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RESEARCH ARTICLE
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Florida, United States of America, 2 Biomolecular Sciences Institute, Florida International University
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Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America,
4 Instituto Gulbenkian de Ciência, Oeiras, Portugal, 5 Biology Department, Albion College, Albion, Michigan,
United States of America
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Abstract
While a number of studies have identified host factors that influence endosymbiont titer, little

is known concerning environmental influences on titer. Here we examined nutrient impact

on maternally transmittedWolbachia endosymbionts in Drosophila. We demonstrate that

Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced

Wolbachia titers in oogenesis, respectively. The yeast-inducedWolbachia depletion is me-

diated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1

with the small molecule rapamycin dramatically increases oocyteWolbachia titer, whereas
hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of

insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte

titer. Exposure to yeast-enriched diets alteredWolbachia nucleoid morphology in oogene-

sis. Furthermore, dietary yeast increased somaticWolbachia titer overall, though not in the

central nervous system. These findings highlight the interactions betweenWolbachia and
germline cells as strongly nutrient-sensitive, and implicate conserved host signaling path-

ways by which nutrients influenceWolbachia titer.

Author Summary

Many invertebrate organisms carry bacterial endosymbionts within their cells. In many
cases, this ensures host access to resources provided by the endosymbionts, and reciprocal-
ly, a rich source of host-supplied nutrients supports bacterial growth and reproduction.
However if bacterial reproduction is uncontrolled, an over-abundance of bacteria will ulti-
mately destroy the host cell. Here we explore the factors that regulate endosymbiont abun-
dance in host cells. We focused onWolbachia endosymbionts that are carried naturally in
the germ cells of fruit flies. Specifically, we determined whether dietary nutrients affect the
amount ofWolbachia bacteria carried by female flies. We found that yeast-enriched diets
strongly depletedWolbachia in fly ovarian cells. By contrast, sucrose-enriched diets
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doubled the amount ofWolbachia in ovarian cells. In addition, we found that this response
to diet is mediated through highly conserved TORC1 and insulin signaling pathways in
the fly. Recent studies have revealed that host diet dramatically influences the types and
abundance of gut microbes. Our study informs how host diet affects endosymbiotic bacte-
ria housed within specific types of host cells.

Introduction
Microbial endosymbionts have a profound impact on host metabolism and there are numerous
examples in which microbes provide essential nutrients to the host [1–14]. In contrast, consid-
erably less is known regarding how host metabolism and nutrition affect resident endosymbi-
onts. To date, there is evidence that restricting the supply of host carbon, nitrogen and
phosphorous significantly limits the number of Chlorella endosymbionts of green hydra and
dinoflagellate endosymbionts of cnidarians [1]. Researchers have also observed that exposure
to high levels of exogenous thiamine monophosphate suppresses the titer of Sodalis andWig-
glesworthia endosymbionts in tsetse flies [15,16]. In this largely unexplored area, many out-
standing questions remain: What are the host and endosymbiont metabolic and signaling
pathways involved in nutrient sensing? To what extent do endosymbionts exhibit tissue-specif-
ic responses to nutrient availability? How are the rates of endosymbiont replication and cell
death influenced by host metabolism and nutrients?

The symbiosis betweenWolbachia and Drosophila is an excellent system to experimentally
address these issues.Wolbachia are obligate intracellular endosymbionts carried by an estimat-
ed 40% of all insect species, including the established model organism Drosophila melanogaster
[17–20]. ThoughWolbachia endosymbionts are naturally carried within germline cells of both
male and female insects,Wolbachia are ultimately removed from sperm prior to completion of
spermatogenesis [17,18,21–25]. Thus,Wolbachia rely upon transmission through the maternal
germline for their success. In addition to its functional importance inWolbachia transmission,
the well-characterized molecular and cell biology of Drosophila oogenesis has provided consid-
erable contextual information and experimental tools that can be applied to studies ofWolba-
chia-host interactions [18,26–30].

The primary developmental units of the ovary that carryWolbachia are referred to as egg
chambers [27,28]. In each egg chamber, an outer layer of somatic follicle cells encapsulates an
interconnected cyst of germline cells, comprised of 15 nurse cells and an oocyte.Wolbachia are
initially loaded into these developing cysts during the first mitotic division from aWolbachia-
infected germline stem cell [18,31]. This germlineWolbachia population is amplified over time
by binary fission and likely to some extent by exogenously invadingWolbachia [31–36].Wol-
bachia persist in the germline throughout oogenesis, and a subset of the bacteria concentrate at
the oocyte posterior pole during mid- to late oogenesis [31,37,38]. This ensures incorporation
ofWolbachia into germline progenitor cells that form at the embryonic posterior pole, perpetu-
ating the maternal germline transmission cycle [39]. Thus, maintenance of a sufficientWolba-
chia titer in germline cells is important for success of the germline-based transmission strategy.

Here we examined how host diet affectsWolbachia titer in Drosophila melanogaster. The
data demonstrate that yeast-enriched diets suppressWolbachia titer and lead to altered nucle-
oid morphology during oogenesis. Genetic and chemical disruptions indicate that the somatic
insulin and TORC1 pathways (Fig. 1) are required for yeast-based suppression of oocyteWol-
bachia titer. The data also indicate that sucrose-enriched diets increased oocyteWolbachia
titer, with little impact on nucleoid morphology. Evidence indicates that yeast-enriched diets
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substantially increase somaticWolbachia titers, though this was not the case in the central ner-
vous system (CNS). These studies demonstrate thatWolbachia, and likely other bacterial endo-
symbionts, exhibit distinct, tissue-specific responses to host nutrients that involve conserved
signaling and metabolic pathways.

Results

Exposing Drosophila to a yeast-enriched diet suppresses germline
Wolbachia titer
Nutrient availability strongly affects the life cycle of cultured bacteria, raising questions about
how host nutrient conditions affect intracellularWolbachia bacteria. As D.melanogaster in na-
ture preferentially consume yeast [40–45], we tested the effect of dietary yeast onWolbachia
titer in vivo. Female flies were aged first for two days on standard food, then fed yeast paste for
3 days, and examined forWolbachia titer in oogenesis. Ovarian tissues were stained with propi-
dium iodide to labelWolbachia DNA, and theWolbachia nucleoids imaged in oocytes of stage
10 egg chambers by confocal microscopy [38]. This analysis demonstrated that yeast paste-fed
oocytes carried far lessWolbachia than control oocytes (Fig. 2A-B) (S1 Table).Wolbachia were
further quantified within single oocyte focal planes to determine relative titer for each condi-
tion [32]. This revealed thatWolbachia titer in yeast paste-fed oocytes was at 27% of the con-
trol level. Oocytes treated with standard fly food exhibited an average of 229 +/- 21.1
Wolbachia puncta (n = 30), as compared to yeast paste-fed oocytes that carried 62.6 +/- 4.33
Wolbachia (n = 29) (p< 0.001) (Fig. 2C). This indicates that host exposure to yeast paste sig-
nificantly reducesWolbachia titer in oogenesis.

One possibility is that yeast paste diets reduce oocyte titer because other critical nutrients
provided by standard fly food are unavailable. To address this issue, 2-day old Drosophila were
fed with either standard food diluted 1/3 with water, thereafter referred to as “control food”, or
fed with standard food diluted 1/3 with yeast paste, thereafter referred to as “yeast-enriched
food” (S1 Table). After 3 days of exposure to these conditions, titer was assessed in oogenesis.
The yeast-enriched condition exhibited 55% of the control titer level, with controls displaying
124 +/- 10.8Wolbachia (n = 58), compared to yeast-enriched oocytes carrying 68.7 +/- 5.12

Fig 1. Overview of the nutrient-induced TORC1 signaling pathway.

doi:10.1371/journal.ppat.1004777.g001
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Wolbachia (n = 35) (p = 0.001) (Fig. 2D). To further assess whether this is due to differences in
food hydration between control and yeast-enriched conditions, we also exposed flies to a 1/3
dilution of corn syrup into standard fly food (S1 Table). Although corn syrup-enriched food is
less hydrated than control food, it resulted in similar oocyte titer measurements as the control,
with an average of 128 +/- 12.9Wolbachia visible per oocyte (n = 31) (Fig. 2D). These data to-
gether suggest that yeast-induced titer reduction is not due to depletion of specific nutrients or
water available in standard food. Rather, the data indicate that dietary yeast is responsible for
reducingWolbachia titer carried by oocyte cells.

To determine whether dietary yeast can induce a similar oocyte titer response in wild insects
as seen in laboratory fly stocks, Drosophila melanogaster and Drosophila simulans were collect-
ed from nature. These flies were exposed to yeast-enriched food and assessed forWolbachia
titer in oogenesis. We found that oocyteWolbachia titer in the yeast-enriched condition was at
47% of the control level, with an average of 94.8 +/- 21.8Wolbachia detected in control oocytes
(n = 12), versus 44.6 +/- 6.52Wolbachia detected in the yeast-enriched condition (n = 13)
(p = 0.029) (S1 Fig). Thus, yeast-enriched diets suppress oocyteWolbachia titer in wild-caught
Drosophila analogous to laboratory D.melanogaster strains.

To further investigate the basis for yeast-associatedWolbachia depletion in oocytes,Wolba-
chia titer was examined in the germline-derived nurse cells associated with the oocyte. It is cur-
rently unclear in Drosophila when or how frequentlyWolbachia travel through the ring canals
between the nurse cells and oocyte. Thus, it is possible thatWolbachia depletion in oocytes
could be due to preferential retention in the nurse cells. To investigate this, we imaged

Fig 2. Host diet significantly impactsWolbachia titer inDrosophila oogenesis. Stage 10A oocytes are
outlined in red. Propidium iodide indicates Drosophila nuclei as large circles andWolbachia as small puncta.
A) D.melanogaster oocyte exposed to standard fly food. B) D.melanogaster oocyte exposed to yeast paste.
Graphs indicate the average number ofWolbachia nucleoids within single focal planes of stage 10A oocytes.
C) OocyteWolbachia titer comparison between control food and yeast paste conditions. D)Wolbachia titer
response in D.melanogaster to 1:3 dilutions of water, corn syrup (CS), or yeast paste into standard food.
Scale bar: 50 μm.

doi:10.1371/journal.ppat.1004777.g002
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Wolbachia in equivalent focal planes of nurse cells and oocytes within single egg chambers and
analyzed theirWolbachia titer [32]. Overlaid images showing a planar reconstruction of egg
chambers indicated fewerWolbachia throughout the germline cells of yeast-exposed organisms
(Fig. 3A-B). Quantitation of the yeast-enriched condition indicated that nurse cells carried
27% of the control titer level (Fig. 3C). Specifically, 52.6 +/- 4.93Wolbachia per nurse cell were
detected in the control (n = 20), in contrast to 14.4 +/- 1.65Wolbachia per nurse cell in the
yeast-enriched condition (n = 20) (p< 0.001) (Fig. 3C). Furthermore, oocyte titer in the yeast-
enriched condition was 14% of the control level, with 420 +/- 44.6Wolbachia detected in con-
trol oocytes (n = 17), versus 59.0 +/- 11.1Wolbachia in oocytes from the yeast-enriched condi-
tion (n = 20) (p< 0.001) (Fig. 3D). These data indicate thatWolbachia redistribution between
germline cells is not responsible for the low oocyte titer observed in yeast-exposed organisms.
Rather, yeast-enriched food induces similarWolbachia depletion in nurse cells and oocytes.

The nutrient-responsive kinase complex, TORC1, affects oocyte
Wolbachia titer
Cells coordinate intracellular events in response to exogenous nutrients using multiple signal-
ing pathways that converge upon the Target of Rapamycin kinase complex 1 (TORC1) (Fig. 1)
[46]. TORC1 can be activated by an amino-acid dependent signaling mechanism, or by insulin
signaling (Fig. 1) [46–48]. To test whether TORC1 activity affects oocyteWolbachia titer, flies
were exposed to standard food containing the TORC1 inhibitor, rapamycin [49–52]. This ex-
periment indicated that rapamycin treatment drove a 1.7-fold increase in oocyteWolbachia
titer (Fig. 4A). The average titer from control oocytes, exposed to DMSO-containing standard
food, was 207 +/- 22.1Wolbachia (n = 28). By contrast, oocytes exposed to rapamycin-contain-
ing standard food had 357 +/- 31Wolbachia (n = 30) (p< 0.01) (Fig. 4A). Since rapamycin ex-
posure leads to higher oocyteWolbachia titer, this suggests that a normal consequence of
TORC1 activity is suppression of oocyteWolbachia titer.

If TORC1 function normally leads to decreased oocyteWolbachia titer, then hyper-activa-
tion of TORC1 would be expected to drive a further reduction of oocyte titer. Branched chain
amino acids (BCAAs) taken up through the Slimfast transporter can induce up-regulation of
TORC1 (Fig. 1) [53–58]. Therefore, we fed flies a slurry of BCAAs diluted 1/3 into standard
food (S1 Table), and assessedWolbachia titer in oogenesis.Wolbachia titer in the BCAA condi-
tion was reduced to 77% of the control (Fig. 4B). This was indicated by an average of 137 +/-
9.71Wolbachia in control oocytes (n = 34) versus 105 +/- 8.48Wolbachia in oocytes from the
BCAA condition (n = 33) (p = 0.015) (Fig. 4B). The data suggest that TORC1 stimulation with
BCAAs drives oocyte titer reduction, opposite the effects of the TORC1 inhibitor, Rapamycin.

To further investigate a possible role for TORC1, we genetically manipulated a key regulator
of TORC1 activity. Tsc2, known as Gigas in Drosophila, is downstream of the insulin receptor
(Fig. 1) [59–64]. If Tsc2 function is suppressed by any means, this allows TORC1 to become ac-
tive (Fig. 1) [46,64–68]. Therefore, we tested the impact of Tsc2 on oocyteWolbachia titer by
expressing Tsc2 dsRNA under the control of germline- and soma-specific GAL4 drivers [69–
72]. This investigation revealed different oocyteWolbachia titer responses to tissue-specific
Tsc2 RNAi knockdowns. Our efforts to manipulate Tsc2 dosage in germline cells had no im-
pact on oocyte titer (Fig. 4C). An average of 182 +/- 13.5Wolbachia were detected in control
oocytes (n = 53), which was not significantly different from the 207 +/- 17.7Wolbachia de-
tected in response to germline Tsc2 RNAi (n = 56) (Fig. 4C). By contrast, Tsc2 RNAi knock-
downs in the somatic cells reduced oocyteWolbachia titer to approximately 50% of the control
level (Fig. 4D). Control oocytes exhibited an average of 402 +/- 43.4Wolbachia (n = 24). How-
ever, oocytes somatic Tsc2 knockdown flies exhibited an average of 181 +/- 19.8 oocyte
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Wolbachia (n = 21) (p< 0.001) (Fig. 4D). As such, these data implicate somatic Tsc2, and thus
somatic TORC1 signaling, in regulation of oocyteWolbachia titer.

Yeast suppression of oocyteWolbachia titer is mediated by insulin-
TORC1 signaling
A role for somatic TORC1 in regulating oocyteWolbachia titer raised the question of whether
dietary yeast stimulates TORC1. This could occur through either protein- or insulin-based
mechanisms (Fig. 1). As yeast is major source of protein for D.melanogaster, perhaps its amino
acid content stimulates TORC1 to ultimately suppress oocyteWolbachia titer. To test this pos-
sibility, we exposed flies to food enriched in Bovine Serum Albumin, prepared specifically to
match the protein content of yeast-enriched food (S1 Table). OocyteWolbachia titer was

Fig 3. Dietary yeast affectsWolbachia titer in nurse cells as well as oocytes.Merged images show a full
cross section from egg chambers raised on A) control food and B) yeast-enriched food. C-D) Average
Wolbachia titer was determined for control vs. yeast-enriched conditions within a single egg chamber focal
plane. C) Nurse cell titer values. D) Oocyte titer values from the same focal plane. Scale bar: 50 μm.

doi:10.1371/journal.ppat.1004777.g003
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similar for control and BSA-enriched conditions, however, with the control exhibiting 1260 +/-
102Wolbachia (n = 26), and the BSA-enriched condition exhibiting 1190 +/- 48.2Wolbachia
(n = 18) (S2 Fig). This suggests that amino acid availability in the host diet has little impact on
oocyteWolbachia titer.

An alternate possibility is that yeast-enriched diets affect oocyteWolbachia through insulin
stimulation of TORC1. It was previously shown that dietary yeast stimulates insulin-producing
cells (IPCs) the brain to release the insulin-like-peptides (Dilps) into the hemolymph [73,74].
To test whether yeast acts through somatic Dilp secretion to oocyteWolbachia titer, we ablated
the IPCs in the brain of fully mature Drosophila females. This is achieved using a dilp2: Gene-
Switch-GAL4, UAS: Reaper system that specifically kills off the brain IPCs in response to a
2-week mifepristone treatment [74].

We first investigated whether mifepristone on its own modulates the yeast effect in wild-
type flies. After completing a two-week exposure to either DMSO or mifepristone, flies were
exposed to either control or yeast-enriched food for 3 days, and their oocyte titer levels were as-
sessed. DMSO-treated flies exhibited substantial oocyte titer depletion in response to yeast-en-
riched food, down to 30% of the titer in the control condition (Fig. 5A). This was indicated by
785 +/- 64.8Wolbachia per oocyte in the DMSO-control food condition (n = 24), in contrast
to 191 +/- 26.9Wolbachia in the DMSO-yeast-enriched condition (n = 25) (p<. 001)

Fig 4. Somatic TORC1 activity affectsWolbachia titer in oogenesis. A) AverageWolbachia titer in
oocytes treated with control DMSO or the mTORC1 inhibitor, Rapamycin. B) Titer was assessed in oocytes
exposed to BCAA-enriched food. C-D)Wolbachia titer was also tested in flies carrying disruptions of the Tsc2
gene, expected to elevate TORC1 activity. C) Genotypes used for germline Tsc2 disruption: Control: {nos-
GAL4}/+; {nos-GAL4}/+. Tsc2 RNAi: {nos-GAL4}/+; {nos-GAL4}/{UAS-Tsc2 dsRNA}. D) Genotypes used for
somatic Tsc2 disruption: Control: {da-GAL4}/+. Tsc2: {da-GAL4}/{UAS-Tsc2 dsRNA}. * indicates a
significant change in titer.

doi:10.1371/journal.ppat.1004777.g004
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(Fig. 5A). Mifepristone-treated flies showed a similar titer reduction after exposure to yeast,
exhibiting 21% of the titer seen in the control food condition (Fig. 5B). This was indicated
by 896 +/- 77.2Wolbachia per oocyte in the mifepristone-control food condition (n = 23),
versus 264 +/- 39.5Wolbachia in the mifepristone-yeast-enriched condition (n = 25) (Fig. 5B)
(p<. 001). Therefore, mifepristone alone has no effect on yeast-based suppression of oocyte
Wolbachia titer.

Next, the exact same treatment regimens were performed on flies with the dilp2: Gene-
Switch-GAL4, UAS: Reaper genotype. In this experiment, DMSO-treated flies, which retained
functional IPCs, exhibited a severe oocyteWolbachia depletion in response to yeast-enriched
food, exhibiting only 7% of the oocyte titer seen on DMSO-control food (Fig. 5C). This was in-
dicated by the presence of 999 +/- 116Wolbachia per oocyte in the DMSO-control food condi-
tion (n = 17), versus 66.5 +/- 6.61Wolbachia in the DMSO-yeast-enriched condition (n = 20)
(p< 0.001) (Fig. 5C). In stark contrast, mifepristone-treated flies that had lost their IPCs ex-
hibited no oocyte titer change after exposure to yeast (Fig. 5D). This was indicated by detection
of 583 +/- 72.6Wolbachia per oocyte in the mifepristone-control food condition (n = 20), ver-
sus 503 +/- 68.0Wolbachia in the mifepristone-yeast-enriched condition (n = 20) (Fig. 5D).
Since mifepristone in combination with the dilp2: Gene-Switch-GAL4, UAS: Reaper system

Fig 5. Nutrients affect germlineWolbachia titer through the somatic insulin pathway.Dietary impact on
oocyteWolbachia titer was tested in flies that either carried or lacked functional IPCs in the brain. Wild-type
flies were A) treated with DMSO or B) induced with Mifepristone over a 14-day period as a control. {dilp2:
GS-GAL4}; {UAS-rpr} flies were also C) treated with DMSO as a control, or D) induced with Mifepristone over
a 14-day period to drive IPC lethality. * indicates significant changes in titer.

doi:10.1371/journal.ppat.1004777.g005
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specifically prevented yeast from affecting oocyteWolbachia titer, this demonstrates that so-
matic IPCs mediateWolbachia titer suppression by dietary yeast.

Dietary sucrose elevates oocyteWolbachia titer in an insulin-dependent
manner
To further investigate the sensitivity of oocyteWolbachia titer to somatic insulin signaling, we
also examined the effect of a sucrose-rich, high sugar diet. High sugar diets have been shown to
induce insulin resistance in Drosophila [75,76]. This is may be due in part to increased expres-
sion of NLaz [75], which in mammals is known to suppress Akt function within the insulin sig-
naling pathway (Fig. 1) [77–79]. To test the impact of sucrose-enriched diets on oocyte
Wolbachia titer, 2-day old D.melanogaster were fed standard food diluted 1/3 with saturated
sucrose solution, hereafter referred to as “sucrose-enriched food” (S1 Table). After 3 days of ex-
posure to this diet,Wolbachia titer was assessed in oogenesis. Oocytes from the sucrose-en-
riched condition exhibited a 2.4-fold increase inWolbachia (Fig. 6A). Unlike oocytes raised on
control food, which exhibited an average of 165 +/- 22.2Wolbachia (n = 24), D.melanogaster
oocytes exposed to sucrose-enriched food exhibited 392 +/- 25.3Wolbachia (n = 26)
(p< 0.001) (Fig. 6A). These data indicate that a high sugar diet significantly elevates oocyte
Wolbachia titer, possibly via an insulin-related mechanism.

A sucrose-based impact on oocyteWolbachia titer is surprising, as corn syrup-enriched
food did not induce a similar effect (Fig. 2D). Notably, sucrose is a disaccharide, composed of
glucose and fructose, whereas corn syrup consists mainly of glucose. To elucidate the basis for
sucrose-induced titer effects in oogenesis, food enriched for glucose and fructose were also test-
ed. However, none of the monosaccharide-enriched conditions significantly affected oocyte
Wolbachia titer (Fig. 6B). Control food yielded an average oocyte titer of 478 +/- 27.6Wolba-
chia per oocyte (n = 71). Similarly, oocytes in the glucose-enriched condition displayed 520 +/-
31.1 bacteria (n = 33), the fructose-enriched food condition resulted in 478 +/- 33.0Wolbachia
(n = 29), and a mixture of glucose + fructose yielded 499 +/- 28.0Wolbachia (n = 32). By con-
trast, oocytes from the sucrose-enriched condition presented 883 +/- 95.4Wolbachia (n = 22)
(p<. 001) (Fig. 6B). This confirms that disaccharide sucrose molecule specifically elicitsWol-
bachia titer increases in oogenesis.

To further test the possibility that insulin signaling mediates sucrose impact on ovarian
Wolbachia titer, we coupled genetic disruptions of the insulin pathway with sucrose-enriched
food. Chico is a Drosophila homolog of the Insulin Receptor Substrate that relays signals from
the Insulin Receptor to AKT kinase, and thus ultimately TORC1 (Fig. 1) [80,81]. Germline and
soma-specific GAL4 drivers were used to drive expression of chico dsRNA [69–72], and oocyte
Wolbachia titer was assayed in control and sucrose-enriched conditions. This test did not indi-
cate any effect of germline chico RNAi on sucrose-induced oocyte titer elevation, with sucrose-
enriched food corresponding to 2.4-fold higher oocyte titer than the control (Fig. 6C). Germ-
line chico RNAi oocytes exhibited 125 +/- 10.6Wolbachia when exposed to regular food
(n = 26) as compared to 299 +/- 27.2Wolbachia in response to sucrose-enriched food (n = 19)
(p< 0.001) (Fig. 6C). By contrast, somatic chico RNAi eliminated sucrose-induced titer effects
in oogenesis (Fig. 6D). Oocytes from somatic chico RNAi flies exhibited 180 +/- 12.9Wolba-
chia in the control condition (n = 25), as compared to 169 +/- 12.5Wolbachia per oocyte in the
sucrose-enriched condition (n = 25) (Fig. 6D). Analysis of sibling controls further indicated
that the genetic background for the somatic chico RNAi experiment was not responsible for dif-
ferential oocyte titer responses to sucrose (Fig. 6E). In flies carrying the somatic da-GAL4 driv-
er used for this experiment, the sucrose-enriched condition continued to exhibit 2-fold more
Wolbachia than the control food condition. An average of 124 +/- 11.1Wolbachia were
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detected in control oocytes (n = 27) as compared to 251 +/- 32.8Wolbachia detected in oocytes
from the sucrose-enriched condition (n = 20) (p<. 001) (Fig. 6E). Though the complete mech-
anistic implications of somatic chico disruption remain unclear, these data demonstrate that
sucrose acts through somatic insulin signaling to elevate oocyteWolbachia titer.

OocyteWolbachia titer responses are independent of ovary productivity
These data raise the fundamental question of why diet-modulated insulin signaling affectsWol-
bachia titer so strongly in germline cells. One possibility is that these titer responses are an in-
direct result of nutrient-induced changes in ovary size and productivity [76]. Yeast-rich diets
and insulin signaling are known to drive formation of larger, more productive ovaries
[60,76,80,82–91], while high-sucrose diets have the opposite effect [76–79]. To test the contri-
bution of ovary size and productivity variables on oocyteWolbachia titer, we manipulated
ovary productivity by controlling female mating. Mating stimulates ovary development, result-
ing in a moderately sized, productive ovary. By contrast, virgin females exhibit very large ova-
ries, filled mainly by mature eggs [92–96]. Oocytes from mated versus virgin females revealed
similar oocyteWolbachia titers, however (S3 Fig). The mated condition displayed 449 +/- 27.5

Fig 6. Sucrose-enriched food elevates oocyteWolbachia titer in a chico-dependent manner.Wolbachiawere quantified within single focal planes of
oocytes exposed to control food or sucrose-enriched food. The average titer detected per nutrient condition is shown. A) Impact of sucrose on oocyte
Wolbachia titer in wild-typeD.melanogaster. B) Comparison of oocyteWolbachia titers between control food and other foods enriched in glucose, fructose, a
mixture of glucose and fructose, or sucrose. C-E) Sucrose impact on oocyteWolbachia titer in flies that carry tissue-specific chico RNAi disruptions.
Genotypes used: C) {nos-GAL4}/+; {nos-GAL4}/{UAS-chico dsRNA}. D) {da-GAL4}/{UAS-chico dsRNA}. E) {da-GAL4}/+.

doi:10.1371/journal.ppat.1004777.g006
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Wolbachia per oocyte (n = 26), while the virgin female condition that carried 470 +/- 40.6Wol-
bachia per oocyte (n = 24) (S3 Fig). These data suggest that ovary size and productivity do not
serve as the primary determinants of oocyteWolbachia titer.

Wolbachia nucleoid morphology responds to dietary yeast
To further investigate the effects of host diet onWolbachia, we examinedWolbachia nucleoid
morphology. Other studies indicate that nucleoid morphology can serve as a proxy indicator of
replication-associated changes in cell shape, or stress-induced DNA compaction [97–99]. Mul-
tiple, zoomed-in images ofWolbachia stained with propidium iodide were projected as a single
image, and nucleoid shape was measured. The images indicated thatWolbachia nucleoid shape
differs between nutrient conditions (S4 Fig). To specifically analyze changes in nucleoid length,
120 nucleoids were selected at random from each treatment condition and their lengths were
compared. This analysis indicated that 50% of nucleoids in the control condition exceeded
2 μm in length (S4 Fig). The sucrose-enriched condition was similar, with 53% of nucleoids ex-
ceeding 2 μm. In the yeast-enriched condition, however, only 37% of nucleoids exceeded this
measure (p<. 05). Thus, yeast-enriched food significantly shortenedWolbachia nucleoids. We
further determined an elongation index (EI), representing bacterial length divided by width,
for the same 120 nucleoids per treatment condition as above. This analysis indicated that 50%
of nucleoids measured in the control condition had an EI greater than 2. In the sucrose-en-
riched condition, only 33% of nucleoids showed an EI greater than 2 (p<. 05). In the yeast-en-
riched condition, even fewer nucleoids showed this degree of elongation, with only 22% of
nucleoids exceeding this EI (p<. 001) (S4 Fig). These data indicate that dietary conditions, and
especially exposure to yeast-enriched food, alterWolbachia nucleoid morphology in oogenesis.
This is consistent with a bacterial physiological response to host diet.

Wolbachia titers are regulated in a tissue-specific manner
The striking impact of dietary nutrients on oocyteWolbachia titer raises the question of wheth-
erWolbachia titer in other tissues is responsive to nutrient conditions.Wolbachia are present
in insect somatic cells, and the Drosophila brain is particularly amenable to assessment of so-
maticWolbachia titer [100,101]. To take advantage of this, we imagedWolbachia in the central
brain of D.melanogaster exposed to different nutrient conditions. This analysis revealed that
D.melanogaster on control food already carry very lowWolbachia titer in the central brain
(Fig. 7A, A’, n = 3), and flies fed with either yeast-enriched or sucrose-enriched food were in-
distinguishable in appearance from the control (Fig. 7B, B’, n = 3) (Fig. 7C, C’, n = 3). Thus,
Wolbachia titer in D.melanogaster brain does not appear to be affected by the dietary condi-
tions used in this study. An alternative possibility, however, is that the overall lowWolbachia
titer detected under these conditions hampered our ability to assay nutrient-induced changes
in titer.

To pursue this further, the impact of nutrient-altered food was tested in the closely related
D. simulans species, known for carrying highWolbachia titer in its brain cells [101]. Flies ex-
posed to control food exhibited a high titer ofWolbachia in the central brain overall (Fig. 7D,
D’, n = 7). Similarly highWolbachia titer was detected in the brain after exposure to yeast-and
sucrose-enriched food (Fig. 7E, E’, n = 5) (Fig. 7F, F’, n = 4). Further quantification ofWolba-
chia infection frequency did not reveal any differences between nutrient conditions (Fig. 7G).
In control food, yeast-enriched, and sucrose-enriched conditions, 55–56% of brain cells exhib-
itedWolbachia infection (n = 1171, 767, and 665 cells, respectively). No differences were seen
in formation of largeWolbachia aggregates either (Fig. 7H). Brain samples reared on control
food, yeast-enriched, and sucrose-enriched conditions all exhibited between 16–19 large

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 11 / 25



Fig 7. Host diet has tissue-specific effects on somaticWolbachia titer. A-F’)Wolbachia in the central
brain of female flies. Columns from left to right: Control food, Yeast-enriched, Sucrose-enriched. In merged
images, red shows Anti-Wsp to indicateWolbachia, and green shows phalloidin to indicate actin. Grayscale
images show only Anti-Wsp. A-C, A’-C’) D.melanogaster brains. Little Wsp signal is detected under each
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bacterial clusters per hundred cells. This indicates thatWolbachia titer in the D. simulans brain
is unresponsive to the nutrient-altered conditions used in this study.

To address the possibility that D. simulans tissues are generally unresponsive to nutrients,
we also assessed D. simulans oocyte titer in response to nutrient-altered food. In contrast to the
brain, D. simulans oocytes exhibited a clear nutrient-dependentWolbachia titer response (S5
Fig). Control oocyte images carried 293 +/- 49.9Wolbachia (n = 10). By contrast, oocyte titer
from the yeast-enriched condition was at 40% of the control level, with an average of 116 +/-
20.1 bacteria detected per oocyte (n = 10) (p = 0.004). Furthermore, the sucrose-enriched con-
dition exhibited 2.3-fold higher titer than the control, with 662 +/- 73.6Wolbachia detected
per oocyte (n = 10) (p = 0.001) (S5 Fig). Thus, D. simulans Wolbachia titers are capable of re-
sponding similarly to nutrient conditions as D.melanogaster.

To further probe the impact of host diet on somaticWolbachia titer, we analyzed relative
amounts ofWolbachia versus host DNA in ovarectomized female flies. In this analysis, females
were exposed to nutrient-altered diets, dissected to remove ovarian tissues, and analyzed by
qPCR. The results indicate the relative level ofWolbachia per host genome copy number. This
analysis indicated that yeast-enriched dietary conditions led to higher levels ofWolbachia than
the control food condition (Fig. 7I). Control samples exhibited a mean relative level ofWolba-
chia of 0.989 (n = 37), whereas the yeast-enriched condition displayed a mean relative level of
Wolbachia of 1.28 (n = 35) (p< 0.05). Females exposed to sucrose-enriched diets were not sig-
nificantly different from the control, however, exhibiting a meanWolbachia relative level of
0.792 (n = 36) (Fig. 7I). This titer response profile differs from analyses ofWolbachia titer in
the ovary as well as the brain. This suggests that host diet affectsWolbachia titers in a tissue-
specific manner.

As host nutrition has a different impact on ovarian versus somaticWolbachia titers, this
raises the question of what would happen in organism lacking ovarian tissue altogether. To ad-
dress this issue, qPCR analysis was performed on intact male flies. This indicated that body-
wideWolbachia titer also increases in response to yeast-enriched food, although not sucrose-
enriched food (Fig. 7J). The control food condition carried a meanWolbachia relative level of 1
(n = 16), in contrast to the yeast-enriched condition, which displayed a meanWolbachia rela-
tive level of 1.545 (n = 15) (p< 0.05). Sucrose-enriched diets corresponded to a meanWolba-
chia relative level of 1.027 (n = 16). This analysis confirms that the profile of bodywide titer
responses in males is equivalent to ovarectomized females. This suggests that somaticWolba-
chia titers overall respond to host dietary conditions in a consistent manner.

Discussion
The major finding of this study is that dietary intake by Drosophila strongly influencesWolba-
chia titer in the host female germline: a high yeast diet decreasesWolbachia oocyte titer and a
high sucrose diet increasesWolbachia oocyte titer. This finding adds to a small but growing lit-
erature on the impact of host diet on endosymbionts [1,15,16]. Prior studies ofWolbachia sug-
gest that this endosymbiont relies heavily upon host provisioning of amino acids and
carbohydrates [102–104]. A very recent study analyzing the Drosophilamidgut and ovary sur-
prisingly indicated that neither dietary yeast nor sucrose had any affect on theWolbachia:host

feeding condition. D-F, D’-F’) Brains from D. simulans. These show similarly highWsp immunoreactivity
under all feeding conditions. G) Percentage ofWolbachia-infected D. simulans brain cells. H) Frequency of
largeWolbachia clusters per 100 D. simulans brain cells. I-J) qPCR analysis of relativeWolbachia levels from
flies exposed to nutrient-altered diets. The Y-axis shows relative quantitation of genomicwsp. Flies used: I)
ovarectomized D.melanogaster females. J) intact D.melanogastermales. Values are normalized to the
control flies in each panel. * indicates a significant change in titer. Scale bars: 150 μm.

doi:10.1371/journal.ppat.1004777.g007
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genomic ratio in those tissues [105]. The image-based analyses of this study demonstrate that
yeast and sucrose affect germlineWolbachia titer at the cellular level, however. It is unclear
whyWolbachia titer in the oogenesis should be particularly sensitive to diet and whether this is
an adaptive response to changes in the host metabolic environment. The evolutionary success
ofWolbachia depends on its ability to localize at the posterior pole of the oocyte, the site of
germline formation. Significantly, we find thatWolbachia localize to the posterior pole regard-
less of whether the host is exposed to the low titer, yeast-enriched diet, or the high titer, su-
crose-enriched diet. This suggests the previously described microtubule and motor protein
based mechanisms driving posterior localization ofWolbachia [38] are robust, even in the face
of dramatic titer changes caused by nutrient-altered diets.

Insight into the mechanism of yeast-induced titer suppression comes from our functional
studies demonstrating that this response is mediated through TORC1. Genetic up-regulation
of TORC1 suppresses oocyteWolbachia titer, whereas drug-based inhibition of TORC1 in-
creases titer. This finding creates the basis for a sensible functional connection between intra-
cellularWolbachia and host diet, as both amino acids and insulin signaling are known to drive
TORC1 activity [46]. Our finding that BSA-enriched food had no effect on oocyteWolbachia
titer argues that yeast protein content is not the major determinant of germline titer suppres-
sion, and alternatively suggests a role for insulin signaling. Prior work has shown that yeast-
rich diets trigger insulin signaling in Drosophila, and thatWolbachia interact with host insulin
signaling processes [89,106]. Our finding, that loss of somatic IPCs eliminates yeast impact on
oocyteWolbachia titer, confirms that insulin signaling facilitates the titer-suppressing effects of
yeast. Furthermore, disrupting the somatic insulin receptor substrate, Chico, suppressed the
impact of dietary sucrose on oocyteWolbachia titer. This suggests that both dietary yeast and
sucrose affect germlineWolbachia titer via antagonistic impacts on somatic insulin signaling
(Fig. 8).

In considering the mechanism of insulin-based impact on germlineWolbachia titer, one
possibility is that changes in ovary productivity are responsible. Diet-modulated insulin signal-
ing affects the relative rates of germline stem cell division, germline cell survival and egg cham-
ber development [60,76,80,82–91]. IfWolbachia are unresponsive to nutrient-induced
adjustments in germline cell growth and development, significant titer changes in oogenesis
would be expected. However, oocyteWolbachia titers were very similar in mated and virgin fe-
males, despite the different rates of germline stem division expected for each type of flies
[76,83,86,88,90–96]. Another possibility is that yeast-induced insulin signaling affectsWolba-
chia physiology in oogenesis. The “rounded”Wolbachia nucleoids visible in the yeast-enriched
condition could indicate substantially slowed bacterial growth or a bacterial stress response, for
example [97–99]. Insulin signaling has been shown to induce changes in cytoskeleton organiza-
tion, proteasome activity and chaperonin activity [107–111], any of which could affectWolba-
chia physiology. It is also possible that dietary yeast in particular carries one or more
bioreactive agents that are toxic to germlineWolbachia (Fig. 8).

The impact of somatic insulin signaling on germlineWolbachia titer also raises the question
of whether somaticWolbachia titers are similarly affected by host nutrient conditions. Our ini-
tial findings thatWolbachia titers in the Drosophila brain are non-responsive to host diet sug-
gested that nutrient-associated titer changes are restricted to the ovary. Analysis of sucrose-fed,
ovarectomized females is further consistent with that interpretation. However, analysis of ovar-
ectomized females also indicated that dietary yeast triggers somatic titer changes opposite of
oogenesis. It is possible that this occurs by physical relocation ofWolbachia within the body,
with dietary yeast drivingWolbachia egress from ovarian cells, followed by invasion of somatic
target tissues. Alternatively, host dietary conditions may drive tissue-specific differences in the
Wolbachia life cycle. Perhaps yeast-enriched diets favorWolbachia replication and survival in
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specific somatic tissues while disfavoring the same in oogenesis. Support for this hypothesis
comes from our finding that yeast-enriched food induces the same bodywide titer changes in
male flies as seen in ovarectomized females. This demonstrates that ovarianWolbachia titer re-
sponses are distinct from that of other tissues.

The pathways downstream and upstream of TORC1 that mediate yeast-based suppression
ofWolbachia germline titer are yet to be determined. An obvious possibility is the role of
TORC1 in suppressing autophagy (Fig. 8). There are numerous examples in which autophagy
either enhances or suppresses intracellular bacteria titer [112]. Since TORC1 disruptions in-
creaseWolbachia titer in oogenesis, it is possible thatWolbachia interact positively with autop-
hagy, consistent with other endosymbionts [113] [114]. As insulin signaling is expected to
down-regulate autophagy (Fig. 1), the lowWolbachia titers seen in yeast-fed oocytes are further
consistent with this possibility. However, the finding that dietary yeast also increases somatic
Wolbachia titers implies that somatic autophagy is normally bactericidal in that context, con-
sistent with another recent report [115]. These conflicting results may indicate that tissue-spe-
cific differences in autophagy regulation contribute toWolbachia titer control, or that other
mechanisms downstream or independent from autophagy are responsible (Fig. 8). Perhaps re-
sponses from one or more other TORC1 effectors further contribute toWolbachia titer regula-
tion (Fig. 1).

Wolbachia have been shown to suppress replication of RNA viruses in insects, including the
human pathogens, Dengue Fever Virus and Chikungunya Virus [116–118]. This finding, to-
gether with the fact thatWolbachia-induced Cytoplasmic Incompatibility rapid spreadsWol-
bachia through insect populations [25,119], has led to a novel strategy of combating these
diseases by releasingWolbachia-infected insect carriers of these viruses into afflicted regions
[120,121]. Although the mechanism ofWolbachia-induced viral suppression is unknown, sev-
eral studies demonstrate that the higher theWolbachia titer, the greater the viral suppression
[122–126]. Our finding that host diet dramatically affects tissue-specificWolbachia titers sug-
gests that the natural diets of the released insects should be taken into account when evaluating

Fig 8. Model for the impact of host diet on germlineWolbachia titer.

doi:10.1371/journal.ppat.1004777.g008
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the potential effectiveness of aWolbachia-based viral suppression field study. Finally it will be
of interest to determine whether diet has a similar effect onWolbachia titer in disease-associat-
ed filiarial nematodes.

Materials and Methods

Fly strains
Natural D.melanogaster and D. simulans flies were harvested daily from collection buckets dis-
tributed in the Santa Cruz, CA area. As the female flies of these species are morphologically in-
distinguishable, but both species were well-represented in the area, this wild-caught population
was presumed to represent both species. The laboratory strain of D. simulans used was a w-
stock that carried the endogenous wRi Wolbachia strain. The D.melanogaster strain used for
the initial nutrient feeds and for crossing wMel Wolbachia into the other fly strains was w; Sp/
Cyo; Sb/TM6B. Other D.melanogaster fly strains used were the gigas VALIUM20 TRiP line: y,
sc, v; P{TRiP.HMS01217}attP2/TM3, Sb; the chico VALIUM20 TRiP line: y, sc, v; P{TRiP.
HMS01553}attP2/TM3, Sb; the somatic daughterless driver: w; P{w+, GMR12B08-GAL4}attP2;
the germline triple driver: P{otu-GAL4::VP16.1}; P{GAL4-Nos.NGT}40; P{GAL4::VP16-Nos.
UTR}MVD1; and the stocks used for IPC ablation: w; P{w+, dilp2::GS-GAL4}/Cyo, and w;
P{w+, UAS::Reaper}. During this work, wMel was introduced into the somatic daughterless
driver, the germline triple driver, and the dilp2::GS-GAL4 driver, and the infected versions of
these stocks were crossed to the TRiP or UAS:Reaper responders. DrosDel isogenic flies carry-
ing wMel were used for real-time quantitative PCR analyses [122].

Food preparation and administration
The standard food recipe used was based upon that of the Bloomington Drosophila Stock Cen-
ter [127]. The food was prepared in large batches that consisted of 20L water, 337g yeast, 190g
soy flour, 1325g yellow corn meal, 96g agar, 1.5L Karo light corn syrup and 94mL propionic
acid. To create yeast paste for this study, live bakers yeast was mixed together with water to cre-
ate a smooth, thick paste. To create the “control food” used in this study, we mixed together
1.5mL ddH2O and 3.5mL of melted standard food in a narrow-mouthed vial, then let cool in
an ice bucket to solidify the food suspension. The same procedure applied to creation of all
other nutrient-altered foods used in this study. For “corn-syrup-enriched” food condition,
1.5mL Karo light corn syrup was used. For “yeast-enriched” food condition, 1.5mL of heat-
killed yeast paste was used. The “BSA-enriched” food carried 0.4g BSA, 1.5mL water, and
3.5mL standard food. For the “sucrose-enriched”, “glucose-enriched” and “fructose-enriched”
foods, fresh sugar solutions were prepared at a final concentration of 1g/mL, then 1.5mL of this
concentrate was combined with 3.5mL standard food for each vial. The “glucose + fructose en-
riched” condition carried 0.75mL of 1g/mL glucose, 0.75mL 1g/mL fructose, and 3.5mL stan-
dard food. Alternate methods were used to prepare food for the other treatments. For the
branched chain amino acid condition, the control condition contained 400μL water and 50μL
DMSO mixed with 4.5mL standard food, whereas the experimental condition carried 200μL of
1mg/mL Arginine, 200uL of 1mg/mL Isoleucine and 50μL DMSO mixed with 4.5mL standard
food. For the TORC1 testing, 50μL of either control DMSO or 30mM rapamycin/DMSO stock
was mixed into 5mL standard food. For tests of IPC function, 50μL of either control DMSO or
a 10mMmifepristone-DMSO stock was mixed into 5mL standard food.

Laboratory Drosophila stocks were maintained on standard food at 23–24°C. Identical pop-
ulation density was used in all vials, and control and experimental conditions run in parallel.
Flies of the genotype w; Sp/Cyo; Sb/TM6B were used in all imaging experiments that assessed
nutrition as the only variable. In the cases where crosses were needed to drive expression from
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TRIP line stocks or the dilp2:GAL4 stocks were used, we performed all crosses using identical
population density and female age distribution in all vials, with control crosses always run in
parallel. Virgin female flies were collected during the first 3 days of eclosion only, then sub-
jected to nutrient conditions. The procedure was to collect a range of 0–24 hour old adults, age
these young flies for 2 days on standard food, and expose to treatment conditions for 3 more
days. The mixture of D.melanogaster and D. simulans flies collected from nature likely varied
in age. These flies were also exposed to standard food for 2 days, and transferred to experimen-
tal food for 3 days. In the case of IPC ablation, the collected flies were allowed to mature 2 days,
then transferred to mifepristone-containing food or DMSO control food. The flies were main-
tained on this food for 14 days, transferring the population to a fresh vial every 3 days of the
treatment period. After this was completed, the flies were exposed to nutrient-altered food for
3 days.

Tissue staining, imaging, and analysis
Samples were prepared from a minimum of 10–15 flies per condition in each replicate. Ovary
dissection, fixation, and propidium iodide staining were done as previously described in order
to label germlineWolbachia nucleoids [38]. Ovarian tissues for all samples in each replicate
were mounted on slides in parallel to ensure maximal consistency in sample compression be-
tween slide and coverslip. All samples were then imaged on a Leica SP2 confocal microscope at
63X magnification with 1.5X zoom. Experimental samples verified to exhibit the same degree
of compression as the control sample were pursued further, while any experimental samples
deviating from that were discarded. Z-series images were acquired from each egg chamber of
interest at 1.5 μm intervals. Uniform intensity settings were applied to all egg chambers imaged
within each replicate. A minimum of 7–10 oocytes were ultimately imaged from each condi-
tion, with all experimental oocytes matched for morphological consistency against control oo-
cytes of the same replicate. Using this rigorous method, significant fold-differences in
Wolbachia titer were consistently identified between control and experimental conditions, re-
gardless of the baseline quantity ofWolbachia detected in each replicate.

To quantifyWolbachia titer in the confocal images, we used established methods to identify
the deepest possible focal plane whereWolbachia are clearly visible in all samples tested for
each replicate [32]. The images were processed in Photoshop to remove everything from the
images except oocyteWolbachia, which were then quantified using the Analyze Particles fea-
ture in Image J. This analysis ultimately quantifies theWolbachia nucleoids carried per oocyte,
or per nurse cell, within a single, representative focal plane of each egg chamber. Although the
graphical data displayed in the figures present all experimental averages as normalized against
the control averages, all statistical calculations were run by comparing each condition only
against controls that were run in parallel. Significant differences were indicated by ANOVA. A
minimum of 2–3 replicates were performed for most germline staining experiments described
in this study. The only exception was the experiment in whichWolbachia titer responses were
analyzed in both brain and ovary tissues. In that case, single replicates were done for each type
of tissue stained, with all conditions run in parallel.

To analyzeWolbachia titer by real-time quantitative PCR, single flies were homogenized
with a pestle in 250 μl of Tris HCl 0.1M, EDTA 0.1M and SDS 1% (pH 9) and incubated for
30 minutes at 70 ºC. After 35 μl of KAc were added the sample was incubated 30 minutes on
ice, centrifuged for 15 minutes at 13.000 rpm at 4ºC and the supernatant stored. Samples were
diluted 100x for qPCR. qPCr was performed as described previously [122], using the CFX384
Real-Time PCR Detection System and iQ SYBR Green Supermix (both BioRad). The relative
amount ofWolbachia was calculated with the Pfaffl method [128], using the primers for the
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gene wsp to determineWolbachia DNA levels and primers for host Rpl32 and Actin5C genes to
normalize male and female samples, respectively [122]. Data from males were analyzed using a
linear model on the log of the relative wsp levels (Im in R) [129]. Data from females were ana-
lyzed using a mixed linear model on the logs of relative wsp levels (lmer in R).

To analyzeWolbachia in the Drosophila central nervous system, brains were dissected and
fixed as previously described [101]. Brains were incubated in anti-rabbit wsp antibody + PBST
(0.1% Triton X-100) for 4 hours at room temperature or at least 12 hours at 4 degrees. For sec-
ondary antibody staining, goat anti-rabbit Alexa Fluor 546 (Invitrogen) was used at room tem-
perature or at least 12 hours at four degrees. Actin labeling was done with phalloidin
conjugated to Alexa 488, diluted 1:100 in PBST, for one hour at room temperature. Brain tis-
sues were imaged on a Leica SP2 confocal microscope at 63X magnification. Brains were quan-
tified with Leica LAF AS software. One representative focal plane per brain was scored. Cells
containing one or moreWolbachia were scored as infected.Wolbachia aggregates larger than
10 microns2 were scored as a “cluster” [101].

To assessWolbachia nucleoid shape, we acquired Z-series images of stage 10A oocytes at
63X magnification with 5X zoom. Then we created a projection of 4 images from each Z-series,
located just beneath the follicle cell layer, and measured the length of individual nucleoids
using the “line” tool located within the Profile function of Quantification Tools in the Leica
SP2 software. Elongation index was calculated as a function of length divided by width. It is as-
sumed that the bacteria are random in orientation, and thus detecting a range of nucleoid mor-
phologies ranging from spherical to rod-shaped is possible. Chi square tests were used to
compareWolbachia length and elongation index exhibited by bacterial populations from each
treatment condition.

Supporting Information
S1 Table. Nutritional content of the food types administered. This table displays combined
information from the USDA National Nutrient Database for Standard Reference, Release 27,
scaled to the volumes of ingredients used for each condition. The protein content of the
branched chain amino acid (BCAA)-enriched food, noted with an asterisk, represents the com-
bined weight of the added amino acids plus other protein present in the food. The nutritional
content of glucose-enriched, fructose-enriched, and glucose+fructose enriched food were near-
ly identical to sucrose-enriched food according to the nutrient classifications used in this table,
and thus are not shown.
(TIF)

S1 Fig. Host diet affects oocyteWolbachia titer in wild-caught Drosophila.Wolbachia nu-
cleoids were quantified in the oocytes of wild-caught D.melanogaster and D. simulans. Control
and yeast-enriched feeding conditions were used. � indicates a significant change in titer.
(TIF)

S2 Fig. BSA-enriched food has no impact on oocyteWolbachia titer. Female D.melanogaster
were exposed in parallel to control and BSA-enriched food conditions, and theirWolbachia
nucleoids were quantified in oogenesis. Average titer levels are shown.
(TIF)

S3 Fig. OocyteWolbachia titer is unaffected by mating. OocyteWolbachia nucleoids were
quantified in D.melanogaster females that had either been reared together with males or main-
tained in isolation from males. Average titer levels are shown.
(TIF)
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S4 Fig. Dietary conditions affectWolbachia nucleoid morphology. A-C) Zoomed-in views
ofWolbachia nucleoids in D.melanogaster oocytes. Treatments: A) Control fly food. B) Yeast-
enriched food. C) Sucrose-enriched food. D) Assessment ofWolbachia nucleoid length in re-
sponse to nutrient conditions. E) Quantification of elongation index exhibited by the same bac-
teria. � indicates a significant change in titer. Scale bar: 10 μm.
(TIF)

S5 Fig. Nutrient-altered food affects oocyteWolbachia titer in D. simulans. The D. simulans
flies used for this preparation were raised, exposed to nutrient-altered food, and stained in par-
allel with the D. simulans analyzed in Fig. 6 A-F’. � indicates a significant change in titer.
(TIF)

Acknowledgments
We thank the Sullivan lab, Bill Saxton, Jian Cao, Henri Jasper, Fernando Noriega, Marcela
Nouzova, Aaron Neiman, Babak Ebrahimi, Inna Djagaeva, Adan Codina, Steen Christensen,
Alejandro Barbieri, Christopher Chin, Matthew DeGennaro, Angeline Lim, Bill Ja, Catharina
Lindley, Malika Bell, Yulianna Ortega, Gerhardt Haupt and theWolbachia community for the
shared discussions, fly strains, reagents and technical help. We especially thank the Blooming-
ton Drosophila Stock Center and the TRiP project at Harvard Medical School for providing
transgenic RNAi fly stocks used in this study.

Author Contributions
Conceived and designed the experiments: LRS PMW JPS AR LT RAWS. Performed the exper-
iments: LRS PMW JPS AR LT RA. Analyzed the data: LRS PMW JPS AR LT RA. Contributed
reagents/materials/analysis tools: LRS LTWS. Wrote the paper: LRS PMW JPS LT RAWS.

References
1. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol

Mol Biol Rev 76: 229–261. doi: 10.1128/MMBR.05014-11 PMID: 22688813

2. Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, et al. (2007) Nutritional upgrading for omnivo-
rous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5: 48. PMID: 17971224

3. Gibson KE, Kobayashi H, Walker GC (2008) Molecular Determinants of a Symbiotic Chronic Infection.
Annual Review of Genetics 42: 413–441. doi: 10.1146/annurev.genet.42.110807.091427 PMID:
18983260

4. Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated
nutritional mutualist. Proc Natl Acad Sci U S A 107: 769–774. doi: 10.1073/pnas.0911476107 PMID:
20080750

5. Johnson MD (2011) The acquisition of phototrophy: adaptive strategies of hosting endosymbionts
and organelles. Photosynthesis Research 107: 117–132. doi: 10.1007/s11120-010-9546-8 PMID:
20405214

6. Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by en-
dosymbiotic bacteria, Buchnera. J Insect Physiol 45: 1–6. PMID: 12770389

7. Nogge G (1981) Significance of Symbionts for the Maintenance of an Optimal Nutritional State for
Successful Reproduction in Hematophagous Arthropods. Parasitology 82: 101–104.

8. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic
associations in plants. Nature Reviews Microbiology 11: 252–263. doi: 10.1038/nrmicro2990 PMID:
23493145

9. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews
Microbiology 6: 763–775. doi: 10.1038/nrmicro1987 PMID: 18794914

10. Puchta O (1955) Experimentelle Untersuchungen uber die Bedeutung der Symbiose der Kleiderlaus
Pediculus vestimenti Burm. Z Parasitenk 17. PMID: 13312506

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 19 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004777.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004777.s006
http://dx.doi.org/10.1128/MMBR.05014-11
http://www.ncbi.nlm.nih.gov/pubmed/22688813
http://www.ncbi.nlm.nih.gov/pubmed/17971224
http://dx.doi.org/10.1146/annurev.genet.42.110807.091427
http://www.ncbi.nlm.nih.gov/pubmed/18983260
http://dx.doi.org/10.1073/pnas.0911476107
http://www.ncbi.nlm.nih.gov/pubmed/20080750
http://dx.doi.org/10.1007/s11120-010-9546-8
http://www.ncbi.nlm.nih.gov/pubmed/20405214
http://www.ncbi.nlm.nih.gov/pubmed/12770389
http://dx.doi.org/10.1038/nrmicro2990
http://www.ncbi.nlm.nih.gov/pubmed/23493145
http://dx.doi.org/10.1038/nrmicro1987
http://www.ncbi.nlm.nih.gov/pubmed/18794914
http://www.ncbi.nlm.nih.gov/pubmed/13312506


11. Sabree ZL, Huang CY, Okusu A, Moran NA, Normark BB (2013) The nutrient supplying capabilities of
Uzinura, an endosymbiont of armoured scale insects. Environ Microbiol 15: 1988–1999. doi: 10.
1111/1462-2920.12058 PMID: 23279075

12. Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blat-
tabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A 106: 19521–19526. doi: 10.
1073/pnas.0907504106 PMID: 19880743

13. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocel-
lular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86. PMID: 10993077

14. Stambler N (2011) Zooxanthellae: The yellow symbionts inside animals. In: Dubinsy Z, Stambler N,
editors. Coral reefs: an ecosystem in transition. New York: Springer. pp. 87–106.

15. Snyder AK, McLain C, Rio RVM (2012) The Tsetse Fly Obligate Mutualist Wigglesworthia morsitans
Alters Gene Expression and Population Density via Exogenous Nutrient Provisioning. Applied and
Environmental Microbiology 78: 7792–7797. doi: 10.1128/AEM.02052-12 PMID: 22904061

16. Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV (2010) Nutrient provisioning facilitates homeo-
stasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 277: 2389–2397. doi: 10.
1098/rspb.2010.0364 PMID: 20356887

17. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat
Rev Microbiol 6: 741–751. doi: 10.1038/nrmicro1969 PMID: 18794912

18. Serbus LR, Casper-Lindley C, Landmann F, SullivanW (2008) The Genetics and Cell Biology ofWol-
bachia-Host Interactions. Annual Review of Genetics 42: 683–707. doi: 10.1146/annurev.genet.41.
110306.130354 PMID: 18713031

19. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that
40% of terrestrial arthropod species are infected. PLoS One 7: e38544. doi: 10.1371/journal.pone.
0038544 PMID: 22685581

20. Ashburner M (1989) Drosophila, a Laboratory Handbook. New York: Cold Spring Harbor Laboratory
Press. 1331 p.

21. Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat
shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory
gland proteins. Genetics 155: 167–178. PMID: 10790392

22. Bressac C, Rousset F (1993) The reproductive incompatibility system in Drosophila simulans: DAPI-
staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol 61: 226–230. PMID:
7689622

23. Clark ME, Veneti Z, Bourtzis K, Karr TL (2002) The distribution and proliferation of the intracellular
bacteria Wolbachia during spermatogenesis in Drosophila. Mech Dev 111: 3–15. PMID: 11804774

24. Hoffmann AA, Hercus M, Dagher H (1998) Population dynamics of theWolbachia infection causing
cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148: 221–231. PMID: 9475734

25. Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and pa-
rameter estimates from natural populations. Genetics 140: 1319–1338. PMID: 7498773

26. Ashburner M (1989) Developmental Biology. Drosophila, a Laboratory Handbook. Cold Spring Har-
bor: Cold Spring Harbor Laboratory Press. pp. 139–204.

27. King RC (1970) Ovarian development in Drosophila melanogaster. New York: Academic Press. 227
p.

28. Spradling AC (1993) Developmental Genetics of Oogenesis. In: Bate M, Arias AM, editors. The Devel-
opment of Drosophila melanogaster. New York: Cold Spring Harbor Laboratory Press. pp. 1–70.

29. Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid
and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3: 15–28. PMID: 19182536

30. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods.

31. Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, et al. (2005) Wolbachia utilizes host microtu-
bules and Dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 1: e14. PMID:
16228015

32. Serbus L, Ferreccio A, Zhukova M, McMorris C, Kiseleva E, et al. (2011) A feedback loop between
Wolbachia and the Drosophila gurkenmRNP complex influencesWolbachia titer. J Cell Sci 124:
4299–4308. doi: 10.1242/jcs.092510 PMID: 22193955

33. Casper-Lindley C, Kimura S, Saxton DS, Essaw Y, Simpson I, et al. (2011) Rapid Fluorescence-
Based Screening for Wolbachia Endosymbionts in Drosophila Germ Line and Somatic Tissues. Ap-
plied and Environmental Microbiology 77: 4788–4794. doi: 10.1128/AEM.00215-11 PMID: 21622788

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 20 / 25

http://dx.doi.org/10.1111/1462-2920.12058
http://dx.doi.org/10.1111/1462-2920.12058
http://www.ncbi.nlm.nih.gov/pubmed/23279075
http://dx.doi.org/10.1073/pnas.0907504106
http://dx.doi.org/10.1073/pnas.0907504106
http://www.ncbi.nlm.nih.gov/pubmed/19880743
http://www.ncbi.nlm.nih.gov/pubmed/10993077
http://dx.doi.org/10.1128/AEM.02052-12
http://www.ncbi.nlm.nih.gov/pubmed/22904061
http://dx.doi.org/10.1098/rspb.2010.0364
http://dx.doi.org/10.1098/rspb.2010.0364
http://www.ncbi.nlm.nih.gov/pubmed/20356887
http://dx.doi.org/10.1038/nrmicro1969
http://www.ncbi.nlm.nih.gov/pubmed/18794912
http://dx.doi.org/10.1146/annurev.genet.41.110306.130354
http://dx.doi.org/10.1146/annurev.genet.41.110306.130354
http://www.ncbi.nlm.nih.gov/pubmed/18713031
http://dx.doi.org/10.1371/journal.pone.0038544
http://dx.doi.org/10.1371/journal.pone.0038544
http://www.ncbi.nlm.nih.gov/pubmed/22685581
http://www.ncbi.nlm.nih.gov/pubmed/10790392
http://www.ncbi.nlm.nih.gov/pubmed/7689622
http://www.ncbi.nlm.nih.gov/pubmed/11804774
http://www.ncbi.nlm.nih.gov/pubmed/9475734
http://www.ncbi.nlm.nih.gov/pubmed/7498773
http://www.ncbi.nlm.nih.gov/pubmed/19182536
http://www.ncbi.nlm.nih.gov/pubmed/16228015
http://dx.doi.org/10.1242/jcs.092510
http://www.ncbi.nlm.nih.gov/pubmed/22193955
http://dx.doi.org/10.1128/AEM.00215-11
http://www.ncbi.nlm.nih.gov/pubmed/21622788


34. Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, et al. (2011) Wolbachia Enhance Dro-
sophila Stem Cell Proliferation and Target the Germline Stem Cell Niche. Science 334: 990–992. doi:
10.1126/science.1209609 PMID: 22021671

35. Toomey ME, Panaram K, Fast EM, Beatty C, Frydman HM (2013) Evolutionarily conservedWolba-
chia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infec-
tion. Proceedings of the National Academy of Sciences of the United States of America 110: 10788–
10793. doi: 10.1073/pnas.1301524110 PMID: 23744038

36. Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia.
Nature 441: 509–512. PMID: 16724067

37. Veneti Z, Clark ME, Karr TL, Savakis C, Bourtzis K (2004) Heads or tails: host-parasite interactions in
the Drosophila-Wolbachia system. Appl Environ Microbiol 70: 5366–5372. PMID: 15345422

38. Serbus LR, SullivanW (2007) A Cellular Basis for Wolbachia Recruitment to the Host Germline. PLoS
Pathog 3: e190. PMID: 18085821

39. Hadfield SJ, Axton JM (1999) Germ cells colonized by endosymbiotic bacteria. Nature 402: 482.
PMID: 10591206

40. Anagnostou C, Dorsch M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster
life-history traits. Entomol Exp Appl 136: 1–11.

41. Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson JN Jr., editors. The
Genetics and Biology of Drosophila. San Francisco: Academic Press. pp. 345–384.

42. Shorrocks B (1982) The Breeding Sites of Temperate Woodland Drosophila. In: Ashburner M, Carson
HL, Thompson JN Jr., editors. The Genetics and Biology and Biology of Drosophila. San Francisco:
Academic Press. pp. 385–428.

43. Brncic D (1983) Ecology of Flower-Breeding Drosophila. In: Ashburner M, Carson HL, Thompson JN
Jr., editors. The Genetics and Biology of Drosophila. San Francisco: Academic Press. pp. 333–382.

44. Kukor JJ, Martin MM (1987) Nutritional Ecology of Fungus-feeding Arthropods. In: Slansky F Jr., Ro-
driguez JG, editors. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. New
York: JohnWiley and Sons. pp. 791–836.

45. Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to
survive passage through the digestive tract of Drosophila. PLoS One 3: e2873. doi: 10.1371/journal.
pone.0002873 PMID: 18682732

46. Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem-
ical Journal 425: 13–26. doi: 10.1042/BJ20091181 PMID: 20001959

47. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, et al. (2003) A nutrient sensor mech-
anism controls Drosophila growth. Cell 114: 739–749. PMID: 14505573

48. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, et al. (2003) Amino acids and the hu-
moral regulation of growth: fat bodies use Slimfast (vol 114, pg 656, 2003). Cell 115: 123–123.

49. Choi JW, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interact-
ing with the binding domain of human FRAP. Science 273: 239–242. PMID: 8662507

50. Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-Kda Fkbp12-Rapamycin-
Binding Domain within the 289-Kda Fkbp12-Rapamycin-Associated Protein and Characterization of a
Critical Serine Residue. Proceedings of the National Academy of Sciences of the United States of
America 92: 4947–4951. PMID: 7539137

51. Guertin DA, Sabatini DM (2009) The Pharmacology of mTOR Inhibition. Science Signaling 2.

52. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the Human mTORComplex I
and Its Implications for Rapamycin Inhibition. Molecular Cell 38: 768–774. doi: 10.1016/j.molcel.
2010.05.017 PMID: 20542007

53. Gonzalez IM, Martin PM, Burdsal C, Sloan JL, Mager S, et al. (2012) Leucine and arginine regulate
trophoblast motility through mTOR-dependent and independent pathways in the preimplantation
mouse embryo. Developmental Biology 361: 286–300. doi: 10.1016/j.ydbio.2011.10.021 PMID:
22056783

54. Wang YX, Zhang LL, Zhou GL, Liao ZY, Ahmad H, et al. (2012) Dietary L-arginine supplementation
improves the intestinal development through increasing mucosal Akt and mammalian target of rapa-
mycin signals in intra-uterine growth retarded piglets. British Journal of Nutrition 108: 1371–1381. doi:
10.1017/S0007114511006763 PMID: 22217383

55. Xi PB, Jiang ZY, Dai ZL, Li XL, Yao K, et al. (2010) Regulation of protein turnover in porcine intestinal
cells by L-glutamine (Gln). Faseb Journal 24.

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 21 / 25

http://dx.doi.org/10.1126/science.1209609
http://www.ncbi.nlm.nih.gov/pubmed/22021671
http://dx.doi.org/10.1073/pnas.1301524110
http://www.ncbi.nlm.nih.gov/pubmed/23744038
http://www.ncbi.nlm.nih.gov/pubmed/16724067
http://www.ncbi.nlm.nih.gov/pubmed/15345422
http://www.ncbi.nlm.nih.gov/pubmed/18085821
http://www.ncbi.nlm.nih.gov/pubmed/10591206
http://dx.doi.org/10.1371/journal.pone.0002873
http://dx.doi.org/10.1371/journal.pone.0002873
http://www.ncbi.nlm.nih.gov/pubmed/18682732
http://dx.doi.org/10.1042/BJ20091181
http://www.ncbi.nlm.nih.gov/pubmed/20001959
http://www.ncbi.nlm.nih.gov/pubmed/14505573
http://www.ncbi.nlm.nih.gov/pubmed/8662507
http://www.ncbi.nlm.nih.gov/pubmed/7539137
http://dx.doi.org/10.1016/j.molcel.2010.05.017
http://dx.doi.org/10.1016/j.molcel.2010.05.017
http://www.ncbi.nlm.nih.gov/pubmed/20542007
http://dx.doi.org/10.1016/j.ydbio.2011.10.021
http://www.ncbi.nlm.nih.gov/pubmed/22056783
http://dx.doi.org/10.1017/S0007114511006763
http://www.ncbi.nlm.nih.gov/pubmed/22217383


56. Yao K, Yin YL, ChuWY, Li ZQ, Deng D, et al. (2008) Dietary arginine supplementation increases
mTOR signaling activity in skeletal muscle of neonatal pigs. Journal of Nutrition 138: 867–872. PMID:
18424593

57. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses
to amino acids in C2C12 skeletal muscle cells. Amino Acids 38: 1533–1539. doi: 10.1007/s00726-
009-0377-x PMID: 19882215

58. Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, et al. (2009) The Leucine Content of a
Complete Meal Directs Peak Activation but Not Duration of Skeletal Muscle Protein Synthesis and
Mammalian Target of Rapamycin Signaling in Rats. Journal of Nutrition 139: 1103–1109. doi: 10.
3945/jn.108.103853 PMID: 19403715

59. Dibble CC, Elis W, Menon S, Qin W, Klekota J, et al. (2012) TBC1D7 Is a Third Subunit of the TSC1-
TSC2 Complex Upstream of mTORC1. Molecular Cell 47: 535–546. doi: 10.1016/j.molcel.2012.06.
009 PMID: 22795129

60. Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, et al. (2003) Rheb is an essential reg-
ulator of S6K in controlling cell growth in Drosophila. Nature Cell Biology 5: 559–565. PMID:
12766775

61. Saucedo LJ, Gao XS, Chiarelli DA, Li L, Pan D, et al. (2003) Rheb promotes cell growth as a compo-
nent of the insulin/TOR signalling network. Nature Cell Biology 5: 566–571. PMID: 12766776

62. Inoki K, Li Y, Zhu TQ, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and sup-
presses mTOR signalling. Nature Cell Biology 4: 648–657. PMID: 12172553

63. Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, et al. (2006) Activity of TSC2 is inhibited by AKT-medi-
ated phosphorylation and membrane partitioning. Journal of Cell Biology 173: 279–289. PMID:
16636147

64. Ito N, Rubin GM (1999) Gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates
the cell cycle. Cell 96: 529–539. PMID: 10052455

65. Huang JX, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR com-
plexes. Biochemical Society Transactions 37: 217–222. doi: 10.1042/BST0370217 PMID: 19143635

66. Inoki K, Guan KL (2009) Tuberous sclerosis complex, implication from a rare genetic disease to com-
mon cancer treatment. Human Molecular Genetics 18: R94–R100. doi: 10.1093/hmg/ddp032 PMID:
19297407

67. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK (2001) The Drosophila tuberous sclerosis
complex gene homologs restrict cell growth and cell proliferation. Cell 105: 345–355. PMID:
11348591

68. Gao XS, Pan DJ (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell
growth. Genes & Development 15: 1383–1392.

69. Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, et al. (2011) A genome-scale shRNA resource for
transgenic RNAi in Drosophila. Nat Methods 8: 405–407. doi: 10.1038/nmeth.1592 PMID: 21460824

70. Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, et al. (2008) Vector and parameters for targeted trans-
genic RNA interference in Drosophila melanogaster. Nat Methods 5: 49–51. PMID: 18084299

71. Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of crumbs confers apical character on
plasmamembrane domains of ectodermal epithelia of Drosophila. Cell 82: 67–76. PMID: 7606787

72. Petrella LN, Smith-Leiker T, Cooley L (2007) The Ovhts polyprotein is cleaved to produce fusome and
ring canal proteins required for Drosophila oogenesis. Development 134: 702–712.

73. Broughton SJ, Piper MDW, Ikeya T, Bass TM, Jacobson J, et al. (2005) Longer lifespan, altered me-
tabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Pro-
ceedings of the National Academy of Sciences of the United States of America 102: 3105–3110.
PMID: 15708981

74. Haselton A, Sharmin E, Schrader J, Sah M, Poon P, et al. (2010) Partial ablation of adult Drosophila
insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resis-
tance. Cell Cycle 9: 3063–3071. doi: 10.4161/cc.9.15.12458 PMID: 20699643

75. Pasco MY, Leopold P (2012) High sugar-induced insulin resistance in Drosophila relies on the lipoca-
lin Neural Lazarillo. PLoS One 7: e36583. doi: 10.1371/journal.pone.0036583 PMID: 22567167

76. Morris SN, Coogan C, Chamseddin K, Fernandez-Kim SO, Kolli S, et al. (2012) Development of diet-
induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta 1822: 1230–
1237. doi: 10.1016/j.bbadis.2012.04.012 PMID: 22542511

77. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, et al. (2005) Serum retinol binding protein 4 con-
tributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–362. PMID: 16034410

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 22 / 25

http://www.ncbi.nlm.nih.gov/pubmed/18424593
http://dx.doi.org/10.1007/s00726-009-0377-x
http://dx.doi.org/10.1007/s00726-009-0377-x
http://www.ncbi.nlm.nih.gov/pubmed/19882215
http://dx.doi.org/10.3945/jn.108.103853
http://dx.doi.org/10.3945/jn.108.103853
http://www.ncbi.nlm.nih.gov/pubmed/19403715
http://dx.doi.org/10.1016/j.molcel.2012.06.009
http://dx.doi.org/10.1016/j.molcel.2012.06.009
http://www.ncbi.nlm.nih.gov/pubmed/22795129
http://www.ncbi.nlm.nih.gov/pubmed/12766775
http://www.ncbi.nlm.nih.gov/pubmed/12766776
http://www.ncbi.nlm.nih.gov/pubmed/12172553
http://www.ncbi.nlm.nih.gov/pubmed/16636147
http://www.ncbi.nlm.nih.gov/pubmed/10052455
http://dx.doi.org/10.1042/BST0370217
http://www.ncbi.nlm.nih.gov/pubmed/19143635
http://dx.doi.org/10.1093/hmg/ddp032
http://www.ncbi.nlm.nih.gov/pubmed/19297407
http://www.ncbi.nlm.nih.gov/pubmed/11348591
http://dx.doi.org/10.1038/nmeth.1592
http://www.ncbi.nlm.nih.gov/pubmed/21460824
http://www.ncbi.nlm.nih.gov/pubmed/18084299
http://www.ncbi.nlm.nih.gov/pubmed/7606787
http://www.ncbi.nlm.nih.gov/pubmed/15708981
http://dx.doi.org/10.4161/cc.9.15.12458
http://www.ncbi.nlm.nih.gov/pubmed/20699643
http://dx.doi.org/10.1371/journal.pone.0036583
http://www.ncbi.nlm.nih.gov/pubmed/22567167
http://dx.doi.org/10.1016/j.bbadis.2012.04.012
http://www.ncbi.nlm.nih.gov/pubmed/22542511
http://www.ncbi.nlm.nih.gov/pubmed/16034410


78. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, et al. (2006) Retinol-binding protein 4
and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354: 2552–2563. PMID:
16775236

79. Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, et al. (2012) Retinol-binding protein 4 inhib-
its insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-
Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol
Cell Biol 32: 2010–2019. doi: 10.1128/MCB.06193-11 PMID: 22431523

80. Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, et al. (1999) Autonomous control of
cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97: 865–875. PMID:
10399915

81. OgawaW, Matozaki T, Kasuga M (1998) Role of binding proteins to IRS-1 in insulin signalling. Molec-
ular and Cellular Biochemistry 182: 13–22. PMID: 9609110

82. Werz C, Kohler K, Hafen E, Stocker H (2009) The Drosophila SH2B family adaptor Lnk acts in parallel
to chico in the insulin signaling pathway. PLoS Genet 5: e1000596. doi: 10.1371/journal.pgen.
1000596 PMID: 19680438

83. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional
changes during Drosophila oogenesis. Dev Biol 231: 265–278. PMID: 11180967

84. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, et al. (2001) A mutant Drosophila insulin receptor
homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110. PMID:
11292875

85. Richard DS, Rybczynski R, Wilson TG, Wang Y, Wayne ML, et al. (2005) Insulin signaling is neces-
sary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and
ecdysteroids: female sterility of the chico1 insulin signaling mutation is autonomous to the ovary. J In-
sect Physiol 51: 455–464. PMID: 15890189

86. LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth
by neural insulin in Drosophila. Science 309: 1071–1073. PMID: 16099985

87. Ikeya T, Broughton S, Alic N, Grandison R, Partridge L (2009) The endosymbiont Wolbachia in-
creases insulin/IGF-like signalling in Drosophila. Proceedings of the Royal Society B-Biological Sci-
ences 276: 3799–3807. doi: 10.1098/rspb.2009.0778 PMID: 19692410

88. LaFever L, Feoktistov A, Hsu HJ, Drummond-Barbosa D (2010) Specific roles of Target of rapamycin
in the control of stem cells and their progeny in the Drosophila ovary (vol 137, pg 2117, 2010). Devel-
opment 137: 2451–2451.

89. Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L (2010) Molecular Evolution and Func-
tional Characterization of Drosophila Insulin-Like Peptides. Plos Genetics 6.

90. Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance
via the niche in Drosophila. Proceedings of the National Academy of Sciences of the United States of
America 106: 1117–1121. doi: 10.1073/pnas.0809144106 PMID: 19136634

91. Hsu HJ, LaFever L, Drummond-Barbosa D (2008) Diet controls normal and tumorous germline stem
cells via insulin-dependent and-independent mechanisms in Drosophila. Developmental Biology 313:
700–712. PMID: 18068153

92. Heifetz Y, Tram U, Wolfner MF (2001) Male contributions to egg production: the role of accessory
gland products and sperm in Drosophila melanogaster. Proc Biol Sci 268: 175–180. PMID: 11209888

93. Soller M, Bownes M, Kubli E (1997) Mating and sex peptide stimulate the accumulation of yolk in oo-
cytes of Drosophila melanogaster. Eur J Biochem 243: 732–738. PMID: 9057839

94. Soller M, Bownes M, Kubli E (1999) Control of oocyte maturation in sexually mature Drosophila fe-
males. Dev Biol 208: 337–351. PMID: 10191049

95. King RC, Sang JH (1959) Oogenesis in adult Drosophila melanogaster. VIII. The role of folic acid in
oogenesis. Growth 23: 37–53. PMID: 13672469

96. Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by
the Sex Peptide of Drosophila. Curr Biol 16: 692–696. PMID: 16581515

97. Landmann F, Bain O, Martin C, Uni S, Taylor M, et al. (2012) Both asymmetric mitotic segregation and
cell-to-cell invasion are required for stable germline transmission ofWolbachia in filarial nematodes.
Biology Open 00: 1–12.

98. Pierce A, Gillette D, Jones PG (2011) Escherichia coli cold shock protein CsdA effects an increase in
septation and the resultant formation of coccobacilli at low temperature. Arch Microbiol 193: 373–
384. doi: 10.1007/s00203-011-0682-0 PMID: 21359956

99. Frenkiel-Krispin D, Minsky A (2006) Nucleoid organization and the maintenance of DNA integrity in E.
coli, B. subtilis and D. radiodurans. J Struct Biol 156: 311–319. PMID: 16935006

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 23 / 25

http://www.ncbi.nlm.nih.gov/pubmed/16775236
http://dx.doi.org/10.1128/MCB.06193-11
http://www.ncbi.nlm.nih.gov/pubmed/22431523
http://www.ncbi.nlm.nih.gov/pubmed/10399915
http://www.ncbi.nlm.nih.gov/pubmed/9609110
http://dx.doi.org/10.1371/journal.pgen.1000596
http://dx.doi.org/10.1371/journal.pgen.1000596
http://www.ncbi.nlm.nih.gov/pubmed/19680438
http://www.ncbi.nlm.nih.gov/pubmed/11180967
http://www.ncbi.nlm.nih.gov/pubmed/11292875
http://www.ncbi.nlm.nih.gov/pubmed/15890189
http://www.ncbi.nlm.nih.gov/pubmed/16099985
http://dx.doi.org/10.1098/rspb.2009.0778
http://www.ncbi.nlm.nih.gov/pubmed/19692410
http://dx.doi.org/10.1073/pnas.0809144106
http://www.ncbi.nlm.nih.gov/pubmed/19136634
http://www.ncbi.nlm.nih.gov/pubmed/18068153
http://www.ncbi.nlm.nih.gov/pubmed/11209888
http://www.ncbi.nlm.nih.gov/pubmed/9057839
http://www.ncbi.nlm.nih.gov/pubmed/10191049
http://www.ncbi.nlm.nih.gov/pubmed/13672469
http://www.ncbi.nlm.nih.gov/pubmed/16581515
http://dx.doi.org/10.1007/s00203-011-0682-0
http://www.ncbi.nlm.nih.gov/pubmed/21359956
http://www.ncbi.nlm.nih.gov/pubmed/16935006


100. Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing de-
generation and early death. Proceedings of the National Academy of Sciences of the United States of
America 94: 10792–10796. PMID: 9380712

101. Albertson R, Tan V, Leads RR, Reyes M, SullivanW, et al. (2013) MappingWolbachia distributions in
the adult Drosophila brain. Cellular Microbiology 15: 1527–1544. doi: 10.1111/cmi.12136 PMID:
23490256

102. WuM, Sun LV, Vamathevan J, Riegler M, Deboy R, et al. (2004) Phylogenomics of the reproductive
parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS
Biol 2: E69. PMID: 15024419

103. Caragata EP, Rances E, O'Neill SL, McGraw EA (2014) Competition for amino acids betweenWolba-
chia and the mosquito host, Aedes aegypti. Microb Ecol 67: 205–218. doi: 10.1007/s00248-013-
0339-4 PMID: 24337107

104. Markov AV, Zakharov IA (2006) The parasitic bacteriumWolbachia and the origin of the eukaryotic
cell. Paleontological Journal 40: 115–124.

105. Ponton F, Wilson K, Holmes A, Raubenheimer D, Robinson KL, et al. (2015) Macronutrients mediate
the functional relationship between Drosophila andWolbachia. Proc Biol Sci 282.

106. Ikeya T, Broughton S, Alic N, Grandison R, Partridge L (2009) The endosymbiont Wolbachia in-
creases insulin/IGF-like signalling in Drosophila. Proc Biol Sci 276: 3799–3807. doi: 10.1098/rspb.
2009.0778 PMID: 19692410

107. Matilainen O, Arpalahti L, Rantanen V, Hautaniemi S, Holmberg CI (2013) Insulin/IGF-1 signaling reg-
ulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 3: 1980–1995. doi:
10.1016/j.celrep.2013.05.012 PMID: 23770237

108. Blakesley VA, Koval AP, Stannard BS, Scrimgeour A, LeRoith D (1998) Replacement of tyrosine
1251 in the carboxyl terminus of the insulin-like growth factor-I receptor disrupts the actin cytoskeleton
and inhibits proliferation and anchorage-independent growth. J Biol Chem 273: 18411–18422. PMID:
9660809

109. Coletta DK, Mandarino LJ (2011) Mitochondrial dysfunction and insulin resistance from the outside in:
extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab 301: E749–
755. doi: 10.1152/ajpendo.00363.2011 PMID: 21862724

110. Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, et al. (2010) Proteomics analysis of human
skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59: 33–42. doi:
10.2337/db09-0214 PMID: 19833877

111. Abe Y, Yoon SO, Kubota K, Mendoza MC, Gygi SP, et al. (2009) p90 ribosomal S6 kinase and p70 ri-
bosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth fac-
tor, insulin, and nutrient signaling. J Biol Chem 284: 14939–14948. doi: 10.1074/jbc.M900097200
PMID: 19332537

112. Huang J, Brumell JH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:
101–114. doi: 10.1038/nrmicro3160 PMID: 24384599

113. Steele S, Brunton J, Ziehr B, Taft-Benz S, Moorman N, et al. (2013) Francisella tularensis harvests nu-
trients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 9:
e1003562. doi: 10.1371/journal.ppat.1003562 PMID: 23966861

114. Yu HB, Croxen MA, Marchiando AM, Ferreira RB, Cadwell K, et al. (2014) Autophagy facilitates Sal-
monella replication in HeLa cells. MBio 5: e00865–00814. doi: 10.1128/mBio.00865-14 PMID:
24618251

115. Voronin D, Cook DAN, Steven A, Taylor MJ (2012) Autophagy regulatesWolbachia populations
across diverse symbiotic associations. Proceedings of the National Academy of Sciences of the Unit-
ed States of America 109: E1638–E1646. doi: 10.1073/pnas.1203519109 PMID: 22645363

116. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects.
Science 322: 702. doi: 10.1126/science.1162418 PMID: 18974344

117. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to
RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e2. doi: 10.1371/journal.pbio.1000002
PMID: 19222304

118. Rainey SM, Shah P, Kohl A, Dietrich I (2014) Understanding the Wolbachia-mediated inhibition of ar-
boviruses in mosquitoes: progress and challenges. J Gen Virol 95: 517–530. doi: 10.1099/vir.0.
057422-0 PMID: 24343914

119. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR (2013) Rapid sequential spread of twoWolba-
chia variants in Drosophila simulans. PLoS Pathog 9: e1003607. doi: 10.1371/journal.ppat.1003607
PMID: 24068927

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 24 / 25

http://www.ncbi.nlm.nih.gov/pubmed/9380712
http://dx.doi.org/10.1111/cmi.12136
http://www.ncbi.nlm.nih.gov/pubmed/23490256
http://www.ncbi.nlm.nih.gov/pubmed/15024419
http://dx.doi.org/10.1007/s00248-013-0339-4
http://dx.doi.org/10.1007/s00248-013-0339-4
http://www.ncbi.nlm.nih.gov/pubmed/24337107
http://dx.doi.org/10.1098/rspb.2009.0778
http://dx.doi.org/10.1098/rspb.2009.0778
http://www.ncbi.nlm.nih.gov/pubmed/19692410
http://dx.doi.org/10.1016/j.celrep.2013.05.012
http://www.ncbi.nlm.nih.gov/pubmed/23770237
http://www.ncbi.nlm.nih.gov/pubmed/9660809
http://dx.doi.org/10.1152/ajpendo.00363.2011
http://www.ncbi.nlm.nih.gov/pubmed/21862724
http://dx.doi.org/10.2337/db09-0214
http://www.ncbi.nlm.nih.gov/pubmed/19833877
http://dx.doi.org/10.1074/jbc.M900097200
http://www.ncbi.nlm.nih.gov/pubmed/19332537
http://dx.doi.org/10.1038/nrmicro3160
http://www.ncbi.nlm.nih.gov/pubmed/24384599
http://dx.doi.org/10.1371/journal.ppat.1003562
http://www.ncbi.nlm.nih.gov/pubmed/23966861
http://dx.doi.org/10.1128/mBio.00865-14
http://www.ncbi.nlm.nih.gov/pubmed/24618251
http://dx.doi.org/10.1073/pnas.1203519109
http://www.ncbi.nlm.nih.gov/pubmed/22645363
http://dx.doi.org/10.1126/science.1162418
http://www.ncbi.nlm.nih.gov/pubmed/18974344
http://dx.doi.org/10.1371/journal.pbio.1000002
http://www.ncbi.nlm.nih.gov/pubmed/19222304
http://dx.doi.org/10.1099/vir.0.057422-0
http://dx.doi.org/10.1099/vir.0.057422-0
http://www.ncbi.nlm.nih.gov/pubmed/24343914
http://dx.doi.org/10.1371/journal.ppat.1003607
http://www.ncbi.nlm.nih.gov/pubmed/24068927


120. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al. (2011) Successful
establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:
454–457. doi: 10.1038/nature10356 PMID: 21866160

121. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, et al. (2011) The wMel Wolbachia
strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450–453. doi: 10.
1038/nature10355 PMID: 21866159

122. Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, et al. (2013) Wolbachia Variants In-
duce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic
Analysis. Plos Genetics 9.

123. Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in
mosquito cells. PLoS Negl Trop Dis 6: e1754. doi: 10.1371/journal.pntd.0001754 PMID: 22848774

124. Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL, Johnson KN (2012) Antiviral protection and
the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Micro-
biol 78: 6922–6929. doi: 10.1128/AEM.01727-12 PMID: 22843518

125. Osborne SE, Leong YS, O'Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by
different Wolbachia strains in Drosophila simulans. PLoS Pathog 5: e1000656. doi: 10.1371/journal.
ppat.1000656 PMID: 19911047

126. Chrostek E, Marialva MS, Yamada R, O'Neill SL, Teixeira L (2014) High anti-viral protection without
immune upregulation after interspecies Wolbachia transfer. PLoS One 9: e99025. doi: 10.1371/
journal.pone.0099025 PMID: 24911519

127. Bloomington_Drosophila_Stock_Center http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/
bloomfood.htm.

128. Pfaffl MW (2001) A newmathematical model for relative quantification in real-time RT-PCR. Nucleic
Acids Res 29: e45. PMID: 11328886

129. R_Development_Core_Team (2011) A language and Environment for Statistical Computing. Vienna,
Austrria: The R Foundation for Statistical Computing. doi: 10.1016/j.neuroimage.2011.01.013 PMID:
21238596

The Impact of Host Diet onWolbachia Titer in Drosophila

PLOS Pathogens | DOI:10.1371/journal.ppat.1004777 March 31, 2015 25 / 25

http://dx.doi.org/10.1038/nature10356
http://www.ncbi.nlm.nih.gov/pubmed/21866160
http://dx.doi.org/10.1038/nature10355
http://dx.doi.org/10.1038/nature10355
http://www.ncbi.nlm.nih.gov/pubmed/21866159
http://dx.doi.org/10.1371/journal.pntd.0001754
http://www.ncbi.nlm.nih.gov/pubmed/22848774
http://dx.doi.org/10.1128/AEM.01727-12
http://www.ncbi.nlm.nih.gov/pubmed/22843518
http://dx.doi.org/10.1371/journal.ppat.1000656
http://dx.doi.org/10.1371/journal.ppat.1000656
http://www.ncbi.nlm.nih.gov/pubmed/19911047
http://dx.doi.org/10.1371/journal.pone.0099025
http://dx.doi.org/10.1371/journal.pone.0099025
http://www.ncbi.nlm.nih.gov/pubmed/24911519
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
http://www.ncbi.nlm.nih.gov/pubmed/11328886
http://dx.doi.org/10.1016/j.neuroimage.2011.01.013
http://www.ncbi.nlm.nih.gov/pubmed/21238596

	Florida International University
	FIU Digital Commons
	3-1-2015

	The Impact of Host Diet on Wolbachia Titer in Drosophila
	Laura R. Serbus
	Pamela M. White
	Jessica Pintado Silva
	Amanda Rabe
	Luis Teixeira
	See next page for additional authors
	Recommended Citation
	Authors


	The Impact of Host Diet on Wolbachia Titer in Drosophila

