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Cape Sable seaside sparrow: Habitat Monitoring and Assessment - 2010 
 

Summary 

 

For the last two decades, the Cape Sable seaside sparrow (CSSS), a federally endangered 

species, has been a pivot point for water management operations in the Everglades, primarily 

because a decline in sparrow population in the early 1990s was attributed in part to management-

induced alterations in hydrologic regimes. With a goal of understanding the response of 

landscape-level processes to hydrological restoration and its interaction with fire, a study 

intended to monitor vegetation structure and composition throughout the marl prairie landscape 

has been conducted since 2003 with funding from U.S. Army Corps of Engineers (USACE). In 

the first three years (2003-2005), vegetation structure and composition was characterized in 

relation to the existing hydrologic regime and fire history.  During 2006-2010, vegetation was re-

sampled to assess vegetation change within the sparrow habitat. This document summarizes the 

vegetation change pattern observed between the two sampling periods in sub-population A, C, E 

and F, emphasizing the work accomplished in FY 2010. 

 
We used Analysis of Similarity (ANOSIM) to test differences in vegetation composition, and 

vegetation-inferred hydroperiod to quantify the change in vegetation in response to hydrologic 

differences between the two sampling periods (2003-2005 and 2006-2009). We reasoned that a 

significant change in vegetation-inferred hydroperiod over time would support the hypothesis 

that vegetation at the sampled sites changed in response to hydrologic alterations. Additionally, 

we used trajectory analysis to quantify the rate of vegetation change in relation to hydrology at 

unburned sites, and to time since last fire at burned sites. Patterns of vegetation change within the 

sparrow habitat were spatially differentiated. In the sub-population A, west of the Shark Slough, 

vegetation changed considerably over the sampling period (2003-2009), but with distinct 

temporal and spatial trends. Between 2003 and 2006, the compositional change was relatively 

uniform, towards a wetter type.  However, in subsequent years, vegetation change showed a 

distinct spatial pattern that was consistent with the water level records from the P-34 and NP-205 

stage recorders. The eastern part of sub-population A, near NP-205, showed a drying trend, while 

vegetation in the extreme west, represented best by P-34, became wetter in the late 2000s than 

earlier in the decade. The wetting trend in the western part of sub-population A continued despite 

achievement of the mandated regulatory water levels at NP-205. In sub-populations C and F in 

the East Everglades, where reduction in sparrow numbers has been attributed to an increased fire 

frequency associated with excessive drying, the shift in plant species composition was indicative 

of relatively wet conditions, likely in response to increased wetness resulting from pumping of 

canal water into impoundments along the eastern boundary of Everglades National Park (ENP). 

 

In summary, vegetation within the CSSS habitat tracked hydrologic changes, and at burned sites, 

shifted in conjunction with time since last fire and post fire hydrologic conditions. Moreover, while 

hydrating the Rocky Glades has helped to improve CSSS habitat along the eastern boundary of 

ENP, the wetting trend in the western portion of the sub-population A reflected deteriorating 

habitat conditions for the Cape Sable sparrow. Hence, formulation of a strategy that achieves 

desirable sparrow habitat conditions while satisfying the broader ecosystem restoration goals of 

the Comprehensive Everglades Restoration Plan (CERP) is needed.   
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1. General Background 

 

For last two decades, the Cape Sable seaside sparrow (CSSS), a federally endangered species, 

has remained a focus of several water management operations in the Everglades, primarily 

because a decline in CSSS population in the early 1990s was attributed to management-induced 

alterations in hydrologic regimes. Within the sparrow habitat, marl prairie vegetation is sensitive 

to changes in both hydrologic and fire regimes. With a broad goal of assessing the response of 

marl prairie ecosystems to water management efforts under Comprehensive Everglades 

Restoration Plan (CERP), a study intended to characterize marl prairie vegetation and monitor its 

responses to changes in hydrologic and fire regime within CSSS habitat was initiated with 

funding from U.S. Army Corps of Engineers (USACE). In the first three years of the project 

(2003-2005), a detailed account of vegetation composition and structure was documented, while 

in the following five years, between 2006 and 2010, sub-sets of sites in each of six sparrow sub-

populations (A, B, C, D, E and F) were re-visited annually to assess spatio-temporal changes in 

vegetation in response to changes in hydrologic regimes and fire events. The sub-set sampled 

each year included both unburned and burned sites. Burned sites were sampled to assess the 

vegetation recovery process following fire, with surveys repeated 1, 2 and 4 years after fire. 

However, when extraordinary events such as hurricane-caused post-fire flooding in 2005 

provided an opportunity to learn more about vegetation response to fire-hydrology interactions, 

sites were sampled annually.  

 

This document summarizes the vegetation change pattern observed during 2003-2010, 

particularly in sub-populations A, C, E and F, emphasizing the work accomplished in FY 2010 

(contract # W912HZ-10-2-0025). In FY 2010, the major activities included field work, data 

analysis, and presentations. Field sampling was accomplished between May 3 and June 7, 2010, 

and the data were processed in the remaining part of the year. Once the data were analyzed, Jay 

Sah (Co-PI) presented the results at the Greater Everglades Ecosystems Restoration (GEER)-

2010 Meeting, July 12-16, Naples, FL, and at the Cape Sable seaside sparrow (CSSS) Fire 

Meeting 2010, held on December 7 at the Krome Center, Homestead, Florida. 

 

The report is organized in three sections, describing vegetation responses to changes in 

hydrologic and fire regimes within CSSS habitat. Section 2 describes a general trend in 

vegetation responses to spatial differences in hydrologic changes within the sub-population A, 

located west of Shark River Slough. The section also includes results from in-depth analysis of 

vegetation change along a 5 km transect placed near stage recorder NP-205, which has served as 

an indicator of hydrologic conditions within sub-population A for water management purposes. 

Section 3 of the Report highlights the incipient effects of hydrologic changes due to operations 

of water structures B, S332-C and D and the adjoining detention ponds. Finally, Section 4 

describes the effects of fire and flooding at sites that were burned and flooded within 2 to 8 

weeks thereafter in 2005. The sites have been sampled annually for five years after fire, leading 

us to analyze the data using trajectory analysis. The analysis in the Section updates through 2010 

an earlier examination of vegetation change in these plots that was described in our FY-2009 

Report. 
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2. Linking vegetation dynamics to hydrologic changes in the habitat of Cape Sable seaside 

sparrow sub-population A 

 

 

2.1 Introduction 

 

Ecosystem management practices often direct the major drivers and stressors of a system to 

achieve various levels of desirable ecosystem services, while maintaining its characteristics in 

the natural conditions as closely as possible. Such alterations in the environmental drivers, 

however, frequently lead to changes in the plant community composition (Collins 2000; Chapin 

et al. 2006). Wetland plant community composition often is very sensitive to hydrologic change, 

the major driver of wetland ecosystem functions. However, severe anthropogenic modifications 

of hydrologic regime in wetland systems around the globe have resulted in deterioration of 

wildlife habitat. One example is the Southern Everglades marl prairie landscape inhabited by the 

Cape Sable seaside sparrow (CSSS), a federally listed endangered species that has gone through 

management-induced hydrologic changes. The question we address here is how closely 

vegetation changes in marl prairie landscape mimic changes in hydrologic regimes.  

 

During the 20
th

 century, the wetlands of the Florida Everglades experienced unprecedented 

interferences from human activities. Central among these activities was water management, 

accomplished through the construction and operation of canals, levees, spillways, pump stations, 

and various other water control structures (Light and Dineen 1994). These water control systems 

have been considered a major culprit in the degradation of numerous areas of the Greater 

Everglades, including the marl prairies west of Shark River Slough that provide habitat for Cape 

Sable seaside sparrow sub-population A.  Before 1993, sub-population A was the largest of six 

CSSS sub-populations. However, the numbers of sparrows dropped drastically owing to 

unprecedented water release during 1993 breeding season (Pimm et al. 2002). Since then, this 

sub-population has been the focus of water management efforts to improve habitat conditions for 

the Cape Sable seaside sparrow. As a part of these efforts, regulatory schedules for the S-12 

structures along Tamiami Trail have been followed under the operational objectives of Interim 

Structural and Operation Plan (ISOP)/Interim Operational Plan (IOP), whose objective is to 

maintain NP-205 stage ≤ 6 ft NGVD for a minimum of 60 consecutive days between March 1 

and July 15, thus avoiding flooding during the sparrow breeding season. In concurrence with 

management efforts to regulate water deliveries from the S-12 structures, a consistently low 

water level has been maintained at NP-205 and nearby in the eastern part of this sub-population. 

However, the same conditions have not been observed at P-34 in the western part of the sub-

population A, where relatively high water level has persisted in recent years. Since the western 

parts of the sub-population A also receive runoff from the water basin intersected by a section of 

Tamiami Trail between Forty-Mile Bend and Monroe Station (FMB-Monroe), and by the Loop 

Road, the hydrologic conditions in this area are influenced by the spatial and temporal variation 

in flows through the culvert and bridges on these two roads. In a recent analysis of the flow data 

in relation to rainfall, Kotun et al. (2009) showed that mean annual runoff per unit rainfall in the 

FMB-Monroe sub-basin increased by a factor of two during 1992-2008 in comparison to three 

earlier periods (1941-1952, 1953-1963 and 1964-1991). They attributed the increased runoff to 

high stage level in WCA-3A, which resulted in a backwater effect in Mullet Slough, causing 
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water to flow southwest towards Big Cypress National Preserve, and ultimately ending up in 

increased flow across the Tamiami Trail. Moreover, the increase in flow was much greater at the 

bridges in the east, close to the L28 (Kotun et al. 2009), which apparently contributed to high 

water levels in the western part of sub-population A.  

 

One of the goals of implementing regulatory schedules on S12 water deliveries and maintaining 

low water levels at NP-205 was to restore sub-population A habitat by reversing  the trend in 

vegetation triggered by high local water levels during most of  the 1990s (Nott et al. 1998; Pimm 

et al. 2002). The hypothesis that led to implementation of such efforts was that the regulations 

would result in a shift in vegetation composition towards a drier type that is more suitable for 

sparrows. We examined this hypothesis through two questions, (a) has the vegetation 

composition in the sub-population A changed monotonically along the hydrology gradient in 

response to the recent management efforts?, and (b) is a trend in temporal changes in vegetation 

pattern in concurrence with observed spatial differences in hydrologic conditions within the sub-

population. 

 

 

2.2 Method 

 

2.2.1  Field Data 

 

Between 2003 and 2005, a network of 901 sampling sites was established and vegetation was 

sampled for the first time. The network included 293 sites at 100 or 200 m intervals along six 

transects of 2.5 to 11 km, and at 608 sparrow census sites distributed throughout the recent range 

of six sparrow sub-populations, with the exception of six sites in coastal prairie at Cape Sable, 

where sparrows were present in the early part of the 20th century (Figure 2.1). Vegetation 

sampling at each sampling location included records of species cover in ten 0.25 m
2 

sub-plots in 

a 60x1 m
2
 plot, and structural measurement of vegetation in 30 sub-plots (Ross et al. 2006). At 

the transect sites, we determined elevations in the ten compositional sub-plots, and estimated 

hydroperiod for the previous six years, using water level data from nearby stage recorders. 

 

In sub-population A, the sampling network included 51 sites along a 5-km transect and 280 

census sites, of which 269 unburned sites were re-sampled for vegetation composition during 

2006-2009. Sites that were not burned for four years prior to sampling were considered to be 

unburned. Initially sampled in 2003, the transect sites in this area were re-sampled in 2006 and 

2010.  

 

2.2.2 Analytical Methods 

 

We summarized the data using Non-metric Multi-dimensional Scaling (NMS) ordination, and 

used Analysis of Similarity (ANOSIM) to quantitatively examine the differences in vegetation 

composition among years.  In the analysis, we used the Bray-Curtis distance metric as a measure 

of dissimilarity. In ANOSIM, an R-statistic is generated based on the mean ranks in ecological 

distance among groups and within groups; an absolute value of the R-statistic close to 1 suggests 

a real difference in vegetation composition among groups (Clarke 1993). In our analysis, the 

groups were different sampling years.  
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Additionally, we used an approach similar to Armentano et al. (2006) to assess whether a change 

in vegetation composition between sampling years was a response to periodic differences in 

hydrology. We analyzed the differences in mean vegetation-inferred hydroperiod, i.e. the 

hydroperiod for a site predicted from vegetation composition using a Weighted Averaging Partial 

Least Square (WAPLS) regression model developed in 2005 (Ross et al. 2006). The model was 

validated using field water depth-based hydroperiods, calculated using Everglades Depth 

Estimation Network (EDEN) stage data. Our assumption was that a significant change in 

vegetation-inferred hydroperiod between sampling years supports the hypothesis that vegetation 

change between subsequent sampling events was a response to hydrological change.  

 

Trajectory analysis: In sub-population A, west of Shark River Slough, vegetation change along 

Transect-A was analyzed using the data collected in 2003, 2006 and 2010. Change in vegetation 

composition along the hydrologic gradient in Transect was analyzed using trajectory analysis 

(Minchin et al. 2005). This analytical procedure allows researchers to test statistically the change 

in community composition along a target vector represented by an environmental gradient in 

NMDS ordination space. A vector representing the hydrologic gradient in the ordination was 

defined by using vector fitting technique in DECODA (Minchin 1998). In this method, a gradient 

is defined in the direction through the ordination which produces maximum correlation between 

the measured environmental attribute and the scores of the sampling units along the vector. The 

statistical significance of such correlations was tested using a Monte-Carlo permutation test with 

10,000 random permutations (Minchin 1998). The orientation of the ordination was then rotated 

so that 5-year average hydroperiod had a perfect correlation (r = 1.0) with Axis-1.  

 

Two statistics, delta (∆) and slope, were calculated to quantify the degree and rate of change in 

vegetation composition along the reference vector (Minchin et al. 2005). Delta, a measures of the 

total amount of change in the target direction, was calculated as the difference between projected 

scores of the final and initial time steps. Slope measures the mean rate of change in community 

composition along the target vector. Since NMS ordination was scaled in half-change units, the 

rate was mean half change per year, where one half-change is the distance between sampling 

units at which their mean similarity is 50% of the value between sampling units with similar 

species composition and identical coordinates in the ordination space. In our analysis, the slope 

was calculated as the linear regression coefficient of projected scores on target vector on 

sampling years after intervention. The statistical significance of both delta (∆) and slope was 

tested using Monte Carlo simulations with 10,000 permutations.  

 

Change in species abundance: A trend in species abundance along hydrology vector was 

analyzed by fitting curves to the species cover data for the species present in at least 25 samples 

among sites that showed significant trajectory shift along the hydroperiod vector. Species 

response curves were fitted using Generalized Linear Models (GLM) with Poisson error 

distribution and log link function (McCullagh and Nelder 1989). Poisson distribution assumes 

that variance equals to the mean, and is considered appropriate for count data, and we used it 

instead of a Gaussian (i.e. normal) distribution with an identity link, because the cover values for 

the majority of species were skewed. A model using the Poisson distribution consistently yielded 

lower deviance – a criterion used to select the best fit model – than the corresponding model with 

the normal distribution. In addition, the Poisson distribution with log link function also allowed 
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us to constrain the predictions within a range of nonnegative values of species cover, the 

response variable in the model. Assuming unimodal, symmetric or skewed responses of species 

to the environmental gradient, we started with second-order polynomial model, and used a 

stepwise backward function to select the significant variables. A χ2-test was performed to test the 

significance of coefficients of linear and quadratic terms, and terms with non-significant 

coefficients (p<.05) were removed from the final model. Finally, for the species which showed a 

significant trend in abundance along the hydrology vector, we calculated differences in mean 

species cover among sampling years for the whole transect. A pair-wise t-test was used to test 

the significance of mean differences.  

 

 

2.3 Results 

 

In sub-population A, vegetation changed considerably over the sampling period (2003-2009), 

with distinct temporal and spatial trends. In general, at un-burned sites sampled twice in seven 

years, the vegetation composition differed between two sampling periods, 2003-2005 and 2006-

2009 (ANOSIM: 1000 permutations, Global R = 0.01, p-value = 0.004). The trajectory analysis 

results revealed that the rate (slope) of vegetation change along the hydrology vector was 

statistically significant at 26.8% of sites (Appendix A-1). However, the direction of change 

along the hydrology gradient was not consistent (Figure 2.2), and the wetting and drying trends 

were also geographically differentiated (Figure 2.3). Among the sites that showed a significant 

trajectory shift with increasing hydroperiod, the majority were first sampled in 2003 and again in 

2006. The results suggested that the three-year period (2003-2006) was marked by a general shift 

in vegetation towards more hydrophytic type (Figure 2.2), a conclusion also supported by an 

increase in vegetation-inferred hydroperiod in those three years within the sub-population 

(Figure 2.4a). In contrast, at the sites first sampled in 2004 or 2005 and again re-sampled during 

the period 2007 and 2009, the direction of change in vegetation composition differed spatially 

among sites. In the western and south-eastern parts of the sub-population, vegetation inferred 

hydroperiod increased at several sites, whereas an opposite trend was observed at the sites in the 

northeastern and southern parts of the sub-population (Figure 2.4b, c).  

 

Plant species in the Everglades marl prairie showed increasing, decreasing or unimodal trends 

along the hydroperiod gradient. In Sub-population A, the species that showed a significant 

increase in species cover with increasing wetness were Bacopa caroliniana, Cladium mariscus 

ssp. jamaicense, Eleocharis cellulosa, Panicum hemitomon, Paspalidium geminatum, 

Rhynchospora tracyii and Sagittaria lancifolia. These species are known to be the characteristics 

of long hydroperiod conditions in the Everglades. Cover of a few species that are usually present 

in dry sites decreased with an increase in wetness along the hydrology vector. They were 

Cassytha filiformis, Centella asiatica, and Schizachyrium rhizomatum. Several species, including 

Crinum americanum, Panicum tenerum, Panicum virgatum, Paspalum monostachyum, Pluchea 

rosea, and Schoenus nigricans showed unimodal distribution. 

 

The vegetation change pattern observed at the census sites was also evident at sites along the 

Transect A in the eastern portion of the sub-population. The transect extends east (2 km) and 

west (3 km) from NP-205, and represents the hydrologic conditions within the sub-region well. 

Vegetation composition along the transect significantly differed between sampling years 
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(ANOSIM: Global R = 0.229, p-value <0.001). However, the differences in composition were 

stronger between 2006 and 2010 (R = 0.280) than between 2003 and 2006 (R=0.136). The 

vegetation change between 2003 and 2006 was marked by a significant reduction of total ground 

cover as well as the absolute cover of several major species. In that period, however, the change 

in species cover does not seem to be limited only to species that are indicative of either wetter or 

drier environments, as the change in vegetation-inferred hydroperiod between 2003 and 2006 

was not statistically significant (Figure 2.5). In contrast, vegetation-inferred hydroperiod was 

significantly lower in 2010 than in both the 2003 and 2006 samples, suggesting that the 

compositional change through 2010 was marked by a significant increase in the cover of species 

indicative of dry conditions, and decrease in the cover of species characteristic of wet conditions. 

The change in vegetation-inferred hydroperiod on the transect coincided with parallel changes in 

hydroperiod referenced to stage level at NP-205 (Figure 2.5). 

 

Between 2003 and 2010, 80% of the sites on Transect-A took on an opposite trajectory along the 

vector of increasing hydroperiod, suggesting a trend from wetter to drier conditions (Appendix 

A-2). At those sites, vegetation-inferred hydroperiod also decreased (Figure 2.6). Trajectory 

analysis results revealed that the amount (delta) and rate (slope) of vegetation change over the 

seven year period were statistically significant at 50% of the sites. At the sites that showed 

significant shift in trajectory along hydrologic vector, the mean change towards drier vegetation, 

represented by a shift along X-axis (Figure 2.7), was more prominent between 2006 and 2010 

than between 2003 and 2006.  

 

On Transect A, the mean cover of Bacopa caroliniana, Cladium mariscus ssp. jamaicense, 

Rhynchospora tracyii and Schoenus nigricans significantly decreased, whereas the mean cover 

of Schizachyrium rhizomatum increased by more than two-fold within the same period (Table 1). 

Mean cover of C. mariscus spp. jamaicense were 13.2% and 10.8% in 2003 and 2010, 

respectively. In contrast, mean cover of S. rhiozomatum, a dominant species in short-hydroperiod 

prairies, increased from 3.69% in 2003 to 7.73% in 2010. Other species whose mean cover 

significantly (pair-wise t-test; p<0.001) increased between 2003 and 2010 were Centella 

asiatica, Crinum americanum and Panicum virgatum. 

 

Table 2.1: Mean cover (%) of major species on Transect A in 2003, 2006, & 2010. Different 

superscript letters indicate significant difference (Pair-wise t-test; p-value <0.05) in species' 

cover between years. 

Species 2003 2006 2010 

Bacopa caroliniana 0.36
a
 0.87

b
 0.20

c
 

Centella asiatica 0.27
a
 0.18

b
 1.45

c
 

Cladium mariscus ssp. jamaicense 13.20
a
 10.18

b
 10.83

b
 

Crinum americanum 0.18
a
 0.35

b
 0.63

c
 

Panicum tenerum 1.38
a
 0.28

b
 1.86

a
 

Panicum virgatum 1.15
a
 1.07

a
 2.28

b
 

Paspalum monostachyum 2.83
a
 2.02

b
 3.63

a
 

Rhynchospora tracyi 1.36
a
 2.57

b
 0.24

c
 

Schoenus nigricans 3.98
a
 2.03

b
 2.01

b
 

Schizachyrium rhizomatum 3.69
a
 4.18

a
 7.73

b
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2.4 Discussion and Conclusions 

 

In the southern Everglades marl prairies, particularly west of Shark River Slough which is also 

the habitat of CSSS sub-population A, hydrologic conditions have changed over eight years 

(2003-2010), mainly due to changes in water management activities. Such alterations in the 

hydrologic regimes have resulted in changes in vegetation composition that, in harmony with the 

hydrologic change pattern, showed distinct temporal and spatial patterning.  In other studies also, 

researchers have shown that in seasonally-flooded ecosystems, species assemblages change as a 

function of duration and depth of seasonal flooding (Breen et al. 1988; Schessl, 1999; van der 

Valk 2005; Armentano et al. 2006).  

 

In marl prairies within sub-population A, observed changes in vegetation composition in 

response to hydrologic shift can be explained based on the Flood Pulse Concept (Junk et al. 

1989) and Community/Continuum Concept (Whittaker 1967). The flood pulse concept, first 

developed to describe relationships between seasonal changes in water levels and ecosystem 

function and the maintenance of species diversity, especially with reference to fisheries, on 

Amazonian Floodplains (Junk et al., 1989), has recently been extended to explain the vegetation 

change pattern in response to hydrologic changes in several other wetland systems characterized 

by seasonal fluctuation in water levels (Niering 1994; Zedler and Callaway 1999). Short-

hydroperiod marl prairies in the Everglades are also flooded annually for varying period, and 

they remain dry for part of the year. Generally, in seasonally-flooded ecosystems similar to the 

Everglades marl prairies, species present in the vegetation mosaic are adapted to tolerate the 

alternating wet/dry conditions that are basically a part of any flood-pulsed environment (Junk 

and Piedade 1997; Middleton 1999). However, the inherent ability of plants to survive and grow 

under various hydrologic regimes varies among species, and the differences in species' optimum 

flooding tolerances usually form the basis for variation in vegetation composition in these 

ecosystems. In marl prairies also, the species differ in their hydroperiod optima and tolerances 

(Ross et al. 2006). Hence, any change in duration of periodic inundation would affect abundance 

of various species. This could be the reason that observed change in hydrologic regimes within 

the landscape in sub-population A probably also caused a change in relative cover of constituent 

species, resulting in a shift in vegetation composition towards either wetter or drier type. For 

instance, in the north-eastern part of the sub-population, where duration of annual dry-down 

increased, possibly owing to reduced deliveries through the S12 water structures, a two-fold 

increase in cover of blue-stem Schizachyrium rhizomatum was observed. S. rhizomatum has 

relatively short hydroperiod optimum and is a dominant species of short-hydroperiod marl 

prairies (Ross et al. 2006). In contrast, the relative cover of species like Bacopa caroliniana, 

Cladium mariscus ssp. jamaicense, and Rhynchospora tracyii, which are characteristic of 

relatively long hydroperiod in marl prairies, significantly decreased. These species remained 

dominant or their cover increased in the areas where hydroperiod has increased in recent years. 

 

In the Everglades marl prairies, where there is a very small gradient in elevation, the breaks 

between discrete vegetation types, particularly in the herbaceous community, are usually very 

subtle, suggesting that plant community composition along the topographic gradient varies 

steadily, with gradual change in relative abundance of constituent species along the gradient - the 

fundamental basis of continuum concept (Whittaker 1956; Curtis 1959). The resulting changes in 

hydrologic condition along the gradient are of relatively small magnitude, and would not bring a 
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drastic change in vegetation structure, but simply alter species composition toward more or less 

hydrophytic assemblages. Our results suggest that the change in hydrologic regimes over eight 

years have caused a gradual shift in species composition. Depending on the relative contribution 

of individual species that differ in their optimum hydrologic tolerances, such a shift in species 

composition in response to temporal and spatial variation in hydrologic changes was clearly 

expressed in similar changes in vegetation-inferred hydroperiod. Moreover, the spatial pattern in 

vegetation change was consistent with a change in the hydrologic regime estimated from 

Everglades Depth Estimation Network (EDEN) water depth data (Sah et al. 2010). The close 

resemblance between EDEN data-based and vegetation-inferred hydroperiods suggests that the 

latter can be used to track vegetation response to hydrologic changes in this part of marl prairie 

landscape.  

 

Finally, the vegetation change towards wetter type in the western part of sub-population A in 

response to more hydric conditions in recent years in comparison to the early part of the decade 

is indicative of a deteriorated sparrow habitat within that region. Interestingly, it continued 

despite achievement of the mandated regulation water levels at NP-205, which resulted in an 

improved habitat in its vicinity. Because of such spatially differentiated trends in habitat 

characteristics, the limited numbers of sparrows that remain in sub-population A continue to be 

restricted to the eastern portion of the habitat (Figure 2.8). If increasing sparrow populations 

west of Shark Slough is the objective, then strategies that achieve desirable sparrow habitat 

conditions throughout the region while satisfying the broader ecosystem restoration goals of the 

Comprehensive Everglades Restoration Plan (CERP) should be considered.  
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3. Hydrating the rocky glades: incipient effects on marl prairie vegetation within the 

habitat of sub-populations C, E and F 

 

 

3.1 Introduction 

 

Marl prairie vegetation along the eastern boundary of Everglades National Park (ENP) has been 

heavily influenced by alternating changes in water management activities. For instance, in the 

1960s and 70s, the marl prairies remained dry for extended periods each year (Rose et al. 1981; 

Van Lent et al 1993), affecting the plant communities. Later, in the 1980s and 90s, a pump 

station installed on the L31W delivered water directly into Taylor Slough, resulting in extended 

hydroperiod immediately downstream (Armentano et al. 2006), while marl prairies in the 

northern and western portions of the basin still remained dry (USACOE 1999). In recent years, 

however, management efforts have been directed toward shifting point source water deliveries to 

surface water flow in the Taylor Slough basin, and also re-hydrating the Rocky Glades, an area 

of thin marl soils and sparse vegetation that encompasses portions of sparrow habitat in sub-

populations C, E and F (USACOE 2006). These three sub-populations, located between Shark 

River Slough and the eastern boundary of ENP, are among five designated critical habitat units 

that receive protection under section 7 of the Endangered Species Act against destruction and 

adverse modification of the habitat (USFWS 2007). Among the three, sub-population E holds the 

second highest number of sparrows (>500), after sub-population B, south of Long Pine Key.  

Sparrow numbers in sub-populations C and F are very small, usually <50, and in some years 

even null during the annual sparrow census, such as from 2007 to 2009 in sub-population F. To 

ensure the conservation of the species, the proper management of these eastern sub-populations 

and their habitat has become more important than before, especially after the exclusion of sub-

population-A habitat in the recent designation of sparrow's critical habitat (USACOE 2006; 

USFWS 2007). 

 

Hydrology influences sparrow habitat directly or through its impact on the incidence of fire 

events, thus affecting the sparrow sub-populations (Nott et al. 1998; Lockwood et al. 2003; La 

Puma et al. 2007; Baiser et al. 2008; Sah et al. 2010). In three of the five eastern sub-populations, 

sparrow numbers were lower in 1992 than in 1981, the year when the first comprehensive survey 

of sparrows conducted. While increase in hydroperiod and mean water depth is believed to be the 

cause of decline in sparrow number in sub-population D, the reduction in sparrow numbers in 

sub-population F was attributed to an increase in fire frequency associated with the excessive 

drying of the region (Pimm et al. 2002). Conversely, sub-population C was subjected to both 

wetting and drying conditions, though spatially differentiated. Beginning in 1980, pump station 

S332 delivered water from the L31W canal directly into the Taylor Slough, resulting in extended 

hydroperiod in its vicinity in the southern portion of the sub-population C. Vegetation in this area 

changed from short hydropeirod muhly grass (Muhlenbergia capillaris var. filipes) prairie to less 

suitable sparrow habitat dominated by dense sawgrass (Cladium mariscus ssp. jamaicense) 

(Armentano et al. 2006), perhaps also affecting the sparrow occurrences in this area. 

Concurrently, the northern portion of sub-population C continued to be over-drained due to 

reduced water level in the canal and in agricultural land immediately adjacent to it, resulting in 

an increase in fire-frequency and a reduced sparrow population (Pimm et al. 2002).  
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To mitigate the adverse effects caused by past water management practices and to restore more 

natural flows, several interim measures have been implemented in recent years,  including the 

construction of a series of water pumps on the adjoining canals and construction of detention 

ponds along these canals, (USACOE 2006). Major changes in water management activities in the 

region include operation of the new pump stations and water delivery through the detention 

basins along the C111 and L-31 canals. In the lower Taylor Slough basin, water pump station S-

332D replaced the operation of S-332 in 2000. Since then water has not been delivered directly 

into the slough, instead moving through a series of 3 interconnected detention ponds in the Frog 

Pond area and a flow way east of a levee along the border of Everglades Park. In this course, 

water seeps into the Park due to the hydrologic head thereby created.  

 

In the upper Taylor Slough basin north of D, the B and C pump structures, constructed under 

Interim Operation Plan (IOP) to provide protection for the adjacent CSSS habitat, deliver water 

from the L31N canal into a series of inter-connected detention ponds. Detention areas include 

64.7 ha (160-acre) and 97.1 ha (240 acre) basins west and north of B, respectively, and a 121 ha 

(300 acre) basin west of C. A reservoir of 83.4 ha (206-acre) connects the S332B and S332C 

ponds. The pond north of S332B has a large fixed-crest weir on the western levee that allows 

water from the pond to enter ENP marl prairies. In addition, subsurface water also may be 

entering ENP. The purpose of operating pump stations (B and S332-C) along the L-31N canal 

includes lowering canal and groundwater levels and creating a continuous hydraulic ridge to 

control seepage back to the canal while protecting the sparrow habitat from further deterioration 

(USACOE 2006). Pumping through B and C is intended to be adjusted seasonally to maintain the 

desired water conditions in eastern sparrow habitat within ENP, and thus serve to re-hydrate the marl 

prairies of the Rocky Glades. The question is whether the marl prairie vegetation composition 

within the habitat of sparrow sub-populations along the eastern boundary of ENP has changed in 

response to the recent management efforts. 
 

 

3.2 Methods 

 

3.2.1 Field Sampling 

 

A network of 901 vegetation sampling sites, established and sampled for the first time between 

2003 and 2005, included 124 transect sites and 132 census sites within the habitat of sparrow 

sub-populations C, E and F (Ross et al. 2006). Among the census sites, 121 unburned sites were 

re-sampled for vegetation composition during 2006-2009, 3 or 4 years after initial sampling. 

Sites not burned for four years prior to sampling were considered to be unburned sites. Census 

sites burned in 2007 or 2008 were sampled annually for 3 and 2 post-fire years, respectively. 

Additionally, sites on the transect F that included both unburned and burned locations were first 

sampled in 2004, and again in 2009 and 2010.  

 

Vegetation sampling at each sampling location included records of species cover in ten 0.25 m
2 

sub-plots in a 60x1 m
2
 plot, and community structure in 30 sub-plots (Ross et al. 2006). At the 

transect sites, we also determined elevations in the ten compositional sub-plots, and estimated 

hydroperiod for the previous six years using water level data from nearby stage recorders. 
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3.2.2 Analytical Methods 

 

We used Analysis of Similarity (ANOSIM) to quantitatively examine the differences in 

vegetation composition among years.  In the analysis, we used the Bray-Curtis distance metric as 

a measure of dissimilarity. Likewise, vegetation data were also analyzed using trajectory analysis 

(Minchin et al. 2005; also see sub-section 2), which allowed us to examine change in community 

composition along a pre-defined hydrologic gradient in ordination space. The hydrology vector 

was derived from census sites at which water depth were measured in the field and plot level 

hydroperiod was calculated using water level data obtained from Everglades Depth Estimation 

Network (EDEN) database, and from topographically surveyed transect sites for which 

hydroperiod was calculated using the nearest stage recorders and the mean plot elevation.  

 

Additionally, we analyzed the differences in mean vegetation-inferred hydroperiod, i.e. the 

hydroperiod for a site predicted from vegetation composition using a Weighted Averaging Partial 

Least Square (WAPLS) regression model developed in 2005 (Ross et al. 2006). We considered 

that significant change in vegetation-inferred hydroperiod between sampling years would support 

the hypothesis that vegetation at the sampled sites has changed in response to hydrologic 

variation. 

 

3.3 Results and Discussion 

 

Vegetation composition in the marl prairies in sub-populations C and F along the eastern edge of 

Everglades National Park, and in sub-population E near the eastern flank of Shark Slough, 

differed significantly (ANOSIM: p <0.05) between two sampling periods, 2003-2005 and 2006-

2009 (Table 3.1). In general, sites in these sub-populations showed a change in vegetation 

composition indicative of increasing wetness in recent years (Figure 3.1). However, the 

vegetation change pattern showed distinct spatial patterning, suggesting that vegetation within 

the sub-populations was responding to spatially variable hydrologic changes, resulted from the 

modifications in water management activities, and to the Mustang Corner fire of May-June 2008, 

which burned a large area in sub-population F, and few census sites in sub-population E. 

  
Table 3.1: Global R and p-values from analysis of similarity (ANOSIM) testing temporal differences 

in vegetation composition at unburned sites that were first sampled between 2003 and 2005, and re-

sampled between 2006 and 2009 in CSSS sub-populations C, E and F. 
 

 

 

 

 

 

 

Sub-population C: 

 

In sub-population C, trajectory analysis results showed that two thirds of unburned sites 

exhibited a shift towards increasing wetness, while the rest showed a shift in the opposite 

direction along the hydrologic gradient. The shift in vegetation composition was statistically 

significant at 25% of sites in each group (Appendix A-3). In this sub-population, vegetation 

Sub-population # of sites R-statistic p-value 

C 

E 

F 

35 

56 

30 

0.044 

0.070 

0.077 

0.032 

<0.001 

0.014 
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change, as evidenced also by a change in vegetation-inferred hydroperiod, was spatially 

differentiated primarily in response to hydrologic variation. Along the eastern edge of the sub-

population, immediately adjacent to L31W and south of water pumping station S332, vegetation-

inferred hydroperiod at several sites decreased over the four year period (Figure 3.2), suggesting 

that the vegetation at these sites in 2006-2009 was indicative of drier conditions than in early 

2000s. In contrast, an increase in vegetation-inferred hydroperiod at the sites south of the park 

road, and in the western part of the sub-population indicated an increase in wetness between the 

two surveys.  

 

The observed pattern in vegetation change in sub-population C during 2003-09 seems to track 

water management activities in the region. During the first survey (2003-2005), vegetation 

represented the legacy of water management activities in 1990s. By the mid 90s, water 

management operations that were initiated in 1981 and involved water deliveries by S332 from 

L31W canal had raised water levels in Taylor Slough by about 30-40 cm above the levels of 

previous decades, resulting in a shift in vegetation composition (Armentano et al. 2006). The 

vegetation at the sites on the Taylor Slough transects had changed from muhly grass 

(Muhlenbergia cappilaris var. filipes) to sawgrass (Cladium mariscus ssp. jamaicense) or from 

sawgrass to spikerush (Eleocharis cellulosa) dominated communities. After the cessation of 

S332 operation in 2000, a reverse trend in vegetation change had already begun prior to 2003, 

and an obvious reduction in spikerush cover at slough sites was reported. But at the muhly-

dominated sites on both flanks of the slough, sawgrass cover continued to increase through 2003 

(Armentano et al. 2006). In subsequent years, however, the trend in vegetation change at all sites 

resembled the pattern of 1999 - 2003 at the slough sites, i.e. towards an assemblage indicative of 

increasing dryness (Sah et al. manuscript in preparation). At the CSSS vegetation monitoring 

sites, we did not have vegetation composition data prior to 2003. However, between our two 

surveys, a decrease in vegetation-inferred hydroperiod at vegetation census sites in the vicinity of 

Taylor Slough indicated that a drying trend continued through 2009. This probably was the result 

of reduced annual mean water level in Taylor Slough, resulting from cessation of direct delivery 

of water from L31W through the S332, replaced by surface flow through the operation S332D, 

located north of S332.  

 

Vegetation in the western portion of the sub-population and north of S332 showed an increase in 

vegetation-inferred hydroperiod, suggesting a shift in vegetation composition indicative of 

increasing wetness in that area. This wetting trend is attributed to seepage from L31W. Since 

1999, water has been delivered from the L31N into the L31W canal thorough a series of 

detention ponds in „Frog Pond‟ region and a flow way cell into ENP near S332. However, it is 

likely that water from the detention ponds also seeps into the L31W canal from where it enters 

into ENP as sub-surface flows. In a recent study, Gaiser et al. (2008) suggested that in the 

vicinity of the L31N and L31W canals and adjacent basins, the groundwater contours are parallel 

to the L31N canal, indicating a predominant direction of groundwater flow toward the east and 

southeast, that is, away from ENP. However, seasonal variation in ground water contours, and 

the presence of groundwater mounds or “the “bulls-eye” associated with the water control 

structures on the L31N and L31W, suggest that water also flows towards the west during certain 

periods, particularly in the dry season (Gaiser et al. 2008). Water from L31W that flows into 

ENP, passing through the expanse of marl prairies, finally is drawn into the Taylor Slough, 

possibly near the bridge on the Everglades National Park road (SR 9336) and south of it. In 
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Taylor Slough, seasonal mean water level, which was strongly correlated with rainfall during 

pre- period (1961-1980) and with the delivery during 1980-2003 (Armentano et al. 2006), has 

more recently been well correlated with the volume of water delivered by D pumping station 

(Figure 3.3), perhaps due an hydrologic connection established through surface and sub-surface 

flow that also impacts marl prairie vegetation within the area. 

 

Sub-population E 

 

In Sub-population E, median vegetation-inferred hydroperiod between the first and second 

surveys were significantly different (n=56; Z = 2.86; p = 0.004) over the entire subpopulation E 

(Figure 3.1).  However, within the sub-population vegetation change showed a distinct spatial 

pattern (Figure 3.4). The inferred hydroperiod at the sites in a small area in the southwest and in 

most of the north and eastern part of the sub-population increased over the period, suggesting a 

shift in vegetation composition in those areas towards relatively wet vegetation. The magnitude 

of increase in hydroperiod was higher (> 30 days) near the eastern boundary than the middle 

portion. Trajectory analysis results also showed that the shift in vegetation towards wetness 

along hydrology vector was statistically significant at several sites in this region, including both 

unburned and burned sites (Appendix A-3). In the northwest and central portion of the habitat, 

vegetation-inferred hydroperiod decreased between two sampling periods, suggesting a drying 

trend in the area. The observed spatially differentiated vegetation change patterns within the sub-

population suggested an influence of localized hydrologic differences.  

 

A shift in vegetation composition toward wetter type in the eastern portion of the sub-population 

is possibly in response to the changes in hydrologic regimes due to operation of a series of water 

pumps and detention areas along the eastern boundary. While water level at the stage recorder 

CR2, located between detention ponds and sub-population E, closely tracks the water delivery 

from the water pump S332B (Figure 3.5), high head water created in the detention ponds may 

have also caused water to flow westward, as the difference in water level between CR2 and CR3, 

and CR3 and A13, has increased in recent years (Figure 3.6), indicating a steepening of the 

water table gradient from the canals toward the west. 

 

Sub-population F 

 

In general, sparrow habitat in sub-population F has become wetter in the last 5 years than it was 

in the first half of the decade (Figure 3.1). At the census sites, which were surveyed once during 

2003-2005 and re-surveyed during 2006-2009), an increasing trend in mean vegetation-inferred 

hydroperiod was observed (Figure 3.7), suggesting a change in vegetation composition 

indicative of increasing wetness. Median vegetation hydroperiod ranged between 126 days in 

2003 and 176 days in 2007. The wetting trend, however, was not consistent throughout the sub-

population. While vegetation change in the large area of the sub-population followed the general 

trend, change at a few sites in the northern portion of the sub-population suggested a drying trend 

(Figure 3.8).  

 

Vegetation change in sub-population F tracked the changes in hydrologic regime that resulted 

from the operations of recently constructed water pumps and retention ponds. Two pumping 

stations, S332B and S332C deliver water from L31N to the detention areas constructed along the 
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eastern edge of the subpopulation. To prevent the drainage of water from the Rocky Glades into 

the canal, water level in the detention areas is maintained at a level higher than in the adjoining 

prairies. However, as the result of high water level, water seeps toward the west and hydrates the 

glades. The strong influence of these detention ponds on hydrology, and therefore on vegetation 

was apparent in the spatial differences in the vegetation change pattern between the two groups 

of sites. Sites immediately west of the detention ponds showed a wetting trend, while locations 

northwest of the ponds showed a drying trend (Figure 3.8).  

 

The effects of management-induced hydrologic changes on vegetation also depended on the 

scale of topographic variation. In the Rocky Glades, where surface elevation varies sharply 

within short distances, vegetation change pattern in response to hydrologic change observed at 

the broader scale was perhaps influenced by small scale topographic variation. For instance, 

vegetation change along Transect F, where sampling was at 100 m intervals, showed mixed 

results (Figure 3.9). At 70% of the plots on the transect, vegetation inferred hydroperiod 

increased, while at a mixture of unburned and burned sites located in the western portion of the 

transect, at greater distance from the detention ponds, vegetation-inferred hydroperiod was lower 

in 2010 than in 2004.  

 

Vegetation change in burned sites 

 

In 2008, 60% of the vegetation monitoring sites in Sub-population F, and four sites in sub-

population E burned in the human-caused Mustang Corner fire. Additionally, three sites in the 

central portion of sub-population E also burned in 2008 in a lightening-ignited fire. Trajectory 

analysis revealed a subsequent shift in vegetation composition at many of these burned sites 

toward wetter or drier types, depending on their locations in the landscape (Figure 3.10).  In 

general, post-fire vegetation composition follow the normal trajectory of recovery and return to 

vegetation similar to pre-fire condition within four to five years. However, if the sites are flooded 

immediately after the fire, vegetation may take a different trajectory (Sah et al. 2010; also see 

section # 4). Although sites burned in 2008 were not immediately flooded, many of them were 

affected by management-induced hydrologic changes. For instance, in sub-population F, the 

burned census sites that showed significant change in vegetation towards drier type were all 

located northwest of the detention ponds, and thus were perhaps not affected by overflow or 

seepage from the ponds. In contrast, in the southern portion of sub-population F and northeastern 

corner of sub-population E, vegetation at both unburned and burned sites showed a shift in 

species composition towards a more hydrophytic vegetation assemblage.  

 

 

3.4 Conclusions and Management Implications 

 

With the beginning 21
st
 century, a shift in water management efforts in the Everglades from 

point delivery to surface flow aimed at hydrating the Rocky Glades landscape has had visible 

and sometimes positive effects on marl prairie vegetation and on populations of the Cape Sable 

seaside sparrow. For instance, in sub-populations C and F, the reduction in the number of 

sparrows between 1981 and early 1990s was attributed to either change in habitat due to 

increased hydroperiod or fire frequency. The current water management activities, however, 

have reversed the trend of vegetation change in the eastern portion of sub-population C or 
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initiated the vegetation shift in other areas towards a wetter vegetation type, which is likely to 

reduce fire frequency, especially in northwestern and southern parts of sub-populations C and F, 

respectively. In general, because of its central location, the sub-population E is less impacted by 

hydrologic management activities that occur along the boundaries of ENP. However, even 

habitat within this sub-population seems to have been affected by ongoing hydrologic 

modifications.  

 

If the recent trend in sub-population E, i.e. increase in sparrow population habitat in 2010 is 

considered as evidence of habitat improvement, a similar response is likely to occur as well in 

both sub-populations C and F. However, not all the effects of pumping of water from the canal 

directly into the marl prairies or indirectly through detention ponds are positive. For instance, in 

other parts of the Everglades, researchers have demonstrated that water input from the canals has 

altered soil phosphorus in the adjacent marsh, resulting in vegetation change in the impacted 

areas (Doren et al. 1997; Childers et al. 2003). In the eastern Everglades, phosphorus content in 

periphyton was higher at marl prairies sites near the L31W canal and in detention basins near the 

L31N than in adjacent marl prairie sites to the west, reflecting the long-term exposure of the 

canal-side sites to seepage (Gaiser 2006; Gaiser et al. 2008). Periphyton is known to show a 

quick response to increased phosphorus concentration in surface water, and is a precursor of P-

enrichment in the soil (Gaiser et al. 2004). Therefore, a time lag in P-enrichment in the soil is 

inevitable. Therefore, it may be important to monitor the phosphorus loading in the water 

directly entering the Park from the canal, and its impact on prairie vegetation.  
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4. Fire and flooding interactions: vegetation dynamics trajectories 

 

4.1 Background 

    

Fire and flooding are integral parts of ecosystem processes in many wetlands, including 

floodplains, coastal prairies, and seasonally-flooded grasslands (McKee and Baldwin 1999; 

Lockwood et al. 2003). In seasonally flooded grasslands, particularly in those regions where the 

probability of wildfire is highest at the onset of the rainy season, there is a likelihood that a 

wildfire will be closely followed by flooding. The chances of such events are high in South 

Florida, where wildfires caused by lightning are frequent in the rainy season (Wade et al. 1980; 

Snyder 1991). Moreover, in the rainy season, there is always a possibility of torrential rains 

associated with tropical storms or hurricanes.  

 

Vegetation recovery after a single burn event in many wetlands ends in a return to pre-burn 

community composition and structure within 3-4 years (Pahl et al. 2003; La Puma et al. 2007). 

However, sequential disturbances, such as fire followed by flooding, may result in changes in 

wetland community character by removing dominant species and facilitating the growth of 

opportunistic species (Zedler and Krecher 2004). We examined community level responses to 

interactions of fire and flooding in Southern Everglades marl prairies, where three major fires 

burned 1,348 ha of marl prairie within the CSSS habitat in 2005. In May, the “Aerojet” fire 

burned 76.7 ha areas in sub-population D, outside Everglades National Park, and in August the 

“Keyhole” and “Sisal” fires burned 611 and 660 ha areas, respectively, in sub-population B 

(Figure 4.1). The area burned in May (May_burn) remained unflooded for >1 month after fire, 

and for two months thereafter experienced a gradual increase in water level, while the area 

burned in August (Aug_burn) were flooded by more than a foot (30 cm) of water by Hurricane 

Katrina within 7-15 days of fire. Prior to the 2005 fires, these sites were all sampled once during 

the previous three years. After the sites burned in 2005, they were sampled annually, between 

March and May, for five consecutive years. At each sampling site, vegetation was sampled 

following the methods described in Ross et al. (2003).   

 

 

4.2 Analytical methods 

 

Trajectory Analysis: 

 

We used analysis of similarity (ANOSIM) to examine the differences in vegetation composition 

between pre-burn and post-burn years. This analysis of vegetation change was supplemented at 

individual sites by trajectory analysis (Minchin et al. 2005; also see sub-section 2.2.2), which 

allowed the examination of change in community composition along a pre-defined target vector 

representing time since last fire (TSLF) and hydrologic influence in ordination space. To define 

the TSLF and hydrology (mean annual days per year flooded) vectors, the census and transect 

sites sampled between 2003 and 2005 in five eastern sub-populations (B-F) were included in the 

NMS ordination. The sites sampled in 2003 to 2005 represented a range of 0 to 25 years along 

TSLF gradient (Ross et al. 2006).  The hydrology vector was derived by calculating plot level 

hydroperiod, using water level data obtained for the nearest stage recorders and mean plot 

elevation, obtained by surveying from the nearest vertical control benchmark to each subplot. 
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Because the purpose of the trajectory analysis was to examine recovery in vegetation 

composition since fire, Year 1 after fire (2006) was considered as the base year, and the shift in 

position of samples along TSLF vector in the ordination space was assessed.  

 

Landsat TM image interpretation and vegetation recovery analysis 

 

Changes in vegetation after fire were also examined using Normalized Difference Vegetation 

Index (NDVI). NDVI is widely used in ecological research, and is also considered a reliable 

estimator of vegetation change (Viedma et al. 1997; Abdel Malak and Pausas 2006; Hope et al. 

2007). We calculated NDVI from Landsat 5 Thematic Mapper (TM) images (Path: 015, Row: 

042) from pre-fire (2005), and five post-fire (2006 - 2010) years. Images from all years except 

2006 and 2008 were from the month of January or February. Since images with acceptable 

quality (cloud free) were not available for 2006 and 2008 for January-February, we used images 

from May 4, 2006 and April 13, 2008, respectively, as they were the first dry season cloud-free 

images for those years. The spatial resolution of TM images was 30 m x 30 m. The images had 

been geo-referenced and atmospherically corrected for interferences from atmospheric 

reflectance by the Remote Sensing and GIS Center of Florida International University. We used 

the corrected images and the computer program ArcGIS 9.3 to compute NDVI as: NDVI = (NIR-

RED)/(NIR+RED). The difference between 2006 (Post-fire Year-1) and 2005 (Pre-fire) NDVI 

images was interpreted as the reduction in vegetation cover due to damage caused by the 

interaction of fire and flooding. Likewise, the NDVI difference between the first post-fire year 

and subsequent years was used to quantify vegetation recovery. 

 

 

4.3 Results 

 

Vegetation composition in both May_burn and Aug_burn groups were very different from pre-

burn vegetation. In both groups, vegetation composition even five years after fire differed 

significantly from pre-burn vegetation (ANOSIM: May_burn - R = 0.511, p = 0.002;  Aug_burn 

- R = 0.732, p = 0.001), and mean total plant cover were only 43.0% and 33.8% of the initial 

cover in the May_burn and Aug_burn groups, respectively (Figure 4.2). Slow recovery of 

vegetation cover at these sites probably resulted from post-fire hydrologic conditions, as the 

majority of sites burned in 2005 experienced various levels of flooding after fire.  

 

Fire followed by flooding often results in changes in community characteristics by removing 

dominant species and facilitating the growth of opportunistic species. At the sites burned in 

2005, the relative cover of dominant species was considerably lower even five years after fire 

compared to pre-fire levels, resulting in large shifts in  species rank abundance curve (Figure 

4.3). At Aug_burn sites, relative cover of four dominant species, i.e., sawgrass (Cladium 

mariscus ssp. jamaicense), bluestem (Schizachyrium rhizomatum), muhly grass (Muhlenbergia 

capillaris var. filipes) and black-top sedge (Schoenus nigricans) significantly decreased 

immediately after fire followed by flooding, and remained much lower than before the fire even 

five years later. In contrast, relative cover of several minor species, such as spadeleaf (Centella 

asiatica), southern beakrush (Rhynchospora microcarpa), gulfdune paspalum (Paspalum 

monostachyum) and bluejoint panicgrass (Panicum tenerum) was higher in the fifth year after 

fire than in pre-burn samples. Interestingly, at May_burn sites also, where water level increased 
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gradually, providing ample opportunity for the re-growth of plants after fire, a large decrease in 

the relative cover of sawgrass (C. mariscus ssp. jamaicense) was observed. After five years of 

fire, the mean relative cover of sawgrass was only 55% in comparison to 90% one year before 

the fire. At these sites, the relative cover of beakrush (Rhynchospora tracyi), black-top sedge (S. 

nigricans), spikerush (Eleocharis cellolosa), and southern beakrush (R. microcarpa) were 

significantly higher five years after fire than pre-fire. 

 

In both May_burn and Aug_burn groups, the change in relative cover of dominant species and 

the growth of opportunistic species in post fire years resulted in variation in mean species 

richness in post fire years. Mean species richness was significantly lower in May_burn than in 

Aug_burn sites prior to the 2005 fires (Repeated Measures ANOVA, Bonferrroni test: p <0.01), 

possibly due to differences in their hydrologic conditions. May_burn sites were relatively wet 

sites, and in pre-fire year they had 12 species/plot, less than half of the number of species (27 

species/plot) present at Aug_burn sites. While the richness in both the groups declined in the first 

year after fire, the mean number of species in the May-burned plots recovered to pre-fire levels 

in the following year and remained at the same level through the fifth year after fire (Figure 4.4). 

In contrast, the number of species present in the Aug-burned plots was low in the first two post-

fire years, and recovered to pre-fire level in the 3rd year.  

 

The post-fire vegetation change pattern was also analyzed using trajectory analysis. The results 

revealed that only a few sites in Aug_burn groups showed a significant (p-value <0.1) shift along 

the time-since-last-fire (TSLF) vector, expressed as the amount (∆) and rate (slope) of change in 

vegetation composition (Table 4.1). Contrary to our expectation, none of the May_burn sites 

showed a significant rate of change in vegetation along the TSLF vector. However, five years 

after the fires, both mean degree (delta) and rate (slope) of change in vegetation composition 

along the TSLF vector were higher in the May_burn sites (∆ = 0.14, slope = 0.037) than in 

Aug_burn sites (∆ = 0.06, slope = 0.0.029) sites. In both groups, there was high within group 

variation (Coefficient of variance: CV>1.0) in both degree (delta) and rate of vegetation change 

(slope) along the TSLF vector. In the pre-burn analysis, samples were positioned in ordination 

space near the high end of the TSLF vector (Figure 4.5), so post-burn sites that approached the 

pre-burn condition were likely to show a significant shift along the TSLF vector. In contrast to 

most of sites burned in 2005, the composition of two reference sites burned in 2003 and sampled 

annually for four years resembled their pre-burn state by the 4
th

 year after fire.  

 

The analysis of NDVI change revealed that vegetation recovery pattern varied over the 5-year 

post-fire period in both the May_burn and Aug_burn fires (Figure 4.6). While the mean NDVI 

in Year-1 after fire was relatively low in both fires (0.219 and 0.200 in May_burn and Aug_burn, 

respectively), the decrease in NDVI from pre-fire to 1st post-fire year was significantly greater in 

Aug_burn (47.7%) than May_burn sites (38.7%), suggesting that damage to vegetation from fire 

was more severe in the area that was burned and immediately flooded (Figure 4.7). In 

subsequent years, vegetation recovery was faster in May_burn sites, reaching the pre-burn level 

of NDVI within 2 post-fire years. In contrast, mean NDVI in Aug_burn sites increased linearly 

and reached the pre-fire level in four years (Figure 4.8). However, some parts of the May_burn 

area had very low NDVI in 2010, five years after fire, suggesting slow recovery in those areas. 
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Table 4.1: Delta (amount of change in target direction) and slope (rate of change in the target 

direction in half-changes per year) calculated for 2 sites burned in 2003 and 21 sites burned in 

2005. The 2003 and 2005 burned sites were monitored for 4 and 5 years after fire, respectively. 

Time since last fire (TSLF) vector in the non-metric multidimensional scaling (NMS) ordination 

was the target direction. The base year for change in vegetation was the first year after fire. 

Statistical significance (p ≤ 0.1) of delta and slope was tested using Monte Carlo‟s simulations 

with 10,000 permutations.  

 

Burn Group Site Delta P-value Slope P-value 

Ref-2003 B-01-01 0.686 0.000 0.207 0.000 

B-01-04 0.316 0.147 0.116 0.109 

Aug_burn B-05-06 0.141 0.196 0.020 0.281 

B-05-07 0.051 0.384 0.040 0.159 

B-05-08 0.113 0.172 0.044 0.048 

B-06-05 0.061 0.335 -0.008 0.580 

B-06-07 0.087 0.297 0.031 0.155 

B-06-08 0.226 0.041 0.043 0.063 

B-10-03 0.117 0.274 0.065 0.083 

B-10-05 0.130 0.154 0.031 0.141 

B-10-09 -0.301 0.852 -0.016 0.703 

B-11-03 -0.060 0.623 0.016 0.362 

B-11-04 -0.157 0.832 -0.001 0.511 

B-11-05 0.212 0.103 0.046 0.107 

B-13-10 0.188 0.118 0.067 0.037 

May_burn D-01-10 -0.001 0.501 -0.018 0.621 

TD-1900 0.060 0.416 0.019 0.373 

TD-2000 0.204 0.274 0.062 0.200 

TD-2100 0.226 0.301 0.095 0.174 

TD-2200 0.118 0.368 0.044 0.265 

TD-2300 0.009 0.476 -0.007 0.519 

TD-2400 0.370 0.187 0.068 0.235 

TD-2500 0.040 0.408 0.011 0.416 

 

 

 

4.4 Discussion and Conclusions 

 

The observed pattern in marl prairies burned in 2005 differs from results reported for other fires. 

Several authors reported that vegetation after a single burn in seasonally-flooded wetlands 

returns to pre-burn conditions within 3-5 years of fire (Werner 1975; Pahl et al. 2003; La Puma 

et al. 2007). A similar pattern of vegetation recovery was also reported at two sites burned in 

spring 2003, and sampled annually for four years thereafter (Sah et al. 2008, 2009).  

Inconsistency between the present study and earlier research probably results from differences in 

post-fire hydrologic conditions, as the majority of sites burned in 2005 were flooded after fire.  
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Most graminoids normally re-sprout and grow rapidly within a few weeks of fire, but when their 

aerial shoots are consumed and subsequently submerged by post-fire flooding, they may 

succumb to flooding-induced oxygen deficiency in their surviving belowground parts (Ball 1990; 

Kirkman and Sharitz 1994; Ponzio et al. 2004). Other Everglades studies have also reported that 

the synergistic effects of fire and flooding that submerge the remnant culms of plants can be 

locally detrimental to species such as sawgrass (C. mariscus ssp.  jamaicense) and muhly (M. 

capillaris var. filipes) (Herndon et al. 1991;  Snyder and Schaffer 2004). A steep decrease in the 

cover of dominant species usually provides conditions suitable for the growth of opportunistic 

species (Zedler and Krecher 2004). Persistence of the relatively low cover of dominant species in 

post-fire years at the Aug_burn sites has also facilitated the growth of other species. At 

May_burn sites, where water level increased gradually, providing ample opportunity for the re-

growth of plants after fire, a large decrease in the relative cover of sawgrass was a surprise to us. 

When leaf meristems of sawgrass are not damaged by fire, the plants are known to grow rapidly, 

up to 20 to 40 cm in two weeks (Forthman 1973), which helps them to cope with the rising water 

level. In our study, lower relative cover of sawgrass in post-fire years than in per-burn samples 

may also be a function of differences in dead materials. Prior to the 2005 fires, the sites had not 

burned for 14 years, and retained a large component of dead sawgrass.  

 

Assessment of vegetation recovery dynamics in post-fire years was well illustrated by both 

trajectory and NDVI change analyses. In the trajectory analysis, none of the May_burn sites 

showed a significant shift in species composition toward pre-burn conditions, and only a few 

sites in Aug_burn groups showed a significant shift in vegetation composition with time-since-

last-fire (TSLF). Our expectation was that the mean rate of change, i.e. vegetation recovery, 

would be faster in May_Burn than in the Aug_Burn group. Visual analysis of trajectories 

revealed that the trajectory of several May_burn sites had shifted roughly in the opposite 

direction of the TSLF vector during the 4
th

 year after fire, suggesting that the vegetation recovery 

process at several May_burn sites changed in direction between Years 3 and 4. Within the group, 

a visible shift of sites in ordination space toward increasing hydroperiod suggested that 

vegetation in post-fire Year 4 was indicative of wetter conditions than in previous years. At the 

Aug_burn sites, vegetation recovery towards pre-burn composition was slow, and vegetation 

composition even five years after fire was significantly different from pre-burn samples at most 

of these sites. 

 

Post-fire NDVI change pattern that represented vegetation recovery trajectories differed between 

the two burned areas, suggesting in differences in inherent resilience of pre-fire vegetation types, 

and in post-fire environmental conditions, particularly hydrology. Pre-fire vegetation in the 

May_burn sites was dominated by sawgrass, which was indicative of relatively long 

hydroperiod, whereas vegetation in the Aug_burn sites were typical of short hydroperiod wet 

prairies. In general, fire impacts on vegetation tend to be less severe at marsh sites than the 

prairie sites, due to high plant and soil moisture content. Post-fire flooding had killed most of 

vegetation at the Aug_burn sites, while the vegetation at the May_burn sites had an opportunity 

to grow before the gradual onset of flooding two month after fire. The recovery of NDVI to the 

pre-fire level in just two and four years in May_burn and Aug_burn contrasted somewhat with 

field based estimates of plant cover. NDVI is affected by several factors, including total plant 

cover, biomass, plant and soil moisture, and leaf area index. Since NDVI is sensitive to 

cholorophyll content, varying amounts of dead plant biomass in the ground cover may have 
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effects on NDVI (van Leeuwen and Huete 1996). In general, dead or dry plant material produces 

spectral reflectance pattern similar to soil. In this study, total cover in the pre-fire year, was high, 

however live materials constituted only 24% and 37% at May_burn and Aug_burn sites, 

respectively. In contrast, the fraction of live biomass was >50% in post fire years.   

 

In summary, fire, an integral part of marl prairie ecosystem, is likely to create vegetation mosaics 

within the landscape, particularly when its effects on vegetation structure and composition are 

mediated through other disturbances, such as changes in hydrologic regime. While the interval 

between fire and post-fire hydrologic events is important in shaping the response of vegetation to 

the synergetic effects of these two disturbances, it is the relative strength and duration of 

secondary disturbance that determines the course of post-fire vegetation recovery trajectories, 

which in turn shapes the vegetation mosaic pattern.  Our study of vegetation response to fire and 

hydrology also reveals that prairie vegetation recovering from a single fire is especially sensitive 

to annual variation in hydrologic regime. Differences of only a few cm in mean annual water 

depth could offset the recovery trajectories of vegetation that has not reached a stable state. 

Finally, it is recommended that the use of fire as a management tool for restoration of marl 

prairie habitat take into account likely post-burn hydrologic conditions, and when necessary be 

coupled with management of the post-fire hydrologic conditions, in order to produce the desired 

results. 
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Figure 2.1: Location of vegetation sampling sites within the Cape Sable seaside sparrow (CSSS) 

habitat. The sites were initially sampled between 2003 and 2005, thereafter sub-sets of sites were 

re-sampled between 2006 and 2009. 
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Figure 2.2: The non-metric multidimensional scaling (NMDS) ordination showing the trajectory 

of centroids of sub-population A census sites that were sampled twice over seven years (2003-

2009). Sites are grouped by the year when they were first sampled and direction of their 

trajectory shift along hydroperiod vector. Beginning and end of trajectory represents the year of 

first (2003-2005) and second (2006-2009) sampling event, respectively.  
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Figure 2.3: Change in vegetation-inferred hydroperiod in sub-population A between two 

sampling periods, 2003-2005 and 2006-2009. The sites that were sampled twice over seven years 

(2003-2009) and showed a significant trajectory shift along the hydrology gradient are overlaid. 

Sites are categorized by year when they were first sampled, and direction of shift in vegetation 

composition. W = towards indicator of longer hydroperiod, D = towards indicator of shorter 

hydroperiod. 
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Figure 2.4: Change in vegetation-inferred hydroperiod in sub-population A between two 

sampling events, (a) 2003 and 2006, (b) 2004 and 2007 or 2008, and (c) 2005 and 2008 or 2009.  
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Figure 2.5: Box-plots showing the NP-205 based and vegetation-inferred hydroperiod at the 

sites on Transect A.  

 

 
Figure 2.6: Change in vegetation inferred hydroperiod between 2003 and 2010 at the sites on 

Transect A.  
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Figure 2.7: The non-metric multidimensional scaling (NMDS) ordination showing the trajectory 

of sites from CSSS vegetation Transect A sampled in 2003, 2006 and 2010. Only the sites which 

showed significant trajectory shift representing a in species composition along the hydrology 

gradient are shown. Ordination axes were rotated to perfectly align the hydroperiod vector with 

the first axis. Initial point on each site trajectory represents the 2003 sampling, and the end of 

arrows represents the 2010 sampling.  
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Figure 2.8: Change in vegetation-inferred hydroperiod in sub-population A between the two 

sampling events, 2003-2005 and 2006-2009, and the sites at which occurrence of Cape Sable 

seaside sparrow was recorded in one or more years between 2006 and 2010.  
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Figure 3.1:  Box plots showing vegetation-inferred hydroperiod in the sub-populations C, E and 

F between the two sampling periods, 2003-2005 and 2006-2009. 
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Figure 3.2: Change in vegetation-inferred hydroperiod in sub-population C between the two 

sampling periods, 2003-2005 and 2006-2009, and the sites with number of sparrows recorded 

over three years, 2008 to 2010. 
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Figure 3.3: Observed and predicted water level at the TSB stage recorder and water flow from 

L31W canal through S332 into Taylor Slough and from L31N through S332D into retention 

pond during the 1961-2009 dry seasons. 
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Figure 3.4: Change in vegetation-inferred hydroperiod in sub-population E between the two 

sampling periods, 2003-2005 and 2006-2010, and sites with number of sparrows recorded in 

2010. 
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Figure 3.5: CR2 stage level and S332B total flow. (A) 30-day moving average water level at 

CR2 stage recorder and monthly mean S332B total flow. (B) Observed and predicted water level 

and seasonal total water flow through S332B (N & W).  
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Figure 3.6: Trends in difference in water level between pairs of three stage recorders located 

between the eastern boundary of ENP and western edge of Shark River Slough. (a) Difference 

between CR2 and CR3, and (b) Difference between CR3 and A13. 
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Figure 3.7:  Box-plots showing median vegetation-inferred hydroperiod in at the sites sampled 

for vegetation composition in sub-population F between 2003 and 2009.  
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Figure 3.8: Change in vegetation-inferred hydroperiod in sub-population F between the two 

sampling periods, 2003-2005 and 2006-2010, and sites with number of sparrows recorded over 

three years, 2008 to 2010. 

 

 
Figure 3.9: Change in vegetation inferred hydroperiod between 2004 and 2010 at the sites on 

Transect F.  
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Figure 3.10: Non-metric multidimensional scaling (NMS) ordination showing the trajectory of 

sites burned in Mustang Corner and Radius Rod fire in CSSS subpopulation E and F. Ordination 

axes were rotated to perfectly align the hydroperiod vector with the first axis. Initial point on 

each site trajectory represents the pre-fire, and the end of arrows represents the 2010 (two years 

after fire) sampling.  



 

 43 

 
Figure 4.1: CSSS vegetation monitoring sites burned in 2005 fires. Three fires, two in sub-

population B and one in sub-population D, burned 21 sites. Two sites burned in 2003 and 

monitored for 4 years after fire are shown as reference sites. 

 

 
 
Figure 4.2: Mean (± 1 SD) total plant cover (%) in pre-burn and five year after fire for the two 

groups of sites, one burned in May 2005 and the other in August 2005.
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Figure 4.3: Change in the relative cover of species (A) in five years after fire, and species rank abundance (B) at the sites burned in 

May 2005 (May_burn) and August 2005 (Aug_burn), and re-sampled annually for five post-fire years. 
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Figure 4.4: Change in number of species at the two sets of census sites, burned in May 2005 

(May_burn) and August 2005 (Aug_burn), and sampled annually for five post-fire years. 

Different letters show differences between burns over the years, and among years within each 

burn are significantly (Repeater Measures ANOVA, Bonferroni test: p<0.05) different. 
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Figure 4.5: Site scores for Axis-1 and 2 from 3-Axis non-metric multidimensional scaling 

(NMS) ordination based on total cover at 2 sites burned in 2003 and 21 sites burned in 2005. 

Two sites burned in 2003 were sampled for four years after fire, and are used as reference sites. 

Sites joining the repeated samples of the same site show trajectory of the site. 
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Figure 4.6: Mean (± S.D.) Normalized Difference Vegetation Index (NDVI) in pre-burn and five 

year after fire in two areas, one burned in May 2005 (Sub-population D) and the other in August 

2005 (Sub-population B). 
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Figure 4.7: Change in NDVI (Normalized Difference in Vegetation Index) between 2005 (pre-

fire) and 2006 (Post-fire Year-1) in two areas, one burned in May 2005 (Sub-population D) and 

the other in August 2005 (Sub-population B). 
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Figure 4.8: NDVI (Normalized Difference in Vegetation Index) values in 2010 (Post-fire Year-

5) as a percentage of NDVI in 2005 (pre-fire) in two areas, one burned in May 2005 (Sub-

population D) and the other in August 2005 (Sub-population B). 
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Appendices 

 

A-1: Mean amount (delta) and rate (slope) of trajectory shift representing vegetation change 

between 2003 and 2009 in the target direction at the census sits within sub-population A. Out of 

271 census sites, only those sites that showed significant change in vegetation composition are 

listed. Hydroperiod (days/year) vector fitted in the Bray-Curtis distance-based non-metric 

multidimensional scaling (NMS) ordination was the target direction. Statistical significance (p ≤ 

0.1) of delta and slope was tested using Monte Carlo‟s simulations with 10,000 permutations.  

 

 

Site X_UTM83 Y_UTM83 

Samp_ 

year-1 

Samp_ 

year-2 

Veg_ 

Type 

(Year-1) Delta 

p-

value Slope 

p-

value 

A-01-06 515125 2844858 2003 2006 CRM 0.415 0.078 0.139 0.078 

A-01-08 516146 2842899 2003 2006 RCM 0.966 0.000 0.322 0.000 

A-03-01 511118 2833996 2003 2006 SCWP 0.437 0.014 0.146 0.014 

A-03-02 513155 2834079 2003 2006 SCWP 0.377 0.021 0.126 0.021 

A-03-03 515162 2834850 2003 2006 CRM 0.244 0.000 0.082 0.000 

A-03-04 515132 2832965 2003 2006 CM 0.407 0.052 0.136 0.052 

A-03-05 516090 2831118 2003 2006 CRM 0.374 0.019 0.125 0.019 

A-03-06 515089 2830946 2003 2006 CM 0.151 0.071 0.050 0.071 

A-03-07 513029 2831037 2003 2006 SCWP 0.418 0.023 0.139 0.023 

A-03-08 511174 2831001 2003 2006 SCWP 0.505 0.005 0.168 0.005 

A-03-10 510182 2832018 2003 2006 SCWP 0.548 0.044 0.183 0.044 

A-04-02 512186 2829011 2003 2006 CM 0.453 0.026 0.151 0.026 

A-04-03 514251 2830027 2003 2006 CRM 0.487 0.071 0.162 0.071 

A-04-05 515117 2828015 2003 2006 CM 0.318 0.000 0.106 0.000 

A-04-07 516163 2827057 2003 2006 CM 0.108 0.059 0.036 0.059 

A-05-07 510251 2825027 2003 2006 CWP 0.301 0.003 0.100 0.003 

A-05-08 510217 2824036 2003 2006 CM 0.281 0.008 0.094 0.008 

A-06-06 507215 2826006 2003 2006 CRM 0.081 0.035 0.027 0.035 

A-06-07 508219 2828071 2003 2006 CM 0.596 0.001 0.199 0.001 

A-06-09 509274 2827943 2003 2006 CM 0.343 0.015 0.114 0.015 

A-07-01 504175 2829916 2004 2008 ERM 0.147 0.057 0.037 0.057 

A-07-06 506175 2832964 2004 2008 RCM 0.177 0.002 0.044 0.002 

A-07-08 507193 2831970 2004 2007 RCM -0.342 0.054 -0.114 0.054 

A-08-01 503198 2833998 2003 2006 CRM 0.179 0.068 0.060 0.068 

A-08-07 508180 2836880 2003 2006 RCM 0.128 0.056 0.043 0.056 

A-08-09 505223 2836901 2003 2006 CM 0.155 0.053 0.052 0.053 

A-09-01 506169 2838881 2003 2006 CRM 0.430 0.010 0.143 0.010 

A-09-09 511196 2838896 2003 2006 CM 0.152 0.003 0.051 0.003 

A-10-03 513091 2831909 2004 2007 SCWP 0.424 0.005 0.141 0.005 

A-10-10 513144 2834674 2004 2008 CRM -0.631 0.029 -0.158 0.029 

A-11-01 514044 2835822 2004 2008 CWP -0.729 0.013 -0.182 0.013 

A-11-02 514273 2836753 2004 2008 CM -0.537 0.009 -0.134 0.009 
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Site X_UTM83 Y_UTM83 

Samp_ 

year-1 

Samp_ 

year-2 

Veg_ 

Type 

(Year-1) Delta 

p-

value Slope 

p-

value 

A-11-04 516286 2836395 2004 2008 CM -0.262 0.068 -0.065 0.068 

A-11-08 514123 2838811 2004 2008 CWP -0.303 0.093 -0.076 0.093 

A-12-01 511195 2822992 2004 2007 CM -0.128 0.048 -0.043 0.048 

A-12-06 511195 2828986 2004 2008 SCWP 0.330 0.064 0.082 0.064 

A-12-08 514248 2826938 2004 2008 CM -0.232 0.033 -0.058 0.033 

A-12-09 516129 2825994 2004 2007 CM 0.075 0.078 0.025 0.078 

A-13-03 505932 2824005 2004 2008 CM -0.142 0.060 -0.036 0.060 

A-13-06 509200 2823965 2004 2007 CRM 0.375 0.016 0.125 0.016 

A-13-07 506240 2823010 2004 2008 CM -0.252 0.025 -0.063 0.025 

A-13-09 510208 2822032 2004 2007 CRM 0.439 0.052 0.146 0.052 

A-14-08 507222 2826980 2004 2008 CRM -0.277 0.024 -0.069 0.024 

A-15-05 506185 2830955 2004 2007 RCM 0.248 0.077 0.083 0.077 

A-16-05 512161 2834880 2004 2008 CWP -0.436 0.065 -0.109 0.065 

A-16-07 510141 2834020 2004 2008 ERM -0.250 0.076 -0.062 0.076 

A-16-08 510189 2833097 2004 2008 RCM -0.277 0.093 -0.069 0.093 

A-17-01 510176 2840851 2004 2008 CRM 0.164 0.061 0.041 0.061 

A-17-05 512163 2838916 2004 2007 CRM -0.316 0.039 -0.105 0.039 

A-19-05 512065 2841929 2004 2007 CRM -0.151 0.020 -0.050 0.020 

A-19-06 513112 2840887 2004 2007 CWP -0.270 0.098 -0.090 0.098 

A-19-10 516073 2839044 2004 2007 SCWP -0.515 0.006 -0.172 0.006 

A-20-01 510343 2846852 2004 2008 CRM 0.193 0.065 0.048 0.065 

A-20-02 509154 2845817 2004 2008 CRM -0.068 0.019 -0.017 0.019 

A-20-06 516073 2845920 2004 2008 CM -0.218 0.081 -0.055 0.081 

A-20-08 513075 2844842 2004 2007 CM 0.106 0.040 0.035 0.040 

A-21-06 508166 2843826 2005 2009 CRM 0.300 0.075 0.075 0.075 

A-21-10 509194 2841839 2005 2008 RCM 0.175 0.011 0.058 0.011 

A-22-07 515122 2841829 2005 2009 RCM -0.602 0.028 -0.151 0.028 

A-22-09 515116 2843812 2005 2009 CM -0.602 0.022 -0.151 0.022 

A-24-04 507180 2840827 2005 2009 CRM 0.142 0.023 0.036 0.023 

A-25-04 504188 2835849 2005 2009 RCM 0.235 0.022 0.059 0.022 

A-26-03 508179 2834854 2005 2009 RCM 0.146 0.067 0.036 0.067 

A-26-07 510194 2836875 2005 2009 CRM -0.300 0.021 -0.075 0.021 

A-27-04 514096 2831997 2005 2009 SCWP 0.235 0.031 0.059 0.031 

A-27-10 515128 2835840 2005 2009 CM -0.178 0.041 -0.044 0.041 

A-28-06 509211 2828988 2005 2009 SCWP 0.573 0.029 0.143 0.029 

A-28-07 509180 2831039 2005 2009 CRM 0.247 0.077 0.062 0.077 

A-29-01 504191 2823944 2005 2009 CRM 0.349 0.016 0.087 0.016 

A-29-03 507218 2822973 2005 2009 CM 0.145 0.024 0.036 0.024 

A-29-07 508062 2826150 2005 2008 CM 0.612 0.002 0.204 0.002 

A-30-09 514119 2828965 2005 2008 CM 0.186 0.076 0.062 0.076 
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A-2: Mean amount (delta) and rate (slope) of trajectory shift representing vegetation change 

between 2003 and 2010 in the target direction calculated for 51 sites on Transect A. 

Hydroperiod (days/year) vector fitted in the Bray-Curtis distance-based non-metric 

multidimensional scaling (NMS) ordination was the target direction. Statistical significance (p ≤ 

0.1) of delta and slope was tested using Monte Carlo‟s simulations with 10,000 permutations.  

 

Site X_UTM83 Y_UTM83 
Veg_type 

(2003) 
Delta p-value Slope p-value 

TA-0000 516665 2841401 SCWP -0.421 0.017 -0.060 0.018 

TA-0100 516565 2841401 PCM -0.265 0.096 -0.044 0.063 

TA-0200 516446 2841401 CWP -0.247 0.057 -0.038 0.041 

TA-0300 516365 2841401 SCWP -0.257 0.101 -0.035 0.114 

TA-0400 516265 2841401 SCWP -0.424 0.036 -0.061 0.034 

TA-0500 516165 2841401 SCWP -0.554 0.001 -0.079 0.001 

TA-0600 516065 2841401 SCWP 0.139 0.735 0.016 0.696 

TA-0700 515965 2841401 SCWP -0.324 0.097 -0.046 0.105 

TA-0800 515865 2841401 SCWP -0.355 0.187 -0.044 0.224 

TA-0900 515765 2841401 SCWP -0.620 0.035 -0.087 0.043 

TA-1000 515665 2841401 SCWP -0.846 0.000 -0.118 0.000 

TA-1100 515565 2841401 PCM -0.141 0.211 -0.022 0.182 

TA-1200 515465 2841401 SCWP -0.368 0.048 -0.053 0.048 

TA-1300 515365 2841401 SCWP -0.008 0.491 0.001 0.503 

TA-1400 515265 2841401 SCWP 0.067 0.592 0.012 0.605 

TA-1500 515164 2841401 CRM -0.199 0.190 -0.033 0.150 

TA-1600 515065 2841401 CWP -0.198 0.212 -0.031 0.188 

TA-1700 514965 2841401 CWP 0.043 0.554 0.007 0.568 

TA-1800 514865 2841401 CM -0.055 0.391 -0.012 0.341 

TA-1900 514765 2841401 CM -0.265 0.199 -0.038 0.194 

TA-2000 514665 2841401 CRM 0.034 0.537 0.005 0.530 

TA-2100 514565 2841401 RCM -0.071 0.385 -0.012 0.358 

TA-2200 514465 2841401 CM -0.330 0.172 -0.050 0.153 

TA-2300 514365 2841401 RCM -0.400 0.109 -0.059 0.102 

TA-2400 514264 2841401 CRM -0.441 0.112 -0.068 0.100 

TA-2500 514165 2841401 CRM -0.206 0.183 -0.033 0.152 

TA-2600 514065 2841401 CM -0.403 0.111 -0.061 0.090 

TA-2700 513965 2841401 PCM -0.061 0.368 -0.009 0.356 

TA-2800 513865 2841401 SCWP -0.060 0.437 -0.009 0.439 

TA-2900 513765 2841401 CM -0.063 0.384 -0.010 0.378 

TA-3000 513665 2841401 SOWP -0.223 0.135 -0.032 0.138 

TA-3100 513565 2841401 SOWP -0.217 0.172 -0.032 0.165 

TA-3200 513465 2841401 SOWP -0.305 0.075 -0.043 0.074 

TA-3300 513365 2841401 PCM -0.289 0.143 -0.045 0.119 

TA-3400 513265 2841401 SOWP -0.491 0.062 -0.072 0.058 
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Site X_UTM83 Y_UTM83 
Veg_type 

(2003) 
Delta p-value Slope p-value 

TA-3500 513165 2841401 CRM -0.190 0.206 -0.029 0.192 

TA-3600 513064 2841401 PCM -0.729 0.002 -0.105 0.002 

TA-3700 512965 2841401 CRM -0.248 0.161 -0.036 0.156 

TA-3800 512865 2841401 CWP -0.234 0.079 -0.032 0.081 

TA-3900 512765 2841401 CWP -0.111 0.312 -0.018 0.296 

TA-4000 512665 2841401 SCWP -0.330 0.016 -0.047 0.018 

TA-4100 512565 2841401 SOWP -0.288 0.163 -0.042 0.161 

TA-4200 512465 2841401 SOWP -0.296 0.097 -0.046 0.082 

TA-4300 512365 2841401 CM -0.348 0.059 -0.049 0.061 

TA-4400 512265 2841401 CM 0.227 0.972 0.031 0.963 

TA-4500 516665 2841401 CRM -0.211 0.215 -0.035 0.176 

TA-4600 516565 2841401 CM -0.343 0.062 -0.049 0.060 

TA-4700 516446 2841401 CM -0.139 0.273 -0.019 0.281 

TA-4800 516365 2841401 CRM -0.283 0.081 -0.043 0.067 

TA-4900 516265 2841401 SOWP -0.293 0.105 -0.042 0.111 

TA-5000 516165 2841401 SOWP -0.303 0.086 -0.044 0.085 

 

 

 

A-3: Mean amount (delta) and rate (slope) of trajectory shift representing vegetation change 

between 2003 and 2009 in the target direction at the census sites within sub-population C, E &  

F, sites on Transect F. Sites that showed significant change in vegetation composition are listed. 

Hydroperiod (days/year) vector fitted in the Bray-Curtis distance-based non-metric 

multidimensional scaling (NMS) ordination was the target direction. Statistical significance (p ≤ 

0.1) of delta and slope was tested using Monte Carlo‟s simulations with 10,000 permutations.  

 

FieldID U_B X_UTM83 Y_UTM83 

Samp_ 

year-1 

Samp_ 

year-2 

Veg_ 

Type 

(Yr-1) Delta 

p-

value Slope 

p-

value 

C-01-05 UB 540298 2814227 2003 2006 MWP 0.302 0.011 0.101 0.011 

C-01-06 UB 538380 2810405 2003 2006 MWP 0.609 0.003 0.203 0.003 

C-01-10 UB 541130 2811251 2003 2006 PCM -0.300 0.051 -0.100 0.051 

C-02-02 UB 538298 2812210 2004 2008 SCWP 0.244 0.041 0.061 0.041 

C-02-06 UB 539296 2815161 2004 2007 CWP -0.306 0.021 -0.102 0.021 

C-03-02 UB 541061 2814191 2005 2008 MWP -0.279 0.096 -0.093 0.096 

C-04-02 UB 537346 2814186 2005 2008 MWP 0.255 0.082 0.085 0.082 

C-04-03 UB 536331 2813196 2005 2008 MWP 0.280 0.075 0.093 0.075 

C-04-04 UB 535344 2813189 2005 2008 MWP 0.282 0.025 0.094 0.025 

E-01-01 UB 529376 2822048 2003 2006 CWP 0.213 0.024 0.071 0.024 

E-01-02 UB 530372 2824055 2003 2006 CWP 0.203 0.007 0.068 0.007 

E-01-04 UB 530350 2822044 2003 2006 SCWP 0.203 0.071 0.068 0.071 

E-01-05 UB 531351 2822037 2003 2006 CWP 0.215 0.021 0.072 0.021 
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FieldID U_B X_UTM83 Y_UTM83 

Samp_ 

year-1 

Samp_ 

year-2 

Veg_ 

Type 

(Yr-1) Delta 

p-

value Slope 

p-

value 

E-01-08 Burn 532285 2825069 2003 2010 CWP 0.404 0.063 0.073 0.014 

E-01-09 UB 532348 2822051 2003 2006 CWP 0.252 0.066 0.084 0.066 

E-02-04 UB 529367 2820210 2003 2006 CWP 0.142 0.093 0.047 0.093 

E-02-06 UB 531403 2820153 2003 2006 SCWP 0.195 0.034 0.065 0.034 

E-02-08 UB 532358 2819185 2003 2006 CWP 0.386 0.005 0.129 0.005 

E-02-09 UB 534364 2818180 2003 2006 CWP 0.227 0.022 0.076 0.022 

E-03-02 Burn 527397 2817139 2004 2010 SCWP 0.300 0.038 0.043 0.054 

E-03-07 Burn 528348 2817156 2004 2010 CWP 0.300 0.083 0.050 0.080 

E-04-04 UB 529346 2821021 2004 2008 CRM -0.414 0.009 -0.104 0.009 

E-04-05 UB 530351 2821046 2004 2007 CWP -0.309 0.096 -0.103 0.096 

E-05-03 Burn 531318 2825013 2005 2010 CWP 0.222 0.088 0.036 0.143 

E-06-03 UB 530353 2820150 2005 2009 MWP 0.285 0.070 0.071 0.070 

E-06-07 UB 527373 2815160 2005 2009 SCWP 0.294 0.014 0.074 0.014 

E-06-08 UB 527361 2814156 2005 2009 CWP -0.321 0.038 -0.080 0.038 

E-06-10 UB 526327 2815182 2005 2009 CWP -0.174 0.080 -0.044 0.080 

F-01-02 Burn 542251 2826192 2003 2010 MWP 0.598 0.002 0.047 0.054 

F-02-09 UB 540244 2824095 2004 2006 MWP 0.435 0.005 0.145 0.005 

F-03-01 Burn 541200 2831069 2005 2010 CM -0.361 0.117 -0.088 0.056 

F-03-03 Burn 541228 2826091 2005 2010 MWP 0.242 0.092 0.044 0.114 

TF-0100 UB 542482 2825465 2004 2010 MWP 0.232 0.088 0.023 0.204 

TF-0300 UB 542283 2825448 2004 2010 CM -0.386 0.037 -0.063 0.041 

TF-0400 UB 542183 2825438 2004 2010 SCWP 0.298 0.020 0.037 0.052 

TF-3000 Burn 539594 2825202 2004 2010 MWP -0.470 0.013 -0.076 0.014 

 
*Vegetation type: CM = Cladium marsh; CRM = Cladium-Rhynchospora marsh; CWP = Cladium wet 

prairie; ERM = Eleocharis-Rhynchospora marsh; MWP = Muhlenbergia prairie; PCM= Paspalum-

Cladium marsh; RCM = Rhynchospora-Cladium marsh; SCWP = Schizachyrium wet prairie; SOWP = 

Schoenus wet prairie;  
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