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Abstract: In the class Kinetoplastida, we find an order of parasitic protozoans classified as 

Trypanosomatids. Three major pathogens form part of this order, Trypanosoma cruzi, 

Trypanosoma brucei, and Leishmania, which are responsible for disease and fatalities in 

millions of humans worldwide, especially in non-industrialized countries in tropical and 

sub-tropical regions. In order to develop new drugs and treatments, the physiology of these 

pathogenic protozoans has been studied in detail, specifically the significance of membrane 

transporters in host parasites interactions. Aquaporins and Aquaglyceroporins (AQPs) are a 

part of the major intrinsic proteins (MIPs) super-family. AQPs are characterized for their 

ability to facilitate the diffusion of water (aquaporin), glycerol (aquaglyceroporin), and 

other small-uncharged solutes. Furthermore, AQPs have been shown to allow the 

ubiquitous passage of some metalloids, such as trivalent arsenic and antimony. These 

trivalent metalloids are the active ingredient of a number of chemotherapeutic agents used 

against certain cancers and protozoan parasitic infections. Recently, the importance of the 

AQPs not only in osmotic adaptations but also as a factor in drug resistance of the 

trypanosomatid parasites has been reported. In this review, we will describe the 

physiological functions of aquaporins and their effect in drug response across the  

different trypanosomatids. 
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1. Introduction 

Trypanosomatid parasites are single celled pathogenic organisms considered a major cause of 

morbidity and mortality in tropical and subtropical regions worldwide. Pathogens of this order are the 

Leishmania species (causative agents of leishmaniasis), Trypanosoma brucei (African sleeping 

sickness), and Trypanosoma cruzi (Chagas disease). A total of 88 countries are reported to be endemic 

for leishmaniasis, with new case counts approximately 1.5 to 2 million per year [1]. Rapid increase of 

drug-resistant cases has further aggravated the situation [2]. Sleeping sickness threatens about 60 million 

people in 36 sub-Saharan Africa countries [3,4]. Fortunately, there is a recent trend toward a lesser 

number of reported cases [3]. However, patients with African trypanosomiasis are still a major 

challenge to clinicians, as diagnosis for central nervous system (CNS) involvement is problematic and 

treatment at CNS-stage can be highly toxic and fatal if left untreated. Chagas disease is a chronic 

parasitic infection that affects about 8 million people in the Latin American countries [5]. 

The trypanosomatid parasites undergo diverse and remarkably complex life cycles with interspecies 

transmission, frequently between an insect and a mammal, invasion of various cell types and/or extra- 

cellular growth in the blood stream, development of dormant stages in the mammalian host and 

differentiation to transmittable and infectious forms within the insect gut [6]. As they frequently travel 

between insect and mammalian hosts, they face severe osmotic challenges [7]. In the insect vector, the 

parasites differentiate into infective forms and migrate to the destined organ for successful 

perpetuation of the infection whereas within the mammalian host they need to find appropriate intra 

and/or extracellular milieu to evade the host defense system followed by disease progression. Several 

studies in other systems indicate that osmotic cues in the form of altering water and other solutes flux 

play a significant role in cellular morphogenesis and migration [8,9]. To respond to these osmotic cues 

all living cells require efficient regulation of these rapid water and solutes movements; however, the 

lipid bilayer membranes that encapsulate all living cells and several subcellular organelles are greatly 

impermeable to water and other polar solutes. Therefore, to overcome these indispensable biological 

barriers all living cells are obligated to employ membrane transporter(s) that will allow rapid and 

regulated movement of water and other non-polar solutes in and out of the cells and/or cellular 

compartments in response to extra- and/or intracellular signals. This puzzle baffled the scientific 

community for several decades until Peter Agre and co-workers demonstrated a channel-forming, 

integral membrane protein that facilitates water transport [10,11]. As the regulated movement of water 

is fundamental to all life process later studies reported the ubiquitous presence of the members of this 

channel protein [12]. These members are collectively called aquaporins (AQP). AQPs belong to MIPs 

(Major Intrinsic Protein), a super-family of integral membrane proteins. These small integral 

membrane channels can be functionally classified into two sub-groups, water specific transporters 

(orthodox aquaporins), and aquaglyceroporins, which allow transport of small-uncharged polar solutes 

such as glycerol, metalloids and urea [13,14]. The physiological roles of AQPs are more extensive:  
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(i) several recent studies have suggested that some members of orthodox AQP are permeable to a 

variety of substrates including gases [15], ions [16], and (ii) some members of aquaglyceroporins are 

adventitious transporters of trivalent metalloids such as antimonite (SbIII) and arsenite (AsIII) [17]. 

Structurally, most aquaporins share a common topology of six trans-membrane helices and two half-helices 

that fold into the center of the channel forming an hour-glass structure [18]. 

Physiological functions and regulation of AQPs have been extensively studied in human and several 

other model systems. By far the most extensively studied parasitic protozoan AQP is from 

Plasmodium. Plasmodium expresses a single AQP. AQPs from several species of Plasmodium share a 

high degree of homology with each other, mammalian AQPs and glycerol facilitator (GlpF) of 

Escherichia coli. Plasmodium AQPs are permeable to water, glycerol, urea, and several other polyols. 

Although this AQP is not essential for the parasite survival, glycerol transport through this channel 

plays a significant role during gametocytes development inside the red blood cells [18]. Several aquaporins 

have been identified in trypanosomatid parasites, from three in Trypanosoma brucei, [19,20] to four in 

Trypanosoma cruzi [20,21] to five in Leishmania [14,20]. When compared to E. coli and mammalian 

aquaporins, parasite AQPs are generally more robust water transporters. It appears that most protozoan 

parasites aquaglyceroporins are bifunctional and conduct both water and glycerol at reasonable rates [18]. 

High potential chemotherapy targets can be found at the parasite-host interface [20,22]. Integral 

membrane proteins such as AQPs play an important role on the parasitic organism adaptations and 

survival during all of its life cycle stages, even more so at the parasite host interface. Accordingly, AQPs 

could be attractive drug targets and/or mediators of specific drugs such as arsenic and antimony [20]. 

In P. falciparum glycolysis-related metabolites such as methylglyoxal and dihydroxyacetone inhibited 

proliferation at 200 μM and 3 mM, respectively [23]. Although the levels of sensitivity against these 

compounds are far from ideal for clinical studies, these show promise that cytotoxic AQP substrates 

can be used for treating parasitic infections. Metalloids, such as arsenic and antimony, permeability of 

AQPs have also been exploited to treat several human diseases for more than a century. Arsenical and 

antimonial compounds are still being used as the primary line of treatment against trypanosomiasis and 

leishmaniasis [24,25]. 

After the discovery of the first AQP by Peter Agre in 1992, knowledge about human and other 

mammalian AQPs has expanded enormously within 20 years. However, the physiological significance 

of parasitic protozoan, especially trypanosomatid AQPs and their role in drug response are still in its 

infancy. Therefore, in this review, we discuss the current understanding and roles of kinetoplastid 

AQPs in trypanosomatid parasites with respect to physiology and drug response. 

2. Leishmania spp.: Leishmaniasis 

2.1. Life Cycle 

In order to thrive, leishmaniasis needs to complete a triad of complex interactions between the 

Leishmania parasites, the sand fly vector, and the mammalian host. Female sand flies of the genus 

Phlebotumus (Old World) and Lutzomiya (New World) are the most important vectors responsible for 

the transmission of the disease. Leishmania parasites change their morphology depending on their 

stage in life cycle. These distinctive morphologies are known as promastigotes and amastigotes. 
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Promastigotes are extracellular and characterized for their slender spindle like body with an anterior 

flagellum, and reside in the sand fly gut. Promastigotes proliferate by binary fission. Once 

promastigotes are phagocytized by mammalian macrophages they are transformed into amastigotes, 

which appear as oval-shaped and aflagellated structures that reside inside phagolysosomes. 

Amastigotes, which also proliferate by binary fission, finally burst out of the infected cell to infect 

fresh macrophages and perpetuate the cycle. The life cycle of Leishmania starts when the sand fly 

ingests an infected blood meal from an infected host. After being ingested by the fly, amastigotes 

transform into promastigotes. Rapid morphological transformation and development of the parasite 

inside the vector is prompted due to the change in conditions (such as, increased pH and decreased 

temperature) between the mammalian host and the sand fly midgut. Initially, within the peritrophic 

vesicle amastigotes transform into weakly motile and dividing forms with a short flagellum at the 

anterior end of the parasite, known as procyclic promastigotes [26]. About 48 to 72 hours later, 

procyclics differentiate into non-dividing and highly motile nectomonad promastigotes that escape the 

peritrophic vesicle and move into the midgut lumen. Later at the anterior end of the midgut, 

nectomonads differentiate into proliferating leptomonads. Finally, leptomonads differentiate into two 

morphologically distinct forms: non-motile haptomonads promastigotes and highly motile with long 

flagellum metacyclic promastigotes, which are infective to mammalian hosts [27–29]. In its next blood 

meal the sand fly will inoculate the infectious metacyclis into the mammalian host. Transmission of 

cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL) and visceral leishmaniasis (VL) 

caused by L. infantum and L. chagasi can be both zoonotic or anthroponotic whereas only 

anthroponotic transmission has been reported for VL caused by L. donovani [30]. 

2.2. Disease 

The disease caused by Leishmania is called leishmaniasis. The disease is endemic to 88 countries in 

five continents. The majority of cases are reported from countries in the tropics and subtropics. 

Depending on the species the spectrum of disease can range from self-healing but disfiguring 

cutaneous leishmaniasis (CL) to more debilitating mucocutaneous leishmaniasis (MCL) to potentially 

fatal visceral leishmaniasis (VL). CL is caused by several species; in the Old World L. major and L. tropica 

are primarily responsible whereas in the New World L. mexicana, L. braziliensis, L. panamensis and  

L. amazonensis are the primary causative agents. MCL is endemic to the New World and caused 

principally by L. braziliensis. VL is reported to be caused by L. donovani (Asia and Africa),  

L. infantum (Europe) and L. chagasi (New World) [30–32]. Even though disease incidence is difficult 

to accurately assess, an estimate of 10 to 12 million people are infected worldwide with 350 million 

people at risk for transmission, and an annual approximate of 2 million new cases (about 1.5 million 

CL/MCL and rest VL) and over 50,000 deaths [33]. Additionally, current emergence of Leishmania/HIV 

co-infection is imposing a real threat in various parts of the world [34]. In CL parasites are confined to 

the dermal macrophages of the inoculation site(s) and inflict localized ulcerating but painless lesion(s). 

However, depending on the host immunological status the infection by L. aethiopica (Old World) and 

L. amazonensis (New World) can spread over large areas to cause diffused CL (DCL). Clinical 

presentation of DCL resembles lepromatous leprosy. [35,36]. CL caused by L. braziliensis usually 

takes longer time to heal compared to CL caused by other species in the New World. More 
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importantly, in 1 to 3% of L. braziliensis infected patients, parasite can metastasize into mucous 

membrane of the naso-pharynx to develop MCL. The infection is usually chronic and metastatic 

spread often causes severe mutilation of soft tissues and cartilages [36]. Presence of a symbiotic RNA 

virus in L. braziliensis genome was reported to be associated with severity of the clinical outcome of 

MCL [37]. In VL, also known as kala-azar, parasites infect macrophages of the visceral organs 

primarily spleen, liver and bone marrow. VL is almost always fatal if left untreated. Incubation period 

of VL can vary from few months to several years. Initial skin lesion at the inoculation site is not 

apparent in VL and the onset of the disease is usually gradual with nonspecific symptoms, such as, 

general feeling of illness. Later, fever may occur occasionally. Once the disease is established, fever may 

occur more regularly with double or triple peak each day. Hepatosplenomegaly and inguinal 

lymphadenopathy along with occasional abdominal pain or abdominal discomfort are common clinical 

signs at this stage of the disease. At more advanced stages darkening of the skin color may happen [36,38]. 

Post-kala azar dermal leishmaniasis (PKDL) is a sequel of VL where the causative agent is  

L. donovani. PKDL can happen in up to 20% cases in Indian subcontinent and >50% in Sudan after 

clinical cure of VL. In PKDL, the parasites become dermotropic and infect dermal macrophages. In 

India, PKDL may appear after years to decades of clinical cure of VL whereas in Sudan it appears 

within few months of cure. Except for cosmetic unattractiveness, PKDL usually does not cause any 

clinical complication or physiological discomfort. Consequently, many patients do not seek any 

treatment. This is an important factor in the epidemiological point of view as PKDL patients are 

potential human reservoir for the anthroponotic transmission cycle of L. donovani [38]. 

2.3. Treatment and Drug Resistance 

Organic pentavalent antimonial compounds, stibogluconate (Pentostam) and meglumine 

antimoniate (Glucantime) have been the first line treatment against all forms of leishmaniasis for more 

than six decades. However, the clinical efficacies of these drugs are currently being challenged by the 

emergence of acquired resistance [39]. Indian subcontinent is a major contributor of VL. At present, 

more than 60% of Indian VL patients are unresponsive against antimonial treatment [40]. Pentavalent 

antimonials [Sb(V)] are pro-drugs and they are reduced to trivalent antimony [Sb(III)]—the active 

form of the drug (Figure 1) [41]. Whether the reduction of pentavalent to trivalent compound takes 

place either in the macrophages, in the parasite or in both is still unknown [42]. Entry mechanisms of 

antimonials into macrophages and phagolysosomes are yet to be identified. Nevertheless, Leishmania 

aquaglyceroporin 1 (LmAQP1), is the first Sb(III) facilitator identified in Leishmania (Figure 1) [14]. 

The second line of treatments includes amphotericin B, Alkyl-lysophospholipids (ALP) such as 

miltefosine and edelfosine, and pentamidine. Although miltefosine was originally developed as an 

antineoplastic drug, it also demonstrated significant antileishmanial activity. Miltefosine is the first 

oral antileishmanial drug approved in India. It has been successfully used against VL, including 

antimony unresponsive cases in India. However, adverse gastrointestinal, hepatic and renal side effects 

have been observed. In addition, contraindications with women in childbearing age along with high 

cost are major limiting factors. Even though clinical resistance to miltefosine has yet to be reported, it 

has been observed that after 9 to 12 months of successful treatment there is patient relapse, whether 

this is because of reinfection or developed resistance by the parasite it is yet to be studied [43]. 
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Amphotericin B deoxycholate (AmpB) is currently the first line of treatment against antimony 

unresponsive VL in India. Unfortunately, as in miltefosine, adverse side effects are major limiting 

factors of AmpB treatment. Although it has been shown that lipid formulations of amphotericin B are 

highly promising in respect to cure rate and toxicity, high cost of these lipid formulations is an 

impediment for mass scale use in the endemic countries such as India. More second line options, such 

as, allopurinol, atovaquone, fluconazole, paromomycin, and sitamaquine are in various stages of 

clinical trials [40].  

Figure 1. Diagrammatic representation of proposed antimonial transport mechanism in a 

Leishmania infected macrophage. Pentavalent Antimony [Sb(V)] is transported into the 

macrophage, reduced to trivalent antimony [Sb(III)], and consequently transported  

into the phagolysosome. Finally, LmAQP1 facilitates the transport of Sb(III) into the  

parasite cytoplasm. 

 
  



Diseases 2014, 2 9 

 

2.4. Role of AQP in Parasite Physiology and Drug Response 

To date, LmAQP1 is the only reported Sb(III) transporter in Leishmania. Disruption of one of the 

two LmAQP1 alleles in Leishmania major resulted into a 10-fold increase in resistance to Sb(III) [44]. 

This has been corroborated by downregulation of LmAQP1 mRNA levels in clinical isolates of drug 

resistant L. donovani [45,46]. On the other hand, over expression of LmAQP1 makes the wild type 

parasites >100 fold more sensitive to Sb(III). More importantly, overexpression of LmAQP1 can 

reverse the phenotype in drug resistant isolates [47]. Taken together, LmAQP1 plays a significant role 

for the successful treatment of leishmaniasis using antimonials. Other factors such as levels of 

trypanothione, antimonite reductase and antimony-TSH conjugate exporter also play an important role 

in generation of drug resistance phenotype [48]. The L. major genome encodes five aquaporins: 

LmAQP1, LmAQPα, LmAQPβ, LmAQPγ, and LmAQPδ. While LmAQP1 shows strong similarity to 

bacterial aquaglyceroporin GlpF and human AQP9 the other L. major aquaporins (LmAQP α-δ) are 

closer to plant aquaporins [18]. LmAQP1 is an avid water transporter, and the conduction capacity of 

this aquaglyceroporin is 65% of that of human AQP1. In contrast to Plasmodium and Trypanosome 

AQPs, which are inhibited by mercurials, LmAQP1 is a mercurial independent channel. LmAQP1 also 

helps in the conduction of glycerol, glyceraldehydes, dihydroxyacetone (DHA) and sugar alcohols. 

Expression of LmAQP1 is limited to the flagellum of promastigotes whereas in amastigotes it is 

localized to the flagellar pocket, the rudimentary flagellum and the contractile vacuoles [47]. 

Furthermore, LmAQP1 plays a major role in volume regulation and osmotaxis, two important factors 

to overcome the osmotic challenges the parasite faces during its life cycle [47]. Therefore, it is evident 

that LmAQP1 plays an important role in Leishmania physiology and drug resistance. At physiological 

pH, the trivalent metalloids behave as molecular mimics of glycerol, and are conducted through 

aquaglyceroporin channels. The extracellular loop C of LmAQP1, which connects the adjacent 

transmembrane helices 4 and 5 of the protein, plays an important role in solute selectivity and function 

of the channel. In the absence of crystal structure, our structure-function studies have identified the 

critical residues of loop C for channel selectivity and function of LmAQP1. We identified that 

glutamate152 of loop C is responsible to discriminate between metalloids and glycerol [49]. Alanine 

163 in loop C resides near the pore mouth and it is critical for the channel function, as alteration of this 

alanine may inactivate the channel function [50]. Expression of LmAQP1 in Leishmania is highly 

regulated. In absence of definitive promoters, Leishmania regulates its genes at post-transcriptional 

and/or post-translational levels. Recently, we reported that mitogen activated protein kinase 2 (MPK2) 

positively regulates the stability of LmAQP1 by phosphorylation at threonine 197. Dephosphorylation 

made LmAQP1 more susceptible to degradation. Similarly, an altered MPK2 that was incapable of 

phosphoryl transfer also destabilized LmAQP1 (Figure 2). Interestingly, phosphorylation at Thr197 

also affected the localization of LmAQP1 and (Figure 2) altered the drug sensitivity and 

osmoregulatory activity of the parasite [51]. Altogether, LmAQP1 seems to play a major role in the 

ability of the parasite to cope with the osmotic challenges presented by the vector and host. 

Downregulation of LmAQP1 is also responsible for antimonial resistance. Hence it is tempting to 

propose that agonists and antagonists of LmAQP1 may be used to alter drug resistance and/or for 

transmission intervention respectively.  
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Figure 2. Immunofluorescence of L. donovani promastigotes transfected with either wild 

type or altered LmAQP1 and/or LmMPK2. A) overexpression of LmAQP1, B)  

co-expression of LmAQP1 and MPK2, C) overexpression of T197A LmAQP1, D)  

co-expression of LmAQP1 and MPK2 K42A. Cells were stained for LmAQP1 (green),  

α-tubulin (red); and DNA (blue). The three fluorescence images were finally merged. 

 

3. Trypanosoma brucei: Human African Trypanosomiasis (HAT) 

3.1. Life Cycle 

Human African Trypanosomiasis (HAT) also known as sleeping sickness is caused by 

Trypanosoma brucei.This vector-borne disease is endemic to the sub-Saharan Africa. The life cycle of 

T. brucei is complex and divided into insect vector stage and mammalian host stage. During blood 

feeding, an infected tsetse fly inoculates metacyclic trypomastigotes into the skin of the host. From the 

skin, parasites enter the bloodstream via lymphatic system and transform into elongated bloodstream 

trypomastigotes, which multiply by binary fission and can later invade central nervous system (CNS). 

Trypomastigotes are highly pleomorphic; they can range from slender bodied with long flagellum 

about 33 µm in length to as short as 14 µm, stumpy and without free flagella. The stumpy forms with a 

rudimentary free flagella are non-dividing and cannot be transformed back to slender free flagellated 

form within mammalian hosts. When a fly feeds on an infected individual, only the stumpy non-free 

flagellated forms are transformed into dividing procyclic trypomastigote forms in the insect midgut. 

After approximately two weeks, procyclics migrate to the salivary glands. In the salivary glands, procyclics 

get attached to the epithelial cells and transform into dividing epimastigotes. After 2 to 5 days, some of 

the epimastigotes give rise to non-dividing stumpy metacyclic trypomastigotes, which are infective to 

mammals. The parasite takes about 3 weeks to complete the developmental cycle within the fly, and 

once infected the fly remains infective for the rest of its life [36]. 
  

A DCB
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3.2. Disease 

HAT is eventually fatal if left untreated. Most of the cases are reported from poor and remote rural 

areas. HAT endemic zone has a strong correlation with the distribution of its vector, the tsetse fly 

(Glossina spp), which is endemic to the 37 sub-Saharan African countries. Approximately 60 million 

people are at risk but only about 15% are under surveillance [52]. The disease ranks at 7th in the list 17 

most neglected tropical diseases [53]. 

T. brucei has three morphologically identical sub-species- T. b. rhodesiense (East African or 

rhodesian HAT), T b. gambiense (West African or gambian HAT) and T brucei brucei (Animal 

African trypanosomiasis) [36]. The first two sub species can infect humans while T b. brucei is not 

infective to humans. Depending on the growth phase of the parasite and the infested organs, the 

clinical symptoms of HAT are divided into two distinct and successive phases. At the beginning, 

growth of the parasite is restricted to the hemolymphatic system while at later stages parasites infiltrate 

into the CNS. The first phase symptoms are more acute and characterized by febrile lymphadenopathy 

and nonspecific hepatosplenomegaly and skin rashes. The second phase is more chronic, and patients 

develop meningoencephalitis with headaches and extensive neurological changes culminating into 

severe sleep disorders resembling narcolepsy, convulsions, and semi-coma eventually leading to death. 

The disease progression caused by T b. gambiense and T b. rhodesiense is not similar. Gambian HAT 

is characterized by a chronic progressive course with clear demarcation between phases and an average 

duration of around 3 years. On the contrary, rhodesian HAT is considered to be ‘acute’ as it represents 

with acute septico-pyaemia-like febrile illness and little phase demarcation that leads to fatality within 

months [36,52,54,55]. 

3.3. Treatment and Drug Resistance 

Treatment choices against HAT depend on the subspecies involved and the stage of the disease. At 

the hemolymphatic phase of infection pentamidine, an aromatic diamidine, and suramin, a colourless, 

polysulphonated symmetrical naphthalene derivative, are the drugs of choice [56]. However diagnosis 

is often late, especially in case of gambian HAT, and by the time of diagnosis the parasite has 

advanced to the CNS. HAT with CNS involvement is harder to treat because treatment choices are 

often limited by (i) inefficient penetrability across the blood brain barrier (BBB) and (ii) toxicity. 

Melarsoprol, a trivalent arsenical, and eflornithine, an ornithine analogue, or nifurtimox-eflornthine 

combination can reaches therapeutic levels inside the CNS [54].  

Pentamidine is being used to treat HAT since 1930s and it is still the first choice of drug to treat the 

hemolymphatic phase of gambian HAT. A daily or alternate day deep intramuscular injection of  

4 mg kg−1 body weight for total 7 to 10 injection is the recommended dosage regimen [57,58]. 

However the drug is ineffective against CNS stage of HAT because (i) serum binding and tissue 

retention reduce the availability of free drug to cross the BBB and (ii) even if a low amount of 

pentamidine cross the BBB, it is taken out quickly by P-glycoprotein and multidrug resistance-associated 

proteins [57]. Pentamidine can be selectively accumulated inside the parasite cells up to millimolar 

levels. It primarily accumulates in the mitochondria followed by the nucleus and the acidocalcisomes. 

As a diamidine, pentamidine has high affinity for nucleic acid and it disrupts the mitochondrial 
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genome especially the kinetoplast. High amount of pentamidine accumulation in the mitochondria also 

disrupts the mitochondrial membrane potential [57].  

Use of pentavalent organic arsenicals as anti-trypanosomal agents dated back to 1900s. Less toxic 

melarsoprol with trivalent arsenic was introduced during 1940s. Since then it has been used constantly 

to treat HAT especially the late stage infection. Lipid solubility of melarsoprol formulation makes it 

permeable to BBB. It has been established that As(III) has strong affinity for glycerol-3-phosphate 

dehydrogenase, inhibit glycolytic enzymes and form a stable complex with trypanothione to form 

MelT thereby disrupting the energy and redox metabolism of the cells [4,56,59]. Although this drug is 

equally effective against both gambian and rhodesian late stage HAT, it is no longer the first line of 

treatment against gambian HAT primarily because of its toxicity, and reports of unresponsive cases 

due to drug resistance. However, melarsoprol is the only available option to treat CNS stage of 

rhodesian HAT [4]. Although the current incidence rate of HAT is promisingly decreasing [3], limited 

options for treatment along with prolonged use of same anti-trypanosomal agents have generated 

alarming levels (20%–30% of cases in some areas) of melarsoprol unresponsiveness [57] and thus it 

could potentially revert back to a new epidemic form of HAT. 

3.4. Role of AQP in Parasite Physiology and Drug Response 

Only 3 AQPs have been identified and characterized in T. brucei namely TbAQP1, TbAQP2 and 

TbAQP3 [19,20]. TbAQP1 is localized in the flagellar membrane whereas TbAQP3 is localized in the 

pelicular membrane independent of the developmental stages [60,61]. Interestingly, TbAQP2 is 

confined to flagellar pocket in bloodstream forms and it is redistributed over the pelicular membrane in 

insect stage forms [61]. All characterized AQPs from T. brucei are aquaglyceroporins, they transport water 

along with other small uncharged molecules including glycerol, urea and trivalent metalloids [19,62]. 

Water and glycerol transport capacities for all TbAQPs are similar. It is presumed that as the blood 

stream form of T. brucei thrives under constant conditions in blood, it is never exposed to the osmotic 

challenges; however, when the parasites pass through renal medulla or are ingested by tsetse fly they 

face rapid changes in environmental osmolarity. Similarly, transmission from fly to mammals is also a 

massive osmotic insult [21,61]. Depending on the developmental stages T. brucei differentially 

regulates the abundance and localization of different AQPs [61]. Taken together, it is tempting to 

speculate that TbAQPs play critical roles to cope with these osmotic bottlenecks. Likewise, at the 

advance stage of T. brucei infection when parasite migrates to CNS, differential osmolite 

concentrations of blood and CSF (cerebrospinal fluid), especially low concentrations of glucose [63] 

glycerol [64] and urea [65] might send osmological cues via AQP for the navigation from blood to 

CSF. AQP plays significant roles in directional movements of cells as well as determining the cell 

shapes [12]. Several post-translational modifications of AQPs, such as, phosphorylation via protein kinases 

and altered cyclic adenosine monophosphate (cAMP) levels are known to modulate AQP localization 

thereby aiding their functionality and regulate osmotactic movements and cell shape [66–69]. T. brucei 

also experiences differential MPK activities and cAMP levels throughout their life cycle. For instance, 

TbMPK2 is necessary for developmental progression within the fly whereas TbMPK5 down regulation 

and high level of cAMP promote blood stream stumpy form formation [70–72]. Differential 

localization of different TbAQPs at different lifecycle stages [60,61] may be related to these kinase 
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mediated phosphorylation events. Additionally, transcript levels of different TbAQPs modulated 

depending upon the developmental stages of the parasite [60,61]. Taken together, it is highly likely 

that TbAQPs play significant roles (i) in directional movement of parasite from hind gut to salivary 

gland within the vector, (ii) changing the shapes depending on the developmental stages (iii) to cope 

with the osmotic insult, and (iv) in maintaining the glycerol homeostasis to avoid inhibition of 

glycolytic reaction. 

Evidence of arsenical (atoxyl) unresponsive cases of HAT were reported back in the early 1900s by 

Paul Ehrlich who hypothesized that changes in specific ‘chemioreceptors’ could confer resistance. 

More recent studies have validated this hypothesis as alterations of several cell surface transporters 

could generate drug resistant phenotype [57,59]. Several physiologically important surface transporters 

could adventitiously facilitate drug uptake. In HAT, arsenical and diamidine resistant parasites are 

reported to be cross-resistant and have shown reduced uptakes of both drugs. Later studies have 

revealed that purine transporter 2 (P2) facilitates the uptake of both arsenical and diamidine explaining 

the cross resistant phenotype (Figure 3). Uptake of both arsenicals and pentamidine are competitively 

inhibited by adenosine, the natural substrate of P2 (Figure 3). P2 is reported to be defective in both 

laboratory raised and clinical isolates of drug resistant parasites. However, the degree of resistance to 

pentamidine in a P2 null mutant of T. brucei was significantly lower when compared to both 

laboratory raised and clinical isolates of drug resistant parasites. More importantly, pentamidine or 

arsenical uptake by P2 null mutant was not inhibited in the presence of adenosine suggesting the 

presence of an additional high capacity transporter(s) for the drugs [57,59]. Recently, Alsford et al. 

(2012) identified the roles of TbAQP2 and TbAQP3 in pentamidine and melarsoprol cross-resistance 

by using high-throughput RNAi library screening method. TbAQP2/TbAQP3 null mutant cells are 

more than 2 fold and 15 fold resistant against melarsoprol and pentamidine respectively (Figure 3) [73]. 

Further studies revealed that TbAQP2 plays the pivotal role towards pentamidine and melarsoprol 

resistance. However, TbAQP2 does not play any role towards resistance against other arsenicals (such 

as, sphenylarsine oxide) or diamidines (berenil, phenanthridine trypanocides, isometamidium and 

ethidium) [59,61]. These suggest the existence of additional transporters. The role of TbAQP2 in 

pentamidine and melarsoprol cross-resistance was further substantiated by the discovery of altered 

TbAQP2, both in laboratory raised and in several clinical resistant isolates. In resistant isolates 

TbAQP2 locus was found to become either chimeric with TbAQP3 where >120 base pairs of 3’ end of 

TbAQP2 was replaced by the nucleotide sequence of TbAQP3 3’ end with concomitant loss of 

TbAQP3 alleles or deleted from the genome [61,74].  
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Figure 3. Melarsoprol and Pentamidine uptake mechanisms of T. brucei. T. brucei AQP2 

and P2 facilitate the uptake of both melarsoprol and pentamidine. Adenosine competitively 

inhibit pentamidine uptake by P2. The HA1-3 (P type H+ ATPase) might aid pentamidine 

uptake by providing a proton motive force to TbAQP2. 

 

Dihydroxyacetone (DHA), a natural substrate of TbAQPs, can be used as an anti-trypanosomal 

agent. All 3 TbAQPs are highly permeable to DHA. DHA can be used as a carbon source by 

phosphorylating DHA to DHA phosphate (DHAP) using DHA kinase (DHAK). Later, DHAP can 

enter the glycolysis pathway. However, as DHAK gene is absent in T. brucei genome, they are unable 

to use DHA as a carbon source. Consequently, when T. brucei cells are exposed to DHA they can 

accumulate very high levels of DHA in the cytoplasm. High level of DHA causes cell cycle arrest at 

G2/M phase followed by autophagic cell death. Although IC50 of DHA is rather high (~1 mM) for a 

drug candidate, it can serve as a potential starting point for the development of new analogs [75,76]. 

4. Trypanosoma cruzi: Chagas Disease 

4.1. Life Cycle 

The life cycle of T.cruzi is complex and involves several developmental stages in its vector, a large 

sanguinivorous reduviid insect belonging to the subfamily of Triatominae, and in its hosts, about 150 

species of wild and domestic animals including human. During the blood meal, the infected insect 

vector releases metacyclic trypomastigotes on the skin along with feces and urine. Once metacyclic 

trypomastigotes break inside the skin through the bite wound, they start invading the cells of local 

reticuloendothelial system and connective tissues, and differentiate into aflagellated dividing 

amastigotes inside the cells. After the host cell reaches its capacity, amastigotes transform back into 

trypomastigotes by growing flagella followed by lysis of the host cell [5,77]. The trypomastigotes are 

non-dividing but highly motile. Through the hemolymphatic system, they migrate to distant organs and 

primarily infect heart muscle, skeletal and smooth muscles, and ganglion cells to repeat the 

amastigote-trypomastigote cycle. Trypomastigotes have the capacity to invade any nucleated cell to 

form amastigotes. Circulating trypomastigotes are also infective to insect vectors. Along with the 

blood meal, trypomastigotes enter into the insect gut, and are transformed into proliferating 
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epimastigotes. Later, epimastigotes move further down the gut to the rectum. At this stage of 

development, epimastigotes attach themselves to the rectal wall. Attachment of epimastigotes to the 

rectal wall induces metacyclogenesis. During the next blood meal the vectordefecates on the 

mammalian skin of the mammalian host, The metacyclic trypomastigotes in the feces enter the new 

host through the breaks on the skin [77,78]. Triatoma infestans, Rhodnius prolixus, and T. dimidiata 

are by far the most important vectors with regard to human Chagas disease. Triatomine ontogeny 

contains five nymphal stages followed by adults. All the developmental stages including adults are 

blood sucking, thus potentially can harbor and transmit T.cruzi. The disease can also be transmitted 

non-vectorially through blood transfusion, transplantation, transplacenta and even orally through the 

ingestion of contaminated food and drinks [36,79]. 

4.2. Disease 

Chagas disease, also known as American trypanosomiasis, continues to affect human civilization 

since ancient times in many Latin American countries [80]. It is currently estimated that about 7 to 8 

million people worldwide (primarily Latin America) are infected with Chagas disease [81] resulting 

into 10,000 to 14,000 deaths per year [77]. Presence of multiple vectors and reservoirs along with 

asymptomatic infection make the epidemiology of the disease more complex. Chagas disease is 

usually a lifelong disease [82]. The progression of the disease can be divided into three clinical phases: 

an acute phase and an intermediate phase followed by a chronic phase. The acute phase develops about 

1 to 2 weeks after exposure to the pathogen. Acute phase infection is usually asymptomatic especially 

in adults. However, approximately 1% of patients develop nonspecific symptoms like fever, headache, 

anorexia, malaise, myalgia, joint pain, etc., with or without painful erythematous swelling called 

chagoma around the site of inoculation. Parasitemia is usually high in acute phase; trypomastigotes can 

be visible in blood smear. Every nucleated cell can be potentially invaded by the pathogen in the acute 

phase. After about 8 to 10 weeks, the majority of the patients start to develop antibodies against a 

variety of T. cruzi antigens. As a result, the parasitemia subsides significantly and spontaneously 

resolve the symptoms, but some patients may remain infected for years to decades without any 

symptoms. However, approximately 5%–10% of symptomatic cases can be fatal due to severe 

myocarditis, meningoencephalitis or both. Diminishing parasitemia leads to progression of the disease 

into the intermediate phase. In the intermediate phase, parasites are barely visible in the blood. Chronic 

phase of infection can develop in approximately 30% of the patients, and most of them develop 

cardiomyopathy. Along with the heart disease, some patients may develop digestive system 

abnormalities, such as, megaesophagus and/or megacolon. The host immune status along with tissue 

damage inflicted during the acute phase of infection are believed to be the primary reason for chronic 

phase symptoms. In immunocompromised patients, Chagas disease may reactivate to develop more 

severe clinical symptoms [5,36,83]. 

4.3. Treatment and Drug Resistance 

Several drugs have been tried to treat the Chagas disease but effective treatment options are limited 

to only two drugs namely benznidazole and nifurtimox. Benznidazole and nifurtimox were introduced 

more than 4 decades ago. However, they are effective only against the acute phase of infection and 
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contraindicated during pregnancy, and in patients with severe renal or hepatic inefficiency. The 

situation is further complicated by adverse side effects, such as, skin rashes, nausea, and kidney and 

liver failure [5,36,54]. Additionally, long treatment periods and high cost of the drugs promote 

treatment drop out which could potentially develop into drug resistance. An in vitro study reported the 

link between T. cruzi type I nitroreductase (NTR I) activity and cross-resistance against nufurtimox 

and benznidazole [84]. Another study proposed the possible association of NADPH-dependent cytochrome 

P450 reductase B (CPR B) and drug detoxification that could lead to unresponsiveness [85]. Recently, 

Campos et al (2013) reported that higher expression of P-glycoprotein efflux pump leads to drug 

resistance in T. cruzi [86]. 

4.4. Role of AQP in Parasite Physiology and Drug Response 

Like other trypanosomatid parasites T. cruzi faces huge osmological fluctuations during its life cycle. 

The nature of the feeding cycle drives, the osmolarity of gut and the rectal content of triatomine bugs. Gut 

osmolarity varies between 300–970 mOsm whereas feces osmolarity ranges from 370 to 760 mOsm. 

On the contrary, osmolarity of mammalian blood is approximately 300 mOsm [87]. As described 

earlier, AQPs are responsible to cope with these insults. Till date four AQP homologs namely, TcAQP 

and β-γ have been identified in T. cruzi genome [18]. Among them, only TcAQP has been 

characterized so far. TcAQP is an orthodox aquaporin that transports only water and is sensitive to 

HgCl2 and AgNO3 inhibition. However, water conductance capacity of TcAQP is poor when compared 

to other parasitic AQPs. TcAQP expresses throughout all developmental stages of the parasite and is 

localized in the acidocalcisomes and contractile vacuole complex adjacent to the flagellar pocket of the 

parasites [21]. Acidocalcisomes are membrane bound acidic organelles that store calcium [88]. 

Acidocalciosomes are also present in some other unicellular organisms, such as, apicomplexan 

parasites (Plasmodium and Toxoplasma) [89], green algae Chlamydomonas reinhardtii [90], slime 

mold Dictyostelium discoideum [91], and agrobacterium Agrobacterium tumefaciens [92]. 

Acidocalcisomes and plant tonoplast have several functional similarities including osmoregulation [93]. 

Contractile vacuole is an established organelle involved in osmoregulation in protozoa. The basic 

structural plan of the contractile vacuole system is very similar in all protozoa. It consists of two parts: 

a central vacuole, or bladder, and a surrounding network of tubules and vesicles called spongiome. In 

T. cruzi acidocalcisomes and contractile vacuole system work together in a sequential manner to equip 

the parasite to face the hypoosmotic challenge during its transmission from vector to mammals. During 

hypoosmotic shock, a hypothetical adenyl cyclase is activated to form cAMP. Elevated cAMP level 

promotes fusion of acidocalcisomes with the contractile vacuole and translocation of an aquaporin to 

the contractile vacuoles, which aid them in water accumulation. Then, the water-loaded vesicles fuse 

with the flagellar pocket membrane to secrete the water (Figure 4) [7]. There is no report of association 

between any T. cruzi AQP and drug response. However, as hyposmotic shock is a major challenge for 

the parasite during transmission from the vector to the mammalian host, targeting osmoregulation 

systems for new drug development may be a feasible approach. 
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Figure 4. Osmoregulation mechanism of T. cruzi. Volume increase due to hypo-osmotic 

stress triggers the production of cAMP. Elevated cAMP levels induce protein kinase 

activity that promotes fusion of acidocalcisomes (AC) with the contractile vacuoles (CV) 

and amino acid release. The fusion translocates the TcAQP from AC to CV and this is 

believed to aid the contractile vacuole in water sequestration followed by release into the 

flagellar pocket. AA: amino acids, PolyP: polyphosphate, Pi: inorganic phosphate. 

 

5. Conclusions 

In the absence of effective vaccines against any trypanosomatid diseases, chemotherapy takes the 

center stage to combat them. However, increasing incidence of drug unresponsiveness, due to decades 

of use of the same or similar drugs, has created a major impediment. Second line choices are too 

limited, highly toxic and/or excessively expensive for these neglected diseases of the developing 

world. We are in dire need of cheaper and less toxic new drugs. Identification of parasite specific 

targets is critical for the development of new agents. Within two decades of discovery, significant 

advancement has been achieved with regard to mammalian AQPs. However, knowledge about AQPs 

from other living systems especially in parasitic protozoa is lagging far behind. Importantly, 

preliminary knowledge showed subtle but promising structural and functional differences between 

parasitic protozoan AQPs and their host counterparts. Parasite AQPs are necessary for the successful 
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perpetuation of the diseases caused by them. In conclusion, further exploration of parasite AQP 

structures and functions including their regulatory mechanisms will eventually reveal their real 

potential for novel chemotherapeutic approaches and/or transmission intervention(s).  
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