf or reef tract.  

Depending on their energy, internal tidal bores can promote stratification of the water column 

or cause complete vertical mixing as a breaking internal wave of sub-thermocline water.   
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Figure 15.  Surface salinity distributions across the region during 2015.  
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Figure 16.  Surface dissolved oxygen distributions across the region during 2015.  
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Visualization of spatial patterns of NO3
- concentrations over South Florida waters provides 

an extended view of source gradients over the region (Fig. 17).  The oceanside transects off the 

uninhabited Upper Keys (off Biscayne Bay) exhibited the lowest alongshore NO3
- compared to 

the Middle and Lower Keys.  A similar pattern was observed in a previous transect survey from 

these areas (Szmant and Forrester 1996).  They also showed an inshore elevation of NO3
- 

relative to Hawk Channel and the reef tract which is also demonstrated for DIN in our previous 

analysis (Fig. 4). 

A distinct intensification of NO3
- occurs in the Backcountry region.  Part of this increase may 

due to local sources of NO3
-, i.e. septic systems and stormwater runoff around Big Pine Key 

(Lapointe and Clark 1992).  However, there is another area, the Snipe Keys, that also exhibits 

high NO3
- which is uninhabited by man, which rules out the premise of septic systems being the 

only source of NO3
- in this area.  It is important to note that the Backcountry area is very 

shallow (~0.5 m) and hydraulically isolated from the Shelf and Atlantic which results in its 

having a relatively long water residence time.  Elevated NO3
- concentrations may be partially 

due to simple evaporative concentration as is seen in locally elevated salinity values.  Another 

possibility is a contribution of benthic N2 fixation/nitrification in this very shallow area.   

The elevated DIN concentrations in the Backcountry are not easily explained.  We think that 

the high concentrations found there are due to a combination of anthropogenic loading, 

physical entrapment, and benthic N2 fixation.  The relative contribution of these potential 

sources is unknown.  Lapointe and Matzie (1996) have shown that stormwater and septic 

systems are responsible for increased DIN loading in and around Big Pine Key.  The effect of 

increased water residence time in DIN concentration is probably small.  Salinities in this area 

were only 1-2 higher than local seawater which resulted in a concentration effect of only 5-6%.   

Benthic N2 fixation may potentially be very important in the N budget of the Backcountry.  

Measured rates of N2 fixation in a Thalassia bed in Biscayne Bay, having very similar physical 

and chemical conditions, were 540 mol N m-2 d-1 (Capone and Taylor 1980).  Without the plant 

community N demand, one day of N2 fixation has the potential to generate a water column 

concentration of >0.014 ppm NH4
+ (0.5 m deep).  Much of this NH4

+ is probably nitrified and 

may help account for the elevated NO3
- concentrations observed in this area as well (Fig. 18).  

Clearly, N2 fixation may be a significant component of the N budget in the Backcountry and that 

it may be exported as DIN to the FKNMS in general. 
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Figure 17.  Surface nitrate distributions across the region during 2015.  
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Surface and bottom water concentrations are not always coincident.  Interestingly, in many 

cases for 2015 and other years, we observe elevated NO3
- in the bottom waters on the offshore 

reef tract (Fig. 18).  We attribute this to regular “upwelling” (actually internal tidal bores) of 

deep water onto the reef tract (Leichter et al. 2003).  This deep ocean water transport is a 

regular and persistent phenomenon which may deliver high nutrient waters to the offshore reef 

tract independent of any anthropogenic source.   

During the Fall 2015 sampling event, an extensive water mass north of the Middle and 

Lower Keys exhibited relatively high NO3
- concentrations.  As we have no measurements 

outside of the FKNMS, we cannot speculate as to its source on the SW Shelf.  
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Figure 18.  Bottom nitrate distributions across the region during 2015.  
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NH4
+ concentrations were distributed in a similar manner as NO3

- with highest levels 

occurring in the Backcountry (Fig. 19).  NH4
+ also showed additional similarities with NO3

- in its 

spatial distribution, being lowest in the Upper Keys and highest inshore relative to offshore.  

This pattern of decline offshore implies an onshore N source which is diluted with distance from 

land by low nutrient Atlantic Ocean waters. 

In many situations, independent water masses may be distinguished by difference in density 

(sigma-t, t) between surface and bottom (t, Fig. 20).  Since density is driven more by salinity 

than temperature, we do not always observe differences in t between surface and bottom 

during upwelling events.  However, decreased temperature of bottom waters from intrusion of 

deeper oceanic waters is clearly an indicator of increased NO3
-.  These upwelling events also 

affect other nutrient species such as NH4
+, TP, and SRP in these bottom waters as well.  
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Figure 19.  Surface ammonium distributions across the region during 2015.  
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Figure 20.  Surface and bottom density differences (t) across the region during 2015.  



 38 

Spatial patterns in TP in South Florida coastal waters are strongly driven by the west coast 

sources (Boyer and Briceño 2007, 2011).  A gradient in TP typically extends from the inshore 

waters of Whitewater Bay - Ten Thousand Islands mangrove complex out onto the Shelf and 

Tortugas.  Gradients also extend from western Florida Bay to the Middle/Lower Keys.  The 

spatial distribution of TP on the Shelf is driven by freshwater inputs from mangrove rivers and 

transport of Gulf of Mexico waters through the region.  No significant evidence of a 

groundwater source exists (Corbett et al. 2000).  Little can be concluded regarding TP 

distribution in the Sanctuary during 2015, except that the highest concentrations (between 

0.005 and 0.010 mg l-1 TP) preferentially occurred on the Bay side of the Keys, and were 

probably supplied by Shelf waters (Fig. 21).  Also, in winter 2015, deeper offshore waters may 

have contributed TP to shallower localities in the Upper Keys. 
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Figure 21.  Distributions of surface total phosphorus across the region during 2015.  



 40 

Concentrations of TOC (Fig. 22) and TN (Fig. 23) are similar in pattern of distribution across 

the South Florida coastal hydroscape but do not always correspond.  We believe this is due to 

differences in sources of dissolved organic matter.  Our past data from this area showed that 

concentrations of TOC and TN increased from Everglades headwaters through the mangrove 

zone and then decrease with distance offshore.  The high concentrations of TOC and TN in 

Florida Bay were due to a combination of terrestrial loading (Boyer and Jones, 1999), in situ 

production by seagrass and phytoplankton, and evaporative concentration (Fourqurean et al. 

1993, Boyer et al. 1997).   

Advection of Shelf and Florida Bay waters through the Sluiceway and passes accounted for 

this region and the inshore area of the Middle Keys as having highest TOC and TN of the 

FKNMS.  In fact, isolated high concentrations in Fig 22 and 23 correspond to the location of 

SHORE stations. Strong offshore gradients in TOC and TN existed for all mainland Keys 

segments.  The higher concentrations of TOC and TON in the inshore waters of the Keys imply a 

terrestrial source (anthropogenic) rather than simply benthic production and sediment re-

suspension.  Main Keys reef tract concentrations of TOC and TON were consistently the lowest 

in the FKNMS. 
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Figure 22.  Distributions of surface total organic carbon across the region during 2015.  



 42 

 
 

Figure 23.  Distributions of surface total nitrogen across the region during 2015.  
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Much emphasis has been placed on assessing the impact of episodic phytoplankton blooms 

in Florida Bay on the offshore reef tract environment.  In the past, spatial patterns of CHLA 

concentrations showed that the Shelf, NW Florida Bay, and the Ten Thousand Islands exhibited 

high levels of CHLA relative to the FKNMS. Also it showed that CHLA concentrations were 

typically higher in the Marquesas than in other areas of the FKNMS. When examined in context 

with the whole South Florida ecosystem, it is obvious that the Marquesas zone should be 

considered a continuum of the Shelf rather than a separate management entity.  This shallow 

sandy area (often called the Quicksands) acts as a physical mixing zone between the Shelf and 

the Atlantic Ocean and is a highly productive area for other biota as well as it encompasses the 

historically rich Tortugas shrimping grounds.  A CHLA concentration of 2 g l-1 in the water 

column of a reef tract might be considered an indication of eutrophication.  Conversely, a 

similar CHLA level in the Quicksands indicates a productive ecosystem which feeds a valuable 

shrimp fishery. In 2015 highest CHLA values preferentially occurred in the BKS and BKB and 

Marquesas areas, suggesting an important contribution from the Shelf (Fig. 24). 

The oceanside transects in the Upper Keys exhibited the lowest overall CHLA concentrations 

of any area in the FKNMS.  Transects off the Middle and Lower Keys showed that a drop in 

CHLA occurred at reef tract sites; there was no linear decline with distance from shore.  

Interestingly, CHLA concentrations in the Tortugas transect showed a similar pattern as the 

mainland Keys (Boyer and Briceño 2007).  Inshore and Hawk Channel CHLA concentrations 

among Middle Keys, Lower Keys and Tortugas sites were not significantly different.  As inshore 

CHLA concentrations in the Tortugas were similar to those in the Middle and Lower Keys, we 

see no evidence of persistent phytoplankton bloom transport from Florida Bay.  The recently 

installed SHORE stations show higher CHLA concentrations than those of LK, MD, UK and OFF 

stations underscoring the anthropogenic impact.  
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Figure 24. Distributions of surface chlorophyll a across the region during 2015.  
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Along with TP, turbidity is probably the second most important determinant of local 

ecosystem health (Fig. 25).  The fine grained, low density carbonate sediments in this area are 

easily re-suspended, rapidly transported, and have high light scattering potential.  Sustained 

high turbidity of the water column indirectly affects benthic community structure by decreasing 

light penetration, promoting seagrass extinction.  Large scale observations of turbidity clearly 

show patterns of onshore-offshore gradients which extend out onto the Shelf to the Marquesas 

(Stumpf et al. 1999).  Strong turbidity gradients have been observed on the Shelf but reef tract 

levels remain remarkably low regardless of inshore levels.  Elevated turbidity in the backcountry 

is most probably due to the shallow water column being easily re-suspended by wind and wave 

action.   

Light extinction (Kd) was highest alongshore and improved with distance from land.  This 

trend was expected as light extinction is related to water turbidity (Fig 26).  However, in Keys 

waters, CDOM may be a more prominent driver of light penetration.  For 2015, highest Kd was 

observed consistently in the Backcountry and nearshore areas. 
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Figure 25.  Distributions of surface turbidity across the region during 2015.  
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Figure 26.  Distributions of Light extinction across the region during 2015.  
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Surface SiO2 concentrations exhibited a pattern similar to salinity (Fig. 27).  The source of 

SiO2 in this geologic area of carbonate rock and sediments is from siliceous periphyton 

(diatoms) growing in the Shark River Slough, Taylor Slough, and C-111 basin watersheds.  Unlike 

the Mississippi River plume with CHLA concentrations of 76 g l-1 (Nelson and Dortch 1996), 

phytoplankton biomass on the Shelf (1-2 g l-1 CHLA) was not sufficient to account for the 

depletion of SiO2 in this area.  Therefore, SiO2 concentrations on the Shelf are depleted mostly 

by mixing (although we no longer have data from the Shelf), allowing SiO2 to be used as a semi-

conservative tracer of freshwater in this system (Ryther et al. 1967; Moore et al. 1986).   

In the Lower and Middle Keys, it is clear that the source of SiO2 to the nearshore Atlantic 

waters is through the Sluiceway and Backcountry (Fig. 27).  SiO2 concentrations near the coast 

were elevated relative to the reef tract with much higher concentrations occurring in the Lower 

and Middle Keys than the Upper Keys.  Our previous work indicates a significant relationship 

between SiO2 concentrations in the Sluiceways and Florida Bay. There is an interesting peak in 

SiO2 concentration in an area of the Sluiceway, which is densely covered with the seagrass, 

Syringodium (Fourqurean et al. 2002).  We are unsure as to the source but postulate that it may 

be due to benthic flux.  

The TN:TP ratio has been used as a relatively simple method of estimating potential nutrient 

limitation status of phytoplankton (Redfield 1967).  Most of the South Florida hydroscape has 

TN:TP values >> 16:1, indicating the potential for phytoplankton to be limited by P at these sites 

(Fig. 28).  However, most of the TN is not available to phytoplankton while much of the TP is 

labile.  Therefore, using the TN:TP ratio overestimates potential P limitation and should be 

recognized as such.   

Most of the FKNMS is routinely P limited using this metric.  Phosphorous limitation in 2015 

varies significantly with the seasons (Fig 28).  During winter the highest limitation occurs in BKS, 

BKB and portions of UK; during spring limitation is milder overall; summer time strong 

limitation occurs in Marquesas and LK and extending into BKB and BKS; finally, during the fall 

limitation prevails in the Sluiceways and UK. 
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Figure 27.  Distributions of surface silicate across the region during 2015.  
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Figure 28.  Distributions of surface TN:TP ratio across the region during FY2015.  
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6. Numeric Nutrient Criteria Development 
In order to gain a better understanding of the spatial patterns of water quality of the 

FKNMS, we attempted to reduce the complicated data matrix into fewer elements which would 

provide robust estimates of condition and connection.  To this end we developed an objective 

classification analysis procedure which grouped stations according to water quality similarity 

(Briceño et al. 2013, Fig. 29).   

 

 
Figure 29.   Map of FKNMS showing segments derived from Factor and Cluster Analysis of 
biogeochemical data: OFF=Offshore; MAR=Marquesas; BKS=Back Shelf; BKB= Back Bay; LK= Lower Keys; 
MK= Middle Keys; UK= Upper Keys 

 

This segmentation was proposed to EPA and FDEP for use in developing numeric nutrient 

criteria for FL estuaries and coastal waters.  The approach was adopted by FDEP as Eight Maps of 

FL Marine Nutrient Regions, https://www.flrules.org/Gateway/reference.asp?No=Ref-01215, 

dated Oct. 19, 2011.  The nutrient criteria for this region was subsequently developed using data 

from this Florida Keys Water Quality Monitoring Project and submitted to EPA in March 2013 as 

Implementation of FL Numeric Nutrient Standards, NNC_Implementation_3-11-13.pdf.  On June 

27, 2013, EPA approved 062713_epa_approval_nnc_implementation_document.pdf, FDEP Rule 

62.300 (19) F.A.C. which includes 62.302.532 Estuary-Specific Numeric Interpretations of the 

Narrative Nutrient Criterion (the Coastal Estuary Rule), 62_302_final.pdf.   

We believe that this accomplishment is an important achievement for a Federally-funded, 

University-operated water quality monitoring program and should be a model for future projects. 

https://www.flrules.org/Gateway/reference.asp?No=Ref-01215
http://www.dep.state.fl.us/secretary/news/2013/03/NNC_Implementation_3-11-13.pdf
http://www.dep.state.fl.us/water/wqssp/nutrients/docs/062713_epa_approval_nnc_implementation_document.pdf
http://www.dep.state.fl.us/water/wqssp/nutrients/docs/meetings/62_302_final.pdf
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The large scale of this monitoring program allowed us to assemble a much more holistic 

view of broad physical/chemical/biological interactions occurring over the South Florida 

hydroscape.  This confirms that rather than thinking of water quality monitoring as being a 

static, non-scientific pursuit it should be viewed as a tool for answering management questions 

and developing new scientific hypotheses.   

We continue to maintain a website (http://serc.fiu.edu/wqmnetwork/) where data and 

reports from the FKNMS is integrated with the other parts of the SERC water quality network 

(Florida Bay, Whitewater Bay, Biscayne Bay, Ten Thousand Islands, and SW Florida Shelf) are 

available. 
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