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Numerical determination of monopole scaling dimension
in parity-invariant three-dimensional noncompact QED
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Department of Physics, Florida International University, Miami, Florida 33199, USA

(Received 19 August 2019; published 26 September 2019)

We present a direct Monte Carlo determination of the scaling dimension of a topological defect operator
in the infrared fixed point of a three-dimensional interacting quantum field theory. For this, we compute the
free energy to introduce the background gauge field of the Q ¼ 1 monopole-antimonopole pair in three-
dimensional noncompact QED with N ¼ 2, 4 and 12 flavors of massless two-component fermions, and
study its asymptotic logarithmic dependence on the monopole-antimonopole separation. We estimate the
scaling dimension in the N ¼ 12 case to be consistent with the large-N (free fermion) value. We find the
deviations from this large-N value for N ¼ 2 and 4 are positive but small, implying that the higher-order
corrections in the large-N expansion become mildly important for N ¼ 2, 4.

DOI: 10.1103/PhysRevD.100.054514

I. INTRODUCTION

Conformal field theories in three dimensions, and
renormalization group flows from one fixed point to
another induced by the introduction of relevant operators
at fixed points have been investigated over the last few
years. This involves the computation of scaling dimensions,
Δ, of operators at the different fixed points. The operators
O at a fixed point could be the usual composites of the field
variables, and hence trivially local and amenable to the
standard Monte Carlo computations of two-point functions
of the local operator

hOðxÞOð0Þi ∼ 1

jxj2Δ : ð1Þ

The operators could also be topological disorder operators
[1] which act as sources to topological conserved currents
in the theory. Since such operators cannot be written as
simple composites of the field variables, studying their
scaling dimensions is a challenge, especially on the
numerical side. In the case of theories with U(1) global
or gauged symmetry, the topological defects are the

monopoles, MQ, which create Q units of flux surrounding
it [1], and hence serve as the sources of the otherwise
trivially conserved Utopð1Þ current, jtopμ ¼ ϵμνρFνρ=ð4πÞ.
Three-dimensional QED, whose gauge group is U(1) as
opposed to R, is one such theory where monopole defects
can occur. Depending on whether monopoles are energeti-
cally allowed or disallowed in the continuum limit, the
three-dimensional QED is classified as compact or non-
compact, respectively. The presence of two distinct theo-
ries, differing simply by the presence or absence of
monopoles, offers theoretical and computational possibil-
ities in understanding the emergence of mass gap.
Pure-gauge compact QED in three dimensions is a rare

example in which the emergence of mass gap could be
understood through the dual superconductor mechanism
where in the electric charges experience a linear confining
potential due to the presence of plasma of magnetic
monopoles [2,3]. Coupling the compact QED3 (referred
to as c-QED3) to many flavors, N, of massless two-
component fermions (assumed to be even to preserve
parity) gives a possibility to counter the emergent mass
gap [4]—above certain critical flavor NC

c , the theory is
expected to be conformal in the infrared, whereas it
develops a mass gap below NC

c . In a first exploratory study
[5] towards finding NC

c , a derivative of free energy required
to introduce a single monopole was computed on a lattice
with open boundary conditions in the N ¼ 8 flavor
compact QED3, and no convincing evidence for an infinite
free energy signaling monopole confinement was found in
the continuum limit. Thereby, this suggested a presence of
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monopole plasma and a consequent mass gap in compact
QED3 for N ≤ 8. Understanding such infrared quantum
phases obtained by tuning parameters of the underlying
quantum field theory (QFT) is an ongoing field of research
(cf. [6]). Similar studies of the critical number of flavors,
NNC

c , in noncompact QED3 (referred to as nc-QED3) have
continued to be investigated through ab initio lattice
simulations [7–11] as well as through other approximation
methods [12–17]. Unlike noncompact QED3, the presence
of monopoles in the compact version, even as the con-
tinuum limit is approached, is a technical challenge to
numerical studies due to the presence of many small
eigenvalues of the three-dimension Dirac operator [18].
An indirect feasible approach is to check whether the
monopole operator is marginally relevant in the infrared
fixed point of the N flavor noncompact QED3 [4]. Crucial
to this inference is that the monopoles in a gauge theory
with N massless fermions break UðNÞ global flavor
symmetry to UðN=2Þ × UðN=2Þ symmetry [4,19,20].
Such an approach further assumes that (1) both compact
and noncompact QED3 flow to the same infrared fixed
point for N > NC

c ; (2) NNC
c < NC

c . At least in the N → ∞
limit, the compact or noncompact action will be subdomi-
nant compared to the induced gauge action from the
fermion, and hence, the infrared physics should be the
same for both nc- and c-QED3. The stronger assumption is
that this continues to remain so until N ¼ NC

c . The second
assumption is based more on numerical works [10,11] that
strongly indicate that NNC

c < 2. This also means that only
the dressed, gauge-invariant monopole operators become
relevant at N ¼ NC

c and other UðNÞ symmetry breaking
operators, such as the four-Fermi operators, remain irrel-
evant [21]. Therefore, a computation of scaling dimensions
in nc-QED3 and a subsequent direct confirmation of NC

c in
c-QED3 is well motivated. Monopole operators also play a
similar role to understand quantum phase transitions in
lattice systems with gauged U(1) symmetry which was
recently analyzed computationally in compact QED3

[22,23], and in the QED3-Gross-Neveu model [24]. In
[25], analytical progress was made on monopoles in such
lattice systems.
A practical method to determine the monopole scaling

dimension ΔQ analytically is by coupling the theory with
the U(1) symmetry to the classical, scale- and rotationally
invariant Dirac monopole background AQ and study the
response of the theory. Analytically, one computes the
Casimir energy of the theory defined on S2 with uniform
2πQ flux over it, which by state-operator correspondence is
the same as the scaling dimension ΔQ [26–28]. Such
computations are usually perturbatively done order by
order in 1=N (cf. [29]), and currently it is only up to
Oð1=NÞ. Nonperturbative conformal bootstrap has also
been applied to QED3 to find the allowed region in the
parameter space of scaling dimensions of Q ¼ 1 and 2
monopoles [30]. Complementary to such bootstrap

computations, it was demonstrated [31] that a direct way
to compute monopole scaling dimensions using lattice
computation is to couple such theories to a background
field AQQ̄ðx; τÞ ¼ AQðx; x0Þ −AQðx; x0 þ t̂τÞ that gives
rise to a monopole at x0 and an antimonopole at x0 þ t̂τ,
which are separated by a distance τ and compute the scaling
of the partition function

ZðAQQ̄ðτÞÞ ∼ 1

τ2ΔQ
; ð2Þ

as τ → ∞. It is the aim of this paper to apply this method
and compute ΔQ for a Q ¼ 1 monopole in the infrared
fixed points in N flavor noncompact QED3. In particular,
we compute the finite N corrections to the large-N scaling
dimension for small enough values of N where a non-
perturbative computation becomes inevitable.

II. c-QED3, nc-QED3 AND MONOPOLE
CORRELATOR IN nc-QED3

In this section, we consider different versions of QED3

that one could construct on the lattice. We consider L3

Euclidean lattices whose physical volume is l3, with the
lattice spacing being l=L. Let θμðxÞ ∈ R be the lattice
gauge fields which are related to the physical gauge fields
θμðxÞ ¼ AμðxÞl=L. The notation is such that x,y denote
integer valued lattice coordinates. The two-component
Dirac fermions in all the cases to be considered are coupled
to compact gauge links, UμðxÞ ¼ eiθμðxÞ, through an UV
regulated massless Dirac operator CðUÞ. In this work,
CðUÞ is the 1-HYP smeared Wilson-Sheikhoslami-Wohlert
Dirac operator CW with the Wilson mass mw tuned to the
massless point [10]. In the parity-invariant QED3 with an
even number of flavors, N=2 of two-component fermions
are coupled via CðUÞ and the other N=2 via C†ðUÞ. The
partition function for QED3 can be written in general as

Z ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
detN=2½C†ðUÞCðUÞ� ×Wg; ð3Þ

where Wg is the Boltzmann weight from the pure-gauge
part. Since the fermionic determinant is invariant under
θμðxÞ → θμðxÞ þ 2πnμðxÞ for integer values nμðxÞ, this part
of the action respects the compactness of the U(1) gauge
group. Independent of the choice of Wg, we can always
restrict the above integral over all θμðxÞ to be from −π to π
by simply summingWg over all possible nμðxÞ for different
x and μ. In this way, the underlying gauge group is always
U(1) owing to the usage of the compact links UμðxÞ in the
Dirac operator, and hence magnetic monopoles are well
defined in these theories. Depending on the form of Wg,
one can study QED3 with or without monopoles as we
elaborate on below, and as also discussed in [32].
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All gauge actions will be functions of the fluxes on
plaquettes where the flux on the plaquette in the ðμ; νÞ
plane with one corner at x is

FμνðxÞ¼∇μθνðxÞ−∇νθμðxÞ; ∇μfðxÞ¼ fðxþ μ̂Þ−fðxÞ:
ð4Þ

The Boltzmann weight for the noncompact lattice gauge
action,

WG ≡ e−
P

x
SNCðxÞ; SNCðxÞ ¼

L
l

X
μ>ν

F2
μνðxÞ; ð5Þ

does not favor the presence of monopoles in the continuum
limit since the flux on each plaquette is peaked around zero
when one takes L → ∞ at a fixed l. The compact Wilson
gauge action,

WG≡e−
P

x
SCðxÞ; SCðxÞ¼

2L
l

X
μ>ν

½1−cosðFμνðxÞÞ�; ð6Þ

on the other hand, does not suppress monopoles in the
continuum limit since the flux FμνðxÞ has multiple peaks
around 2πNμνðxÞ with integer values of Nμν—monopoles
are counted per cube [33] by writing FμνðxÞ ¼ F̄μνðxÞ þ
2πNμνðxÞ where F̄μνðxÞ ∈ ½−π; πÞ and NμνðxÞ are integers.
The monopole charge inside a cube with one corner at x is
given by

QðxÞ ¼ 1

2
ϵμνρ∇μNνρðxÞ: ð7Þ

The Villain gauge action [34,35],

Wg ≡
X
fNμνg

e−
P

x
Svðx;fNμνgÞ;

SvðxÞ ¼
L
l

X
μ>ν

ðFμνðxÞ − 2πNμνðxÞÞ2; ð8Þ

is also a compact action but has the advantage that the
integer part of the flux per plaquette is made explicit. We
have introduced new degrees of freedom NμνðxÞ and one
needs to sum over all integer values to define the partition
function. This action is expected to be in the same
universality class as the compact Wilson gauge action.
The Villain action allows for all values of QðxÞ with the
only condition that the sum over all x in a finite lattice with
periodic boundary conditions will be zero. The only
coupling in all cases is l which can be viewed as the
dimensionless extent of the lattice and the lattice spacing
is a ¼ l

L.
One can only consider the part of the above Villain

action restricted to the sector QðxÞ ¼ 0 for all x. If the
manifold is R3, then this automatically implies that

NμνðxÞ ¼ ∇νnμðxÞ −∇μnνðxÞ; ð9Þ

for integers nμ. On T3, as used in Monte Carlo simulations,
the condition in Eq. (9) implies QðxÞ ¼ 0 but further
restricts the sum of Nμν on any ðμνÞ plane to be zero. In
particular, this disallows configurations with net constant
flux 2πQ, for integer Q, over any of the ðμνÞ plane in the
continuum limit. However, such an extra restriction on T3

cannot be important in the thermodynamic limit since any
equal and opposite fluctuations in flux in different parts of
the lattice are allowed. For values of Nμν of the form in
Eq. (9), one can change θμðxÞ → θμðxÞ − 2πnμðxÞ and
annul the term Nμν. Therefore, the Villain path integral
restricted to values of Nμν of the type in Eq. (9) is the
same as the standard noncompact QED3 path integral
defined using Eq. (5). Similarly, one can constrain the

integer valued flux Nμν to take a particular value NQQ̄
μν

defined via

1

2
ϵμνρ∇μN

QQ̄
νρ ðxÞ ¼ Qδx;y −Qδx;y0 : ð10Þ

The above constraint corresponds to an insertion of flux Q
monopole at a lattice site y and a fluxQ antimonopole at y0,
and this cannot be absorbed by a change of variable of the
gauge fields. The monopole correlator in nc-QED3 can
simply be defined as the ratio of path integrals subject to the
constraint in Eq. (10) with Q ¼ 1 to that with Q ¼ 0 [36].

Instead, we find the gauge field background AQQ̄
μ ðxÞ that

minimizes

SQQ̄
v ¼

X
x;μ<ν

ðBQQ̄
μν ðxÞ − 2πNQQ̄

μν ðxÞÞ2;

BQQ̄
μν ðxÞ ¼ ∇νA

QQ̄
μ ðxÞ −∇μA

QQ̄
ν ðxÞ; ð11Þ

and couple the theory to this classical background field in
order to define

ZQ ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
detN=2 ½C†ðUÞCðUÞ�

× e−
L
l

P
y;μ>ν

½FμνðyÞ−BQQ̄
μν ðyÞ�2 : ð12Þ

The advantage of using BQQ̄
μν over using 2πNQQ̄

μν is that
background field coupling has no effect in pure-gauge
theory, and any effect that is observed in ZQ will arise only
due to the presence of fermions. This follows from a simple

change of variable θμðxÞ → θμðxÞ −AQQ̄
μ ðxÞ that elimi-

natesAQQ̄
μ ðxÞ only in the case of a pure-gauge path integral.

As we already noted, NQQ̄
μν ðxÞ cannot be written as a curl,

and hence such a change of variable is not possible even in
pure-gauge theory. OnR3, the resultingAQQ̄ is the field for
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a Dirac monopole-antimonopole pair. The advantage of
minimizing Eq. (11) on toroidal lattice is to take care of
both the lattice discretization as well as the periodicity
correctly. We checked through a full fledged computation
in the case of N ¼ 2 QED3 that the difference in ZQ=Z0

between the minimum on the torus as defined above and the
discretized field of a Dirac monopole-antimonopole pair as
defined in [31] is, however, marginal.
Let us denote the lattice distance between the monopole

and antimonopole as T ¼ jy − y0j, which is related to the
physical separation τ ¼ Ta. Then, the “bare” monopole-

antimonopole correlation function in lattice units, GðQÞ
B , is

the ratio of partition functions with and without the flux Q
monopole-antimonopole insertion [36]:

GðQÞ
B ðτ;l; aÞ ¼ ZQ

Z0

; τ ¼ T
l
L
: ð13Þ

Our specific choice for the location of the monopole and
antimonopole in Eq. (10) is realized by

NQQ̄
12 ð0; 0; x3Þ ¼ 2πQ; 1 ≤ x3 ≤ T; ð14Þ

and zero for all other directions and lattice points
ðx1; x2; x3Þ. The square tube with nonzero integer flux
running between the monopole at y ¼ ð0; 0; 0Þ and y0 ¼
ð0; 0; TÞ is the Dirac string. Any other configuration for this
Dirac string that is simply connected to the above con-
struction is related through appropriately chosen trans-
formations θðxÞ → θðxÞ þ 2πnðxÞ. The details pertaining

to the construction of the background field AQQ̄
μ can be

found in [37].

III. METHOD AND SIMULATION DETAILS

In a Monte Carlo simulation, it is only possible to
compute ensemble averages and not the partition function
itself. A brute force way to implement the correlator in
Eq. (13) is to compute the average

GðQÞ
B ðτ;l; aÞ ¼ heL

l

P
y;μ>ν

BQQ̄
μν ðyÞð2FμνðyÞ−BQQ̄

μν ðyÞÞi0; ð15Þ

where h� � �i0 is the ensemble average with respect to Z0 for
N flavor theory. The problem with such an approach is the
absence of overlap between the configurations sampled by
Z0 and ZQ. In order to avoid this overlap problem, we
couple QED3 to the background gauge field ζA11̄ through a
generalization of Eq. (12) to noninteger values of Q, where
ζ is a tunable auxiliary variable [38]. Consistent with the
previously introduced notation, the resulting partition
function is Zζ. From this, we can compute the lattice free

energy F ðQÞ
B ðτ;l; aÞ to introduce the monopole-antimono-

pole pair separated by physical distance τ in an l3 torus at
finite lattice spacing a as

F ðQÞ
B ðτ;l;aÞ≡− log ½GðQÞ

B ðτ;l;aÞÞ�¼
Z

Q

0

dζWðζÞ; ð16Þ

where

WðζÞ ¼ −1
Zζ

∂Zζ

∂ζ ¼ 2L
l

�X
x

ðFμνðxÞ − ζBð1Þ
μν ðxÞÞBð1Þ

μν ðxÞ
�

ζ

:

ð17Þ

Thus,WðζÞ can be computed in theMonte Carlo simulation

of Zζ through the measurement of FμνðxÞ − ζBð1Þ
μν ðxÞ on the

gauge fields that are sampled. In this paper, we will
only study Q ¼ 1 monopoles and we drop labels for Q
henceforth.
A way to determine the correlator in Eq. (13) is to

compute GBðτ;l; aÞ at different large values of τ in an l3

box. At each fixed τ, one should first convert the lattice
correlator to a renormalized physical one, then take the
continuum limit L → ∞ at a fixed l, followed by the
infinite volume limit l → ∞. Finally, one can consider
the asymptotic τ → ∞ limit to study its τ−2Δ scaling.
However, such a method is not practical since it requires
computations of multiple values of τ per Monte Carlo
sample point in the parameter space, and further introduces
unwanted systematic errors from the l → ∞ extrapolations
at fixed τ. As was demonstrated in the case of monopole
correlators [31], a better method is to make use of the
scaling of correlators near the infrared fixed point. That is,
one expects the scaling

GBðτ;l; aÞ ¼ a2dGRðτ;lÞ;

GRðτ;lÞ ¼
1

l2Δ G
�
τ

l

�
; as τ;l → ∞: ð18Þ

The conversion factor a2d takes the bare correlator to the
renormalized correlator of the naive dimension dmonopole
operator.1 The subtle issues with this will be addressed in
the next section. In addition, the first expression is only true
up to finite a, or equivalently finite 1=L, corrections.
Assuming we have obtained the renormalized correlator,
the second expression exhibits its scaling near the infrared
fixed point. We do not have to make any further assumption
about the form of Gðτ=lÞ if we fix τ=l ¼ ρ as l is varied.
Here, we take ρ ¼ 1=4. Equivalently, the free energy to
introduce a monopole-antimonopole pair separated by the
distance τ ¼ ρl would be

FRðlÞ ¼ − log ½GRðρl;lÞ� ¼ f0ðρÞ þ 2Δ logðlÞ; ð19Þ

up to higher-order corrections in 1=l. Since we keep ρ
fixed in this paper, we keep its dependence implicit. It will

1The symbol d should not be confused with the Euclidean
space-time dimension, which is always 3 in this paper.
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be useful to consider the free energy per two-component
flavor as

fRðlÞ≡ FRðlÞ
N

¼ f00ðρÞ þ
2Δ
N

logðlÞ: ð20Þ

In the limit of N → ∞, both f00ðρÞ and Δ=N have well-
defined limits. In 1=N expansion, one finds

Δ
N

¼ Δ∞ þ k
N
þ…; ð21Þ

with k < 0. The large-N value Δ∞ was computed using the
free fermion coupled to the monopole background since it
was argued that the fluctuations in dynamical gauge fields are

suppressed by 1=
ffiffiffiffi
N

p
. Such an analysis gave Δ∞ ¼ 0.265

[1,28,31]. For the Q ¼ 1 monopole we consider here, the
leading correction was computed to be k ¼ −0.0383 [4].
In the current work, we studied N ¼ 2, 4 and 12 flavors

of fermions—the idea being that we can use N ¼ 12 to
check for consistency with large-N expectations, and use
N ¼ 2, 4 to study the effect of smaller N. We sampled
configurations from Zζ using 50 000 trajectories of hybrid
Monte Carlo simulation. For each value of l, L and N, we
simulated 24 different equally spaced values of ζ from 0
to 1. At each ζ, we computedWðζÞ using jackknife analysis
to take care of autocorrelation, and performed the numerical
integration in Eq. (16) after smoothly interpolating the 24
data points for WðζÞ. We used different values of l ranging
from l ¼ 1 to l ¼ 250 at each fixed value of L. To estimate
the continuum limit of the l dependence of the free energy,
we used L3 lattices with L ¼ 16, 20, 24 and 28. In Fig. 1, we
showWðζÞ as determined for N ¼ 2 at four different values
of l on 203 lattice as a sample. The area under each of those
curves gave the bare free energy FB ¼ − logGB.

IV. RESULTS

First, we show the dependence of the lattice free energy
per flavor, fBðl; LÞ ¼ N−1FBðρl;l;l=LÞ, for introduc-
ing an monopole-antimonopole pair at a distance τ ¼ l=4
from each other on the box size l in Fig. 2 for different
fixed values of L. The plots from left to right are for N ¼ 2,
4 and 12 flavors of two-component fermions, respectively.
This dependence as computed using L ¼ 16, 20, 24 and 28
are shown as different colored symbols. As expected, the
bare lattice free energy from different L do not fall on a
universal curve since the lattice spacing a ¼ l=L keeps
changing as l is varied at fixed L. In fact, as it stands the
result seems unphysical—the free energy decreases with
increasing l at fixed L. Therefore, we have to first convert
the lattice correlator GB to the correlator in physical units,
GR by determining d in Eq. (18). Since QED3 is super-
renormalizable, d for a local operator would simply be its
naive dimension (e.g., the flavor triplet vector operator OV

FIG. 1. WðζÞ is shown as a function of ζ at different values of l
at fixed L ¼ 20 for the case of N ¼ 2 flavors. The different
colored symbols correspond to different physical extents l, and
the bands are the cubic spline interpolation of the data points. The
free energy for the Q ¼ 1 monopole-antimonopole pair is given
by the area under the curves,

R
1
0 WðζÞdζ.

FIG. 2. The bare free energy per fermion degree of freedom, fB ¼ FB=N, of the lattice monopole-antimonopole background field
insertion is shown as a function of the physical extent of the box l. The three panels from left to right correspond to N ¼ 2, 4 and 12,
respectively. The different colored symbols correspond to different L specified in the key.
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with d ¼ 2). However, defining the monopole correlator
through background field coupling is different in at least in
two ways—(A) Even at the Gaussian fixed point (i.e.,
l ¼ 0 at finite L), the monopole correlator defined in
Eq. (13) scales as L−2d only asymptotically as L → ∞. One
needs to contrast this with the correlator of OV at the
Gaussian fixed point (FP), which would scale as L−4 for all
L. In other words, the background field method singles out
the scaling operator of lowest naive dimension only in the
large-L limit at the Gaussian FP. (B) The effective action
for the background field is apparently nonlocal, and
numerically showing that it can be renormalized by a
simple a2d factor is nontrivial.
As discussed above, for the background field coupling at

finite L at l ¼ 0 (or a ¼ 0), one can only obtain an L-
dependent effective value of the scaling dimension, dðLÞ,
which we expect to approach the free fermion value d in the
limit of very large L that are not feasible in the computation
presented here. The value of dðLÞ relevant in the range of L
studied here can be determined numerically via an L−2dðLÞ
fit to GBðρLa; La; aÞ in the limit of a → 0 over a small
range of L. With this L-dependent value of d determined at
the Gaussian fixed point, we can best approximate the
renormalized correlator at other nonzero l and a by using

GRðρl;lÞ ¼
�
l
L

�
−2dðLÞ

GBðρl;l; aÞ; ð22Þ

which automatically ensures that the correlator GRðρl;lÞ
has no L dependence for l ≈ 0. For larger l, the residual L
dependence in GRðρl;lÞ is a lattice artifact, which can be
removed by L → ∞ continuum extrapolations. To actually
study QED3 in the strict l → 0 limit at finite L, one needs
to integrate the fermion determinant over the still unsup-
pressed constant modes of the gauge fields in all three
directions of the torus. This is nontrivial to implement, and
hence we consider the result from the fixed, small a ¼ 1

7
as

an approximation of the strict l ¼ 0 results. In Fig. 3, we
have shown the logðLÞ dependence of the free energy

FBðρLa; La; aÞ, simply denoted as FBðLÞ, at this fixed
a ¼ 1

7
over the range of L used in this paper. This

corresponds to changing l ¼ 112 at L ¼ 16 to l ¼ 196
at L ¼ 28 in each of the panels in Fig. 2. It was possible to
fit the data over the range of L from 16 to 28 using f0 þ
2d logðLÞ and thereby obtain the value of dðLÞ over this
range of L. The fits are shown as the black straight lines in
the three panels. We obtained the slope 2dðLÞ as 2.34(22),
3.81(21) and 11.17(48) for N ¼ 2, 4 and 12, respectively,
which correspond to dðLÞ=N of 0.585(56), 0.476(53) and
0.465(20), respectively. Since the value of GB at l ¼ 0
depends on the distribution of constant gauge fields in the
three directions that are allowed at l ¼ 0 for any finite N,
the value of dðLÞ=N for intermediate L can depend on N.
Instead of the above method, where l is varied at fixed L
thereby forcing us to construct GR from GB, we could have
instead studied GB at fixed lattice spacing. However,
achieving larger physical volumes at fixed small lattice
spacing would become numerically prohibitive.
In Fig. 4, we show the resulting free energy per two-

component flavor, fRðlÞ ¼ N−1FRðρl;lÞ. This was
obtained by adding 2dðLÞ logðlLÞ to FBðρl;l;l=LÞ and
then computing the resulting renormalized free energy per
two-component fermion. The three panels are for the three
different values of N. The data from different L, made
distinct by the colored symbols, now fall on near universal
curves. This data collapse is quite nontrivial and supports
the assumption that we have defined the correlator of an
operator that has a local description in the continuum.
Contrary to the behavior of the bare lattice free energy,
the renormalized free energy starts increasing with l as
physically expected since one does not expect monopoles
to be spontaneously created in noncompact QED3. For all
N, including N ¼ 2, the dependence of fRðlÞ shows no
evidence of a linear l-dependent piece corresponding to an
exponential fall, GRðlÞ ∼ expð−μρlÞ, with a mass μ that
could set the scale for a scale-broken theory. Assuming
QED3 with N ¼ 2, 4, 12 flow to infrared fixed points as
l → ∞, the asymptotic values of slope in this linear-log
plot would give the values of 2ΔðNÞ. As can be seen, the

FIG. 3. Determination of monopole naive dimension dðLÞ as determined in the range of L ¼ 16, 20, 24 and 28 by a linear fit of FB at
fixed lattice spacing corresponding to a ¼ 1

7
to an effective logðLÞ dependence over the range of L considered. The three panels from left

to right correspond to N ¼ 2, 4 and 12, respectively.
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slope changes with l and extracting the value of Δ will
require extrapolations. Therefore, first we focus on model-
independent inferences from the data.
From the three panels in Fig. 4, where we have kept the

range of l and fR in the plots to be the same, we find the
free energy per flavor fRðlÞ for N ¼ 12 shows a weaker
dependence on l compared to N ¼ 2, 4. To make this
quantitative, in Fig. 5, we show the difference

δðl;N;N0Þ ¼ fRðl;NÞ − fRðl;N0Þ ð23Þ

between the free energy per flavor in N and N0 flavor
theories.2 In the infrared, we expect such a difference to be

δðl;N;N0Þ ¼ 2

�
ΔðNÞ
N

−
ΔðN0Þ
N0

�
logðlÞ; ð24Þ

as l → ∞. For N0, we choose the largest value, N0 ¼ 12,
that we have. We have shown δðl; 2; 12Þ in the left panel,
and the difference δðl; 4; 12Þ in the right panel as functions
of logðlÞ. At leading order in 1=N, this difference vanishes.

Instead, we find that both δðl; 2; 12Þ and δðl; 4; 12Þ
increase with l making it quite evident that ΔðN ¼ 2Þ=2
and ΔðN ¼ 4Þ=4 are larger than ΔðN ¼ 12Þ=12. This
effect is arising purely due to the finite value of N.
Quite surprisingly, δðl;N; 12Þ shows a logarithmic
dependence on l over the entire range of l used.
Perhaps this is due to the finite l corrections to the infrared
scaling get approximately canceled between fR at N and
N0. Therefore, we performed a combined fit to the data for
δðl;N; 12Þ at all l from different L using an ansatz,

δðl;N; 12Þ ¼
�
a0 þ

a1
L

�
þ 2

�
b0 þ

b1
L

�
logðlÞ; ð25Þ

with a0, a1, b0 and b1 as fit parameters. The value of b0 will
then give us an estimate of the difference ΔðNÞ=N −
Δð12Þ=12 in the continuum limit L → ∞. We find such
a fit ansatz to describe the data for both N ¼ 2 and 4 well
with χ2=dof < 2 with 81 data points in each fit. We find the
best fit parameters ½a0; a1; b0; b1� for N ¼ 2 and N ¼ 4
to be ½−1.067ð77Þ; 4.7ð1.4Þ; 0.1531ð94Þ;−0.11ð18Þ� and
½−0.262ð52Þ; 2.92ð98Þ; 0.0529ð61Þ; −0.54ð11Þ�, respec-
tively. The different L dependence of the N ¼ 2 and 4
data is due to an empiricalN dependence of the coefficients
a1 and b1 for the finite 1=L corrections. The resulting best

FIG. 4. The physical free energy per two-component fermion flavor, fRðlÞ, required to introduce a monopole-antimonopole pair of
Dirac string length l=4 is shown as a function of the box size l. The top-left, top-right and bottom panels are for N ¼ 2, 4 and 12,
respectively. The data as obtained from different L are distinguished by the different colored symbols.

2The dependence on N which is implicit in fRðlÞ is explicitly
shown in the notation used in Eq. (23).
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fits as evaluated at L ¼ 16, 20, 24 and 28 are shown by the
straight lines in the linear-log plots with the same colors as
those of the corresponding data. The black dashed lines in
the two panels are the estimates of the continuum limit of
δðl;N; 12Þ. We find from the value of b0 that

Δð2Þ
2

−
Δð12Þ
12

¼ 0.153ð9Þ;
Δð4Þ
4

−
Δð12Þ
12

¼ 0.053ð6Þ: ð26Þ

In the expansion in 1=N around the large-N fixed point, the

leading contribution to the difference is ΔðNÞ
N − ΔðN0Þ

N0 ¼
kð1N − 1

N0Þ with k ¼ −0.0383. Thus, to order 1=N, the value
of the scaling dimension decreases at finite N from the
large-N value, and the slope of δðl;N;N0Þ as a function of
logðlÞ should be negative at this order. Our numerical
result for N ¼ 2 and 4, on the other hand, suggests the
opposite behavior for the values of N which are Oð1Þ. This
implies that higher-order terms in 1=N that are of opposite
sign cannot be ignored, or perhaps a breakdown of the 1=N
expansion. However, it is true that the corrections them-
selves are also small.
Now, it remains to be shown that for N ¼ 12, its scaling

dimension Δð12Þ is consistent with the large-N expect-
ation, as one might naively expect the large-N expansion to
hold here. Unlike the above conclusion about the correction
to large-N behavior, extraction of Δð12Þ requires modeling
and extrapolations since the free energy does not exhibit a
pure logðlÞ dependence over the entire range of l used in
this computation. In Fig. 6, we focus only on values of
l > 64. By fitting a simple ansatz

fRðlÞ ¼
�
α0 þ

α1
L

�
þ 2

�
β0 þ

β1
L

�
logðlÞ ð27Þ

to theN ¼ 12 data for fRðlÞ over the larger values of l from
different L, we estimate the value ofΔð12Þ=12 as the best fit
value of β0. The best fit logðlÞ dependence for L ¼ 16, 20,
24 and 28 are shown along with the data in Fig. 6, which are
describedby ½α0;α1;β0;β1�¼½−0.42ð18Þ;−19ð4Þ;0.261ð19Þ;
2.22ð41Þ�. Though the data seem to bewell described by such
an ansatz, the χ2=dof is about 3 due to the much smaller
errors in the data for N ¼ 12. The black dashed line is
the estimated logðlÞ dependence in the L → ∞ limit.
We estimate the slope of this continuum dependence as
β0 ¼ 0.26ð2Þ. For comparison, the value of Δð12Þ=12 from
large N up to leading order in 1=N is 0.262. Our estimated
value ofΔð12Þ is consistentwith this value, and thereby lends
further support for our numerical work. This implies that the
monopole scaling dimension for N ¼ 12 is estimated to be

FIG. 5. The difference δðl;N;N0 ¼ 12Þ ¼ fRðl;NÞ − fRðl;N0 ¼ 12Þ is shown as a function of l forN ¼ 2 and 4 in the left and right
panels, respectively. The solid lines are the combined fits to the form δðl;N; 12Þ ¼ a0 þ a1=Lþ 2ðb0 þ b1=LÞ logðlÞ. The dashed line
is the central value of the estimated continuum limit, L → ∞, of this difference. The positive slope, both in the data and in the estimated
continuum limit, clearly indicates that N ¼ 2 and N ¼ 4 have larger infrared scaling dimension than that of N ¼ 12.

FIG. 6. The large-l behavior of fR for N ¼ 12 is shown. The
different colored symbols are for different L. The solid straight
lines are from combined fits of the form fRðlÞ ¼ α0 þ α1=Lþ
2ðβ0 þ β1=LÞ logðlÞ to the data at L ¼ 16, 20, 24, 28 from l ¼
64 to 250. The back straight line and band are the estimates for
the L → ∞ continuum limit. The estimate for β0 is 0.26(2), and
can be identified with Δð12Þ=12.

NIKHIL KARTHIK and RAJAMANI NARAYANAN PHYS. REV. D 100, 054514 (2019)

054514-8



3.24(24). This is consistent with N ¼ 12 being the critical
flavor where the Q ¼ 1 monopole operator becomes just
marginally relevant in the infrared fixed point.

V. CONCLUSION AND DISCUSSION

In this paper, we presented an ab initio lattice compu-
tation of the monopole correlator in N ¼ 2, 4 and 12 flavor
massless QED3 by using the background field method. To
avoid the overlap problem which would make the compu-
tation of ratio of partition functions with and without a
monopole-antimonopole background field, we slowly
increased the value of monopole flux from 0 to integer
Q. One of the noteworthy results in this paper is the
feasibility of this approach itself, seen via the good signal to
noise ratio of the monopole free energy (which is the
negative logarithm of the monopole correlator). This
encourages the application of this method to other QFTs
where monopole operators can be defined. We demon-
strated empirically that the monopole correlator behaves
like a local operator and can be simply “renormalized” by
the factor a2d at lattice spacing a, where d is the naive
monopole dimension as obtained on L3 lattice in the limit
a → 0. The key numerical result for the free energy to
introduce a monopole-antimonopole pair in N ¼ 2, 4 and
12 flavor QED3 is shown in Fig. 4. Using these data, we
demonstrated that the scaling dimension for N ¼ 12 QED3

is consistent with the large-N expectation and that N ¼ 12
is consistent with being the critical flavor where the
monopole scaling dimension takes the marginally relevant
value of 3. By computing the differences in monopole free
energy between N ¼ 2 and 12, and between N ¼ 4 and 12,
we found evidence for the deviation of the scaling
dimension in N ¼ 2, 4 theories from the N ¼ 12 theory
to be positive. This is in contradiction to the 1=N analysis
up to Oð1=NÞ. It remains to be seen if this tension can be
resolved by inclusion of higher-order corrections in 1=N in
the analytical expressions, or points to a breakdown of the
1=N framework itself where in the fixed point for smallerN
belongs to a different family than the one in large N. In
conclusion, the results in the paper along with slightly
different analytical results from large-N analysis
support the direct computation of N flavor compact
QED3 around N ≈ 12, which however requires algorithmic
development to deal with large number of near-zero
Wilson-Dirac modes.
In the paper, we did not demonstrate in the lattice

regularization framework that monopoles carry flavor
quantum number and break the UðNÞ flavor symmetry
to UðN=2Þ ×UðN=2Þ symmetry. Demonstrating this is not

important to the computation presented in this paper, but
central to the UðNÞ flavor symmetry breaking in Nc flavor
compact QED3. In the continuum, one shows [1,19] this by
noting that the ground state of the Hamiltonian of massless
fermion on S2 with constant flux 2πQ has QN zero modes.
Thus, the gauge-invariant, CP-invariant vacua are obtained
by filling the QN zero modes with QN=2 fermions picked
amongst N=2 flavors and QN=2 antiparticles picked
amongst another N=2 flavors. Thus, the vacua with
monopole background transform under the irreducible
representations of the UðNÞ flavor symmetry. With the
lattice regularized fermions on a spherical monopole back-
ground, we do not have a similar derivation to study the
flavor structure of the vacuum. A difficulty is defining the
lattice fermion on S2. Therefore, to gain an understanding
of a similar flavor symmetry breaking mechanism on the
lattice, we consider a background field on T3 corresponding
to constant flux 2πQ on allT2 spatial slices, as an analogue of
constant flux background on S2 × R for the spherical
monopole. It was shown [39] that the two-dimensional
transfer matrix for the two-component Wilson-Dirac oper-
ator, CW , has 2L3 þQ eigenvalues greater than 1 and
2L3 −Q eigenvalues less than 1 formw > 0; a consequence
of gauge field topology in two dimensions. Thus, the vacuum
has total Q fermions. Similarly, for C†

W with mw < 0, the
vacuum has a total of Q antifermions. With N=2 fermions
coupled via CW and another N=2 fermions coupled via C†

W ,
the vacuum has N=2 fermions from N=2 flavors and N=2
antifermions from the otherN=2 flavors. This is very similar
to the structure seen in a spherical monopole background.
The flavor symmetry breaking on this particular background
is determined by the need to preserve parity: a choice ofN=2
flavors coupling toCW and the other ones toC†

W .We expect a
similar mechanism to be true for a massless Wilson fermion
on a monopole background.
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