
Florida International University
FIU Digital Commons

Department of Biological Sciences College of Arts, Sciences & Education

2-23-2015

Climate Change May Alter Breeding Ground
Distributions of Eastern Migratory Monarchs
(Danaus plexippus) via Range Expansion of
Asclepias Host Plants
Nathan P. Lemoine
Department of Biological Sciences, Florida International University, nlemo001@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/cas_bio

This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for
inclusion in Department of Biological Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact
dcc@fiu.edu.

Recommended Citation
Lemoine NP (2015) Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus)
via Range Expansion of Asclepias Host Plants. PLoS ONE 10(2): e0118614. doi:10.1371/journal.pone.0118614

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fcas_bio%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/cas_bio?utm_source=digitalcommons.fiu.edu%2Fcas_bio%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/CAS?utm_source=digitalcommons.fiu.edu%2Fcas_bio%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/cas_bio?utm_source=digitalcommons.fiu.edu%2Fcas_bio%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


RESEARCH ARTICLE

Climate Change May Alter Breeding Ground
Distributions of Eastern Migratory Monarchs
(Danaus plexippus) via Range Expansion of
Asclepias Host Plants
Nathan P. Lemoine*

Department of Biological Sciences, Florida International University, Miami, Florida, United States of America

* nlemo001@fiu.edu

Abstract
Climate change can profoundly alter species’ distributions due to changes in temperature,

precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be par-

ticularly susceptible to climate-driven changes in host plant abundance or reduced overwin-

tering habitat. For example, climate change may significantly reduce the availability of

overwintering habitat by restricting the amount of area with suitable microclimate conditions.

However, potential effects of climate change on monarch northward migrations remain

largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants.
Given that monarchs largely depend on the genus Asclepias as larval host plants, the ef-

fects of climate change on monarch northward migrations will most likely be mediated by cli-

mate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to

assess potential changes in Asclepias and monarch distributions under moderate and se-

vere climate change scenarios. First, Asclepias distributions were projected to extend north-

ward throughout much of Canada despite considerable variability in the environmental

drivers of each individual species. Second, Asclepias distributions were an important pre-

dictor of current monarch distributions, indicating that monarchs may be constrained as

much by the availability of Asclepias host plants as environmental variables per se. Accord-
ingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect

system, should incorporate the effects of climate change on host plant distributions. Finally,

MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent

among general circulation models. Nearly all models predicted that the current monarch

summer breeding range will become slightly less suitable for Asclepias and monarchs in the

future. Asclepias, and consequently monarchs, should therefore undergo expanded north-

ern range limits in summer months while encountering reduced habitat suitability throughout

the northern migration.
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Introduction
Over the past century, climate change has altered range distributions of many species [1–3].
Numerous taxa have undergone poleward or upslope movements towards cooler temperatures
and higher rainfall [4–5]. For example, lepidopterans (i.e. butterflies) have exhibited significant
poleward distributional shifts due to climate warming [1, 3, 6–7]. In some cases, host switching
allows more rapid northward range expansion by generalist lepidopterans than by more spe-
cialized species [8]. In contrast, if specialist lepidopterans cannot switch hosts, the rate at
which they expand or shift their range will depend on range expansion of their host plant spe-
cies. In cases where species are unable to shift their distributions northward or upslope due to
lack of suitable habitat, i.e. a lack of host plant availability, climate change can impose severe
bottlenecks or even cause extinctions [9]. Given the likely increases in greenhouse gas emis-
sions and concomitant changes in climate, there is considerable interest in forecasting species
distributions into the future to enable adequate conservation measures [10].

Monarch butterflies (Danaus plexippus) are a charismatic and extensively studied species,
representing the quintessential migratory insect. A large population of monarchs undergoes
two annual migrations. In autumn, a single generation of adult monarchs migrates south from
the northern U.S. and southern Canada to overwintering sites in the mountains of central Me-
xico [11]. Prior to this southward migration, monarchs enter reproductive diapause [12]. Once
in Mexico, monarchs remain sedentary until spring (February—March), at which point the
same adults become sexually active, migrate northward, and lay the eggs of a new generation in
northern Mexico and southern United States [13–14]. Monarchs continue to migrate north-
ward in successive generations, escaping extreme temperatures and tracking the appearance of
milkweed (Asclepias spp., hereafter Asclepias) [15–16]. Although several genera of plants within
Apocynaceae are suitable hosts for monarch larvae [17], adult females exhibit strong oviposi-
tional preferences for Asclepias and larval survival is higher on Asclepias compared to other
species [18–20]. Monarchs occupy their breeding grounds in the midwestern and northeastern
U.S. and southern Canada fromMay—August, where they pass through multiple generations
before the southward migration in late August. Given that no single individual completes the
entire migration and that there is no parental training of the migration route, it has been hy-
pothesized that monarch migratory pathways are genetically determined [21]. Furthermore,
since the northward migration occurs over multiple generations, migrating individuals must
find suitable Asclepias larval host plants to successfully breed, ensuring that the population can
complete the entire migration.

Species distributions models can provide insight into the potential impact of climate change
on Asclepias and migratory monarchs. Previous models demonstrated that climate change
might drive northward shifts in both the northern and southern range limits of monarchs [22].
However, these models only examined the ecological niche of monarch larvae. Accurate pre-
dictions of future distributions require understanding the drivers of current species distribu-
tions before using this information to model species occurrences in the future. For example,
species distributions of specialist lepidopterans may be determined more by host plant avail-
ability rather than environmental effects on lepidopteran physiology per se, such that modeling
climate change effects on lepidopteran distributions requires first modeling climate change ef-
fects on host plant distributions. Here, I report the results of a study designed to assess the ef-
fects of climate change on monarch spring migrations and their Asclepias host plants using
maximum entropy species distribution models.

To accomplish this, I first tested hypotheses regarding physical and environmental con-
straints on the overall distribution of Asclepias and monarchs (Table 1). Asclepias distributions
may be determined by various environmental and physical parameters, forming five hypotheses:
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1) Cold temperatures limit Asclepias, which may be unable to withstand severe temperature
swings or sustained freezes (e.g. [5]), 2) Heat limits Asclepias, which cannot persist beyond some
critical thermal maximum, 3)Asclepias is precipitation limited, 4)Aslcepias ranges are set by geo-
graphic constraints, like elevation, slope, or land roughness, or 5) A combination of all of the
above factors jointly regulates Asclepias distributions. It is likely that Asclepias is cold-limited,
given its rather sharp northern range limit around the Great Lakes, but I also predicted that pre-
cipitation and warm temperatures play important roles in determining the overall distribution of
Asclepias, such that the ‘All Variables’ hypothesis would provide the best prediction of
Asclepias distributions.

Since Asclepias is a large genus comprised of both tropical, subtropical, and temperate spe-
cies that may each have their own environmental constraints, I also tested the five above hy-
potheses on eight common North American Asclepias species: A. curassavica, A. fascicularis, A.
incarnata, A. purpurescens, A. speciosa, A. syriaca, A. tuberosa, and A. viridis. I predicted that
cold temperatures primarily control the distribution of tropical and subtropical species, such as
A. curassavica and A. viridis [5]. Precipitation is likely the strongest limitation on distributions
of Asclepias species from more arid regions, such as A. speciosa and A. tuberosa. Distributions
northern Asclepias species are likely determined both by cold severity and warmth, such that
the ‘All Variables’model would best describe these species.

Next, I determined the factors that currently limit the distribution of eastern migratory
monarchs. Flockhart et al. [16] outline three hypotheses describing constraints on monarch
distributions: 1) Monarchs are limited by habitat, in particular the availability of Asclepias host
plants [23–24], 2) Monarchs are limited purely by geographic factors, such as elevation and
slope, and 3) Monarchs are limited by environmental and physiological constraints [14–15,25–
26]. I here added fourth and fifth hypotheses: 4) Monarchs are limited by a combination of
host plant availability plus their own innate physiological constraints, and 5) Monarchs are

Table 1. List of hypotheses for both Asclepias and monarchs, along with relevant predictor
variables.

Hypothesis Variables

Asclepias

Cold temperatures limiting MAT, MTCM, TAR, TS

Warm temperatures limiting MAT, MTWQ, MTWM

Precipitation limiting AP, PWQ, PCQ

Geographic constraints ELEV, SLO, RGH, RUG

All Variables All variables

Monarchs

Habitat limited Predicted Asclepias distribution

Geographic constraints ELEV, SLO, RGH, RUG

Environmental constraints All environmental variables

Environment and habitat All environmental variables and predicted Asclepias distribution

All Variables All variables

MAT = Mean annual temperature, MTWQ = Mean temperature of the warmest quarter, MTWM = Max

temperature of the warmest month, AP = Annual Precipitation, PWQ = Precipitation of the warmest quarter,

PCQ = Precipitation of the coldest quarter, MTCM = Minimum temperature of the coldest month, TAR =

Temperature annual range, TS = Temperature Seasonality, ELEV = elevation, SLO = Slope, RGH =

Roughness, RUG = Ruggedness.

doi:10.1371/journal.pone.0118614.t001
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limited by a combination of all of the above factors. Given the tight coupling between mon-
archs and their Asclepias host plants, I predicted that the ‘Habitat’model would provide the
best fit to monarch observations.

I then used the best-fitting models to project future Asclepias and monarch distributions
under two climate change scenarios. Finally, I examined how climate change might influence
the monthly distribution of both Asclepias and monarchs during their northward migration
fromMarch—June. This test provides a reliable prediction of how the timing and extent of
monarch northward migrations might change in the future.

Methods

Occurrence Data
I obtained occurrence records for adult monarchs and Asclepias plants from Journey North
(http://www.learner.org/jnorth/), a citizen science and outreach program that tracks first ap-
pearances of both monarchs and Asclepias over the course of the annual spring migration [27].
The Journey North data included the GPS coordinates, accurate to the nearest postal code, for
first sightings of monarchs and Asclepias from 2000–2011, yielding 7,717 monarch and 2,821
milkweed observations. Asclepias sightings from Journey North, however, were not species-
specific. Therefore, these data were supplemented with species-specific records downloaded
from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org), which provides
GPS coordinates for all observations and collections in the database. The GBIF data provided
an additional 3,569 monarch observations as well as species-specific records for eight common
Asclepias species (A. curassavica – 4,934, A. fascicularis – 1,479, A. incarnata – 899, A. purpur-
ascens – 205, A. speciosa—991, A. syriaca – 810, A. tuberosa – 846, A. virids – 337). After coarse
removal of incorrect observations (i.e. over oceans and outside North, Central, and South
America), the final database included 11,277 monarch and 12,983 milkweed observations. To
focus on migratory monarch populations in the eastern US, I removed monarch sightings west
of the Rocky Mountains and south of the US-Mexico border. However, I retained Asclepias rec-
ords from these locations as Asclepias species from these areas may expand their range into the
eastern US under climate change.

Environmental and Geogaphic Data
The current overall distributions of Asclepias and monarchs were modeled in relation to several
bioclimatic variables in 10 arc-minute resolution based on a 50 year period (1950–2000) down-
loaded from the WorldClim website (http://www.worldclim.org) [28]. To model geographic
constraints, I obtained a raster of global elevation data and calculated slope, roughness (the ab-
solute value of the difference between minimum and maximum of a cell and its eight neigh-
bors), and ruggedness (mean absolute value of the difference between a cell and each of its
eight neighbors). To test specific hypotheses regarding Asclepias distributions outlined above, I
isolated several variables pertaining to each hypothesis (Table 1).

I also combined variables to test hypotheses regarding monarch distributions (Table 1).
Flockhart et al. [16] used NDVI and percent vegetation cover derived fromMODIS images to
model habitat availability for monarchs. However, I did not include those variables here, as
projections of NDVI and percent habitat under climate change do not yet exist and could not
be included in model projections of future distributions should they be important, as was likely.
Instead, I used projections of overall Asclepias distributions derived from the MaxEnt models
of Asclepias to estimate habitat availability (Table 1). Asclepias distribution is likely related to
NDVI and percent habitat availability, such that this variable accurately portrays monarch hab-
itat availability in lieu of other metrics for which climate change projections are unavailable.
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For monthly distributions, only monthly mean temperature, monthly maximum tempera-
ture, and monthly precipitation were available under climate change scenarios. Therefore, I use
all three of these variables to model monthly Asclepias distributions during the northward mi-
gration (March—June). I used these three variables plus the monthly Asclepias distribution to
model monthly monarch distributions.

Climate Change Projections
Predictions of the same bioclimatic variables for the 2080s were downloaded from the Climate
Change, Agriculture, and Food Security website (http://www.ccafs-climate.org). Climate pre-
dictions were based on four general circulation models (GCMs: BCCR, IPSLCM4, MIROC,
and NCAR) under two emissions scenarios for each GCM: moderate (B1) and severe (A2). The
B1 scenario assumes that greenhouse gas emissions rise slowly until 2050 and decline thereaf-
ter, resulting in a moderate 1°–3° C increase in mean global atmospheric temperatures [29].
The A2 scenario assumes greenhouse gas emissions rise steadily through 2100, resulting in a
more severe 2°–6° C increase in mean global atmospheric temperatures [29]. I used the most
up to date predictions available from the CCAFS website.

In addition to the summary bioclimatic variables, I also downloaded current and future esti-
mates of monthly mean temperature, monthly maximum temperature, and monthly precipita-
tion. Monthly climate data were at the same resolution as the bioclimatic variables and future
predictions were based on the same GCMs and emissions scenarios as above.

Species Distribution Modeling
As occurrence data for monarchs and Asclepias were presence-only, I used maximum entropy
methods (MaxEnt) to estimate species distributions of both Asclepias and monarchs [30]. Max-
Ent uses Bayes’ rule to estimate the probability of species occurring in each raster cell given the
underlying environmental characteristics. To model the probability of occurrence at a site
based on environmental characteristics, Bayes’ rule implies that one need know only the proba-
bility of environmental characteristics given an observation (i.e. the distribution of the environ-
mental variables at each observed point), the overall distribution of environmental variables,
and the overall probability of species occurrences, which is a constant [31]. MaxEnt calculates
the relative occurrence at each site (e.g. log odds ratio of occurring in site) by maximizing the
environmental similarity between suitable sites and the background environment, while con-
straining the predictions to have the same environmental characteristics as the observations
[32]. That is, MaxEnt attempts to make suitable sites as similar as possible to the background
distribution, while constraining them to have the same mean as the observations (i.e. the mean
temperature of the suitable predictions should have the same mean temperature as the observa-
tions). The relative occurrence predictions are converted to probability of occurrence using a
variant of the logistic transformation, assuming that the probability of presence at a location of
average suitability is 0.5 [31–32]. This assumption means that a species is as likely to be present
as it is absent in a location of ‘average’ suitability. Elith et al. [31] and Merow et al. [32] provide
a more comprehensive overview of the mechanics underlying MaxEnt.

Monarch and Asclepias data were analyzed separately following similar procedures. First,
environmental data were clipped to North America, Central America, and northern South
America, including areas just outside of the range of Asclepias. At a 10 arc-minute resolution,
this yielded just over 120,000 raster cells for prediction. The Journey North data showed con-
siderable clumping around major cities in the midwest, southwest, and northeast United States
(Fig. 1). Such spatial bias can artificially inflate the accuracy of SDM predictions and restrict
the range of environments predicted as suitable [33]. Despite its simplicity, spatial filtering (i.e.

Climate Change Alters Monarch Breeding Ground Distributions

PLOS ONE | DOI:10.1371/journal.pone.0118614 February 23, 2015 5 / 22

http://www.ccafs-climate.org


thinning observations within larger grid cells) counters spatial bias more effectively and consis-
tently than numerous other techniques [33–34]. For spatial filtering, I created a grid covering
the sampling area consisting of cells with a resolution 420% larger than the original 10 arc-min-
ute resolution (~40 arc-minute resolution). Cells were sampled in a checkerboard pattern,
choosing one observation at random within designated cells while cells without any observa-
tions remained empty. This reduced the number of observations to 878 for monarchs and
1,444 for Asclepias (Fig. 1). This thinning resolution provided a reasonable trade-off between
bias reduction and sample size (results from other spatial filtering schemes available in S1
Appendix).

After spatial filtering, observations were randomly split into two subsets. One data subset
was used as model training data for MaxEnt. The remaining group was then used for model
validation (~700 for both training and test data for Asclepias, ~450 in each group for mon-
archs). To test each hypothesis, I ran models pertaining to each hypothesis (Table 1) and used
AICc for MaxEnt models, as described by Warren and Seifert [35], to choose the best-fitting
model. To measure goodness-of-fit, I calculated the area-under-the-curve (AUC) statistic that
provides an estimate for the accuracy of predictions, with 0 being no predictive accuracy and 1
being perfect predictive accuracy. A score of 0.5 indicates that the model performs no better
than random.

The best-fitting MaxEnt models were then used to project Asclepias and monarch distribu-
tions into the future based on the changes in climate predicted under each of the four GCMs
and for each of the two emissions climate scenario (eight total future models per species). To
determine overall species’ distributions, occurrence data from all years and all months were
pooled and input to the model simultaneously. To determine species-specific responses to cli-
mate change, I repeated the same procedure described above for the GBIF data on each of the
eight Asclepias species separately (Journey North data could not be used as it was not identified

Fig 1. Observation records for adult monarchs and Asclepias gathered from both Journey North and GBIF. Note the extreme spatial bias around
urban population centers in both datasets. The red points depict the spatially filtered observations used in MaxEnt models.

doi:10.1371/journal.pone.0118614.g001
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to species). I used spatial filtering on the same sized grid (~40 arc-minute resolution) to ac-
count for any spatial bias in observations. Although filtering diminished the number of points
available for distribution modeling (A. curassavica—327, A. fascicularis – 154, A. incarnata –
275, A. purpurascens – 58, A. speciosa – 313, A. syriaca – 157, A. tuberosa – 238, A. viridis – 83,
S1 Fig.), it helps avoid reporting spurious correlations with environmental parameters that
might result from biased record collections (S1 Fig.) [33]. Such small sample sizes may not cap-
ture the full range of environmental conditions occupied by these species, as such these analy-
ses should be considered exploratory examinations of potential climate change effects of
specific Asclepias species.

Climate change often alters plant phenology, wherein plants emerge earlier or later in the
year [36]. Climate change may therefore alter the timing of Asclepias emergence and monarch
northward migrations. To determine how climate change might affect the monthly appearance
of Asclepias and monarchs, I isolated the first Asclepias sightings for each month from the Jour-
ney North data and fit a MaxEnt model using monthly mean temperature, maximum tempera-
ture, and precipitation (occurrence data were first prepared as described above). In these
models, points lacked obvious spatial bias, and some months had few observations. Therefore,
I did not use spatial filtering to subsample observations. Results from all four GCMs were aver-
aged by averaging predicted probabilities of occurrence for each cell from each of the models to
yield a single ensemble estimate of the effects of climate change on Asclepias phenology. These
same analyses were repeated for first sightings of monarch adults, except models also included
the predicted first sightings of Asclepias for each climate change scenario.

All statistical analyses were carried out in R v3.1.2 and the ‘raster’ and ‘dismo’ packages
using MaxEnt software [30,37]. All predictors were standardized prior to analyses. All data are
publicly available at Journey North or GBIF.

Results

Current and Future Asclepias Distributions
The overall Asclepias distribution was best explained by a combination of all environmental
and geographic variables (Table 2). Indeed, no other hypothesis had a reasonable level of sup-
port, such that ΔAICc of the next best hypothesis was 1782.34. Moreover, the ‘All Variables’
hypothesis provided the best goodness-of-fit (AUC = 0.805). In this model, mean annual tem-
perature explained over half of the variance, as Asclepias only occurred in areas where mean
temperatures were above 0° but below 30° C. Mean temperature of the warmest quarter and
minimum temperature of the coldest month also explain ~ 20% of the variance each. Thus,
while all predictors were important in modeling the distribution of Asclepias, it appears that
temperature provides the primary constraint on Asclepias distributions. MaxEnt therefore pre-
dicted that Asclepias should occur most frequently in central and eastern US, along the west
coast of the US, and throughout much of Mexico and Central America (Fig. 2).

Species distribution models of individual Asclepias species provided a much better good-
ness-of-fit (AUC> 0.9 for all species), although some of the high predictive success was proba-
bly due to low sample size (e.g. A. purpurascens). However, species showed considerable
variability in the best predictors of current distributions. For example, the ‘All Variables’model
best explained the distributions of A. curassavica, A. fasciularis, A. incarnata, and A. tuberosa
(Table 2). Asclepias purpurascens and A. speciosa appear to be cold-limited, although the ‘All
Variables’model explained the distribution of A. speciosa equally well (Table 2). Finally, A. syr-
iaca and A. viridis appear to be primarily limited by warm temperatures (Table 2). Likewise,
there was considerably variability in the predictors that contributed most to the variance spe-
cies distributions. Temperature seasonality and minimum temperature of the coldest month
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Table 2. Results of AICc model selection for overall Aslcepias distribution and each species.

Hypothesis n AICc ΔAICc AUC

Overall Asclepias

All 129 28633.89 0 0.805

Geographic 58 30416.22 1782.34 0.589

Cold 66 31074.12 2440.24 0.760

Warm 42 31198.06 2564.17 0.749

Precipitation 63 32137.08 3503.20 0.704

A. curassavica

All 81 5711.23 0 0.918

Geographic 63 6381.29 670.06 0.842

Cold 46 7034.69 1323.46 0.923

Warm 44 7239.18 1527.94 0.888

Precipitation 53 7680.42 1969.18 0.830

A. fascicularis

All 67 2748.98 0 0.981

Cold 20 2807.28 58.30 0.951

Warm 17 2900.98 152.01 0.950

Precipitation 46 2966.72 217.74 0.936

Geographic 25 3100.38 351.40 0.836

A. incarnata

All 96 5473.78 0 0.908

Warm 35 5559.95 86.17 0.903

Cold 40 5580.12 106.34 0.900

Precipitation 41 5950.71 476.94 0.827

Geographic 38 6084.38 610.61 0.695

A. purpurascens

Cold 12 1119.10 0 0.967

Warm 10 1123.09 3.99 0.963

All 34 1165.03 45.93 0.983

Precipitation 16 1191.92 72.82 0.932

Geographic 28 1371.67 252.57 0.863

A. speciosa

Cold 48 6297.64 0 0.904

All 102 6297.69 0.05 0.919

Warm 39 6345.62 47.98 0.897

Precipitation 53 6684.41 386.77 0.849

Geographic 46 6866.18 568.54 0.747

A. syriaca

Warm 14 2929.61 0 0.941

All 52 2953.44 23.83 0.948

Cold 10 2955.62 26.01 0.927

Precipitation 33 3229.32 299.70 0.876

Geographic 25 3379.25 449.63 0.747

A. tuberosa

All 94 4894.67 0 0.914

Warm 32 4936.86 42.19 0.888

Cold 42 4963.61 68.94 0.886

(Continued)
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Table 2. (Continued)

Hypothesis n AICc ΔAICc AUC

Precipitation 32 5309.36 414.69 0.779

Geographic 58 5509.82 615.14 0.659

A. viridis

Warm 17 1511.33 0 0.966

Cold 15 1532.98 21.65 0.954

All 47 1592.19 80.86 0.967

Precipitation 25 1764.22 252.89 0.800

Geographic 46 1921.07 409.74 0.783

Hypotheses are as described in Table 1. n gives the number of parameters in each model, which was calculated as the number of non-zero λ values from

each MaxEnt model.

doi:10.1371/journal.pone.0118614.t002

Fig 2. Prediction from the best-fitting MaxEnt model for the probability of occurrence of the overall Asclepias distribution across North, Central,
and parts of South America. Thick red lines denote the 0.5 probability contour, such that areas inside the contour have a� 0.5 probability of containing
Asclepias.

doi:10.1371/journal.pone.0118614.g002
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explained most of the variance in A. curassavica observations, while A. fascicularis was limited
by precipitation in the warmest quarter, terrain roughness, and temperature seasonality (S2
Fig.). Temperature seasonality and mean annual temperature also regulated the distribution of
A. incarnata and A. purpurascens, although warmest quarter temperatures and precipitation
also strongly influenced A. incarnata (S2 Fig.). Distributions of A. speciosa, A. syriaca, and A.
viridis were primarily influenced by mean annual temperature (S2 Fig.). Asclepias tuberosa ap-
pears to be influenced by a range of temperature and precipitation related variables (S2 Fig.).

MaxEnt predicted that A. curassavica should currently occur along the coasts of Mexico and
throughout Central America and the Caribbean (Fig. 3). Asclepias fascicularis had a predicted
range relegated to small parts of the west coast of the US, whereas A. speciosa was predicted to
occur through most of the western United States (Fig. 3). Asclepias incarnata, A. purpurascens,
and A. syriaca were predicted to occur throughout the midwestern and northeastern United
States (Fig. 3). Asclepias tuberosa had the largest predicted range, with high probabilities of oc-
currence in the southwestern, midwestern, and northeastern United States (Fig. 3). These pre-
dicted distributions are nearly identical to those that have been historically reported for these
species [38].

Given that the overall Asclepias distribution and that of many individual species was con-
strained primarily by temperature, climate change should have significant effects on the poten-
tial distribution of Asclepias spp. Indeed, under moderate climate change (scenario B1), the
overall distribution of Asclepias was projected to expand northward into much of Canada, in-
cluding much of Manitoba and Ontario (Fig. 4). Additionally, much of the southern United
States became less suitable for Asclepias. Individually, Asclepias species exhibited substantial
variation in their responses to moderate climate change. Suitable areas for A. curassavica, A.
tuberosa, and A. viridis (probability of occurrence> 0.5) became significantly reduced under
moderate climate change scenarios (Fig. 4). In contrast, the northward ranges of A. incarnate,
A. speciosa, A. syriaca, and A. viridis expanded substantially, with A. speciosa predicted to
occur in much of southern Canada (Fig. 4).

MaxEnt predicted that severe climate change (scenario A2) yields similar changes to the
overall distribution of milkweeds, but less severe reductions in the extent of suitable area for
most milkweed species (Fig. 5). Overall, much of Canada became suitable habitat for Asclepias
species, and the northward range expansion of A. incarnata, A. speciosa, A. syriaca, and A. viri-
dis was more pronounced than under moderate climate change scenarios (Fig. 5). Interestingly,
A. viridis was predicted to occupy most of the eastern United States, whereas A. incarnate, A.
syriaca, and A. tuberosa should become restricted to the northern United States and southern
Canada (Fig. 5)

Current and Future Monarch Distributions
Monarch distributions were best explained by a combination of habitat availability and envi-
ronmental constraints, such that the ‘Environment + Habitat’model fit the data well (AUC =
0.888, Table 3). The ‘All Variables’model performed second best, but relatively large AICc val-
ues compared to the best-fitting model suggest that this model is unlikely to be the best model
(ΔAICc = 32.12) (Table 3). In particular, the predicted Asclepias distribution explained 35% of
the variance in monarch observations. Temperature seasonality, precipitation of the warmest
quarter, mean annual temperature, and maximum temperature of the warmest month were
also important predictors of monarch observations. MaxEnt predictions of eastern migratory
adult distributions accurately depicted the known distribution (Fig. 6). Monarch adults were
predicted to occur through the central and midwestern US, along the east coast (except for the
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Appalachian Mountains), and throughout the northeastern US (Fig. 6). The northern range
limit of eastern migratory adults lies around the Great Lakes region.

Given that monarch distributions are therefore controlled by physiological temperature
constraints and host-plant availability, which itself is sensitive to climate change, climate
change should have a considerable influence on monarch distributions. In fact, both moderate

Fig 3. Predictions for the probability of occurrence of each of the eight Asclepias species across North, Central, and parts of South America. Thick
red lines denote the 0.5 probability contour, such that areas inside the contour have a� 0.5 probability of containing Asclepias or the individual species.

doi:10.1371/journal.pone.0118614.g003
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and severe climate change scenarios yielded similar predictions (Fig. 7). Both the northern and
southern range limits of eastern migratory monarchs shifted northward. The northern range
limit extended throughout eastern Canada, while the southern range limit resided in the central
US, rather than along the Gulf of Mexico (Fig. 7). These results are similar to those of earlier
models by Batalden et al. (2007).

Fig 4. Ensemble predictions of overall Asclepias distribution and each species for all four GCMs under the moderate climate change scenario
(B1). Ensemble predictions were created by averaging model output from all four GCM predictions. The thick red line denotes the 0.5 probability contour,
such that areas inside the contour have a� 0.5 probability of containing Asclepias or the individual species.

doi:10.1371/journal.pone.0118614.g004
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Climate Change Effects on Monthly Distributions of Asclepias
First sightings of Asclepias occurred progressively further north over the course of spring. In
March, cold temperatures restrict Asclepias to warmer southern and southeastern U.S. In
April, first sightings of Asclepias occured throughout the eastern U.S. However, first sightings

Fig 5. Ensemble predictions of overall Asclepias distribution and each species for all four GCMs under the severe climate change scenario (A2).
Ensemble predictions were created by averaging model output from all four GCM predictions. The thick red line denotes the 0.5 probability contour, such that
areas inside the contour have a� 0.5 probability of containing Asclepias or the individual species.

doi:10.1371/journal.pone.0118614.g005
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of Asclepias in the Great Lakes region, the monarch’s summer breeding grounds of eastern
populations, did not occur until May and June (Fig. 8). Under the moderate emissions scenario,
suitable area for first sightings of Asclepias was reduced in all months (Fig. 8). Also, Asclepias
did not cease expanding northward at the Great Lakes in May, as it currently does, but

Table 3. Results of AICc model selection for adult monarchs.

Hypothesis n AICc ΔAICc AUC

Environment and habitat 79 16355.06 0 0.888

All 93 16387.18 32.12 0.892

Habitat 24 17102.21 747.15 0.831

Environment 73 17766.22 1411.16 0.896

Geographic 58 18701.64 2346.58 0.697

Hypotheses are as described in Table 1. n gives the number of parameters in each model, which was calculated as the number of non-zero λ values from

each MaxEnt model.

doi:10.1371/journal.pone.0118614.t003

Fig 6. Prediction from the best-fitting MaxEnt model for the probability of occurrence of adult monarchs (Danaus plexippus) throughout eastern
North America. Thick red lines denote the 0.5 probability contour, such that areas inside the contour have a� 0.5 probability of containing monarchs.

doi:10.1371/journal.pone.0118614.g006
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continued to move poleward through June (Fig. 8). Severe climate change also reduced the
amount of area suitable for first Asclepias sightings, but not as severely as moderate climate
change. Indeed, the area suitable for first Asclepias emergence in March occupied much of the
southern U.S. and Atlantic coast under the more severe emissions scenario. In June, the north-
ern limit of first Asclepias emergence was further north than currently predicted, as with mod-
erate emissions, but the environmental conditions were more suitable for Asclepias than under
moderate emissions scenarios (Fig. 8). Monarchs exhibited similar phenological patterns, with
reduced probability of first sightings throughout the eastern range, and a greatly expanded
northward range limit in May and June (Fig. 9). Thus, monarchs may extend their northward
migration beyond the Great Lakes region into much of southern Canada, following the appear-
ance of milkweed.

Discussion
As climate change progresses, many species escape unfavorable temperatures or colonize previ-
ously intolerable habitats via northward range expansion. Lepidopterans, especially butterflies,
seem especially adept at capitalizing on newly available habitat at their northern limits [1,6–7].
Given their ecological importance, both in natural communities and as pests in agricultural set-
tings, increased attention has been given to predicting lepidopteran distributions under future
climates (e.g. [39]). Yet many lepidopteran species specialize on one or a few host plant species
and the ecological niche of their host plant(s) govern their geographic range as strongly as envi-
ronmental factors [39]. In contrast, monarchs can utilize a large number of different hosts, al-
beit most within the genus Asclepias. My results demonstrate that the modeled ecological
niches of monarchs are most accurate when incorporating the predicted distribution of their
Asclepias host plants alongside important environmental predictors. Both monarchs and

Fig 7. Ensemble predictions of monarch distribution under moderate (B1) and severe (A2) climate change scenarios. Ensemble predictions were
created by averaging model output from all four GCM predictions. Predicted occurrence of Asclepias under each climate change scenario was used as a
predictor in each model. The thick red line denotes the 0.5 probability contour, such that areas inside the contour have a� 0.5 probability of containing
monarchs.

doi:10.1371/journal.pone.0118614.g007
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Fig 8. Ensemble projections of future Asclepias distributions during each of the springmonths (March—June) under moderate and severe climate
change scenarios. Ensemble projections were generated by averaging MaxEnt output from each of the four GCM predictions.

doi:10.1371/journal.pone.0118614.g008
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Fig 9. Ensemble projections of future monarch distributions during each of the springmonths (March—June) under moderate and severe climate
change scenarios. Ensemble projections were generated by averaging MaxEnt output from each of the four GCM predictions.

doi:10.1371/journal.pone.0118614.g009
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Asclepias distributions appear to be constrained by precipitation and temperature, and the dis-
tribution of Asclepias accounts for much of the variability in monarch observations. Given this
strong interspecific dependence, projecting Asclepias distributions under climate change sce-
narios is crucial to understanding how climate change will alter monarch distributions.

Numerous studies have used ecological niche modeling to predict changes in species distri-
butions wrought by climate change. In many cases, these models contain implicit assumptions
about lability of species interactions under future climatic conditions [40]. Using only environ-
mental variables to forecast lepidopteran distributions in future climates implicitly assumes
that the host plant will shift in similar ways (i.e. for specialists) or that biological interactions
are sufficiently plastic that the lepidopteran is not constrained by the distribution of any specif-
ic host plant (i.e. for generalists). Generalist lepidopterans exhibit substantial range expansions
due to warming temperatures, in part because they can shift host plants [6–8]. However, some
species, like monarchs, are largely dependent upon a single genera or species of host plants. In
such cases, it is difficult to disentangle the climatic niches of the host plant and the herbivore
[41]. This may be why lepidopterans as a group exhibit such highly variable range expansions;
many have not shifted north or south at all despite considerable warming [3]. I show that mon-
arch and Asclepias ecological niches overlap considerably and were difficult to distinguish
(Table 3); the predicted Asclepias distribution explained ~ 35% of the variation in monarch ob-
servations. I therefore suggest that modeling climate change effects on Asclepias is necessary,
although not sufficient, to accurately represent potential climate change effects on monarch
distributions.

Currently, the northern range limit of monarchs lies slightly north of the U.S.—Canada bor-
der, just above the Great Lakes [13,16]. My ecological niche models of current monarch and
Asclepias distributions match these observations, predicting a northern range limit just north
of the Great Lakes (Fig. 2 and Fig. 6). MaxEnt models of specific Asclepias species accurately re-
constructed the ranges historically reported for many of these species (Fig. 3, [38]). The Max-
Ent model of monarch occurrences including Asclepias distribution as a predictor provided
nearly the same estimate of monarch distribution as previous models [16]. Indeed, summer
monarch breeding grounds of the northern Midwest and northeast U.S. are highly suitable for
Asclepias (Fig. 2 and Fig. 8). Under both moderate and severe emissions scenarios, much of
Asclepias’ current range is predicted to become slightly less suitable, although the probability of
Asclepias occurring in these areas remains high (Fig. 4 and Fig. 5). Under moderate climate
change, the northern range limit of Asclepiasmay extend slightly into southern Manitoba, On-
tario, and Quebec (Fig. 4). Under severe climate change, the northern range limit expands even
further and much of Manitoba, Ontario, and Quebec become suitable for Asclepias. In part,
this is because both climate scenarios predict warmer average temperatures throughout much
of Canada (5–7° C increase), severely decreased rainfall during the summer throughout the
midwestern United States (40–60 mm decrease), and increased average summer temperatures
through much of Canada (4–7° C increase). The northward expansion of Asclepias into Canada
led to MaxEnt projecting a substantial northward range expansion of monarchs under moder-
ate and severe climate change (Fig. 7).

However, not all Asclepias species responded similarly to climate change, although most
showed an increased northern range limit (Fig. 3). The distribution of A. curassavica was pri-
marily determined by temperature seasonality and minimum temperature of the coldest
month. As A. curassavica is primarily a tropical species (S1 Fig.), this fits with the long-stand-
ing hypothesis that tropical species are adapted to warm climates with little variability [42]. Ac-
cordingly, tropical species often show reduced thermal tolerance ranges compared to
temperate species and should therefore be affected more strongly by increased temperature sea-
sonality [43]. Additionally, tropical species often show sensitivity to extreme cold events, such
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as the minimum temperature of the coldest month or number of days below a critical tempera-
ture threshold [5]. Although minimum cold temperature is expected to increase in Mexico and
Central America, a concomitant increase in temperature seasonality appears to restrict the
range of A. curassavica under future climate scenarios. In contrast, A. incarnata and A. syriaca
are primarily temperature-limited and will likely see increased range sizes in the future as more
of Canada experiences temperatures suitable for these species.

The differing responses of Asclepias species to climate change could potentially impact
monarch populations. In laboratory trials, adult females exhibited strong ovipositional prefer-
ences for some Asclepias species over others, for example preferring A. incarnata to A. syriaca,
presumably due to differing cardenolide concentrations [44]. Further, larval growth and sur-
vival is often higher on A. incarnata and A. curassavica compared to the more common A. syr-
iaca [44–45]. My MaxEnt models predict that A. syriaca and A. incarnata should become
restricted to more northern parts of North America, whereas other host species such as A. spe-
ciosa and A. viridis should become widespread throughout much of North America, including
south-central and midwestern United States. As most migratory monarchs traverse these areas
during migration [16], migratory monarch populations may be particularly susceptible to
changes in host plant identity in the summer breeding grounds [24]. Whether such changes re-
sult in positive or negative effects on monarch populations depends on the identity of the re-
placement species and the species being replaced and is difficult to predict from laboratory
performance assays [44–45].

Monarch migrations may be determine by environmental characteristics, as they migrate
north fromMarch through May to avoid excessive heat and to track the emergence of young
milkweed plants [17]. Indeed, the monthly distribution models of Asclepias and monarchs pre-
sented here are nearly identical to the monthly distribution models of monarchs presented by
Batalden et al. [22]. However, there is growing evidence that much of the monarch migratory
route may be genetically controlled. For example, monarchs navigate primarily using the sun
as a directional guide, compensating for natural changes in the sun’s position over the course
of the season [14,21]. As the migration is completed over multiple generations, flight paths are
likely heritable among generations [21], although small-scale movements are almost certainly
influenced by milkweed presence [14]. If large-scale patterns of monarch migrations are influ-
enced less by Asclepias than by environmental cues, such as photoperiod, then monarchs may
not exhibit the same northward expansion as Asclepias. If monarchs do match Asclepias range
shifts, then they face longer southern migration distances in the fall (Fig. 9, [22]). Longer mi-
gration distances presumably negatively impact monarch fitness; fewer Atlantic coast migra-
tions reach the overwintering ground in Mexico, which may be due to higher energy
expenditure over a longer migration route [46].

It is worth noting that species distributions models are correlative, assume that the underly-
ing data are unbiased, and that biotic interactions do not determine the extent of a species’ geo-
graphic range [40]. Although correlative, such models are useful in highlighting potential
impacts of climate change on species’ distributions so that managers can begin making precau-
tionary decisions to avoid population decline in the future [10]. MaxEnt is among the best-per-
forming methods currently available for modeling species’ distributions [31], although models
parameterized based on species physiology often perform better than correlative approaches
like MaxEnt [47–48]. Data in this study were not collected following a systematic sampling
routine and are geographically biased. However, species’ distribution models require only that
environmental space be representatively sampled to provide accurate predictions of their eco-
logical niches. I relied on citizen science data from Journey North supplemented with observa-
tions downloaded from GBIF. Spatial filtering to remove geographic bias from these data
severely reduced sample size, limiting the predictive power of MaxEnt models. Furthermore,
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species-specific observations may have been biased or sparse. For example, many observations
of A. syriaca were located in the midwestern United States, though it is quite common through-
out most of the Atlantic coast and eastern United States as well. Asclepias incarnata was also
primarily observed in the midwestern United States, although it is known to occur throughout
the entire eastern United States. Further, small sample sizes of some species (e.g. A. purpuras-
cens) limit the power of MaxEnt models. As such, many of these species-specific models should
be interpreted with extreme caution.

Additionally, using models such as MaxEnt to predict future species distributions relies on
climate change scenarios that are uncertain. To address this concern, I examined climate change
as predicted under multiple GCMs and under two different emissions scenarios. In some cases,
distribution models projected onto all four GCMs predict similar declines in Asclepias habitat
suitability (e.g. in the Midwest), suggesting that this outcome is fairly likely. Finally, predicted
habitat suitability based on climatic variables does not necessarily translate into a metric of Ascle-
pias abundance. Urban areas and intensively managed farmland are unlikely to contain Asclepias
at high densities [23]. Additionally, A. incarnata is typically restricted to wet soils near rivers and
marshes, a habitat requirement not captured by these models. Given all of these assumptions and
restrictions, my results do not provide a definitive indication of where Asclepias will occur in the
future, but rather describe potential habitat suitability in uncertain future climates.

In summary, climate change may shift the optimal habitat of monarchs’ obligate Asclepias
host plants further north, although these effects vary considerably among Asclepias species.
The realized effects of climate change on monarch migrations depends on whether monarchs
follow milkweed northward, whether current migratory routes experience a shift in Asclepias
species identity, and whether monarch phenology matches that of Asclepias in future climates
[22]. Compounded with habitat loss [23–25], my results suggest that monarch migrations and
summer breeding grounds may undergo substantial changes in the future.
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