4-11-2014

Understanding Long-run Price Dispersion

Mario J. Crucini
Department of Economics, Vanderbilt University, VU Station B #351819, 2301 Vanderbilt Place, Nashville, TN 37235-1819, Mario.J.Crucini@Vanderbilt.edu

Hakan Yilmazkuday
Department of Economics, Florida International University, Miami, FL 33199, USA, hyilmazk@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/economics_wps

Recommended Citation
https://digitalcommons.fiu.edu/economics_wps/99

This work is brought to you for free and open access by the Department of Economics at FIU Digital Commons. It has been accepted for inclusion in Economics Research Working Paper Series by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Understanding Long-run Price Dispersion

Mario J. Crucini* and Hakan Yilmazkuday

April 11, 2014

Abstract

A unique panel of retail prices spanning 123 cities in 79 countries from 1990 to 2005 is used to uncover the novel properties of long-run international price dispersion. At the PPP level, almost all of price dispersion is attributed to unskilled wage dispersion. At the level of individual goods and services, the average contribution of these wages is significantly reduced, reflecting that good-specific sources of price dispersion, such as trade costs and good-specific markups, tend to average out across goods. At the LOP level, borders and distance contribute about equally to price dispersion that is rising in the distribution share.

Keywords: Real exchange rates, Purchasing Power Parity, Law of One Price, Dynamic panel

JEL Classification: E31, F31,D40

*Corresponding author: Mario J. Crucini, Department of Economics, Vanderbilt University, VU Station B #351819, 2301 Vanderbilt Place, Nashville, TN 37235-1819. Phone: (615)-322-7357, Fax: (615) 343-8495. mario.j.crucini@vanderbilt.edu
1 Introduction

The Law-of-One-Price is the theoretical proposition that, absent official and natural barriers to trade, international prices are equated in common currency units, and a laborer’s purchasing power (i.e., real wage) is determined only by their labor productivity. A stark empirical implication of this proposition is that the cross-country correlation between price levels and wage levels is zero. As is well known, this implication of goods market integration is grossly at odds with the data. The Penn Effect, in recognition of the ambitious work of Heston, Kravis, Lipsey, who developed the Penn World Tables, shows a strong positive correlation between international price levels and per capita income.

Figure 1 shows the microeconomic counterpart of this fact using the panel data of our study. Microeconomic in this context means the prices of individual goods and services across cities of the world, as opposed to aggregate price levels at the national level. Specifically, each point in the scatterplot is the price of an individual good or service in a particular city plotted against the hourly wage of domestic cleaning help in that particular city. Prices and wages have been averaged over the period 1990 to 2005 to eliminate transitory deviations associated with business cycles and exchange rate fluctuations. As far as we know, this is the first study to use time-averaged data to study long-run deviations from the LOP and Purchasing Power Parity. The points labeled with an asterisk are price levels computed as expenditure-weighted averages of the individual prices.

In Figure 1, the estimated line through the scatter of price levels has a slope of 0.52 and an R^2 value of 0.37. In words: a doubling of wages is associated with a 52 percent higher price level. This finding is typically associated with the seminal works of Harrod (1933), Balassa (1964), and Samuelson (1964); however, the HBS theory assumes that LOP holds for traded goods but not for non-traded goods. According to this view, called the classical dichotomy, there should be a horizontal line traced out by traded goods for which the LOP holds and a line with a slope of unity for non-traded goods. The trivial example is the hourly wage of domestic help itself, which produces a slope of one by recognizing that the market price of this non-traded service is, in fact, the hourly wage for unskilled labor. Figure 1, obviously, is not much more sympathetic to the classical dichotomy than it is to complete market integration.

1Specifically, there are 300 goods and services (up to missing observations) for each city and there are 123 cities in total. The prices and wages used to construct these time-averages are from the Economist Intelligence Unit (EIU) World Cost of Living Survey which spans 79 countries.

2The estimation is by geometric mean regression to consider for possible measurement errors in both the price and wage data. A common set of consumption expenditure weights are used for all cities. These consumption expenditure weights are taken from the PWT, averaged across all OECD nations.
To help resolve this puzzle, this paper estimates distribution and trade cost wedges using a trade model augmented with a retail distribution sector (developed in Crucini and Yilmazkuday, 2009). We have two sets of results, one for relative price levels (PPP) and the other at the level of individual goods (LOP). Regarding PPP, the variance of price levels for international city pairs is found to be almost entirely explained by international wage differences, 92% by our estimate. Both the absolute amount of price dispersion and the relative importance of wage differences falls when the sample is restricted to cities in countries at similar stages of development while the role of retail productivity increases. The contribution of cross-city wage differences falls to 8% when the sample is restricted to city pairs within the same country. It is important to keep in mind that the amount of price level dispersion across cities that are located in the same country is a trivial 3-5%; as such, a modest amount of wage or retail productivity variance goes a long way in terms of accounting for the lion’s share of the variance. The thrust of the PPP analysis is that when long run price level differences are consequential, the differences are attributable to the level of economic development, not traditional trade frictions.

The table turns dramatically in favor of borders and trade costs and away from wages and retail productivity, as explanatory factors, when the focus is LOP deviations. Pooling all international city pairs, the explanatory power of the HBS theory (wage dispersion) falls by a factor of three, to about 32%. Traditional theories of trade that emphasis distance and borders now account for the lion’s share of price dispersion, about 41%. City effects account for almost none of the international LOP variation. Essentially, this is because international LOP deviations are both large and idiosyncratic to the good once we condition on the wage level. The remainder is a residual term, which may reflect good and location-specific markups as well as other variables omitted from the model.

2 The Model

The model consists of an arbitrary number of cities, each inhabited by two representative agents. One representative agent is a manufacturer who specializes in the production of a single good and exports this good to all other cities of the world. The second representative agent is a retailer who imports all of the manufactured goods and makes the goods available in retail outlets in her city of operation. To import a good, the retailer must pay an iceberg shipping cost over the factory-gate price in the producer’s location. The shipping cost is hypothesized to be increasing in the distance shipped and may take a discrete jump if a national border is crossed. The retailing activity is labor intensive with the retailers allocating their non-leisure time across all of the goods they sell. Some
cities have more productive retailers than others which is captured by total-factor-productivity (TFP) at the retail level, specific to the city, common to all goods the retailer sells. Part of the TFP effect might be local public infrastructure and private capital, neither of which are modeled here.³

Turning to the details, the retailing technology for each good is Cobb-Douglas in retailer hours, \(N_{ij} \), and the quantity of the imported manufactured good, \(G_{ij} \), with TFP level, \(Z_j \):

\[
R_{ij} = Z_j N_{ij} \alpha_i G_{ij}^{1-\alpha_i} .
\]

While the production function is restricted to be common to all locations, it is very flexible across goods. It captures pure labor services (e.g., baby-sitting services) with \(\alpha_i \) equal to one and internet purchases (e.g., Amazon.com book purchases), \(\alpha_i \) equal to zero, and all points in between.

The retailer in city, \(j \), minimizes cost of each good, \(i \), by optimally choosing the two inputs needed to produce the good: i) the amount of the traded input, \(G_{ij} \), to import and ii) the fraction of her time devoted to the good, \(N_{ij} \):

\[
\min_{N_{ij}, G_{ij}} (W_j N_{ij} + Q_{ij} G_{ij})
\]

Note that the \(W_j \) reflects the single opportunity cost of time relevant to the problem, that of the retailer. The two constraints on this minimization problem are the production function, (1) and that total hours available in the period are exhausted between leisure hours and total time allocated to all retail goods.

The resulting retail price is a Cobb-Douglas aggregate of the price (inclusive of trade cost) that the retailer paid to acquire the traded input, \(Q_{ij} \), and the retailer’s opportunity cost of time, \(W_j \):

\[
P_{ij} = \frac{W_j^\alpha Q_{ij}^{1-\alpha_i}}{Z_j} .
\]

It is important to note that the weights on the two inputs are good specific. Not surprisingly, all retail prices decrease in proportion to total factor productivity in retailing, \(Z_j \) and increase in proportion to retail input prices, \(W_j \) and \(Q_{ij} \) (with the factor of proportionality being their respective cost shares).

The factory-gate price of the traded input is determined as follows. A manufacturer in each city operates a simple linear technology, \(Y_i = A_i N_i^m \), and maximizes profits from world-wide sales. She charges the same factory-gate price to all destination markets, \(Q_{ii} = \bar{W}_i / A_i \) where \(\bar{W}_i \) is the

³In an earlier version of the paper, Crucini and Yilmazkuday (2009), we included capital as a factor of production. The simpler formulation here focuses on aggregate retail efficiency, labor in the retail sector and trade costs. To the extent public and private infrastructure capital alter efficiency, these would be allocated to the TFP term.
manufacturing wage in city i and A_i is productivity in manufacturing. The complete equilibrium solution to the model is presented in a separate technical appendix (see Crucini and Yilmazkuday (2009)).

For the purposes of studying relative prices, the only remaining piece of information needed is the relationship between the factory gate price and the destination price. We assume a proportional, good and location-specific shipping cost: $Q_{ij} = (1 + \tau_{ij}) Q_{ii}$.

The prediction of this model for the common-currency relative price of good i in city j relative to city k is:

$$\frac{P_{ij}}{P_{ik}} = \frac{Z_k}{Z_j} \left(\frac{W_j}{W_k} \right)^{\alpha_i} \left(\frac{Q_{ij}}{Q_{ik}} \right)^{1-\alpha_i}. \quad (4)$$

Taking logs gives the object of interest, equation (1):

$$p_{ijk} = -z_{jk} + \alpha_i w_{jk} + (1 - \alpha_i) q_{ijk}$$

where $p_{ijk} = \log(P_{ij}/P_{ik})$, $z_{jk} = \log(Z_j/Z_k)$, $w_{jk} = \log(W_j/W_k)$, and $q_{ijk} = \log(Q_{ij}/Q_{ik})$.

3 The Estimation Approach

Taking the model to the data involves a number of empirical challenges. We have rich data with which to measure LOP deviations and reliable measures of wages across cities in our panel, but we lack both measures of retail productivity and micro-level data on traded input prices. This section describes the three-step approach taken to identify distribution shares, the α_i’s for each good, city-level retail productivities, the z_j’s, and trade costs between any city pair at the good level.

The first stage utilizes the available data on price and wages across cities to estimate a good-specific distribution share α_i, by regressing LOP deviations on the wage ratio:

$$p_{ijk} = \alpha_i w_{jk} + \theta_{ijk}, \quad (5)$$

where, according to the model, the residual is $\theta_{ijk} = -z_{jk} + (1 - \alpha_i) q_{ijk}$. The slope parameter in the relationship between prices and relative wages in the HBS scatterplot of Figure 1 is the empirical counterpart to α_i.

The parameter, α_i, is estimated by geometric mean regression (GMR). That is, we estimate the following two regressions:

$$p_{ijk} = \hat{\alpha}_i w_{jk} + \epsilon_{ijk}$$

$$w_{jk} = \hat{\gamma}_i p_{ijk} + \varepsilon_{ijk}.$$
The GMR estimate is the geometric average of the coefficient from the first regression and the inverse of the coefficient from the second regression, $\hat{G}_i = \sqrt{\hat{\alpha}_i/\hat{\gamma}_i}$. As described in Kennedy (2003), this estimator is consistent when the two variables have comparable measurement error variances relative to the variance of the true underlying economic variables.

The second stage regression uses the residuals from the first stage regression,

$$\hat{\theta}_{ijk} = p_{ijk} - \hat{G}_i w_{jk}$$

and pools all goods and bilateral city pairs to estimate city fixed-effects ($-z_{jk}$):

$$\hat{\theta}_{ijk} = -z_{jk} + \varphi_{ijk}$$

where $-z_{jk} \equiv -\mu_j + \mu_k$ is the retail productivity differential and the residual, $\varphi_{ijk} = (1 - \alpha_i) q_{ijk}$, represents the traded input cost ratio, which is assumed to be mean zero across goods, for each bilateral pair. Note that while the z's capture retail productivities under the assumption of perfect competition, they would also capture city-specific markups if retailers in each city have market power. Since we cannot separately identify retail productivity and retail markups, we will call z_j's (log) retail productivities simply to be consistent with our competitive equilibrium model of retailing and trade. Estimation at this stage is by OLS.

The third stage considers relative prices of traded inputs, q_{ijk}. To place some structure on these trade costs, consider the no-arbitrage condition for good i, across city pair j and k:

$$-\delta_i d_{jk} - \rho_i B_{jk} \leq q_{ijk} \leq \delta_i d_{jk} + \rho_i B_{jk}$$

(6)

where $\delta_i d_{jk} + \rho_i B_{jk}$ is the trade cost between city j and city k for good i; $d_{jk} > 0$ is the log distance between cities j and k; $\delta_i > 0$ is the elasticity of trade costs with respect to distance for traded good i, B_{jk} is a border dummy taking a value of 1 if cities k and j are in different countries (and 0 otherwise), and $\rho_i > 0$ is the logarithm of the additional cost of crossing the border between city j and k (if one exists) with traded-input i. While the inclusion of distance is to capture geographical barriers to trade, the inclusion of a border dummy is to capture official barriers to international trade. As is evident from the specification above, the border effect estimated here differs across goods, but is common to all border crossings.

Equation 6 is a standard arbitrage condition showing that arbitrage is profitable in the sense of shipping goods from city k to city j only if the price in city j is high enough relative to the price in city k to cover the arbitrage costs in that direction: $q_{ijk} > \delta_i d_{jk} + \rho_i B_{jk}$. Conversely, goods should be shipped from city j to city k when the price in city j is sufficiently low: $q_{ijk} > \delta_i d_{kj} + \rho_i B_{kj}$.

Note, the trade costs are estimated as $\hat{q}_{ijk} = \hat{\varphi}_{ijk} (1 - \hat{\alpha}_i)$.

4Note, the trade costs are estimated as $\hat{q}_{ijk} = \hat{\varphi}_{ijk} (1 - \hat{\alpha}_i)$.

6
Since the traded input cost ratios,

\((1 - \alpha_i) q_{ijk}\), are estimated by the \(\hat{\varphi}_{ijk}\)’s, the sign of \(\hat{\varphi}_{ijk}\) provides useful information on the profitable direction of arbitrage. Since trade costs measured by

\(\delta_i d_{jk} + \rho_i B_{jk}\) are positive, positive values of estimated \(\varphi_{ijk}\)’s will be associated with city \(j\) importing from city \(k\), and negative values of \(\varphi_{ijk}\)’s will be associated with city \(j\) exporting to city \(k\), according to our model. Thus, the direction-of-arbitrage indicator function \(I_{ijk}\) is set to a value of 1 or \(-1\) according to:

\[
I_{ijk} = \begin{cases}
1 & \text{if } \hat{\varphi}_{ijk} > 0 \text{ } j \text{ imports from } k \\
-1 & \text{if } \hat{\varphi}_{ijk} < 0 \text{ } k \text{ imports from } j
\end{cases}
\]

(7)

The importance of controlling for local distribution costs by using \(\hat{\varphi}_{ijk}\) rather than the real exchange rates themselves should be evident: if we did not do this, our indicator function would suggest that all goods are imported by rich nations from poor ones due to the lower price levels in poor countries at the retail level (recall Figure 1). Clearly the first and second stages of the regression are crucial prior steps since they remove the local distribution cost component.

Consider, now, choosing the variables, \(\kappa_{ijk}\) and \(\eta_{ijk}\), such that Equation 6 holds with equality:

\[-\delta_i d_{jk} - \rho_i B_{jk} - \kappa_{ijk} = q_{ijk} = \delta_i d_{jk} + \rho_i B_{jk} + \eta_{ijk} .\]

Note that given the sign conventions for these plug-in values, they satisfy \(\kappa_{ijk} \leq 0\) and \(\eta_{ijk} \leq 0\). By using the estimated sign conventions for these plug-in values, they satisfy \(\kappa_{ijk} \leq 0\) and \(\eta_{ijk} \leq 0\). By using the estimated sign conventions for these plug-in values, they satisfy \(\kappa_{ijk} \leq 0\) and \(\eta_{ijk} \leq 0\). By using the estimated sign conventions for these plug-in values, they satisfy \(\kappa_{ijk} \leq 0\) and \(\eta_{ijk} \leq 0\).

The two equalities can be combined in the following expression:

\[q_{ijk} = I_{ijk} (\delta_i d_{jk} + \rho_i B_{jk}) + c_i + \varepsilon_{ijk}\]

where \(\varepsilon_{ijk} = \hat{\tau}_{ikj}\eta_{ijk} + \hat{\tau}_{ijk}\kappa_{ijk} - c_i\). The presence of \(c_i\) is to ensure that \(E_{jk} (\varepsilon_{ijk}) = 0\). The indicator \(\hat{\tau}_{ij}\) takes a value of 1 if the direction of trade is from city \(k\) to city \(j\) (and 0 otherwise), \(\hat{\tau}_{ij}\) takes a value of \(-1\) if the direction of trade is from city \(j\) to city \(k\) (and 0 otherwise). The two indicators add up to the original one: \(I_{ijk} = \hat{\tau}_{ikj} + \hat{\tau}_{ijk}\). Using \(\hat{\varphi}_{ijk} = (1 - \hat{\alpha}_i) q_{ijk}\) (the fitted residuals from the second stage regression) and estimated \(\hat{\alpha}_i\)’s from the first stage regression: \(\hat{q}_{ijk} = \hat{\varphi}_{ijk}/ (1 - \hat{\alpha}_i)\). Thus, all the variables necessary to estimate equation 8 are available: the estimated relative input cost, \(\hat{q}_{ijk}\), the direction of trade indicator, \(I_{ijk}\), greater circle distance and border dummies (\(d_{jk}\) and \(B_{jk}\)).

Although we have confidence about what the good-specific intercept and residuals \((c_i + \varepsilon_{ijk})\) do not represent, namely relative distribution costs (wage and retail productivity components), border-related costs, or distance-related costs, there are a number of plausible alternative explanations for what they do represent. The sources of these deviations from LOP unexplained by the model include: measurement error in retail prices, deviations from LOP that are below the threshold arbitrage value, trade costs that do not depend on distance or borders (e.g., trade finance) and markups specific to goods rather than common to bilateral locations.
4 The Data

We use city-level data on retail prices, wages, and the greater-circle distance in our empirical work. The prices and wages are from the World Cost of Living Survey conducted by the Economist Intelligence Unit (EIU). The surveys took place in 123 cities, located in 79 countries. The vast majority of the cities in the survey are national capitals and since urban areas are typically densely populated with higher per capita income than rural areas, these cities account for a significant fraction of global consumption and production; they are also typically major ports and centralized trading locations (see Figure 2). The larger number of cities than countries is due to the fact that the survey includes multiple cities in a few countries. Noteworthy are the 16 U.S. cities included in the survey; the next largest number of cities surveyed equals 5 in Australia, China and Germany. Our sample is annual from 1990 to 2005. Up to data availability for particular years and cities, the number of goods and services surveyed by EIU staff is 300. Each price observation is collected from the same retail outlet over time. Examples of goods found in the survey are: Butter (500 grams), Compact disc album, Light bulbs (two, 60 watts). Typical examples of services are: Dry cleaning, Mans suit (standard high-street outlet), baby-sitters rate per hour (average), Hilton-type hotel, single room, one night including breakfast (average).

Let $P_{ij,t}$ be the price of good i, in city j and year t in U.S. dollars. The object of interest is the long-run bilateral price deviation across city pair j and k, computed as the time-averaged log-relative price:

$$p_{ijk} \equiv T^{-1} \sum_t p_{ijk,t}$$

where $p_{ijk,t} \equiv \log \left(\frac{P_{ij,t}}{P_{ik,t}} \right)$.

To gain an appreciation of the relative importance of long-run price dispersion compared to time series price variation, Figure 3 presents kernel density estimates of relative prices. The solid lines are the distributions of the time-averaged prices, p_{ijk}, while the dashed lines are the distributions of the annual deviations of relative prices from these long-run levels, $p_{ijk,t} - p_{ijk}$. The two charts on the left are distributions for U.S. city pairs and the two charts on the right are all international cross-border city pairs. The charts in the top row include only non-traded goods prices while the charts in the bottom row include only traded goods prices.

If the LOP held always and everywhere, all the distributions would be degenerate at zero. Such a situation would describe a world of frictionless trade in goods markets and instantaneous arbitrage. Given the continuous and often large movements of nominal exchange rates and what is known about the infrequency of local currency price changes, it is not surprising that the dashed lines reveal transitory deviations of relative prices from their long-run means. What is very surprising
is the distribution of the long-run means themselves. In each case, with the possible exception of traded goods across U.S. cities, the dispersion of the long-run price distribution is greater than the variation of the time series deviations around these long-run means. Put differently, the time series movements seem less puzzling in light of the size of the long-run deviations. This motivates our focus on estimating the sources of long-run relative price deviations.

Table 1 presents summary statistics related to the data in Figure 3. The least amount of price dispersion is found in U.S. traded goods, 0.29 and the greatest amount is found in the case of non-traded goods involving international border crossings, 1.07. Remarkably, non-traded goods in the U.S. actually have less price dispersion than do traded goods internationally, 0.54 compared to 0.68. Inter-quartile differences yield similar measures of price dispersion. As originally discovered by Crucini and Telmer (2012), time series variation is typically less than the long-run variance, with the possible exception of traded goods across U.S. cities, and even in this case, one of the two measures (inter-quartile difference) also gives a ranking consistent with the broader samples. Notice also that the distinction between traded and non-traded goods is obvious in the long-run measure. This contrasts with the existing international finance literature where the time series variance of non-traded and traded real exchange rates are found to be very comparable (Engel (1999) and Crucini and Landry (2012)).

The remaining data utilized are wages, measures of distribution costs and distance. Directly measuring trade costs is a significant challenge in the literature. Hummels (2001) provides the most comprehensive estimates of sectoral trade costs using import unit values, a more direct method than employed here. Unfortunately, these estimates are available for a very limited number of countries and are more aggregated than our retail price data. Instead, we follow the gravity literature in trade and use the greater circle distance between cities in the EIU sample to estimate trade costs in LOP deviations at the retail level. The implied trade costs are consistent with Hummels estimates.

The wage measure is hourly rate for domestic cleaning help (average) from the EIU survey. This wage measure is chosen for a number of reasons: (i) it is city-specific, consistent with our retail prices; ii) it spans the entire 1990-2005 sample period; (iii) the number of missing observations is substantially lower than the alternative available wage series in the EIU survey (i.e., only 269 missing observations out of 7,503 city pairs, less than 4% of the sample), and (iv) it has a high cross-sectional correlation with alternative source of wage data at the country level.

Sectoral U.S. NIPA data and U.S. input-output tables are used to cross-validate the distribution share measures estimated from our regression model. Our model recovers close to 300 good-specific distribution shares while the U.S. data provide 57 sectoral distribution shares and the input-output data span 33 sectors. The NIPA shares are computed as the value the producers receive relative
to the value consumers pay for the output of a particular sector. For the typical traded good, the distribution margin computed using the consumer value less the producer value relative to the consumer value is about 50%. That is, the retail price is about twice the producer price. However, for services, the same NIPA data would produce an estimate of the distribution margin close to zero. Consider a visit to the doctor’s office to receive an expensive vaccine injection by a nurse. Because of the arms length nature of the transaction, it appears as though what the consumer pays, the producer gets. Most existing studies record the distribution margin to be zero in these situations. However, the economic concept that the distribution margin is intended to capture in our model is the distinction between retail prices and traded inputs. The goal is to treat the labor services of the nurse at the doctor’s office in a consistent manner with the labor services of the salesperson at Walmart. To our knowledge, this issue has not been dealt with in the existing literature because the focus has been mostly on traded goods.\footnote{See, for example, Burstein, Neves and Rebelo (2003). Following a conversation between Crucini and Rebelo, the distribution margin in Burstein, Eichenbaum and Rebelo (2005, 2007) makes an approximate correction for this effect.} Since the CPI consists of a large and growing fraction of services, measuring the distribution share for the service sector is an important facet of our work.

5 The Results

This section reports our findings, beginning with a careful review of the parameter estimates obtained by the three-stage regression approach using the full sample of international cities. Next, the implications of these estimates for geographic price dispersion at the good level (i.e., deviations from LOP) are reported using variance decompositions. Results that serve to contrast heterogeneity across goods and the role of national borders are highlighted. Finally, the LOP deviations are aggregated and a variance decomposition of PPP is conducted.

5.1 Parameter Estimates

The distribution share of each good α_i is estimated by the first-stage regression using the GMR estimator described in the previous section. The mean $\hat{\alpha}_i$ estimate is 0.48, while the median adjusted R^2 of the first-stage regression is 0.34 (both taken across goods). Recall that using price levels computed from the same data and the same wage measure (Figure 1), the slope coefficient was 0.52 and the R^2 was 0.37. As we shall see below, the higher slope coefficient in the aggregate for PPP is to be expected since, according to the model, it represents a consumption-expenditure-weighted average of the microeconomic distribution shares. Since non-traded goods tend to carry the largest
consumption shares and involve more distribution costs (non-traded inputs), it is expected that the PPP slope exceeds the simple average LOP slope in the cross-section.

Given that a considerable number of variables implied by our theory that are omitted in the first stage regression, it is natural to ask how our distribution share estimates compare to distribution shares in the U.S. NIPA accounts and input-output tables. Since the latter are more aggregated than our estimates, we average our good-level estimates within each NIPA sector. Table 2 compares our microeconomic estimates to the more aggregated NIPA values at six points in the distribution. The median distribution share is estimated to be 0.45 compared to 0.41 using US NIPA data. The estimated values match remarkably closely throughout the distribution except at the very high-end of the distribution: at the third quartile the estimated distribution share is 0.55 compared to 0.75 in the US NIPA.

In summary, our estimates are broadly consistent with direct U.S. NIPA measures, but our estimates are preferred in the context of our study for three reasons. First, they are good specific allowing our subsequent analysis and variance decompositions to exploit the richness of our micro-price data. Second, the prices are consistent with the wage data since both are taken from the same EIU survey. By consistent, we mean not averaged across occupations and covering the same 123 cities as the price survey. Third, the U.S. distribution shares are not necessarily representative of those in other nations. Our estimates are literally global estimates.

The second stage of the estimation process recovers the retail productivity of each city \(Z_j\) and yields a median adjusted \(R^2\) of 0.40. Table 3 provides summary statistics for the \(Z_j\)’s, which are all statistically significant at 5% level. The mean and median are not informative because they reflect an arbitrary choice of units in which to measure productivity. What is interesting are the large differences in productivity across cities, the third quartile city is 65% more productive than the first quartile city. In terms of the retail sector, the most productive city is 6.6 \((3.32/0.50)\) times more productive than the least productive city.

To cross-validate our inference about retail productivity, the estimated \(Z_j\)’s are compared to distribution sector productivities from the GGDC Productivity Level Database. This database covers only 18 of the 79 countries in the EIU sample. For countries in the EIU sample with more than one city in the price survey, we take the simple average of city-level retail productivities as our estimate of national retail productivity. The correlation between the two estimates of retail productivity across the 18 countries common to both samples is 0.48.

The effects of trade costs are estimated in the third-stage regression described earlier, which have a median adjusted \(R^2\) of 0.61. The summary statistics for distance elasticities \((\delta_i\)’s), which are all statistically significant at the 5% level, are reported in Table 3. The median distance elasticity is 0.05
which implies that price deviations increase by 40% per 1,000 miles of distance between the source and destination. Taking into account that traded inputs account for only a fraction of the retail price, the average effect of 1,000 miles of distance on retail prices is given by \(\exp \left(\delta_i (1 - \hat{\alpha}_i) d_{jk} \right) - 1 \). Evaluated at the median values of both the distance elasticities and distribution share parameters implies about a 21% increase in the retail price from source to destination from the trade cost channel.

The calculation above does not take into account the possible impact of market segmentation associated with national borders. The border effects are statistically significant at the 5% level. Borders are also economically significant. For the median good, the border adds 33% to the traded-input price (see Table 3). Taking into account the share of traded inputs in the production of the median retail good using, \(\hat{\rho}_i (1 - \hat{\alpha}_i) \), the average border wedge is 18%. Engel and Rogers (1996) have popularized the transformation of price deviations into distance equivalent measures. The border effect in distance equivalent units is computed as \(\exp \left(\hat{\rho}_i / \hat{\delta}_i \right) \). The average border effect across goods, pooling all location pairs, is 735 miles. The median border width is 522 miles. As one might expect, the differences across goods are large. Moving from the first quartile of the distribution of the border effect to the third quartile, the border width increases from a mere 38 miles to an astounding 55,322 miles. Interestingly, the first quartile contains the traded good, banana, while the third quartile contains the non-traded good, a three course dinner for four people. What this suggests to us it that extrapolating the distance metric becomes less useful as the item in question becomes inherently less traded in the sense of being produced mostly with local inputs. In such cases it is preferable to report price dispersion and attempt to account for that dispersion with something other than iceberg shipping costs.

The cumulative explanatory power of the three-stage estimation is a useful metric for summarizing the completeness of our model in accounting for price dispersion. The median R-bar squared value across goods is 0.72. In other words, the parsimonious set of controls account for the bulk of good-level heterogeneity in long-run price deviations. Having described the parameter estimates and their economic interpretations, it is now possible to decompose the variance of LOP and PPP deviations into the contributions of retail productivity, wages, distance and borders.

6The baseline border width estimate of Engel and Rogers (1996) was 75,000 miles. It is not possible to make a direct comparison between our estimates and theirs for a number of reasons. First, they use the time series variance of changes in relative prices. Second, they use CPI data aggregated to roughly two-digit categories. Third, they focus on U.S.-Canada city pairs.
5.2 Variance Decompositions

The goal is to explain the variance of relative prices across all unique city pairs, good-by-good⁷:

\[V_i = var_{jk}(p_{ijk}) \]

and for price levels in the aggregate, \(V = var_{jk}(p_{jk}) \). We begin with the analytics of how international price dispersion in underlying factor inputs translates into variance in final goods prices at the microeconomics and macroeconomics levels.

Starting with microeconomic sources of price dispersion, the larger is \(V_i \), the greater are the deviations from LOP over the geography of locations index by \(j \) and \(k \). The natural economic benchmark for the lower bound is when the LOP holds across all bilateral pairs used in the calculation, in which case, \(V_i = 0 \). The model is designed to elucidate the sources of price dispersion emanating from plausible real frictions related to economic geography.

Recall that the log-relative price consists of three main components, two related to retailing (relative TFP in retailing and the relative wages of the retailers) and the relative cost of acquiring the traded input:

\[p_{ijk} = z_{jk} + \alpha_i w_{jk} + (1 - \alpha_i) q_{ijk} \]

Substituting our model of the traded input component into this equation gives the rather intimidating expression,

\[p_{ijk} = -z_{jk} + \alpha_i w_{jk} + (1 - \alpha_i) \left[\delta_i d_{jk} + \rho_i B_{jk} \right] + c_i + \varepsilon_{ijk} \]

(9)

The variance decomposition will be computed using the fact that \(var(p_{ijk}) = cov(p_{ijk}, p_{ijk}) \) with the second \(p_{ijk} \) replaced by all of the terms on the right-hand-side of (9). The resulting variance decomposition is:

\[1 = \beta_{iz} + \alpha_i \beta_{iw} + (1 - \alpha_i) \beta_{id} + (1 - \alpha_i) \rho_i \beta_{iB} + (1 - \alpha_i) \beta_{i\varepsilon} \]

The use of the notation \(\beta \) is natural here since the contribution of each component to the variance is effectively a regression coefficient. For example, \(\beta_{iw} = cov_{jk}(w_{jk}, p_{ijk}) / var_{jk}(p_{ijk}) \) is the coefficient from a regression of relative wages on relative prices of good \(i \) across all city-pairs. Essentially this component tells us the role of international wage dispersion on retail price dispersion of good \(i \), across locations. The fact that \(\beta_{iw} \) is pre-multiplied by the coefficient \(\alpha_i \) means that a fixed amount

⁷The variance metric is different from the one used by Crucini, Telmer and Zachariadis (2005) to study price dispersion across European capital cities. They normalized prices to their cross-city means, \(var_j(p_{ij} - \overline{p}_i) \), which does not allow for the role of bilateral distance in the trade cost component of our structural model.
of geographic wage dispersion has an effect on retail price dispersion that is increasing in the share of distribution in cost.

The contribution of traded inputs is more nuanced, involving a traditional trade cost component and a border effect. As one would expect, both terms are weighted by the cost share of traded inputs, $(1 - \alpha_i)$. The first component is a traditional shipping cost and involves the product of δ_i and β_{id}. Recall that δ_i is the good-specific elasticity of trade cost with respect to distance; ceteris paribus, a good that is more costly to transport will contribute more to the variance of retail prices. The more subtle part of the expression is the covariance between relative prices at the retail level and interaction of the direction of trade indicator and distance, the $\beta_{id} = \text{cov}(\hat{L}_{ijk}d_{jk}, p_{ijk})/\text{var}_{jk}(p_{ijk})$ term. Due to the presence of the indicator function and how it was defined, this is the coefficient of a regression of the absolute value of the relative price of traded inputs on the retail price. Intuitively, we want to relate trade costs to distance in a symmetric fashion in the sense that the distance matters, not the direction of trade. The absolute value ensures that trade costs are non-negative in the estimation equation. Basically, if retail price deviations are increasing in the estimated trade cost, which themselves are rising in distance, then trade costs contribute positively to long-run price dispersion. The contribution is greater for locations separated by greater distances since $\delta_i > 0$. Holding distance fixed, goods that are more costly to ship, greater δ_i, will exhibit more long-run price dispersion. The border effect contributes only to the variance of cross-border city pairs and does so as a level effect, not as a function of distance. The level effect is good specific due to the presence of ρ_i.

Turning to relative price levels and PPP, consider the cost-of-living index for city j motivated by reference to a Cobb-Douglas aggregator function:

$$ P_j = \prod_i (P_{ij})^{\omega_i} $$

where ω_i is the consumption-expenditure-share of good i.

Using the equation for LOP 9 and the aggregator above, the log deviations from PPP may be written as:

$$ p_{jk} = z_k - z_j + \left(\sum_i \omega_i \alpha_i \right) w_{jk} + \sum_i \omega_i (1 - \alpha_i) \hat{L}_{ijk} \delta_i d_{jk} $$

$$ + \sum_i \omega_i (1 - \alpha_i) \hat{L}_{ijk} \rho_i B_{jk} + \sum_i \omega_i (1 - \alpha_i) c_i + \sum_i \omega_i (1 - \alpha_i) \varepsilon_{ijk} $$

where $p_{jk} = \log (P_j/P_k)$ is the aggregate real exchange rate across city pair j and k.
The variance decomposition of real exchange rates (using Equation 10) is:

\[
1 = \beta_z + \omega \beta_w + \sum_i \omega_i (1 - \alpha_i) \left[\beta_{id} + \rho_i \beta_{id|B} \right] + \sum_i \omega_i (1 - \alpha_i) \beta_z
\]

where \(\omega = \sum_i \omega_i \alpha_i \) and the \(\beta \)'s are now covariances using the same right-hand-variables as before, but with the aggregate real exchange rate, \(p_{jk} \), replacing the LOP deviations.

5.2.1 Variance Decomposition Across Goods

Figures 4 and 5 present the variance decomposition in the cross-section of goods, sorted by the estimated distribution share, \(\tilde{\alpha}_i \). At the left-hand boundary are goods with 0.20 of their cost attributed to distribution inputs and the rest of the cost attributed to the traded good itself. Unleaded gasoline is an example of such a good. The right-hand boundary is a pure service, such as the hourly wage of baby-sitters. The variance of retail prices (\(V_i \)) is the upper contour. We clearly see a positive relationship between the distribution share and price dispersion. The increases are substantial. For example, goods involving the lowest distribution share practically satisfy the LOP in the case of Canada and the United States and among OECD cities, whereas the deviations for services approach 80%. The countries included in the sample matter for both the absolute level of price dispersion and the relative contributions of various components. Price dispersion is uniformly greater across LDC city pairs and World city pairs than across cities of the OECD or North America.

It is important to point out that the obvious contribution of non-traded inputs in these figures contrasts sharply with much of the existing international finance literature where skepticism regarding the value of the HBS theory originated. In that literature, the time series variance of the real exchange rates of two sub-indices of the CPI are typically used to elucidate the HBS theory (e.g., Engel (1999)). Recall, however, that in Table 1 the short-run variance (a measure of time series variance) failed to reveal a sharp difference in variability of real exchange rates across traded and non-traded goods. That classification, however, is based on applying the HBS theory to final goods, not intermediate inputs. Crucini and Landry (2012) show that the time series variance of LOP deviations are in fact rising in the distribution share. In other words, when the HBS theory is applied to intermediate inputs, it is successful in accounting for differences in both the long-run and the short-run properties of price dispersion.

Turning to the details, intranational price dispersion, displayed in the left-hand charts, is largely accounted for by distance. International price dispersion is driven significantly by three components: wages, distance and borders. The relative importance of the three depends on the set of locations under examination and differs across goods. As expected, the wage component becomes more
important as we move from, say unleaded gasoline to baby-sitting services (left-to-right along the x-axis). This is because the distribution share is much higher for the latter than the former item and wage differences play a crucial role in distribution costs.

The absolute amount of price dispersion also depends on the set of locations used in the analysis. Samples of cities which span nations at very different level of development will exhibit more price dispersion with a large role for distribution costs and wages. The reason for this is obvious, unskilled labor is relatively abundant and cheap in poorer countries than in richer ones and thus there is a large wedge driven between retail prices across those city pairs. As we move from the World or LDC geography of locations to the OECD or North America total price dispersion falls as wage dispersion also falls.

5.2.2 Variance Decomposition for the Average Good

As the previous sub-section demonstrated, the underlying sources of deviations from the LOP depend on where in the distribution of goods one looks. This sub-section provides a summary of the decomposition for the good in the cross-section with the average amount of geographic price dispersion. In particular, Table 4 reports the averages across goods of total long-run price dispersion and the estimated contribution of each cost component to that average.

Table 4 shows the dominant factor accounting for geographic microeconomic price dispersion are trade costs. Recall that trade costs are the sum of traditional trade costs (distance) and a border effect. The border effect for the average good is between 7.55% and 10.39%. Distance contributes between 6.44% to 14.7%. The heterogeneity across location in the role of distance is intuitive: it reflects the differences in the average distance separating bilateral city pairs in the respective columns. Intrational city pairs are almost by definition, cities that are closer together with greater circle distances averaging 856 miles compared to 4,054 for international pairs. The absolute contribution of distance is predicted to increase from 6.55 to 13.70 as a consequence. An
interesting exception is North America where intranational city pairs are almost as far apart as international city pairs, 1,083 versus 1,134. Consequently, distance is estimated to account for a comparable amount of absolute price dispersion in the last two columns, 7.04 versus 8.18.

The role of distribution costs, which is the sum of service wages and retail productivity, depends on the city pairs included in the comparison. As one might expect, the role of distribution costs is significantly elevated when the comparisons involve cities in different countries. The reason for this is that the cost of moving from one city to another to arbitrage wage differences is much lower within countries than across them. This is why within-country wage dispersion is often ignored in macroeconomic models whereas across country wage dispersion constitutes a central question in the development literature. It is not necessary for us to determine the underlying sources of labor unit cost differences across cities to conduct our variance decompositions. For example, they could be driven mostly by prohibitive costs of cross-border arbitrage due to limits on legal immigration or institutions that limit technological progress in the service sector.

Consistent with this discussion, the absolute contribution of distribution costs ranges from 3.4% for cross-border cities pairs in North America (CAN-US) to 18.74% worldwide. Canada and the United States are obviously at similar stages of development and much more economically and financially integrated than most other country pairs. When comparisons involve city pairs within the same country, distribution costs are understandably very similar as evident in the dispersion measures that range from a low of 1.96% for within country cities pairs in the OECD sub-sample to a high of 5.21% in the LDC sub-sample. The greater role of retail productivity in the LDC sample may reflect great variance in retail infrastructure cost across cities within China and India compared to cities within countries like the United States, Canada, Germany and Australia, which account for a disproportionate number of intranational city pairs in the larger sample.

Turning to proportions of variance explained, in the lower panel of Table 4, for cross-border city pairs (B), the contribution shares of borders, distance and distribution are each substantial with the ranking dependent somewhat on the set of countries used in the analysis. Trade costs (sum of borders and distance) ranges in contribution from 40% to 60% of total LOP variation and always exceed that of distribution costs. It is notable that the contribution of distribution costs is more stable across country groups than are the separate contributions of service wages and retail productivity.

It is important to note that despite shorter distance and thus lower trade costs between cities
within countries (NB), trade costs actually account for a larger fraction of total price dispersion intranationally than internationally because the absolute variance is smaller intranationally. Within countries, distance accounts for close to half of overall dispersion and this is robust across the panels.

To summarize, the model has provided a useful conceptual framework with which to conduct a variance decomposition of long-run LOP deviations into the role of distance, borders, wages, retail productivity and a residual. The relative importance of the factors depends on the good and set of locations in a fashion that makes intuitive sense. Distance and borders loom large in general and wages differences (consistent with HBS) seem particularly important once the analysis moves outside the OECD (i.e., once comparisons involve countries at very different income levels). We turn now to the aggregate implications of our model for PPP.

5.2.3 Variance Decomposition of Price Levels

Macroeconomic analysis, of course, takes place at a much more aggregated level than these micro-price data. It is natural to ask how the sources of international price variation differ at the aggregate level from what was documented in the previous section.

The most obvious consequence of aggregation is that it eliminates spatial variation in relative prices specific to individual goods. The magnitude of the variance reduction, however, is larger than one might have expected. As is evident in Table 5, the dispersion in price levels across locations is on the order of one-fourth to one-fifth as large as the mean level of dispersion at the level of individual goods and services.9

Two obvious sources of variation that would average out across goods are measurement error and trade costs. Classical measurement error is, by definition, independently distributed across goods. The fact that the residual variance, particularly for the cross-border pairs where measurement error is likely to be greater, falls from 15% to 0.5% (WORLD) is consistent with this view. The absolute and proportional contribution of borders and trade costs are also mitigated by aggregation. This is also quite intuitive. Countries long-run trade imbalances are modest. Consequently, the high relative price of goods that a nation imports is counter-balanced by the low relative price of goods that it exports. Provided trade costs are not too asymmetric across goods on across ledgers of the trade balance, they will tend to average out in the cross-section. Table 5 indicates that the absolute variance contribution of trade costs falls from a range of 5%-15% for individual relative prices (LOP) toward a range of 1%-2% for relative price levels (PPP).

Contrast this with the economic role of the distribution margin. By definition, the relative costs

9The averaging-out property of LOP deviations was first documented by Crucini, Telmer and Zachariadis (2005) in the context of mostly EU capital cities over the period 1975 to 1990 at five-year intervals.
of distribution is location specific, not good specific. Table 5 shows that at that aggregate level, relative wages account for virtually the entire variance (91.5%) when all cross-border city pairs are included in the calculation. Note that the coefficient on \(w_{jk} \) in Equation 10 can be estimated from a regression of log relative price levels on log relative wages. Such a regression produces a coefficient of 0.55 on wages and an \(R^2 \) of 0.85. According to the microeconomic model of distribution, the same coefficient can be estimated from the micro-price data simply by calculating the consumption-expenditure-weighted average of distribution shares, \(\sum_i \omega_i \alpha_i \). And what is this sum? Exactly 0.55!

This implies that an important facet of macroeconomic analysis is the interaction of tastes and technology in determining the local or non-traded factor content of consumption expenditure. That is, tastes enter into the determine of expenditure shares, \(\omega_i \), and the patterns of tastes across goods may amplify or mitigate the role of the distribution share in accounting for PPP deviations. In modern data the covariance of the expenditure share and the distribution share is positive in the cross-section. Goods with relatively high distribution shares tend to account for a larger share of consumption expenditure than those with below average distribution shares. Thus, the expenditure-weighted distribution share is higher than the average distribution share across goods (0.55 versus 0.48).

The results for intranational city pairs provide an interesting contrast. As one would expect, labor mobility tends to eliminate the role of wages in accounting for deviations from PPP. To a first approximation, the variance shifts from wages to retail productivity. This seems reasonable because retailing involves significant time-to-build and an immobile factor (land), which limits arbitrage across locations. An evolving literature asks how big-box retailers such as Walmart may alter the distribution margin across locations. It is also important not to overstate the implications of the PPP analysis across cities within countries. The absolute dispersion of prices is relatively minor and this limits our ability to identify the contributions of different components with the same degree of accuracy as in the international case.

6 Discussion

Our competitive model completely abstracts from markups. There are two places where it seems natural to allow for markups over marginal cost. The first is at the retail level, a markup of retail prices over the unit cost of retailing (including both distribution and traded input costs) that differs across city pairs. A city may have a relatively high price level than we predict based on relative wage costs and relative traded input costs (i.e., \(p_{jk} - \hat{\alpha} w_{jk} - q_{jk} = -z_{jk} > 0 \)) either because it has
a relatively inefficient retail sector \(z_{jk} < 0 \), perhaps due to poor public infrastructure) or because retailers have market power and choose to set different markups over marginal cost across cities. In the latter case, the \(z_{jk} < 0 \) term could reflect a relatively high markup in city \(j \) compared to \(k \), not relative inefficiency in retail in city \(j \) compared to \(k \). Arguably, cities with inefficient infrastructure may also tend to be those with less competitive retailing. Consider a very efficient big-box retailer such as Walmart in a U.S. suburb compared to an open market in the center of Istanbul. One would expect the average markup over marginal cost to fall upon Walmart’s entry into the Istanbul market in the same fashion that Walmart has lowered retail prices in the United States over time. While this is plausible, our data are simply not up to the task of exploring these alternative interpretations of the retail productivity term and these issues are thus left to future work.

The second place a markup would naturally appear is between the factory gate price and the price the retailer pays for the traded input, \(q_{ijk} \). Thus some of the variation in traded prices we attribute to borders, distance and a residual term could be due to markups that exporters charge to the various destination markets. Where such a markup over cost on imported goods gets allocated in our variance decomposition depends crucially on its covariance with other location-specific variables used in our regression framework. If the markup is not correlated with wages, distance or borders, it will be relegated to the residual term.

More problematic is the idea that markups of retail prices over factory gate prices are positively correlated with wages in the destination market since this is inconsistent with the orthogonality assumption used to estimate the distribution share. The notion that markups are increasing in the wage levels in the destination market was first theoretically developed in Alessandria (2004) and empirical tested by Alessandria and Kaboski (2011). They estimated a robust positive correlation between good-level U.S. export unit values and aggregate wage levels in the destination market. They attribute this correlation to costly search by consumers in retail markets. The implication of this line of reasoning for our work is that our regression coefficient would overestimate the distribution cost share based on a standard omitted regressor bias argument.\(^{10}\)

Identification of markups, of course, is a challenge confronting many sub-fields of macroeconomics. The model that we develop and estimate is based on the premise that markets are perfectly competitive. The NIPA is constructed along these same lines in the sense that payments to labor and capital exhaust value added, there is no separate line item for markups over unit cost. An important task going forward is to consider how bargaining power and imperfect competition leads shares of payments to factors of production that exceed their shares in the production function. All

\(^{10}\)That is, if an omitted regressor (markup) is positively correlated with an included regressor (wages), the coefficient on the included regressor (the distribution margin) is biased upward.
that may be claimed at this point is that both our estimating approach and variance accounting of LOP and PPP deviations are consistent with the NIPA constructs.

7 Conclusion

The growth of international trade and financial integration has moved the fields of international trade and international finance ever closer. This is a healthy development, bringing together the microeconomic details of trade theory such as patterns of specialization and the extensive margin of trade with the central facets of macroeconomic theory, dynamic equilibrium concepts and expectation formation. The fact that trade focuses on absolute deviations from the LOP while finance focuses on relative deviations from PPP has been an impediment to progress. Recent efforts to expand the availability of large-scale micro-price panels allows absolute deviations from PPP to be traced back to LOP deviations as was done in this paper.

The amount of price dispersion at the good level is 3 to 5 times larger than at the aggregate, PPP level. The main cause of this averaging out of deviations specific to the good is attributed to trade costs and a residual term. The residual term may involve markups specific to the good and bilateral city pair as well as measurement error. What remains at the PPP level is largely a wage effect consistent with the HBS theory, though how dominant this factor is depends on the set of countries studied. Retail productivities and trade costs remain substantial at the PPP level for OECD countries, while they are dwarfed by wage effects when all international cities are pooled, consistent with the impression given by Figure 1.

Effectively, this means that theories intended to match relative prices both within the OECD and between the OECD and the rest of the world will need to include both a rich trade structure drawn from trade theory and a role for the distribution margin and markups. The importance of markups relative to real costs of wholesale and distribution remains an open question.

8 Acknowledgements

We especially thank Mary Amiti, Eric Bond, Paolo Pesenti and Robert Vigfusson for valuable comments and criticisms as well as participants at numerous conferences and seminars.

We gratefully acknowledge the financial support of the National Science Foundation (SES-1030164).
References

<table>
<thead>
<tr>
<th></th>
<th>Traded goods</th>
<th>Non-traded goods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S.</td>
<td>World</td>
</tr>
<tr>
<td></td>
<td>No border</td>
<td>Border</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-run</td>
<td>0.294</td>
<td>0.681</td>
</tr>
<tr>
<td>Short-run</td>
<td>0.250</td>
<td>0.412</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-run</td>
<td>0.385</td>
<td>0.796</td>
</tr>
<tr>
<td>Short-run</td>
<td>0.295</td>
<td>0.417</td>
</tr>
</tbody>
</table>

Notes: The long-run values have been calculated by the time-averaged prices, while the short-run values have been calculated as deviations from the long-run values.
<table>
<thead>
<tr>
<th></th>
<th>Estimated from EIU micro-data</th>
<th>U.S. sectoral NIPA data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>First Quartile</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Median</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>Third Quartile</td>
<td>0.55</td>
<td>0.75</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: Since the distribution shares in the U.S. NIPA are more aggregated than the estimates of distribution shares in this paper, the good-level estimates have been averaged within each NIPA sector.
TABLE 3 – RETAIL PRODUCTIVITY, TRADE COSTS AND BORDERS

<table>
<thead>
<tr>
<th></th>
<th>Retail Productivity ((B_j))</th>
<th>Distance Elasticity ((\delta_i))</th>
<th>Border effect ((\rho_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.50</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>First Quartile</td>
<td>0.75</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>Median</td>
<td>0.97</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>Mean</td>
<td>1.09</td>
<td>0.09</td>
<td>0.52</td>
</tr>
<tr>
<td>Third Quartile</td>
<td>1.24</td>
<td>0.08</td>
<td>0.49</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.32</td>
<td>2.15</td>
<td>5.30</td>
</tr>
</tbody>
</table>

Notes: Each column independently depicts the summary statistics for the corresponding variable/parameter.
<table>
<thead>
<tr>
<th></th>
<th>WORLD</th>
<th>LDC</th>
<th>OECD</th>
<th>CAN-US</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
<td>B</td>
<td>NB</td>
<td>B</td>
</tr>
<tr>
<td>Price dispersion</td>
<td>15.03</td>
<td>58.63</td>
<td>24.83</td>
<td>64.83</td>
</tr>
<tr>
<td>Absolute contribution of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>6.44</td>
<td>13.70</td>
<td>7.57</td>
<td>14.70</td>
</tr>
<tr>
<td>Distribution Sector</td>
<td>2.56</td>
<td>18.74</td>
<td>5.21</td>
<td>18.08</td>
</tr>
<tr>
<td>Service wages</td>
<td>0.42</td>
<td>18.70</td>
<td>1.10</td>
<td>10.71</td>
</tr>
<tr>
<td>Retail productivity</td>
<td>2.14</td>
<td>0.04</td>
<td>4.10</td>
<td>7.37</td>
</tr>
<tr>
<td>Residual</td>
<td>5.93</td>
<td>15.54</td>
<td>11.93</td>
<td>20.67</td>
</tr>
<tr>
<td>Percentage contribution of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td>–</td>
<td>17.7</td>
<td>–</td>
<td>17.2</td>
</tr>
<tr>
<td>Distance</td>
<td>42.9</td>
<td>23.4</td>
<td>30.5</td>
<td>22.7</td>
</tr>
<tr>
<td>Distribution Sector</td>
<td>17.0</td>
<td>32.0</td>
<td>20.9</td>
<td>27.9</td>
</tr>
<tr>
<td>Service wages</td>
<td>2.8</td>
<td>31.9</td>
<td>4.4</td>
<td>16.5</td>
</tr>
<tr>
<td>Retail productivity</td>
<td>14.2</td>
<td>0.1</td>
<td>16.5</td>
<td>11.4</td>
</tr>
<tr>
<td>Residual</td>
<td>39.4</td>
<td>26.5</td>
<td>48.0</td>
<td>31.9</td>
</tr>
<tr>
<td>Average miles separating cities</td>
<td>856</td>
<td>4,054</td>
<td>564</td>
<td>3,944</td>
</tr>
</tbody>
</table>

Notes: LDC stands for less developed countries, CAN-US stands for Canada-U.S., NB stands for no border, B stands for border.
TABLE 5 – ACCOUNTING FOR LONG-RUN DEVIATIONS FROM PPP

<table>
<thead>
<tr>
<th></th>
<th>WORLD</th>
<th></th>
<th>OECD</th>
<th></th>
<th>CAN-US</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NB B</td>
<td>NB B</td>
<td>NB B</td>
<td>NB B</td>
</tr>
<tr>
<td>Price dispersion</td>
<td>3.53</td>
<td>15.89</td>
<td>4.53</td>
<td>15.48</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>3.14</td>
<td>10.07</td>
<td>3.33</td>
<td>5.15</td>
<td></td>
</tr>
<tr>
<td>Absolute contribution of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border effect</td>
<td>–</td>
<td>0.12</td>
<td>–</td>
<td>0.18</td>
<td>–</td>
</tr>
<tr>
<td>Distance</td>
<td>0.82</td>
<td>1.01</td>
<td>0.28</td>
<td>1.53</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>1.95</td>
<td>0.93</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Distribution Sector</td>
<td>2.10</td>
<td>14.12</td>
<td>2.80</td>
<td>12.50</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>2.80</td>
<td>12.50</td>
<td>1.74</td>
<td>7.47</td>
<td>1.89</td>
</tr>
<tr>
<td>Service wages</td>
<td>0.28</td>
<td>14.55</td>
<td>0.31</td>
<td>8.78</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>1.35</td>
<td>0.16</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>Retail productivity</td>
<td>1.82</td>
<td>–0.43</td>
<td>2.49</td>
<td>3.72</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>1.57</td>
<td>6.13</td>
<td>1.73</td>
<td>–0.25</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.62</td>
<td>0.67</td>
<td>1.44</td>
<td>1.25</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>0.36</td>
<td>0.51</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Percentage contribution of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border effect</td>
<td>–</td>
<td>0.8</td>
<td>–</td>
<td>1.2</td>
<td>–</td>
</tr>
<tr>
<td>Distance</td>
<td>23.2</td>
<td>6.4</td>
<td>6.2</td>
<td>9.9</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>19.4</td>
<td>27.9</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>Distribution Sector</td>
<td>59.4</td>
<td>88.8</td>
<td>61.8</td>
<td>80.8</td>
<td>55.5</td>
</tr>
<tr>
<td></td>
<td>55.5</td>
<td>74.2</td>
<td>56.7</td>
<td>66.7</td>
<td></td>
</tr>
<tr>
<td>Service wages</td>
<td>7.9</td>
<td>91.5</td>
<td>6.8</td>
<td>56.7</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td>13.4</td>
<td>4.8</td>
<td>71.5</td>
<td></td>
</tr>
<tr>
<td>Retail productivity</td>
<td>51.4</td>
<td>–2.7</td>
<td>55.0</td>
<td>24.0</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>60.9</td>
<td>52.0</td>
<td>–4.8</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>17.5</td>
<td>4.2</td>
<td>31.7</td>
<td>8.1</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>3.6</td>
<td>15.3</td>
<td>4.2</td>
<td></td>
</tr>
</tbody>
</table>

Notes: LDC stands for less developed countries, CAN-US stands for Canada-U.S., NB stands for no border, B stands for border.
Figure 1. Relative price levels and relative wages of domestic help

Notes: Each x-coordinate is a city wage relative to the world average. For the large dots, the y-coordinates are the price levels of each city relative to the world price level. The price levels are computed as consumption-expenditure-weighted average of the individual prices. The line through the scatterplot is an ordinary least squares estimate with slope 0.52 and a standard error of (0.05), using the price levels. For the small dots, the y-coordinates are prices of individual goods and services relative to the world average price of those items.
Figure 2. Cities surveyed by the Economist Intelligence Unit

Note: Each symbol marks the location of a city surveyed by the EIU. There are 123 in total. Most of the cities are national capitals located on the coast in the cases of nations not land-locked. Cases in which multiple cities are surveyed in the same country are marked with a common color.
Figure 3. Kernel Density Estimates of Price Distributions

Note: The solid lines are kernel density estimates of the distribution of p_{ijk}, time averaged LOP deviations over the period 1990-2005. The dashed lines are kernel density estimates of the distribution of time series deviations from these long-run values. Each chart contains a different location and commodity grouping as indicated by the headers.
Figure 4. Sources of price dispersion and the distribution share (a_i)

Note: The figures show the sources of price dispersion with respect to the distribution share (a_i).
Figure 5. Sources of price dispersion and the distribution share (a_i)

Note: The figures show the sources of price dispersion with respect to the distribution share (a_i).