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Radio Science, Volume 35, Number 2, Pages 537-546, March-April 2000 

Fast integral methods for conformal antenna 
and array modeling in conjunction with hybrid 
finite element formulations 

John L. Volakis, Thomas F. Eibert, and Kubilay Sertel 
Radiation Laboratory, Department of Electrical Engineering and Computer Science 
University of Michigan, Ann Arbor 

Abstract. Fast integral methods are used to improve the efficiency of hybrid finite element 
formulations for conformal antenna and array modeling. We consider here cavity-backed 
configurations recessed in planar and curved ground planes as well as infinite periodic 
structures with boundary integral (BI) terminations on the top and bottom bounding 
surfaces. Volume tessellation is based on triangular prismatic elements which are well suited 
for layered structures and still give the required modeling flexibility for irregular antenna 
and array elements. For planar BI terminations of finite and infinite arrays the adaptive 
integral method is used to achieve (.9(NlogN) computational complexity in evaluating the 
matrix-vector products within the iterative solver. In the case of curved mesh truncations 
for finite arrays the fast multipole method is applied to obtain (.9(N •'5) complexity for the 
evaluation of the matrix-vector products. Advantages and disadvantages of these methods 
as they relate to different applications are discussed, and numerical results are provided. 

1. Introduction 

Hybrid finite element boundary integral (FE/BI) 
methods have been widely applied for analysis of 
conformal antennas and arrays [Volekis et el., 1997; 
Volekis et el., 1998]. Because of requirements for 
accuracy, full volumetric materials characterization, 
accurate feed modeling, and structural complexity, 
the FE method is one of the most attractive simula- 

tion approaches that combines rigor and adaptabil- 
ity. Nevertheless, these attributes are often not suf- 
ficient for practical characterization of complex an- 
tenna apertures and arrays due to CPU time and 
memory requirements associated with the BI portion 
of the hybrid FE/BI system. The BI subsystem dom- 
inates the CPU requirements with its O(N •) compu- 
tations, where N refers to the number of unknowns 
on the antenna/array aperture. However, recent de- 
velopments on fast integral methods have allowed us 
to circumvent some of these CPU bottlenecks and 

are permitting the analysis of large finite apertures 

Copyright 2000 by the American Geophysical Union. 
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and multilayered arrays. Eventually, these speedups 
can lead to algorithms which can be used for design 
purposes. 

Fast integral methods are typically used in connec- 
tion with iterative solvers, and their aim is to speed 
up the matrix-vector product calculations, the most 
time consuming step in any iterative algorithm such 
as the conjugate gradient (CG), biconjugate gra- 
dient (BiCG), quasi-minimal residual (QMR), and 
the generalized minimal residual (GMRES) routines 
[$aad, 1996]. Fast methods are often referred to as 
matrix compression algorithms, and k-space meth- 
ods [Bojarski, 1971] were among the first such ap- 
proaches to be used with iterative solvers. Although 
k-space methods lead to (.9(NlogN) memory and 
computational complexity, their application is re- 
stricted to systems/geometries which can be approx- 
imated with circulant matrices. Originally, this re- 
quirement could only be fulfilled using uniform dis- 
cretizations of the integral equation. However, re- 
cently introduced fast integral methods such as the 
fast multipole method (FMM) /Coifmen ½! el., 1993; 
Bindiganavale and Volakis, 1997; Lu and Jin, 1996; 
Chew ½! al., 1997; Song e! al., 1997; $hcng ½! al., 
1998] and the adaptive integral method (AIM) [Bl½s- 
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538 VOLAKIS ET AL.: FAST METHODS FOR CONFORMAL ANTENNAS 

zynski et al., 1996; Anastassiu et al., 1998; Bindi- 
ganavale and Volakis, 1998; Eibert and Volakis, 1999] 
are rid of restrictions for uniform discretization of 

the original geometries. These methods have been 
shown to deliver memory and CPU reduction down 
to O(N •'5) or better. Windowed FMM [Burkholder 
and Kwon, 1996] and multilevel FMM [Song et al., 
1997] can reduce CPU down to O(N •'33) or even 
O(NlogN). Early electromagnetic applications of 
FMM concentrated on pure integral equation ap- 
proaches, but uses of FMM in the context of hybrid 
FE/BI formulations have also been reported [Lu and 
Jin, 1996; Sheng et al., 1998]. AIM can be consid- 
ered as the natural extension of the k-space methods 
and was introduced for arbitrary surface and volu- 
metric scattering problems [Bleszynski et al., 1996] 
and is especially the method of choice for planar 
BI surfaces. In this case, only two-dimensional fast 
Fourier transform (FFT) algorithms need to be used, 
and the method results in low O(NlogN) complex- 
ity. Thus the speedup of AIM is considerably bet- 
ter than that of FMM or multilevel FMM for pla- 
nar boundaries even for relatively small numbers of 
unknowns. Recent pure integral equation applica- 
tions of AIM [Bleszynski et al., 1996; Anastassiu 
et al., 1998] and hybrid FE/BI implementations of 
AIM [Bindiganavale and Volakis, 1998; Eibert and 
Volakis, 1999] have verified its superior speedup and 
accuracy for planar BI treatments. 

In this paper we consider hybrid FE/BI formu- 
lations for cavity-backed configurations recessed in 

planar and curved ground planes. In contrast to pre- 
vious works, the emphasis of this paper is on the 
application of fast methods to infinite periodic and 
finite arrays and frequency selective radomes. For 
planar BI truncations of infinite arrays, AIM is used 
to speed up the BI, whereas FMM is used to increase 
the efficiency of curved BI terminations. In this con- 
text the main differences of FMM and AIM will be 

discussed together with the inherent approximations 
of each technique. Numerical results are shown for 
conformal printed antennas and frequency selective 
surfaces (FSSs). 

2. Hybrid FE/BI formulation 
The hybrid FE/BI formulation for cavity-backed 

antennas recessed in a ground plane has been given 
by Volakis et al. [1997,1998], whereas periodic ar- 
ray modeling has been discussed extensively by Lu- 
cas and Fontana [1995], McGrath and Pyati [1996], 
and Eibert et al. [1999]. Below we briefly present a 
unified formulation, where the differences between 
single elements and infinite periodic arrays are in 
the Green's function and in the necessity to apply 
periodic boundary conditions (PBCs) at the volume 
and surface boundaries. The latter allows the reduc- 

tion of the computational domain to a single periodic 
cell. In the context of hybrid FE/BI formulation, the 
resulting system of equations for the antenna/array 
structure illustrated in Figure i is of the form 

, , [•P•,• ,',C::•,", 
Antenna / Array Aperture Surface (S) "- •- •- -.,-_-.•.---.r •_•' - -• , ', '•:•1-/••• ' ;--,' .. 

. , •_-.•-•.; •_ r._•.;.-,- ;. 
•- -r) - •- , 7;'- -r- -_i-l- '• 
• ,- - - r- fi"----•--'•- - t- -,' 

ß l/ I __ 
j- - 

?BC 

4:;; ..... $ur[aoe PB tttt 
PRC 

BI 

(a) (b) 

Figure 1, (a) Finite array in the cavity, and (b) infinite periodic structure. 
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VOLAKIS ET AL.' FAST METHODS FOR CONFORMAL ANTENNAS $39 

[.4] + [o] 

}-{ {bS} }. (1) 
Here {E v } denotes the electric field unknowns within 
the volume enclosed by $, whereas {E s} represents 
the corresponding unknowns on the boundary S. 
The matrix [A] is sparse and is associated with the 
finite element volume discretization, whereas [B] sta- 
nds for the fully populated BI system. The latter is 
obtained from a discretization of the surface integral 
equation for the magnetic field intensity H 

= 
s 

+ 
s 

q_ /_/inc, (2) 

in which H inc is an externally incident electromag- 
netic wave, g(r, r') - e-Jklr-r'l/(2•rl r - r'l) is the 
scalar Green's function for a magnetic current ele- 
ment over a ground plane, and k and Z are the 
free-space wave number and wave impedance, re- 
spectively. The same half-space Green's function is 
used to obtain an approximate solution when the 
antenna/array is on a slighty curved surface. The 
excitation column {b v} is due to internal antenna 
sources, and {b $} refers to the external incident 
field excitations Hinc(for scattering computations). 
When the above system refers to cavity-backed an- 
tennas or finite arrays in a cavity-backed configu- 
ration, the boundary condition on the vertical/side 
walls of the cavity is sim..ply h x E = 0. Triangu- 
lar prismatic elements [Ozdemir and Volakis, 1997; 
Graglia et al., 1998] are used to discretize the vol- 
ume. The associated basis functions on the aper- 
ture then become the Rao-Wilton-Glisson surface el- 

ements, and these are used to construct the BI sub- 
matrix. 

Infinite periodic arrays are assumed to be periodic 
in the xy plane, and the (m,n)th cell of the array 
is obtained by shifting the (0, 0)th cell through the 
relation 

p•. = mp• + np•. (3) 

Here p,, Pb are the lattice vectors in the xy plane, 
and (3) is only valid for planar periodic structures. 
Clearly, for curved arrays the complete array geome- 
try needs to be considered since a periodicity cannot 
be defined by an equation similar to (3). For periodic 
excitation of the array with a linear phase factor, the 
fields in the array obey the periodicity conditions 

E(r + rnpa + npb) - E(r)e -jk'øø'("•pa+npb), 

H(r + mpa + np•) - H(r)e -jk'øø'(mpa+npb) 
(4) 

where 

ktoo -- kxoo • q- kyoo •l 
= k sin 0o cos 9o 5• + k sin 0o sin 9o •t (5) 

with 00, 90 describing the scan direction of the ar- 
ray or the propagation direction of an incident plane 
wave. Using this periodicity condition and the BI 
representation in (2), the computational domain can 
be reduced to a single unit cell of the array [Lucas 
and Fontana, 1995; McGrath and Pyati, 1996; Eib- 
err et al., 1999] (see Figure 1). This also implies 
that g(r, r •) in (2) must be replaced by the appro- 
priate periodic Green's function and the PBCs must 
be explicitly enforced on the vertical side walls of 
the unit cell mesh. Many periodic BI implementa- 
tions utilize spectral domain formulations [Lucas and 
Fontana, 1995; McGrath and Pyati, 1996]. However, 
here we use a spatial domain approach with the pe- 
riodic Green's function evaluated on the basis of the 

Ewald transform [Ewald, 1921; Jordan et al., 1986; 
Eibert et al., 1999]. This is essential for implement- 
ing AIM into the periodic FE/BI formulation since 
the spatial domain Green's function representation 
is required within the AIM algorithm. 

3. Finite Element/Fast Integral 
Methods 

The FE/BI system (1) is partly sparse and partly 
dense. More specifically, [A] is sparse, whereas [B] is 
dense. Thus, although [B] is typically much smaller 
in rank than [A], it is usually responsible for most 
of the CPU and memory requirements when an iter- 
ative algorithm is used for the solution of (1). Fast 
integral methods aim to perform the matrix-vector 
product [B]{E s} substantially faster and using less 
memory. For periodic problems the savings in ma- 
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540 VOLAKIS ET AL' FAST METHODS FOR CONFORMAL ANTENNAS 

trix fill time are especially significant when employ- 
ing fast methods. In the following, AIM is applied for 
the solution of infinite periodic problems and FMM 
is used to increase the efficiency of the hybrid FE/BI 
method as applied to finite arrays possibly on curved 
platforms. A main feature of AIM and FMM is the 
decomposition of the BI matrix as 

[•]_ [•]near •_ [•]far , (6) 

where the matrix [B] near contains the interactions be- 
tween basis functions close to each other and [•]far 
contains the remaining far interactions. The ele- 
ments of [•]near are evaluated as in the conventional 
method of moments (MOM) implementation. How- 
ever, the product [•]far{zS) is indirectly evaluated 
in an accelerated fashion utilizing the corresponding 
properties of the involved Green's function. FMM 
achieves its CPU reduction by grouping the far-zone 
unknowns and interacting their weighted contribu- 
tions. In the case of AIM the CPU reduction is 

achieved by evaluating the far MOM interactions via 
introduction of an auxiliary uniform rectangular grid 
and exploiting the two-level Toeplitz properties of 
the Green's function on this grid. That is, FFT al- 
gorithms and the convolution theorem are invoked to 
compute the matrix-vector products in an iterative 
solver. An important feature of AIM is that its im- 
plementation is not affected by the pertinent Green's 
function as long as it has a convolutional form and 
is well-behaved for computing far-field interactions. 
Therefore AIM can directly be applied to periodic 
Green's functions. In contrast, FMM is based on 
a series expansion of the free-space Green's function 
and its implementation is not immediately extendible 
to analysis of infinite periodic problems. 

ality, in the following we consider the evaluation of 
/•(m2)n using AIM. We begin by defining the quantities 

(8) 

which can be used to rewrite n(2) •'mr` as 

- ff ff •,) qm(r) qn(r') ds' ds. (9) 
S• S• 

Next, we introduce the auxiliary expansion 
I-1J-1 

• • QijS(x - xo -iAx)5(y- Yo -jay) -- 
i-O j--O 

N I-1J-1 

n=l i=0 j=O 

x 5(y - Yo - jay) (10) 

on a uniform rectangular grid, and the subsequent 
step is to find the coefficients A/• 'n of this auxil- 
iary expansion so that it becomes equivalent to the 
original Rao-Wilton-Glisson expansion. It can be 
shown [Blcszynski c! al., 1996; Eibcr! and Volakis, 
1999] that an appropriate equivalence relation be- 
tween the two expansions is obtained by matching 
the moments of the basis functions. Specifically, we 
impose the relation 

/qn(r)(x - x•)q•(y- yx)q•dS- 
S,• 

I-1J-1 

i=0 j =0 

x (Yo -•- jay - y•)q•, (ii) 

3.1. Adaptive Integral Method 

From (2), the BI matrix elements in (1) are ob- 
tained from [Rao el al., 1982] 

= 
S ,• 

S,• 

where j• and j•,• are the source and testing basis 
functions, respectively, on the triangles associated 
with the areas •qn and •qm- Without loss of gener- 

ql, q2 -- O, ..., 
In a numerical implementation this relation can only 
be fulfilled for a finite number of moments qi, q2 and 
is evaluated for indices i= (in - All), ..., (Jr` + Ai•) 
and j = (j• - Aji), ..., (jr,-b Aj•), where ir` and jr` are 
the indices of the uniform grid which is closest to the 
center xl,yi of the nth edge and Ail,Ai•,Ajl,Aj• 
depend on the number of moments. When (11) is 
substituted in (9), we obtain 

(i.•4•Ai•) (j.•4•Aj•) (k•4•Ak•) 

i=(i,•--Aix) j=(j,•--Ajx ) k=(k,•-Akx) l=(l,•--Alx ) 

O,n ((iAx, jay), (kAx,/Ay))A/Qj '"•. (12) A• g 
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VOLAKIS ET AL.' FAST METHODS FOR CONFORMAL ANTENNAS 541 

In matrix form we can rewrite this as 

- (13) 

This represents a matrix product of the two sparse 
A matrices and the fully populated Green's function 
matrix [g], which is a two-level Toeplitz matrix. The 
submatrix r•(1) in (7) can be evaluated in a manner 

n(2) except that the x and y components similar to 

of the vector expansion functions must now be con- 
sidered separately [Bleszynski et al., 1996; Eibevt and 
Volakis, 1999]. The final matrix [B]^•M can be de- 
composed as 

n ear far 
(14) 

and when this is combined with (6), we can rewrite 
the original B matrix as 

[r]app fox -- (It] near _ It] neath AIM] -I-[B]AIM ß (15) 

This expression is sort of artificial. However, it is es- 
sential to consider [B]}e• together with [B]^•M since 
an efficient handling is only possible for these two 
matrices but not for far [B]^•M. With the representa- 
tion (15) the near-zone BI interactions are evaluated 
without compromise in accuracy. However, since the 
majority of [B] apprøx consists of the Toeplitz kernel 
[g], the associated matrix-vector products can be per- 
formed using only O(N) memory and O(NlogN) 
CPU time. In the final numerical implementation 
a near-zone threshold is defined so that [B] apprøx is 
a sufficiently accurate representation of [B]. The 
threshold distance is mostly controlled by the quasi- 
static singularities of the Green's function. In the 
case of the infinite periodic Green's function, we must 
also account for image singularities in the neighbor- 
ing periodic cells since they can be close to the test 
sub domains in the unit cell. 

For the calculation of matrix-vector products in an 
iterative solver, [B]^•M is not computed explicitly. 
After mapping the actual source distributions onto 
the uniform grid through the A matrices, we need 
to only calculate the product [g]{s}, where {s} is 
the search vector in the iterative solver defined on 

the uniform grid. For a rapid computation of the 
product we use the FFT[Volakis et al., 1998]. Since 
[g] is Toeplitz/circulant, basically the product [g]{s} 
is rewritten as 

[g]{s)- {g(iAx,jAy)} , *{sij} 
: .•-1 (.• ({g(iAx, jay))). y ({sij))), (16) 

where the asterisks denote two-dimensional discrete 

convolution, the center dot indicates a Hadamard 
(e.g., term-by-term) product, and Y denotes dis- 
crete Fourier transform (DFT). That is, the perti- 
nent matrix-vector products can be performed in the 
DFT domain using an FFT algorithm for the cor- 
responding transformations. The speedup of AIM 
is due to the O(NlogN) CPU requirement of the 
FFT algorithm. After transformation of the results 
back to the spatial domain, the fields on the original 
mesh are obtained by reverse mapping between the 
auxiliary unknowns and the original grid unknowns. 
However, for the explicit computation of [B]•}•, it 
is essential to utilize the discrete convolution repre- 
sentation in (16) and calculate the individual matrix 
elements without any Fourier transformations. If the 
DFT representation in (16) would be used for this 
step, a complexity of O(N • log N) would result since 
for each column of [/•]near ^•M a complete FFT, FFT -1 
cycle needs to be performed. This would lead to an 
algorithm which is worse than a conventional MOM 
implementation with its (9(N •) complexity for ma- 
trix fill. On the other hand, only N discrete con- 
volutions with a constant number of operations cor- 
responding to the N elements in rn]n•ar need to be [•'J AIM 

carried out. 

3.2. Fast Multipole Method 

The FMM [Coifman et al., 1993; Bindiganavale 
and Volakis, 1997; Lu and Jin, 1996; Chew et al., 
1997] is based on a spherical multipole and subse- 
quent plane wave expansion of the free-space Green's 
function appearing in moment matrix elements as 

e -/klr+dl -jk / d2[ce_Jk. d Ir+dl 4•r 

x + 
/--0 

(17) 

Here jl is the spherical Bessel function, hl 2) is the 
spherical Hankel function of the second kind, Pt is 
the Legendre polynolmial, and d < r is the condition 
for the validity of the expansion. As in the geometri- 
cal construction in Figure 2, d should be kept small 
compared with r so that the indirect evaluation of 
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542 VOLAKIS ET AL.: FAST METHODS FOR CONFORMAL ANTENNAS 

X 

X I 

Figure 2. Geometry construction used in fast multipole 
method formulations. 

the Green's function in (17) converges with a small 
number of terms kept in the multipole sum. 

Following the steps given by Coifman ½t al. [1993], 
a matrix element can be written as 

= -J/ca f 8•r 

xTœ(kr.•.•,, •c. •.•.•,)V•.•,i(/c), (18) 
with 

Vsm'i(•c) -- •ds•e -jk'r'•' [•-•] 'fi(ri), 
Vfmj(•) -- •dse -jk'r• [•-•]' fj(rj)(19) 

where fi,j(rj) are the basis and testing functions, 
k is the wave vector for plane wave expansion, the 
asterisk denotes complex conjugation, and 

L 

TL(kr,•.•)- •(-j)'(21+l)h12)(kr)P,(•c.•). (20) 
/=0 

The speedup of FMM is derived from the observation 
that the sum in (20) is independent of kd and thus 
can be computed for various values of kr which can 
be reused, thus eliminating the need for recomputa- 
tion of the time-consuming sum. To make use of the 
multipole expansion of the Green's function, the un- 
knowns are grouped into clusters and the same Tœ is 
used for the computation of the interaction between 
unknowns in the same cluster pairs when the clusters 
are far from each other. 

An important parameter which affects the accu- 
racy of the FMM implementation is the number of 
terms kept in the multipole expansion in the trans- 
lation operator in (20). This parameter, referred to 
as L, is chosen here as [Coifman et al., 1993] 

L-- kDmax n t- 1.5 log(]cDmax n t- 7i') (21) 

where k is the wave number and Dmax is the maxi- 
mum physical size of the clusters. For this choice of 
L, very good accuracy (much less than i dB) was ob- 
tained for the analyzed array geometries. Since large 
values of L correspond to large CPU requirements 
for the FMM, it is desirable to keep L as small as 
possible. Clearly, for small L (less than 4) the nu- 
merical errors in evaluating the translation operators 
between the clusters may be unacceptable. Also, for 
problems involving poorly conditioned systems, it- 
erative solutions may not converge without precon- 
ditioning. The near-field matrix (not approximated 
by FMM) can be used as a preconditioner in the it- 
erative solver to improve convergence behavior. The 
near-field matrix involves the interactions of elements 

within a single cluster and additional element-to- 
element interactions which belong in different nearby 
clusters satisfying the criteria 

< + (22) 

or 

kdij < Z (23) 

where dij is the separation between the centers of 
clusters i and j and ri, rj denote the radii of the 
clusters. It should be noted that although keep- 
ing L small decreases the FMM computations in 
the matrix-vector product, this also results in in- 
creased near-field matrix computations and storage 
as dictated by (23). Hence the designed FMM solver 
should be properly optimized to achieve minimum 
computation time within tolerable solution accuracy. 

Assuming that the computational domain is di- 
vided into M groups, the total memory storage need- 
ed is O(NU/M) q- O(KN) q- O(KLM2), where K is 
the number of plane wave directions used in the nu- 
merical evaluation of the outermost integral in (18) 
[Coifman et al., 1993]. Using the proportionalities 
K c< L •, D • c< N/M, and L c< D, this expression 
can be simplified to C•(N2/M)+ C2(NMv/N/M), 
where C• and C2 are machine (and implementa- 
tion) dependent constants. The coefficient C2 is 
actually quite small compared with C•, and thus 
the memory is dominated by the O(N2/M) term. 
The CPU requirement of this FMM implementation 
is O(NM) + O(Na/M) [Chew et al., 1997; Bindi- 
9anavale and Volakis, 1997]. This can be minimized 
by choosing M = x/-•, and this results in an O(N •'•) 
algorithm. The required memory for the FMM then 
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becomes O(NX'*). In practice, both the operation 
cost and memory requirements of FMM are less than 
those of standard MOM formulations for problem 
sizes larger than about 1000, making FMM more 
suitable for the solution of large problems. 

4. Applications and Results 

In this section we consider examples of infinite and 
finite array/FSS applications. For the infinite ar- 
ray examples, both commensurate and noncommen- 
surate configurations are analyzed. Both of these 
involve large hybrid systems and complex configura- 
tions where the vertical periodic boundary is non- 
planar for the noncommensurate case. This type of 
simulation for noncommensurate FSS is a new and 

unique capability in the context of periodic FE sim- 
ulations. 

4.1. Infinite Periodic Structures 

1.0 

0.8 

0.6 

0.4. 
0.2 

0.0 

0 10000 

FE/BI-AIM 

Aroudaki et al. 1995 

ß ß ..... measured 

• • --- integral equation 

hi glum 7.8 3 7.8 -- 3 
7.8 -- 59 6 
7.8 
7., -,o7 nEE \ 
7.8 -- i 6 7., - 4 7.8 

2000 4000 6000 8000 

Frequency (GHz) 

Figure 4. Transverse magnetic field transmission coef- 
ficient of an eight-layer frequency selective surface with 
noncommensurate periodicities (er = 2.3- j0.08, 00 = 
30 ø, audio = 0ø). 

As an example for infinite periodic structures, we 
consider the FSS array depicted in Figure 3. This 
array of slot-coupled microstrip patches was inves- 
tigated by Pous and Pozar [1991] and acts as a 
strongly resonant band-pass structure. Because of 
its resonant characteristics, modeling of the fields be- 
tween the patches with a local technique such as the 
FE method is a difficult task, and the mesh density 
must be relatively high. Also, it is noted that the in- 

1.0 

0.8 

0.6 

0.4 

0.2 

FE/BI-AIM 

Pous, et al. 1991 
measured 

0.0 
2.5 3.0 3.5 4.0 

Frequency (GHz) 

Figure 3. Transverse electric field transmission coeffi- 
cient of slot-coupled microstrip patches compared with 
measured results from Pous and Polar, [1991]; • = 0 ø 
and 00 varies from 57 ø to 32 ø according to the waveguide 
measurement setup of Pous and Polar, [1991]. 

cidence angle 00 of the transverse electric (TE) plane 
wave varies with frequency according to the waveg- 
uide measurement setup given by Pous and Polar 
[1991]. The curves in Figure 3 compare the transmis- 
sion coefficients obtained by FE/BI AIM with mea- 
sured data presented by Pous and Polar [1991]. The 
agreement of the results is quite good. Besides the 
FE/BI AIM simulations, we also carried out FE/BI 
calculations without AIM acceleration. The results 

were omitted from the diagram since with proper ad- 
justment of the AIM parameters (uniform grid den- 
sity and near-zone threshold) no differences between 
the FE/BI and the FE/BI AIM results are encoun- 
tered. With respect to complexity, both the FE/BI 
AIM and the FE/BI solutions used 98,636 volume 
and 5308 BI unknowns in each of the top and bot- 
tom BI surfaces. The simulations were run on a 

SUN Ultra 30 workstation. The CPU times for the 

frequency 3.0 GHz were 508 and 155 min for the 
FE/BI and the FE/BI AIM solutions, respectively, 
whereas the numbers of elements in the system ma- 
trix were 55.3 x 106 and 3.7 x 106 (equivalent to about 
660 Mbyte and 45 Mbyte for 12 bytes per element). 
That is, AIM resulted in a memory reduction by a 
factor of 15 and a CPU reduction by a factor of 3.25. 

Another example is the FSS low-pass filter with 
noncommensurate layer periodicities shown in Fig- 
ure 4. This was also analyzed by A roudaki et al. 
[1995]. The geometry consists of eigth layers of 

 1944799x, 2000, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/1999R

S900050, W
iley O

nline L
ibrary on [23/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



544 VOLAKIS ET AL.: FAST METHODS FOR CONFORMAL ANTENNAS 

2OO 

,-- 150 

E 

• 50 

o 
._E 

-50 

C R, Flat 
• = X, Flat 

[] R, Curved 
, rved 

-1002.4 2.•5 2:5 2.•5 2:6 2.•5 2.7 
Frequency [GHz] 

(a) (b) 

Figure 5. (a) Curved patch array geometry, and (b) input impedance for patch element I (radius 
of curvature = 20 cm). 

square patch arrays with patch side lengths c and pe- 
riods g according to the figure, which are embedded 
in a homogeneous dielectric (er - 2.3- j0.08). The 
separations between the layers are constant 7.8 x 10 -6 
m. For this problem we used an FE/BI AIM model 
that approximately accounts for the different peri- 
ods within the structure. For the FE model the dis- 

cretized unit cell just follows the varying periodici- 
ties through the height of the whole structure. The 
FE unknowns at the introduced steps between layers 
with different periods are related to corresponding 
edges inside the unit cell mesh by using the smaller of 
the two neighboring periods. The involved approxi- 
mations force the fields to obey the geometric period- 
icities within each layer, even though this assumption 
may not be absolutely correct when strong coupling 
exits between adjacent elements. Transverse mag- 
netic (TM) transmission curves for an incident angle 
00 - 30 ø are compared with measured and calcu- 
lated results from Aroudaki et al. [1995] and show 
pretty good agreement. Again, FE/BI and FE/BI 
AIM results do agree exactly if the AIM parameters 
are chosen appropriately. 

4.2. Finite Arrays 

The greatest advantage of the FMM implementa- 
tion is its capability for an efficient computation of 
three-dimensional (3-D) problems. The necessity of 
using 3-D FFTs in AIM implementations may not 
render AIM as attractive without suitable optimiza- 

tions on the implementation of the FFT. Thus, for 
doubly curved arrays we consider implementation of 
the FE/BI methods with FMM rather than AIM. 
Currently, the half-space Green's function is used 
as an approximation for slightly curved BI termina- 
tions. Below we show some results for the analysis 
of a five-element patch array on a curved surface. 
The geometry is illustrated in Figure 5a. The ef- 
fect of curvature on the radiation pattern and the 
input impedance of the antenna elements are exam- 
ined using the FE/BI FMM approach. For fiat ar- 
rays, each antenna element is a rectangular patch of 
size 3.5 x 2.625 cm, and we consider two different 
center-to-center spacings, 6.125 and 5.250 cm. The 
fiat arrays are backed by rectangular cavities of di- 
mensions 33.25 x 6.125 x 0.3175 cm and 28.00 x 

6.125 x 0.3175 cm, respectively, and are recessed in 
an infinite metallic ground plane. The cavities are 
filled with a material of relative permittivity 2.32, 
and curved arrays are formed from the fiat by wrap- 
ping them onto metallic circular cylindrical platforms 
of radius 20 cm (spacing 6.125 cm) or 10 cm (spac- 
ing 5.250 cm). For both arrays the five patches are 
fed inphase by an offset vertical probe of constant 
current. A typical surface mesh (discretization into 
squares of dimensions 0.4375 x 0.4375 cm and sub- 
sequent division into triangles) is given in Figure 5a 
for the curved array with spacing 6.125 cm. 

Figure 5b and Figures 6a and 6b show the depen- 
dence on curvature of the input impedance of the 
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Figure 6. (a) Input impedance for patch element 2 (radius of curvature = 20 cm), and (b)input 
impedance for patch element 2 (radius of curvature - 10 cm). 

first and second array element for fiat and curved ar- 
ray geometries. This is shown for the two different 
element spacings of 6.125 and 5.250 cm. The effect of 
coupling is observed clearly for the input impedance 
of the second element when the spacing between the 
elements is 5.250 cm. The odd-numbered array ele- 
ments show a similar behavior for both curvatures, 
whereas the even-numbered elements suffer coupling 
as the platform curvature is increased due to the ex- 
cited surface waves. 

5. Conclusions 

In this paper we discussed the application of fast 
integral methods to hybrid FE/BI modeling of con- 
formal antenna and array problems. AIM was chosen 
for planar BI termination surfaces since only two- 
dimensional FFTs need be performed in this case. 
Also, periodic Green's functions can be included in 
a straightforward manner because AIM makes use 
only of the convolutional properties of the Green's 
function. On the other hand, the concept of FMM 
is more favorable for nonplanar termination surfaces. 
Both AIM and FMM realize their speedups through 
an efficient computation of the BI far interactions. 
However, since they keep the conventional BI for- 
mulation for the near-coupling terms, they can pro- 
duce results without compromise in accuracy. Im- 
plementation issues related to AIM and FMM were 
discussed, and application results were given which 

demonstrate the practicability and efficiency of the 
approaches for large-scale and broadband computa- 
tions. 
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