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Abstract 

Mapping of vegetation patterns over large extents using remote sensing methods requires 

field sample collections for two different purposes: (1) the establishment of plant association 

classification systems from samples of relative abundance estimates; and (2) training for 

supervised image classification and accuracy assessment of satellite data derived maps.  One 

challenge for both procedures is the establishment of confidence in results and the analysis 

across multiple spatial scales.  Continuous data sets that enable cross-scale studies are very time 

consuming and expensive to acquire and such extensive field sampling can be invasive.  The use 

of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field 

sampling and can provide large volume, spatially continuous, reference information that can 

meet the challenges of confidence building and multi-scale analysis.   

In order for large-extent mapping projects utilizing hrAP to be successful, reliable 

detection of plant species is essential.  Therefore, the first objective of this study was to evaluate 

the suitability of hrAP acquired from an UAS to support vegetation identification and detection 

for a specific target resolution of 2 m.  We addressed the spatial accuracy of geographically 

referenced photography products and evaluated the adequacy of two different resolutions to 

detect presence and to estimate relative abundance of Everglades wetland species.  The second 

objective was to demonstrate how spatially continuous abundance data derived from hrAP can be 

used to establish consistent and stable plant association classification systems in a re-sampling 

framework. 

Recognizing plant species in the hrAP was possible in the highest resolution (1 cm) 

images but was limited in the medium resolution (3 cm) images.  We evaluated the detection of 

plant species and associated morphological levels from hrAP by comparing (1) the detection 

agreement for class presence and (2) relative abundance estimate agreement between two 

interpreters.  Presence/absence and relative abundance were analyzed by comparing species and 

morphological group profiles and summarized site profiles between interpreters.  Agreement of 

presence and abundance between the two interpreters was very high, and confidence of species 

detection was very high for broadleaf species and shrubs.  The recognition of short graminoid 
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species was almost impossible, even from the highest resolution photographs.  Recognition of 

tree and shrubs was high at the morphological level; confidence in recognition of tree/shrub 

species requires more training and experience of the character classes visible in this type of aerial 

photography.  Seasonal aspects that need to be taken into consideration during acquisition of the 

photographs are leaf-out and inflorescence peaks, as they can provide additional clues for 

identification. 

When registered manually, single aerial photographs did provide accurate enough 

registration results and homogenous data quality throughout the image.  Only radial distortion 

due to the nature of aerial photography needed to be considered when interpreting regions in the 

center or on the edges of the photographs, as the perspective changes, especially for tall 

emergent linear vegetation.  After re-registration in alignment with a 1-ft aerial ortho-photo, the 

mosaic of images was used for registration of the single raw images, but quality heterogeneity 

across study sites due to distortions prevented us from attempting species detection from the 

mosaic. 

In the second objective, we evaluated the effect of sampling intensity on the detection of 

plant associations using the visually estimated relative abundances of species from hrAP.  We 

demonstrated how spatially continuous abundance data derived from hrAP can be used to 

establish consistent and stable plant association classification systems in a re-sampling 

framework. The hrAP was extremely useful for deriving plant association classifications, 

enabling estimation of class- and site-specific membership probability distributions and their 

associated parameters.  The hrAP allowed for instantaneous visual feedback on adequacy of 

associations that resulted from cluster analysis.  The re-sampling framework we developed 

enabled visual and statistical evaluation of plant associations before they are used in detection 

and mapping applications.    
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Introduction 

Monitoring ecological restoration in the greater Everglades presents three major 

challenges: the spatial heterogeneity and complexity of the vegetation (landscape pattern); the 

natural intra-annual, inter-annual and decadal temporal dynamics; and the large spatial extent. 

Hydrologic restoration will produce changes in vegetation patterns across this large extent at 

different spatial and temporal scales. Therefore, we need flexible, rapid and affordable ways to 

monitor the patterns of change.  In response to these challenges, remote sensing (RS) offers 

various techniques to acquire and interpret images covering entire landscapes.  Remote sensing 

can generate information over large spatial extents without disturbing the environment and can 

provide greater temporal resolution than traditional sampling and mapping techniques.  In order 

to use RS to monitor vegetation change, however, we also need rapid and affordable methods to 

gather ground reference information in order to train algorithms and assess the accuracy of 

remote sensing products.  

Vegetation maps are produced at various resolutions or scales and for different purposes. 

For any given location the definition of the dominant plant community varies with scale and 

purpose of analysis.  Currently, vegetation surveys and map accuracy assessment are completed 

with costly field sampling procedures or using helicopter surveys by specialists who visit sites 

and make rapid assessments of plant communities at designated sampling locations.  This 

assessment is performed for a specific scale and for a single map only.  Using high-resolution 

images captured by unmanned aerial systems (UAS) may offer a more affordable, reliable and 

repeatable assessment that can occur at various scales and that can provide historic reference data 

for multiple mapping efforts. 

 Mapping of vegetation patterns over large extents using remote sensing methods still 

requires field sample collections for the training process of image classification and accuracy 

assessment of derived maps, but especially in cases where study areas are difficult or expensive 

to access, high resolution aerial photography could be of great value to reduce field site visits 

while providing large volume reference information for continuous surfaces, as compared to 

point surveys of quadrat plots as are traditionally collected during field sampling campaigns.   
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When classifying vegetation using remotely sensed data, multiple iterations provide 

intermediate results that are visually evaluated and, as needed, additional training samples are 

added or previous samples are dropped.  High-resolution aerial photography (hrAP) can be very 

useful for visual confidence building in the intermediate visual evaluation and for the selection of 

additional training samples.  Once visual confidence at an acceptable accuracy is established, 

post-classification accuracy assessment based on some type of random sampling design is 

conducted.  An initial post-classification accuracy assessment limited to the extent for which 

hrAP was acquired can confirm the visual evaluation before a larger, more expensive, and time-

consuming field accuracy assessment is conducted.  

The usefulness of hrAP to support detection of vegetation classes from remotely sensed 

satellite data depends to a large degree on the spatial accuracy of the geographically referenced 

aerial photographs and the detectability of vegetation classes from the photography.  Highly 

accurate co-registration of the hrAP to field site surveys and geographically referenced satellite 

data is crucial.  Only if the aerial photograph and the satellite data are co-registered within 0.5 

times the detection resolution from the satellite data is the confidence of training sample 

selection for supervised classifications and support during accuracy assessment valid.  A second 

aspect that plays a vital role in hrAP support of remote sensing is the detectability of vegetation 

at species level and, once vegetation associations of interest are formulated, the detection of 

those.  Characteristics of the hrAP that are important in this process are resolution and quality 

consistency across the study area.  

Another problem in vegetation mapping that use of hrAP may resolve is the 

establishment of classification schemes that are valid for multiple scales of detection and 

analysis.  The study of plant association patterns and their dynamics across spatial scales for 

large spatial extents requires spatially explicit vegetation information.  It is difficult to gather this 

type of information via field survey sampling techniques, which generally sample at a single 

scale.  Hence, a common practice for mapping vegetation patterns over vast areas is to apply 

predefined vegetation classification schemes to remotely sensed data either through visual 

interpretation or by applying digital image processing procedures, including classification 

algorithms, to aerial photography or satellite data.  The scale of pattern analysis and associated 

classification scheme definitions and the scale of detection, however, rarely coincide, and it is 
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common practice to make inference from small grain patterns (i.e., detection of pattern at small 

spatial response units, such as 1 m quadrat field surveys) to larger response units of visually 

interpreted photographs or pixels of a remotely sensed data set.  Another common practice is to 

aggregate the minimum mapping unit (i.e., detection) of a vegetation map to a coarser resolution 

(i.e., spatial scale of analysis), combining information of multiple map objects (e.g., pixels, grid 

cells, or polygons) at multiples of the initial detection resolution.   

For both of these practices the classification of vegetation and aggregation of vegetation 

classes across spatial scales is not straight forward.  The effects of changes in grain size or scale 

on species co-occurrence patterns and vegetation classifications become apparent when rescaling 

vegetation surveys or maps to coarser units using different aggregation processes; different 

processes lead to very distinct results (Marignani et al. 2007, Rocchini 2007, Schlup and Wagner 

2008, Gann et al. 2012).  Spatial aggregation, therefore, can cause a disjunction between initial 

thematic classes of a classification scheme (i.e., plant association or community definitions) 

defined and detected at a fine scale (e.g., quadrat surveys) but applied and analyzed at coarser 

scales (O'Neill et al. 1988, Wu 1999, Francis and Klopatek 2000, Wu 2004).  This disjunction 

can result in misleading conclusions about extant vegetation patterns and observed changes 

through time (Turner 1989, Lam and Quattrochi 1992, Tischendorf 2001, Ostapowicz et al. 2008, 

Mas et al. 2010).   

Generating plant association definitions for multiple scales from a single finite random 

sample is not possible, since the sample always refers to the unit area that was sampled.  Scaling 

of samples is possible of adjacent spatial units are sampled as well.  Then, through the process of 

spatial aggregation, samples can be pooled.  Field sampling of many samples with their adjacent 

neighboring units is very time-consuming and cumbersome.  The use of hrAP can potentially 

overcome this limitation by providing a fine resolution data set over relatively large extents.  

Visual interpretation at the minimum spatial grain size (i.e., sample unit on the ground) of the 

hrAP can provide the base for a re-sampling framework.  Incorporating re-sampling procedures 

at different scales and cross-validation could then allow for establishment of multi-scale, 

regionally valid, plant association classifications.  Plant association classifications derived and 

validated from sets of samples collected at different grain sizes will also provide a better 

understanding of variability in class definitions by incorporating sampling error.  This method 
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will allow for estimation of class stability and generality at each scale of interest, as well as 

across scales.  Classification of unknown geographic units can then be performed with a 

probability estimate of class membership. The accurate classification of geographic units that 

have not been used in the establishment of the classification scheme is crucial in the process of 

general pattern recognition.  

In order for large-extent mapping projects utilizing remote sensing methods to be 

successful, reliable detection of plant associations at different scales is essential. If community 

descriptions are ambiguous and detection on the ground is difficult, it will be impossible to 

detect these communities with remote sensing applications. Therefore, the first objective of this 

study was to evaluate the suitability of high resolution aerial photography acquired from an UAS 

to support vegetation classification and detection for a specific target resolution of 2 m, which is 

the spatial resolution for WorldView-2 satellite data.  We addressed the spatial accuracy and 

adequacy of resolution to detect presence and to estimate relative abundance of Everglades 

wetland species.  The second objective addressed the establishment and confidence building 

process for vegetation classification systems using the hrAP vegetation data  
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Objective 1: Determine spatial accuracy and adequacy of high resolution aerial 

photography to detect Everglades plant species and morphological vegetation groups at 2 

image resolutions from a two interpreter comparison. 

The first goal of this objective was to evaluate the spatial resolution and spatial accuracy 

of high resolution Aerial Photography (hrAP) acquired by an Unmanned Aerial System (UAS) to 

support vegetation mapping of plant species associations from 2 m resolution satellite data (e.g., 

WorldView-2).  The second goal was to estimate the visual detection probability and associated 

accuracies for wetland species and plant morphologies (growth forms) from aerial photographs 

for a 2 m resolution analysis grain size.  We established detection confidence by comparison of 

visual interpretation results of 2 interpreters.  We were also interested in the change in detection 

confidence from geo-referenced single images when decreasing the spatial resolution (i.e., 

photographing from different elevations).   

Methods 

Aerial Photography Evaluation and Processing 

In order to use this hrAP in support of the satellite remote sensing process, it was 

essential that the aerial photographs and field-collected reference data were geographically 

referenced to a spatial accuracy of within 1 m (0.5 * the grain size of the 2 m analysis 

resolution).  The raw images we received from the US Army Corps of Engineers (ACOE) for the 

two study areas ‘WEST’ and ‘EAST’ were catalogued (Figure 1) based on approximate ground 

resolution derived from flight altitude at acquisition.  The two resolution levels we established 

were ‘high’ resolution photographs acquired above 25 and below 75 meters and the second 

resolution acquired between 100 and 170 meters above ground (mag).  Of the 2182 images that 

had their reference location within either of the 2 study sites, 188 were classified as ‘high’ 

resolution images (WEST = 91, EAST = 97) with an acquisition altitude of 35.7 ± 8.4mag (mean 

± SD, Table 1).  The remaining 1994 ‘medium’ resolution images (WEST = 1063, EAST = 931) 

were acquired at an altitude of 136.1 ± 11.8 mag (Table 1).  Since we had visited and collected 

only reference samples in study area WEST, we limited the analysis to that study area.  The 
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methods developed in that area could be extended to the EAST region later to build confidence 

in the developed procedures and protocols.   

We first evaluated the spatial accuracy of the medium resolution photography mosaic 

provided by the ACOE.  The initial spatial accuracy of the geo-referenced mosaic was 

established from a 1-ft resolution ortho-rectified aerial photograph of 2011 (CERP).  A 

quantitative analysis of 16 reference locations spread across the full scene indicated that the 

positional accuracy was not uniform across the mosaic.  The shift in x and y dimensions was 

between 5 and 7 meters in either dimension.  The directional RMSE was 2.8 m ranging from -4.3 

to +0.9 m in longitudinal direction and 4.5 m with a range from -0.5 to -7.1 m in the latitudinal 

direction.  This translates into a Euclidean distance RMSE of 5.2 ± 2 m.  Hence, given our 2 m 

resolution grain size, we concluded that the positional accuracy of the mosaic was not acceptable 

to perform ground-referencing work for training and accuracy assessment of visual interpretation 

or the remote sensing procedure.  Therefore, combining field data collected on August 15
th

, 2012 

and March 13
th

, 2013 and utilizing the 2011 ortho-rectified aerial photograph, we geo-referenced 

the ACOE mosaic using a 2
nd

 order polynomial with a reported model-based positional RMSE of 

0.29 ± 0.13 m.  Through post-rectification accuracy assessment using the same 16 reference 

points we used to evaluate the mosaic,  we determined that the positional accuracy was improved 

to an overall remaining Euclidean RMSE of 0.7 m (lon = 0.5 m; lat = 0.5 m).   

For the evaluation of detection probability at the highest image resolution, we selected 3 

of the 91 low altitude images (Table 1); images were selected that had the highest visual 

variability in species presence.  The 3 selected images from East to West were 

20120816222532_513, 20120816222532_557, and 20120816222532_550, and were acquired at 

altitudes of 33.7, 34.2 and 32.2 meters above ground (mag) respectively.  We geo-referenced the 

images (ArcGIS) using a 2
nd

 order polynomial with a RMSE of 16.7, 12.8, and 28.5 cm 

respectively (Table 2), which resulted in a nominal spatial resolution of approximately 1 cm for 

all referenced images (Table 2; Spatial Reference Resolution). This resolution was supported by 

the higher nominal ground resolution calculated from the camera and acquisition specifications 

of the flight (Table 2; Nominal Ground Resolution).  For each 1 cm resolution image we geo-

referenced the corresponding lower resolution, high altitude image whose centroid was closest to 

the centroid of the higher resolution image (Table 2).  The closest matching image for _513 was 
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far off its recorded image center and was, therefore, discarded.   The next closest matching image 

was 20120815030421_285, acquired at 128.6 mag.  Image 20120814230041_255 matched 

image _557 and was acquired at 128.2 mag.  The closest image to _550 was not well-focused, 

and the second closest could not be well-referenced, which made the third closest image 

20120814230041_719, acquired at 133.5 mag, the best option.  The spatial resolution of the 

referenced images was approximately 3.1 cm (Table 2; Spatial Reference Resolution) when 

registered with a 2
nd

 order polynomial model with RMSEs of 15.1, 26, and 28.5 cm respectively 

(Table 2).   

Species List and Associated Morphological Groups 

Based on field work in the study area, digital image pattern recognition experience and 

species characteristics, we established a hierarchical classification scheme with species or taxon 

groups at the finest level and their associated morphological growth form (morphological level) 

at the next higher level (Table 3).  The criteria used to establish species-level categories included 

overall abundance in the study area (excluding rare species for lack of training opportunity), 

plant size, and localized density patterns.  All taxa included in the list were expected to be 

recognizable from 1-2 cm resolution RGB aerial photographs, the highest resolution we would 

evaluate.  If a plant was too small to be detected as an individual, but the expected growth 

density allowed it to be differentiated from its surrounding environment, it was included.   

The species we attempted to identify were grouped into 9 morphological groups (Table 

3).  The floating broadleaf group included species Nymphaea odorata, Nymphoides aquatica, 

Nuphar advena; the floating non-broadleaf group of included the bladderworts Utricularia 

foliosa and Utricularia purpurea.  The group of emergent broadleaf species was further divided 

into a sub-class of ferns with only Acrostichum danaeifolium expected to be identifiable at the 

species level.  The other broadleaf species we attempted to identify were Peltandra virginica, 

Crinum americanum, Sagittaria lancifolia, Pontederia cordata, and Thalia geniculata.  In the 

group of short graminoid species we included Panicum hemitomon, Rhynchospora tracyi, 

Rhynchospora inundata, and Eleocharis ssp.  Cladium jamaicense and Typha domingensis were 

the only two species we differentiated in the tall graminoid group.  Herbaceous vegetation was 

identified only at the morphological group level.  Shrub species included Salix caroliniana, 
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Myrica cerifera, Chrysobalanus icaco, and Cephalanthus occidentalis, and in the tree group we 

tried to differentiate among Annona glabra, Magnolia virginiana, Ilex cassine, Persea ssp. and 

Ficus ssp..  Finally, Periphyton, a group composed of floating and benthic periphyton, including 

epiphytic periphyton wrapped around stems and leaves, was also included.  The complete list of 

all 36 classes (27 species or taxon groups, 9 morphological groups) available for visual 

interpretation is provided in Table 3. 

Visual Photo Interpretation - Training Methods and Protocols 

We generated a 2x2 m grid covering the entire study area, allowing for a 50 m buffer on 

all 4 sides to avoid edge effects in subsequent analysis.  Grid cells that were entirely covered by 

the images were selected for interpretation.  The 649 grid cells covering the three images were 

distributed over the three areas of the non-contiguous photographs, (Fig. 1) with 184, 234, and 

231 cells in images 550, 513, and 557 respectively (Figures 2-513, 557, 550).  For relative 

abundance estimates for each grid cell we divided each cell into 16 0.25 m
2
 sub-grid cells (Fig 2; 

white grid in right zoom panels), which allowed for estimates with a precision of 6.25%.  After 

an initial training phase, both interpreters independently assigned relative abundance estimates 

for each 2x2 m grid cell based on coverage of the 16 cell sub-grid estimation.  For each grid cell 

estimated relative abundance estimates were records in a site (row) by species (columns) matrix.  

The visual interpretation of the 3 selected images resulted in 649 cells with abundance values 

ranging from 0 to 16.  If a cell sum of all values was less than 16, this indicated the presence of 

open water or bare ground.  All 649 grid cells were interpreted independently by both 

interpreters at the 1cm aerial photography resolution.  A subset of 100 grid cells was sampled 

with a simple random sample without replacement (Fig. 2; blue transparent grid cells) to be also 

interpreted from the high altitude, 3 cm resolution images.   

The interpreters were trained in the field and on screen pattern recognition.  For training 

purposes we gathered ground reference data on August 15
th

, 2012, one day of aerial photography 

acquisition, and on March 13
th

, 2013.  We collected 24 and 50 samples on day 1 and 2, 

respectively.  The ground referencing survey of samples was performed using real-time 

kinematic (RTK) surveying equipment to establish positional accuracies of 3-5 cm.  On day one 

we used a Trimble R6 and the Trimble network for kinematic real-time corrections, and on day 
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two, a Trimble R8 with the FL Department of Transportation network kinematic correction.  At 

each sample location we recorded dominant species presence and descriptors of the site, and on 

day one we also recorded water depths.  We also acquired 0.25 m
2
 quadrat plot photographs of 

the site, and for a subset of sites we took panoramic photographs.  All photographs are stored and 

linked to sample locations and data in a geographic database.   

Analysis 

We evaluated the detection of plant species and associated morphological levels by 

comparing (1) the detection agreement for class presence and (2) relative abundance estimate 

agreement for two interpreters.  Presence/absence and relative abundance were analyzed by 

comparing species and morphological group profiles (columns) and summarized site profiles 

(rows) between interpreters.  In a third analysis, we also compared high vs. medium resolution 

photography by interpreter, as well as the ratio of detection at species versus morphological 

group level and agreement for each of the interpreters.   

For the presence-absence analysis we converted the relative abundance estimates to 

presence-absence data and converted the differences in detection by the two interpreters into an 

index, where 0 = not detected by either interpreter, 1 = detected by interpreter 1 only, 2 = 

detected by interpreter 2 only, and 3 detected by both interpreters.  Adding all disagreement 

counts of 1 and 2 provided the site-specific presence agreement.  For each cell we also calculated 

diversity for each interpreter, assuming that if species estimates were assigned, that a 

morphological assignment for the same group for the same cell was due to at least 1 unidentified 

other species of that group being present.  Species profiles for presence agreement were 

generated by cross-tabulating the presence agreement index table across all sites for each species.  

In a similar fashion we generated the morphological site profiles and morphological group 

profiles across sites.  We assigned presence for a morphological group if at least one species of 

the group had been detected or if the group was detected without species specification.  Cross-

tabulating the agreement index table provided the basis for calculating the species-specific 

presence agreement in percent. The analysis of differences in relative abundance estimates was 

based on difference tables generated by subtracting the estimates of interpreter 2 from those if 

interpreter 1.   
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From the index and difference tables we generated 6 parameters of agreement: (1) 

relative species abundance estimates and (2) relative site presence agreement across all sites 

(species profiles); (3) morphological group abundance and (4) presence profiles (morphological 

group profiles); (5) summarized site profiles of corrected differences for species level evaluation, 

discounting for detection at the morphological group level of one interpreter but at the species 

level by the other interpreter; and (6) the difference in site diversity estimates.  The third analysis 

evaluated the ratio of detection at species to morphological group level evaluated by interpreter.  

The parameters of interest were agreement of class abundance estimates of the lower resolution 

interpretation with the higher resolution data, and the reduction of detection at the species level 

when compared with interpretation at the higher resolution data.  

Results 

Presence/Absence Species Profiles 

Of the 28 species/taxa (including sub-group ferns and group periphyton) on the species 

list, 9 were not detected by either interpreter in any of the 649 cells.  For Nuphar advena, 

Acrostichum danaeifolium, Thalia geniculata and Typha domingensis, we suspect the species 

were not present since detection of these species should be comparable to other broadleaf and tall 

graminoid plants that were detected frequently.  In the case of short graminoids Rhynchospora 

tracyi, Rhynchospora inundata, and Eleocharis ssp., detection of individual plants was very 

unlikely, but detection of larger dense patches was expected, which means the species were not 

present, too sparse or too rare to detect.  Absence of tree species Ilex cassine and Ficus ssp. was 

attributed either to absence in the sampled area, or to limited recognition due to interpreter 

inexperience.  These species were most likely to be confused with Magnolia virginiana or 

Persea spp.   

Summary statistics are provided for only those species that were actually identified at 

least once by either interpreter (Table 4).  The range of class agreement (presence and absence) 

of all 19 detected species classes ranged from 89.2% for Peltandra virginica to 100% for 

Panicum hemitomon (Table 4, column % Agree).  The most frequently-encountered  classes 

identified at the grid cell level by both interpreters were Cladium, Ferns, periphyton, Peltandra 

and Nymphaea, detected in 71.5%, 44.7%, 26.5%, 23.1% and 16.8% of the 649 cells respectively 



13 

 

(Table 4, column % Both).  The classes that differed more than 5% in presence indicated by 

either interpreter 1 or 2 were Peltandra (10.8%), ferns (10.5%), Cephalanthus (5.9%), 

Periphyton (5.6%) and the 2 Utricularia species, U. foliosa (5.4%) and U. purpurea (5.2%) 

(Table 4, column % Either) with a mean difference of 3.5% and a standard deviation of 3.2% 

across all classes.  The rarest class detected was Panicum hemitomon with a 100% presence 

agreement in two cells (0.3%), followed by Pontederia cordata, identified by only one 

interpreter in 6 cells (0.9%) and Persea ssp. detected in agreement in 2 cells (0.3%) and in 2 

additional cells by either interpreter (0.6%) (Table 4, column % Det). 

Presence/Absence Morphological Group Profiles  

Aggregating all species to their corresponding morphological groups resulted in class 

agreement (presence and absence) for all 9 morphology groups ranging from 78.1% for 

herbaceous to 97.8% for tall graminoids and trees, with mean agreement of 93.3% and a standard 

deviation of 6.2% (Table 5, column % Agree).  The most frequently encountered classes with > 

20% presence and identified by both interpreters were emergent broadleaf (71.8%), tall 

graminoid (71.5%), shrub (30.7%), periphyton (26.5%) and floating broadleaf (21.4%) (Table 5, 

column % Both).  The morphological group of herbaceous vegetation had the highest 

disagreement with 21.9% and a presence agreement of 11%.  The other four classes that differed 

by more than 5% between interpreter were shrub (8.2%), emergent broadleaf (7.7%), floating 

non-broadleaf or Utricularia ssp. (7.6%), and periphyton (5.6%) (Table 5, column % Either).  

Mean difference for either interpreter was 6.7% with a standard deviation of 6.2% across all 

classes.  The rarest morphological groups recorded were short graminoids, followed by floating 

non-broadleaf, and trees; these were absent in 91.8%, 85.2% and 85.1% of all cells (Table 5, 100 

– (% Either + % Both). 

Relative Abundance Species Profiles 

Comparing relative abundance estimates of both interpreters indicated that there was a 

very high agreement in absolute as well as relative percent abundance of all classes.  The 

difference in percent abundance estimates for species across all three interpreted images ranged 

from less than 0.1% for 4 classes (Panicum hemitomon, Crinum americanum, Magnolia 

virginiana, Sagittaria lancifolia) to greater than 0.5% for Utricularia purpurea and periphyton 
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(both at 0.6%), with the maximum of 1.4% for Cladium jamaicense (Table 6, column % Diff).  

The mean difference was 0.3% with a standard deviation of 0.4%.  Abundance estimates of both 

interpreters for species present > 5% were Cladium jamaicense (41.6%), ferns (12.1%), Salix 

caroliniana (6.3%), Nymphaea odorata (6.3%), and periphyton (5.6%) (Table 6, column % 

Mean).  Relative abundance difference between interpreters normalized by overall detected 

abundance of the greater of interpreter 1 or 2 for the same class was largest for Salix caroliniana 

(16.2%), followed by periphyton (10.2%) and Cladium jamaicense (3.3%), whereas ferns and 

Nymphaea odorata differed by only 1.6% (Table 6, column % relDiff).  The very rare class 

Pontederia cordata was the only class detected by only one interpreter and had therefore a 

relative difference of 100%.    

Relative Abundance Morphological Group Profiles 

Relative abundance estimates at aggregated morphological groups ranged from 1% for 

short graminoids to 41.7% for tall graminoids, represented by only Cladium jamaicense, for 

which the difference in abundance was largest with 1.3% (Table 7, columns % Mean and % 

Diff).  Lowest difference in percent abundance was recorded for floating broadleaf with 0% at 

7.1% abundance (Table 7, columns % Mean and % Diff).  Mean abundance differences were 

0.6% ± 0.5%, whereas the relative abundance difference had a mean of 15% ± 11.5%.  The 

group with the highest relative abundance difference was floating broadleaf with 50% difference 

(1.6% vs. 0.8%).  The relative differences for the groups with presence over 10% were tall 

graminoid with a difference of 3.1%, followed by emergent broadleaf with 5.1%, and shrub with 

9.8% with an overall mean presence of 41.7%, 19.1% and 11.6% respectively.     

 

Site Profiles for Species and Morphological Groups 

Site profiles for species and morphological group presence indicated a mean agreement 

of 95.6% and 93.3% with a minimum agreement of 80.8% and 55.6%, respectively (Table 8).  

The site differences for relative abundance between species and morphological groups showed 

similar patterns with a maximum difference in abundance for species corrected for group 

detection at 62.5% (mean = 11.3%) and for morphological groups 68.8% (mean = 10.1%).  The 

distribution pattern for diversity for both interpreters was very similar (Table 8).  Mean diversity 
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was 3.3 and 3.4 for interpreters 1 and 2, respectively, with a mean difference of 0.3 and a 

maximum difference of 4 species (Table 8).        

Comparison of High- vs. Medium Resolution Photography by Interpreter  

A subset of the 100 samples (SRSWR) of the 649 cells interpreted a second time from the 

3 cm resolution photographs had a species overlap of 87.5% (14 of 16).  One interpreter detected 

Cephalanthus occidentalis and the other Pontederia cordata.  Detection at the morphological 

group level had a minor presence discrepancy, interpreter 1 classifying 1/16 of a cell as tree and 

interpreter 2 detecting 1/16 cells as floating broadleaf, not indicating species.  Overall agreement 

for both interpreters between the lower and higher resolution images when summarized at 

morphological groups was high with the highest differences observed for Periphyton which 

decreased by 3.1% and increased by 4.2% for interpreter 2 and 1, respectively.  The difference 

between both interpreters at the higher resolution was 1.1%, whereas the difference in relative 

abundance increased to 8.4%.  The groups that displayed a significant increase in relative 

abundance for its corresponding species or detection at the group level was emergent broadleaf 

with an increase of 4.4% and 4.8% and significant decrease was encountered for tall graminoids, 

which were only detected at the species level (Cladium jamaicense) by both interpreters, 

increasing by 2.5% and 1.8% for interpreters 1 and 2, respectively.    

Reduction in detection precision, indicated by an increase in morphological group 

detection over species recognition, varied for the different morphological groups.  Emergent 

broadleaf and shrub groups were most affected.  Classification of emergent broadleaf over 

corresponding species increased by 19.9% and 36.6% and for shrub 7.1% and 35.41% for 

interpreters 1 and 2, respectively.  Reduction of detection precision, especially for emergent 

broadleaf species, is explained with the high species detection confidence at the higher 

resolution.  Ferns saw the largest decrease in detection, decreasing by 3.7% and 4.1% for 

interpreters 1 and 2, respectively.  The species that had a consistent increase in detection of 

relative abundance for both interpreters was Nymphoides aquatica and Cladium jamaicense.        
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Discussion 

Successful detection of wetland species from high resolution photography acquired by 

unmanned aerial systems depends in large part on the species morphology, growth density and 

the resolution and quality of the acquired data.  Interpretation of the photographs at the species 

level needed training but was definitely possible for the majority of species that we included in 

our species list.  We believe that with more training, we could have attempted to distinguish fern 

species and more tree and shrub species.  We felt that additional experience comparing the image 

in the photograph and the species on the ground would have increased our ability to detect and 

discriminate.  For example, understanding how trees and shrubs differ in color, texture, and 

overall morphology and branching patterns at different sizes (juvenile vs. adult) would increase 

discrimination and accuracy in this group.  Similarly, additional understanding of how species’ 

images varied between the centers vs. the edge of the photographs (i.e., varying degrees of plan 

vs. profile views) would increase accuracy of interpretation.  The high agreement of visual 

interpretation results for two interpreters, however, argues that the process is reproducible and 

can provide exhaustive presence and abundance data for vegetation at a relatively fine taxon 

scale across large extents and as a permanent record.   

The highest agreement for relative abundance was achieved for the morphological group 

of floating and emergent broadleaf vegetation; more difficulties were encountered for short 

graminoid species.  Detection of floating broadleaf species is easier than emergent vegetation 

primarily because the leaf surface in relation to the remote sensor view is close to orthogonal, 

whereas for emergent vegetation, it both has less area and often an oblique or parallel orientation 

to the sensor view.    

Species detection also depends on the timing of image acquisition in relation to species-

specific phenological stages.  For example, the imagery used in this study was acquired in 

August, which coincided with the leafless season for the shrub Cephalanthus occidentalis.  The 

identification key we used for this species was bright, short and Y-shaped branching features.  In 

this condition, C. occidentalis could be confused with sparse Cladium but allowed for 

identification of sub-canopy species.  Relative abundance of this species when it is leafed-out 

(beginning of the wet season) will most certainly increase, while detection of sub-canopy and 

benthic species will decrease.  Consideration of vegetation phenological cycles is valuable for 
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interpretation and can allow for species-specific detection campaigns during times when the 

species of interest are least likely to be confused with other vegetation.  

In the highest resolution images it was possible to use color, size, and arrangement of 

flowers and inflorescences to aid in species detection.  The small yellow inflorescences of U. 

foliosa were one flag for this species’ presence, which could then be confirmed by additional 

vegetative cues.  Similarly, the white/pale purple flowers of U. purpurea indicated its presence in 

thick periphyton mats, as well as in surface water.  The large flowers of Crinum americanum and 

M. virginiana aided in identification of these species at both levels of resolution.  Because 

flowering intensity varies seasonally for many species, incorporating understanding of flowering 

phenology into the photo interpreter’s determinations can aid in species discrimination.  A 

corollary of this effect is that differences in timing of image acquisition in relation to flowering 

will also affect detection probability in seasonally flowering species.   

 The ability to interpret vegetation in the photographs requires training and experience, 

even for experienced photo interpreters and field botanists.  Tree and shrub species, especially, 

could be hard to distinguish, in part because they are seen from a point-of-view that is very 

different how they are viewed on the ground.  Leaf size, shape, color, and texture, as well as 

crown shape, provided our main clues, but these may not always distinguish between Magnolia 

and Ficus, Persea and Ilex or even Salix.  Understanding meso-scale characters, more obvious in 

these photographs than on the ground or from traditional aerial photography, should allow for 

more confidence in identification.  Potential tree/shrub characters include overall growth form 

(e.g., compact vs. diffuse), canopy shape (e.g., rounded vs. amorphous), and branching 

architecture (branching frequency, branch angles) and how these characters interact with leaf 

arrangement on branches (e.g., clustered vs. evenly distributed) and leaf shape.  Training for 

these characters would require visiting precisely known locations with photographs in hand to 

correlate the patterns in the image with the species’ identifications.  Additionally, these types of 

characters need to be understood for different image resolutions, which provide different details 

and patterns in the images.  

Quality differences between images of medium resolution that were used to compose the 

mosaic, it was not possible to compare single geo-referenced medium resolution image and 

mosaic interpretation.  Figure 3 demonstrated the quality differences of different sections of the 
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mosaic.  We do not recommend to attempt to detect and identify vegetation at the species or 

morphological group level from the mosaic, since for different sections of the mosaic the 

interpretation method needs to be adjusted, which does not allow for a fair comparison and 

consistent estimation of relative abundances.   

For our study the usefulness of the mosaic after referencing to ortho-photography and 

high accuracy GPS reference locations in the field was limited but essential to the referencing of 

the single high resolution (~1cm) and medium resolution (~3 cm) individual images.  Therefore, 

we recommend developing a script that allows for batch referencing of each individual image 

based on automatic reference point extraction from the mosaic.  If flight location in combination 

with attitude and altitude information can be used to improve ground referencing of individual 

image centers, this process could possibly be automated.   
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Objective 2:  Evaluation of stability and consistency of plant association definitions at 

multiple sampling intensities derived from continuous hrAP interpreted vegetation data 

High resolution aerial photography has the potential to provide data that can address 

fundamental questions in defining plant associations at different scales.  A common practice for 

deriving species association, assemblage or community classifications is to randomly sample 

quadrats of a specific size (e.g., 1 m
2
), and to detect groups or clusters based on the relative 

abundance of species in the quadrats using parametric or non-parametric multivariate statistical 

methods (Greig-Smith 1983, Wildi 2010).  When applied to a single sample, this method 

provides a single solution consisting of groups with associated group labels that does not allow 

for confidence estimates of generality and consistency of plant association definitions; such 

estimates, however, are important when attempting to classify new sites (De Cáceres and Wiser 

2012).  Tichý et al (2011) proposed a bootstrap without replacement sampling framework and 

comparison of subset partitions to full dataset partitions (Tichý et al. 2011) to evaluate cluster 

(group) stability.  This approach would allow for stability estimation of class definitions for a 

large dataset but, unless samples are collected for continuous large areas, evaluation for different 

spatial scales is not supported, since abundance estimates are gathered for a random sample at 

only one specific grain size.  Gathering relative abundance estimates for extended regions in the 

field to allow for re-sampling at various scales is very time intensive and invasive.  The use of 

relative abundance estimates derived from visually interpreted hrAP as demonstrated in 

Objective 1 opens up the opportunity to sample across scales and to establish confidence 

estimates of plant association classification systems at each individual scale.  This approach 

minimizes field sampling to training and verification of visual interpretations and is therefore an 

economically and environmentally viable option.   

For the purpose of investigating stability of single or multi-scale plant association 

definitions, we developed a re-sampling framework that relies on the existence of spatially 

continuous vegetation data and allows for sampling and establishment of quantitative plant 

association definitions from multiple finite samples at various sampling intensities and across 

multiple scales (Fig. 4).  The re-sampling framework to evaluate stability and generality of plant 

associations considers 3 factors to determine stability.  The first addresses variability in optimal 
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number of plant association clusters derived from k-means cluster analysis across sample sites.  

The second and third factors address association-specific and location-specific confidence 

estimates, respectively (Fig. 4).  In this framework the classification of plant associations is 

based on non-hierarchical clustering (i.e., k-means) of relative abundance estimates of plant 

species.  Sampling of relative abundance estimates at the smallest grid size of 2 m generates the 

highest resolution association definitions, and an iterative re-sampling with subsequent cluster 

analysis provides multiple plant association definitions (Fig. 4) that, when combined, allow for 

confidence building on association results from samples.  As the sampling area increases, 

relative abundances of species are aggregated as a weighted average of all neighboring sampling 

units of the random sample (Fig. 4).  The possibility of seamless aggregation of random samples 

to larger grain sizes enables a multi-scale sampling, and the re-sampling design provides the 

framework to estimate scale-specific community classification stability and detection probability.   

For lack of sufficiently large contiguous interpreted relative abundance estimates at the 2 

m grain size, in this study we focused on the effects of sample size on species association pattern 

detection and confidence building (Fig. 4; red box) rather than on scaling, but the framework was 

developed for inter-scale analysis as well.  The objective of this analysis was to develop methods 

for vegetation classification using visually interpreted relative abundance data from hrAP and to 

demonstrate how the use of spatially continuous abundance data derived from hrAP can be 

useful in the establishment of consistent and stable plant association classification systems when 

utilized in a re-sampling framework.  

Methods 

We developed the re-sampling framework in R (R Development Core Team 2013), 

utilizing several packages in the preparation and post-processing of data as well as in the 

statistical analysis (Liaw and Wiener 2002, Bivand et al. 2013, Bivand and Lewin-Koh 2013, 

Oksanen et al. 2013, R Development Core Team 2013).   The main parameters that can affect 

vegetation classification outcome are scale, sample intensity, cluster method and cluster 

algorithm parameters 

.  Our framework allows for scale sampling at multiples of the smallest grain size of the 

raw data input.  The sample intensity can be set for user defined ranges and intervals (i.e. 
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between 50 and 200 samples per cluster analysis, with sample number increasing in intervals of 

50).  The cluster method we implemented is the k-means cluster algorithm based on the methods 

of Hartigan and Wong (Hartigan and Wong 1979).  Two critical parameters in determining 

optimal cluster solutions are the number of clusters created and the starting configuration of the 

clustering process.  A criterion to determine the optimal number of clusters is the Calinski-

Harabasz criterion, which is an index based on a simple F (ANOVA) statistic evaluating the sum 

of squares within clusters and among the clusters (Caliński and Harabasz 1974).  The 

cascadeKM function in the vegan R package (Oksanen et al. 2013) implements the Calinski-

Harabasz criterion for a range of cluster number solutions between a user-defined minimum (i.e. 

2) and maximum (i.e. one third of the number of sampled sites).  In order to examine the effect 

of the starting configuration, for every evaluated cluster size the k-means algorithm was 

implemented multiple times (i.e. 100 ) from a random seed.  We restricted optimal solutions to 

cluster results that were represented with at least three representative sites in each cluster.  When 

the optimal number of clusters and cluster solutions were found, all sample sites (649 cells from 

3 hrAP images) were assigned to one of the k clusters, and mean presence of all species was 

calculated for each cluster.  Then the cluster name was derived based on the three most abundant 

species above a user-defined threshold (i.e. 2%).   

For each clustering iteration we implemented a supervised classification routine that 

establishes decision rules based on the relative species distribution of samples assigned to each 

cluster for the current clustering solution.  Classifiers were established based on a recursive 

partitioning algorithm implemented in a random forest framework, which is founded in the work 

of Leo Breiman (Breiman 2001, 2002).  Random forests minimize bias and avoid over-fitting of 

single decision tree solutions.  When combined, the multiple trees give more robust decision 

solutions that can provide uncertainty estimates of the final classification tree.  The random 

forest routine of the R package randomForest as implemented by Liaw and Wiener (Liaw and 

Wiener 2002, Svetnik et al. 2003, Breiman et al. 2006) grows multiple trees from re-sampled 

(bootstrap) training data subsets (i.e. 500), and, therefore, can generate internal unbiased 

estimates of the generalization error during the forest construction process (Biau et al. 2008).  

The final classification decision tree was then applied to the full dataset (i.e., 649 grid cells), 

predicting plant association membership and association membership probabilities for each 
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location.  The parameters we used to evaluate the plant association classification consistency in 

the full process of the multi-stage re-sampling process were (1) distribution of optimal number of 

clusters for all sampling intensities of interest, (2) class-specific model-based error estimates and 

class-specific classification probabilities of sites that had not been included in the clustering and 

classifier establishment routine, and  (3) spatially explicit (site-specific) distribution of mean and 

standard deviation of membership probability and consistency of plant association label 

assignment.  

We applied this analysis framework to evaluate the effect of sample size on consistency 

of class-specific and site-specific probability estimates in the three high resolution images from 

WCA 3A WEST that we had visually interpreted from the hrAP (Objective 1, above). 

Results 

The number of optimal vegetation clusters ranged from 4 to 10 with a mean of 4.5 ±1.2 

(mean ± SD) for sample size 50, declining to 4.1 ± 0.4 for 200 samples.  The mean diversity of 

final clusters increased from 8.8 ± 1.3 species to 12.6 ± 1.1, 13.9 ± 1.1 and 15.0 ± 1.1 for sample 

sizes 50, 100, 150 and 200, respectively.  Model-based classification error for the random forest 

classifiers decreased from 12.2 ± 8.3 for 50 samples to 7.2 ± 3.4, 5.9 ± 2.6 and 5.8 ± 2.3 for 

sample intensities 100, 150 and 200, respectively.   

Plant association frequencies and probabilities were derived from cluster results across all 

iterations.  The most frequently detected plant association across all sampling intensities was the 

Cladium-Fern-Peltandra association, which was encountered in 306 of the 400 cluster iteration 

results (76.5%), followed by the Nymphaea-Periphyton-Cladium (40%), Fern-Salix-

Cephalanthus (18.5%), Nymphaea-Periphyton-Utricularia (18.0%), and Salix-Fern-Cladium 

(18.5%).  The most abundant tree association that was detected was Magnolia-Myrica-Cladium, 

represented in 11% of the cluster results across all iterations.  More than 95% of all cells were 

assigned to 5 associations for 50 and 100 samples and to 3 associations for 150 and 200 samples.   

Association assignment probabilities based on the highest probability across all 100 

iterations and by 4 sampling intensities indicated that the Cladium-Fern-Peltandra association 

was detected not only at the highest frequency but also with the highest average probability of 

0.82, 0.88, 0.90 and 0.92 for 50, 100, 150 and 200 samples, respectively (Table 9).  Both cluster 
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distribution and associated probabilities from the 100 sample cluster iteration are mapped for 

each hrAP image in Figs. 5-7.  The four association groups that were across all four sampling 

intensities were Magnolia-Cladium-Myrica was assigned mean probabilities of 0.66 (50 

samples), 0.60 (100 samples), 0.86 (150 samples), and 0.91 (200 samples).  Nymphaea-

Periphyton-Cladium was detected with the second highest average probability at 50 samples with 

a probability of 0.74; it was 4
th

 at 100 samples with 0.81 (Figs. 5-7) and 3
rd

 at 150 and 200 at 

probabilities of 0.83 and 0.88, respectively.  The Fern-Salix-Cephalanthus association had a 

mean probability of 0.84, 0.83, 0.72 and less than 0.65 for 200, 150, 100 and 50 respectively 

(Table 9).   

Site specific post-classification association assignment probabilities summarized across 

all 649 cells ranged from 0.78 ± 0.14, 0.84 ± 0.12, 0.87 ± 0.11, and 0.89 ± 0.1 for 50, 100 (Figs. 

5-7), 150 and 200 samples, respectively.  The combination of frequency and probability provide 

a better understanding for cluster representativeness and stability for the evaluated region.  For 

example, for a sampling intensity of 100 samples the 5 most frequently encountered associations 

were Cladium-Fern-Peltandra (63%) with a probability of 0.88, Nymphaea-Periphyton-Cladium 

(11%) with a probability of 0.81, Salix-Fern-Cladium (9%) and Fern-Salix-Cephalanthus (8%) 

with probabilities of 0.83, and Magnolia-Myrica-Cladium (4%) with a probability of 0.60 (Figs. 

5-7). 

Discussion 

The hrAP is extremely useful for deriving plant association classifications because it 

enables estimation of class- and site-specific membership probability distributions and their 

associated parameters.  Confidence building and stability assessment of plant associations 

derived from samples is needed when attempting to detect associations from remotely sensed 

data.  The application of association classifications to larger areas or entire regions is only valid 

if stability and consistency are confirmed.  The use of hrAP allows for instantaneous visual 

feedback on adequacy of associations that results from cluster analysis.  Multivariate statistical 

methods (i.e., clustering) have a tendency to provide multiple statistically reasonable solutions 

that can be highly variable but are caused by minor differences in parameter selection (parameter 

sensitive).  The re-sampling framework we developed enables visual and statistical evaluation of 
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plant associations before they are used in detection and mapping applications.    Based on visual 

validation of association classifications over a relatively large area (all combined visually 

interpreted photographs), clustering parameters can be adjusted until statistically valid and 

visually reasonable assignments for each grid cell are achieved.  Visual evaluation of results 

coupled with statistical support allowed us to make the decision to select sub-optimal statistical 

solutions that had a more appealing association classification schema, decreasing site-specific 

mean probability of association assignment by only 2%.   

The generality and spatial extensibility of a locally derived association classification can 

be verified for areas that extend beyond the sampled area (larger or more distant) if relative 

abundance estimates exist at the grain size at which association classifications were derived.  In 

this study we demonstrated the value of the use of hrAP-derived abundance estimates in a 

spatially explicit form, but the validity of the results is limited at this time, since the sample size 

for re-sampling procedures needs to be larger.  At the 200 sample intensity, almost 1/3 of all 

cells were selected in every sample draw, which means that there was a great overlap of the 

sample sets and thus solutions naturally converge.  A second aspect of limited spatial extent is 

spatial auto-correlation of samples, which is not necessarily a crucial aspect, because variability 

of species co-occurrence over short distances is very high in our study environment.  Because of 

the lack of a sufficiently large contiguous area of the highest resolution photographs, we could 

not evaluate the framework for multi-scale applications.  Once larger regions are available and 

visually interpreted, additional spatial restrictions could be applied during each sampling 

procedure. 

Several of our clustering framework parameters need to be revisited and adjusted.  One of 

these is the minimum number of classes that are expected as sampling intensity increases.  The 

decrease in optimal number of clusters based on within and between cluster variances (the 

Calinski-Harabasz criterion) might not be the most useful criterion, especially if cluster sizes are 

expected to differ as much as they do in the case of our study area.  Optimization of cluster count 

is based on the minimal number of supported cluster solutions excluding single species 

associations.  At the 2 m grain size, pure classes need to be permitted, especially for large tree 

species.  As the geographic extent and grain size increase, the set of current parameters might be 

more appropriate.   
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Tables and Figures 

 

Table 1  Number of raw images, mean altitudes and standard deviations in meters above ground (mag) acquired at low 

and high flight altitudes cross-tabulated by study area.  

 

 

 

Table 2  Camera specifications and raw and geo-referenced image characteristics.  

 

 

 

Table 3 Vegetation classes considered in the visual interpretation process.  BOLD CAPITALS indicate morphological 

groups.  CAPTIALS indicate sub-group.    

 

Low Altitude High Altitude

East number of Images 97 931

West number of Images 91 1063

Mean Altitude (mag) 35.7 136.1

Standard Deviation (mag) 8.4 11.8

Camera 

Type
Dimension Value Units Image Name

Flight 

Altitude 

(mag)

Nominal 

Ground 

Resolution 

(cm)

2nd Order 

Polynomial 

RMSE (cm)

Number 

of 

Reference 

Points

Spatial 

Reference 

Resolution 

(cm)

sensorWidth 17.3 mm 20120816222532_513 33.7 0.64 16.7 10 1.06

sensorHeight 13 mm 20120815030421_285 128.6 2.44 15.1 46 3.15

resWidth 3648 dpi 20120816222532_557 34.2 0.65 12.8 58 1.09

resHeight 2736 dpi 20120814230041_255 128.2 2.43 26 78 3.07

cropFactor 2.02 - 20120816222532_550 32.2 0.61 28.5 54 1.03

focalLength 25 mm 20120814230041_719 133.5 2.53 28.5 184 3.1

O
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p

u
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E4
2

0

FLOATING BROADLEAF EMERGENT BROADLEAF SHORT GRAMINOID SHRUB

Nymphaea odorata FERN Panicum hemitomon Salix caroliniana

Nymphoides aquatica Acrostichum danaeifolium Rhynchospora tracyi Myrica cerifera

Nuphar advena Peltandra virginica Rhynchospora inundata Chrysobalanus icaco

Crinum americanum Eleocharis ssp. Cephalanthus occidentalis

FLOATING NON-BROADLEAF Sagittaria lancifolia

Utricularia foliosa Pontederia cordata TALL GRAMINOID TREE

Utricularia purpurea Thalia geniculata Cladium jamaicense Annona glabra

Typha domingensis Magnolia virginiana

PERIPHYTON HERBACEOUS Ilex cassine

Persea ssp.

Ficus ssp.

Vegetation Classes



26 

 

 

Table 4 Species profile for presence/absence data from two photointerpreters (Int 1 and Int 2).  % Agree = percent that 

both interpreters identified a class as present; % Int 1, % Int 2 are the percent of all cells in which Int 1 or Int 2 identified 

a class as present; % Both is the percent of all cells in which both interpreters identified a class as present; % Either is the 

percent of all cells in which either interpreter identified a class as present; % Det = the percent of all cells in which a class 

was determined to be present by at least one interpreter. 

 

 

 

Table 5 Morphological group profile for presence/absence data from two photointerpreters (Int 1 and Int 2).  % Agree = 

percent that both interpreters identified a class as present; % Int 1, % Int 2 are the percent of all cells in which Int 1 or 

Int 2 identified a class as present;  % Both is the percent of all cells in which both interpreters identified a class as 

present; % Either is the percent of all cells in which either interpreter identified a class as present; % Det = the percent of 

all cells in which a class was determined to be present by at least one interpreter. 

 

Vegetation Class % Agree % Int 1 % Int 2 % Both % Either % Det

Nymphaea odorata 97.7 1.7 0.6 16.8 2.3 19.1

Nymphoides aquatica 96.8 2.6 0.6 8.5 3.2 11.7

Utricularia foliosa 94.6 4.0 1.4 4.3 5.4 9.7

Utricularia purpurea 94.8 4.8 0.5 4.2 5.2 9.4

FERN 89.5 3.5 6.9 44.7 10.5 55.2

Peltandra virginica 89.2 7.7 3.1 23.1 10.8 33.9

Crinum americanum 97.2 1.5 1.2 7.7 2.8 10.5

Sagittaria lancifolia 97.8 1.5 0.6 2.0 2.2 4.2

Pontederia cordata 99.1 0.9 0.0 0.0 0.9 0.9

Panicum hemitomon 100.0 0.0 0.0 0.3 0.0 0.3

Cladium jamaicense 97.8 0.8 1.4 71.5 2.2 73.7

Salix caroliniana 95.4 3.7 0.9 15.9 4.6 20.5

Myrica cerifera 98.2 0.5 1.4 4.3 1.9 6.2

Chrysobalanus icaco 99.7 0.0 0.3 0.9 0.3 1.2

Cephalanthus occidentalis 94.1 3.2 2.6 11.6 5.9 17.4

Annona glabra 99.2 0.5 0.3 5.9 0.8 6.6

Magnolia virginiana 99.1 0.5 0.5 6.6 0.9 7.6

Persea ssp. 99.4 0.3 0.3 0.3 0.6 0.9

PERIPHYTON 94.5 1.9 3.7 26.5 5.6 32.1

Vegetation Class % Agree % Int 1 % Int 2 % Both % Either % Det

FLOATING BROADLEAF 97.4 1.9 0.8 21.4 2.6 24.0

FLOATING NON-BROADLEAF 92.5 6.3 1.2 7.2 7.6 14.8

EMERGENT BROADLEAF 92.3 1.9 5.9 71.8 7.7 79.5

SHORT GRAMINOID 97.1 2.0 0.9 5.2 2.9 8.2

TALL GRAMINOID 97.8 0.8 1.4 71.5 2.2 73.7

HERBACEOUS 78.1 6.2 15.7 11.1 21.9 33.0

SHRUB 91.8 4.9 3.2 30.7 8.2 38.8

TREE 97.8 0.9 1.2 12.8 2.2 15.0

PERIPHYTON 94.5 1.9 3.7 26.5 5.6 32.1
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Table 6  Species profiles for relative abundance estimates of vegetation classperformed by two interpreters in percent of 

649 grid cells.  Vegetation Class as in Table 3.  % Int 1 and % Int 2 = percent class was found by each interpreter; % 

Mean = mean of % Int 1 and % Int 2.  %Diff is absolute percent difference between interpreter 1 (Int 1) and interpreter 

(Int 2).  Relative difference (%relDiff) is the difference normalized by the maximum relative abundance estimated by 

either interpreter 1 or 2.  * indicates species that was detected by both interpreters at percentages less than 0.1% but in 

full agreement (0% difference).     

 

 

 

 

 

 

 

 

 

Vegetation Class % Int 1 % Int 2 % Mean % Diff % relDiff

FLOATING BROADLEAF 0.0 0.0 0.0 0.0 -

Nymphaea odorata 6.2 6.3 6.3 0.1 1.6

Nymphoides aquatica 0.9 0.8 0.9 0.1 11.1

Utricularia foliosa 0.6 0.4 0.5 0.2 33.3

Utricularia purpurea 1.0 0.4 0.7 0.6 60.0

EMERGENT BROADLEAF 1.0 2.2 1.6 1.2 54.5

FERN 12.0 12.2 12.1 0.2 1.6

Peltandra virginica 4.1 3.8 4.0 0.3 7.3

Crinum americanum 1.1 1.1 1.1 0.0 0.0

Sagittaria lancifolia 0.4 0.4 0.4 0.0 0.0

Pontederia cordata 0.1 0.0 0.1 0.1 100.0

SHORT GRAMINOID 0.8 1.0 0.9 0.2 20.0

Panicum hemitomon * 0.0 0.0 0.0 0.0 0.0

TALL GRAMINOID 0.0 0.1 0.1 0.1 100.0

Cladium jamaicense 42.3 40.9 41.6 1.4 3.3

HERBACEOUS 2.1 2.4 2.3 0.3 12.5

SHRUB 0.6 0.7 0.7 0.1 14.3

Salix caroliniana 6.8 5.7 6.3 1.1 16.2

Myrica cerifera 1.0 1.1 1.1 0.1 9.1

Chrysobalanus icaco 0.2 0.3 0.3 0.1 33.3

Cephalanthus occidentalis 3.5 3.1 3.3 0.4 11.4

TREE 0.1 0.1 0.1 0.0 0.0

Annona glabra 2.6 2.3 2.5 0.3 11.5

Magnolia virginiana 4.3 4.3 4.3 0.0 0.0

Persea ssp. 0.1 0.2 0.2 0.1 50.0

PERIPHYTON 5.9 5.3 5.6 0.6 10.2
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Table 7  Morphological group profiles for relative abundance estimates performed by two interpreters in percent of 649 

grid cells.  Vegetation Class as for morphological classes in Table 3.   % Int 1 and % Int 2 = percent class was found by 

each interpreter; % Mean = mean of % Int 1 and % Int 2.  %Diff is absolute percent difference between interpreter 1 

(Int 1) and interpreter (Int 2).  Relative difference (%relDiff) is the difference normalized by the maximum relative 

abundance estimated by either interpreter 1 or 2.

 

 

 

Table 8 Site profile summary of vegetation class relative abundance differences between two interpreters and corrected 

differences for species (relAbn SpecDif, relAbn SpecDifCor) and for morphological group (relAbn MorphDif); of  

vegetation class presence/absence agreement between two interpreters for species (Pres/Abs SpecAgree) and 

morphological group (Pres/Abs. MorphAgree); and   diversity per cell for each interpreter (Diversity Int1, Diversity 

Int2), as well as diversity difference per cell between Int1 and Int2 (Diversity Dif).  Data for 649 sites (cells) in 3 hrAP. 

 

 

 

Table 9  Mean association assignment probability (Mn Prob) of the four most frequently occurring plant associations for 

the 50, 100, 150 and 200 sampling intensities.  

 

 

  

Vegetation Class % Int 1 % Int 2 % Mean % Diff % relDiff

FLOATING BROADLEAF 7.1 7.1 7.1 0.00 0.0

FLOATING NON-BROADLEAF 1.6 0.8 1.2 0.80 50.0

EMERGENT BROADLEAF 18.6 19.6 19.1 1.00 5.1

SHORT GRAMINOID 0.9 1 1.0 0.10 10.0

TALL GRAMINOID 42.3 41 41.7 1.30 3.1

HERBACEOUS 2.1 2.4 2.3 0.30 12.5

SHRUB 12.2 11 11.6 1.20 9.8

TREE 7.1 6.9 7.0 0.20 2.8

PERIPHYTON 5.9 5.3 5.6 0.60 10.2

Min.   1st Qu. Median Mean   3rd Qu. Max.   

relAbn SpecDif 0.0 6.3 12.5 12.6 18.8 68.8

relAbn SpecDifCor 0.0 6.3 9.4 11.3 15.6 62.5

relAbn MorphDif 0.0 3.1 9.4 10.1 15.6 68.8

Pres/Abs SpecAgree 80.8 92.3 96.2 95.6 100.0 100.0

Pres/Abs. MorphAgree 55.6 88.9 100.0 93.3 100.0 100.0

Diversity Int1 1.0 2.0 3.0 3.3 4.0 9.0

Diversity Int2 1.0 2.0 3.0 3.4 4.0 10.0

Diversity Dif 0.0 0.0 0.0 0.3 0.0 4.0

Plant Association Mn Prob (50) Mn Prob (100) Mn Prob (150) Mn Prob (200)

Cladium-Fern-Peltandra 0.82 0.88 0.9 0.92

Magnolia-Cladium-Myrica 0.66 0.6 0.86 0.91

Nymphaea-Periphyton-Cladium 0.74 0.81 0.83 0.88

Fern-Salix-Cephalanthus 0.84 0.83 0.73 0.65
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Figure 1  Aerial mosaic of regions ‘WEST’ and ‘EAST’.  Red rectangles in study area ‘WEST’ indicate locations of the 

three selected highest resolution images that were visually interpreted; these same areas were also visually interpreted for 

the medium resolution images.  
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Figure 2  Top to bottom:  1 cm resolution geo-referenced aerial photographs 513, 557 and 550.  The right panels show 

1:50 zoom areas;  these locations are outlined in turquois in the overview maps to the left.  Red rectangles are the 2 x 2 m 

grid;  the blue transparent cells in images on the left indicate the 100 samples that were also interpreted at the 3 cm image 

resolution.   Top right: Cell with about 44% Peltandra virginica; 12.5% Nymphaea odorata, periphyton and Cephalanthus 

occidentalis; and 6% Nymphoides aquatica and herbaceous vegetation.  Center right:  75% Nymphaea odorata; 18.25% 

periphyton and short graminoids.  Bottom right:  75% Magnolia virginica; 12% ferns; and 6% periphyton and Myrica 

cerifera.    
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Figure 3  Quality differences across the 3 cm mosaic for a Cladium jamaicense and Nymphaea odorata environment within 

the boundaries of image 557. 
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Figure 4  Schema of resampling framework to evaluate plant association stability.  The framework allows for plant 

association-specific as well as location-specific confidence estimates at various spatial scales.  Each of the grid cells has 

visually interpreted relative vegetation abundance estimates at the species or morphological growth form level associated 

to it.  Re-sampling at the minimum mapping unit level and subsequent application of cluster algorithms generates 

multiple plant association definitions and labels at the highest resolution.  We evaluated sampling intensities at the 

smallest grain size (interpretation scale) of 2 m.  For each of the four sampling intensities (50, 100, 150 and 200) we re-

sampled 100 times from all 649 grid cells.  For each random sample we established clusters using the Hartigan-Wong k-

means clustering method.  Each sample was assigned to a cluster and mean species abundance was calculated.  

Classification tree classifiers were generated for each cluster result using a random forest algorithm (500 trees per 

iteration).  Model-based classification errors across all iterations provide class-specific confidence estimates.  All 649 grid 

cells were classified with each classifier, which resulted in location-specific confidence estimates of association probability. 



33 

 

 

Figure 5  Plant associations and mean probability estimates for image 513.  Plant associations were derived from 100 

cluster and classification iterations based on a sampling intensity of 100 samples per iteration (top panel).  Location-

specific mean probabilities for assigned plant association labels were determined from the 100 iterations (bottom panel).  

CLAD-FERN-PELT = Cladium-Fern-Peltandra class; MAGN-MYRI-CLAD = Magnolia-Myrica-Cladium class; NYMP-P-

CLAD = Nymphaea-Periphyton-Cladium class; NYMP-P-GS = Nymphaea-Periphyton-Graminoid Short class; SALI-FERN-

CLAD = Salix-Fern-Cladium class; FERN-SALI-CEPH = Fern-Salix-Cephalanthus class.    
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Figure 6  Plant associations and mean probability estimates for image 557.  Plant associations were derived from 100 

cluster and classification iterations based on a sampling intensity of 100 samples per iteration (top panel Location-specific 

mean probabilities for assigned plant association labels were determined from the 100 iterations (bottom panel).  Legend 

abbreviations as in Figure 5. 
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Figure 7  Plant associations and mean probability estimates for image 550.  Plant associations were derived from 100 

cluster and classification iterations based on a sampling intensity of 100 samples per iteration (top panel).  Location-

specific mean probabilities for assigned plant association labels were determined from the 100 iterations (bottom panel).  

Legend abbreviations as in Figure 5. 
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