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need to improve the protection of natural vegetation, especially
forests. Forests not only provide critical ecosystem services and
habitat for many species but their root matrix also holds soil in
place and improves slope stability, thus reducing geological haz-
ards and mitigating landslides (5). As our results show, most of
the mountains with extremely high biodiversity and landslide
susceptibility are expected to experience deforestation and
increasing precipitation extremes, leading to greater landslide
risks. Currently, these mountains have low coverage by pro-
tected areas, which is an important measure to resist land-
cover/land-use changes and biodiversity loss.

Besides protecting existing forests and reducing future defor-
estation, forest restoration should also be prioritized in these
vulnerable regions. Landslides are more likely to occur in non-
forested lands and cause repeated damages to roads, pipelines,
and buildings (5). The accumulative repair cost can be enor-
mous in landslide-prone areas. Studies have shown that restor-
ing forests in the Colombian Andes is 16 times more cost
effective than repairing damaged infrastructure (5). As the
United Nations has named 2020 to 2030 as the decade for res-
toration, mountains with high vulnerability should be priori-
tized for forest restoration for both mountainous biodiversity
and their human residents. Nonetheless, some fast-growing,
exotic tree species should be avoided for restoration, not only

because of their low contribution to biodiversity and negative
impacts on ecosystems but also their shallow root system makes
those less effective in stabilize the slopes (51–53).

The conflict between conservation and development is com-
pounded by the fact that socioeconomic development is a key
issue in mountain regions; most populations are in poverty (6,
24). Thus, mountainous areas should address sustainable devel-
opment more than other areas because of their vulnerability,
high-disaster risks and the impacts of climate change. Tradi-
tional development model which relies on land-cover and land-
use changes and heavy infrastructure building should be
avoided or planned more strategically to reduce environmental
risks (49, 50). Old villages and settlements are usually located
in relatively safe spots, although natural disasters could still
happen episodically. However, new settlements and infrastruc-
ture tend to be expanded to areas farther from these safe places
into areas with high risks. Human disturbances and climate
change further intensify hazard conditions. Alternatively, by
restricting infrastructure building that disturbs slope stability and
protecting areas to reduce deforestation and other land-cover
changes, local communities could achieve more sustainable devel-
opment without spending huge resources in disaster recovery. As
most of the priority mountains that we identified do not reach the
Aichi target for protection, further expansion of protected areas

Fig. 5. Current protected area coverage (A), forest cover change projection (B), and precipitation extreme projections (C–F) into the year 2100 in moun-
tains. (A) Protected area coverages are grouped into five categories, indicating different international conservation targets. (B) Forest cover change com-
paring 2100 to 2010. (C–F) Red areas indicate mountains with significant increases in the four precipitation extreme indices.
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Fig. 6. Priority mountains with high urgency for immediate conservation actions. (A) Global distribution of current priority mountains with high urgency
(Current: 45 mountains) and future priority mountains with high urgency (Future: seven mountains). Enlarged maps for South America (B) and Asia (C).
Population density (D) and human footprint index (E) in different mountain categories, Current (n = 45), Future (n = 7) priority mountains, and all the
other mountains (Others).
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would not only protect the mountain biodiversity, reduce defores-
tation, and allow faster forest regeneration, it could also provide a
nature-based solution for risk reduction around communities that
are vulnerable to landslides and other natural hazards (54).

Materials and Methods
Biodiversity. We used vertebrate species as our representative for biodiversity.
Species distribution data for mammals, birds, and amphibians were from the
International Union for Conservation of Nature (IUCN) Red List website (40).
We calculated rarity-weighted richness for each taxon to indicate the poten-
tial irreplaceability of a region (55). A cell size of 10 × 10 km was used across
terrestrial ecosystems for the whole globe.

Rarity-weighted richness prioritizes regions with high numbers of limited
range species and sometimes is identified as weighted endemism (41, 42). We
calculated rarity-weighted richness using the following equation (42, 56):

Rarity Weighted Richness ¼ ∑
n

1

1
ri
,

where ri is the range size of a species i. The rarity-weighted richness for a given
pixel is summed for the n species that occur in the pixel. Because of limited
studies on certain species, some species had a single locality with an arbitrarily
sized circle around it as its range. To reduce the distortion caused by this phe-
nomenon and some other extremely small-ranged species for any species with
a range size smaller than 100 km2, we weighted it as if it were 100 km2.

Landslide Susceptibility. We used a global landslide susceptibility map to
locate regions that are more likely to be impacted by landslide activities. This
map integrated five explanatory variables affecting the chances of landslide
events, including slope, distance to faults, geological classification, presence
of roads, and forest loss (28). Apart from comparing the spatial pattern visu-
ally, we also quantified the correlation with biodiversity. We quantified the
correlation between biodiversity and landslide susceptibility by creating a set
of random points with each at least 25 km apart to minimize the effects of
spatial autocorrelation. We then extracted values of rarity-weighted richness
and landslide susceptibility at each point. A t test was applied to test whether
there were significant differences between biodiversity indexes in different
landslide susceptible areas.

Mountain Delineation. Active research has been focusing on the definition of
mountains and global mapping of mountain ranges or regions (31, 57–59).
Here, we used the data from the Global Mountain Biodiversity Assessment
(https://www.gmba.unibe.ch/services/tools/mountain_inventory). This dataset
is based on Korner et al. (58), which used ruggedness as the main measure-
ment to distinguish mountains and identifies 1,048 mountain ranges in
the world.

Protected Areas. We extracted protected area information from the
World Database of Protected Areas (available at https://www.
protectedplanet.net) and substituted the part for China with more com-
plete data from Pimm et al. (60). The combined dataset held information
such as location, size, year of establishment, and protection category
based on IUCN. We only kept the protected areas larger than 1 km2 to
exclude extremely small, protected areas and ones without area informa-
tion, and we also excluded protected areas without IUCN designations.
For each mountain range, we calculated the percentage covered by pro-
tected areas. We classified protected area coverage into five categories:
<10%, 10 to 17%, 17 to 30%, 30 to 50%, 50 to 75%, and 75 to 100%.
These thresholds represent the Aichi target of 17% for terrestrial ecosys-
tems, 30% for a possible post-2020 target, and 50% for the half-earth
goal. We used 10% to represent the minimum amount that is considered
adequate for biodiversity protection (61).

Mountains with Vulnerability. We identified mountains with high vulnerabil-
ity as those that are high for both biodiversity and landslide susceptibility.
These areas are sensitive to anthropogenic activities, such as deforestation,
agriculture expansion, and infrastructure building. Such activities not only
lead to biodiversity loss but also expose people to a higher probability of land-
slides. We gave ranks for each mountain range according to the mean rarity
score for each taxon. If the mean rarity value was larger than the 90th percen-
tile, then a score of 5 was assigned. From 75th to 90th percentile, a score of 4
was assigned. From 50th to 75th percentile, a score of 3 was assigned. From
25th to 50th quantile, 1 was assigned. We then averaged the scores from the
three taxa to get the biodiversity index for each mountain (SI Appendix,
Table 1).

We calculated the average andmajority value of landslide susceptibility for
each mountain range. We assigned a score of 5 to regions with an average
value larger than 4 and a score of 4 to areas with an average value larger than
3. For areas with a mean smaller than 3, if the majority value equaled 5 or 4,
we assigned the score of 3. If themajority value equaled 3, we assigned a score
of 1. The rest were all 0 (Fig. 3).

We ranked the mountains according to the score of both biodiversity and
current landslide susceptibility. A status of vulnerable was assigned to moun-
tains with both biodiversity and landslide scores larger or equal to 4.

Mountains with Increasing Vulnerability.
Threats from deforestation. Deforestation could increase the occurrence of
landslides, further threatening the survival of species and people that inhabit
mountain ecosystems. Therefore, we estimated past and future forest-cover
changes for each mountain. We calculated past forest-cover change from
2000 to 2018 using Global Land Cover Maps version 2.1 from European
Space Agency Climate Change Initiative (http://maps.elie.ucl.ac.be/CCI/viewer/
download.php). We classified land-cover types, 50 to 100, 160, and 170 in the
original dataset, as forests in our analysis. We derived future forest change till
2100 using the dataset from Li et al. (44). This land-cover projection dataset
contains four major scenarios from The Intergovernmental Panel on Climate
Change Special Report on Emissions Scenarios (44). We used the B2 Scenario,
which represents the worst projection for forest-cover change (44), calculating
the forest loss for eachmountain.

Threats from climate change. Extensive research has been done to identify
the rainfall thresholds to trigger landslides, including different indices to iden-
tify precipitation extremes. We used the following indices, RX5day, R95p,
ALTCWD, and R20mm, which have been used to indicate potential risks for
landslides (45–47). RX5day measures the 5-d precipitation accumulations that
represent the most extreme precipitation over a 5-d period (62). This index is
relevant to the landslides that may be caused by a gradual buildup of soil
moisture and groundwater (45). Very wet day precipitation (R95p) measures
annual total precipitation in the days with daily precipitation larger than the
95th percentile of the 1961 to 1990 daily precipitation. This index considers
local historical conditions and precipitation climatologies rather than just
using a single global threshold to define extreme precipitation (62). Very
heavy precipitation days (R20mm) measures total days in a year with daily pre-
cipitation larger than 20mm, indicating the frequency that landslides are pos-
sible (45). ALTCWD measures the maximum consecutive wet days that have
daily precipitation larger than 1 mm, addressing the possibility of some land-
slides drivenmore by duration than the intensity of rainfall (45).

We calculated the mean for ensemble data of 48 members for each index
produced with the worst climate scenario CMIP5 RCP85 (https://climexp.knmi.
nl). Then, we calculated average values of these indices in each mountain
range for each year in two periods, 1980 to 2019 and 2061 to 2100. A t test
was applied to examine if each index was significantly changed across these
two periods. If a mountain range had a significant increase of an index, we
assigned the value 1 for that index. Then, we summed the values to form the
precipitation extreme change indicator, which ranged from 0 to 4. The larger
the indicator is, the more the landslide risk is predicted to increase in the
future.

In addition to the mountains identified as current vulnerable mountains,
we further included mountains with high biodiversity (biodiversity score ≥4)
and moderate-landslide susceptibility (=1 or 3) as candidates for becoming
vulnerable in the future, because of deforestation and climate change. Future
deforestation could increase their landslide susceptibility levels, and increasing
extreme precipitation would incur more landslide events. For these candi-
dates, if the projected forest loss was larger than 10% of the area, then it was
identified as a mountain with increasing vulnerability in the future. If the for-
est loss was between 1 and10% and the precipitation extreme indicator ≥2,
then it was upgraded to a future priority as well.

Anthropogenic activities. We obtained population density data from the
Gridded Population of the World Version 4 from NASA’s Socioeconomic Data
and Applications Center (63). We used the year 2020 for our analysis, which
has a resolution of 1 km at the equator. We acquired the human footprint
index fromVenter et al. (48) and used the data for the year 2009.

ArcGIS 10.5 and JMP Pro were used for analyses.

Data Availability. All study data are included in the article and/or SI Appendix.
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