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ABSTRACT OF THE DISSERTATION 

AN AUTOREGRESSIVE CONDITIONAL FILTERING PROCESS TO REMOVE 

INTRADAY SEASONAL VOLATILITY AND ITS APPLICATION TO TESTING 

THE NOISY RATIONAL EXPECTATIONS MODEL 

by 

Jang Hyung Cho 

Florida International University, 2008 

Miami, Florida 

Professor Robert T. Daigler, Major Professor 

We develop a new autoregressive conditional process to capture both the changes 

and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. 

Unlike other procedures, this approach allows for the intraday volatility pattern to change 

over time without the filtering process injecting a spurious pattern of noise into the 

filtered series. We show that prior deterministic filtering procedures are special cases of 

the autoregressive conditional filtering process presented here. Lagrange multiplier tests 

prove that the stochastic seasonal variance component is statistically significant. 

Specification tests using the correlogram and cross-spectral analyses prove the reliability 

of the autoregressive conditional filtering process.  

In essay 2 we develop a new methodology to decompose return variance in order 

to examine the informativeness embedded in the return series. The variance is 

decomposed into the information arrival component and the noise factor component. This 

decomposition methodology differs from previous studies in that both the informational 

variance and the noise variance are time-varying. Furthermore, the covariance of the 
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informational component and the noisy component is no longer restricted to be zero. The 

resultant measure of price informativeness is defined as the informational variance 

divided by the total variance of the returns.  

The noisy rational expectations model predicts that uninformed traders react to 

price changes more than informed traders, since uninformed traders cannot distinguish 

between price changes caused by information arrivals and price changes caused by noise. 

This hypothesis is tested in essay 3 using intraday data with the intraday seasonal 

volatility component removed, as based on the procedure in the first essay. The resultant 

seasonally adjusted variance series is decomposed into components caused by unexpected 

information arrivals and by noise in order to examine informativeness.  
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1 

Essay 1 
 

An Autoregressive Conditional Filtering Process  
to Remove Intraday Seasonal Volatility 

 
1.1. Introduction 

 
The existence of intraday seasonality (the “U-shaped” curve) makes the 

decomposition of total volatility into the components of volatility more difficult.1 Here I 

propose a new method to remove the intraday seasonality pattern to provide a better 

behaving filtered series to explain how intraday volatility actually changes over time, 

exclusive of the U-shape seasonality factor.  Moreover, the current methods to estimate 

and remove the intraday seasonality factor actually cause a noise pattern to be embedded 

into the remaining filtered volatility series and do not capture the stochastic component of 

seasonality factor.  This new method avoids such problems. 

Various models are developed to filter the seasonal variance component. The 

models in the literature disentangle intraday seasonality from total volatility by using a 

new time scale (Dacorogna, Müller, Nagler, Olsen, and Pictet ,1993), the flexible Fourier 

form approach (Andersen and Bollerslev, 1997a), the low-pass filtering method in 

conjunction with the Fourier transform procedure (Andersen and Bollerslev, 1997b), the 

low-pass filtering method in conjunction with the discrete wavelet transform procedure 

(Gençay, Selçuk and Whitcher, 2001), the stochastic volatility model (Beltratti and 

Morana, 2001), the method of the means of the squared normalized returns for each 

intraday interval (Andersen, Bollerslev, Diebold and Labys, 2003; Engle, Sokalska and 

                                                 
1 See Wood, McInish and Ord (1985), Lockwood and Linn (1990), and Daigler (1997) for an examination 
of intraday seasonal volatility for high frequency time series. 



 2

Chanda, 2006), dummy variables (Hughes and Winters, 2005), and a neural network 

approach (Omrane and Bodt, 2007). 

The approaches employed by Dacorogna, et al. (1993), Andersen and Bollerslev 

(1997a), Hughes and Winters (2001), Andersen, Bollerslev, Diebold and Labys (2003) 

and Engle, et al. (2006) assume that the intraday seasonal volatility is deterministic. 

However, the seasonal variance may contain the stochastic component as well as the 

deterministic component. 2  Hence, if the intraday seasonal volatility pattern is time-

varying then using a deterministically-fitted curve will not capture the seasonal variance 

perfectly, and any modification of the pure deterministic filtering models without 

allowing for innovation in the seasonal pattern to capture the time-varying seasonal 

pattern will lead to statistical distortion. In particular, the flexible Fourier form (FFF) 

approach injects noise into the filtered time series if the interaction terms between the 

daily volatility and the sinusoid terms are included to help capture the time-varying 

seasonal pattern. Alternatively, the low-pass filtering methods with the Fourier transform 

and with the wavelet transform procedures eliminate the entire intraday volatility 

component as part of the analysis, not just the intraday seasonality factor. Hence, these 

latter methods preclude the possibility of analyzing the non-seasonal intraday volatility 

behavior. Beltratti and Morana (2001) and Omrane and Bodt (2007) capture the 

stochastic component of the seasonal variance. However, Beltratti and Morana’s model 

still requires the deterministic dynamics of the stochastic seasonal component with a 

complex estimation procedure. Omrane and Bodt’s model does not provide the dynamics 

                                                 
2 See Harvey (1981), Hylleberg (1986), Andersen and Bollerslev (1997a), Beltratti and Morana (2001), and 
Omrane and Bodt (2007) for the discussion of the stochastic component of the seasonal variance. 
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of the seasonal variance, and the filtered series by the neural variance network method 

still exhibit seasonal behavior.  

My model overcomes the difficulties of these previous models by assuming that the 

intraday seasonal variance in each season follows a unique autoregressive moving 

average (ARMA) process. This approach allows one to capture both the deterministic 

seasonal component and the changes and the persistency in the seasonal pattern, resulting 

in an increase in fitting the intraday seasonal volatility. Moreover, this method does not 

cause any misleading statistical inferences due to the injection of additional noise into the 

filtered series by the filtering process. My model also keeps the short-run non-seasonal 

intraday volatility behavior as a separate factor, since it filters out only the seasonal 

component at the seasonal frequencies, without removing the volatility at the non-

seasonal frequencies. In addition, the estimation procedure is far simpler than the prior 

filtering models. Filtering is performed by univariate maximum likelihood estimations. 

Specification tests using the correlogram and cross-spectral analyses prove the reliability 

of this new autoregressive seasonal variance (ARCSV) filtering process. This paper also 

proves that the prior deterministic filtering models given in Andersen and Bollerslev 

(1997a), Andersen, et al. (2003) and Engle, et al. (2006) are special cases of the ARCSV 

filtering process developed in this paper. 

The results show that the ARCSV filtering process performs very well. In particular, 

the process does not produce any distortions in the harmonic properties of the time series, 

such as power spectrum or phase relations at each frequency. Lagrange multiplier tests 

prove that there are statistically significant stochastic component in the seasonal variance. 

The new ARCSV filtering process shows a better filtering performance than the prior 
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deterministic filtering procedures by capturing the innovation and persistency of the 

seasonal volatility (which account for 10.15% of the total seasonal volatility), as well as 

the traditional deterministic unconditional mean factor of seasonal volatility (which 

accounts for 89.85% of the seasonal volatility rather than the typical 100%) for S&P 500 

futures, live cattle futures, and the JPY-USD spot exchange rate.  

Section 1.2 discusses the literature on filtering intraday seasonal volatility. Section 

1.3 develops a new autoregressive seasonal variance filtering process. In Section 1.4, 

gains of filtering efficiency from the autoregressive seasonal variance filtering process In 

Section 1.5, a test statistic of whether the stochastic seasonal variance component is 

significant is developed. In Section 1.6, pecification tests utilizing the correlogram and 

spectral analysis are introduced. Section 1.7 describes the data used in this study. Results 

are reported in section 1.8. The conclusions follow in section 1.9. 

 

1.2. Literature Review 

There are many reasons why the seasonal variance component has to be filtered 

from the total variance series. On the condition that there is a seasonal variance 

component in the total variance, 

a. Estimated coefficients of any variance model are biased if the variance model is 

not adjusted for the seasonal variance. (Omrane and Bodt, 2007) 

b. The time series with seasonally varying mean and variance is nonstationary. 

(Lutkepohle, 2007) 
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c. Only non-seasonal variance component can reflect the effect of non-seasonal 

information arrivals. In other words, failure to adjust for them can result in 

misleading statistical analysis. (Goodhart and O’Hara, 1997) 

d. Correlation-based measures for the degree of volatility persistence obtained from 

high frequency intraday data are dominated by the effect of strong periodic 

component. (Andersen and Bollerslev, 1997b) 

e. Standard GARCH models by themselves require a geometric decay in the 

autocorrelation structure of volatility, and therefore cannot accommodate the 

volatility process which possesses a strong regular cyclical pattern in its 

autocorrelation structure, arising from the intraday seasonal volatility component.3 

Hence, if standard GARCH models are used without adjusting for intraday 

seasonal volatility then any statistical inferences based on this modeling are 

misleading. (Andersen and Bollerslev, 1997a; Engle et al., 2006) 

Andersen and Bollerslev (1997a) show the persistence of intraday seasonal 

volatility using the DM-USD exchange rates and S&P 500 index futures, where the 

averaged absolute returns exhibit a strong U-shape pattern, and the correlograms of the 

absolute returns of the two series show a regular fluctuation on a daily basis. Since 

GARCH models are misspecified when a seasonal fluctuation in the volatility 

correlogram exists, Andersen and Bollerslev employ the flexible Fourier form (FFF) 

approach to filter out the intraday seasonal volatility component from the return series.4 

                                                 
3  The proof of the geometric decay in the volatility correlogram of the GARCH model is found in 
Bollerslev (1986, p. 313-314) and Ding and Granger (1996, p. 193). 
 
4 Their resultant filtered series is based on the assumption that the conditional volatility is a multiplicative 
product of the non-seasonal daily volatility and the intraday seasonal volatility. 
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The fitted seasonal pattern removed by the FFF method for the period of a day is 

deterministic in that the FFF method does not include a stochastic innovation process in 

its procedure to remove the seasonal pattern. The FFF model is partly able to capture the 

time-varying seasonal pattern by using the interaction terms between the exogenous daily 

volatility and the sinusoid terms. However, it is shown in this paper that the interaction 

terms that is designed to capture the time-varying seasonal pattern induce the FFF model 

to inject an additional noise into the filtered returns. (see Lemma 1 in Appendix 4) In 

other words, as the seasonal pattern becomes more time varying, the FFF filtering 

approach injects a larger noise component into the filtered returns through the interaction 

terms.5 Meanwhile, the pure deterministic FFF model still leave the stochastic seasonal 

component in the filtered returns. 6 

Andersen, Bollerslev, Diebold and Labys (2003) and Engle, Sokalska and Chanda 

(2006) compute the seasonal volatility (variance) is defined as the mean of the 

                                                 
5 This FFF model creates a statistical noise into the S&P 500 index futures. These results occur because the 
FFF model used to filter the seasonal variance of the S&P 500 includes the interaction terms between the 
daily volatility and the sinusoid terms. Since the daily volatility is not the seasonal component the fitted 
curve by the FFF contains the non-seasonal component. Consequently, the filtered returns will contains 
noise from the FFF filtering procedure. (see Andersen and Bollerselv, 1997a, p. 148 for the filtering results 
of the S&P 500) 
 
6 Bollerslev and Ghysels (1996) develop a new ARCH model namely, Periodic GARCH or PGARCH, to 
adjust the conditional volatility for the periodic volatility component. For simplicity, PGARCH(1,1) is as 
follows: 1 0t

nE τε −Ω =⎡ ⎤⎣ ⎦  and  ( ) ( ) ( )
2 2 2 2

1 11
n

n n nE τ τ τ τ τ τ ττε σ ω ε σα β
− −−Ω ≡ = + +⎡ ⎤⎣ ⎦  where ( )1N t nτ = − +  is 

the cumulative intraday index, n is the intraday index (or stage), and n = 1, …, N, with N being the number 
of intraday intervals in a day. Dummy variables and sinusoids can be used for the seasonal period specific 
coefficients (see Martens, Chang, and Taylor, 2002). The PGARCH model is efficient in describing 
conditional heteroskedasticity when the seasonal volatility component is present together with the non-
seasonal volatility component. However, unlike the formulation for the conditional volatility in Andersen 
and Bollerslev (1997a), the volatility formulation in PGARCH is unable to split the periodic (seasonal) 
volatility component from the non-periodic (non-seasonal) volatility component. Hence, in this study, the 
PGARCH model is not considered as a process that filters out the seasonality in volatility. Martens, et al. 
(2002) provide empirical results that the PGARCH model is more efficient in forecasting intraday volatility 
than is the FFF model when intraday seasonal volatility is present. Note that Martens, et al. (2002) do not 
compare the PGARCH to the FFF as filtering models. 
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normalized absolute returns (the mean of the squared normalized returns) for each 

intraday period. 7  These normalized returns are defined as returns divided by daily 

volatility. This intraday seasonal volatility pattern is assumed to be deterministic, since 

the mean of the squared normalized returns for a given intraday interval is the same for 

all days.8 However, if the intraday seasonal volatility pattern is time-varying in terms of 

the innovation factor in the seasonal pattern, then the deterministically-fitted curve leave 

the stochastic variance component in the filtered variance series.  

Dacorogna, Müller, Nagler, Olsen, and Pictet (1993) filter out the seasonal volatility 

in foreign exchange markets by developing a new time scale, called a ϑ -scale, that 

replaces the physical time scale.9 The volatility measure in the ϑ -scale does not exhibit 

seasonal behavior. In other words, the price change ( )( )p tϑ∆  does not exhibit 

seasonality even though ( )p t∆  does. The ϑ  time change is defined as ( )1 E

i ic pϑ −∆ = ∆ , 

                                                 
7 In this study, the approach to estimate the seasonal variance by computing the mean of the squared 
normalized returns, as in Andersen, Bollerslev, Diebold and Labys (2003) and Engle, et al. (2006), is 
interchangeably referred to as the mean of the squared normalized returns and the variance mean filtering 
model.  
 
8 As in Andersen and Bollerslev (1997a), a practical estimation of volatility components is done by the 
following two-step procedure: In the first step, the intraday seasonal variance components ,t ns  are obtained. 
In the second step, using the estimates of the seasonal components and the given forecasts of the daily 
variance components, 2ˆ

tσ , the following GARCH(1,1) model is employed to estimate the intraday 

conditional variance component, ,t nq . 

2

, , , ,
ˆ ˆ

t n t t n t n t nR s qσ ε=  with ( )2 2

, 0 1 1 , 1 1,
ˆ ˆ

t n t t t n t nsq qα α ε σ β− −= + + . 

Because the total conditional volatility is assumed to be a multiplicative product of the daily volatility, 
intraday seasonal volatility, and intraday conditional volatility, and because the daily and intraday seasonal 
volatilities are given as exogenous values, the intraday non-seasonal conditional volatility is determined as 
the remaining unknown factor. 
 
9 Dacorogna,et al. (1993) show that the seasonal volatility pattern of the DM-USD exchange rate is the 
combination of three U-shaped seasonal patterns consisting of the Far East Asia market, the European 
market, and the U.S. market. 
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where ip∆  is the price change recorded at the physical time interval i, i = 1, …, N, where 

N is the length of the seasonal period (a day or a week), c is a constant specific to 

exchange rates, and E is a value of 1/0.6. 10  The ϑ  time interval is the monotonic 

transform of the average of the price change at the physical time interval i , ip∆ , 

resulting in the same time scaling for the same seasonal period i, i = 1, …, N. Hence, this 

ϑ -time scaling filtering procedure belongs to the deterministic filtering process category. 

In contrast to Andersen and Bollerslev (1997a) and Engle, et al. (2006), the daily 

volatility component is not preserved in this ϑ -time scaling filtering procedure, since the 

daily volatility is not adjusted as a predetermined value before the average of the price 

change at the physical time interval i , ip∆ , is computed. Hence, the ϑ -time scaling 

filtering procedure inject statistical noise into both the estimated seasonal volatility and 

the volatility of the filtered returns because the intraday seasonal volatility will include 

the interday volatility component. 

Andersen and Bollerslev (1997b) and Gençay, Selçuk and Whitcher (2001) employ 

a low-pass filtering technique in an attempt to capture all of the volatility components 

that are higher than a one-day frequency. Their low-pass filter is based on the Fourier 

transform technique and the multi-resolution analysis (MRA) of discrete wavelet 

transforms (DWT), respectively. Application of the low-pass filter to high-frequency data 

removes all of the variations at the intraday frequencies, but includes the variations at low 

interday frequencies. In this way, the intraday seasonal volatility is completely removed 

                                                 
10 See Dacorogna, et al. (1993) Table 1.3, p. 424 for the detailed values of these constants. 



 9

from the time series. However, the intraday conditional volatility is also removed as a 

tradeoff of removing the intraday seasonality.11  

Beltratti and Morana (2001) propose a stochastic volatility model which captures 

both the deterministic and stochastic seasonal components. Results show that their 

stochastic volatility model performs better than the FFF approach (Andersen and 

Bollerslev, 1997a) and the ϑ -time scaling approach (Dacorogona, et al., 1993). However, 

the dynamics of stochastic seasonal component still deterministic by using the FFF 

approach, and the estimation procedure is complex.12 Omrane and Bodt (2007) use the 

method of self-organizing neural network learning and nonlinear discrete projection to 

                                                 
11 MRA is an analysis technique used to decompose a time series into many subset series disaggregated by 
scale (frequency). The advantage of the DWT technique over the discrete Fourier transform (DFT) is that 
DWT can capture localized events, whereas the DFT cannot capture such events. This is because the 
Fourier transform is parametric, while the transform in wavelet analysis is a nonparametric operation for 
local observations. The parametric estimation method of the DFT, as given below, does not effectively 
capture localized events: 

( ) ( ){ }0

1
cos sint j j j j t

M

j
Y A A t B tω ω ε

=

= + + +∑ , ( )1 2M T≤ −  

where OLS is applied to the above equation for frequency 2
j

Tjω π= , j = 1, 2, …, (T-1)/2 where T is odd, 

to obtain the coefficients. Information arrivals of the frequency 
j

ω  are reflected into the magnitude and 
significance of the coefficients. Now, suppose there is a new information arrival which causes a localized 
movement in returns over a given time period. Because the above OLS coefficients will be economically 
zero and insignificant for the localized event, the localized information arrival is not captured by the DFT 
method. Unlike the DFT, the DWT captures localized events because it uses a non-parametric approach 
without any pre-specified model. The DWT, which is a series of algebraic operations, is performed at first 
with a small time scale (for example, 10-minutes) separately for ‘local’ observations (see Jensen and Cour-
Harbo, 2001, chapters 3, 4, and 5). If the wavelet transform coefficients (which are functions of frequency), 
are inversely transformed then the resulting series is a high pass filtered time series. Every information 
arrival with a 10-minute or less time scale is captured by the high pass filtered time series. Hence, there is 
no information loss by using the DWT method. The wavelet transform can be applied with larger time 
scales, for example, 20-minute, 40-minute, etc. 
 
12  As Beltratti and Morana (2001) note, “We model c(i,t,n) [stochastic variance component] the 
fundamental daily frequency, as stochastic while its harmonics are modeled as deterministic as for 
Andersen and Bollerslev (1997)” on page 208. The maximum likelihood estimation for the stochastic 
volatility model can be done by only simulations. Otherwise, Kalman filtering method is used by assuming 
the log of squared residuals follow the normal distribution, resulting in a quasi-maximum likelihood 
estimation. 
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capture the both the deterministic and stochastic seasonal components. However, the 

neural network method does not provide the dynamics of the seasonal variance. As a 

result, it is not possible to find out the contribution of each deterministic and stochastic 

component to the total seasonal variance. In addition, filtering results of the neural 

network filtering procedure is not perfect in that the variance and the quoting activity of 

the filtered returns still exhibit seasonal movement.13  

In this study I propose a different approach to filtering the intraday seasonal 

volatility pattern. This new approach filters out the time-varying seasonal volatility 

pattern, without also removing the intraday conditional volatility, and the estimation 

procedure is simple. This method also overcomes the problem of impounding new noise 

into the filtered series.  

 

1.3. Modeling the dynamics of intraday seasonal volatility  

I model the dynamics of the intraday seasonal volatility pattern in order to capture 

the time-varying aspects of this pattern. The dynamics for the intraday seasonal volatility 

should capture changes in the seasonal pattern as well as the persistency of the pattern. I 

propose a GARCH-type autoregressive filtering process, with the assumption that the 

dynamics of seasonal volatility of each intraday period follows a distinct autoregressive 

moving average process (ARMA).   

Cleveland and Tiao (1979) and Vecchia (1985) propose a periodic autoregressive 

moving average (PARMA) model when the data has a periodic characteristic in the 

                                                 
13 See Figure 3 in Omrane and Bodt (2007). The autocorrelation functions of the volatility and quoting 
activity deseasonalized by the neural network method still exhibit the periodic fluctuations. 
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mean.14 They recognize that each element of the seasonal pattern has a unique seasonal 

mean process since economic agents behave differently in different seasons. Specifically, 

they propose the unique ARMA process for each season (n):  

( ) ( ) ( ) ( ) ( )| |
i j

t n n t nB R B rφ µ θ− = , for  1, ,n N= L ,               (1) 

( ) ( )i Bφ  and ( ) ( )j Bθ  are the parameter polynomials, t|n represents time t in season n, 

( )2
, ~ 0,t n nr iid N σ  are residual returns, nµ  and 2

nσ  are the mean and the variance for 

each element of the seasonal pattern in season n. However, their model does not consider 

the seasonal variance process for 2
nσ  which includes both the seasonal variance 

component( |t ns ) and non-seasonal variance components. 

I follow the idea in Cleveland and Tiao (1979) and Vecchia (1985) to capture the 

seasonality in variance in that each element ( |t ns ) of the seasonal variance pattern in 

season n has a unique ARMA process. Following Andersen and Bollerslev (1997a), the 

total conditional variance is expressed as a multiplicative product of the daily variance 

and the intraday seasonal variance components for the filtering process. Specifically, the 

autoregressive conditional seasonal variance (ARCSV (q,p)) filtering model is stated as 

follows: 15  

                                                 
14 See also Tiao and Grupe (1980). They quantify the loss of prediction efficiency of the standard ARMA 
model, which does not adjust the seasonality relative to their PARMA models. 
 
15 I perform N separate estimations, since the filtering process does not attempt to capture the intraday 
conditional heteroskedasticity as done in Dacorogna, et al. (1993) and Andersen and Bollerselv (1997a). 
Therefore, as Andersen and Bollerselv (1997a) note, the filtering process serves to eliminate the periodic 
components prior to the analysis of any intraday return volatility dynamics left in filtered returns. See 
Appendix 1.1 for the details on the consistency and the asymptotic normality of the parameters for the 
model in (3) and (4). In addition, this study does not attempt to filter any seasonality other than the daily U-
shape seasonality as done in Andersen and Bollerslev (1997a) and Engle, et al.  (2006). Especially, Daal, 
Farhat, and Wei (2006) provide the empirical evidence that the maturity effect is absent in the majority of 
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Mean model: 

( ) ( ) [ ]( ) ( ) ( )i jB R E R B rτ τ τφ θ− = , 1, ,TNτ = L                  (2) 

ARCSV model: 

0.5
| | |

ˆ
t n t t n t nr N h s v−= , for each of 1, ,n N= L ,             (3) 

( ) ( ) ( ) ( )2
| 0| 1| | 1| |

q p
t n n n t n n t ns B B sα α ε β= + +%               (4)  

where |t nR  are raw returns, |t nr  are the residual returns in season n, th  is the daily 

variance component, |t nv is white noise in season n and asymptotically follows ( )0,1iid N , 

|t ns  is the intraday seasonal variance component in season n , | |
ˆ

t n t n tr hε =% , t represents 

the day, 0, , 1t T= −L , and n is the intraday period, 1, ,n N= L . Each residual process 

|t nr  is covariance stationary. 16  The set { }|1 |2 |, , ,t t t Ns s sL  represents the pattern of the 

intraday seasonal variance component for day t, each element |t ns  of which is assumed to 

follow a distinct seasonality process, as shown in (4). The daily variance ( th ) can be 

obtained by a relevant daily variance model, such as a daily MA(1)–GARCH(1,1) model 

(Andersen and Bollerslev, 1997a), daily commercially available variance forecasts (Engle, 

et al., 2006), or daily realized variance (Andersen, Bollerslev, Diebold and Labys, 2003; 

Engle and Gallo, 2005). In this study, the daily realized variance, defined as 2

|
1

N

t t n
n

h r
=

= ∑ , is 

                                                                                                                                                 
futures contracts, where the maturity effect represent increases in the volatility of future prices near the 
maturity dates. 
 
16 See Appendix 1.2 for covariance stationarity of the residual process ( tr ). 
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used.17 The model in (2), (3) and (4) are estimated by two-step estimation approach. As 

Greene (2000, p. 134) note, two-step estimators provide a simpler alternative to 

complicated joint estimators. In the first step, the parameters of the mean model in (2) 

and the daily variance component ( th ) are estimated. The parameters of the variance 

filtering model in (3) and (4) are determined in the second step. 18  

Note that each ARCSV process |t ns  involves its own parameters ( ) ( ){ }0| 1| 1|, ,q p
n n nα α β . 

The parameter 0|nα  captures the deterministic component in |t ns  (the unconditional mean 

of |t ns ), ( )
1|

q
nα  captures innovations in |t ns , while ( )

1|
p
nβ  captures the persistency in |t ns .  

Because |t ns  is forecasted by itself { }1| |, ,t n t p ns s− −L , the innovations { }2 2
1| |, ,t n t q nε ε− −% %L  only 

at seasonal lags and the unconditional mean ( 0|nα ), the forecasted values ( ,t ns ) reflect 

only the daily periodic component of the variance, being independent of the intraday 

conditional heteroskedasticity. Therefore, the innovation (the seasonality innovation) 

captured by the ARCSV process at period {t,n} is only the seasonality part of the total 

innovation for this period {t,n}. The remaining part of the total innovation at {t,n} 

reflects the innovation that is forecastable by an intraday conditional heteroskedasticity 

process. This characteristic of the ARCSV process is rewritten as a Theorem. 

 
                                                 
17 Note that the ARCSV filtering model does not restrict the daily variance model.  
 
18 Providing that the mean model in a two-step estimation is correctly specified, as Engle and Sheppard 
(2001) point out, the standard errors of the variance filtering model are not affected by the parameters of 
the mean model because the expected cross partial derivatives of the log-likelihood function with respect to 
the mean and the seasonal variance parameters are zero when using the normal likelihood (See Greene 
(2000), p. 108 and 131). A maximum likelihood estimation procedure is employed to determine the 
parameters in (4). See also Engle and Sheppard (2001), Engle (2002), and Engle, Sokalska and Chanda 
(2006) for the application of the two-step estimation and the zero-mean specification for their variance 
models.  
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Theorem 1. The autoregressive conditional seasonal variance (ARCSV(p,q)) filtering  

process captures only the daily periodic variance component at the seasonal frequencies. 

Proof: See Appendix 1.3. 

 

1.4. Gains in filtering performance of ARCSV process 

There are two major reasons why the ARCSV model is better than the extant 

deterministic filtering models: 

a. The ARCSV filtering model improve the filtering performance by capturing the 

innovation in the seasonal variance process. 

b. The ARCSV filtering model does not create any statistical noise both in the 

filtered variance series and in the filtered non-seasonal variance series.  

This section elaborate on the item a. The item b is examined in the section 6. The 

existing deterministic filtering models, such as the FFF model (Andersen and Bollerslev, 

1997a) and the variance mean filtering model (Andersen, et al., 2003; Engle et, al., 2006), 

captures the unconditional mean ( |t nE s⎡ ⎤⎣ ⎦ ) of |t ns , resulting in the seasonal variances 

[ ] { }|1 |, ,t t t NE S E s E s= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦L  for 0, , 1t T= −L . Hence, the intraday seasonal variance 

component is explained by only its unconditional mean for each n. It is shown in 

Theorem 2 that the unconditional mean ( |t nE s⎡ ⎤⎣ ⎦ ) of the intraday seasonal variance 

component for each of intraday period n is captured by n|0α  in the ARCSV filtering 

model. However, if the seasonal variance component ( |t ns ) is time-varying, then the pure 

deterministic filtering models lose its performance in filtering the seasonal variance 
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component since they do not capture the time-varying component of the seasonal 

variance. The ARCSV filtering process gains its performance in filtering the seasonal 

variance component by capturing the unconditional mean, persistency and innovation of 

the seasonal variance component. Hence, the increase in filtering performance of ARCSV 

model relative to the pure deterministic filtering models will be positively related to the 

size of ( )
1|

q
nα  and ( )

1|
p
nβ . Theorem 3 quantifies the gain in filtering performance of ARCSV 

model relative to the pure deterministic filtering models. 

 

Theorem 2. The pure deterministic seasonal variance filtering models, such as the 

flexible Fourier form approach (Andersen and Bollerslev (1997a) and the variance mean 

filtering model (Andersen, Bollerslev, Diebold and Labys, 2003; Engle, Sokalska and 

Chanda, 2006), are special cases of the ARCSV(q, p) filtering model. 

Proof: see Appendix 1.4. 

 

Theorem 3. Gain in filtering performance of ARCSV model relative to the pure 

deterministic filtering models is ∑ ∑∑
= =

−
=

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

N

n

p

j
jn

q

i
inN

1 1
|1

1
|1

1 βα  in percentage value. 

Proof: See Appendix 1.5. 

 

1.5. Testing for ARCSV 

Whether the gain in filtering performance of ARCSV(q, p) model relative to the 

pure deterministic filtering models is statistically significant or not is an empirical matter. 
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Testing the statistical significance of the gain in performance of ARCSV model relative 

to the pure deterministic filtering models is equivalent of testing the statistical 

significance of using the ARCSV(q, p) model. In addition, a significant stochastic 

seasonal variance component indicates the maladjustment for seasonality by deterministic 

filtering models. If a seasonal variance series can be explained by only the unconditional 

mean, then the following null hypothesis will be accepted: 

0 1| 1 1| 1| 1 1|: 0
n nn n q n n pH α α β β− − − −= = = = = =L L  for all 1, ,n N= L           (5) 

Since the variance model in (4) is a univariate GARCH(q, p) model, the Lagrange 

multiplier (LM) test can be applied as shown in Engle (1982) and Bollerslev (1986). The 

test procedure is to run the following OLS regression and to obtain the coefficienst of 

regression (R-squares). 

2 2 2
| 0 1| | 1 1| | |n nt n n t n n q t n q t na a a uε ε ε− − −= + + + +% % %L  for 1, ,n N= L            (6) 

Let 2
nR  be the R-square of the intraday period n from the OLS regression in (6). 

There will be N R-squares from N regressions because there are N intraday periods, and 

its intraday period has its seasonal variance process as shown in (4). Since 2
nT R⋅  follows 

( )2
nqχ  in the null hypothesis, the test statistic for the null hypothesis given in (5) is 

2

1

N

n
n

T R
=

⋅∑  which follows 2

1

N

n
n

qχ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  in the null hypothesis. 

2 2

1 1

~
N N

n n
n n

T R qχ
= =

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

∑ ∑                   (7) 
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1.6. Testing for specification and model selection 

Nerlove (1964) points out that the procedure to remove seasonality as employed 

by the Bureau of Labor Statistics (BLS) removes far more variation from the applicable 

series than can properly be considered as seasonal. Andersen and Bollerslev (1997a) 

point out that their FFF model for seasonality filtering injects additional noise or a bias 

into the filtered return series of the S&P 500 index futures for years 1986 to 1989, as 

shown by the correlogram of their absolute filtered returns being positioned substantially 

above that of the original absolute return series in their figure 7(b), and the correlogram 

also possesses a remaining periodic pattern as well. Hence, it is indispensable to perform 

specification tests for the seasonality filtering process to check whether any statistical 

distortions are made or not. Correlogram and cross-spectral tests can be used to assess the 

performance of the autoregressive filtering process, which is done in the remainder of this 

section. Additionally, the performance of the autoregressive filtering process is contrasted 

to that of the FFF model and the variance mean filtering model. The absolute values of 

the unfiltered and filtered returns are employed as measures of volatility for the 

correlogram and cross-spectral analysis.19  

Section 6.1 examines whether GARCH-type autoregressive volatility modeling 

for the filtering process provides an acceptable model. Sections 6.2 and 6.3 access the 

performance of the autoregressive filtering process by employing the autocorrelogram 

and cross-spectral analysis. Section 6.4 compares the performance of the filtering models 

in terms of their ability to fit the seasonal variance series.  

                                                 
19 For the following specification tests, the unfiltered absolute returns and filtered absolute returns are 
defined as follows: Unfiltered absolute returns = rτ  and filtered absolute returns = ˆr sτ τ .  
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1.6.1. Correlogram tests of the seasonal volatility at seasonal lags 

The ARCSV process in (4) employs an ARCH term and a GARCH term as a part of 

the process. We must check whether using a GARCH procedure creates any new 

potential problems. The reason why using GARCH modeling can be a hazardous 

undertaking in the presence of intraday seasonal volatility is because GARCH models 

only accommodate a geometric decay and cannot properly adjust the seasonal fluctuation 

of the autocorrelogram of the conditional (seasonal) volatility. If the actual filtering 

model correlogram given in equation (8) shows a geometric decay pattern, then the 

intraday seasonal volatility in (4) from a sample time series also will not have any 

seasonal fluctuation in its correlogram. In order to check for periodicity in the intraday 

seasonal volatility series ,t ns  at the seasonal lags, I estimate the following correlogram 

using normalized absolute returns with seasonal lags k for each point of time { },t n . 

( ) , ,
, ,

ˆ ˆ
t n t k n

t n

t t k

k
r r

corr
h h

ρ +

+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 for 1, ,t T= L , 1, ,n N= L  and 1, , 1k T= −L .          (8) 

 
This correlogram is examined to determine whether a monotonic geometric decay pattern 

exists at the seasonal lags k.  

 

1.6.2. Correlogram tests for the performance of the ARCSV process 

When a combination of intraday seasonal volatility, intraday conditional non-

seasonal volatility, and interday conditional volatility exists, then the correlogram of the 

unfiltered absolute intraday returns exhibits a regular fluctuation on a seasonal basis with 

a one day period, as well as a slow geometric decay in the average level of the 
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correlations. 20  Hence, after the removal of the intraday seasonal component, the 

autocorrelogram of the filtered absolute returns reflects only the non-seasonal volatility 

with a geometric decay pattern. Therefore, when one applies a successful deseasonalizing 

model to a time series that possesses a regular daily seasonal volatility pattern then the 

correlogram of the original absolute returns will exhibit a regular seasonal fluctuation, 

whereas the correlogram of the filtered absolute returns does not show any seasonality 

(see Figure 1.1). The filtering process smoothes the correlogram of the absolute unfiltered 

return series, removing the seasonal fluctuations, with the correlogram of the resulting 

absolute filtered returns being positioned near the mean of the absolute unfiltered returns 

cyclical pattern.21 If the correlogram of the filtered absolute returns retains a regular 

seasonal fluctuation or is positioned well above or below the correlogram of the original 

absolute returns due to additional noise, then a maladjustment of the filtering process has 

occurred. The correlogram of the absolute filtered returns is measured as follows:22 

 

                                                 
20 The correlogram of the total filtered conditional volatility after removal of the seasonal component does 
not exhibit any regular seasonal fluctuation, and the correlogram only shows a geometric decay if the 
volatility process has persistency but no seasonality. Since the intraday non-seasonal volatility is less 
persistent relative to the interday volatility, the autocorrelogram of the intraday non-seasonal volatility will 
be positioned below the interday volatility autocorrelogram, with a geometric decay pattern. See Andersen 
and Bollerslev (1997a, p. 125-129) for a detailed discussion on the correlogram of absolute returns with an 
intraday periodic volatility component. 
 
21 This occurs due to the behavior of the intraday seasonal variance component ,t ns . The correlogram of 

,t ns or ( ), ,,i n j mcorr s s  starts with positive values in the beginning, turns to negative values in the middle, 
and returns to positive values as the lag length approaches a complete one day seasonal lag. See Figure 5 in 
the results section as well as Andersen and Bollerslev (1997a, p. 128).  
 
22 The correlogram in (6) differs from the one in (5). Equation (6) measures the correlogram with the 
intraday frequency lags while equation (5) measures the correlogram with the seasonal frequency lags (the 
lags of the integer multiples of one day). 
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( ) ,
ˆ ˆ

m

m

m
r rcorr
s s
τ τ

τ
τ τ

ρ +

+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 for 1, ,T Nτ = ⋅L  and 1, , 1m T N= ⋅ −L .                (9) 

where τ  represents the cumulative intraday index that ranges from 1 to T N⋅ . 

 

1.6.3. Cross-spectral tests  

When a time series is composed of trend, seasonal, and noise components, the 

spectral density of the unfiltered (original) series reflects all three components.23 The 

trend component occurs over a long period of time and therefore contributes to increases 

in the spectrum at low frequencies. The seasonal component shows up as peaks in the 

spectrum at the seasonal frequencies. If the series is composed of only noise, then the 

spectrum will be flat over the entire range of frequencies.  

Nerlove (1964) states that seasonality can be defined as a characteristic of a time 

series that gives rise to spectral peaks at seasonal frequencies.24 There are 81, 47, and 288 

                                                 
23  The periodogram is the variance of the time series at a specific frequency. The periodogram (more 
precisely, the periodogram divided by 4π , see Fuller (1995) p. 359) is an estimator of the spectral density; 
but it is not a consistent estimator because its variance does not approach zero as the sample size grows. To 
overcome this inconsistency problem, ‘smoothing’ is applied to the periodogram by replacing the 
periodogram by a weighted average of the periodograms at neighboring frequencies. The number of 
neighboring frequencies to be included is determined by the width of the window, which is called the 
‘bandwidth.’ The bandwidth needs to be large enough to insure the consistency of the spectral density and 
other cross-spectral quantities, such as the coherence and the phase spectrum. However, widening the 
bandwidth too much causes a distortion of the spectral density at neighboring frequencies within the 
bandwidth, namely causing a ‘leakage’ problem. If there are very large variances at some frequencies then 
the large variance can be leaked into neighboring frequencies through the weighted average. Hence, 
widening the bandwidth creates a tradeoff between consistency gain and leakage. The determination of the 
bandwidth depends on the researcher’s judgment. (See Nerlove (1964) regarding the leakage problem.) In 
this study, spectral density refers to the ‘smoothed’ periodogram. Spectral density, spectrum, and power 
spectrum are interchangeably used in this study (these concepts are described in Fuller, 1995, chapter 7). 
Here a rectangular weighting scheme with a bandwidth of 15 is applied to the unfiltered and filtered series 
for the spectral analysis. There was no difference in results from using other bandwidths. The reason why 
the rectangular weighing function is used is because this process provides simpler testing procedures for the 
coherence and the phase spectrum. 
 
24 See Appendix 1.3 for the definition of seasonal frequency. 
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five-minute within-day periods, i.e., N = 81, 47, and 288 for the S&P 500 index futures, 

live cattle futures, and the spot exchange rate of the Japanese yen to the U.S. dollar (JPY-

USD), respectively. Hence, the first intraday three major seasonal periods are at n of 81, 

40.5, and 27 for the S&P 500 futures; 47, 23.5, and 15.67 for the live cattle futures; and 

288, 144, and 96 for the JPY-USD rates, respectively. (see Figure 1.2).  

Spectral density 

The estimated seasonal variance series needs to possess non-zero spectral density 

only at the specified seasonal frequencies. If the estimated seasonal variance series 

possesses non-zero spectral density at the non-seasonal frequencies, then the filtering 

process is inappropriately adding or reducing the variance at those non-seasonal 

frequencies, resulting in a statistical distortion of the filtered time series. 

If the spectral densities of an unfiltered and a filtered absolute return series are 

compared, then peaks exist for the spectral density in the unfiltered series at the seasonal 

frequencies, but these peaks are removed in the associated filtered series. Hence, the 

spectral densities of a filtered series at the seasonal frequencies will be almost equivalent 

to the spectral densities of the neighboring non-seasonal frequencies. If the spectral 

densities continue to have peaks for the seasonal frequencies in the filtered series after 

filtering, then this implies a maladjustment of the filtering process. Moreover, the 

filtering process should neither add nor remove any variation at the non-seasonal 

frequencies. If it does then the spectral density of the filtered series will be positioned 

above or below that of the unfiltered series for the non-seasonal frequencies. If changes 

in the spectral density of the filtered series at the non-seasonal frequencies occur, then 

this also represents a maladjustment of the filtering process.   
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Coherence 

Coherence is a measure of the correlation between two series as a function of the 

frequency. If the coherences of the unfiltered and filtered absolute return series are 

compared then the coherence should be low at the seasonal frequencies because the 

variances at the seasonal frequencies should no longer exist for the filtered series, while 

they are present in the unfiltered series. Hence, the coherences enable us to test whether 

the filtering process injects statistical noise into the filtered time series. If the coherences 

between the unfiltered and filtered series are indistinguishable from 1.0 at the seasonal 

frequencies, then a maladjustment of the deseasonality procedure exists.25 Because the 

variances at the non-seasonal frequencies should not be removed by the filtering process, 

the coherence of the unfiltered and filtered series should be 1.0 at these non-seasonal 

frequencies. If the coherence is statistically different from 1.0 at these frequencies then 

the filtering process has inappropriately removed variances of the series at the non-

seasonal frequencies.26  

Phase 

The phase statistic estimates the phase shift between two series, that is, the extent 

by which one series leads or lags another series.27 If there is a nonzero phase then any 

statistical causal relation between any two filtered series will be misleading. Hence, the 

phase between the unfiltered and filtered absolute return series should not be significantly 

                                                 
25 The coherence of two identical time series is always 1.0 at all frequencies. 
 
26 Since it is not possible to test directly the null hypothesis that coherence equals 1, I test the null 
hypothesis that coherence equals 0.99.  The test procedure for the coherence is described in Appendix 1.3. 
 
27 The phase spectrum of two identical time series is always zero at all frequencies. 
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different from zero. The testing procedure for the phase is explained in Fuller (1995, p. 

392-393) and Brockwell and Davis (1991, p. 449).  

1.6.4. Model selection 

This section compares the performance of the variance seasonality filtering models 

in terms of their ability to fit the seasonal variance series. The filtering models examined 

are the FFF model, the variance mean filtering model, and the ARCSV model. The time-

scaling procedure (Dacorogna, et al., 1993) is not included in this comparison because 

this procedure does not adjust the daily variance component separately, as discussed in 

the literature review. 

Appendix 4 shows that the seasonal variance estimated by both the variance mean 

filtering model and the FFF model (without the interaction terms) are special cases of the 

ARCSV process developed in this paper. If the ARMA formulation of the ARCSV 

process is a better approach to capture the intraday seasonal variance then the ARCSV 

model will result in a better model selection. The procedure to examine in-sample fit is 

accomplished by employing the following regressions.28 

( ) ( )2
, 0 1 , ,

ˆ ˆlog log j
t n t t n t nr a a h s u= + +  for j = {ARCSV, FFF, Mean}        (10) 

( ) ( ) ( )2
, 0 1 , 2 , ,

ˆ ˆˆ ˆlog log logARCSV FFF
t n t t n t t n t nr b b h s b h s u= + + +           (11) 

                                                 
28  My ARCSV filtering model, the FFF model, and the mean filtering model have the following 
formulation: 

, ,,
0.5

t t n t nt n N h s vr −= , where ,t nr  is the residual returns with mean zero, and ,t ns  is described by the 
deterministic flexible Fourier series for the FFF model and by a constant for each n for the mean filtering 
model while  ,t ns  is estimated by ARMA(q,p) for the ARCSV filtering model. Regression equation (10) is 

obtained by squaring and taking the logarithm for the both sides of , ,,
0.5

t t n t nt n N h s vr −= . Regressions in 
(10) through (13) are similar to those in Martens, et al. (2002), p. 291. Regressions, such as (11), (12), and 
(13), which compare the relative performance of forecasts are called encompassing regressions (see Greene, 
2000, p. 301; Canina and Figlewski, 1993). 
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( ) ( ) ( )2
, 0 1 , 2 , ,

ˆ ˆˆ ˆlog log logARCSV Mean
t n t t n t t n t nr b b h s b h s u= + + +          (12) 

( ) ( ) ( )2
, 0 1 , 2 , ,

ˆ ˆˆ ˆlog log logMean FFF
t n t t n t t n t nr b b h s b h s u= + + +           (13) 

where ,ˆARCSV
t ns , ,ˆFFF

t ns , and ,ˆMean
t ns  are the seasonal variances estimated by the ARCSV, FFF, 

and variance mean filtering models, respectively. If the ARCSV model better estimates 

the seasonal variance then the parameter estimates of the ARCSV model will be larger 

and will possess a greater statistical significance. The coefficient of determination ( 2R ) of 

the ARCSV model also will be larger.  

 

1.7. Data 

S&P 500 index futures and live cattle futures data for year 1999 and the spot 

exchange rate of Japanese yen to the U.S. dollar (JPY-USD) from December 2004 to 

September 2005 are employed for this study.  

The returns of the S&P 500 index and live cattle futures are computed as the 

differences between the logarithmic prices for the last recorded price entries of the nearby 

futures contract over consecutive five-minute intervals. The time period employed is 

from 9:30 (9:05) a.m. to 4:15 (1:00) p.m Eastern time for the S&P 500 index (the live 

cattle) futures. The overnight return is excluded to ensure a consistent time interval. For 

the first 5-minute interval from 9:30 a.m. to 9:35 a.m. (9:05 a.m. to 9:10 a.m.) the price at 

9:30 a.m. (9:05 a.m.) is used as the opening trade price for this interval for the S&P 500 

index (the live cattle) futures; other intervals employ close to close prices. In addition, the 

following days are dropped from the data: non-trading days, half trading days, and 
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trading days within the week of expiration for the S&P 500 index futures.29 If a given 5-

minute interval has no trades, then the price is given by a linear interpolation between 

time intervals to insure 81 (47) intraday intervals for each day for the S&P 500 index (the 

live cattle) futures. There are 223 (232) trading days with the total observations of 18,063 

(10,904) for the S&P 500 index (the live cattle) futures. 

The one-minute JPY-USD spot exchange rate is obtained from Olsen and 

Associates. Following Andersen and Bollerslev (1997a), price is defined as the 

exponential of the midpoint of the logarithmic bid and ask rates at each time interval. The 

five-minute return is defined as the difference between these prices. Since the spot 

exchange rate markets are open 24 hours a day, there are 288 five-minute intervals in a 

day. Returns from Friday 16:00 p.m. through Sunday 16:00 p.m. Eastern time are 

excluded due to the lack of trading activity.30 Approximately 3.7% of 62,496 five-minute 

quotes are filtered out using the outlier filtering algorithm in Dacorogna, et al. (1993). 

Quotes that are filtered out are linearly interpolated.   

As done in Andersen, Bollerslev, Diebold, and Ebens (2001) and Martens, et al. 

(2002), the following autoregression in (14) as the first step of the mean model shown in 

(2) is implemented for each data set to purge the returns of the negative autocorrelation 

                                                 
29 Only the actual expiration day is excluded for live cattle futures, not all trading days within the expiration 
week. Non-trading days and half trading days are excluded for the live cattle futures, as was done for the 
S&P 500 index futures. 
 
30 The beginning price used for the first return of the first day is the opening trade price of the first time 
interval. There are big jumps in quotes around the end of a day (the beginning of the next day for the 
exchange rate) which are not filtered out. Hence, the ending price for the return of the last five-minute 
interval is the price one minute prior to the last recorded price of the interval, i.e., the price at 23:59 p.m. 
For the same reason, the beginning price of the return for the first five-minute interval is the opening trade 
price of that interval. Times are not adjusted for daylight savings time, as done by Dacorogna, et al. (1993) 
and Andersen and Bollerslev (1997a); Martens, et al. (2002) do adjust for daylight savings time. Andersen 
and Bollerslev (1997a) exclude Friday 17:00 p.m. through Sunday 17:00 p.m. Eastern time for their 
deutschemark-U.S. dollar exchange rate data. 



 26

induced by the inherent bid-ask spread, and the residuals  are taken as returns ( rτ ) for the 

model in (3) in the second step.   

1R R rτ τ τρ −= +                          (14) 

where the estimated coefficient ρ  captures market microstructure effects, which is 

expected to have a negative value. The estimated ρ  is -0.077 for the S&P 500 index 

futures, 0.0014 for live cattle futures, and -0.049 for the JPY-USD spot exchange rate.  

 

1.8. Results 
 

This section discusses whether the GARCH-type volatility modeling for the 

filtering process is acceptable, the estimation results of the ARCSV model, and testing 

the performance and validity of the ARCSV process. The autocorrelogram and cross-

spectral analysis are employed to examine the validity of the model. Results of the 

comparison of the performance of the variance seasonality filtering models are also 

presented. 

1.8.1. Correlogram test results of the seasonal volatility at seasonal lags 

In order to use the GARCH-type autoregressive process presented in the 

methodology section to model the intraday seasonal volatility, the correlogram of the 

intraday seasonal volatility series ,t ns  at the seasonal lags needs to show a geometric 

decay pattern without any regular fluctuations. The correlogram is obtained from the 

formula given by equation (8). Figure 1.3 shows that the estimated correlograms (the 

estimated correlations of the seasonal variance at the seasonal lags) of each data set for 
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100 lags have a slow (geometric) decay pattern without any regular fluctuations in the 

decay pattern. The slow geometric decay patterns of the correlations in Figure 1.3 prove 

that an GARCH-type autoregressive model to estimate the intraday seasonal volatility in 

the proposed filtering process does not cause any bias or instability in its parameter 

estimates. Hence, it is an appropriate filtering process.  

1.8.2. Estimation results of the ARCSV models  

Tables 1.1 provide test results of the significance of stochastic seasonal variance 

component and the estimation results for the ARCSV model. Based on the R-squares 

obtained from the equation in (6), the test statistics are computed as shown by (7). The 

orders of lag for equation (6) are determined by the backward selection method starting 

from the maximum lag of four for each ARCSV process in season n, 1, ,n N= L . Table 

1.1 shows that there are significant stochastic component in the intraday seasonal 

variance. There are 22, 18 and 83 seasons out of the total of 47, 81 and 288 seasons, 

which have a statistically significant stochastic seasonal variance component for SNP 500, 

Live cattle futures and JPYUSD spot exchange rate. Results also show that stochastic 

variance component for each variance series is mostly explained by the first lag. All test 

statistics are significantly larger than critical values. The measures of increase in filtering 

performance as given by Theorem 2 show that the seasonal variance is explained by the 

stochastic component by 9%, 12.9% and 8.5% for SNP 500, Live cattle futures and 

JPYUSD spot exchange rate, respectively. In other words, the traditional unconditional 

mean (or deterministic component) account for 91%, 87.1% and 91.5% for SNP 500, 

Live cattle futures and JPYUSD spot exchange rate, respectively. The lag orders of 

ARCH and GARCH terms are one (q = p =1) for the estimations of the ARCSV model in 
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(4). Figure 4 shows the estimated intraday seasonal volatilities ,t ns  for the first 10 days of 

the S&P 500 index and the live cattle futures and the first five days of the JPY-USD 

exchange rate. As expected, the intraday seasonal variances are U-shaped and the U-

shaped pattern changes over time. The estimation results in Table 1.2 of the FFF model 

with interaction terms show that the seasonal variance pattern of live cattle futures are 

more time-varying than the S&P 500 futures or the JPY-USD exchange rate. The 

coefficients delta20 and delta21 of the interaction terms between the daily volatility and 

the sinusoids are significant. These significant interaction terms show that the FFF 

process has rescaled the size of the deterministic seasonal shape (the specified sinusoids) 

by the factor of the daily volatility in order to fit the time-varying seasonal pattern, 

raising the possibility of a maladjustment of the seasonality process. The FFF estimation 

results without the interaction terms exhibit significance because the multicollinearity 

from to the interaction terms was removed.  The daily pattern of the estimated seasonal 

variance of in the JPY-USD is identical over the sample period because no interaction 

terms between the daily volatility and the sinusoids exist in the JPY-USD model.  

1.8.3. Correlogram test results of the performance of the filtering model  

Figure 1 previously showed the correlogram of the unfiltered and filtered absolute 

returns and Figure 5 adds the correlogram of the estimated seasonal volatility, all at the 

intraday lags. The correlogram of the unfiltered absolute returns in Figure 1 shows a 

regular seasonal fluctuation over the day and geometric decay pattern of the average level 

of correlations for each dataset. This pattern of the unfiltered absolute returns reflects the 

fact that the intraday returns are composed of the intraday seasonal variance component 

and the non-seasonal conditional variance component. The standard GARCH model 
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cannot accommodate this regular fluctuation of the correlogram of volatility. This shows 

that a pure ARCH/GARCH model would provide an inaccurate intraday volatility model 

unless one first eliminates the intraday seasonal volatility pattern. Therefore, a well-

filtered time series has to exhibit a stable geometric decay in the correlogram of the 

volatility, since the filtered volatility series is composed of only the non-seasonal 

conditional volatility. The correlogram of the filtered absolute returns in Figure 1.1 shows 

a stable geometric decay pattern, which occurs because the filtered absolute return series 

possesses only a non-seasonal conditional volatility component. The complication created 

by the intraday seasonal variance component is illustrated by Figure 5. As expected (see 

footnote 30), in Figure 5 the autocorrelation of the seasonal volatility at the intraday lags 

changes its sign as the lags change. I can observe that the correlogram of the unfiltered 

absolute returns become smaller (larger) at the point where the correlogram of the 

estimated seasonal variance changes its sign from positive to negative (or negative to 

positive). Hence, the seasonal effect in the unfiltered series is caused by the seasonal 

component. Moreover, since the behavior of the seasonal component is precisely 

estimated and filtered out, the correlogram of the absolute filtered series is positioned 

near the mean of the absolute unfiltered returns, meaning that no additional noise is 

induced into the filtered series by the ARCSV process. The autocorrelation functions of 

the filtered absolute returns from the FFF model tend to lie above those of the ARCSV 

process for the S&P 500 index and live cattle futures.  

1.8.4. Cross-spectral test results of the performance of the filtering model 

As previously explained, seasonality can be defined as a characteristic of a time 

series that causes spectral peaks at seasonal frequencies. The expectation that the major 
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seasonal periods occur at the periods of 81 (47, 288), 40.5 (23.5, 144) and 27 (15.67, 96) 

for the S&P 500 futures (live cattle futures, JPY-USD exchange rate) is verified in Figure 

2 where the actual spectral densities of the estimated intraday seasonal variance series 

( ,t ns ) are equivalent to the expectations.  Alternatively, one can look at Figure 6 and 

focus on the spectral density for the absolute returns for the values from 0 to 1. In this 

figure the seasonal variance estimated by the ARCSV process has zero spectral density at 

the non-seasonal periods, meaning that the ARCSV process did not add nor did it reduce 

the variance of the original return series at the non-seasonal periods. However, the 

seasonal variance captured by the FFF model does have non-zero variance terms at the 

non-seasonal periods, especially for the live cattle and S&P 500 futures contracts. 

Therefore, the FFF model for the futures datasets examined here introduces additional 

noise at the non-seasonal periods. The noise from the FFF model is more severe in the 

live cattle futures than in the S&P 500 futures, while there is no noise in the JPY-USD 

exchange rate series. These results support the finding that the source that injects 

additional noise is the interaction terms, where these terms are designed to capture the 

time-varying seasonal pattern for the FFF model. The results in section 8.5 show that 

dropping out the interaction terms in order to remove the added noise injected into the 

series by the FFF model leads to decreased performance in fitting the seasonal variance.   

Meanwhile, the spectral density of the unfiltered absolute returns for each dataset in 

figure 1.7 (which includes both the seasonal and non-seasonal components) exhibits 

peaks at the seasonal density, as expected, showing a regular and strong seasonal 

variance component. Figure 1.7 also shows that the peaks of the spectral density of the 

unfiltered absolute returns at the seasonal frequencies are removed by my ARCSV 
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process, while there is no change in the spectral density at the non-seasonal frequencies.  

This result is consistent with a proper filtering process. In addition, Figure 1.7 shows the 

spectral density of the filtered absolute returns by the FFF model with the interaction 

terms. In accordance with the findings from the spectral density of the estimated seasonal 

variance, the spectral density of the filtered absolute returns from the FFF model at the 

non-seasonal periods lie above the unfiltered absolute returns for the S&P 500 and below 

the unfiltered returns for live cattle. The changed variance at those non-seasonal periods 

represents the extra noise in the filtered returns arising from the FFF filtering model. 

I employ two other measures (coherence and phase) from cross-spectral analysis to 

access the performance of the filtering processes. For a good filtering process to exist, the 

coherence between the unfiltered and filtered series must be low at the seasonal 

frequencies, while being close to one at the non-seasonal frequencies. Figure 1.8 shows 

the estimated coherence for each frequency and the associated 99% confidence intervals 

for each dataset. The estimated coherence from the ARCSV process is smallest at the 

seasonal periods, in particular 81 (47, 288), 40.5 (23.5, 144), 27 (15.67, 96), etc. for the 

S&P 500 index (live cattle, JPY-USD exchange rate), while it is close to one at the non-

seasonal periods. The upper bounds of the 99% confidence intervals lie below the value 

of 0.99 at the seasonal frequencies, while they do not at the non-seasonal frequencies. 

These results mean that the unknown true coherence from the filtered absolute returns at 

the seasonal frequencies is smaller than 0.99.  Therefore, the null hypothesis that the 

coherence is 0.99 is rejected at the seasonal frequencies, whereas it is not rejected at the 

non-seasonal frequencies using 1% significance levels. However, the coherence 

estimated by the FFF model lies below 0.99 for the S&P 500 and live cattle in the non-
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seasonal periods, where the FFF model injected noise into the filtered time series. In 

particular, the noise problem is severe for live cattle. This noise problem is not present 

for the JPY-USD exchange rate, since the interaction terms are not included, i.e., only the 

unconditional mean of the seasonal variance is adjusted. 

The phase statistic between the unfiltered and filtered absolute returns should not 

be significantly different from zero for a good filtering process. Figure 1.9 shows the 

estimated phase for each frequency and the associated 99% confidence intervals. 

Although the 99 percent confidence bounds from the ARCSV process intersect the value 

of zero at some frequencies, the violations are negligible and they are point-intersections, 

not extensive regional intersections. The distortion in the phase relation by the FFF model 

is present in live cattle at the non-seasonal periods. In conclusion, the specification tests 

using the correlogram, spectral density, coherence, and phase procedures show that my 

element-wise ARCSV process for the intraday seasonal volatility performs well. 

1.8.5. Results of the in-sample fit 

Appendix 1.4 shows that the FFF model (Andersen and Bollerslev, 1997a) without 

interaction terms and the variance mean filtering model (Engle, et al., 2006) are special 

cases of the ARCSV model. Appendix 1.1 then shows that the autoregressive model will 

exhibit a better in-sample fit relative to these deterministic models. As expected, the 

regression estimation results using equation (10) in Table 1.3 show that the ARCSV 

model coefficients (ARCSV) and its R-squares for the seasonal variance are larger and 

more significant than those for the seasonal variance estimated by the FFF model (FFF) 

and the variance mean filtering model (Mean). In fact, these conclusions are even more 

prominent when one examines the estimation results from the encompassing regressions 
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using equations (11) and (12). Note that the coefficients FFF and Mean for the three 

datasets become smaller when the seasonal variances estimated by the ARCSV model are 

included in the regressions. In fact, the coefficients FFF and Mean for live cattle become 

negative. These findings are consistent with the fact that the pure deterministic filtering 

models (the FFF model without the interaction terms and the variance mean filtering 

model) do not capture the entire seasonal variance if the seasonal pattern is sufficiently 

time-varying. Appendix 1.4 also shows that for a finite sample the variance mean 

filtering model provides better estimates for the unconditional mean of the seasonal 

variance ,t nE s⎡ ⎤⎣ ⎦  compared to the FFF model without the interaction terms. Estimation 

results from the regression given in (13) support the expectation that the coefficients 

Mean are larger in size and more significant than the coefficients FFF (for all three 

datasets). The results from the regressions in (13) also provide evidence that including a 

distinct mean for each element seasonal variance process provides better estimates for the 

intraday seasonal variance. 

 

1.9. Conclusions  
 

An understanding of the return and associated volatility processes of a time series is 

important, since such processes reflect the impact of information arrivals (Grossman, 

1976; Andersen and Bollerslev, 1997b). However, the volatility due to news is difficult to 

separate from the intraday seasonal volatility. Therefore, the intraday seasonal volatility 

components must first be eliminated in order to use high frequency data to model 

volatility dynamics.  
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Prior studies (Dacorogna, et al., 1993; Andersen and Bollerslev, 1997a; Hughes and 

Winters, 2005; Engle et al., 2006) assume that the intraday seasonal volatility pattern is 

deterministic for the process of filtering out seasonality effects. However, the intraday 

seasonal volatility pattern is often time-varying rather than deterministic. Alternatively, 

the low-pass filtering methods used with the Fourier transform (Andersen and Bollerslev, 

1997b) and with the wavelet transform (Gençay, Selçuk and Whitcher, 2001) procedures 

eliminate the non-seasonal short-run intraday volatility component as well as the 

seasonality patterns. Consequently, an accurate analysis of the short-run intraday 

volatility behavior with these procedures is not possible. Beltratti and Morana (2001) and 

Omrane and Bodt (2007) recongnize the filtering procedure need to capture the stochastic 

seasonal component. However, Beltratti and Morana’s model still requires the 

deterministic dynamics to decribe the stochastic seasonal component. Omrane and Bodt’s 

model does not provide the dynamics of the seasonal variance, and the filtered series by 

the neural network method still exhibit seasonal behavior.  

In this study I propose a different approach to modeling the intraday seasonal 

volatility pattern in order to overcome the problems arising from a changing seasonality 

pattern in combination with using a deterministic model to filter the data, as well as a 

model that does not remove the non-seasonal intraday conditional volatility with the 

seasonality factor. My model assumes that the seasonal pattern can change over time in a 

forecastable way, and that the intraday seasonal pattern follows an autoregressive process. 

These assumptions allow the model to capture both the persistency and changes in the 

seasonal pattern. Moreover, the estimation procedure is very simpler than prior filtering 
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models. The performance of the filtering process is tested by means of a correlogram and 

spectral analysis.  

The test results show that the new ARCSV process performs very well. In particular, 

there are no distortions to the harmonic properties of the filtered time series, such as in 

the power spectrum or phase relations at each frequency of the series. Findings in this 

study also show that any modification to the deterministic filtering models without 

including a seasonal innovation term to capture the time-varying seasonal pattern leads to 

statistical distortion in the resultant series. In particular, the flexible Fourier form (FFF) 

model injects noise into the filtered time series if the interaction terms between the daily 

volatility and the sinusoid terms are included to capture the time-varying seasonal pattern. 

Meanwhile, pure deterministic filtering models, such as the FFF model in Andersen and 

Bollerslev (1997a) that does not include the interaction terms and the variance mean 

filtering model in Engle, et al. (2006) are special cases of the ARCSV model presented in 

this paper (these models ignore the innovation and persistency terms). Hence, the ARMA 

formulation of the seasonal variance developed in this paper for each intraday interval 

outperforms the deterministic filtering models in capturing the seasonal variance, as 

shown by appendix 1 and results in this study. 

 In conclusion, the ARCSV process developed in this study enables one to filter out 

the seasonal U-shaped volatility pattern without introducing any additional noise into the 

filtered series. This ARCSV process is successfully applied to the S&P 500 index futures, 

the live cattle futures, and the spot Japanese yen to U.S. dollar exchange rate. Hence, the 

ARCSV process is an appropriate tool for the analysis of high frequency data to filter out 
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the time-varying intraday seasonal volatility pattern, without distorting the statistical 

properties of the original time series, leaving the intraday conditional volatility intact. 
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Figure 1.1: Correlograms at five minute lags for the unfiltered and filtered absolute returns 
Figure 1.1 graphs the autocorrelation functions of the unfiltered and the filtered absolute returns for each dataset using the ARCSV process and the FFF 
model. 
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Figure 1.2: Spectral density of the intraday seasonal variance estimated by the ARCSV process 
Figure 1.2 graphs the spectral density of the seasonal variance estimated by the ARCSV process. The seasonal periods that contribute to the intraday 
seasonal variance component are N/n, where N = 81, 47, and 288 for the S&P 500 index futures, live cattle futures, and JPY-USD exchange rate, 
respectively. Hence, the first three major seasonal periods are 81, 40.5, and 27 for the S&P 500 futures; 47, 23.5, and 15.67 for the live cattle futures; and 
288, 144, and 96 for the JPY-USD exchange rate, respectively. 
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Figure 1.3: Correlogram of the normalized absolute returns at seasonal lags 
Figure 1.3 graphs the estimated correlations of the normalized absolute returns for the S&P 500 index 
futures, live cattle futures, and JPY-USD exchange rate for 100 seasonal lags. The correlograms in Figure 
1.3 must have a slow (geometric) decay pattern without any regular fluctuations for the GARCH-type 
autoregressive process to be used as a filtering model.  
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Table 1.1: Estimation and Test Results of the ARCSV Process 
 
This table provides test results of the significance of stochastic seasonal variance component and the 
estimation results for the ARCSV model using 5-minute S&P 500 index futures, live cattle futures, and the 
JPY-USD spot exchange rate. The tests are based on the following regression. 
 

2 2 2
| 0 1| | 1 1| | |n nt n n t n n q t n q t na a a uε ε ε− − −= + + + +% % %L  for 1, ,n N= L . 

The following test statistics are computed using R-squares obtained the above regressions. 

2 2

1 1

~
N n

n n
n n

T R qχ
= =

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

∑ ∑ . 

The ARCSV filtering model is specified as  
0.5

| | |
ˆ

t n t t n t nr N h s v−= , for each of 1, ,n N= L  

( ) ( ) ( ) ( )1 12
| 0| 1| | 1| |t n n n t n n t ns B B sα α ε β= + +%   

where th  is the daily variance component, ,t ns  is the intraday seasonal variance component, t is the daily 
index, and n is the intraday index. The filtering model is estimated separately for each n.  

 

 Non-zero 
lags / total Lag 1 Lag 2 Lag 3 Lagrange 

multiplier 
Critical 
value 

Mean of 
arch0 

Mean of 
arch1 

Mean of 
garch1 

S&P 500 index futures      
 0.9104 0.0342 0.0562 
 24/81 22 1 1 137.72 35.17 90.97% 3.42% 5.61% 
          

Live cattle futures      
 0.8444 0.0326 0.093 
 20/47 18 1 1 126.84 40.11 87.05% 3.36% 9.58% 
          

JPY-USD spot exchange rate      
0.9204 0.0362 0.0491 

 92/288 83 7 2 834.92 129.92 
91.52% 3.6% 4.89% 
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Table 1.2: Estimation Results of the Flexible Fourier Form (FFF) Approach 
 
The following flexible Fourier form regression is implemented for each of the data sets: S&P 500 index 
futures, live cattle futures, and the JPY-USD spot exchange rate:   

( ), , ,,t n tt n t nx f n uθ σ= +  

2

0 1 2
0 1 11 2

,
2 2cos sin

i

J D P
j

t j j j ij n d pj pj
j i i

t nf
n n pn pnI
N N N N

π πσ µ µ µ λ γ δ=
= = =

⎡ ⎤⎛ ⎞= + + + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ ∑  

where n is the intraday observation interval index, N is the number of intraday return intervals, 
( )1

1 1N N N−≡ + , and ( )( )2 1 2 6N N N≡ + + , and tσ  is daily volatility. Following Andersen and 
Bollerslev (1997a), J=1 and p=2 for the S&P 500 index futures and live cattle futures, and J=0 and p=6 for 
the JPY-USD spot exchange rate if the FFF model includes the interaction terms. The dummies are set to 
one for the last three intraday time intervals (n=79, 80, and 81) for the stock index futures. The intraday 
seasonal variance is  
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 S&P 500 Live cattle   JPY-USD 

Mu00 1.92 2.284 5.34 5.71  Mu0 3.85 
Mu10 4.01 1.953 -8.03 -10.48  Mu1 0.26 
Mu20 -1.38 -0.669 2.43 3.43  Mu2 -0.09 
Lambda10 -0.69 -0.568    Gamma1 -0.19 
Lambda20 -1.19 -1.469    Delta1 0.42 
Lambda30 0.27 -0.270    Gamma2 0.06 
Gamma10 1.31 0.920 -1.04 -1.48  Delta2 -0.23 
Delta10 0.22 -0.081 -0.15 -0.19  Gamma3 -0.29 
Gamma20 0.25 0.110 -0.16 -0.28  Delta3 0.13 
Delta20 0.17 0.034 0.26 -0.02  Gamma4 -0.20 
Mu01 313.33  339.68   Delta4 0.00 
Mu11 -1761.55  -2254.41   Gamma5 -0.01 
Mu21 610.78  917.86   Delta5 0.03 
Lambda11 105.33     Gamma6 0.03 
Lambda21 -230.99     Delta6 -0.02 
Lambda31 -467.16     R squared 0.035 
Gamma11 -333.45  -399.40   N 62,496 
Delta11 -265.30  -34.83     
Gamma21 -123.02  -109.49     
Delta21 -117.86  -253.44     
R squared 0.028 0.025 0.023 0.022    
N 18,063 18,063 10,904 10,904    
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Figure 1.4: Intraday seasonal variance estimated by the ARCSV process 
Figure 1.4 plots the estimated intraday seasonal variances from the ARCSV process developed in this study. The intraday seasonal variance component has a 
cycle of one day. One day is composed of 81 five-minute intraday intervals for the S&P 500 index futures, 47 intervals for the live cattle futures, and 288 
intervals for JPY-USD spot exchange rate. The first 10, 10, and 5 days are shown in Figure 1.4 out of a total of 223, 232, and 217 trading days for the S&P 
500 index futures, live cattle futures, and JPY-USD spot exchange rate, respectively. 
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Figure 1.5: Correlograms of the seasonal variances estimated by the ARCSV process 
Figure 1.5 includes the correlogram of the estimated seasonal volatility, relative to Figure 1.1 which graphs the correlogram of the unfiltered and filtered 
absolute returns.  Hence, Figure 1.5 shows the behavior of the intraday seasonal variance component. The correlogram of the intraday seasonal variance 
component starts with positive values, turns to negative values in the middle of a cycle, and returns to positive values as the lag length approaches a 
complete one day seasonal lag. This behavior of the intraday seasonal variance component causes the regular fluctuation in the correlogram of the unfiltered 
absolute returns. 
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Figure 1.6: Spectral density of the estimated intraday seasonal variance 
Figure 1.6 shows the spectral density of the estimated seasonal variance from zero to one. The estimated seasonal variance needs to show non-zero spectral 
density only at the seasonal periods. The seasonal periods are 81, 81/2, 81/3, etc., for the S7P 500 futures, 47, 47/2, 47/3, etc. for live cattle futures, and 288, 
288/2, 288/3, etc for the JPY-USD exchange rate. 
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Figure 1.7: Spectral density of the unfiltered and filtered absolute returns  
Figure 1.7 graphs the spectral density of the unfiltered and filtered absolute returns. Spectral peaks exist for the spectral density of the unfiltered absolute 
returns at the seasonal frequencies but these peaks have to be removed in the associated filtered absolute returns. If the spectral densities of the filtered 
absolute returns continue to have peaks for the seasonal frequencies in the filtered absolute returns then this implies a maladjustment of the filtering process.  
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Figure 1.8: Estimated coherence of the unfiltered and filtered absolute returns and their 99% confidence intervals 
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Figure 1.8: Estimated coherence of the unfiltered and filtered absolute returns and their 99% confidence intervals  
(Continued) 

   
Figure 1.8 graphs the estimated coherence of the unfiltered and filtered absolute returns and their 99% confidence intervals. Coherence is a measure of the 
correlation between two series as a function of the frequency. If the coherences between the unfiltered and filtered series are indistinguishable from 1.0 at the 
seasonal frequencies then a maladjustment in the deseasonality procedure exists. Because the variances at the non-seasonal frequencies should not be 
removed by the filtering process, the coherence of the unfiltered and filtered series should be 1.0 at the non-seasonal frequencies. If the coherence is 
statistically different from 1.0 at the non-seasonal frequencies then the filtering process has inappropriately removed variances of the series at the non-
seasonal frequencies. 
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Figure 1.9: Estimated phase and 99% confidence intervals of the unfiltered and filtered absolute returns 
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Figure 1.9: Estimated phase and 99% confidence intervals of the unfiltered and filtered absolute returns (Continued) 
  

Figure 1.9 graphs the estimated phase for the S&P 500 futures, live cattle futures, and JPY-USD spot exchange rate. The phase statistic estimates the phase 
shift between two series, i.e., the extent by which one series leads or lags another series. If there is a nonzero phase over the entire set of frequencies then a 

maladjustment has occurred. 
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Table 1.3 : Estimation results of in-sample fit and encompassing regressions 
 The regression equations to examine the in-sample fit are ( ) ( )2

, 0 1 , ,
ˆ ˆlog log j

t n t t n t nr a a h s u= + + , j = {ARCSV, Mean, FFF} and 

( ) ( ) ( )2

, 0 1 , 2 , ,
ˆ ˆˆ ˆlog log logARCSV Mean

t n t t n t t n t nr b b h s b h s u= + + + , ( ) ( ) ( )2

, 0 1 , 2 , ,
ˆ ˆˆ ˆlog log logARCSV FFF

t n t t n t t n t nr b b h s b h s u= + + + , 

( ) ( ) ( )2

, 0 1 , 2 , ,
ˆ ˆˆ ˆlog log logMean FFF

t n t t n t t n t nr b b h s b h s u= + + + . 

where ,ˆARCSV
t ns , ,ˆFFF

t ns  and  ,ˆMean
t ns  are the seasonal variance estimated by the ARCSV model, the FFF model without the interaction terms , and the mean of the 

normalized squared returns, respectively. If the ARCSV model estimates the seasonal variance better than the pure deterministic filtering models, then the 
parameter estimates of the ARCSV model will be larger in size and possess a greater statistical significance. In addition, the regression coefficient ( 2R ) of 
the ARCSV model will be larger. In the following table, ARCSV, Mean, and FFF represents the coefficients of ( ),

ˆ ˆlog ARCSV

t t nh s , ( ),
ˆ ˆlog Mean

t t nh s , and 

( ),
ˆ ˆlog FFF

t t nh s . 

 Regression (10) Regression (11) Regression (12) Regression (13) 

 
Coeffi-
cient t-value 

Coeffi-
cient t-value

Coeffi-
cient t-value

Coeffi-
cient t-value 

Coeffi-
cient t-value 

Coeffi-
cient t-value 

SNP 500            
Intercept -2.2933 -7.16 -2.5076 -7.81 -2.3506 -7.32 -2.1461 -6.63 -2.2661 -7.05 -2.2003 -6.8 
Auto 0.9311 39.92     0.675 8.07 0.7485 4.41   
FFF   0.9181 39.17   0.2676 3.19   0.3163 3.56 
Mean     0.9268 39.67   0.1846 1.09 0.6224 7.03 
R-square 0.0815 0.0787 0.0806 0.082 0.0816 0.0812 

Live Cattle            
Intercept 0.6347 0.7 -0.7969 -0.91 0.179 0.20 0.6369 0.7 0.5294 0.58 0.1776 0.20 
Auto 1.2211 18.64     1.4068 5.8 2.1845 4.64   
FFF   1.1212 17.7   -0.1862 -0.79   0.1891 0.79 
Mean     1.1885 18.15   -0.9713 -2.07 0.9998 4.04 
R-square 0.0321 0.029 0.0305 0.0321 0.0325 0.0306 

JPY-USD            
Intercept -2.2356 -18.48 -2.3905 -19.75 -2.3234 -19.2 -2.0214 -16.34 -2.2228 -18.29 -2.0998 -17.01 
Auto 0.9096 51.06     0.5949 13.97 0.8074 8.64   
FFF   0.895 49.73   0.3495 8.13   0.4083 9.00 
Mean     0.8962 50.31   0.1041 1.11 0.5249 11.68 
R-square 0.0401 0.0381 0.039 0.0411 0.0402 0.0412 
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Appendix 1.1: Consistency and asymptotic normality of the parameters in the 

ARCSV process 

 

The residual |t nv  in (3) contain the intraday heteroskedasticity variance component 

as assumed in Engle, Sokalska and Chanda (2006) and mentioned in Andersen and 

Bollerslev (1997a). Specifically, for a time period { },t n  in (3),  

, , ,t n t n t nv q ξ=  and ( ), ~ 0,1t n iid Nξ            (A1) 

where ,t nq  represents the intraday heteroskedasticity variance component with the daily 

unconditional expectation being 1, i.e., , 1t nE q⎡ ⎤ =⎣ ⎦  since the intraday conditional 

variance ,t nq  will not be relevant if returns are measured at a daily frequency. Then, the 

mean of ,t nv  given 1,t nI −  is 

, 1, , , 1, 0t n t n t n t n t nE v I q E Iξ− −
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ,          (A2) 

where 1,t nI −  be the information set at the day t-1 for a particular n. Suppose that the 

intraday heteroskedasticity process is as follows: 
2
, 1

, 0 1 2 , 1
, 1

t n
t n t n

t t n

q q
h s
ε

γ γ γ−
−

−

= + +             (A3) 

By taking conditional expectation operator and substituting iteratively, 

( )( )
( ) ( )

0 1 2

, , 1 2 ,
1 2

1

1

N

N
t n t n N t n NE q q q

γ γ γ
γ γ

γ γ− −

− +
⎡ ⎤ = + +⎣ ⎦ − +

         (A4) 

Or, because , 1,t n N t nq q− −= , 

( )( )
( ) ( )

0 1 2

, 1, 1 2 1,
1 2

1

1

N

N
t n t n t nE q q q

γ γ γ
γ γ

γ γ− −

− +
⎡ ⎤ = + +⎣ ⎦ − +

         (A5) 

where 
2
, 1

, 1 , 1
, 1

t n
t n t n

t t n

E q q
h s
ε −

− −
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 is used. However, if N is large and 1 2 1γ γ+ < , then ,t nq  

can be approximated by 
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( )
0

, 1,
1 21t n t nE q q γ
γ γ−

⎡ ⎤ ≅⎣ ⎦ − +
.            (A6) 

In this study, N is 81, 47 and 288 respectively for S&P500, live cattle futures 

contracts, and JPY-USD spot exchange rate. The above equation shows the expected 

value of the intraday heteroskedasticity. Hence, 

( )
0

, 1,
1 2

lim 1
1t n t nN

E q q γ
γ γ−→∞

⎡ ⎤ = =⎣ ⎦ − +
             (A7) 

or   

plim ,t nq =1. 

If plim ,t nq =1 and ( ), ~ 0,1t n Nξ , then the limiting distribution of , ,t n t nq ξ  is the 

distribution of ,t nξ (see Greene (2000), p. 115):  

, , , ,
d

t n t n t n t nv q ξ ξ≡ ⎯⎯→ .            (A8) 

Hence, the asymptotic distribution of ,t nv  given 1,t nI −  is as follows. 

( ), 1,| ~ 0,1
a

t n t nv I iid N− .            (A9) 

Given the above results, the estimators in (3) and (4) are consistent and follow the 

asymptotic normal distribution by the properties of the maximum likelihood estimators 

(see Greene (2000), p. 127).  
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Appendix 1.2: Covariance stationarity of the residual returns 

  

Seasonal variance process ( |t ns ) contains the deterministic part (unconditional 

seasonal variance component) which is captured by parameter 0|nα  and the stochastic part 

which is captured by 1|nα  and 1|nβ  together as shown in (4). The residual process |t nr  is 

nonstationary because the unconditional variance component in the seasonal variance 

( |t ns ) is time-varying. Note that if the unconditional variance of a series is not constant, 

then the series is nonstationary. The conditionally time-varying daily variance component 

( th ) is not a source of nonstationarity. (See Fuller, p. 111 and Enders, p. 155) It is 

because the process which is conditionally heteroskedastic can be unconditionally 

homoskedastic. For example, the GARCH process has a constant unconditional variance. 

However, the residual returns |t nr  is covariance stationary if the following 

conditions are met: 

a. |t nE r⎡ ⎤ < ∞⎣ ⎦  and | |t n t h nE r E r +⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  for all h N∈       (A10) 

b. | |,t n t h nCov r r +⎡ ⎤ < ∞⎣ ⎦  and | | | |, ,t n t h n t g n t h g nCov r r Cov r r+ + + +⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  for all h and g N∈  

                        (A11) 

 If the mean model in (14) is correctly specified, then , 0t nE r⎡ ⎤ =⎣ ⎦  for all {t, n}, or 

| 0t nE r⎡ ⎤ =⎣ ⎦  for all n. Hence,  

| | 0t n t h nE r E r +⎡ ⎤ ⎡ ⎤= = < ∞⎣ ⎦ ⎣ ⎦  for all h N∈ .                   (A12) 

Hence, the first moment of |t nr  is finite and constant.  

Appendix 1 shows that ( ), 1,| ~ 0,1
a

t n t nv I iid N− . Therefore, 

| | | | | | | |

| | | |

,

0

t t n t n t h t h n t h n t t n t h t h n t n t h n

t g t g n t h g t h g n t g n t h g n

Cov h s v h s v h s h s E v v

h s h s E v v

+ + + + + +

+ + + + + + + + +

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦
⎡ ⎤= = < ∞⎣ ⎦

     (A13) 

                                                                                        for all h N∈  and 0h ≠ . 
2 2 2

| | | | | | |t t n t n t n t n t h n t h n t nE h s v s E v s E v sσ σ σ+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = < ∞⎣ ⎦ ⎣ ⎦ ⎣ ⎦  for 0h = ,     (A14) 
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where σ  is the unconditional daily variance i.e., [ ]tE h σ= , |t ns  is the unconditional 

seasonal variance  at n i.e., ( )| | 0, 1, 1|1t n t h n n n ns s α α β+= = − − . Hence, the covariance and 

variance of |t nr  is finite and constant.   
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Appendix 1.3: Proof of Theorem 1 

 

As Nerlove (1964) note, the seasonality is defined as a characteristic of a time series 

that gives rise to spectral peaks at seasonal frequencies. Based on this definition of 

seasonality, I prove Theorem 1. 

It is well known that the unconditional variance of a time series ( Vτ ) can be 

represented by the following spectral density form (See Fuller, 1995, p. 144): 

( ) ( )
1

2
0

1

1, 2 cos
2

TN

V i i
i

i d
π

ω π
σ ω γ γ γ ω ω

π

−

=−
=

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

∑∫ ,       (A15) 

( )cov ,i iV Vτ τγ += ,           (A16) 

where the 1, ,TNτ = L  is the cumulative intraday index with a day index 

( 0, , 1t T= −L ) and an intraday index ( 1, ,n N= L ). That is, one day is composed of N 

intraday periods. The above spectral representation in (A15) shows that the variance is 

decomposed by autocovariance ( iγ ) and frequency (ω ). Let the time series be the 

variance series (Vτ ) which has a daily periodic component (the intraday seasonal variance 

component). If a regular intraday seasonal component in a variance series is consistently 

present on a daily basis, such as the U-shape intraday volatility pattern, then the seasonal 

frequencies (periods) that contribute to the intraday seasonal component will be intraday 

frequencies m
TN

 (intraday periods TN
m

), where , 1, ,Nm n N
n

= = L . Let 

2 , 1, ,S
m Nm n N

TN n
πω ⎧ ⎫

= = =⎨ ⎬
⎩ ⎭

L . The variances at the intraday frequencies are: 
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( ) ( )2
0

1

1, 2 cos
2

P

V S i i S
i

iσ ω γ γ γ ω
π =

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

∑         (A17) 

The variances at the intraday frequencies in (A17) contain the daily periodic 

component and non-periodic component. Because the seasonal variance component is 

periodic on a daily basis, the autocovariances that contribute to the periodic component 

are { }, 2 , ,S i i N N TNγ γ= = L . Therefore, the variances which reflect only daily periodic 

component at the intraday frequencies are represented by: 

( ) ( )2
0

1, 2 cos
2

S

V S S i S
i I

iσ ω γ γ γ ω
π ∈

⎛ ⎞
= + ⋅⎜ ⎟

⎝ ⎠
∑         (A18) 

where SI  = {N, 2N, L , TN}. 

In order to show the ARCSV(p,q) in (3) and (4) has the spectral representation in 

(A18), I have to show the spectral densities of the ARCSV(p,q) is only the function of the 

intraday frequencies 2 , 1, ,S
m Nm n N

TN n
πω ⎧ ⎫

= = =⎨ ⎬
⎩ ⎭

L  and the periodic variance 

component { }, 2 , ,S i i N N TNγ γ= = L .  

Let tT h sτ τ=  which is in (3), where Nt nτ = + . The spectral density of Tτ is 

obtained as follows: 

( )
1

1
2

NT
i

T tf h s e ωτ
τ

τ

ω
π

−

=

= ∑    

  ( )( )
1

1
2

h

h

NT
i i

h h hf e d s eω τ ωτ
τω

τ

ω ω
π

−

=

= ∑ ∫    

  ( ) ( )

1

1
2

h

h

NT
i

h h hf s e dω ω τ
τω

τ

ω ω
π

− −

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑∫    

  ( ) ( )
h

h h S h hf f d
ω

ω ω ω ω= −∫ ,         (A19)  
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where ( )h hf ω  and ( )S hf ω ω−  are the spectral densities of the daily variance th  and the 

seasonal variance sτ . Because th  is a daily variance, the frequency hω  cannot be higher 

than one day. Hence the frequency hω ω−  represents the intraday frequency. For the 

discrete intraday time period 1, ,n N= L , out of the total TN cumulative time periods, the 

relevant periods are TN, L  2N, N. These periods are consistent with the frequencies m
TN

 

where , 1, ,Nm n N
n

= = L .  

We can express ARCSV(p,q) in the following vector form: 

1,0 1, 2,
1 1

q p

t j t j t j j t j
j j

S D D D Sε ε− − −
= =

′= + +∑ ∑% %o  

or 

2, 1,0 1,
0 1

p q

j t j t j t j
j j

D S D D ε ε− −
= =

′= +∑ ∑ % %o          (A20) 

where  { },t t nS diag s= , { }1, |j j nD diag α= , { }2, |j j nD diag β= , ( )1 1|1 1|t t t Nε ε ε− − −
′=% % %L , o  

represents the Hadamard product which is computed by element by element 

multiplication. Fourier transform of (A20) is as follows (see Fuller, 1995, p. 179-180): 

 

( ) ( ) ( ) ( ) ( ) ( )
2 1 1 2

* 1 * 1
,0 ,

1

1, 2 cos
2

q

S i D D j D D
j

f f f j f fε εω γ ω ω ω ω ω
π

− −

=

⎛ ⎞
= Γ + Γ ⋅⎜ ⎟

⎝ ⎠
∑% %     (A21) 

or 

( ) ( ),0 ,
1

1, 2 cos
2

q

S i S S j
j

f jω γ ω
π =

⎛ ⎞
= Γ + Γ ⋅⎜ ⎟

⎝ ⎠
∑         (A22) 

where ( ),S if ω γ  is the spectral density of tS  as a function of frequency factor ω  and 

autocovariance iγ , ( ){ }, j t t jdiag Eε ε ε +′Γ ≡% % % , ( ) ( ) ( ) ( )
2 1 1 2

* 1 * 1
, ,S j D D j D Df f f fεω ω ω ω− −Γ ≡ Γ % ,  
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( )
1 1,

1

1
2

q
i j

D j
j

f D e ωω
π

−

=

= ∑ , 

( )
1

*
1,

1

1
2

q
i j

D j
j

f D e ωω
π =

= ∑ , 

( )
2 2,

0

1
2

p
i j

D j
j

f D e ωω
π

−

=

= ∑ , and 

( )
2

*
2,

0

1
2

p
i j

D j
j

f D e ωω
π =

= ∑ . 

The index 1, ,  or j p q= L in (A22) is day index (t) and hence corresponds to n = 

N, 2N, L , pN or qN. These periods are the same as the index set  SI  = {N, 2N, L , TN}. 

Thus, it follows that the spectral density of the ARCSV(p,q) includes only , jεΓ %  where 

Sj I∈ . 

 As shown above, the ARCSV(p,q) is only the function of the intraday frequencies 

2 , 1, ,S
m Nm n N

TN n
πω ⎧ ⎫

= = =⎨ ⎬
⎩ ⎭

L  and the periodic variance component 

{ }, 2 , ,S i i N N TNΓ = Γ = L . 
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Appendix 1.4: The proof Theorem 2 

 
Intuitively, if the innovation and persistency terms in the ARCSV model are 

ignored then the remaining constant term will capture the unconditional mean of the 
seasonal variance for each intraday interval. Hence, the autoregressive model without the 
innovation and the persistency terms is indistinguishable from the currently used 
deterministic models. In the following sections I show that the FFF model and the 
variance mean filtering model are special cases of the autoregressive model, and that the 
variance mean filtering model better captures the seasonal variance than does the FFF 
model when a finite sample exists. 
 
A. The FFF model vs the autoregressive model 

 

Let { }|1 |, ,t t t NS s s= L  be the pattern of the intraday seasonal variance series with the 

unconditional expectation, [ ] { }|1 |, ,t t t NE S E s E s= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦L . We can think of |t nE s⎡ ⎤⎣ ⎦  as an 

observation at period of {t,n} from a continuous function of [ ]E Sτ . Let us assume that 

[ ]E Sτ  is a continuous function and its [ ]E Sd dτ τ  is square integrable, where the 

index τ is the cumulative intraday index defined as Nt nτ = +  for 0, , 1t T= −L  and 

1, ,n N= L . Then there is a trigonometric polynomial fτ  of which fτ  at n converges to 

the unconditional mean, |t nE s⎡ ⎤⎣ ⎦ , at n, absolutely and uniformly as follows (see Theorem 

3.1.8 in Fuller (1995)): 
2

1

2 2cos sin
N

n n
n

n nf f A B
N Nτ τ
π πτ τ

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑  if N is even,       (A23) 

or  
( )1 2

1

2 2cos sin
N

n n
n

n nf f A B
N Nτ τ
π πτ τ

−

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑  if N is odd.       (A24) 

Now suppose that the conditional mean of |t ns  follows an ARMA process, for 

simplicity, ARMA(1,1). Then the conditional expectation of |t ns  is 

( ) 2
1 | | 1| 2| 1| 1| 1| 1|1t t n t n n n n t n n t nE s E s sα α α ε β− − −= − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ % .        (A25) 

For the sample,  

( ) 2
| 1| 2| 1| 1| 1| 1|1t n n n n n t n n t ns sµ α α α ε β− −= − − + +% ,         (A26) 



 63

or  2
| 0| 1| 1| 1| 1|t n n n t n n t ns sα α ε β− −= + +%  as in (2),         (A27) 

where ( )0| 1| 1|1n n n nα µ α β= − − and ∑
−

=

−=
1

0

2
|

1 ~T

t
ntn T εµ   for  1, ,n N= L .  

Let ( ) ∑
−

=

−=≡
1

0

2
|

1 ~T

t
ntnn TT εµµ . Assume that ( ) |lim , 0n T nT

Cov Tµ ε
→∞

=⎡ ⎤⎣ ⎦% , then ( )n Tµ  

converges to the unconditional mean |t nE s⎡ ⎤⎣ ⎦  at n as T grows larger by the law of large 

number (see Theorem 6.1.1 in Fuller (1995)). Then, as ( )n Tµ  converges to |t nE s⎡ ⎤⎣ ⎦ , |t ns  

converges to the conditional mean 1 |t t nE s− ⎡ ⎤⎣ ⎦ . Hence, it follows that the FFF model is a 

special case of the ARCSV process if the FFF model does not include the interaction 

terms, since the unconditional mean is obtained by limiting 1| 1| 0n nα β= = .  Including the 

terms in the FFF model, such as, 1n N  and 2
2n N , does not change the above conclusion 

since those terms are only involved in capturing the unconditional mean for the 

deterministic patterns.  

 

B. The variance mean filtering model vs the autoregressive model 

 
The variance mean filtering model in Engle, et al. (2006) is also a special case of 

the autoregressive model when 1| 1| 0n nα β= =  in the autoregressive model. If 

1| 1| 0n nα β= =  then the autoregressive model is | | |
ˆ

t n t t n t nr h s v=  where , 0,t n ns α= . By 

rearranging, the normalized return is obtained as | | | 0| |
ˆ

t n t t n t n n t nr h s v vα= = . The mean 
of the squared normalized returns for n is 

( )2
2 2 2

| | | | 0| | 0|
ˆ

t n t t n t n t n n t n nE r h E E s v E vε α α= = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
% . Hence, it follows that if 

1| 1| 0n nα β= =   then 0|ˆ nα  is the estimate ( 1 2
|

1

T

t n
t

T ε−

=
∑ % ) of the unconditional mean ( |t nE s⎡ ⎤⎣ ⎦ ) 

of the seasonal variance for each n of the variance mean filtering model, where 
0| 0| |

ˆ
n n t nE E sα α= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 
C. The FFF model vs the variance mean filtering model 

 
In the limit, the seasonal variances estimated by the FFF model without the 

interaction term and by the variance mean filtering model at each n, are equal. It is shown 
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above that if 1| 1| 0n nα β= =  then the constant 0|ˆ nα  in the autoregressive model is the 

estimate of the unconditional mean ( |t nE s⎡ ⎤⎣ ⎦ ) for the seasonal variance at n of the FFF 
model and the variance mean filtering model. Therefore, as T grows larger, those 
estimates of the seasonal variance from the FFF model without the interaction terms and 
the variance mean filtering model become equal. However, in the finite sample, while the 
variance mean filtering model allows independence between the means for different n, 
the FFF model does not allow independence. Therefore, in this case it is expected that the 
variance mean filtering model will provide better estimates for the unconditional seasonal 
variance |t nE s⎡ ⎤⎣ ⎦  compared to the FFF model without the interaction terms. 
 
 
D. Noise injection of the FFF model in filtering process 
 
The flexible Fourier from (FFF) approach to filter the seasonal variance component 
includes the interaction terms between the daily volatility and the sinusoids (see 
Andersen and Bollerslev, 1997a). The following Lemma 1 shows that the interaction 
terms introduce the statistical noise in both the estimated seasonal variance series and the 
filtered non-seasonal variance series. 
 
Lemma 1. the interaction terms between the daily volatility and the sinusoids in the FFF 
model injects the statistical noise in both the estimated seasonal variance series and the 
filtered non-seasonal variance series. 
 
Proof 

Proof of Lemma 1 is directly follows from the proof of Theorem 1 by showing 
that the seasonal variance estimated by the FFF model contains the non-periodic variance 
components and the variance components at the non-seasonal frequencies.  

 
The FFF model is  
( ) ( ) ( )2

, ,2 log log logt n t n tx R R Nτ σ≡ − − +                 (A28) 

 
( ),f nx uτ τ τ τθ σ= +                    (A29) 

0

J
j

t
j

f zτ τσ
=

= ∑                       (A30) 

where 
2

0 1 2
1 11 2

2 2
cos sin

i

D P

j j j ij n d pj pj
i i

n n pn pn
I

N N N N
zτ

π π
µ µ µ λ γ δ

=
= =

+ + + + +
⎡ ⎤⎛ ⎞≡ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ . 

The estimated seasonal variance is 



 65

( )

( )
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exp 0.5

exp 0.5
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T N f

f
s τ

τ
τ

τ

=

⋅
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎝ ⎠
∑

                    (A31) 

 
τz  is obtained from the Fourier series approximation in (A30), and J = 1 for simplicity. 

The interaction term is ττ σ zT t≡ . As shown in the proof of Theorem 1, the spectral 
density of Tτ is 

 
( ) ( ) ( )∫=

σω
σσ ωωωω dfff zT                   (A32) 

Given the fact that the interaction term is ττ σ zT t≡  is a component of the estimated 
seasonal variance ( τs ), the seasonal variance ( τs ) estimated by the FFF the variance 
components at the non-seasonal frequencies. Furthermore, the daily variance ( 2

tσ ) 
contains the non-periodic variance components as shown in (A15) in Appendix 3.  
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Appendix 1.5: Proof of Theorem 3 

 

By the construction of the ARCSV filtering model in (4), the daily mean of the 

seasonal variance is 1, as shown below: 

From (3), the daily return is 

∑∑
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|           (A33) 

The daily variance is2 
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or   1
1

|
1 =∑

=

−
N

n
ntsN            (A35) 

The probability limit of the equation in (A35) will be 

( ) 1|
1

|
1 =⎯→⎯∑

=

−
nt

P
N

n
nt sEsN           (A36) 

The equation (A35) can be rewritten as 
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As N grows larger, the probability limit of the equation in (A37) will be 
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Because ( ) ( ) ( ) 1~
||

2
| === −− ntjntint sEsEE ε , The above equation in (A38) can be rewritten as 

( ) ( ) ( ) 1~
1

|1
1

|1|0
1 1

||1
1

2
||1|0

1 =++⎯→⎯⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ ∑∑∑ ∑∑

=
−

=
−

= =
−−

=
−−

−
p

j
jn

q

i
inn

P
N

n

p

j
jntjn

q

i
intinn EEEsN βααβεαα    (A39) 

The equation in (A39) shows that the ARCSV(q, p) filtering model captures the seasonal 

variance with weights of pnnqnnn −−−− |11|1|11|1|0 ,,,,,, ββααα LL  rather than only with n|0α . 

Given the fact that n|0α  is the estimate of the unconditional mean of the seasonal variance 

component and the sum of the weights of pnnqnnn −−−− |11|1|11|1|0 ,,,,,, ββααα LL  is unity, the 

increase in filtering performance of the ARCSV(q, p) is obtained as  

( ) ( )∑∑
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For a sample, the increase in filtering performance of the ARCSV(q, p) is 
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Appendix 1.6: The test procedure for coherence 
 
 

Let ( )11f ω  and ( )22f ω  be smoothed spectral densities of unfiltered and filtered 

series, where ω represents frequency. Then the cross-spectral density ( )12f ω  is 

expressed as ( ) ( ) ( )12 12 12f C iqω ω ω= − = ( ) ( )( )12 12expA iω ϕ ω , where ( )12A ω =  

( ) ( )2 2
12 12C qω ω+ = ( )12f ω  is the cross-amplitude spectrum, and ( )12ϕ ω =  

( ) ( )( )12 12arctan iq Cω ω−  is the phase spectrum. Then, the coherence is obtained as  
 

( ) ( )
( ) ( )

( )
( ) ( )

1212
12

11 22 11 22

fA
K

f f f f

ωω
ω

ω ω ω ω
= = .       (A42) 

 
Drawing on Brockwell and Davis (1991, p. 150), the coherence ( )12K ω  has the 
following confidence interval of an asymptotic normal distribution: 
 

( )( )( ) ( )( )( )( )12 1 2 12 1 2
ˆ ˆtanh arc tanh 2 , tanh arc tanh 2K Z a K Z aα αω ω− −− +  

            (A43) 
 

where ( )2 2
d

j d
a W j

=−

= ∑ , the ( )W j  is the weighting function with the bandwidth 2 1d +  

such that ( ) 1
d

j d
W j

=−

=∑ .  For a 95% confidence interval ( 0.05α = ), 1 2 1.96Z α− = . 

However, the above confidence interval is inoperable for the null hypothesis that the 
coherence ( )12K ω  is equal to 1. This is because for an input 1x = , the ( )arc tanh 1 = ∞ . 
Both the upper and lower confidence bounds converge to infinity. Hence, instead of 
testing the null hypothesis that ( )12K ω  is equal to 1, I test the following null hypothesis 
to make inferences on the statistical significance of the coherence. The null hypothesis is  
 

( )0 12: 0.99H K ω = .           (A44) 
 

If the upper confidence bound lies below 0.99 then the null hypothesis 0H  is rejected, 
since this means that the unknown coherence is smaller than 0.99. 
 
 



 69

Essay 2 
 

Informational Decompositions of the Variance of Returns 
 

2.1. Introduction 

This study investigates the time-varying informativeness of the price series, which 

can be employed to examine the deviation of actual price from the true price, such as 

when bubbles and crashes are being investigated. This study employs data from the major 

U.S. stock indexes during the late 1990s and early 2000s to examine such a case of a 

bubble and subsequent crash. In the noisy rational expectations models of Diamond and 

Verrecchia (1981), Admati (1985), Kim and Verrecchia (1991), and Shalen (1993), 

traders’ reactions to price changes are decomposed into the components of unexpected 

information content and the effect of uninformed noisy traders’ reactions to market 

activity. Uninformed traders react both to the price changes caused by information 

arrivals and to the price changes caused by other aspects of noise (liquidity demand), 

since they are uninformed and cannot distinguish between these factors.  Hence, the 

changes in price are caused by both information arrivals and noise. 

This study develops a new methodology to decompose the variance of returns into 

information and noise, given that both variances are conditional on time. One important 

condition for the study of the market microstructure, is that both the informational and 

noise variances must be conditional on time in order to reflect heteroskedastic 

informational arrivals and the dynamic behavior of noise throughout time. Previous 

studies do not allow heteroskedasticity over time. 
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Variance decomposition into information and noise with time varying variances 

provides the following new findings. The first order moving average model employed in 

this study captures the influence of noise factors which is reflected in the time-varying 

moving average coefficient of the model. If the noise factor influences prices to increase, 

then the moving average coefficient becomes statistically positive, and vise-versa. In fact, 

the empirical results show that if the moving average coefficient is statistically positive 

for an extended period of time then prices are generating a bubble.31 If the moving 

average coefficient becomes statistically negative, which happens in 2002, 2003 and 

2004, then the stock indexes reach a minimum value when the moving average 

coefficients are negative. The methodology developed here to decompose the variance 

into information and noise provides many possible research avenues to examine price 

behavior, such as investigating price bubbles, forecasting long-run price movements, and 

analyzing market microstructure issues such as the volume-volatility relation.32  

Section 2.2 discusses previously developed models and their empirical limitations 

in capturing conditional information arrivals. Section 2.3 introduces an econometric 

model for variance decomposition by information and noise. In addition, the time varying 

measure of price informativeness and its test are developed in this section. Section 2.4 
                                                 
31  [This is not a footnote.] From p. 84, “if 

1

20zf zτ
σ σ

−
< <  and 

1

2
zf zτ

σ σ
−
> , then 

( )1 1

2 2
1 0z zf uτ ττθ σ σ σ

− −− = − + >  in (10). In other words, if the uninformed speculators cause a price to 

move in the same direction as the past price change ( 1uτ − ), then this uninformed speculators’ effect is 

opposite the information content, as shown by 
1

0zfτ
σ

−
< . Therefore, if the negative 

1zfτ
σ

−
 value 

continuously becomes more negative for a prolonged time period ( 0
szf zfτ

σ σ< <  for all s τ> ), then 
this should reflect a price that has deviated from its fair price.” 
 
32 [Better delete this FN.] The additional volatility caused by the excess covariance between the expected 
returns (or information component) and the noisy demand corresponds to the measure of noise variance in 
this study. 
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describes the data for this study. Results from the model introduced in section 2.3 are 

discussed in section 2.5. The conclusions follow in section 2.6. 

 

 

2.2. Concepts and literature review  

This study examines information arrivals and noise. Informationally efficient 

markets reflect new information swiftly so that price shows a sudden change for each 

new arrival of information. If the market is not informationally efficient, then new 

information is reflected over multiple time periods. Such a multiple time period 

adjustment leads to prices being positively autocorrelated. On the other hand, if 

information creates an overreaction that is reflected in prices then price changes are 

negatively autocorrelated. In addition to the slow- or over-reaction of information into 

prices, noise factors can cause prices to be either positively or negatively autocorrelated. 

33 Without any a priori knowledge about whether price changes are due to information or 

to noise, it is not possible to distinguish between (1) autocorrelation caused by 

information which is only partially reflected in the price, and (2) autocorrelation caused 

by non-informational noise factors such as autocorrelated liquidity-motivated trading, 

bid-ask spread bounce, uninformed feedback trading, etc. When these autocorrelation-

related factors, as listed in (1) and (2), have a minimal effect on the current price then 

price changes should more closely follow a random walk process. A shortcoming of such 

an analysis is that information not fully reflected in prices, and which causes price 

                                                 
33 Autoregressive processes can be represented by a moving average process.  
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changes to be autocorrelated, is treated as noise.34 Hasbrouck (1991a, 1991b) develops 

models which decompose the informational variance component of price change into a 

component caused by trading volume and a component caused by non-trading factors.35 

The variance of the information (random walk) component of price change is computed 

from the moving average process of homoskedastic independent innovations of the 

returns (see equations (A4) and (A12) of Appendix 1). However, this formulation (the 

Wold decomposition of a stationary process) can not accommodate the heteroskedasticity 

of price changes (returns), which is a problem because conditional heteroskedasticity is 

pervasive in financial time series.36 In order to deal with this issue I model a moving 

average process where residuals are heteroskedastic (see (6) and (14) in Section 2.3.1). 

Therefore, I assume that the coefficient of the moving average is time-varying, so that 

price changes can be associated with a changing portion of the random walk 

(information) component (see (14) in Section 3.3).  

Harvey (1989) and Fuller (1995) introduce a structural model which decomposes 

the variance of price changes into a random walk (information) component and a noise 

component. The noise component is assumed to be uncorrelated, while Hasbrouck allows 

the noise to be correlated. The model for the variance decomposition by information 

content in Section 2.3.1 is based on the structural model in Harvey and Fuller. I make two 

                                                 
34 Hasbrouck (1991b, p. 573) discusses the price series associated with information that is immediately 
reflected in price as forming a random walk, which is referred to as the efficient or true price. 
 
35 If price and trading activity are examined with Vector AutoRegression, then the portion due to trading in 
the variance of the information (random walk) component of price is referred to as the informativeness of 
the trade (Hasbrouck 1991b). Hasbrouck does not have a noise component. The procedure in Hasbrouck 
(1991a and 1991b) to derive the informational variance component from a univariate and multivariate time 
series is explained in Appendix 1. 
 
36 Bera, Higgins, and Lee (1992) show that conditional heteroskedasticity is present if the coefficients of  
the autoregressive terms of the dependent variable and residual errors are random. 
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alterations to the Harvey (1989) and Fuller (1995) models such that (1) the moving 

average is heteroskedastic, and (2) the coefficient of the moving average is time-varying. 

These two alterations enable one to produce the changing variance series of both the 

informational component and the noise component. In order to examine the relative size 

of the variance components, a time-varying measure of price informativeness is also 

developed.  

 

 

2.3. Models for variance decomposition 

2.3.1 Heteroskedastic variance decomposition by information content and 

development of a time-varying measure of price informativeness 

 This section explains how the structural model decomposes the variance into the 

informational component and the noise component, with the improvements previously 

discussed. The structural model is based on the following two equations: the observed 

price equation described by (1) and the unobserved random walk price equation given by 

(2). 

τττ zmp +=               (1) 

τττ fmm += −1              (2) 

where ( )ττ Pp log=  and tP  is the observed price.37  The τm  variable in (1) is the efficient 

price, which follows a random walk, as described in (2). 38  The τz  variable is the 

                                                 
37 As Lo and MacKinlay (1988) point out, there is a distributional advantage to using the log price in 
making statistical inferences, since the log price follows a normal distribution.  Also, the difference of the 
log prices describes the return for the price series. Hasbrouck (1991b) also employs the log price in his 
model. 
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component of price that represents the uncorrelated noise over time, and is orthogonal to 

the efficient price ( τm ), such that ( )2~ 0, zz Nτ σ . The noisy price change ( τz ) is caused 

by transient microstructure imperfections, liquidity-motivated traders.39 The uninformed 

profit-motivated speculator’s demand for a risky asset is a function of noise as well as a 

function of the speculator’s expected price change. Since uninformed speculators are not 

able to distinguish noise from the information component ( τf ), the speculators cause the 

non-zero covariance between the information component and the noise component.40 The 

τf  is the uncorrelated residual of the efficient price, such that ( )2,0~ ττ σ fNf , and 

( ), s zfCov z f
ττ σ=  for sτ =  and ( ), 0sCov z fτ =  for sτ ≠ .41 Hence, 2

fτ
σ  is the variance 

of the efficient price, while  2
zσ  represents the variance of noise. zfτ

σ  is the excess 

covariance between information and noise. In this model the heteroskedasticity of the 

variance of price is caused by two factors: information arrivals ( 2
fτ

σ ) and the covariance 

between noise trading and price change ( zfτ
σ ). Moreover, the sum of 2

zσ  and zfτ
σ  is the 

measure of noise variance, since zfτ
σ  arises from the existence of liquidity-motivated 

                                                                                                                                                 
38 The price series that follows a random walk is variously named as the “true price”,  the “efficient price”, 
the “value (or fair) price” or the “consensus price” (see Hasbrouck (2002), p. 330) 
 
39 Hasbrouck (1993) notes that transient microstructure imperfections are caused by inventory control, price 
discreteness, etc. 
 
40 Note that the liquidity-motivated traders introduce a noise component which is denoted by τz , whereas 
uninformed speculators cause the covariance between the information component and the noise component 
which is denoted by zfτ

σ . See Shalen (1993) concerning the excess covariance between the information 
component and the noise component. In Shalen’s (1993) model, noise is introduced by hedgers’ random 
demand, whereas the excess covariance between the information component and the noise component is 
caused by uninformed speculators.  
 
41 See Harvey (1989, p. 112) for the variance structure of information and noise. 
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traders and uninformed speculators. 42  Therefore, both the measure of informational 

variance ( 2
fτ

σ ) and the measure noise variance ( 22 2z zfτ
σ σ+ ) are time-varying. 

The following explains that if information and noise satisfy the properties 

described in (1) and (2), as well as their distributional assumptions, then the difference in 

the observed price ( 1p pτ τ −− ), i.e. the return series ( rτ ), can be represented by a moving 

average of order one. Based on my first order moving average model, along with the 

relation between the unobservable component and moving average component described 

by (8) and (9), the variance of the returns is decomposed into the informational variance 

component (from the price innovations) and the noise variance component (reflected in 

the moving average coefficient). In addition, the time-varying informativeness measure 

of the univariate time series is derived, where the measure of informativeness is defined 

as the variance of the efficient price divided by the total variance. The first difference of 

tp  in (1) has the following form: 

11 −− −+−= τττττ zzmmr  

   1−−+= τττ zzf               (3) 

where ( ) ( )11 loglog −− −=−= τττττ PPppr , and which has the following properties: 

( ) 2 22 2f z zfVar r
τ τ ττ σ σ σ= + + ,             (4) 

( ) ( )( )( )1 1 1 1 2,Cov r r E f z z f z zτ τ τ τ τ τ τ τ− − − − −= + − + −  

                   ( )2
1 1 1E z z fτ τ τ− − −= − −  

                   
1

2
z zfτ

σ σ
−

= − − ,             (5) 
                                                 
42  Beveridge and Nelson (1981) restrict their model to a trend and irregular components that are 
uncorrelated. However, this study allows the covariance to be any value. 
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( ) 0, 1 =−ττ rrCov  for 1h >  

The above shows that τr  is described by a moving average of order one. Hence, τr  can be 

rewritten as follows:  

1 1r u uτ τ τ τθ − −= +               (6) 

[ ]
[ ]

1 1
1

1 1

,Cov r u
Var u

τ τ τ
τ

τ τ

θ − −
−

− −

=               (7) 

where τu  is uncorrelated but is allowed to be heteroskedastic. It is well-known that the 

residuals ( uτ ) of a moving average process can be heteroskedastic and the resultant 

parameter estimators are consistent.43 The moving average coefficient ( τθ ) is assumed to 

be stochastic to accommodate the time-varying informativeness in price changes ( rτ ), 

where [ ]1Covτ − ⋅   and [ ]1Varτ − ⋅  are the conditional covariance and the conditional variance 

operators at period 1τ − , obtained by an ARMA process. If the covariance and variance 

in (7) converges to their unconditional means in probability, then the moving average 

coefficient ( τθ ) will also converge to its unconditional mean in probability, which means 

that τθ  is a consistent estimator, while the sign of τθ  is an empirical issue. If the 

covariance between the random walk component ( fτ ) and the noise component is 

sufficiently negative, then τθ  can be positive; see (9) below. 

Since τr  and 1u  (= 1r ) are given values then τθ  and 2
τσ u can be determined. The 

first order moving average τr  has the following properties: 

( )
1

2 2 2
1u uVar r

τ ττ τσ θ σ
−−= +   

                                                 
43 See Fuller (1996, p. 492). 
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            2 22 2f z zfτ τ
σ σ σ= + +  (from (4))            (8) 

( ) ( )( )( )1 1 1 2 2 1,Cov r r E u u u uτ τ τ τ τ τ τ τθ θ− − − − − −= + +  

                   
1

2
1 uττθ σ

−−=   

                   
1

2
z zfτ

σ σ
−

= − −  (from (5))            (9) 

Since θ  and 2
uτ

σ  are estimated previously in (6), 2
zτ

σ and 2
fτ

σ  are determined in (9) and 

(8), respectively. Specifically, the noise variance measure
1

22 2z zfτ
σ σ

−
+ and the  

informational variance 2
fτ

σ  are expressed with the variance of the moving average ( 2
uτ

σ ) 

in (6) as follows: 

Noise variance measure = 
1 1

2 2
12 2 2z zf uτ ττσ σ θ σ

− −−+ = −            (10)  

Informational variance44= ( )1 1

2 2 2 2 2
1 2 2f u u z zfτ τ τ ττσ σ θ σ σ σ

− −−= + − +   

             
1 1

2 2 2 2
1 12u u uτ τ ττ τσ θ σ θ σ

− −− −= + +          (11) 

If noise does not exist, then the total variance is identical to the informational variance. 

Note that if 1τθ −  is positive, then the variance of the random walk component ( 2
fτ

σ ) could 

be larger than the variance of the returns ( ( )Var rτ ). Therefore, if the informational and 

noise factors  influence price changes in opposite directions from one other ( 0zfτ
σ < ), 

                                                 
44 The unconditional version of the informational variance is ( )2 21 uθ σ+ . This is analogous to (A10) in 
Appendix 1. 
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and hence price changes are less than expected given information alone, then the variance 

of the random walk component is larger than the variance of the returns.45  

Whether the informational variance becomes larger or smaller than the variance 

of the returns, the difference is always caused by the behavior of noise traders. In other 

words, the absolute difference between the total variance and the informational variance 

is due to noise. Price changes are due to both information arrivals and liquidity-motivated 

trading (noise). If prices only reflect noise, then price changes are solely determined by 

the difference between the supply and demand of liquidity-motivated trading volume. 

Therefore, the variance of the current price change is the combination of the variance of 

information arrivals and the variance of noisy liquidity-motivated trading, which is 

measured by 
1

2 2 2
1u uτ ττσ θ σ

−−+ . Given the variance of the partially revealing price changes 

(
1

2 2 2
1u uτ ττσ θ σ

−−+ ), which is only partially revealing because of the presence of noise, the 

influence of the noise factor is the absolute value of the variance of noise, namely 

1

2
12 uττθ σ

−− . Consequently, the measure of price informativeness is defined as 

Measure of price informativeness 1

1

2
1

2 2 2

2Noise variance measure
1 1

Total variance
u

u u

τ

τ τ

τ

τ

θ σ
σ θ σ

−

−

−= − = −
+

     (12) 

This measure of the informativeness of price shows that if the price change is only caused 

by information arrivals, then the informativeness measure equals 1. However, as more 

                                                 
45 Enders (2004) states the condition under which the variance of the information component is larger than 
the variance of the returns, as follows: “If ( )2

1 2
1 1β β+ + > , then the trend is more volatile than ty   since 

the negative correlation between 
t

µ  and the stationary component act to smooth the { }
t

y  sequence.” The 

term ( )2

1 2
1 β β+ +  corresponds to ( )2

1 1
1 2

τ τ
θ θ

− −

′  in (11), and ty  and 
t

µ  are the observed price and the trend 
component of the observed price sequence, respectively. 
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noise exists, where noise is the absolute value of 22 2z zfτ τ
σ σ+ , then the informativeness 

measure becomes smaller and (at the extreme) converges to zero when the price change is 

caused solely by noise. Note that 2
uτ

σ  is allowed to be heteroskedatic, and therefore 2
uτ

σ  

and ruτ
σ  are modeled as autoregressive processes. I implement the mean model given in 

(13) and the models for the variance and the covariance given in (15) and (16) 

simultaneously.46  

 

1 1r u uτ τ τ τθ − −= +               (13) 

2
ru

u

τ

τ

τ

σ
θ

σ
=                (14) 

1

2 2 2
0 1 1 1u uu

τ ττσ α α β σ
−−= + +              (15) 

( )
10 1 1 1 1 2 11ru rur u

τ ττ τσ δ δ γ δ γ σ
−− −= − − + +            (16) 

 

A quasi-maximum likelihood estimation technique is used to solve the models in (13), 

(14), (15) and (16), with the quasi-likelihood function in (17).47 The variance ( 2ˆuτ
σ ) and 

covariance ( ˆruτ
σ ) of the moving average estimated by the log likelihood function in (17) 

                                                 
46 The ARMA processes in (15) and (16) can be expanded to the orders of p and q. 
 
47 In (24), ( )

1
,Cov r u

τ τ −
= ( )( ) ( )( )( ) ( )

1 1 1
E r E r u E u E r u

τ τ τ τ τ τ− − −
− − = , since the mean of the returns is zero 

( ( ) ( )
1

0E r E u
τ τ τ

θ
−

= = ). The expected covariance is modeled by an ARMA process, as shown in (24). The 

term 
1

δ  captures innovations in the covariance between the returns and the past residuals, whereas 
1
γ  

captures the stability of the process. 
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is used to determine the contribution of information and noise to volatility, as estimated 

by 2

f τσ  in (11) and 2
τσ z  in (10).  

( )
2

2
2

1
0.5 log

TN

u
u

ul τ
τ

τ τ

σ
σ=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑              (17) 

 

2.3.2 Testing for price informativeness 

Testing for the existence of the noise factor on price changes is equivalent to 

testing whether the moving average coefficient is significantly different from zero, i.e., 

1 0τθ − = . If the residuals in (13) are normally distributed conditional at time τ , then the 

moving average coefficient will also be normally distributed conditional on time τ . 

Specifically, 

( )( )1 1~ 0,N Varτ τθ θ− − .             (18) 

The noise variance 
1

2
12 uττθ σ

−−−  follows from the normal distribution such  that:  

( )( )1 1

2 4
1 12 ~ 0,4u uN Var

τ ττ τθ σ σ θ
− −− −−   

or  ( )( )
1 1

2 2
1 12 ~ 2 0,u u N Var

τ ττ τσ θ σ θ
− −− −− −            (19) 

The moving average coefficient ( 1τθ − ) is determined at time period τ , meaning 

that 1τθ −  varies at time τ , whereas 
1

2
uτ

σ
−

 is a predetermined value for time τ and therefore 

is invariant. It follows that testing whether 
1

2
12 0uττθ σ

−−− =  is equivalent to testing whether 

1 0τθ − = . Hence, the hypothesis of a null noise factor in the price changes is specified as: 

0 1: 0H τθ − =                      (20) 
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The lower and upper limit at the 95% confidence level under the null hypothesis is48 

( ) ( )1 1 1
ˆ ˆ ˆ1.96 1.96Var Varτ τ τθ θ θ− − −− ≤ ≤ ,                            (21) 

where  

( )
2

1 1
2

1

ˆˆ u

s
s

Var
u

τ
τ τ

σθ − −

=

=

∑
.              (22) 

Since the estimates of 2ˆuτσ  are used in (22), the student t-test is appropriate. If the null 

hypothesis is accepted, then the influence of noise on the change in price at time period 

τ  is not statistically significant, i.e. the price changes are only based on information.  

 

2.4. Data 

Three major spot stock indexes are employed for the model of variance 

decomposition by information and noise: the S&P 500 stock index, the Dow Jones 

Industrial Average Index, and the Nasdaq stock index.  Stock indexes are chosen due to 

their volatile behavior, including the Nasdaq bubble in the late 1990’s and the stock 

market crash in the early 2000’s, both of which potentially reflect the behavior of non-

informational noise traders. Variance decomposition by information content will show 

how noise factors influenced the stock indexes during these time periods.  

 

                                                 
48 The variance of the conditional moving average is obtained as follows:  
since ( ) ( )1 1

1 1 1 1 1 1 1 1
ˆ u u u r u u u u
τ τ τ τ τ τ τ τ τ τ
θ θ

− −

− − − − − − − −
′ ′ ′ ′= = +  then, 

( ) ( ) [ ] ( ) ( )
1

2 1 1 12 2 2

1 1 1 1 1 1 1 1 1 1

1

ˆ
u u s

s

E u u u E u u u u u u u u
τ

τ τ τ τ τ τ τ τ τ τ τ τ τ τ
θ θ σ σ

−
− − −

− − − − − − − − − −

=

′ ′ ′ ′ ′− = = =⎡ ⎤⎣ ⎦ ∑  
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2.5. Results of variance decomposition by information and 
noise 
 

Table 1 shows the estimation results for the variance decomposition by information 

and noise as described in (13) through (16). The results show that the covariance 

processes are stationary, as shown by the persistency measures of gamma1 being 0.998, 

0.997 and 0.998 for the S&P 500, Dow Jones and Nasdaq indexes, respectively. The 

estimated unconditional covariances between the returns and the lagged residuals 

estimated by delta0 are all statistically zero. In combination with the conditional 

variances, the moving average coefficients are time-varying and therefore include both 

the informational and the noise factors. 

 Figures 2.1A, 2.1B and 2.1C show the estimated time-varying moving average 

coefficient (theta, τ̂θ ) for the three stock indexes. The results reveal an important 

property of the moving average coefficient. The moving average coefficient reflects the 

behavior of the noise trading factor on price. During the mid-1990s the noise factor is 

statistically significant for both the S&P 500 and the Dow Jones indexes. This time 

period corresponds to when the bubble in the stock market started. Note that the moving 

average coefficient is significantly positive when the bubble increases in size, not when 

the bubble is at its maximum. An interesting result for the S&P 500 and Dow Jones 

indexes is that the moving average coefficient is negative due to the effects of 

uninformed speculators for 2002, 2003, and 2004. This negative coefficient is consistent 

with stock indexes being below their true values during this time period. As shown in 

Figure 2.1, when the moving average coefficient increases to a value above the 
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statistically significant positive band, then this is consistent with overvaluation (a 

potential bubble).  Similarly, a negative significant coefficient represents an 

undervaluation or bursting of a bubble, as existed in the early 2000s. Furthermore, the 

index values start to decrease when the moving average coefficients turn from positive to 

negative.   

Figures 2.2 and 2.3 show the estimated informational and noise variance 

components from (10) and (11) for the S&P 500, the Dow Jones, and the Nasdaq indexes.  

The figures provide two new important findings. First, both the informational variance 

and the noise variance components are time-varying. Previous models, which decompose 

price into a permanent component and a stationary component, assume constant 

informational variance and noise variance components. Here the results show that the 

assumption of a constant variance for the components of the variance series is not 

appropriate since conditional heteroskedasticity of the time-varying informational arrivals 

is shown in Figures 2.2 and 2.3. Second, the measure of noise variance given in (10) 

reflects the changing behavior of the noise factor in relation to the information factor, 

where this relation is reflected in the signed moving average coefficient. 

Previous studies assume that the autocovariance of the returns in (9) is only 

composed of 2
zσ− .49 This restriction corresponds to the non-existence of uninformed 

speculators who cause the excess covariance of 
1zfτ

σ
−

, as stated in section 2.3.1. Moreover, 

if the uninformed speculators are ignored, then the dynamics of the measure of the noise 

variance are not available. The resultant restriction on 1τθ −  from this assumption is that 

                                                 
49 See Hasbrouck (1993, p. 198) for an explanation concerning the restriction of 0zfσ = . Models with this 
restriction are found in Watson (1986), Harvey (1989), Fuller (1995) and Enders (2004). 
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1τθ −  always has to be negative. Specifically, if 
1

0zfτ
σ

−
=  is assumed to be true, then 

( )
1

2 2
1 1, u zCov r r

ττ τ τθ σ σ
−− −= = − . In order for 2

zσ  to be positive then 1τθ −  always must be 

negative. However, as the results in Figure 2.1 show, 1τθ −  can possess any sign. From 

(10), the variance of noise per se is always positive, while the covariance between the 

noise factor and the informational factor can be either positive or negative, as estimated 

by the covariance 
1zfτ

σ
−

.  

The results in Figure 2.3 show that uninformed speculators increased prices above 

their true values, as supported by the positive moving average values before 1998 (as 

shown in Figure 2.1), while the uninformed speculators caused prices to decline during 

2002, 2003, and 2004, as supported by the positive moving average coefficients in the 

Nasdaq, S&P 500, and Dow Jones indexes. The time-varying moving average coefficient 

is shown in Figures 2.1A, 2.1B and 2.1C. The noise factor is most pronounced in the 

Nasdaq index, since the Nasdaq results possess larger negative values of the measure of 

noise variance, which corresponds to a stronger negative relation between the noise and 

information factors, i.e., it shows that stronger uninformed speculators exist in this 

market. Hence, the bubble in the Nasdaq was more severe than any possible bubble in the 

S&P500 or Dow Jones indexes.  

Analytically, if 
1

20zf zτ
σ σ

−
< <  and 

1

2
zf zτ

σ σ
−
> , then ( )1 1

2 2
1 0z zf uτ ττθ σ σ σ

− −− = − + >  in 

(10). In other words, if the uninformed speculators cause a price to move in the same 

direction as the past price change ( 1uτ − ), then this uninformed speculators’ effect is 

opposite the information content, as shown by 
1

0zfτ
σ

−
< . Therefore, if the negative 

1zfτ
σ

−
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value continuously becomes more negative for a prolonged time period ( 0
szf zfτ

σ σ< <  

for all s τ> ), then this should reflect a price that has deviated from its fair price. Such a 

result is found in Figure 2.3 for the S&P500 and Dow Jones indexes until 1997. The 

1zfτ
σ

−
for the Nasdaq is lower than for the S&P500 and the Dow Jones for the entire 

sample period, signaling that the price series for the S&P500 and Dow Jones indexes are 

more informative than are the prices for the Nasdaq. Note that the 
1zfτ

σ
−

for the Nasdaq 

possessed a large positive value when the price bubble started to burst in early 2000.50 

Figure 2.4 shows the estimated measure of price informativeness based on (12). 

When the moving average coefficient in Figure 2.1 reflect a pure random walk in returns 

then the measure of price informativeness in Figure 2.4 is equal to one. Alternatively, 

price informativeness is statistically less than one when the price is significantly 

influenced by the noise factor, such as during the 1990’s for the stock market. Whereas 

the influence of the uninformed speculators is reflected solely by the size of the noise 

variance measure in (1) and Figure 2.3, the price informativeness in Figure 2.4 is affected 

by both information and uninformed speculators in (12), as reflected in the noise measure. 

In other words, even though the size of the noise variance measure is large, its influence 

can be smaller if the informational factor is relatively larger. The findings from Figures 
                                                 
50 Uninformed speculators cause 

1
0zfτ

σ
−
< , since the effect of uninformed speculators’ trading on the 

price series is the opposite the information content. If the effects of uninformed speculators (
1

0zfτ
σ

−
< ) are 

significant, and therefore the difference between the efficient price and the observed price is substantial, 
then uninformed speculators may be able to distinguish the noise component ( zτ ) from the information 

component ( fτ ). If uninformed speculators are able to make this distinction, and if the effect of the 
uninformed speculators’ trading on the price suddenly disappeared, then the price would sharply revert to 
the efficient price, resulting in a crash of bubble (or at least a significant price change). When uninformed 
speculators are able to distinguish the noise component from the information component, then the excess 
covariance 

1zfτ
σ

−
becomes zero.   
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2.3 and 2.4 are similar. However, the measure of price informativeness is equally low for 

years 1995 to 1997, whereas the size of the noise measure is monotonically increasing 

until 1998.  

Table 2.2 presents the correlation coefficients between the informational variance, 

the measure of the noise variance, the moving average coefficient, and the measure of 

price informativeness. Because the measure of the noise variance is a negative function of 

the moving average coefficient ( τθ ), the correlation coefficient between the noise 

variance and the moving average coefficient is negative. Table 2.2 shows that the 

estimated noise variance is generally negative; when the measure of the noise variance 

becomes less negative then the effect of noise lessens, whereas when the noise variance is 

near zero then its effect becomes negligible. Since the price is more informative when the 

noise variance is closer to zero (rather than negative), it is not surprising that the 

correlation coefficient between the measure of noise variance and the measure of price 

informativeness is positive (since the noise variance becomes less negative as the 

measure of price informativeness becomes more positive). The correlation between the 

informational variance and the measure of informativeness is positive for all datasets, as 

expected. The reason why the correlation coefficients are generally above 0.5 can be 

explained by the significant effects of the uninformed speculators, which is measured by 

the non-zero correlations between the informational variance and the noise variance. 

When informational variance increases, there are either negative or positive reactions by 

the uninformed speculators since they are not able to distinguish noise from information 

component in price changes. As a result, the correlation coefficient between the 

informational variance and the measure of informativeness is positive, but the correlation 
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is not necessarily large due to the correlation between the informational variance and the 

noise variance.  

 
2.6. Conclusions  

 

This study develops the methodology to decompose return variance into an 

informational component and a noise component. The model to decompose return 

variance given here is unique in that the decomposed informational and noisy variance 

components are time-varying; this decomposition allows uneven information arrivals to 

be captured properly. Comparatively, models by Hasbrouck (1991a, 1991b), which are 

similar to the Beveridge and Nelson (1981) decomposition model, do not allow the 

informational and the noise variance components to be time-varying. The S&P 500 stock 

index, Dow Jones Industrial Average index and Nasdaq stock index are examined yearly 

from 1991 to 2006 to illustrate how this time-varying decomposition aids in interpreting 

the variance of price changes. 

The results from this decomposition show that both the informational and noise 

variance measures are in fact time-varying, where the influence of the noise factor on the 

price change is reflected in the time-varying moving average coefficient. Hence, the 

formulation of the time-varying moving average for the variance decomposition by 

information and noise is important to capture the dynamics of the noise component. 

When the noise factor influences the price to rise above the efficient price then the 

moving average is statistically positive for the sample index datasets, and vise versa. 

Empirical results show that when the moving average coefficient is statistically positive 

for an extended period of time then a price bubble forms. If the moving average 
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coefficient is negative, which happened from 2002 to 2004, then the stock indexes 

experience a floor value.  

The methodology developed here to decompose the variance into information and 

noise provides several possible research avenues for investigating price behavior, such as 

the examination of price bubbles, the forecast of long-run price movements, and the 

market microstructure analysis of the volume-volatility relation. The analyses of the 

relation between the trading demand function (trading pattern), information, and noise 

using the informational variance and noisy variance components will be discussed in 

Essay 3.  
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 Table 2.1: Daily Estimation Results of Variance Decomposition by Information 
 

Table 2.1 shows the estimation results for variance decomposition by information and noise in (13) through 
(16) for the S&P 500, Dow Jones, and Nasdaq indexes. Specifically,  

1 1r u uτ τ τ τθ − −= +                 

1

2
1 ru uτ ττθ σ σ

−− =                 

1

2 2 2
0 1 1 1u uu

τ ττσ α α β σ
−−= + +               

( )
10 1 2 1 1 1 2 2 2 3 11ru rur u r u

τ ττ τ τ τσ δ δ δ γ δ δ γ σ
−− − − −= − − − + + +           

       ( )
10 1 1 1 1 2 11 rur u

ττ τδ δ γ δ γ σ
−− −= − − + +                    

P-values for significance are in parenthesis. 
 
 

 S&P 500 Dow Jones Nasdaq 

Alpha0 0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Alpha1 0.056 
(0.006) 

0.063 
(0.000) 

0.075 
(0.000) 

Beta1 0.938 
(0.007) 

0.928 
(0.000) 

0.920 
(0.000) 

Delta0 0.000 
(0.581) 

0.000 
(0.551) 

0.000 
(0.222) 

Delta1 0.000 
(0.008) 

0.000 
(1.000) 

0.001 
(0.294) 

Delta2 0.002 
(0.858) 

0.001 
(0.883)  

Gamma1 0.997 
(0.002) 

0.998 
(0.000) 

0.998 
(0.000) 

Likelihood 13,220 13,226 11,976 

N 3,979 3,983 3,979 
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Figure 2.1A: Estimated Time-varying Moving Average Coefficient for S&P 500 
 
Figures 2.1A, 2.1B, and 2.1C show the estimated time-varying coefficient ( τθ ) of the moving average in 
(6) and (13), and their confidence limits at the 95% confidence interval for the S&P 500, Dow Jones, and 
Nasdaq indexes. The moving average coefficient is assumed to be stochastic to accommodate the time-
varying informativeness found in price changes ( rτ ). The coefficient is obtained by ARMA processes. If 
the estimated moving average coefficient is outside of the confidence interval at period τ , then the return 
does not follow the random walk process during period τ . 
 

1r u uτ τ τ τθ −= +                             
[ ]
[ ]

1

1 1
2

1 1

, ru

u

Cov r u
Var u

τ

τ

τ τ τ
τ

τ τ

σ
θ

σ
−

− −

− −

= =                      

1

2 2 2
0 1 1 1u uu

τ ττσ α α β σ
−−= + +               

( )
10 1 2 1 1 1 2 1 2 3 11ru rur u r u

τ ττ τ τ τσ δ δ δ γ δ δ γ σ
−− − − −= − − − + + +    

       ( )
10 1 1 1 1 2 11 rur u

ττ τδ δ γ δ γ σ
−− −= − − + +        
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Figure 2.1B: Estimated Time-varying Moving Average Coefficient for Dow Jones 
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Figure 2.1C: Estimated Time-varying Moving Average Coefficient for Nasdaq 
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Figure 2.2: Estimated Informational Variances 
 
Figure 2.2 shows the estimated informational variances for the S&P 500 and Nasdaq indexes, as described 
in (11). The results for the Dow Jones index are indistinguishable from those of the S&P 500. The 
informational variance is specified as follows: 
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Figure 2.3: Estimated Measure of Noise Variances 
 
Figure 2.3 shows the estimated measure of the noise variance for the S&P 500, Dow Jones, and Nasdaq 
indexes, as described in (10). Note that the noise variance measure includes the covariance and hence can 
be negative. When the measure of noise has a value of zero then noise is not a factor that prevents price 
from revealing information. The measure of noise variance is specified as follows: 
 
Noise variance measure = 
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Figure 2.4: Estimated Price Informativeness 
 
Figure 2.4 shows the estimated time-varying measure of price informativeness for the S&P 500 and Nasdaq 
indexes, as given by (12). The estimated time-varying measure of price informativeness for the Dow Jones 
index is indistinguishable from that of the S&P 500. The measure of price informativeness equals one if 
there is no noise in price such that price will fully reveal information. The measure of price informativeness 
is specified as follows: 
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Table 2.2: Correlation Coefficients between Variance Components Decomposed into 
Information and Noise 

 
Table 2.2 shows the Pearson correlation coefficients between the informational and noise variance 
components, the measures of informativeness, and the moving average coefficients for the S&P 500, Dow 
Jones, and Nasdaq indexes. The total number of observations is 3,974 for the computations of the 
correlation coefficients for all datasets. The numbers in the parentheses represent the p-values for 
significance given the null hypothesis of zero correlation.  
 

Panel A: S&P 500 Index 
 Noise Variance Informativeness Theta 

Informational Variance -0.261 0.409 -0.224 
 (0.000) (0.000) (0.000) 
Noise Variance  0.441 -0.712 
  (0.000) (0.000) 
Informativeness   -0.811 
   (0.000) 
    
Panel B: Dow Jones Industrial Average Index 
 Noise Variance Informativeness Theta 
Informational Variance -0.339 0.334 -0.184 
 (0.000) (0.000) (0.000) 
Noise Variance  0.465 -0.709 
  (0.000) (0.000) 
Informativeness   -0.829 
   (0.000) 
    
Panel C: Nasdaq Index 
 Noise Variance Informativeness Theta 
Informational Variance 0.175 0.502 -0.490 
 (0.000) (0.000) (0.000) 
Noise Variance  0.623 -0.615 
  (0.000) (0.000) 
Informativeness   -0.989 
   (0.000) 
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Appendix 2.1: The variance of the random-walk component of observed price 
 

This appendix explains the derivation of the variance of the random walk 
component (or the informational variance), a concept discussed in Hasbrouck (1991a, 
1991b, 1995). The observed price is the sum of random walk and transitory components 
that reflects various microstructure effects, as follows: 
 

t t tp m s= +               (A1) 
 
where tm  is an integrated process (a unit process) that represents a random walk, as 
follows:  
 

1t t tm m u−= +                    (A2) 
 
where [ ] 0tE u = ;  2 2

t uE u σ=⎡ ⎤⎣ ⎦ ; [ ] 0t sE u u =  for t s≠ .  From (A1) and (A2), the first 
difference of price is obtained as 
 

1 1 1 1t t t t t t t t t tp p p m m s s u s s− − − −∆ = − = − + − = + −           (A3) 
 
where tp∆  has a stochastic component ( 1t t tu s s

−
+ − ) which is covariance stationary. Hence, 

the Wold representation guarantees that the covariance stationary process tp∆  can be 
represented by an infinite moving average of an uncorrelated mean zero process with a 
constant variance ( )20,σ .  
 

1 1 2 2t t t tp ε ψ ε ψ ε− −∆ = + + +L                   (A4) 
 
where [ ] 0tE ε =  and [ ] 0t sE ε ε =  for t s≠ . Using the lag operator (L), 1t tLp p

−
= , tp∆  is 

rewritten as follows; 
 

( )1 1t t t t t tp p p p Lp L p−∆ = − = − = −  
 
and by (4), 
 

1 1 2 2t t t tp ε ψ ε ψ ε− −∆ = + + +L  
       2 3

1 2 3t t t tL L Lε ψ ε ψ ε ψ ε= + + + +L  

       ( )2 3
1 2 31 tL L Lψ ψ ψ ε= + + + +L   

       ( ) tLψ ε=  
 
In short, ( ) ( )1t t tp L p Lψ ε∆ = − = .           (A5) 
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The equation (A2) can be rewritten as 
 

1t t tm m u−− =  
or 

( )1t t t tm Lm L m u− = − =                 (A6) 
 
If include ( )1 L−  for both sides of (A1), then 
 
( ) ( ) ( )1 1 1t t tL p L m L s− = − + −              (A7) 
 
By substituting (A5) and (A6) into (A7), 
 
( ) ( )1t t tL u L sψ ε = + −             (A8) 

 
The above equation (A8) holds for any L. Hence by letting L = 1, 
 
( ) ( )1 1 1t t tu sψ ε = + −          

tu=               (A9) 
 
By taking the variance operator, the variance of random walk component is derived as 
follows: 
 

( ) [ ] [ ]2
1 t tVar Var uψ ε =  

 
or 
 

[ ] ( ) 22 21t uVar u εσ ψ σ= =           (A10) 
 
Since ( ) ( )2 3

1 2 31L L L Lψ ψ ψ ψ= + + + +L , the coefficient of permanent component of the 

returns is ( ) ( )1 2 31 1ψ ψ ψ ψ= + + + +L . Hence 
 

( ) ( )2 2
1 2 31 1ψ ψ ψ ψ= + + + +L .  

 
The equation (A10) is therefore rewritten as follows: 
 

( )22 2
1 2 31u εσ ψ ψ ψ σ= + + + +L  
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The following part of this appendix shows how to compute the share of trades in the 
informational variance of price, drawing on Hasbrouck (1991b). The price in (A1) is the 
log value in the following formulation. 
 

1
1 1

2
1 1

t i t i i t i t
i i

t i t i i t i t
i i

r r x

x x r

α β ε

γ δ ε

∞ ∞

− −
= =

∞ ∞

− −
= =

= + +

= + +

∑ ∑

∑ ∑
                             (A11) 

 
Where tr  is the rate of return, tx  is the signed transaction volume, ( ) 2

1 1tVar ε σ= , 
( )2 tVar ε = Ω , and  ( )1 2 0t tE ε ε = . The moving average representation follows: 

 
1 1 1 1 2 1 2 1 2 1 1 2 1 2 2 2

1 1 1 2 1 2 2 1 2 1 2 2 2

t t t t t t t

t t t t t t

r a a b b b
x c c d d

ε ε ε ε ε ε
ε ε ε ε ε

− − − − −

− − − −

= + + + + + + +
= + + + + + +

L L

L L
      (A12) 

 
where return moving average can be written using lag operator as follows: 
 

( ) ( )( ) 1

2

t
t

t

r a L b L
ε
ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
and where ( ) 2

1 21a L a L a L= + + +L  and ( ) 2
1 21b L b L b L= + + +L . The variance is  

 
[ ] [ ]t t tVar r E r r′=  

  ( ) ( )( ) ( ) ( )
( )

1
1 2

2

t
t t

t

a L
E a L b L

b L
ε

ε ε
ε

⎡ ⎤⎛ ⎞⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

             ( ) ( )( ) ( )
( )

2
1 0

0
a L

a L b L
b L

σ ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

Ω⎝ ⎠⎝ ⎠
 

             ( ) ( ) ( ) ( )2
1a L a L b L b Lσ= + Ω         (A13) 

 
Analogous to (A10), the variance of the random walk component of the price change ( tr ) 
is 
 

( ) ( ) ( ) ( )2 2
11 1 1 1u a a b bσ σ= + Ω          (A14) 

 
where ( ) 1 21 1a a a= + + +L  and ( ) 1 21 1b b b= + + +L.  
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The portion of trades in the variance of the random walk component of price is 
2

ru uσ σ , where ( ) ( )1 1ux b bσ = Ω . As Hasbrouck (1991b) points out, in practice the order of 
the moving average is restricted to be finite. 
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Essay 3 
 

Intraday Tests of the Noisy Rational Expectations Information Model 
 

3.1. Introduction 

This study investigates whether the proposition from the noisy rational 

expectations model that trading volume has an ex-ante relation to volatility (price 

changes) is valid when intraday data with volume by different groups of traders are 

analyzed. In the noisy rational expectations models of Diamond and Verrecchia (1981), 

Admati (1985), Kim and Verrecchia (1991), and Shalen (1993), traders’ reactions to price 

changes are decomposed into the components of unexpected information content and the 

effect of uninformed noisy traders’ reactions to market activity. Uninformed traders react 

both to the price changes caused by information arrivals and to the price changes caused 

by noise (liquidity demand), since they are uninformed and cannot distinguish between 

these factors. Consequently, uninformed traders’ reactions to price changes are greater 

than those of informed traders.  

Prior empirical findings using daily data support the proposition of the noisy 

rational expectations model that uninformed traders overreact to price changes (Daigler 

and Wiley, 1999; Chang, Chou, and Nelling, 2000; Wang 2002). The analysis here differs 

from prior studies in two ways. First, intraday data are employed rather than daily or 

weekly data. In fact, it is well known that the impact of new information disappears 

within a short period of time, suggesting that an intraday analysis is most appropriate.51 

Second, a new approach (see Essay 1) is employed to remove the U-shaped volatility 
                                                 
51 Patel and Wolfson (1984) and Ederington and Lee (1993) find that volatility remains high only for 
several hours after important news is recognized by the markets. 
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seasonality effect from the intraday data before the analysis is completed. Furthermore, 

the intraday volume series is also adjusted for the seasonal component. 52 Thus, I first 

capture the seasonal component by using the autoregressive filtering process developed 

in Essay 1 and Appendix 1 for the variances of the returns and volumes, respectively. The 

interday variance components of the returns then are adjusted to examine only the 

intraday information components. Hence, this study examines only the short-run 

informativenss for different type of traders.  

Section 3.2 describes the literature on the noisy rational expectations model and the 

associated relation between trading volume and price variability. In addition, null 

hypotheses to examine the informativeness of the intraday data volatility series are 

constructed. Section 3.3 introduces three econometric models for the variance 

decompositions by frequency (where volatility is decomposed on interday and intraday 

scales) and by information arrivals and tests of the resultant null hypotheses.  In section 

3.4, the data for this study are briefly described. Results from the three models introduced 

in section 3.3 are discussed in section 3.5. The conclusions follow in section 3.6. 

 

3.2. Concepts and literature review  

A typical rational expectations model, such as the standard capital asset pricing 

model (Sharpe, 1964; Lintner, 1965; and Mossin, 1966) and the model by Grossman 

(1976), assume no noise, and therefore price aggregates and reveals all public and private 

information. Thus, if liquidity-motivated trading volume does not affect the price, then 

price fully reveals information and the total variance of the returns is only composed of 
                                                 
52  Appendix 1 detains on the procedure to filter the intraday seasonal volume component. 
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informational components. Only information-motivated trading volumes will cause price 

to change to reflect new information arrivals, although noise traders can also affect price 

changes. These models do not provide any ex-ante relation between price variability and 

volume, since price is a sufficient statistic and therefore any level of trading volume is 

consistent with the current price level. Hence, the CAPM, as well as Grossman’s pricing 

model, do not involve including transaction volume as part of the information set. 

However, as Grossman (1976) points out, if the total supply (endowment) of the asset is 

not a known value but rather random value, then price is a function of the randomness of 

the total supply of the asset as well as a function of price information. Therefore, the 

noise in price becomes larger as the total supply of the asset becomes more random. 

On the other hand, noisy rational expectations models allow the total supply of an 

asset to be random, and therefore this model provides an ex-ante relation between price 

variability and volume. 53  Diamond and Verrecchia develop the first noisy rational 

expectations model in which the price only partially reveals information because the price 

reflects noise as well as information. In Diamond and Verrecchia’s model the price of the 

asset is inversely related to the random supply, and the sensitivity of price to the random 

supply increases as noise (the variance of the random supply) increases; thus, the risk 

premium compensation for uncertainty increases as noise increases. Kim and Verrecchia 

(1991) analyze the reactions of price and trading volume to public announcements using 

the aforementioned noisy rational expectations models. They find that trading volume is 

positively related to price variability, with a multiplier of the weighted average beliefs in 

                                                 
53 In noisy rational expectations models the noise that prevents price from revealing aggregated information 
is defined as either noisy trading volume or the non-zero variance of the noisy trading volume (Grossman, 
1976; Diamond and Verrecchia, 1981). 
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price, where price variability is a function of surprise and random supply, where surprise 

is defined as the unexpected portion of a new public announcement. Thus, the model 

concludes that the positive relation between volume and volatility becomes stronger as 

traders are more heterogeneous. Shalen (1993) applies the noisy rational expectations 

model to futures markets in which traders are divided into speculators and hedgers. Since 

trades for hedges are considered to be random (they are assumed to be liquidity 

motivated), trading by hedgers introduce noise (randomness) into the market clearing 

condition. Thus, the equilibrium price from the market clearing condition becomes noisy, 

since it includes the noise of the hedgers’ trading volume. For this reason, speculators are 

confused as to whether the resultant price changes are caused by private information or 

by the liquidity trading of hedgers. Consequently, speculators overreact to price changes, 

since they assume that price changes from both noise trades and informed traders are 

based on new information. Shalen’s (1993) propositions on the relation between price 

changes (volatility) and volume is consistent with those of Kim and Verrecchia (1991) in 

which volume is a function of surprise and noise.   

Daigler and Wiley (1999) apply the noisy rational expectations model in Shalen 

(1999) to daily futures volume and volatility data by type of trader. A key aspect of their 

analysis is that floor traders are informed about order flow, allowing them to observe any 

effects of trading volume by uninformed traders to price changes caused by liquidity 

demand.  Consequently, the reaction of informed floor traders to trading activity is 

expected to be more correlated to price changes caused by information than those caused 
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by noise. 54  Daigler and Wiley find that the positive relation between volatility and 

volume is driven by the general public, who are not on the floor and therefore they cannot 

distinguish what price changes are due to information arrivals and what price changes are 

due to noise from liquidity demand; the reaction of institutional traders’ trading volume 

to price variability is mixed but often is negative in nature.55 Chang, Chou, and Nelling 

(2000) find that hedgers’ open interest is positively related to unexpected volatility, and 

of the open interest of speculators is not related to expected volatility and is weakly 

positively related to unexpected volatility. Wang (2002) also finds that volatility covaries 

negatively with speculators’ trading demand and positively with hedgers’ trading demand, 

where demand is defined as the long open interest less the short open interest.  

The common empirical findings on the relation between trading volume and price 

variability in prior studies show that noisy traders’ (such as hedgers) trading volume is 

positively related to price variability and that the relation between informed traders’ 

volume and price variability is mixed. Therefore, empirical findings support the 

proposition in the noisy rational expectations model that uninformed traders cause 

excessive price changes, since they react both to the price changes caused by information 

arrivals and to those caused by noise traders.56 However, the empirical findings on the 

                                                 
54 By definition, noisy traders do not have an ex-ante trading schedule regarding price changes, since their 
trades are random. Speculators have an ex-ante trading volume schedule since they are interested in 
profiting from information. Based on the how informed they are, speculators are classified into informed 
and uninformed traders. The uninformed traders over-react to price changes relative to (the better) informed 
traders, since they cannot distinguish noise from information. Hence, uninformed traders create an 
overreaction to price changes, but they are not noise creators in the classic sense of noise trading. 
 
55 Institutional traders are associated with positive relations in municipal bonds and Treasury note contracts, 
a negative relation in the Major Market stock index and Treasury bonds, and no significant relation for 
silver contracts. 
 
56 See p. 420 in Shalen (1993). 
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relation between informed traders’ volume and price changes are not consistent, and there 

are no clear explanations for this inconsistency. The relation between the informed 

traders’ volume and price variability has to be understood in two distinct situations, 

depending on whether unexpected information is present. Under the absence of 

unexpected information, if the price deviates significantly from the true value by the 

actions of noisy traders then the informed traders will make the price converge to the true 

value and consequently the trades will possess a negative relation to the price changes. 

However, if the prices changes are a result of unexpected information then the price 

changes associated with the informed traders’ actions will be positively related to the 

price changes.57  

 

 

3.3. Hypotheses and empirical methodologies 

3.3.1 Hypotheses 

Before stating the hypotheses concerning information, noise, and trading patterns, 

let us examine the properties of the information-motivated traders’ demand function to 

purchase the asset.58 Note that the demand function of information-motivated traders 

possesses the following two main properties: (a) A positive relation between the current 

                                                                                                                                                 
 
57  Kim and Verrecchia (1991) decompose the positive volume reaction to price changes into the 
components of unexpected information content and of uninformed traders’ reactions to liquidity demand. 
Hence, Kim and Verrecchia’s model shows that informed trading volume will be positively related to the 
price changes created by unexpected information contents. Hasbrouck (1991b) develops an econometric 
tool to estimate the degree of “informativeness” of trades. Informativeness is defined as the share of trading 
volume in the variance of efficient price. Payne (2003) finds that foreign exchange dealers’ trades 
contribute 41% of the efficient price volatility.  
 
58 In this study the terms demand schedule, demand function, and trading pattern are used interchangeably. 
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demand and the expected return, (b) A negative relation between the current demand and 

the contemporaneous return, i.e. the expected return decreases as the contemporaneous 

price (return) increases. Property (a) means that information-motivated traders buy (sell) 

before a price increase (decrease). Consequently, if the current price ( )logp Pτ τ≡  

increases then the contemporaneous return 1p pτ τ −−  increases, whereas the expected 

future return ( )1E p pτ τ τ+ −%  decreases in an informationally efficient market. As a result, 

the current demand decreases. Hence, as stated in property (b), there is a negative relation 

between the contemporaneous return and the current demand.59 Therefore, if a trader 

demand function includes both properties (a) and (b), then the trader is an information-

motivated trader and their trades will be profitable. The detailed properties of the 

information-motivated traders’ demand function are analyzed in appendix 3.1 by using 

the typical two-period noisy rational expectations model formulation. 

The noisy rational expectations models, especially Shalen (1993), explain 

expected returns and noise in terms of the following concepts: 

a. Informed traders’ expected returns are less correlated with current noise than 

are the expected returns of uninformed general public traders. In Shalen 

(1993), the correlation between expected returns and noise is caused by 

uninformed speculators who are not able to distinguish noise from the 

information component in price changes. The excess covariance between the 

expected returns and current noise causes the dispersion of the volatility of the 

                                                 
59 This study defines the property (b) of the information-motivated demand schedule as the contrarian 
trading pattern for the contemporaneous return. 
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contemporaneous returns, since the current demand for the asset changes 

based on both the expected return and the contemporaneous return. 

b. The informed trader’s current demand is negatively related to the increase in 

both contemporaneous noise and information arrivals (see appendix 3.1). This 

relation directly follows from property (b) of the information-motivated 

traders, since informed traders will sell the asset if the current return increases, 

whether the increase in the current return is caused by noise or by information. 

c. Informed traders’ current demand is more negatively related to the increase in 

the current returns caused by noise than to that the return innovations caused 

by information.  This relation occurs because informed traders can distinguish 

between noise and information.  

Accordingly, four null hypotheses are tested as follows: 

H01: Trading volume reactions to contemporaneous price changes are 

independent of time-varying information arrivals and noise.   

H02: Trading volume reactions to contemporaneous price changes caused by 

information are not significantly different from those caused by noise.   

H03: Trading volume reactions of the floor traders to contemporaneous price 

changes caused by noise are not significantly different from the trading volume reactions 

of the general public. 

H04: Trading volume reactions of floor traders to contemporaneous price changes 

caused by information are not significantly different from the trading volume reactions of 

the general public.  
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If the propositions of the relations between trading volume and price variability in 

the noisy rational expectations model are valid, then all of the above hypotheses will be 

rejected. 

 Noisy rational expectations models do not explicitly consider information factors 

based on the direction (trend) of the short-term price change. Rather, information factors 

are described as the components of the price behavior which follow a martingale process 

(equivalently the random-walk process). As a result, price movements based on old 

information are considered noise, where the noise is irrelevant to the expected return in 

an informationally efficient market. In particular, if returns are computed on an interday 

basis (for example, daily returns are employed), then information should be fully 

reflected into the daily return when the information arrives.  

 On the other hand, if the returns are computed using high frequency intraday data, 

then information may not be fully reflected within a short period of time. In this case, 

intraday returns can be positively auto-correlated, due to a sequence of information 

arrivals. Floor traders will then see a change in the short-term direction of price which is 

caused by the autocorrelation of information arrivals. In addition, these floor traders also 

may observe a short-term directional price change caused by non-information factors, 

such as the autocorrelation caused by liquidity-motivated trading, the bid-ask spread 

bounce, uninformed feedback trading, etc. This study defines knowledge about the 

autocorrelation of price caused by either information or non-information factors as order 

flow information. Since this study (Essay 3) uses fifteen-minute return intervals, it is 

necessary to distinguish order flow information from non-order flow information. This 

distinction is necessary because if traders are informed of order flow then their demand 
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will be positively correlated to the factors causing the autocorrelated patterns. Hence, by 

decomposing order flow information, the demand function of the informed traders is 

more properly identified. Formally, this study defines the order flow information as 

follows: if the current and past returns are significantly positively correlated to the future 

returns, then current and past returns are said to have order flow information for future 

returns. Therefore, it is expected that floor traders’ current demand has a positive relation 

to the order flow component of the contemporaneous returns. The general public traders 

(the off-the-floor traders) are not expected to show a positive relation since they do not 

have information on order flow. The associated null hypothesis is as follows: 

H05: Trading volume reactions of floor traders to the order flow component of 

contemporaneous returns is not significantly different from the trading volume reactions 

of the general public.  

 

3.3.2 Empirical models for tests of the noisy rational expectations models 

The equations given below are used to test the null hypotheses concerning the 

relation between price changes and trading volume suggested by the noisy rational 

expectations models explained in section 3.3.1.  

0 1 1 1 1 2 2 3 3 4 4r r NetVol NetVol NetVol NetVolτ τ τ τ τ τ τ τ τ τ τα α β β β β ε−= + + + + + +                      (1)     
         
where rτ is the non-seasonal intraday contemporaneous returns which are also adjusted 

for the interday variance components; kNetVol τ  is the net trading volume which is 

defined as the total buy volume less the total sales volume of CTIk at period of τ. The 
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coefficient kτβ , 1, 2, 3 and 4k = , is a function of the variance ( 2
rτ

σ ) which contains the 

components of information ( 2
fτ

σ ), order flow ( 2
oτ

σ ) and noise ( 2
zτ

σ ). Specifically, 

( )
( )

2

2 2 2     , ,

k r

f o z

τ

τ τ τ

τβ β σ

β σ σ σ

=

=
                                (2) 

where 

1 1 1

2 2 2 2 2 2 2
0 1 1 1 0 1 1 12 , 2  and o u z u f r ua a a a

τ τ τ τ τ τ ττ τ τ τσ θ σ σ θ θ σ σ σ θ σ
− − −− − − −= + = − − = + , as defined 

above, and 2
rτ

σ which equals the total variance of the returns, and 2
uτ

σ which equals the 

residual of the first moving average model, as shown below:60 

1 1r u uτ τ τ τθ − −= +                                 (3) 

As shown in (11) in Essay 2, the informational variance is defined as the 

difference between the total variance and the total noise variance. If the total variance 

does not significantly change, then there will be a significant negative relation between 

the informational variance and the measure of the total noise variance. In order to remove 

the negative correlation between the informational and noise variances, the residual of 

the regression of the informational variance measure (in (10) in essay 2) on the noise 

variance measure (in (11) in Essay 2) is used as the informational variance measure in the 

equation in (3), i.e., 
,

2ˆ
efτ

σ . The measure of the total noise variance in (3) is the absolute 

noise variance measure. Moreover, the absolute value of the noise variance measure 

represents the deviation of the current price from the efficient price. The Appendix in 

Essay 3 shows the decomposition of the total noise variance into the order flow variance 

                                                 
60 See appendix 3.2 for the coefficients, 0a  and 1a . 
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component and the remaining pure noise variance component. The total variance and the 

measures of informational, order flow, and noise variance are estimated before the 

regression model given in (4) and (5) is determined. 

This study redefines kτβ from (2) in terms of two linear functions employing the 

variances of information, order flow, and noise as follows: 

( )2 2ˆk k rk r rτ ττβ β λ σ σ= + −                           (4) 

( ) ( ) ( ),

2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ
ek k fk f f ok o o zk z zτ τ τ τ τ ττβ β λ σ σ λ σ σ λ σ σ= + − + − + − , for 1, 2, 3 and 4k =             (5)  

 The estimated informational variance (
,

2ˆ
efτ

σ ), the order flow variance ( 2ˆoτ
σ ) and 

the noise variance measures ( 2ˆ zτ
σ ) are demeaned by removing their simple mean values.61 

Hence, the unconditional mean of the coefficients ( kτβ  ) will be the same value as the 

constant ( kβ ) in equation (5). Specifically, 

( ) ( )2 2ˆk k rk r r kE E
τ ττβ β λ σ σ β= + − =                          (6) 

( ) ( ) ( ) ( )2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆk k fk f f ok o o zk z z kE E E Eτ τ τ τ τ τ τβ β λ σ σ λ σ σ λ σ σ β= + − + − + − = ,   

                            for 1, 2, 3 and 4k =             (7) 

The operational specifications of the regression model in (1) for (4) and (5) are as 

follows: 

Model 1 (The combination of (1) and (4)): 

2 2
0 1 1 1 1 1 1 2 2 2 2

2 2
3 3 3 3 4 4 4 4                       

r r r r

r r r r

r r NetVol NetVol NetVol NetVol

NetVol NetVol NetVol NetVol
τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

α α β λ σ β λ σ

β λ σ β λ σ ε
−= + + + + +

+ + + + +

% %

% %
       (8) 

                                                 
61 Essay 2 shows the decomposition of the variance into the informational variance component and the total 
noise variance component.  
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Model 2 (The combination of (1) and (5)): 

2 2 2
0 1 1 1 1 1 1 1 1 1 1

2 2 2
2 2 2 2 2 2 2 2

3 3 3

                       

                       

f f o o z z

f f o o z z

f f

r r NetVol NetVol NetVol NetVol

NetVol NetVol NetVol NetVol

NetVol

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ

α α β λ σ λ σ λ σ

β λ σ λ σ λ σ

β λ σ

−= + + + + +

+ + + +

+ +

% % %

% % %

% 2 2 2
3 3 3 3 3

2 2 2
4 4 4 4 4 4 4 4                       

o o z z

f f o o z z

NetVol NetVol NetVol

NetVol NetVol NetVol NetVol
τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

λ σ λ σ

β λ σ λ σ λ σ ε

+ +

+ + + + +

% %

% % %

      (9) 

where 2 2 2ˆr r rτ τ τ
σ σ σ≡ −% , 2 2 2ˆ ˆf f fτ τ τσ σ σ≡ −% , 2 2 2ˆ ˆo o oτ τ τσ σ σ≡ −%  and 2 2 2ˆ ˆz z zτ τ τσ σ σ≡ −% . The 

regressions in (8) and (9) will show which type of trader generates a profitable trading 

pattern. Before the examination of the trading volume reaction of CTIk to different types 

of price changes (informational, order flow, and noise price changes), the regression in 

(8) will show whether traders have differing trading patterns for different sizes of price 

changes. 62  If rkλ  is not zero, then CTIk possesses a different demand schedule for 

different price change sizes. If 0rkλ < , then CTIk has a more profitable trading pattern 

when price changes are larger. The regression for Model 2, i.e. equation (9), provides us a 

richer examination concerning how traders’ trading patterns are different for different 

types of information in relation to the null hypotheses sated in H01 to H05.  

As previously discussed in section 3.3.1, information-motivated traders will sell 

(buy) immediately after the positive (negative) information causes price to change.  This 

creates a negative relation between trading volume and current returns.  Hence, an 

information-motivated trader group will possess a negative coefficient for their net 

trading volume. If a trader group has knowledge about the processes of the time-varying 

information arrivals and noise, then the coefficients in (7) will be significantly negative, 
                                                 
62 Equations (4) and (5) show the relation between kτβ and the size of the variances.  Recall that the 
variance is calculated as the square of the 15 minute price change, thereby providing the direct relation 
between price change and kτβ .   
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since the trader group will utilize its knowledge to maximize its profits from transactions; 

moreover, in this case null hypothesis 1 (H01) is rejected. Because information arrivals 

affecting price increases (decreases) is assumed to be fully reflected into prices as soon as 

the information arrival occurs, traders who are aware of information will buy (sell) 

immediately before the price change occurs.63   

Furthermore, if a trader group differentiates price changes caused by information 

arrivals from price changes caused by noise, then the coefficient of the noise variance 

measure ( zkλ ) will be more negative than the coefficient of the informational variance 

measure. This occurs because the price changes caused by the noise component represent 

the deviation of the price from the efficient price. The stronger negative coefficient for 

the noise variance measure ( zkλ ) reflects the reduction in the deviation of price from the 

efficient price. Hence, if the coefficient of the noise variance measure ( zkλ ) is more 

negative than that of the informational variance ( fkλ ), then null hypothesis 2 (H02) is 

rejected.  

Based on the null hypotheses H03 and H04, the general public traders are assumed 

to be noise traders. Because the general public traders are assumed to be noise traders, 

coefficients 4zλ  and 4fλ reflect trading volume reactions by the noise traders to both the 

noise and the informational factors in price changes. Hence the coefficients 4zλ  and 4fλ  

                                                 
63 If information is not fully reflected into price at the moment it arrives, then the price series will be 
positively autocorrelated. Consequently, if informed traders know that this resultant positive 
autocorrelation of the price changes is due to the existence of old information, then these informed traders 
will cause a momentum trading pattern in prices. However, in this study, autocorrelated price changes due 
to old information are considered to be noisy price changes, as detailed in Essay2. The price change which 
is not explained by the autocorrelation is considered as the price change due to new information arrivals 
even though the price change is caused by old information.  
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are compared to the corresponding coefficients of floor traders ( zkλ  and  fkλ , k = 1, 2 and 

3) to test null hypotheses 3 (H03) and 4 (H04). If  zkλ  < 4zλ , k = 1, 2 and 3, then the floor 

traders show stronger profitable trading volume reactions to price changes caused by the 

autocorrelated noise price behavior than do the general public and therefore we would 

reject H03. If  fkλ < 4fλ , k = 1, 2 and 3, then the floor traders show stronger profitable 

trading volume reactions to price changes caused by information arrivals than do the 

general public and therefore we would reject H04.  

If  0okλ >  then CTIk has knowledge of the direction of short-term price changes 

from the order flow information. If okλ > 4oλ , k = 1, 2 and 3, then the floor traders have a 

better knowledge of the direction of short-term price changes than the general public 

traders, and then we would reject H05. The following statistical hypotheses examine the 

noisy rational expectations models explained in section 3.1.  

H01: 0fk zkλ λ= = , for 1, 2, 3 and 4k =                                             (10) 

H02: fk zkλ λ= , for 1, 2, 3 and 4k =                                              (11) 

H03: 4zk zλ λ= , for 1, 2 and 3k =                                     (12) 

H04: 4fk fλ λ= , for 1, 2 and 3k =                                     (13) 

H05: 4ok oλ λ= , for 1, 2 and 3k =                                     (14) 

 

3.4. Data 

This study employs fifteen minute futures data from The Chicago Board of Trade 

(CBOT) for interest rate futures (10-year T-notes), agricultural futures (wheat and corn), 
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and stock index futures (Dow Jones) for years 2003 to 2006. This data includes aggregate 

volume for both purchases and sales for each recorded trade price for each fifteen 

minutes interval in the day, with all volume distinguished by four types of traders. The 

trade volumes are distinguished by the following customer trade indicators (CTI):   

CTI1:  Volume for the local market maker’s own accounts. These market makers 

provide short-term liquidity to the market in response to the needs of other traders.  

CTI2: Volume for institutional house accounts. Institutional traders initiate 

speculating and hedging trades. They are informed of the order flow on the floor 

and possess more homogeneous beliefs than do other trader groups.  

CTI3:  Volume for floor traders executing trades for other floor traders.  

CTI4: Volume for any other type of off-the-floor traders, called the general public. 

The general public does not have access to the floor and therefore are not privy to 

order flow information. Hence these traders typically can not distinguish 

information signals from noise, and thus possess more heterogeneous beliefs than 

do floor traders. 

It is well known that return variances have strong intraday seasonal components. 

Hence, this seasonal component could easily lead to erroneous statistical inferences for 

microstructure studies if it is not removed from the intraday data. This study adjusts for 

the seasonal components inherent in the intraday data. The procedure to filter the returns 

series is detailed in Essay 1. The non-seasonal intraday returns possess both the interday 

and the intraday variance components. The interday variance components are removed 

from the return variance to examine only the short-run information components in price 

changes. Furthermore, the informational variance, the order flow information variance, 

and the noise variance components are decomposed from the non-seasonal intraday 
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return variance, which are adjusted for the interday variance components. The resultant 

return series is used in the regression model given in (8) and (9) as the dependent variable 

and the lagged dependent regressor.  

This study employs the squared returns as the measure of the total conditional 

variance of the returns ( 2 2
r r
τ τσ ≡ ), rather than using the conditional variances obtainable 

from a GARCH process. The reason for using the squared returns as the measure of the 

total variance arises from the fifteen minute frequency interval employed in this study. 

The use of high frequency returns, especially since they are adjusted for the interday 

variance component, reflect only the information from short-term price changes. Hence, 

the use of an ARMA/GARCH process would smoothes out the short-term price changes, 

resulting in a significant loss of information when examining the high frequency dataset. 

In a similar way the innovations in (6) in Essay 2 were squared to determine the measure 

of the conditional variance of the moving average innovations ( 2 2
u u
τ τσ ≡ ). From the 

squared innovations, the order flow variance measure and the non-order flow noise 

variance measure in (2) are computed. 

 
3.5. Results  

 

 Table 3.1 provides an initial examination of the trading patterns of each type of 

CTI trader via the preliminary correlation coefficients between the non-seasonal intraday 

returns and the net trading volumes. The negative correlation coefficients for the floor 

traders (CTI1, 2, and 3) show that they buy (sell) if prices rise (fall). On the other hand, a 

positive correlation coefficient for the general public traders (CTI4) show that they buy 
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(sell) if prices fall (rise). The results of the trading patterns in relation to the informational 

and noisy variance components analyzed by the multivariate regression analysis are 

presented next.  

The relation between information, volatility, and trading volumes are analyzed in 

Table 3.2 by employing the regression models given in (8) and (9).64  The negative 

coefficients of the net trading volume for the current period and the positive coefficients 

for the previous period, as given in Panels A and B of Table 3.2, show that the floor 

traders have profitable information-motivated demand functions, whereas the reverse is 

true for the general public. In particular, the positive coefficients of the net trading 

volume for the previous period show that floor traders buy (sell) immediately before 

price increases (decreases). Significant negative coefficients for the total variance 

(TotalVar) in Panel A show that floor traders profitable trading patterns becomes stronger 

when the variance of price change becomes larger, whereas the general public traders do 

not show any different trading patterns for different sizes of price changes. Panel B of 

Table 3.2 estimates the coefficients from the decomposition of the total variance from 

Panel A into its three different components, namely informational variance (InforVar), 

order flow variance (OrderFlowVar) and noise variance (AbsNoiseVar). 

In Panel B of Table 3.2 the significance of the coefficients of the informational 

variance and the noise variance measures test null hypothesis 1 (H01). The significantly 

negative coefficients for the informational variance components (InforVar, fkλ ) for CTI2 

                                                 
64 The regression in (4) shows the trading patterns of each type of traders in response to different types of 
price changes, where the price changes are caused by ether information arrivals or noise. The regression 
analysis in (4) does not directly examine the relation between volatility and trading volumes. Daigler and 
Wiley, (1999), Chang, Chou, and Nelling (2000) and Wang (2002) examine the direct volatility-volume 
relation.  
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in panel A of Table 3.2 show that the market makers (CTI1) and institutional traders 

(CTI2) sell (buy) more contracts when the contemporaneous return increases (decreases) 

are larger and are due to information variance.65 The other floor traders (CTI3) also sell 

(buy) more contracts if the current price increases (decreases) are larger, with the 

exception of Dow Jones futures contracts. 66  These findings concerning the trading 

patterns of differently motivated traders (their information-motivated demand/supply 

schedule) in relation to the changes in the informational variance reject H01. In addition, 

these results are consistent with the trading volume reactions of floor traders to price 

changes being correlated with the time-varying characteristics of information arrivals. 

Informed traders’ negative relation between the contemporaneous return and 

demand will be stronger if price changes are caused by noise factors rather than by 

information arrivals, since informed traders are able to differentiate noise from new 

information arrivals. This stronger negative relation between the contemporaneous 

relation and demand should be reflected in the regression results by larger negative 

coefficients for the noise variance measure relative to the informational variance measure 

(AbsNoiseVar ( zkλ ) < InforVar ( fkλ ) < 0).  Table 3.2 shows that the net trading volume 

of the floor traders has larger negative coefficients for the noise variance measures 

relative to the informational variance, especially for CTI2 traders. For example, the 

coefficients of CTI2 net volume are -1.985 (InforVar) and -10.394 (AbsNoiseVar) for the 

                                                 
65 The negative relation between contemporaneous return and the demand (trading) schedule is equivalent 
to the positive relation between the expected returns and the demand schedule. Hence, buying (selling) 
when the contemporaneous return decreases (increases) is equivalent to selling (buying) when the expected 
return decreases (increases). 
 
66 Also, the other floor traders (CTI3) do not show profitable trading patterns for the Dow Jones contract. 
Based on the results in Panel A and B of Table 3.2, they sell before prices increase and buy when expected 
prices decrease. 
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10-year T-note futures. On the other hand, the net trading volume of the general public 

traders for the Dow Jones contract does not possess larger negative coefficients for the 

noise variance measures, suggesting the general public traders are not informed traders in 

that they do not distinguish noise from information.  

Floor traders possess order flow information in conjunction with 

contemporaneous and past return behavior. Therefore, although there is a negative 

relation between the contemporaneous return and the demand of informed traders, as 

detailed in Appendix 3.1, floor traders’ demand will be positively related to a determinant 

of the contemporaneous return if that determinant possesses a forecast of the expected 

return. Appendix 3.2 discusses how to decompose the total noise variance into the order 

flow component and the pure noise component. The coefficient for the order flow 

component (OrderFlowVar, okλ ) in Panel B of Table 3.2 supports the idea that the 

coefficients okλ  for the floor traders are significantly positive; this is especially true for 

CTI2, whereas the order flow coefficient for the CTI4 general public traders coefficient 

values are insignificant.67  

Panel A of Table 3.3 provides the statistical significance results to test whether 

the coefficients of the noise variance measures are statistically less than the coefficients 

of the informational variance. These valufes are determined by comparing the 

                                                 
67 See Daigler and Wiley (1999), Massimb and Phelps (1994), and Kurov and Lasser (2004) regarding 
order flow information and floor traders. Daigler and Wiley (1999) find that the positive relation between 
volatility and volume is driven by the general public, who are not on the floor and therefore they cannot 
distinguish what price changes are due to information arrivals and what price changes are due to noise from 
liquidity demand. Massimb and Phelps (1994) detail floor traders’ strategic advantages in the pits, such as 
recognizing the subsequent direction of the market and the ability to execute certain trading strategies. 
Moreover, floor traders have other advantages, especially when both floor and electronic markets exist in 
parallel. For example, as Kurov and Lasser (2004) show, when large stock index futures orders are sent to 
the floor for execution, then market makers first make trades for their own account in the electronic 
markets before executing the large customer trades on the floor. 
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information coefficients to the absolute noise coefficients in Table 3.2. These results 

show that the noise component possesses a much larger negative coefficient than the 

information component for the CTI2 institutional traders. This supports a stronger 

negative relation between the contemporaneous return and the trading demand for the 

noise component relative to the information component. The results from Table 3.3 also 

show that a stronger negative relation between the contemporaneous return and demand 

exists for current price changes caused by the noise component (i.e. NoiseVar < InforVar 

< 0) for 10-Year T-notes and Dow Jones for the CTI1 traders and for 10-Year T-notes, 

wheat and corn for the CTI3 traders. On the other hand, the results from Panel A of Table 

3.3 show that the net trading volume of the general public traders do not possess 

significantly larger negative noise variance coefficients relative to the informational 

variance coefficients. Hence, trading volume reactions to price changes caused by 

information are significantly different from those caused by noise for floor traders, 

whereas those of the general public traders are not. As a result, H02 is rejected.  

As mentioned in the methodology section, if the prediction by the noisy rational 

expectations model is valid, then informed traders exhibit stronger negative net volume 

reactions to contemporaneous price changes than do the general public whether the price 

changes are caused by noise or information (see H03 and H04). The test results in Panel B 

and C show that the net volume reactions of floor traders to price changes caused by 

either noise or information are statistically less than those of the general public, with the 

exception of the Dow Jones contract for the other (CTI3) floor traders.  

Previously, I showed in Panel B of Table 3.2 that floor traders exhibit knowledge 

of order flow information, since the OrderFlowVar coefficients ( okλ ) were significantly 
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positive whereas the general public traders coefficients were not. The p-values in Panel D 

of Table 3.3 reaffirm this previous finding concerning the order flow information in Panel 

B of Table 3.2 in that the net volume reactions of floor traders to the order flow 

component of the contemporaneous price changes are statistically larger than those of the 

general public, with the exception of the Dow Jones contract for other floor traders 

(CTI3). 

In conclusion, the floor traders’ current demand schedule exhibits a positive 

relation to expected return and a negative relation to contemporaneous return. Their 

information-motivated trading pattern is stronger for contemporaneous price changes 

caused by noise than for price changes caused by information arrivals. On the other hand, 

the trading pattern of the general public traders is positively correlated to 

contemporaneous price changes.  

 

 
3.6. Conclusions  
 

This study applies the seasonality filtering process developed in Essay 1 to 

examine the noisy rational expectations model.  In particular, I analyze the relation 

between information, order flow, noise and traders’ demand functions for 10-year T-

notes, Dow Jones, wheat and corn futures. The noisy rational expectations model states 

that informed traders’ expected returns have a lower correlation with current noise than 

do uninformed general public traders. In addition, informed traders’ current demand is 

negatively related to an increase in contemporaneous noise and information arrivals. The 

reason for the negative relation between trading demand and both information and noise 
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is that informed traders will sell an asset if the current return increases, whether the 

increase in the current return is caused by noise or by information. Furthermore, informed 

traders’ current demand is more negatively related to the increase in the current returns 

caused by noise than by information because informed traders can distinguish noise from 

information. As Massimb and Phelps (1994) point out, floor traders who observe order 

flow from the trading floor have an advantage in determining how prices will change 

based on the contemporaneous and past returns. Therefore, although there is a negative 

relation between the contemporaneous return and the trading demand of informed traders, 

floor traders’ demand will be positively related to a determinant of the contemporaneous 

return if that determinant is a factor affecting expected return.  

In order to obtain the appropriate price series for analysis, the seasonal variance 

and the interday variance components are removed before the analysis of the relation 

between information, order flow, noise, and trading activity is undertaken.  The 

procedure to filter out the intraday seasonal variance component is detailed in Essay 1. 

The interday variance component also is removed from the return variance in order to 

concentrate on the short-run information component in price changes. In addition, the 

non-seasonal intraday return variance is decomposed into the informational variance, 

order flow variance, and the noise variance components. The procedure to decompose the 

variance into the informational, order flow and noise components is detailed in Essay 2 

and Appendix 3.2 in this study (Essay 3). Subsequently, the decomposed informational, 

order flow and noise variance components are used to examine the trading demand 

function in response to time-varying information, order flow and noise. 
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The results of the analysis of the data are consistent with prediction from the 

noisy rational expectations model in that the floor traders’ demand function possesses the 

properties of an information-motivated demand schedule. This relation is supported by 

the floor traders’ current demand schedule exhibiting a positive relation to the expected 

return and a negative relation to the contemporaneous return. This information-motivated 

trading pattern is stronger for contemporaneous price changes caused by noise than for 

price changes caused by information arrivals. Alternatively, the trading pattern of general 

public traders is positively correlated to contemporaneous price changes, showing they do 

not possess an information-motivated demand function. Finally, the results show that 

floor traders have order flow information whereas the general public does not. 
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 Table 3.1: Correlations Coefficients between the Non-seasonal Intraday Returns 
and Net Trading Volumes by CTI 

  
Table 3.1 shows the Pearson correlation coefficients between the non-seasonal intraday returns and net 
trading volumes by type of trader (CTI). NetVol1, NetVol2, NetVol3 and NetVol4 represent the buy 
volume less the sell volume for the CTI1, CTI2, CTI3 and CTI4 traders, respectively. Statistical 
significance at less than the 5% level is shown in bold. 
 

Panel A: Correlation coefficients of 10-Year T-notes 
 NetVol1 NetVol2 NetVol3 NetVol4 

Returns -0.120 -0.056 -0.081 0.150 
NetVol1  -0.194 0.228 -0.769 
NetVol2   -0.177 -0.061 
NetVol3    -0.514 

 
Panel B: Correlation coefficients of Dow Jones 

 NetVol1 NetVol2 NetVol3 NetVol4 
Returns -0.099 -0.100 0.003 0.088 
NetVol1   0.151 0.117 -0.728 
NetVol2    0.025 -0.294 
NetVol3     -0.285 

 
Panel C: Correlation coefficients between Wheat 

 NetVol1 NetVol2 NetVol3 NetVol4 
Returns -0.151 -0.094 -0.119 0.173 
NetVol1  -0.050 0.218 -0.660 
NetVol2   0.055 -0.179 
NetVol3    -0.521 

 
Panel D: Correlation coefficients between Corn 

 NetVol1 NetVol2 NetVol3 NetVol4 
Returns -0.027 -0.122 -0.169 0.114 
NetVol1   -0.152 -0.013 -0.706 
NetVol2    -0.003 -0.151 
NetVol3     -0.281 
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Table 3.2: Regression Results of the Noisy Rational Expectations Models 
 
Table 3.2 shows the regression results of the non-seasonal intraday returns against the net trading volumes. 
NetVol1, NetVol2, NetVol3 and NetVol4 represent the net trading volumes (buy volume less sell volume) 
for the CTI1, CTI2, CTI3 and CTI4 traders, respectively. TotalVar, InforVar, OrderFlowVar and NoiseVar 
represent kλ , fkλ ,  okλ  and zkλ , respectively. The net volume coefficients are multiplied by a factor of 
10,000. Statistical significance at less than the 5% level is shown in bold. The symbol † represents the 
statistical significance at a 10% level. The regression models are as follows: 
 

0 1 1 1 1 2 2 3 3 4 4r r NetVol NetVol NetVol NetVolτ τ τ τ τ τ τ τ τ τ τα α β β β β ε−= + + + + + +  

( )2 2ˆk k rk r rτ ττβ β λ σ σ= + −  for k = 1,2, 3 and 4  and Panel A. 

( ) ( ) ( )2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆk k fk f f ok o o zk z zτ τ τ τ τ ττβ β λ σ σ λ σ σ λ σ σ= + − + − + −  for k = 1,2, 3 and 4 and Panel B. 

 
       Panel A 

 
10-year 
T-notes Dow Jones Wheat Corn 

Intercept 0.006 0.002 -0.004 -0.011 
Ret (τ -1) 0.758 0.776 0.762 0.774 
     
NetVol1 -0.742 -8.710 -0.838 -0.219 
TotalVar -0.411 -0.825† -1.072 -0.247 
NetVol1 (τ -1) 0.438 3.533 0.220 -0.815 
     
NetVol2 0.364 -8.340 -0.671 -1.530 
TotalVar -1.557 -5.472 -1.781 -1.013 
NetVol2 (τ -1) 0.692 10.209 4.176 1.287 
     
NetVol3 -0.363 5.484 -0.433 -4.052 
TotalVar -0.560 -0.221 -1.421 -1.534 
NetVol3 (τ -1) 0.200 -2.314 2.152 0.749 
     
NetVol4 0.335† 0.511 0.268 -0.403 
TotalVar 0.058 0.362 0.133 0.122 
NetVol4 (τ -1) -0.582 -2.217 -0.432 -1.034 
     
R-Square 0.598 0.614 0.614 0.643 
N 25,379  30,793  12,187  12,184  
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Table 3.2: Regression Results of the Noisy Rational Expectations Models 
(Continued) 

 
     Panel B 

 
10-year 
T-notes Dow Jones Wheat Corn 

Intercept 0.005 0.002 -0.004 -0.011 
Ret (t-1) 0.759 0.776 0.764 0.776 
     
NetVol1 -0.761 -8.900 -0.814 -0.180 
InforVar -0.586 -1.980 -1.432 -0.164† 
AbsNoiseVar -4.670 -16.205 -4.763 -0.730 
OrderFlowVar 1.306 4.837 1.820 0.137 
NetVol1 (τ -1) 0.447 3.451 0.239 -0.852 
     
NetVol2 0.251 -8.633 -0.876 -1.459 
InforVar -1.985 -6.459 -2.422 -1.374 
AbsNoiseVar -10.394 -33.217 -13.422 -6.319 
OrderFlowVar 3.106 8.266 3.826 2.639 
NetVol2 (τ -1) 0.625 9.997 4.122 1.162 
     
NetVol3 -0.307 5.716 -0.375 -3.989 
InforVar -0.881 0.934 -3.094 -2.300 
AbsNoiseVar -7.137 -5.809 -25.972 -9.254 
OrderFlowVar 2.031 -1.439 6.261 4.187 
NetVol3 (τ -1) 0.187 -2.324 2.299 0.682† 
     
NetVol4 0.367† 0.701 0.560† -0.370 
InforVar 0.049 0.571 -0.044 0.220 
AbsNoiseVar -1.179 -3.094 -0.414 0.812 
OrderFlowVar 0.307 0.341 -0.012 -0.366 
NetVol4 (τ -1) -0.570 -2.284 -0.349 -1.065 
     
R-Square 0.600 0.614 0.614 0.645 
N 25,379  30,793  12,187  12,184  
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Table 3.3: Test Results for the Noisy Rational Expectations Model 
 

Table 3.3 shows the test results as specified in sections 3.1 and 3.2. The tests are based on the regression 
coefficients of models given in (1) and (2). The regression model is as follows: 
 

0 1 1 1 1 2 2 3 3 4 4r r NetVol NetVol NetVol NetVolτ τ τ τ τ τ τ τ τ τ τα α β β β β ε−= + + + + + +  

( ) ( ) ( )2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆk k fk f f ok o o zk z zτ τ τ τ τ ττβ β λ σ σ λ σ σ λ σ σ= + − + − + − , 1, 2, 3 and 4k = , 

 
The null hypotheses are: 

H01: 0fk zkλ λ= = , for 1, 2, 3 and 4k =      

H02: fk zkλ λ= , for 1, 2, 3 and 4k =           

H03: 4zk zλ λ= , for 1, 2 and 3k =   

H04: 4fk fλ λ= , for 1, 2 and 3k =    

H05: 4ok oλ λ= , for 1, 2 and 3k =       
 
P-statistics of the F-test results are reported for the null hypotheses of H02, H03, H04 and H05. The test 
results of H01 are shown by the significance of InforVar and NoiseVar in Table 3.1. If the coefficients of 
variance measures ( fkλ  and zkλ ) in Table 3.2 (Panel B) are not negative for floor traders, then the H03 and 
H04 hypotheses are not tested. In that case, the p-statistics are marked as NA. Similarly, if the coefficients 
of the order flow variance measure ( okλ ) in Table 3.2 (Panel B) are not positive for floor traders, then the 
H03  hypothesis is not tested. In that case, the p-statistics are marked as NA. 
 
Panel A: Test results for Hypothesis 2 (H02)  Panel B: Test results for Hypothesis 3 (H03) 

 10-Year 
T-notes 

Dow 
Jones Wheat Corn  10-Year 

T-notes 
Dow 
Jones Wheat Corn 

CTI1 0.000 0.005 0.110 0.339  CTI4 CTI4 CTI4 CTI4 
CTI2 0.000 0.021 0.009 0.000 CTI1 0.000 0.000 0.011 0.001 
CTI3 0.000 0.568 0.000 0.000 CTI2 0.000 0.012 0.002 0.000 
CTI4 0.091 0.370 0.810 0.255 CTI3 0.000 0.824 0.000 0.000 
 
Panel C: Test results for Hypothesis 4 (H04) 

 
Panel D: Test results for Hypothesis 5 (H05)

 10-Year 
T-notes 

Dow 
Jones Wheat Corn 10-Year 

T-notes 
Dow 
Jones Wheat Corn 

 CTI4 CTI4 CTI4 CTI4 CTI4 CTI4 CTI4 CTI4 
CTI1 0.000 0.000 0.000 0.000 CTI1 0.000 0.000 0.000 0.011 
CTI2 0.000 0.000 0.000 0.000 CTI2 0.000 0.003 0.000 0.000 
CTI3 0.000 NA 0.000 0.000 CTI3 0.000 NA 0.000 0.000 
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Appendix 3.1: Derivations of the random-walk plus noise model and the 
information-motivated traders’ demand function  
  
 This appendix derives the random-walk plus noise model and the information-
motivated traders’ demand function on the basis of the noisy rational expectations model.  
 
The model:  

a. A two-period pure exchange economy. Traders have initial endowments (initial 
holdings) of their assets. There is no additional issuance of assets. 

 
Assets: a riskless bond and a risky asset (stock). 

b. The price of the bond is normalized to unity. There are no changes in the demand 
of bond because there are no changes in the price of the bond. Hence, the gain 
from the bond is only based on the risk-free rate. This study assumes the risk-free 
rate to be 0 with a loss of generality in order to obtain simplicity. 

c. The total quantity of the risky asset is fixed, whereas the quality is time-varying in 
that the net present value (NPV) of the risky asset changes. As a result, the 
changes of the NPV create information, which is a factor for the demand of the 
risky asset. 

 
Agents: There are N speculators and N noisy traders.  

d. Noisy traders are liquidity-motivated traders. Noisy traders’ demand for the risky 
asset is exogenously determined because their demand is random. 

e. Speculators are the information-motivated traders. Speculators are rational and 
risk-averse. Their demand for the risky asset is determined in order to maximize 
the expected utility conditional on their public and individual information.  

 
Utility function:  

f. The speculators’ utility is a real-valued function of wealth and represented by the 
HARA class negative exponential function with a risk tolerance ia .68 Specifically,  

( ) ,
, exp t i

i t i
i

W
U W

a
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

.             (A1) 

 
The demand function: 
Demand functions are derived based on the assumptions of (a) to (f) above. Wealth is a 
combination of the bond and the risky asset. Specifically,  

 
, ,t i i t t iW B P X= + ,             (A2) 

 
where iB  is the dollar value of bond,  and ,t iX  is the holding of the risky asset of 
speculator i . At the next period, the trader’s wealth is as follows. 

                                                 
68 The smaller is ia , the more risk averse is the trader. 
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1, 1 ,t i i t t iW B P X+ += +% %              (A3) 
 
By substituting iB  in (A2) into (A3), the equation (A3) is rewritten as follows. 
  

( )1, , 1 ,t i t i t t t iW W P P X+ += + −% % ,            (A4) 
 
The endowment for the risky asset for speculator i  is 0,iX  which is a constant value and 
assumed to be zero with the loss of generality. Hence, ,t iX  is the net demand, which is 

the trading volume for speculator i  at tP . Assume that the wealth 1,t iW +
%  is normally 

distributed. Then, the expected utility is as follows.69
 

( ) , 1, , 1,
, 1, 2exp

2
t i t i t i t i

t i t i
i i

E W Var W
E u W

a a
+ +

+

⎛ ⎞⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎡ ⎤ = − − +⎜ ⎟⎣ ⎦ ⎜ ⎟
⎝ ⎠

.        (A5) 

The representative trader’s optimization problem is maximizing the expected 
utility specified as follows. 

,

, 1,
, , 1,MAX  

2t i

t i t i
t i t i t iX

i

Var W
J E W

a
+

+

⎡ ⎤⎣ ⎦⎡ ⎤= −⎣ ⎦
%

% ,          (A6) 

where 

( ), 1 , , 1 ,t i t i t i t i t t t iE W W E P P X+ +⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
% % ,          (A7)  

2
, 1, , , 1t i t i t i t i tVar W X Var P+ +⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

% % .            (A8) 
The expectation on the price of the next period is made based on the speculator’s 
information ,t iI  which include all public and individual information. The information set 

,t iI  is suppressed from the expectation , ,t i t iE I⎡ ⎤⋅⎣ ⎦  and the variance operators 

, ,t i t iVar I⎡ ⎤⋅⎣ ⎦  .  
The first order conditions of the maximization problem give us the following 

speculator i ’s demand function: 

( ), 1
,

, 1

i t i t t
t i

t i t

a E P P
X

Var P
+

+

⎡ ⎤ −⎣ ⎦=
⎡ ⎤⎣ ⎦

%

%
            (A9) 

or 

( ) [ ], , , 1 , , 1t i t i t i t t t i t i tX E P P E rρ ρ+ +⎡ ⎤= − =⎣ ⎦
% % ,        (A10) 

where 

,
, 1

i
t i

t i t

a
Var P

ρ
+

≡
⎡ ⎤⎣ ⎦
%

, and                       (A11) 

                                                 
69 If any variable ( )~ ,y N m v% , then ( ) ( )exp exp 2E y m v= +⎡ ⎤⎣ ⎦% . 
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[ ], 1 , 1t i t t i t tE r E P P+ +⎡ ⎤≡ −⎣ ⎦
%% .                     (A12) 

 The market clearing condition when there are no noisy-traders’ demand is: 

( ), , , 1 0,
1 1 1

0
N N N

t i t i t i t t i
i i i

X E P P Xρ +
= = =

⎡ ⎤= − = =⎣ ⎦∑ ∑ ∑% .                  (A13) 

By solving for tP , the equilibrium price is obtained as follows: 

, , 1
1

1

,
1

N

t i t i t
i

t t tN

t i
i

E P
P E P

ρ

ρ

+
=

+

=

⎡ ⎤⎣ ⎦
⎡ ⎤= ≡ ⎣ ⎦

∑

∑

%

%                      (A14) 

The above equilibrium price fully gathers the diverse individual information ,t iI  about the 
price of the next period. Hence, the current price fully reveals all public and individual 
information about the price of the next period. The market clearing condition when there 
are noisy-traders’ demand is: 

( ), , , 1
1 1

0
N N

t i t i t i t t t
i i

X E P P N Zρ +
= =

⎡ ⎤= − + ⋅ =⎣ ⎦∑ ∑ % ,                   (A15) 

where tZ  is the per-capita net liquidity demand which is not matched by liquidity supply.  
By solving for tP , the equilibrium price is obtained as follows: 

, , 1
1

1

, ,
1 1

N

t i t i t
i t

t t t tN N

t i t i
i i

E P
N ZP E P z

ρ

ρ ρ

+
=

+

= =

⎡ ⎤⎣ ⎦ ⋅ ⎡ ⎤= + ≡ +⎣ ⎦
∑

∑ ∑

%

%                     (A16) 

where 

,
1

t
t N

t i
i

N Zz
ρ

=

⋅
≡

∑
.                       (A17) 

The above equilibrium price in (A16) gathers noise as well as information ,t iI  and so 
partially reveals information. By substituting (A16) into the speculator i ’s demand 
function in (A10), 

( )( ) ( ), , , 1 1 , , 1 1, ,t i t i t i t t t t t t i t i t t t tX E P P E P z E r E P zρ ρ+ + + +
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

% % %% ,     (A18) 

or 

( ), , , 1 1t i t i t i t t t tX E P E P zρ + +⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦
% % ,         (A19) 

It is assumed that all the random variables in the model are uncorrelated. Kim and 
Verrecchia (1991) point out that the assumption of uncorrelation among random variables 
for the two-period noisy rational expectations model does not alter the results. The 
equilibrium price of the prior period is: 

[ ]1 1 1t t t tP E P z− − −= + ,                       (A20) 
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By subtracting (A20) from (A16), 
[ ]1 1 1 1t t t t t t t tP P E P E P z z− + − −⎡ ⎤− = − + −⎣ ⎦

%          (A21) 
or 

[ ]1 1 1t t t t t t tr E P E P z z+ − −⎡ ⎤= − + −⎣ ⎦
% .                     (A22) 

 
Because by construction of the model, all the relevant information is gathered in the 
market price in 1t tE P+⎡ ⎤⎣ ⎦

%  and [ ]1t tE P−  for the period t and t-1, the expected price follows 

the random walk process. By letting 1t t tm E P+⎡ ⎤≡ ⎣ ⎦
%  and [ ]1 1t t tm E P− −≡ , the above (A22) 

is rewritten as: 
1 1t t t t tr m m z z− −= − + −                      (A23) 

or 
1t t t tr f z z −= + −                       (A24) 

where 
1t t tm m f−= +                        (A25) 

The above (A24) and (A25) are the typical random walk plus noise model which is used 
in essay 2.70 
As the demand function at t is obtained in (A18) and (A19), the demand function of the 
prior period is: 

[ ] [ ]( )( )1, 1, 1, 1 1 1,t i t i t i t t t t tX E P P E P zρ− − − − − −= −         (A26) 

or 
[ ] [ ]( )1, 1, 1, 1 1t i t i t i t t t tX E P E P zρ− − − − −= − − .        (A27) 

By subtracting (A26) from (A19), 

[ ], 1,
1 , 1 1,

, 1,

t i t i
t t t i t t i t

t i t i

X X
P P E P E P

ρ ρ
−

− + −
−

⎡ ⎤= − + + − +⎣ ⎦
% ,        

or 

[ ]( ) , 1,
, , , 1 1,

1,

t i t i
t i t i t t i t t i t

t i

X
X r E P E P

ρ
ρ

ρ
−

+ −
−

⎡ ⎤= − + − +⎣ ⎦
% ,       (A28) 

 
From (A18), 

[ ]
,

,
, 1 , 1

0t i i
t i

t i t t i t

X a
E r Var P

ρ
+ +

∂
= = >

∂ ⎡ ⎤⎣ ⎦
%%

.         (A29) 

From (A28), 
,

,
, 1

0t i i
t i

t t i t

X a
r Var P

ρ
+

∂
= − = − <

∂ ⎡ ⎤⎣ ⎦
%

.         (A30) 

 

                                                 
70 Many books introduce the random walk plus noise model, for example, Harvey (1989), Fuller (1996) and 
Enders (2004). See also Hasbrouck’s papers (1991a, 1991b, 1993, 2002). 
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The above (A29) and (A30) shows that the speculator i ’s demand function has the 
following properties: 

a. The speculator i ’s demand is positively related with ‘his’ expected return 
[ ], 1t i tE r +% . 

b. The speculator i ’s demand gets larger if the risk-tolerance ( ia ) and the precision 
of his information about the return of the next period get larger. The precision is 

the inverse of the variance, i.e., 
, 1

1

t i tVar P+⎡ ⎤⎣ ⎦
%

. 

c. The speculator i ’s demand is negatively related with the contemporaneous return 
tr .  

d. The speculator i ’s demand is negatively related with the market’s expected return 
[ ]1t tE r +% . It is because the contemporaneous return is positively related to the 

market’s expected return as shown in (A22). 
e. The speculator i ’s demand is negatively related with the contemporaneous 

market’s average information ( tf ) and noise ( tz ). 
f. The speculator i ’s demand gets smaller if the risk-tolerance and the precision of 

his information about the return of the next period get larger.  
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Appendix 3.2: Decomposition of the noise variance into the variance of order flow 
information and the variance of non-order flow component 
 
 The total variance of the returns is decomposed into the informational variance 
and the measure of the noise variance in essay 2 based on the following first order 
moving average model: 

1 1r u uτ τ τ τθ − −= + ,                      (A31) 
where the time-varying moving average coefficient ( 1τθ − ) reflect the effects of old 
information on the current return. As mentioned in essay 2, the old information is 
considered as noise which is irrelevant to the expected return if the market is 
informationally efficient. Especially, if the returns are computed interdaily (for example, 
daily returns), then the information may be fully reflected when the information arrives. 
Hence, it is reasonable that the information does not cause any autocorrelation if the 
returns are computed interdaily. 
 However, if the returns are computed using high frequency intraday data, then 
information may not be fully reflected for short period of time. Hence, the intraday 
returns can be positively autocorrelated due to the information arrivals. The floor traders 
may see the short-term direction of price change which is caused by the autocorrelation 
by information arrivals. The floor traders also may observe the short-term direction of 
price change which is caused by non-information factors, such as the autocorrelated 
liquidity-motivated trading, bid-ask spread bounce, uninformed feedback trading, etc. 
This study defines the knowledge about the autocorrelation of price caused either by 
information or by non-information factors as the order flow information. Since essay 3 
uses fifteen-minute interval returns, it is necessary to distinguish the order flow 
information from the non-order flow component. It is because if the traders are informed 
of the order flow, then there demand will be positively correlated to the factors which 
cause the autocorrelation. By decomposing the order flow information, the demand 
function of the informed traders is more properly identified. Formally, this study defines 
the order flow information as follows: if the current and past price changes are 
significantly positively correlated to the future returns, then the current and past price 
changes are said to have order flow information for the future returns. As stated earlier, 
the autocorrelation caused by the old information is reflected by the time-varying moving 
average coefficient ( 1τθ − ). The time-varying moving average coefficient is decomposed 
into the order flow information component and the non-order flow information 
component as shown below.  

Consider the following future return and the autoregression of the time-varying 
moving average coefficients: 

1 1r u uτ τ τ τθ+ += + ,                      (A32) 

( ) ( )1
ˆ I Iτ τ τ τ τθ θ η += +                       (A33) 

where Iτ  is the information set at the time period of τ . Note that the computation of τθ  

requires the information at 1τ + . ( ) 0
1 1

ˆ
p q

i i j j
i j

I a a bτ τ τ τθ θ η− −
= =

= + +∑ ∑  reflects the rate of the 
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order flow information component of the contemporaneous innovation (uτ ) for the future 

return ( 1rτ + ), where τ̂θ  is obtained using the known moving average coefficients. τη  is 
the non-order flow information component of the past price changes, which is orthogonal 
to the information set ( Iτ ) at τ , i.e., ( ) ( )( )1

ˆ , 0Cov I Iτ τ τ τθ η + = . Then, the (A32) can be 

rewritten as: 
( ) ( )( )1 1 1

ˆr I I u uτ τ τ τ τ τ τθ η+ + += + + ,                    (A34) 

or 
( ) ( )1 1 1

ˆr I u I u uτ τ τ τ τ τ τ τθ η+ + += + + ,                    (A35) 

where 1uτ +  is the price innovation, ( )ˆ I uτ τ τθ  is the forecastable autocorrelated price 

change of 1rτ +  by the order flow information, and ( )1I uτ τ τη + is the non-forecastable price 
change. Consider the following simple example: 

0 1 1 2 2 1 1 2 2 ta a a b bτ τ τ τ τθ θ θ η η η− − − −= + + + + + .                    (A36) 
Then, (A35) is rewritten as: 

( )1 0 1 1 2 2 1 1 1 2 1r a a a b b u u uτ τ τ τ τ τ τ τ τθ θ η η η+ − − − − += + + + + + + .      (A37) 
Because the current demand will be positively related to 1rτ + , the current demand will be 

also positively related to ( ) 0 1 1 2 2 1 1 1 2
ˆ I a a a b bτ τ τ τ τ τθ θ θ η η− − − −= + + + + . Given the 

contemporaneous return in (A31), it can be rewritten as: 
( ) ( )0 1 1 1 1 0 1 1 1r a a u a a u uτ τ τ τ τ τ τθ θ θ− − − − −= + + − − + ,                  (A38) 

It follows that the information-motivated demand should be positively related to 
( )0 1 1 1a a uτ τθ − −+  whereas negatively related to ( )1 0 1 1 1a a uτ τ τθ θ− − −− −  and uτ .  

The noise variance of the returns shown in (10) in essay 2 is as follows: 
Noise variance measure = 

1 1

2 2
12 2 2z zf uτ ττσ σ θ σ

− −−+ = −                    (A39)  
The measure of the noise variance is decomposed as follows: 

( ) ( )
1 1 1

2 2 2
1 0 1 1 1 0 1 12 2 2u u ua a a a

τ τ ττ τ τ τθ σ θ σ θ θ σ
− − −− − − −− = − + − − −                  (A40) 

where ( )
1

2
0 1 12 ua a

ττθ σ
−−− +  is the order flow variance component and 

( )
1

2
1 0 1 12 ua a

ττ τθ θ σ
−− −− − −  is the non-order flow variance component of the measure of the 

noise variance. The absolute noise variance measure is 
1

2
12 uττθ σ

−−  which represents the 
deviation from the random walk process of the returns. The absolute noise variance 
measure is decomposed into the order flow variance component and the non-order flow 
variance component as flows: 

1 1 1

2 2 2
1 0 1 1 1 0 1 12 2 2u u ua a a a

τ τ ττ τ τ τθ σ θ σ θ θ σ
− − −− − − −= + + − −                     (A41) 

where  

1

2
0 1 12 ua a

ττθ σ
−−+  is the order flow variance component of the absolute noise variance,  

                         (A42) 
and 
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1

2
1 0 1 12 ua a

ττ τθ θ σ
−− −− −  is the non-order flow variance component of the absolute noise 

variance.                       (A43) 
 This study applies the ARMA(2,2) as shown in (A36) to obtain the intercept 0a  
and the coefficient 1a  to decompose the absolute noise variance measure into the order 
flow variance component in (A42) and the non-order flow variance component in (A43). 
The determined intercepts and coefficients are as follows: ( 2a , 1b  and 2b  are not 
reported.) 
 

 Intercept, 0a  Coefficient, 1a  
10-year T-notes 0.650 0.395 

Dow Jones 0.674 0.358 
Wheat 0.670 0.265 
Corn 0.766 0.772 

 
In the regression results in Panel B of Table 3.2, the variable OrderFlowVar 

represents the order flow variance component of the absolute noise variance in (A42) and 
AbsNoiseVar represents the non-order flow variance component of the absolute noise 
variance in (A43). 
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