
Florida International University
FIU Digital Commons

Economics Research Working Paper Series Department of Economics

5-1-2005

Risk Premia in Forward Foreign Exchange Markets:
A Comparison of Signal Extraction and Regression
Methods
Prasad V. Bidarkota
Department of Economics, Florida International University, bidarkot@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/economics_wps

This work is brought to you for free and open access by the Department of Economics at FIU Digital Commons. It has been accepted for inclusion in
Economics Research Working Paper Series by an authorized administrator of FIU Digital Commons. For more information, please contact
dcc@fiu.edu.

Recommended Citation
Bidarkota, Prasad V., "Risk Premia in Forward Foreign Exchange Markets: A Comparison of Signal Extraction and Regression
Methods" (2005). Economics Research Working Paper Series. 80.
https://digitalcommons.fiu.edu/economics_wps/80

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps/80?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 

Risk Premia in Forward Foreign Exchange Markets: 
A Comparison of Signal Extraction and Regression 

Methods 

 

Prasad V. Bidarkota 
Department of Economics, Florida International University 

 
 
Abstract: We investigate time varying risk premia in forward dollar/pound 
monthly exchange rates over the last two decades. We study this issue using a 
signal plus noise model and separately using regression techniques. Our models 
account for time varying volatility and non-normalities in the observed series. Our 
signal plus noise model fails to isolate a statistically significant risk premium 
component whereas our regression model does. We attribute the discrepancy in 
the results from the two methods to the low power of the signal plus noise model 
in discriminating between a time varying risk premium component and a serially 
uncorrelated spot exchange rate expectational error. An important reason for the 
low power of the signal plus noise model is its failure to use information on 
current period forward rates in extracting the risk premium. 
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Introduction 
 The possible existence of risk premia in forward foreign exchange rates 

has been extensively investigated in the literature. Lewis (1995) and Engel (1996) 

provide surveys of this literature. That forward rates do not provide conditionally 

unbiased forecasts of future spot exchange rates has been firmly established in a 

number of studies. Under rational expectations, this lack of unbiasedness implies 

the existence of risk premia in forward foreign exchange rates. 

 Several studies have attempted to measure the size of the risk premium 

and to characterize its time series properties. Several alternative approaches have 

been tried in this regard, including regression techniques (see, for instance, Fama 

1984, and Lewis 1995), vector autoregressions (VARs) (Canova and Ito 1991), 

signal extraction methods (Wolff 1987, 2000, Cheung 1993, Hai et al. 1997, Bhar 

et al. 2002), and survey based methods (Froot and Frankel 1989).  

Regression-based approaches involve regressing the ex post forward bias 

(or alternatively, the change in the spot exchange rate) on variables available in 

the information set, such as the forward premium. The choice of the explanatory 

variables is often arbitrary (Hansen and Hodrick 1980).  

Signal extraction methods obviate the need to specify explanatory 

variables. Wolff (1987) provides early estimates of the risk premium using a 

univariate version within this framework (see also Nijman et al. 1993 for a 

clarification). Signal extraction based on a bivariate model has been attempted in 

Hai at al. (1997). In all these models, after obtaining maximum likelihood 
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estimates of unknown parameters, full sample smoothed estimates of the state 

vector (see, for instance, Harvey 1989, p. 149) are generated that provide 

estimates of the unobservable risk premium. 

Both regression and signal plus noise models adopt a homoskedastic 

Gaussian framework. However, several studies have documented that spot 

exchange rates are non-Gaussian (Booth and Glassman, 1987, and Tucker and 

Pond, 1988) and, as summarized by So (1987), so are forward foreign exchange 

rates. Time varying volatility in these rates has also been widely documented (see 

Frankel and Rose 1995 for a survey article on empirical research on nominal 

exchange rates).  

Failure to take into account any potential non-normalities and conditional 

heteroskedasticity results in estimation inefficiencies. Accurate and precise 

estimation and characterization of the time series properties of the risk premia are 

important. This is because intertemporal equilibrium models seeking to explain 

the behavior of forward foreign exchange rates are judged based on whether or 

not they can account for these time series properties (see, for instance, Backus et 

al. 1993 for such an exercise, and Engel 1996 for a survey on such efforts). 

In this study, we investigate the possible presence of risk premia in 

monthly forward dollar/pound exchange rates for the past two decades using both 

regression and signal extraction methods, taking into account any non-normalities 

and volatility persistence that may exist. Our estimation methods are more 
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efficient, precisely because they take these features of the data into account. We 

compare the statistical outcomes from the two techniques, and explore some 

reasons why the two methods draw differing conclusions on the presence of a risk 

premium component. 

 This paper is organized as follows. Section 2 lays out the signal extraction 

framework to identify risk premia in forward exchange rates. Section 3 provides 

summary statistics on the data and presents empirical results of estimating the 

signal extraction model. Section 4 describes, and presents empirical results on, the 

main hypotheses of interest regarding the nature and existence of the risk 

premium. Section 5 examines the risk premium issue using regression-based 

methods. Section 6 provides a discussion of why the empirical restuls from the 

two methods differ. Section 7 concludes with some observations derived from our 

analysis. 

 

2. A Signal Plus Noise Model for the Risk Premium 

 In this section, we set out the signal plus noise model for the risk 

premium. We lay out the model and discuss its key features in section 2.1, and in 

section 2.2 discuss some issues that arise in its estimation. 

 

2.1 Signal Plus Noise Model  
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 Let t 1
tF +  denote the forward foreign exchange rate observed at time t  for 

currency to be delivered at time t 1+ . Let tS  denote the spot exchange rate 

observed at time t  and let ( )tE .  represent the mathematical expectation 

conditional on all the information available at time t . Let lowercase letters denote 

the natural logarithms of these variables. Then, we have: 

 ( )t 1
t t t 1 tf E s p+

+= +       (1) 

where tp  is interpreted as an unobservable risk premium.  

 Subtracting t 1s +  from both sides of Equation (1), we get: 

 ( )t 1
t t 1 t t 1 t 1 tf s E s s p+

+ + +− = − +     (2) 

which can be rewritten as: 

 t 1
t t 1 t t 1f s p+

+ +− = + ν      (3a) 

or, defining the ex post forward bias t 1
t 1 t t 1y f s+
+ +≡ − , as: 

   t 1 t t 1y p+ += + ν       (3b) 

where ( )t 1 t t 1 t 1E s s+ + +ν ≡ −  is a serially uncorrelated white noise error term 

reflecting new information about t 1s +  that arrives between time t  and t 1+ .  

Equation (3a) or (3b) can be viewed as the observation equation of a state 

space (or unobserved components) model where tp  is the signal of interest that is 
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only observed contaminated with noise t 1+ν . Our interest here is in extracting tp  

from its noisy observable indicator t 1
t t 1f s+

+− . 

 In order to make signal extraction operational, we need to specify a law of 

motion for the state variable tp  (the state transition equation). There is some 

evidence in the literature that risk premia exhibit persistence over time (see 

Canova and Ito 1991 and Engel 1996). Therefore, following Wolff (1987) and 

Nijman et al. (1993), we choose a simple first-order autoregression to characterize 

the dynamics of tp : 

  t t 1 t(p ) (p )−−µ = φ −µ +η      (4) 

Equations (3b) and (4) together constitute our state space model. 

 We need to specify the distribution of the errors t 1+ν  and tη  in order to 

complete the description of the state space model. Wolff (1987) assumes 

homoskedastic Gaussian distributions for these errors. Hai et al. (1997) also 

assume homoskedastic Gaussian errors for their bivariate model for spot and 

forward rates that features a common unobserved component. However, there is 

evidence of volatility clustering and fat tails in the distribution of spot exchange 

rates (Booth and Glassman, 1987, and Tucker and Pond, 1988), forward rates (see 

the references in So 1987), and risk premia (Canova and Ito 1991, and Engel 

1996). Our specification of the signal plus noise model is therefore designed to 

reflect these twin features.   
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 Accordingly, we model t 1 t 1t 1c z+ +ν ≡  where 1t 1z ~ iid S (0,1)+ α . A 

random variable X  is said to have a symmetric stable distribution S cα ( , )0 , if  its 

log-characteristic function can be expressed as: 

  ln exp( ) | |E iXt i t ct= −δ α .     (5) 

The parameters c > 0  and δ ∈ −∞ ∞( , )  are measures of scale and location, 

respectively, and α ∈( , ]0 2  is the characteristic exponent governing the tail 

behavior, with a smaller value of α  indicating thicker tails. The normal 

distribution belongs to the symmetric stable family with α = 2 , and is the only 

member with finite variance, equal to 2 2c .  Appendix A provides additional 

details on stable distributions.  

 The term tc  captures volatility clustering. It is posited as following a 

GARCH(1,1)-like process: 

t t 1 t t 1 2 t 1c c | y E(y | y , y ,..., y ) |α α α
− −= ω+β + δ −   (6) 

with the restrictions 0, 0, and 0ω> β ≥ δ ≥ . When the errors are normal (i.e. 

when α = 2  is imposed), this model for volatility persistence reduces to the 

familiar GARCH-normal process.  

 The state error driving the risk premium is modeled as t t 2tc c zηη ≡  where 

2tz ~ iid S (0,1)α  and is completely independent of 1t 1z +  at all leads and lags. 

Here, c 0η ≥  is the signal to noise scale ratio. 
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 To summarize, our signal plus noise model for extracting risk premium in 

forward rates is the following: 

  t 1 t t 1y p+ += + ν ,      t 1 t 1t 1~ c z+ +ν , 1t 1z ~ iid S (0,1)+ α  (7a) 

 t t 1 t(p ) (p )−−µ = φ −µ +η  t t 2t~ c c zηη , 2tz ~ iid S (0,1)α  (7b) 

t t 1 t t 1 2 t 1c c | y E(y | y , y ,..., y ) |α α α
− −= ω+β + δ −   (7c) 

We shall refer to this most general model described in Equations (7) as Model 1. 

 

2.2 Estimation Issues 

 The conditionally non-normal nature of the state space model in Equations 

(7) creates complications in estimation, even without the presence of conditional 

heteroskedasticity. This is because the Kalman filter is no longer optimal due to 

the non-Gaussian nature of the shocks.  

However, the general recursive filtering algorithm due to Sorenson and 

Alspach (1971) provides the optimal filtering and predictive densities under any 

given distributions for the errors, and a formula for computing the likelihood 

function. Appendix B gives these formulae. The recursive equations for 

computing the filtering and predictive densities are given in the form of integrals, 

whose closed-form analytical expressions are generally intractable, except in very 

special cases. In this paper, we numerically evaluate these integrals. Details on 

the numerical implementation procedure adopted are given in Appendix C. 
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The stable distribution and density may be evaluated by using Zolotarev’s 

(1986, p.74,78) proper integral representations, or by taking the inverse Fourier 

transform of the characteristic function. McCulloch (1996a) has developed a fast 

numerical approximation to the stable distribution and density that has an 

expected relative density precision of 10 6−  for α ∈[ . , ]084 2 . We therefore restrict 

ourselves in this paper to stable distributions with α  in this range for 

computational convenience.  

There is some empirical evidence of skewness in risk premia (Canova and 

Ito 1991). Although asymmetric stable distributions exist and are well-defined, 

the fast numerical approximation to the stable distribution and density functions 

developed by McCulloch (1996a) works only for the symmetric stable 

distributions. Hence, we restrict ourselves to these symmetric distributions in this 

paper.  

Lumsdaine (1996) shows that the effect of initial values in the GARCH 

volatility process on the properties of the parameter estimators in GARCH(1,1) 

and IGARCH(1,1) models is asymptotically negligible. Diebold and Lopez (1995) 

suggest setting the initial conditional variance (equal to 2 0
2c , when it exists) equal 

to the sample variance at the first iteration and at subsequent iterations to the 

sample variance from a simulated realization with the estimated parameters (from 

the previous iteration). Engle and Bollerslev (1986) suggest initializing the 

GARCH process using estimates of c0  based on sample values. Here, we set the 



 10 
 

value of c0  equal to its unconditional value obtained from the volatility process in 

Equation (7c).  

 

3. Empirical Results 

3.1 Summary Statistics 

 We work with monthly US dollar / British pound exchange rates obtained 

from DataStream.1 One month forward and subsequently observed spot rates span 

the period November 1983 through June 2004.  

Figure 1 plots the ex post forward bias t 1
t t 1f s+

+−  that is composed of a 

risk premium and an expectational error, as given in Equation (3a). Summary 

statistics indicate a mean bias of -0.30 percent per month that is not statistically 

significant at the 0.05 level and a variance of 0.10 percent. The series has the 

skewness coefficient of 0.29 (p-value of 0.03) and kurtosis of 5.53 (p-value for 

kurtosis 3=  of 2.5e-16). The Jarque-Bera test strongly rejects normality (p-value 

of 9.4e-16). 

 

3.2 Estimation Results 

 The maximum likelihood (ML) estimates of Model 1 are presented in the 

first row of Table 1. The results indicate an estimated mean risk premium µ  of -

                                                           
1 Thanks are due to K.M. Kiani for assistance in acquiring this data series.  
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0.25 percent per month. The ARCH parameter δ  is estimated to be 0.03, and the 

volatility persistence parameter β  is 0.93. The AR coefficient of the risk premium 

φ  is fairly persistent at an estimate of 0.53, although its scale is only 0.31 times 

the scale of the expectational error in the spot exchange rate (this is the estimate 

of the signal-to-noise scale ratio ηc ). The characteristic exponent α  is estimated 

to be 1.89. 

A plot of the mean estimate of the risk premium obtained from the filter 

density, ( )t 1 2 tE p | y , y ,..., y , appears in Figures 2 and 3, along with the ex post 

forward bias. The figures show the risk premium to be generally small, usually 

less than one percent in magnitude. An exception occurs in December 1992 when 

the risk premium exceeds 5 percent. The premium switches signs often, taking 

positive and negative values at various times. As evident in Figure 2, its 

variability is small compared to the variability of the ex post forward bias. This is 

also reflected in the small signal-to-noise scale ratio ηc  of 0.31. 

 

4. Hypotheses Tests 

 In this section, we describe in detail several hypotheses of interest 

concerning the risk premium. Restricted models under the null hypotheses are set 

up in each instance. Empirical estimates of the restricted models, and results of 

hypotheses tests, are reported and discussed. 
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4.1 Is The Risk Premium Constant? 

In the first instance, we ask whether the risk premium is constant rather 

than time varying. To test the null hypothesis of a constant risk premium, we 

consider the following restricted version of the general Model 1 given in 

Equations (7): 

  t 1 t 1y + += µ + ν ,    t 1 t 1t 1~ c z+ +ν ,    1t 1z ~ iid S (0,1)+ α  (8a) 

t t 1 t t 1 2 t 1c c | y E(y | y , y ,..., y ) |α α α
− −= ω+β + δ −   (8b) 

Under this null hypothesis, the ex post forward bias is simply equal to a constant 

risk premium µ  plus the expectational error in the conditional forecast of the spot 

exchange rate t 1+ν . In what follows, we shall refer to this model with a constant 

risk premium described in Equations (8) as Model 2. 

 Maximum likelihood estimates of Model 2 are given in the second row of 

Table 1. Estimates of common parameters are very similar to those obtained with 

the time-varying risk premium Model 1. The only exception is the estimate of the 

volatility parameter ω  which is now four times larger. This is understandable 

since all the variation in the ex post forward bias is now solely attributed to the 

expectational errors, rather than to a combination of expectational errors and 

time-varying risk premia. 

The constant risk premium model imposes the two restrictions c 0ηφ = =  

on the time varying risk premium model. A test of the validity of these restrictions 

can be conducted with a likelihood ratio (LR) test.  However, the standard LR test 
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is not applicable in this case. The reason is because, under the null hypothesis, the 

value of cη  lies on the boundary of admissible values for it. The derivation of the 

asymptotic χ2  distribution of the LR statistic requires that the likelihood function 

be approximately quadratic in the region in which the null hypothesis and the 

global optima lie. This is clearly violated at the boundary. Therefore, standard 

asymptotic distribution theory does not go through. 

Since estimation of the alternative Model 1 in our case is computationally 

very intensive, we generate small sample critical values for this test by Monte 

Carlo simulations from Gaussian homoskedastic versions of the null and 

alternative models. Homoskedastic models are discussed later in subsection 4.3 

and Gaussian versions of all models in subsection 4.4.  

The LR test statistic for the null hypotheses c 0ηφ = =  (comparing 

Models 1 and 2) is 1.61. Critical values derived from the Monte Carlo simulation 

are 3.23 and 2.36 at the 0.05 and 0.10 significance levels, respectively. Thus, we 

fail to reject constancy of the risk premium even at the 0.10 significance level. 

 

4.2 Is There a (Constant) Risk Premium? 

Given the evidence against time variation in the risk premium, we go on to 

ask whether a risk premium actually exists in the forward foreign exchange 

markets. To test the null hypothesis of no risk premium, we consider the 
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following restricted version of the constant risk premium Model 2 given in 

Equations (8): 

  t 1 t 1y + += ν , t 1 t 1t 1~ c z+ +ν ,        1t 1z ~ iid S (0,1)+ α  (9a) 

t t 1 tc c | y |α α α
−= ω+β + δ      (9b) 

This restricted model is obtained by setting 0µ =  in Model 2. Under this null 

hypothesis, the ex post forward bias is simply equal to the expectational error in 

the conditional forecast of the spot exchange rate t 1+ν . Henceforth, the model in 

Equations (9) will be referred to as Model 3. 

 ML estimates of Model 3 are presented in the third row of Table 1. Most 

parameter estimates are similar to the corresponding estimates obtained for Model 

2. The LR test statistic for 0µ =  is 1.958, with a p-value of 0.162 from the 

asymptotic 2
1χ  distribution. Thus, in the dollar/pound forward exchange market 

there does not appear to be any statistically significant risk premium. 

 

4.3 What Happens in a Homoskedastic Setting? 

 A test for lack of volatility clustering, or equivalently a test for 

homoskedasticity, can be formulated as a test of 0β = δ = . In this case, the model 

under the null hypothesis is obtained by setting 0β = δ =  in the alternative Model 

3.  

This yields Model 4, which can be written as: 
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  t 1 t 1y + += ν ,    t 1 1t 1~ cz+ +ν ,    1t 1z ~ iid S (0,1)+ α   (10) 

ML estimates of the homoskedastic Model 4 are reported in the fourth row 

of Table 1. In this case, the constant scale parameter c  is estimated to be 0.020. 

The LR test statistic for no volatility clustering in the ex post forward bias (test 

for 0β = δ = ) works out to be 19.393, with a p-value from the asymptotic 2
2χ  

distribution of 6.1e-5. Thus, we overwhelmingly reject homoskedasticity in favor 

of volatility clustering. 

Figure 4 plots the scales tc  obtained from Model 3. The figure clearly 

shows time-varying volatility, with the estimated scales ranging from 1.4 percent 

to 4.4 percent per month. Volatility shows two prominent spikes, one in June 

1986 and a more prominent one in January 1993. The latter episode coincides 

with the surge in the risk premium in December 1992 noted earlier in section 3.2. 

After the 1993 spike, volatility falls to a level distinctly lower compared to the 

earlier period and remains low through the end of the sample. 

In order to assess the consequences of ignoring conditional 

heteroskedasticity on the inferences drawn regarding the presence or absence of 

time-varying or constant risk premia in the forward foreign exchange rates, we 

consider homoskedastic versions of the general time-varying risk premium Model 

1 and the constant risk premium Model 2.  

A homoskedastic time-varying risk premium Model 5 takes the form: 

  t 1 t t 1y p+ += + ν ,      t 1 1t 1~ cz+ +ν , 1t 1z ~ iid S (0,1)+ α  (11a) 
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 t t 1 t(p ) (p )−−µ = φ −µ +η  t 2t~ c czηη , 2tz ~ iid S (0,1)α  (11b) 

A homoskedastic constant risk premium Model 6 takes the form: 

  t 1 t 1y + += µ + ν ,    t 1 1t 1~ cz+ +ν ,    1t 1z ~ iid S (0,1)+ α  (12) 

ML estimates of Models 5 and 6 are reported in the last two rows of Table 

1. The LR test statistic for a constant risk premium in this homoskedastic setting, 

i.e. a test for the restriction c 0ηφ = =  (comparing Model 5 versus Model 6) is 

2.63, higher than in the conditionally heteroskedastic case. Using small sample 

critical values reported in the last paragraph of section 4.1, we reject constant risk 

premium in favor of time varying risk premium at the 0.10 significance level but 

fail to reject at the 0.05 level. Thus, ignoring conditional heteroskedasticity in the 

ex post forward bias could potentially lead to a false statistical inference in favor 

of time-varying risk premia in the forward dollar/pound exchange rates.  

 In order to assess the consequences of ignoring conditional 

heteroskedasticity on the inference on the presence of a constant risk premium, 

we can compare Models 6 and 4. The LR test statistic for the restriction 0µ =  is 

now 3.865, with a p-value of 0.049 derived from the 2
1χ  distribution. Thus, once 

again it appears that ignoring volatility clustering leads us to infer incorrectly that 

there is a (time invariant) risk premium in the forward dollar/pound exchange 

rates. 

 

4.4. What Happens in a Gaussian Setting? 
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 Given the conclusions of the previous subsections that there is no risk 

premium in the dollar/pound forward rates (reached using conditionally 

heteroskedastic models) and that volatility clustering occurs in the ex post 

forward bias, we consider a Gaussian version of Model 3 in order to test for 

normality. The Gaussian null model is obtained by setting α = 2  in Model 3 

  t 1 t 1y + += ν , t 1 t 1t 1~ 2c z+ +ν ,        1t 1z ~ iid N(0,1)+  (13a) 

2 2 2
t t 1 tc c | y |−= ω+β + δ      (13b) 

 ML estimates of this model are presented in the third row of Table 2. 

Parameter estimates of the volatility process are very similar to those obtained in 

the stable case. Volatility persistence is a little lower (β  estimate is 0.724 

compared to 0.812 in the stable case) and the ARCH parameter is a little higher 

(δ  estimate is 0.115 compared to 0.064 in the stable case). Test for normality can 

be based on testing for α = 2 . However, the LR test statistic has a non-standard 

distribution, since the null hypothesis lies on the boundary of admissible values 

for α , and, hence, the standard regularity conditions are not satisfied. The small-

sample critical values for such a test have been tabulated in McCulloch (1997). 

The LR test statistic (comparing stable and Gaussian versions of Model 3) turns 

out to be 5.378 and the null hypothesis is rejected at better than the 0.01 

significance level using critical value from McCulloch (1997). 

 We go on to ask what the consequences of ignoring non-normality would 

be on the inferences regarding the risk premium drawn from a signal plus noise 
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model. A homoskedastic version of such a Gaussian setup is employed by Wolff 

(1987). 

 We report results from estimating conditionally Gaussian versions of all 

the models discussed in section 4 in the remaining rows of Table 4. Figure 5 plots 

the estimated risk premia obtained with the Gaussian version of Model 1. As the 

figure shows, estimated premia are always negative in this setup. Compared with 

the estimates obtained from the stable Model 1 (plotted in Figure 3), we find that 

these estimates are much smaller in magnitude. Two further differences can be 

seen in the two figures. In June 1985, when there is a large dip in the ex post 

forward bias lasting for one period, the Gaussian model gives a large rise in the 

premium whereas the stable model gives an unremarkable (in magnitude) 

estimate. In January 1993, when there is a big jump in the ex post forward bias 

lasting for two periods, the Gaussian model gives a large fall in the premium 

whereas the stable model gives a huge increase. Thus, the Gaussian model 

attributes any large movements in the ex post bias to movements in risk premia 

(in the opposite direction) whereas the stable model infers large movements in 

risk premia only when there are sustained big changes in the ex post bias (and in 

the same direction). This contrasting behavior of Gaussian and stable state space 

models is further illustrated in a different context in Bidarkota and McCulloch 

(1998). 
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 Figure 6 plots the estimated scales from the Gaussian version of Model 3. 

Once again, the figure shows highly non-constant and persistent volatility. 

Compared to the scales from the stable model in Figure 4, these are generally 

larger.  

All the statistical inferences on the hypotheses of interest discussed in 

section 4 remain qualitatively unchanged in the Gaussian framework, with two 

exceptions. These exceptions have to do with the hypotheses of a time varying 

risk premium component (as opposed to a constant risk premium) and constant 

risk premium component (as opposed to no risk premium) in forward rates. First, 

in the Gaussian homoskedastic case, we fail to reject constant risk premium even 

at the 0.10 level (comparing Models 5 and 6). Second, contrary to the results 

under non-normality, we fail to reject the absence of a constant risk premium 

(comparing Models 4 and 6). Thus, our statistical inferences on these two 

hypotheses in a homoskedastic Gaussian framework are identical to those 

obtained in a conditionally heteroskedastic stable framework (cf. with the 

inferences in subsections 4.1 and 4.2). 

 

4.5. Discussion 

Our results on the lack of significant risk premium components in forward 

dollar/pound exchange rates using the signal plus noise model within a 

conditionally heteroskedastic non-normal setup are contrary to the findings in 
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other studies such as Wolff (1987), who uses a similar methodology in a 

homoskedastic Gaussian setting.  

To help understand our negative results, we look at the autocorrelations of 

the ex post forward bias t 1
t 1 t t 1y f s+
+ +≡ − . All the autocorrelation and partial 

autocorrelation coefficients are less than 0.1 in magnitude and statistically 

insignificant at the 0.05 significance level.  

However, it needs to be emphasized that lack of strong autocorrelations in 

t 1y +  need not signal the absence of any time varying risk premium components. 

It is possible that the predictable component is obscured by a large white noise 

expectational error t 1+ν . For instance, with the homoskedastic Gaussian Model 5, 

one can easily show that the first order autocorrelation coefficient is given by 

( ){ }2 2/ 1 1 / ηφ + −φ σ . Even with a φ  as large as 0.9 , this coefficient is only 0.05  

when cη  is 0.1 . This point is also emphasized by Fama (1984). 

 With the homoskedastic Gaussian Model 5 estimates, variance of the risk 

premium works out to be 44.09 10−× , of which an overwhelming portion turns 

out to be the variance of noise in it (variance of tη  is 43.96 10−× ). Furthermore, 

variance of the expectational error t 1+ν  is 45.80 10−× , which is larger than the 

variance of the risk premium. These variance decompositions are qualitatively 

very different from those reported in Wolff (1987), who finds the variance of the 
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risk premium to be larger than the variance of the expectational error. Thus, this 

provides further clues as to why our results regarding risk premia might be so 

different. 

Most significantly, statistical inferences in Wolff (1987) are based on 

asymptotic 2
1χ  critical values for the LR test for the significance of the 

autoregressive coefficient in the risk premium dynamics, as in our Gaussian 

version of Equation (11b). However, as emphasized in section 4.1 earlier, these 

2
1χ  critical values are invalid.  

The magnitude of the LR test statistic in Wolff (1987) is quite large (9.857 

for the dollar/pound exchange rate). Therefore, even with Monte Carlo critical 

values, it is quite likely that his LR test would in fact still reject no time varying 

risk premium. Therefore, the most likely explanation for why our results differ 

seems to be the different sample period used here. 

 

5. Regression Model for Risk Premium 

We now turn to an analysis of risk premia in forward rates using 

regression methods, as in Fama (1984) and several other studies (see Lewis 1995 

for a survey). A typical practice in these types of studies is to run a regression of 

the ex post forward bias on the forward premium: 

( )t 1 t 1
t t 1 t t t 1f s a b f s u+ +

+ +− = + − +     (14) 
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where t 1u +  is a regression error. Absence of a risk premium component implies 

a b 0= = . A constant risk premium (as opposed to time varying premium) implies 

a 0≠  and b 0= . 

While most studies typically assume 2
t 1u ~ iid N(0, )+ σ , given the 

evidence on conditional heteroskedasticity and non-normality in the previous 

section, we entertain these possibilities in the regression residual above. Thus, we 

assume t 1 t t 1u c z+ +≡  where t 1z ~ iid S (0,1)+ α . Here, the time varying volatility 

tc  follows the process: 

( )t t
t t 1 t 1 t t 1 t 1c c | f s a b f s |α α α

− − − −= ω+β + δ − − − −   (15) 

Thus, our complete regression model is as follows: 

( )t 1 t 1
t t 1 t t t 1f s a b f s u+ +

+ +− = + − + , t 1 t t 1u ~ c z+ + , t 1z ~ iid S (0,1)+ α  (16a) 

( )t t
t t 1 t 1 t t 1 t 1c c | f s a b f s |α α α

− − − −= ω+β + δ − − − −     (16b) 

Using our naming convention from the signal plus noise models, we call this the 

stable regression Model 1. We also consider three restricted versions of this 

regression model. A homoskedastic version of Model 1 is termed stable 

regression Model 5. Gaussian versions of these two models (with the restriction 

2α =  imposed) are referred to as Gaussian regression Model 1 and Model 5, 

respectively. 
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Maximum likelihood estimates of all these models are presented in Table 

3. Estimate of the intercept is 0.335 percent per month with a standard error of 

0.209 with the stable Model 1 (p-value of 0.109). Thus, it is statistically 

significant (barely) at the 0.11 significance level. However, the regression slope 

coefficient is estimated at 4.015 with a standard error of just 0.845, which is 

strongly statistically significant. Similar inferences follow with all the other 

model estimates reported in Table 3. In every case, the slope coefficient is 

strongly significant, although its point estimates from the Gaussian models are 

substantially smaller. 

Figures 7 and 8 plot the time series of risk premia estimated with the 

stable regression Model 1 (fitted line in the regression). Comparison with plots of 

estimated risk premia with the stable signal plus noise Model 1 in figures 2 and 3 

shows that the two estimates differ substantially. Risk premia from the regression 

model show a great deal more persistence (as evident in Figure 8 versus Figure 

3). Premia take either negative (or positive) values for prolonged successive 

periods of time. Unlike the estimate from the signal plus noise model, there is no 

sharp positive spike in the premium in December 1992. In fact, the premium for 

that period is negative. 

LR tests for homoskdasticity and normality are easily rejected at the usual 

significance levels. Estimated scales from the regression Model 1 are plotted in 
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Figure 9. Once again the figure shows large persistence in volatility. Once again, 

there is evidence of substantial reduction in volatility after its peak in 1993. 

Overall, our regression results confirm the findings in several prior studies 

of a significant time varying risk premium in the dollar/pound forward exchange 

rates. 

 

6. Explaining the Discrepancy between Signal Plus Noise Models and 

Regression Methods 

Our results on the lack of significant risk premium components in forward 

dollar/pound exchange rates using the signal plus noise model are contrary to our 

findings using the regression approach. 

To understand these results, we need to explain why the signal plus noise 

model is not very powerful at discriminating between a time varying risk 

premium component and noise. One likely reason for the low power in the signal 

plus noise models lies in its inherently univariate framework. The model only 

uses information on the ex post forward bias  t 1
t t 1f s+

+− . On the other hand the 

regression model uses information on the forward premium t 1
t tf s+ −  as well. 

A second important reason has to do with the information set available at 

time t  in the context of the two models. While the regression model incorporates 

at time t  the available information on forward prices t 1
tf +  in the explanatory 
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variable on the right hand side, the specific version of the signal plus noise model 

used in this paper (which was motivated by Wolff 1987) does not. In this model, 

information on the forward price t 1
tf +  is in effect used only at time t 1+  in the 

form of the ex post forward bias.  

An examination of the maximized log-likelihood values across all models 

indicates that the stable conditionally heteroskedastic regression Model 1 

dominates all other models. Although a comparison is strictly invalid because of 

the non-nested nature of the regression and signal plus noise models, the higher 

maximized log-likelihood values do suggest superior fit of the regression model 

to the ex post forward bias data. This is also revealed in a plot of the estimates of 

the risk premia in Figure 7 as compared to Figure 2. Estimates of the risk premia 

in Figure 2 appear closer to a white noise process than those in Figure 7. 

 

7. Conclusions 

In this paper we investigate the possible presence of time varying risk 

premia in forward dollar/pound monthly exchange rates for the period 1983:11 

through 2004:6. We study this issue using two different methodologies. One is the 

univariate signal plus noise model, used in Wolff (1987, 2000), Nijman et al. 

(1993), and Cheung (1993). The other is a simple regression of the ex post 

forward bias on the forward premium. We improve on the previous studies by 
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explicitly taking into account volatility clustering and non-normalities 

documented in earlier studies on exchange rates. 

Our signal plus noise model fails to reveal a statistically significant risk 

premium component in forward rates, in contrast to the results in Wolff (1987). 

Unlike this study, our inference is based on small sample critical values of the 

likelihood ratio test statistic generated by Monte Carlo simulations. Our 

regression method finds a statistically significant risk premium component, in 

accord with results from several studies on this issue.  

We conclude that the univariate signal plus noise model is not very 

powerful at discriminating between a persistent risk premium component and a 

serially uncorrelated expectational error in spot exchange rates. Apart from its 

univariate nature, another  important reason for lack of power in the signal plus 

noise model is the fact that the model, as formulated, does not use information on 

current period observed forward rates in extracting unobservable risk premium 

components. 
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Appendix A. Stable Distributions and Their Properties 

 This section draws heavily from McCulloch (1996b). Stable distributions 

),c,,;x(S δβα are determined by four parameters. The location parameter 

δ ∈ −∞ ∞( , )  shifts the distribution to the left or right, while the scale parameter 

),0(c ∞∈  expands or contracts it about δ , so that  

)0,1,,;c/)x((S),c,,;x(S βαδ−=δβα .    (A1) 

The standard stable distribution function has 1c =  and 0=δ . If a random 

variable X  has a stable distribution, it is represented as X S c~ ( , , , )α β δ . 

The characteristic exponent α ∈( , ]0 2  governs the tail behavior, and 

therefore the degree of leptokurtosis. When α = 2 , the normal distribution 

results, with variance 2 2c .  For 2<α , the variance is infinite. When 1>α , 

δ=)X(E ; but if 1≤α , the mean is undefined.  

The skewness parameter β ∈ −[ , ]11  is defined such that β > 0  indicates 

positive skewness. If β = 0 , the distribution is symmetric stable. As 2↑α , β  

loses its effect and becomes unidentified. 

Stable distributions are defined most concisely in terms of their log-

characteristic functions: 

  ln exp( ) ( ),E iXt i t ct= +δ ψα β      (A2) 

where   






=απβ+−
≠απαβ−−=ψ

α
βα

1for|)t|ln)t(sign)/2(i1(|t|
1for))2/tan()t(signi1(|t|)t(,  (A3) 
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is the log-characteristic function for )0,1,,(S βα . 

When 2<α , stable distributions have tails that behave asymptotically 

like α−x  and give the stable distributions infinite absolute population moments 

of order greater than or equal to α .  

Let X S c~ ( , , , )α β δ  and a be any real constant. Then (A2) implies: 

  aX S sign a a c a~ ( , ( ) ,| | , )α β δ .     (A4) 

Let ),c,,(~X 1111 δβα  and ),c,,(~X 2222 δβα  be independent drawings from 

stable distributions with a common α . Then ),c,,(S~XXY 21 δβα+= , where 

  c c cα α α= +1 2        (A5) 

  β β βα α α= +( ) /1 1 2 2c c c      (A6) 

δ
δ δ α
δ δ β β β π α

=
+ ≠
+ + − − =





1 2

1 2 1 1 1 2 2 2

1
2 1

for
c c c c c c for( ln( ) ln( ) ln( )) / .

 (A7) 

When β β1 2= , β  equals their common value, so that Y has the same shaped 

distribution as X1  and X2 . This is the “stability” property of stable distributions 

that leads directly to their role in the central limit theorem, and makes them 

particularly useful in financial portfolio theory. When β β1 2≠ , β  lies between β1  

and β2 . 

 For α < 2  and β > −1, the long upper Paretian tail of X S c~ ( , , , )α β δ  

makes EeX  infinite. However, when β = −1,  
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  ln
sec( / ),

( / ) ln ,
Ee

c
c c

X =
− ≠
+ =





δ πα α
δ π α

α 2 1
2 1

  (A8) 

This formula greatly facilitates asset pricing under log-stable uncertainty.  

See also Zolotarev (1986, p.112) and McCulloch (1996b). 

 Appendix B. Sorenson-Alspach Filtering Equations 

 Let y t Tt , ,...,= 1 , be an observed time series and x t  an unobserved state 

variable, stochastically determining y t . Denote { }t 1 tY y ,..., y= . The recursive 

formulae for obtaining one-step ahead prediction and filtering densities, due to 

Sorenson and Alspach (1971), are as follows: 

  p x Y p x x p x Y dxt t t t t t t( | ) ( | ) ( | )− − − − −
−∞

∞

= ∫1 1 1 1 1 ,   (B1) 

  p x Y p y x p x Y p y Yt t t t t t t t( | ) ( | ) ( | ) / ( | )= − −1 1 ,   (B2) 

 p y Y p y x p x Y dxt t t t t t t( | ) ( | ) ( | )− −
−∞

∞

= ∫1 1 .   (B3) 

Finally, the log-likelihood function is given by: 

  log ( ,..., ) log ( | ).p y y p y YT t t
t

T

1 1
1

= −
=
∑     (B4) 

These formulae have been applied to non-Gaussian data and extended to include a 

smoother formula by Kitagawa (1987). When shocks are normal (α = 2  in our 

models), this filter collapses to the Kalman filter. 

 In the model given in Equations (7) in the main text, t 1y +  is the observed 

series,  
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t 1 t t 1 t tp(y | p ) s (y p ;0,c )+ α += −   

and   t t 1 t t 1 tp(p | p ) s (p (p );0,c c )− α − η= −µ −φ −µ ,  

where s x cα δ( ; , )  is the symmetric stable density. The filter is initialized by the 

unconditional distribution of the state variable since the process for risk premium 

is strictly stationary, i.e. 

  
0 0

1/
0 0 0 p p 0p(p | Y ) s (p ; ,c ), c c c /(1 )α α

α η= µ = −φ . 

where c0  is the unconditional mean of c t  which evolves according to the 

volatility process given in Equation (7c). Starting points for the hyperparameter 

estimation are obtained from the Kalman filter under normality. 

 

Appendix C. Numerical Implementation of Filtering Equations 

 The Sorenson-Alspach filter and predictive densities were evaluated at a 

grid of 100 points equally spaced on a truncated portion of the real line. The left 

truncation point was chosen to lie 4 standard deviations (of the ε  shock as 

measured by a preliminary Kalman filter) below the minimum observed excess 

return and the right truncation point 4 standard deviations above the maximum 

observed return. The likelihood and the predictive density integrals (Equations 

(B3) and (B1) resp.) were evaluated numerically by a piecewise cubic quadrature 

technique, as follows: Integration between any two interior nodes was performed 

by fitting a piecewise cubic function through the four nearest nodes and 

approximating the required area under the integrand between those nodes by the 
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area under the cubic. The outermost intervals employ the same cubics as the 

adjacent intervals. For equispaced nodes, 8 or more in number, this quadrature 

procedure yields the weights 8/24, 31/24, 20/24, 25/24, 1, 1, ..., 1, 25/24, 20/24, 

31/24, 8/24 for the ordinates. The numerically computed predictive density was 

normalized in order to ensure that it integrated to unity. The piecewise linear 

interpolation and the trapezoidal rule for integration suggested by Kitagawa 

(1987) was not employed. Hodges and Hale (1993) propose an integration by 

parts procedure to speed up the Kitagawa procedure, but this was not employed 

either. 

 The accuracy of our numerical quadrature can be gauged by a comparison 

of the maximized log-likelihood value for Model 2 in Equations (4) obtained from 

our numerical integration with α  restricted to be 2, with that obtained from the 

Kalman filter (which is optimal in this Gaussian case), for given values of the 

other hyperparameters. We verified that, with 100 nodes, our numerical 

approximation gives log-likelihood values accurate to one decimal place at the 

estimated hyperparameters of the Gaussian Model 2. In light of this our numerical 

integration appears to be sufficiently accurate for drawing valid inferences from 

data. Calculations were carried out in GAUSS on a Pentium personal computer. 
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Table 1: Signal Plus Noise Stable Model Estimates 
 
 

t 1 t t 1y p+ += + ν ,      t 1 t 1t 1~ c z+ +ν , 1t 1z ~ iid S (0,1)+ α   (7a) 

t t 1 t(p ) (p )−−µ = φ −µ +η  t t 2t~ c c zηη , 2tz ~ iid S (0,1)α  (7b) 

t t 1 t t 1 2 t 1c c | y E(y | y , y ,..., y ) |α α α
− −= ω+β + δ −    (7c) 

 

The most general model is Model 1 given in Equations (7) above. We get Model 2 by setting c 0ηφ = =  in Model 1. 

Imposing 0µ =  on Model 2 gives Model 3. Setting 0β = δ =  in Model 3 yields Model 4. Restricting 0β = δ =  in Model 1 

gives Model 5. Finally, imposing c 0ηφ = =  on Model 5 gives Model 6. Hessian-based standard errors are reported in 

parentheses beneath the parameter estimates. 
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Stable 

Models 

α  µ  

210×  

ω  

510×  

β  δ  c  

210×  

cη  φ  LogL 

Model 1 1.893 

(0.090) 

-0.252 

(0.198) 

1.130 

(1.249) 

0.928 

(0.050) 

0.026 

(0.018) 

 0.309 

(0.211) 

0.527 

(0.213) 

522.213 

Model 2 1.907 

(0.092) 

-0.244 

(0.173) 

4.649 

(3.714) 

0.773 

(0.123) 

0.074 

(0.043) 

   521.408 

Model 3 1.911 

(0.055) 

 3.525 

(3.371) 

0.812 

(0.125) 

0.064 

(0.042) 

   520.429 

Model 4 1.863 

(0.059) 

    1.995 

(0.104) 

  510.733 

Model 5 1.873 

(0.094) 

-0.377 

(0.213) 

   1.808 

(0.159) 

0.349 

(0.188) 

0.512 

(0.156) 

513.981 

Model 6 1.859 

(0.067) 

-0.364 

(0.184) 

   1.971 

(0.103) 

  512.666 
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Table 2: Signal Plus Noise Gaussian Model Estimates 
 
 

t 1 t t 1y p+ += + ν ,      t 1 t 1t 1~ 2c z+ +ν , 1t 1z ~ iid N(0,1)+  

t t 1 t(p ) (p )−−µ = φ −µ +η  t t 2t~ 2c c zηη , 2tz ~ iid N(0,1)  

2 2 2
t t 1 t t 1 2 t 1c c | y E(y | y , y ,..., y ) |− −= ω+β + δ −  

 

The most general Gaussian model is Model 1 given in the Equations above. We get Model 2 by setting c 0ηφ = =  in Model 

1. Imposing 0µ =  on Model 2 gives Model 3. Setting 0β = δ =  in Model 3 yields Model 4. Restricting 0β = δ =  in Model 

1 gives Model 5. Finally, imposing c 0ηφ = =  on Model 5 gives Model 6. Hessian-based standard errors are reported in 

parentheses beneath the parameter estimates. 
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Gaussian 

Models 

µ  

210×  

ω  

510×  

β  δ  c  

210×  

cη  φ  LogL 

Model 1 -0.248 

(0.155) 

3.675 

(3.128) 

0.692 

(0.119) 

0.136 

(0.079) 

 0.256 

(0.939) 

-0.140 

(0.517) 

519.012 

Model 2 -0.245 

(0.156) 

3.936 

(2.706) 

0.691 

(0.120) 

0.128 

(0.052) 

   518.957 

Model 3  3.400 

(2.534) 

0.724 

(0.116) 

0.115 

(0.050) 

   517.740 

Model 4     2.237 

(0.101) 

  502.557 

Model 5 -0.308 

(0.217) 

   1.705 

(3.152) 

0.827 

(3.825) 

0.172 

(0.879) 

504.349 

Model 6 -0.297 

(0.200) 

   2.227 

(0.100) 

  503.651 

 



 38 
 

 
 
 

Table 3: Regression Model Estimates 
 
 

( )t 1 t 1
t t 1 t t t 1f s a b f s u+ +

+ +− = + − + , t 1 t t 1u ~ c z+ + , t 1z ~ iid S (0,1)+ α  (16a) 

( )t t
t t 1 t 1 t t 1 t 1c c | f s a b f s |α α α

− − − −= ω+β + δ − − − −     (16b) 

 

The most general model is Model 1 given in Equations (16) above. We get Model 5 by setting 0β = δ =  in Model 1. Setting 

2α =  gives Gaussian versions of these models. Hessian-based standard errors are reported in parentheses beneath the 

parameter estimates. 
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Regression Models α  a  

210×  

b  

 

ω  

510×  

β  δ  c  

210×  

LogL 

Stable Models         

Model 1 1.907 

(0.075) 

0.335 

(0.209) 

4.015 

(0.845) 

9.774 

(5.697) 

0.628 

(0.155) 

0.096 

(0.046) 

 531.107 

Model 5 1.827 

(0.061) 

0.426 

(0.235) 

4.055 

(0.810) 

   1.849 

(0.099) 

524.166 

Gaussian Models         

Model 1 2 

(restricted) 

0.216 

(0.221) 

2.656 

(0.828) 

6.984 

(4.482) 

0.603 

(0.157) 

0.141 

(0.059) 

 523.954 

Model 5 2 

(restricted) 

0.429 

(0.270) 

3.434 

(0.883) 

   2.162 

(0.097) 

510.981 



 40 
 

 

 
Fig.1 Forward-Spot Exchange Rate Differentials 

t 1
t 1 t t 1y f s+
+ +≡ −  
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Fig.2 Estimates of Risk Premium from stable Model 1 

( )t 1 2 tE p | y , y ,..., y  
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Fig.3 Estimates of Risk Premium from stable Model 1 
( )t 1 2 tE p | y , y ,..., y  
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Fig.4 Estimates of Conditional Scales tc  from stable Model 3 
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Fig.5 Estimates of Risk Premium from Gaussian Model 1 
( )t 1 2 tE p | y , y ,..., y  
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Fig.6 Estimates of Conditional Scales tc  from Gaussian Model 3 
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Fig.7 Estimates of Risk Premium from Regression Model 1 

( )t 1
t t tE p | f s+ −  
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Fig.8 Estimates of Risk Premium from Regression Model 1 
( )t 1

t t tE p | f s+ −  
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Fig.9 Estimates of Conditional Scales tc  from Regression Model 1 
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