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ABSTRACT OF THE DISSERTATION 

ANTI-QUORUM SENSING AGENTS FROM SOUTH FLORIDA MEDICINAL 

PLANTS AND THEIR ATTENUATION OF PSEUDOMONAS AERUGINOSA 

PATHOGENICITY 

by 

Allison L. Adonizio 

Florida International University, 2008 

Miami, Florida 

Professor Kalai Mathee, Major Professor 

With the difficulty in treating recalcitrant infections and the growing resistance to 

antibiotics, new therapeutic modalities are becoming increasingly necessary. The 

interruption of bacterial quorum sensing (QS), or cell-cell communication is known to 

attenuate virulence, while limiting selective pressure toward resistance. This study 

initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida 

medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor 

strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six 

showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia 

(L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), 

Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), 

and Quercus virginiana Mill. (Fagaceae).  These plants were further examined for their 

effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable 

opportunistic pathogen responsible for morbidity and mortality in the 

immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to 
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significantly inhibit multiple virulence factors and biofilm formation in this organism.  

Each plant presented a distinct profile of effect on QS genes and signaling molecules, 

suggesting varying modes of action. Virulence attenuation was observed with marginal 

reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to 

static or cidal effects. Extracts of these plants were also investigated for their effects on 

P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in 

both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14.  

Overall nematode mortality was reduced 50-90%. There was no indication of host 

toxicity, suggesting the potential for further development as anti-infectives. Using low-

pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and 

castalagin were isolated from an aqueous extract of C. erectus. Structures were confirmed 

via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to 

decrease signal production, QS gene expression, and virulence factor production in P. 

aeruginosa. This study introduces a potentially new therapeutic direction for the 

treatment of bacterial infections. In addition, this is the first report of vescalagin and 

castalagin being isolated from C. erectus, and the first report of ellagitannin activity on 

the QS system. 
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1.1 Preface 

The following introduction includes a review of the literature and provides the 

reader with a background for the experimentation to follow. As this is a multi-

disciplinary project, a number of different fields and sub-fields are explored with 

relevance to this dissertation, including ethnobotany, medicinal phytochemistry, and 

quorum sensing as a target to attenuate bacterial virulence and disease. Attention is also 

given to the nature of the model pathogen Pseudomonas aeruginosa, its mechanisms of 

antibiotic resistance, and its behavior in an nematode infection model.  

 

1.2 Ethnobotany and pharmacognosy: looking to the past for solutions of the    

future 

Before pharmacy there was forest, before pills there were potions.  The 

emergence of medicine paralleled that of the human species, and as we evolved so did 

our pharmacopoeia. Modernization of our society and concomitant advances in chemistry 

promised better, stronger, safer, and more widely available drugs.  However the overuse 

of antibiotics began an escalating trend of resistance in many pathogenic organisms.  In 

effect, our diseases were evolving right along with us.  

Although combinatorial and synthetic chemistry can provide us with some 

solutions for disease, many medicinal compounds already exist in nature and are awaiting 

discovery. Vascular plants are one of the largest and most diverse organismal groups with 

tropical and sub-tropical regions affording a high species biodiversity (Gurevitch et al., 

2002). This high biological diversity is likely linked to a high chemical diversity, 

allowing for the evolution of numerous toxic and bioactive plant chemicals. 
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 Phytochemistry, however, is directed by more than sheer randomness.  Plants 

create specific compounds to serve needs such as reproduction and defense. Limited by 

their immobility, plants must rely on wind, water, or animals for pollination.  The 

availability and precision of the former being somewhat uncertain, plants have adapted 

various chemical means of attracting animals.  Anthocyanin-based pigments attract birds, 

sweet smelling phenolic volatiles attract bees, and foul indoles and amines are perfect for 

fly pollination (Gurevitch et al., 2002). 

Plants have likely evolved toxic and bioactive compounds to protect against 

herbivory and pathogen attack. (Balick & Cox, 1999; Gurevitch et al., 2002).  Because 

plants are sessle, they rely more heavily on chemical defenses than motile organisms. In 

many cases, the link between a toxin and a medicine is dosage, and numerous plant 

toxins have found their way into our modern pharmacopoeia.  Foxglove, Digitalis spp., if 

ingested, can cause convulsions, cerebral disturbances, bradycardia, and eventual death 

(Lacassie et al., 2000). However, at the correct dosage, the cardiac glycosides, digoxin 

and digitoxin, have proven effective in the treatment of atrial fibrillation and heart failure 

(Bussey et al., 1988).   

 

1.2.1 Advantages of a directed search 

Taking into account the vast number of plants that exist, and their evolved 

chemical diversity, one can see the basis for screening plants for medicinal compounds.  

However, combining these inherent qualities of plants with the direction of thousands of 

years of amassed traditional knowledge creates an even better venue in which to search 

for new drugs. 
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  Most plants contain some sort of constitutive or inducible defense against 

phytopathogens, but plants used medicinally may also contain chemical defenses specific 

to human pathogens. In fact, the efficiency of an ethnobotanically-directed search to this 

end has proven to be about 40% higher than that of a random search (Khafagi & 

Dewedar, 2000). 

The word ethnobotany, from the Greek ethnos ’people’, is defined as “the study 

of the interactions between people and plants” (Harshberger, 1896).  It is a scholarly 

pursuit somewhere between science and anthropology devoted to documentation and 

understanding of the traditional classification and uses of plants in different human 

societies.  Studies in ethnobotany have provided us with lists of potentially medicinal 

plants, but rarely a knowledge of their chemical nature.

Pharmacognosy was a term introduced by C.A. Seydler, a German medical 

student, in 1815, derived from the Greek pharmakon, or drug, and gnosis, knowledge 

(Tyler et al., 1981).  The field of pharmacognosy was borne of pharmacology due to the 

need for a more comprehensive approach to drug discovery and understanding. Swiss 

pharmacist Friedrich Flueckiger expounded upon this idea stating that pharmacognosy is 

“the simultaneous application of various scientific disciplines with the object of acquiring 

knowledge of drugs from every point of view” (Tyler et al., 1981) including botany, 

microbiology, taxonomy, phytochemistry, medicinal chemistry, and toxicology.  In this 

sense it is not so much a “subfield” of pharmacology as it is a larger, more 

comprehensive idea entirely. Today, the term pharmacognosy typically refers to the 

pharmacology of natural products (As defined by the American Society for 

Pharmagognosy www.phcog.org). The combination of ethnobotany and pharmacognosy 
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opens up an avenue of research into the potential drug applications of traditionally used 

plants, often referred to as ethnopharmacology or ethnopharmacognosy. 

 

1.2.2 Linking traditional and modern medicine 

Ethnopharmacology puts drug discovery in a cultural construct.  Making the link 

back to a cultural use is beneficial for a number of reasons, both to traditional and 

modern societies.  Knowing the traditional use of a plant can guide drug discovery, by 

giving chemists and biologists an idea of its potential use in modern society.  For 

instance, plants used as snakebite remedies may be useful in finding antihypertensive 

drugs.  If one wants to survive the bite of a venomous snake, it is advantageous to lower 

the blood pressure and slow the heart rate so as to not spread the poison to vulnerable 

organs before it can be metabolized.  This led to the discovery of antihypertensive 

alkaloids in Rauvolfia spp. (often R. serpentina (L.) Benth. ex. Kurz), a small shrub in the 

Apocynaceae (Dewick, 2002). 

 However, ethnopharmacology is not so myopic as to focus solely on the profit of 

developed countries.  Much of the work done in this field benefits traditional societies.  

The documentation and preservation of indigenous pharmacopeias and healing 

techniques, is becoming increasingly important with modernization and migration of 

cultures.  In addition, validation through modern scientific methods may help improve 

healthcare in rural areas. The ideal ethnopharmacological study would begin with the 

cultural anthropology of a particular group and their medical system in the context of that 

culture, and include the documentation of indigenous medical knowledge to prevent loss 

of information in future generations. There would have to be a botanical, chemical, and 
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pharmacological workup of the plants to potentially derive useful and unique medicinal 

compounds.  Each of these areas (anthropology, botany/taxonomy, chemistry, 

pharmacology) could take years to fully explore.  Consequently, most studies focus on 

one aspect of ethnopharmacology, depending on the expertise and/or interests of the 

researcher. 

 

1.2.3 The ecology and ethnobotany of southern Florida 

Southern Florida has a unique diversity of species due to its location between 

tropical and temperate climates. This subtropical ecosystem is host to over 1600 native  

and naturalized plants from various regions (Wunderlin, 1982; Wunderlin & Hansen, 

2006).  The diverse ecotypes of Miami-Dade County include coastal environments, scrub 

and tropical dry forests, and pine rocklands, each with its own distinct cohort of species. 

Plants in this region have provided important sources of food, timber, and 

medicines for Native Americans and early European settlers. Despite the fact that they 

lived along the coasts, the original inhabitants of modern-day Florida were dubbed the 

“Glades Indians” by archaeologists (Goggin & Sturtevant, 1964). They segregated into a 

number of distinct tribes including the Calusa, Tequesta, Mayaimi, and Jaega tribes of 

southern Florida (McGoun, 1993) (Figure 1.1).  

In the 17th and 18th centuries, the indigenous people of south Florida increased not 

only their plant knowledge, but presumably their physical pharmacopoeia by trading with 

nearby Cuban, Mexican, and Caribbean cultures. Advances in transportation led to 

increased dissemination and accumulation of both knowledge and plant material. Plant 

uses and the plants themselves moved into the area from lands as far as Central and South 
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America and Africa (Austin, 1997). However, by the mid-18th century, European slavery 

and disease had decimated the once powerful Glades peoples, and by 1763 all of 

Florida’s pre-Columbian cultures were extinct (Milanich, 1995). 

 

  

Figure 1.1 The tribal and geographical segregations of the Glades peoples in Florida. 

Florida Museum of Natural History. Used with permission. 

 

In the 17th and 18th centuries, the indigenous people of south Florida increased not 

only their plant knowledge, but presumably their physical pharmacopoeia by trading with 

nearby Cuban, Mexican, and Caribbean cultures. Advances in transportation led to 

increased dissemination and accumulation of both knowledge and plant material. Plant 

uses and the plants themselves moved into the area from lands as far as Central and South 

America and Africa (Austin, 1997). However, by the mid-18th century, European slavery 

and disease had decimated the once powerful Glades peoples, and by 1763 all of 

Florida’s pre-Columbian cultures were extinct (Milanich, 1995). 
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Although most estimates suggest roughly 20% of any native flora to be used by its 

inhabitants, sadly only about 3% of the flora of southern Florida has been documented as 

initially utilized by the Glades peoples, and approximately 10% by later inhabitants of the 

region (Austin, 1997; Austin, 2004). However more data about medicinal use can be 

pieced together from the ethnobotany of other cultures within the growth habitat of the 

plant. For instance, while historical usage of buttonwood, Conocarpus erectus 

(Combretaceae) is mainly confined to timber or fuel use in Florida; cultures from 

Mexico, South America, the Caribbean, and Africa use this tree as a tonic, febrifuge, and 

to treat various bacterial conditions (Austin, 1997; Burkhill, 1985; Melendez, 1982; 

Morton, 1981). 

Under the guidance of traditional knowledge, many plants have been discovered 

to be useful in our modern system of medicine. Notable medicinal plants of southern 

Florida include saw palmetto and the Madagascar periwinkle.  Saw palmetto, Seranoa 

repens (Aracaceae), is perhaps the most well-known plant from this region used in the 

treatment of benign prostatic hyperplasia (Bennett et al., 2002; Madersbacher et al., 

2007). Whereas, the naturalized periwinkle Catharanthus roseus (Apocynaceae), 

produces vinca-alkaloids used in the treatment of cancer (Heijden et al., 2004). 

Although the plants chosen for this study are not a cohesive group of native 

species used by one particular indigenous culture, they have a long history of medicinal 

use throughout their native and naturalized range (Burkhill, 1985; Duke, 1972; Duke, 

1985; Duke, 2000; Liogier, 1990; Morton, 1981). Additionally, all plants chosen have 

been used historically to treat conditions such as wounds, infections, respiratory 

conditions, and diarrhea – conditions potentially caused or complicated by bacteria. 
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1.3 Botanicals as anti-bacterial therapies 

There have been many ethnobotanically-directed searches for antibacterials, 

demonstrating not only the need for these drugs, but also the large number of plant 

species utilized for bacterial conditions especially in the tropics (Camporese et al., 2003; 

Cowan, 1999; Gnanamani et al., 2003; Hernandez et al., 2003). Although medicinal plant 

research has led to the discovery of many important medicines such as morphine 

(Benyhe, 1994), quinine (Kremsner et al., 1994), paclitaxel (Wani et al., 1971), and 

camptothecin (Wall et al., 1966), there is not a large degree of overlap between 

commonly used plant medicines and antimicrobials in developed countries. However, 

there are a few notable plants that have made their way to the drugstore shelves. 

 

1.3.1 Tea tree oil  

Melaleuca alternifolia Cheel (Myrtaceae), or tea tree, is a aromatic tree native to 

Australia. The essential oil of M. alternifolia is a common topical antimicrobial agent.  Its 

antimicrobial activity has been attributed to terpinen-4-ol, the major monoterpenoid 

component of the oil (Figure 1.2) (Carson & Riley, 1995).  Other terpene constituents 

include γ-terpinene, α-terpineol, cineole, and p-cymene (Dewick, 2002).  

Monoterpenoids are composed of two isoprene units and occur widely in plants with 

volatile oils such as those in the Lamiaceae, Myrtaceae, and Rutaceae.  These compounds 

tend to cause membrane disruption in bacteria (Cowan, 1999), and in addition account for 

much of the aroma of a plant. 
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Figure 1.2 α-Terpinol, a major monoterpene component of M. alternifolia 

(http://en.wikipedia.org/wiki/Image:Terpineol_alpha.svg) 

 

 Tea tree oil has been proven in several in vitro (Hammer et al., 1996; Messager et 

al., 2005), and topical studies (Carson et al., 1998; Satchell et al., 2002) to be 

antibacterial and antifungal. It is effective against Staphylococcus aureus, Acinetobacter 

baumannii, Escherichia coli and Pseudomonas aeruginosa, at a 5% concentration in hand 

wash (Messager et al., 2005). It is also active against multi-drug resistant strains of S. 

aureus (Halcon & Milkus, 2004; Park et al., 2007). 

 

1.3.2 Oregano oil 

Origanum vulgare L. (Lamiaceae) is a common herb native to Europe and the 

Mediterranean. The essential oil fraction of O. vulgare is especially effective against 

bacterial and fungal infections, of the gastrointestinal and genitourinary tract (Adam et 

al., 1998; Blumenthal et al., 2000; Chun et al., 2005; Salgueiro et al., 2003). Its 

antimicrobial activity is attributed to the phenolic monoterpenoids, carvacrol and thymol, 

along with a number of other terpene alcohols, phenols, and sesquiterpenes (Rodrigues et 
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al., 2004).  The two main chemotypes of O. vulgare show either high thymol or high 

carvacrol content  (Figure 1.3) (Rodrigues et al., 2004). Both thymol and carvacrol are 

antimicrobial (Cowan, 1999), however the latter is considered more effective (Chami et 

al., 2004). 

      (a)           (b)  

 

Figure 1.3 Two phenolic terpenoids of O. vulgare. (a) Thymol. (b) Carvacrol. 

(http://en.wikipedia.org/wiki/Image:Thymol.png and http://en.wikipedia.org/wiki/Image: 

Carvracol.png ) 

 

 Oil of oregano has pronounced antifungal effect in vitro (Adam et al., 1998) 

against a number of dermatophytes.  It also shows antibacterial activity against 

Helicobacter pylori, a causative agent of gastric ulcers (Chun et al., 2005), and a number 

of clinically-isolated pathogens including Haemophyllus influenzae, Staphylococcus 

aureus, Escherichia coli, Streptococcus pneumoniae, and Enterobacter cloacae (Hersch-

Martinez et al., 2005).  Though most related to its prescribed use is its marked effect in 

vitro and in a rat model against C. albicans (Chami et al., 2004; Salgueiro et al., 2003). 

The antimicrobial effect is due to membrane disruption (Chami et al., 2004; Cowan, 

1999). 
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1.3.3 Myrrh 

 Myrrh is a fragrant, oleo-gum resin of various Commiphora Jacq. species in the 

Buseraceae, a family consisting mainly of trees with aromatic, peeling bark (Judd et al., 

2002). Commiphora trees are native to parts of Africa, Asia, India, and the Middle East, 

where the bark is scored to collect the resin (Blumenthal et al., 2000). Myrrh has a long 

history of religious and medicinal use with references in Jewish, Muslim, and Christian 

texts (Blumenthal et al., 2000; Cowan, 1999). It still sees use today in religious settings, 

but is more commonly found in mouthwashes and toothpastes due to its antimicrobial 

properties.    

 Myrrh consists of approximately 30-60% water soluble gum, 20-40% alcohol 

soluble resin, and 8% volatile oil (Blumenthal et al., 2000).  The volatile oil fraction 

contains antimicrobial monoterpenes such as myrcene and α-camphorine, however 

antimicrobial activity is also attributed to furanosesesquiterpenes (Figure 1.4) 

(Blumenthal et al., 2000). 

 

 

 

Figure 1.4 8-methoxyfuranodiene, a furanosesquiterpene of Commiphora species. 

(Redrawn from http://chembiofinder.cambridgesoft.com) 
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 The antibacterial activity of Commiphora mulkul (synonym of Commiphora 

wightii (Arn.) Bhandari) has been tested in vitro against a number of Gram positive and 

Gram negative organisms and was found equal to that of kanamycin (Asif Saeed & Sabir, 

2004).  The German commission E recognizes myrrh as an antibacterial and anti-

inflammatory.  It is approved for topical treatment of wounds, and for oral and 

pharayngeal mucosa as a mouthwash (Blumenthal et al., 2000).   

 

1.3.4 Untapped potential for antimicrobial activity 

As mentioned previously, plants should be a great source of antimicrobial 

compounds due to their environment. However, in comparison with other organisms, 

plants do not have the monopoly on medicinal compounds especially in the case of 

antimicrobials.  In fact, 75% of the modern antibiotics are derived from the 

actinomycetes, a specific group of Gram-positive bacteria (Mendez & Salas, 2001).  

Regardless, there are a few reasons why this should not deter one from screening plants 

for antimicrobial compounds.    

 Antibiotic-producing microbes possess genes which protect them from the toxic 

effects of these compounds. It is very easy for one microbe to acquire antibiotic 

resistance from another through plasmid transfer or transposons.  Plants, on the other 

hand, are genetically dissimilar from the organisms they are trying to eradicate.  Thus, 

there is little chance for a microbe to gain resistance from a plant. 

Plants can produce a multitude of diverse antimicrobial compounds such as 

simple phenolics, catechins, quinones, flavanones, polyphenolics, alkaloids, and 

terpenoids (Cowan, 1999; Dewick, 2002). Like microbial antibiotics, these compounds 
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are targeted at killing the pathogen and work via a non-species specific mechanism such 

as disrupting microbial cell membranes (Cowan, 1999).  However, it was recently 

discovered that plants have another way of dealing with microbes - targeting a cell’s 

communication system (Bauer, 2001).  One form of intercellular communication in 

bacteria has been studied since the 1970’s, and is known as quorum sensing (for a review 

see (Schauder & Bassler, 2001). Breakdown of this system causes an attenuation of 

microbial pathogenicity (Finch et al., 1998; Smith & Iglewski, 2003b; Wu et al., 2004).   

The discovery of anti-quorum sensing agents in plants provides us with yet another type 

of “antimicrobial” agent. 

 

1.4 Quorum sensing: a novel target 

Quorum sensing (QS) is a population-dependent phenomenon first characterized 

in the 1970s in luminescent marine species of Vibrio (Nealson et al., 1970).  The ability 

to sense the size of a bacterial population is mediated through small signaling molecules 

or autoinducers (Hastings & Greenberg, 1999; Schauder & Bassler, 2001).  These 

molecules are constantly produced and received at a basal level by bacterial cells.  With 

high population density, there is a surplus of signaling molecules in the environment.  

These signals diffuse back into the cell where they facilitate the regulation of gene 

expression (Hastings & Greenberg, 1999).  QS systems are ubiquitous among bacteria, 

and have since been found to regulate diverse functions such as luminescence, biofilm 

formation, antibiotic and virulence factor generation, pigment production, plant-microbe 

interactions, and motility (Hentzer et al., 2003; McClean et al., 1997; Rasmussen et al., 

2000; Rodelas et al., 1999; Shih & Huang, 2002).   
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Although there are a number of different QS systems (Henke & Bassler, 2004), 

the most widely studied paradigm is based on the Lux system of Vibrio fisheri and V. 

harveyi  (Bassler et al., 1993; Stevens & Greenberg, 1997). This QS phenomenon 

involves a three component-system: a freely diffusible signal, a synthetase to make this 

signal, and a regulator that interacts in conjunction with the signal to regulate gene 

expression.  The main signaling molecules produced by Gram-negative bacteria are acyl-

homoserine lactones (AHLs) (Fuqua & Greenberg, 1998).  They differ in the length of 

their side chains and substitution at the C3 carbon, based on the organism that produces 

them (Marketon et al., 2002; Whitehead et al., 2001a).  (Figure 1.5) 

 

 

Figure 1.5  Some of the various structures of AHLs, the main signaling molecule of 

Gram negative bacteria.  Length of the hydrocarbon side chain can range from C4 to C18, 

and the C3 carbon may be substituted with an oxygen or hydroxyl group (modified from 

(Whitehead et al., 2001a). 
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In V. fisheri, LuxI produces an AHL signaling molecule which binds to LuxR at a 

certain concentration (Stevens & Greenberg, 1997).  This concentration is reached only 

when enough bacteria are present (a quorum) to produce sufficient quantities of the AHL.  

The V. fischeri LuxR-AHL complex can then bind to the operator and upregulate 

transcription of the luciferase genes. (Figure 1.6) 

 

Figure 1.6  The LuxI/R paradigm.  LuxI is produced at a basal level in the cell which 

synthesizes AHLs (red pentagons).  The AHLs bind to LuxR (product of luxR) at a 

certain concentration and activate transcription of luxI and the luciferase genes (Henke & 

Bassler, 2004). Used with permission. 

 

AHL-mediated quorum sensing systems based on the LuxI/R paradigm have been 

characterized in human pathogens such as Pseudomonas aeruginosa (Pesci et al., 1997), 

Yersinia pseudotuberculosis (Atkinson et al., 1999), and Escherichia coli (Surette & 

Bassler, 1998), as well as plant associated bacteria such as Rhizobium leguminosarum 
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(Rodelas et al., 1999), Ralstonia solanacearum, and Erwinia carotovora (Von Bodman et 

al., 2003).  In all cases these systems can regulate virulence. Thus, the discovery of QS 

has given us a new target - a new way to attack and attenuate bacterial pathogenicity. 

 

1.4.1 Anti-quorum sensing  

The subsequent discovery of  compounds that inhibit cell-to-cell communication, 

dubbed anti-quorum sensing (anti-QS) agents could provide a novel method of combating 

infection (Hentzer & Givskov, 2003a; Smith & Iglewski, 2003c). 

Anti-QS agents were first characterized in the red marine alga, Delisea pulchura 

(Manefield et al., 1999).  This alga was investigated for its anti-fouling properties, and 

was found to contain halogenated furanones, compounds which block AHLs via 

competitive inhibition and destabilization of LuxR (Figure 1.7) (Manefield et al., 2002).   

      

 (a) (b)  

 

Figure 1.7 Comparison of AHL (a) and halogenated furanone (b). The structural 

similarity allows furanones to competitively inhibit the action of AHL signaling 

molecules. (AHL redrawn from http://chembiofinder.cambridgesoft.com, furanone 

redrawn from (Manefield et al., 2002)) 
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Delisea furanones have been shown to reduce light emission in Vibrio species 

(Givskov et al., 1996), inhibit pigment production in C. violaceum (Martinelli et al., 

2004) and attenuate exoenzyme production and swarming motility in Serratia 

liquefaciens (Rasmussen et al., 2000). Both natural and synthetic derivatives of Delisea 

furanones have also been shown to attenuate P. aeruginosa infection in vitro and in a 

murine model (Hentzer et al., 2003; Wu et al., 2004).  

Since the discovery of AHL inhibitors in D. pulchura, anti-QS activity has been 

found in a south Florida Caulerpa species (Willsie, 2000) and a number of higher plants 

including various fruits and vegetables (Rasmussen et al., 2005; Teplitski et al., 2000; 

Vattem et al., 2007).  

Pisum sativum (pea) seedlings and root exudates produced an inhibition of 

pigment production, exochitinase activity, and protease activity in C. violaceum 

(Teplitski et al., 2000).  Some fractionation of the crude extract was attempted, however, 

no active compounds were purified.  

Garlic (Allium sativum), carrot (Daucus carota), chamomile (Matricaria sp.), 

water lily (Nymphaea sp.) and various peppers (Capsicum spp.) were found to possess 

anti-QS activity against a luxI-gfp reporter strain (Rasmussen et al., 2005). Garlic was 

also found to inhibit biofilm formation in P. aeruginosa, and prevented nematode death 

in a limited analysis (Rasmussen et al., 2005).  Garlic extract was partially fractionated in 

this study, but again, no purified compounds were elucidated. 

Various fruits and herbs were recently shown to possess anti-QS activity in a C. 

violaceum biomonitor strain and on the swarming motility of E. coli and P. aeruginosa 

(Vattem et al., 2007). Fruits including raspberry, blueberry, blackberry, cranberry, and 
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grape, and herbs such as thyme, ginger, basil, kale, oregano and turmeric exhibited 

moderate inhibition of these QS-controlled processes. However, no data was obtained in 

a live animal model, nor were active compounds purified from the extracts. The latter two 

studies were published after the publication of the initial work in this dissertation, 

indicating an increasing trend in this area of research.  

Other than signal mimics such as the furanones and synthetic derivatives, the 

compounds ellagic acid, tannic acid, and epigallocatechin gallate have been shown to 

inhibit QS in both an E. coli and a P. aeruginosa biomonitor strain (Huber et al., 2004).  

These and related polyphenolics are widespread throughout the plant kingdom and should 

be further explored as anti-QS compounds. 

 

1.4.1.1 Mechanisms of QS inhibition 

There are a number of ways to inhibit cell-cell communication (Figure 1.8) 

including competitive inhibition, signal binding, degradation of the signaling molecule, 

and inhibition of upstream precursors or genetic regulation systems.  

Success has been seen with competitive inhibition in the case of the furanones, 

(Figure 1.8b) however, many other QS antagonists have since been discovered (Kline et 

al., 1999; Smith et al., 2003). These antagonists are based on the C12-AHL structure and 

cause a reduction in LasR activity. 

AHL-antibodies have also been developed to suppress QS through signal binding 

(Figure 1.8c) (Debler et al., 2007; Smith & Iglewski, 2003b). A C12-AHL–protein 

conjugate was able to sucessfully inhibit lasB expression (Smith and Iglewski 
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unpublished data), and  a similar molecule with extremely high binding affinity for C12-

AHL was recently crystallized and characterized (Debler et al., 2007). 

Blocking S-adenosyl methionine (SAM) or the fatty acid precursors necessary to 

synthesize AHLs leads to decreased production of C12-AHL by LasI (Figure 1.8e) 

(Hoang et al., 2002). Of course genetic modification of upstream global regulators such 

as Vfr and GacA has also been shown to greatly reduce QS activity and the subsequent 

production of virulence factors (Albus et al., 1997; Reimmann et al., 1997). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Some potential targets of anti-QS compounds (Smith & Iglewski, 2003a).  

The P. aeruginosa QS system is shown in (a).  Inhibition may occur via competitive 

inhibition by an AHL mimic (b), sequestration of the AHL signal (c), signal degradation 

by lactonases (d) or acylaces (not shown), inhibition of AHL synthesis (e), blocking of 

upstream regulation (f), and interference by antisense RNA (g).Used with permission. 
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Scientists certainly do not have the monopoly on quorum inhibition. Numerous 

bacteria including Bacillus sp., Variovorax paradoxus, Arthrobacter sp., and A. 

tumefaciens produce lactonases – enzymes that cleave and deactivate the lactone ring of 

various AHLs (Carlier et al., 2003; Dong et al., 2002; Leadbetter & Greenberg, 2000; 

Park et al., 2003) (Figure 1.8d). Lactonase expression in P. aeruginosa, results in a 

significant decrease in AHL production and virulence factor expression (Reimmann et 

al., 2002). 

Interest is growing in practical applications of anti-QS especially when faced with 

increased incidence of drug failure due to the large number of pathogenic bacteria 

developing resistance to available antibiotics. It has been suggested that targeting 

pathogenesis instead of killing the organism may provide less selective pressure and 

therefore decreased emergence of resistant strains (Hentzer & Givskov, 2003b; 

Whitehead et al., 2001b).  

 

1.5 Model organism: Pseudomonas aeruginosa 

Pseudomonas aeruginosa is a Gram-negative, aerobic bacillus, with length and 

width ranging from 1.5-3.0 μm and 0.5-0.8 μm respectively (Figure 1.9) (Bergey, 2001). 

It is motile by means of a single polar flagella, and is an oxidase-positive, non-

sporulating and non-fermentative species (Bergey, 2001). Other diagnostic characteristics 

include beta-hemolysis of blood agar, pigment production - including pyocyanin (blue-

green), pyoverdin (yellow-green), and pyorubin (red-brown), and a distinct grape-like 

odor (Bergey, 2001). It is a ubiquitous organism with the ability to colonize diverse 
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niches due to its range of metabolic capabilities and resistance to environmental 

challenges. (Vasil, 1986).  

 

 

 

 

 

Figure 1.9 Multiple views of Pseudomonas aeruginosa. From L to R: Scanning electron 

microscopy, false-color microscopy, colonies on agar, gram stained cells. 

(http://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Pseudomonas_aeruginosa_

SEM.jpg;http://www.bact.wisc.edu/themicrobialworld/nfP.aeruginosa_colonies.jpg,http:/

/news.bbc.co.uk/olmedia/1745000/images/_1746739_pseudomonas_aeruginosa300.jpg 

http://www.pseudomonas.com/images/paeruginosa.jpg) 

 

1.5.1 Virulence factors and toxins 

Contributing to the pathogenicity of P. aeruginosa are a multitude of secreted 

toxins and virulence factors including, phospholipase C, rhamnolipid, superoxide 

dismutase, HCN, exotoxin A, exoenzyme, pyocyanin, pyoverdin, LasA protease and 

LasB elastase (Baker, 1982; Bever & Iglewski, 1988; Coburn, 1992; Doring et al., 1987; 

Edwards & Hayashi, 1965; Lau et al., 2004; Meyer et al., 1996; Stinson & Hayden, 

1979).  Many of these factors cause or catalyze reactions in the host leading to cell death 

and tissue necrosis, however the latter three factors are focused on this study. 
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Pyoverdin, a yellow-green florescent pigment produced by P. aeruginosa, 

competes with mammalian transferrin for iron, the successful sequestration of which 

essentially starves the host tissues (Meyer et al., 1996).  It also promotes pathogenicity by 

stimulating bacterial growth (Cox & Adams, 1985). 

LasA and LasB are zinc metalloendopeptidases of 20-kDa and 33-kDa 

respectively, belonging to the β-lytic endopeptidase family of proteases (Toder et al., 

1994). LasA has a limited substrate specificity as compared to LasB, however they 

operate in conjunction to degrade elastin, a key component in tissue plasticity.  LasA 

nicks elastin allowing it to be cleaved by LasB and other proteases. Working together 

these proteases are capable of destroying or inactivating a wide range of biological 

tissues and immunological agents (Bever & Iglewski, 1988; Kessler et al., 1993). 

 

1.5.2 Pseudomonas aeruginosa disease association  

 Due to its arsenal of virulence factors  and the tendency to form intractable 

biofilms (discussed later in this section), P. aeruginosa is not surprisingly one of the 

leading organisms implicated in nosocomial infections. According to a detailed hospital 

survey conducted from 1990-1996, P. aeruginosa was the second most prevalent cause of 

nosocomial pneumonia (17% of isolated microbes), the third most common cause of 

urinary tract infections (11%), the fifth most common cause of surgical site infections (8 

%), and the seventh most frequently isolated bloodstream pathogen (3%) (Centers for 

Disease Control and Prevention, 2004). P. aeruginosa was also fifth overall in bacterial 

species responsible for nosocomial infections (9%) (Centers for Disease Control and 

Prevention, 2004). In the past decade, P. aeruginosa has only increased in prevalence and 
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antibiotic resistance, making this organism a definite threat for susceptible patients 

(Aloush et al., 2006; Edwards et al., 2007).  

 As an opportunistic pathogen, P. aeruginosa has the ability to colonize a number 

of diverse infection sites when the host immune system is compromised (Figure 1.10). 

This can occur in patients with a serious underlying condition such as cancer (Krcmery et 

al., 2006), AIDS (Meynard et al., 1999), or major burn wounds (Regules et al., 2007), or 

those with immune suppression from recent surgery or organ transplant (Botha et al., 

2006; Defez et al., 2004; Ullah et al.). Neonates are also very susceptible to P. 

aeruginosa infection due to their underdeveloped immune system (Foca, 2002). 

 

 

Figure 1.10 Various sites of P. aeruginosa infection  
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 P. aeruginosa  can enter the body through any orifice; and minor infections, if left 

unchecked, can progress into severe, life-threatening conditions. In the ophthalmological 

system for instance, P. aeruginosa can colonize and infect the cornea, aqueous and 

vitreous humors, or surrounding structures after cataract or corrective surgery (Kehdi et 

al., 2005; Maccheron et al., 2004; Miller, 2000). Recently P. aeruginosa has been 

associated with an increasing number of cases of contact lens-associated kerititis 

(Robertson et al., 2007). Infections can progress quickly from minor conjunctivitis or 

kerititis to scleral lesions and corneal ulcers due to cell lysis by P. aeruginosa 

extracellular enzymes (Eifrig et al., 2003; Reedy & Wood, 2000). 

 P. aeruginosa also colonizes the auditory canal, and infection can progress from 

minor otitis externa to inner ear complications (otitis media) (Clark et al., 1997; Roland, 

2002). Without proper treatment secondary infections of the nearby bones (mastoiditis) or 

neurological structures can occur (Butbul-Aviel et al., 2003; Penido et al., 2005).  

 Disruption of the gastrointestinal system often occurs in pediatric patients or those 

with neutropenia or related blood disorders (Tsai et al., 1996).  Colonization of the 

digestive tract can range from diarrhea to severe rectal lesions and necrotizing 

enterocolitis in these patients (Rowe et al., 1994). 

 Urinary tract infections (UTIs) are common in a hospital setting due to frequent 

catheterization and the presence of drug resistant bacteria (Nicolle, 2002). If left 

unchecked, these infections can lead to severe kidney disorders and renal failure. 

Proximal bone infections such as osteomylitis of the pelvis and lumbosacral vertebrae can 

occur as a secondary complication to UTIs (Sapico & Montgomerie, 1990). 
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P. aeruginosa infection can also occur following an abrasion or break in the skin, 

due to injury, surgery, or catheterization.  Dermatological conditions range from minor 

events such as hot-tub dermatitis or folliculitis (Yu et al., 2007) to life threatening cases 

of necrotizing fascitis or cellulitis (Bodey et al., 1983; Tsekouras et al., 1998; Wortman, 

1993).  Infections with deep tissue damage especially in burn victims can spread to the 

bloodstream causing bacteremia and septicemia (Bodey et al., 1983). Bloodborne P. 

aeruginosa can travel to the heart in these cases causing endo- and pericarditis (Regules 

et al., 2007). 

Complications in the pulmonary system can begin as sinusitis (Danielides et al., 

2002; Koltai et al., 1985; Rombaux et al., 1997) or an upper respiratory tract infection 

and lead to chronic bronchitis, pneumonia, or pulmonary lesions (Boyer et al., 2005; 

Garau & Gomez, 2003; Hausermann & Gartmann, 1973; Zwillich & Ellis, 1974). 

Infections of the sinuses can also lead to meningitis and cerebral lesions due to the close 

proximity to the brain (Glickstein et al., 2006; Weisfelt et al., 2007; Widerman, 1953) 

 

1.5.3 Pseudomonas aeruginosa and cystic fibrosis 

The most significant complications of the pulmonary system occur among 

patients with cystic fibrosis (CF), diffuse panbronchiolitis (DPB), and chronic obstructive 

pulmonary disease (COPD).  These patients with reduced lung function are especially 

prone to chronic P. aeruginosa infection. 

Cystic fibrosis is a terminal inherited disease among Caucasians, affecting 1 in 

2500 live births in the United States (Registry, 2005). The gene responsible for CF, 

encodes the cystic fibrosis transmembrane conductance regulator (CFTR), a protein of 
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approximately 1480 amino acids (Sheppard & Welsh, 1999). Mutations in the CFTR 

result in decreased function of cyclic-AMP-activated chloride channels in secretory 

epithelial cells (Marcet & Boeynaems, 2006).  Decreased fluid production in the lung 

causes the dehydration of epithelial surfaces and oversecretion of mucus (Frizzell, 1999).  

Reduced aeration and lung clearance due to thick mucosa results in increased 

susceptibility to bronchopulmonary infection with P. aeruginosa among other organisms. 

A switch to a mucoid phenotype presents even more problems for the CF patient 

(Henry et al., 1993; Pritt et al., 2007). Nonmucoid P. aeruginosa strains in the early 

stages of infection do little harm to CF lungs, and can usually be eradicated by early 

aggressive antibiotic therapy (Hoiby, 1993).  However, the subsequent appearance of 

mucoid strains correlates with the formation of a bacterial biofilm, the development of 

anti-P. aeruginosa antibodies, inflammation, and a poor prognosis for the patient (Henry 

et al., 1993; Koch, 1993; Pederson, 1992; Stapper et al., 2004). Antibiotic treatment is 

switched to a rotation of various antibacterial agents but ultimately fails due to decreased 

lung function via bacterial consumption. 

 

1.5.4 Current treatment protocols  

 Current treatment protocols can vary greatly since a patient may be infected with 

one or more drug resistant strains of P. aeruginosa. Therapeutic strategies to treat 

infection include administration of a single antibiotic or a combination of two or three 

anti-pseudomonal agents (Banerjee & Stableforth, 2000; Jain & Singh, 2007). 

Monotherapy has generally included treatment with β-lactam antibiotics such as 

penicillins, cephalosporins, or newer broad-spectrum β-lactams such as imipenem and 
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meropenem (Banerjee & Stableforth, 2000; Flanders et al., 2006). These antibiotics act 

by interfering with the organization of peptidoglycan into bacterial cell walls (Bycroft & 

Shute, 1985) (Figure 1.11). Unfortunately, P. aeruginosa has evolved an efficient way of 

inactivating these drugs (discussed in the following section) which led to the 

development of a number of strategic combination therapies. 

 

 

Figure 1.11 Common anti-pseudomonal antibiotics and mechanisms of action. 

Combinations of these drugs are often necessary for efficacy against resistant strains of P. 

aeruginosa. (Image Source: Kalai Mathee) 

 

 Anti-pseudomonal cocktails include combinations of a β-lactam such as 

ticarcillin, aztreonam or ceftazidime plus a β-lactamase inhibitor such as sulbactam, and 

an aminoglycoside antibiotic such as tobramycin or amikacin (Banerjee & Stableforth, 

2000; Flanders et al., 2006; Ostendorf et al., 2006). Aminoglycosides interfere with 

protein synthesis by binding to the ribosomal subunits of the bacterial cell (Hancock, 

1981; Omri et al., 1995). Combinations of ceftazidime and a fluoroquinolone such as 
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ciprofloxacin are also effective. The quinolones exhibit their bactericidal action by 

blocking DNA replication through gyrase inhibition (Hooper, 1999). 

 Alternative combinations include pairing ciprofloxacin with an animoglycoside or 

with the broad-spectrum antibiotic fosfomycin, which prevents proper cell wall formation 

by inhibiting production of N-acetylmuramic acid (Flanders et al., 2006). 

 Although there is some success in eradicating P. aeruginosa with these treatments 

many CF patients need ongoing treatment and toxicity can develop with continual use 

(Banerjee & Stableforth, 2000; Registry, 2005).  In addition, there is an escalating trend 

of antibiotic resistance that will soon render these therapeutics ineffective.  

 

1.5.5 Antibiotic resistance in Pseudomonas aeruginosa 

According to 2004 data provided by the Centers for Disease Control, antibiotic 

resistant P. aeruginosa infections are increasing (Centers for Disease Control and 

Prevention, 2004). In 2004, 21.1% of the nosocomial infections were resistant to 

imipenem, an increase of 15% over the previous five years (1998-2002). Similarly, 

29.5% of hospital-acquired P. aeruginosa infections were resistant to quinolones and 

31.9% were resistant to third generation cephalosporins; increases of 9% and 20% over 

the previous five years respectively (Centers for Disease Control and Prevention, 2004). 

A hospital setting is ideal for the promotion of antibiotic resistance, either through 

overuse and subsequent mutation or via gene transfer (Gregory et al., 2008; Hancock & 

Speert, 2000) (Figure 1.12). In addition to the more recently acquired resistance 

mechanisms P. aeruginosa also has several factors that are considered intrinsic. Current 
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pathogenic strains of P. aeruginosa possess inventive mechanisms which contribute to 

reduced antibiotics susceptibility including: 

 

A. Biofilm formation 

B. Restricted surface accessibility 

C. Exclusion via efflux pumps 

D. Enzymatic inactivation of antibiotics 

E. Alteration of target proteins 

 

 

Figure 1.12 “Gene transfer”. Cartoon by Nick D Kim. Used with permission. 

(http://www.nearingzero.net) 
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1.5.5.1 Biofilm formation 

"The rule of thumb is that 1,500 times more of an antimicrobial agent is needed to kill a 

biofilm than a planktonic bacteria." - William Costerton.  

 

Although the planktonic mode of bacterial growth is most often studied, the 

majority of bacteria exist in nature as members of a surface-adherent, matrix-enclosed 

biofilm (Costerton et al., 1995) (Figure 1.13).  P. aeruginosa is no exception to this rule, 

and often switches to a mucoid phenotype during infection (Mathee et al., 1999; Pritt et 

al., 2007; Stapper et al., 2004). Owing to the secretion of an exopolysaccharide, biofilm 

cells form a slime layer in which they are irreversibly bound to a substratum and to each 

other (Donlan & Costerton, 2002).  This protected formation results in altered growth 

rates and transcription patterns, and more importantly, an increased environmental 

resistance from that of their planktonic counterparts (Donlan & Costerton, 2002). 

Antimicrobial agents are prevented from reaching the innermost cells of a biofilm and are 

therefore unable to fully eradicate the infection (Hoyle & Costerton, 1991). 

In addition, the alginate layer of mucoid P. aeruginosa prevents optimal host 

immune function by masking antibody opsonization and inhibiting clearance (Jensen, 

1993; Jensen, 1990; Pier et al., 1995). The latter is accomplished by promoting 

irreversible adherence of the bacteria to lung epithelial cells. 
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Figure 1.13 Biofilm formation. Polysaccharides secreted by P. aeruginosa help to adhere 

cells to a surface and to each other resulting in mushroom like structures, clusters, void 

spaces, water channels, and streamers. Peg Dirckx, Center for Biofilm Engineering. Used 

with permission. (http://www.erc.montana.edu) 

 

1.5.5.2 Restricted surface accessibility 

 If an antibiotic does manage to penetrate the structural protection of the biofilm 

layer, P. aeruginosa has a second line of defense – a rather impermeable outer 

membrane.  For an antibiotic to be effective, it must be able to reach the periplasm or the 

intercellular space of the bacterium. Outer membrane permeability is associated with a 

number of channel-like proteins, or porins, which act as gate-keepers for molecules 

wishing to gain entry into the cell. The outer membrane of P. aeruginosa is estimated to 

be up to 100 times less permeable than that of E. coli (Yoshimura & Nikaido, 1982). This 

is due, in part, to the difference in size and structure of the porins.  The outer membrane 

proteins (Oprs) found in P. aeruginosa had much lower molecular weights than their E. 

coli counterparts (Mizuno & Kageyama, 1978; Yoshihara & Nakae, 1989) and existed as 
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monomers (Yoshimura et al., 1983), whereas the E. coli porins had a larger, trimeric 

quaternary structure. Modulation of permeability, and thus antibiotic susceptibility in P. 

aeruginosa, has been shown to occur with changes in expression or mutations of the Opr 

genes (Yoneyama et al., 1991; Yoneyama et al., 1995; Young et al., 1992). 

 

1.5.5.3 Exclusion via efflux pumps 

Once an antibiotic gains entry into the cell, P. aeruginosa has a number of three-

component efflux mechanisms in place to remove it before it causes damage. The 

tripartite efflux system combines an outer membrane protein described in the previous 

section (e.g. OprM), an energy-dependant pump located in the cytoplasmic membrane 

(MexB), and a protein to connect the two (MexA)(Nehme et al., 2004).  This system 

creates a channel which extends from the inner membrane all the way to the outside of 

the cell and uses proton motive force to extrude unwanted chemicals (Figure 1.14). P. 

aeruginosa expresses a number of these multidrug efflux (Mex) systems, including 

MexAB-OprM, MexXY-OprM, MexCD-OprJ, MexEF-OprN and MexJK-OprM 

(Chuanchuen et al., 2002; Hocquet et al., 2003; Llanes et al., 2004; Maseda et al., 2000; 

Masuda et al., 2000; Poole, 2001). These systems vary slightly in their preferred 

substrates, however their combined effect removes most known classes of antibiotics 

including β-lactams (and β-lactamase inhibitors), macrolides, aminoglycosides, 

fluoroquinolones, tetracyclines, and chloramphenicol (Poole & Srikumar, 2001). Hyper-

expression of these efflux genes by mutational events or acquired genetic material has 

been shown to result in substantially increased antibiotic resistance (Beinlich et al., 2001; 

Llanes et al., 2004). 
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Figure 1.14 MexAB-OprM efflux pump of P. aeruginosa. This system extrudes drugs 

using proton motive force (modified from (Schweizer, 2003)). OM = outer membrane, 

CM = cytoplasmic membrane. 

 

1.5.5.4 Enzymatic inactivation of antibiotics 

 P. aeruginosa is able to inactivate many β-lactam antibiotics by enzymatic 

cleaving of the β-lactam ring (Figure 1.15) (Abraham & Chain, 1940).  Older antibiotics 

in the β-lactam class such as ampicillin and penicillin have almost no effect on current 

strains of P. aeruginosa.  Newer β-lactams are still used to treat infections with this 

organism, however, resistance is on the rise and soon these too will become obsolete.  

β-lactamases are separated into four distinct classes based on structure, function, 

and substrate specificity (Abraham & Chain, 1940). P. aeruginosa can carry one or more 

β-lactamases from any of the Ambler classes A-D (Ambler, 1980). 
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Figure 1.15 Core structure of Penicillin, typical of β-lactam antibiotics. Red line 

indicates site of cleavage by β-lactamases. (http://en.wikipedia.org/wiki/Image:Penicillin-

core.png) 

 

Ambler class A β-lactamases, or penicillinases, were the first identified and most 

variable class of these enzymes (Matagne et al., 1990).  They act via a serine hydrolase-

driven mechanism, and generally have activity against the older penicillin derivatives.  

The most notable enzymes in this class are the chromsomally mediated TEM (isolated 

from patient Temoniera) and SHV (sulphydryl variable) families in P. aeruginosa 

(Mugnier et al., 1996; Naas et al., 1999; Poirel et al., 1999) and the plasmid-encoded 

CARB, which confers carbenicillin resistance (Boissinot & Levesque, 1990; Lachapelle 

et al., 1991). Class A β-lactamases generally lack activity against cephalosporins and 

carbepenems, however, a number of extended spectrum β-lactamases (ESBLs) are 

emerging throughout Europe and Asia (Weldhagen et al., 2003). These ESBLs have 

increased activity against several broad-spectrum antibiotics, severely limiting treatment 

options (Weldhagen et al., 2003). 

Ambler class B enzymes are metallo-β-lactamases which require zinc for 

activation (Ambler, 1980; Bush et al., 1995). The first of these (IMP-1) was isolated from 

a Japanese strain of P. aeruginosa (Watanabe et al., 1991). IMP appears to be widely 
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distributed throughout Gram negative bacteria and confers resistance not only to 

imipanem, but to advanced cephalosporins, penicillins, and several β-lactamase inhibitors 

as well (Watanabe et al., 1991). In addition, IMP genes are encoded on a class 1 integron 

on a plasmid conferring resistance to additional classes of antibiotics.  The ease of intra- 

and interspecies transfer of plasmids of this type has resulted in multi-drug resistant 

(MDR) strains of P. aeruginosa and other pathogenic organisms (Walsh et al., 2005). A 

second, class B enzyme with a strong resistance to carbapenem (VIM) is becoming 

increasingly present as well (Lauretti et al., 1999; Tsakris et al., 2000).

Class C β-lactamases, or cephalosporinases, like Class A enzymes use a serine-

hydrolase mechanism to cleave the β-lactam ring of invading drugs (Sanders, 1987).  

These chromosomally encoded enzymes are highly conserved (Galleni et al., 1988), and 

the most recognized enzyme, ampC from P. aeruginosa, has been cloned and sequenced 

(Lodge et al., 1990). Most class C β-lactamases including ampC are inducible in P. 

aeruginosa. They are produced at a basal level until the cell is challenged with a β-lactam 

antibiotic, at which point P. aeruginosa upregulates lactamase production, reduces its 

outer membrane permeability, and creates a resistant nonhydrolytic barrier (Sanders & 

Sanders, 1985). This results in theraputic failure for not only the β-lactams but for other 

classes of drugs as well.  

 The Class D group of β-lactamases are structurally similar to Class A enzymes, 

but are functionally described as oxacillinases for their ablilty to degrade isoxazolyl β-

lactams such as methicillin and oxacillin (Naas & Nordmann, 1999). Oxacillinases (OXA 

family) are ubiquitous thoughout Gram negative bacteria and are generally plasmid- or 
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transposon-encoded. However, a chomosomally encoded oxacillinase, PoxB, has also 

been characterized for P. aeruginosa (Girlich et al., 2004; Kong et al., 2005). As with 

Class A, treatment-compromising Class D ESBLs are becoming more prevalent in P. 

aeruginosa infections (Poirel, 2002). 

 

1.5.5.5 Alteration of target proteins 

 P. aeruginosa has yet another method for dealing with β-lactam antibiotics – the  

expression of modified penicillin binding proteins (PBPs).  Normal PBPs are membrane-

bound or cytoplasmic proteins, that play a role in peptidoglycan and cell wall synthesis 

(Georgopapadakou & Liu, 1980; Noguchi et al., 1979). Penicillin and related β-lactams 

need to bind these PBP targets to exhibit their antibiotic effect. Mutations in PBPs 

decrease binding affinity to the target and subsequently antibiotic susceptibility (Curtis et 

al., 1981; Noguchi et al., 1980). P. aeruginosa synthesizes at least nine divergent PBPs 

(Georgopapadakou & Liu, 1980; Stover et al., 2000) which have a reduced binding 

affinity to penicillin when compared to those in E. coli (Curtis et al., 1979). In addition, a 

number of mutations have been found in clinically-isolated strains with increased 

resistance to imipenem (Bellido et al., 1990), titarcillin and piperacillin (Godfrey et al., 

1981), and cefsulodin (Gotoh et al., 1990). Still further accumulation of mutations in a 

hospital setting will add new complications to antibiotic treatment. 

 

1.5.6 Pseudomonas aeruginosa QS specifics  

With the difficulty in treating recalcitrant infections in the CF patient and the 

growing resistance to antibiotics, new therapeutic modalities are becoming increasingly 
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necessary.  Targeting the QS system of P. aeruginosa, one of the major complicating 

pathogens in the CF lung, is a novel plan of attack. This system is a key regulator of 

pathogenicity in P. aeruginosa and other medically relevant bacteria, thus inhibition of 

QS may cause attenuation of virulence and protect against infection (Hentzer & Givskov, 

2003; Juhas et al., 2005; Smith & Iglewski, 2003a).  

The main QS system of P. aeruginosa is based on the luxI-luxR paradigm 

described previously. This intricate communication system is mirrored in many gram-

negative pathogenic bacteria, where it coordinates regulation of virulence, including 

motility, biofilm formation, and toxin production (for a review see (De Kievit & 

Iglewski, 2000; Fuqua & Greenberg, 1998; Schauder & Bassler, 2001)). P. aeruginosa 

elaborates two main sets of QS systems: lasI-lasR and rhlI-rhlR (Schuster & Greenberg, 

2006). The LuxI homologues, LasI and RhlI are synthetases that manufacture the 

autoinducer signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) 

and N-butanoyl-L-homoserine lactone (BHL), respectively (Pearson et al., 1994; Pearson 

et al., 1995). These signaling molecules diffuse out into the environment and, upon 

reaching a putative threshold concentration, activate receptors lasR and rhlR (Pesci et al., 

1997). These receptors, in turn, coordinate regulation of pathogenicity through 

transcriptional activation of a number of virulence factors (Brint & Ohman, 1995; Latifi 

et al., 1995; Winson et al., 1995).  

A third signal, PQS (Pseudomonas Quinolone Signal), also plays an integral role 

in the QS system and is implicated in the production of N-(3-oxohexanoyl)-L-homoserine 

lactone (OHHL) (McKnight et al., 2000; Pesci et al., 1999). This secondary metabolite of 

P. aeruginosa is incorporated into the QS hierarchy in times of cell stress (McKnight et 
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al., 2000), and interference with this signal has been shown inhibit virulence factor 

expression (Calfee et al., 2001)  It has also been suggested that a fourth system exists 

regulated by cyclic dipeptides (DKPs) (Holden, 1999). However, due to time constraints, 

this study focuses on the well-defined las and rhl systems. 

Although the redundant and auto-regulatory nature of the QS system is quite 

complex (Van Delden & Iglewski, 1998), the basic view of the P. aeruginosa QS 

hierarchy suggests that las controls rhl with virulence proteins at the bottom of the ladder 

(Schuster & Greenberg, 2006) (Figure 1.16). The virulence factors LasA (staphylolytic 

protease) and LasB (elastase) are thought to be under control of the lasI/R system 

(Gambello, 1991; Storey et al., 1998), however rhlI/R also controls activity to a lesser 

extent (Brint & Ohman, 1995; Pearson et al., 1997). Pyoverdin is believed to be under 

rhlI/R control (Brint & Ohman, 1995; Whiteley, 1999), whereas biofilm production is 

only partially under QS control (Davies et al., 1998). The las-rhl system also falls under 

the umbrella of a number of “global” regulators such as Vfr (a homologue of E. coli 

cAMP receptor protein, CRP) (Albus et al., 1997) or GacA (a sRNA binding protein) 

(Reimmann et al., 1997). Control from these genes also affects downstream virulence. 

Thus, to inhibit pathogenicity, a therapeutic compound could exhibit an effect 

directly on the las/rhl system, one of the global regulators, or the PQS or DKP pathways. 

The only known anti-QS compounds, the halogenated furanones, inhibit P. aeruginosa 

both in vitro and in a murine model (Hentzer et al., 2002; Hentzer et al., 2003; Wu et al., 

2004). These compounds function by displacing the signaling molecule from its receptor, 

thus accelerating receptor turnover (Manefield et al., 1999; Manefield et al., 2002). They 

also have an influence on siderophore biosynthesis (Ren et al., 2005). 
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Figure 1.16 The main QS system in P. aeruginosa (modified from (Schuster & 

Greenberg, 2006)). LasI and RhlI synthetases manufacture the autoinducer signaling 

molecules OdDHL and BHL respectively. These signaling molecules diffuse out into the 

environment and, upon reaching a threshold concentration, activate receptors lasR and 

rhlR. These receptors each control a regulon of genes including virulence factors. 

 

Recently, a few plants have shown anti-QS activity against P. aeruginosa 

(Rasmussen et al., 2005), however the responsible compounds and mechanism of action 

are yet unknown. The potential for finding anti-pseudomonal and anti-QS activity in 

medicinal plants is considerable, relatively unexplored, and will be the focus of this 

study. 
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1.6 Infection model: Caenorhabditis elegans 

In vivo activity is often quite different than in vitro effect, and thus an animal 

model is a necessary step closer to therapeutic relevance. Significant to this study, are the 

number of P. aeruginosa virulence factors relevant in the killing of both nematode and 

mammalian tissues (Rahme et al., 1995; Tan et al., 1999a).  

The nematode Caenorhabditis elegans (Figure 1.17) was developed as an animal 

model in the mid 1960s by Sidney Brenner (Brenner, 1974). With its small chromosome 

number and only 556 cells at hatching, C. elegans was posed as an alternative to the 

larger, more complex Drosophila model.  The 1 mm long roundworm is a self-

reproducing hermaphrodite with a life-cycle of approximately 3.5 days (Brenner, 1974).  

It lends itself easily to culture and propagation on Escherichia coli strain OP50, and 

hundreds of progeny can be generated rapidly in petri dishes. 

 

 

Figure 1.17 Caenorhabditis elegans. (Modified from http://www.wormatlas.org) 

 

Although originally chosen for genetic and neurological study, C. elegans was 

later established as a practical model for studying bacterial virulence (Darby et al., 1999; 

Tan & Ausubel, 2000).  In addition to its preferred meal of E. coli, this voracious 

nematode will consume almost any bacteria that can fit down its pharynx, resulting in 

intestinal infection and worm death with a number of pathogenic species.  
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Three major models of infection have been developed for exploring the effect of 

P. aeruginosa on C. elegans; “fast-killing”, “slow-killing”, and “paralytic” models. Fast-

killing of C. elegans occurs within hours of incubation with P. aeruginosa strain PA14 on 

rich media (Mahajan-Miklos et al., 1999).  The high-nutrient media allows maximum 

production of bacterial virulence factors such as phenazines and other toxins, which are 

absorbed through the hypoderm, or skin, of C. elegans.  Slow-killing occurs over a period 

of days via ingestion of bacteria and subsequent infection, when the nematode is 

incubated with strain PA14 on minimal media (Tan et al., 1999a; Tan et al., 1999b).  

Paralytic killing is seen with the related P. aeruginosa strain PAO1, which causes death 

within hours through cyanide poisoning and neuromuscular paralysis (Gallagher & 

Manoil, 2001).  

Relevant to this study, is that P. aeruginosa-mediated killing of C. elegans in all 

of these cases is dependent on the QS system (Darby et al., 1999; Mahajan-Miklos et al., 

1999; Tan et al., 1999b).  Since virulence has been shown both in vitro and in a nematode 

model to be mediated by the bacterial QS system, the addition of plant compounds that 

attenuate P. aeruginosa QS, should therefore decrease virulence factor production and 

subsequent death of C. elegans.   

An additional advantage in using a live animal model for screening of potential 

anti-infective compounds is that both efficacy and host toxicity of a plant extract can be 

tested concurrently. This approach can be expanded to the screening of natural product 

libraries to search for compounds that cause a marked decrease in P. aeruginosa killing 

of C. elegans, without affecting worm fitness on E. coli.    
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1.7 Main hypotheses and aims of this project 

 
Hypothesis: Anti-QS compounds may contribute to the anti-infective properties 

of some traditionally used plants, and that these compounds can affect virulence and 

biofilm formation in human pathogenic organisms such as P. aeruginosa. Furthermore, 

extracts from plants with anti-QS properties should prevent infection and death in a live 

animal model system.  

 

Specifically this research will explore the following aims: 

I.  Investigate the presence of anti-QS activity in south Florida medicinal plants. 

II. Determine if these plants can affect the QS system and virulence factors of  

 P. aeruginosa. 

III. Test the ability of anti-QS plants to prevent infection in the model organism  

 C. elegans. 

IV. Purify and characterize the active compounds in these plant species. 

 

The following research introduces not only a new mode of action and possible 

validation for traditional plant use, but also a new therapeutic direction for CF and other 

conditions complicated by bacterial infection. 
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2.1 Abstract 

Bacterial intercellular communication, or quorum sensing (QS), controls the 

pathogenesis of many medically important organisms.  Anti-QS compounds are known to 

exist in marine algae and have the ability to attenuate bacterial pathogenicity.  We 

hypothesized that terrestrial plants traditionally used as medicines may also produce anti-

QS compounds. To test this hypothesis, 50 medicinal plants from southern Florida were 

screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum 

and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus 

erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), 

Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. 

(Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus 

virginiana Mill. (Fagaceae).  This study introduces not only a new mode of action and 

possible validation for traditional plant use, but also a potentially new therapeutic 

direction for the treatment of bacterial infections. 

 

Keywords: Medicinal plants; Antimicrobial activity; Quorum sensing; Anti-quorum 

sensing; Southern Florida, Anti-infective potential 

 

Abbreviations: QS, Quorum Sensing; AHL, Acyl-Homoserine Lactone; X-gal, 5-bromo-

4-chloro-3-indoyl-β-D-galactopyranoside; WT, Wild Type 
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2.2 Introduction 

Whether for traditional use-validation or drug discovery purposes, previous 

studies have focused on the antibacterial potential of medicinal plants (e.g.: (Cowan, 

1999; Wallace, 2004)).  Investigations were restricted to whether or not a plant could kill 

or inhibit the growth of bacteria.  However, this is only one facet of a plant’s anti-

infective potential.  The antipathogenic properties of plants have received much less 

attention, but may be just as important in combating disease as their antibacterial 

counterparts.  The interruption of quorum sensing (QS), or bacterial cell-to-cell 

communication, is one example of an antipathogenic effect.  Since a large number of 

systems affecting pathogenicity are controlled by QS, interrupting this communication 

system can render pathogenic bacteria non-virulent (Zhang & Dong, 2004).  

Quorum sensing (QS) is a population-dependent phenomenon first characterized 

in the 1970s in luminescent marine species of Vibrio (Hastings & Greenberg, 1999; 

Nealson et al., 1970).  QS systems are ubiquitous in bacteria, and have since been found 

to regulate diverse cellular functions including luminescence, biofilm formation, 

antibiotic production, virulence factor expression, pigment production, plant-microbe 

interactions, and motility (Fuqua & Greenberg, 2002; Whitehead et al., 2001a).  In QS, 

small signaling molecules called autoinducers mediate the ability to sense the size of a 

bacterial population (Eberhard et al., 1981).  Autoinducers are constantly produced and 

received at a basal level by bacterial cells.  With high population density, there is a 

surplus of such molecules in the environment (Hastings & Greenberg, 1999).  These 

molecules then interact with a transcriptional regulator to activate the expression of genes 

involved in light production in luminescent Vibrio species (Fuqua et al., 1994). In other 
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bacteria, these chemical signals are important for the establishment of infection and can 

serve as a switch to a pathogenic state (De Kievit & Iglewski, 2000; Sircili et al., 2004; 

Wu et al., 2001).  

Several signaling molecules have been identified (Dong & Zhang, 2005); the best-

characterized being the acyl-homoserine lactones (AHLs) in Gram-negative bacteria 

(Eberhard et al., 1981).  The AHLs are highly conserved, having the same homoserine 

lactone moiety but different acyl side chains and substitution  (carbonyl or hydroxyl) at 

the C3 carbon (Fuqua & Greenberg, 2002).  AHL-mediated quorum sensing systems have 

been characterized in bacteria associated with human disease, e.g.: Pseudomonas 

aeruginosa (Smith & Iglewski, 2003b), Yersinia pseudotuberculosis (Atkinson et al., 

1999), Clostridium difficile (Carter et al., 2005), Burkholderia cepacia (Lutter et al., 

2001) and Escherichia coli (Surette & Bassler, 1998); as well as plant associated bacteria 

e.g.: Rhizobium leguminosarum (Rodelas et al., 1999), Ralstonia solanacearum, and 

Erwinia carotovora (Von Bodman et al., 2003).  The discovery of the QS system and its 

critical role in bacterial virulence and survival has revealed a new target - a novel way to 

attack and attenuate bacterial pathogenicity.   

There are a number of ways to interrupt the QS system. Thus anti-quorum sensing 

(anti-QS) compounds can be of great interest in the treatment of bacterial infections (Fast, 

2003; Rice et al., 2005). A number of quorum-quenching enzymes that hydrolyze AHLs 

have been identified in bacteria (Dong & Zhang, 2005). To date, the only known anti-QS 

compounds of non-bacterial origin are halogenated furanones from the red alga Delisea 

pulchra (Manefield et al., 1999).  Anti-QS activity has also been shown in a number of 

southern Florida seaweeds (Cumberbatch, 2002) and a few terrestrial plants (Gao et al., 
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2003; Teplitski et al., 2000).  However, so far, only a handful of higher plants have been 

studied, and nothing has been published with regard to anti-QS activity in medicinal 

plants.  

The plant kingdom has long been a source of medicines and is estimated to 

provide over half of today's pharmaceuticals (Balandrin et al., 1993).  The emergence of 

antibiotic resistance begs the need for novel therapeutics.  It has been suggested that 

targeting the QS system, instead of killing bacteria, may provide a solution to antibiotic 

resistance (Hentzer & Givskov, 2003b).  With the promise of anti-QS compounds, one 

should be compelled to search for these agents by the most efficient method possible. 

There have been many ethnobotanically-directed searches for agents to treat infection, 

demonstrating not only the need for these drugs, but also the large number of plants 

utilized for bacterial conditions (e.g.: (Camporese et al., 2003; Cowan, 1999; Gnanamani 

et al., 2003; Hernandez et al., 2003)).  Although this antibacterial effect is important, it is 

not the only source of a plant's medicinal properties. Shifting the focus from the strictly 

antibacterial to anti-QS properties of plants may reveal new anti-infective compounds 

and provide use validation for traditional medicinals. 

Using two different biomonitor strains selected for their QS genetics, we were 

able to screen southern Florida plants for anti-QS activity.  We have found anti-QS 

activity in six out of 50 plants, and in most cases this activity is retained upon extraction 

into common solvents.  
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2.3 Materials and methods 

2.3.1 Collection of plant material and extract preparation  

Fifty plant species (Table 2.1) were collected in the Florida International 

University Environmental Preserve and Miami-Dade County, FL from February-May 

2004.  Plant selection was based on availability and ethnobotanical use categories relating 

to infection (Burkhill, 1985; Duke, 1972; Duke, 1985; Duke, 2000; Liogier, 1990; 

Morton, 1981).  These categories include plants used to treat wounds, burns, and 

dermatitis; conditions that favor microbial colonization.  Plants were collected and 

processed in triplicate. All plants were identified by the authors and vouchers were 

deposited in the herbarium at Fairchild Tropical Botanic Garden (FTG), Miami, FL.  

As a preliminary screen, unwashed leaves from 10 species were compared with 

leaves washed in ethanol to determine the effect of surface microbes and epiphylls.  

Plants were then processed and tested in four stages using two biomonitor strains 

(described in the following section). Testing of fresh material composed the primary 

screen, as it was faster and ethnomedicinally analogous to poultices.  Plants that showed 

anti-QS activity as fresh material were tested in dried form.  Those that still retained 

activity after drying were tested as water and ethanol extractions.  Screening was 

performed in this manner, rather than testing extracts only, since certain chemicals may 

have been lost or altered during processing. 

For ethanolic extracts, plants were separated into component parts and dried in a 

plant drier for approximately for 24 h.  Dried plant matter was ground and added to 95 % 

ethanol (100 g dry wt/ L), and allowed to stand for 24 hours before vacuum filtration with 

filter paper (Whatman, 1001-270, Florham Park, NJ) to remove particulate matter.  An 
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aliquot was removed to test for anti-QS activity at the 100 g/L concentration.  The 

remainder was evaporated to dryness using a rotoevaporator (Buechi R-114, Uster, 

Switzerland) and stored at –20 °C. 

In addition, water extracts were prepared for the six species that proved active as 

fresh material.  Plants were processed as above, dried material was added to sterile water 

at 100 g dry wt/L, and boiled for 5 min.  An aliquot was removed for testing and the 

remainder of the decoction was frozen at –80 °C for 24 hours and then freeze-dried using 

a lyophilizer.  The lyophilized extracts remained at –20 °C to be reconstituted in sterile 

water as needed. Filtration of the water extracts using a 0.2 µm (pore size) filter into 

autoclaved vials ensured sterility of the samples.  Extracts were tested for microbial 

contamination at every step of processing, by streaking to LB agar plates, to minimize the 

potential for introduction of exogenous anti-QS compounds.  

 

Table 2.1 Southern Florida medicinal plants tested for anti-QS activity. 
 
Collection 

# 
Speciesa

 
Family 

 
Common 

name 
 

Part tested 
 

Medicinal use 
 

ALA49 Asclepias 
curassavica L. 

Apocynaceae scarlet 
milkweed 

flowers, leaves emetic, 
vermifuge, skin 
disease, 
leucorrhea 

ALA3 Bauhinia 
variegata L. 

Fabaceae orchid tree flowers, leaves other spp. asthma, 
venereal disease, 
influenza 

ALA4 Bidens alba var. 
radiata (Sch. Bip.) 
R.E. Ballard 

Asteraceae beggarticks, 
romerillo 

aerial Bidens pilosa L. 
for dysentery, 
catarrh, 
vermifuge, 
wounds, sores 

ALA30 Bougainvillea 
spectabilis Willd. 

Nyctaginaceae bougainvillea flowers, leaves other spp. 
wounds, cough 
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ALA31 Bucida buceras L. Combretaceae black olive leaves gonorrhea 

ALA21 Bursera simaruba 
(L.) Sarg. 

Burseraceae gumbo-limbo bark fever, venereal 
disease, diarrhea, 
skin disease, sore 
throat, colds, 
asthma 

ALA20 Callistemon 
viminalis (Sol. ex 
Gaertn.) G. Don 

Myrtaceae bottlebrush flowers/bracts, 
leaves 

Melaleuca spp. 
antiseptic, acne, 
bronchitis, cough, 
diarrhea, skin 
disorders 

ALA5 Casuarina 
equisetifolia L. 

Casuarinaceae Australian 
pine 

leaves skin disorders, 
diarrhea, 
dysentery, sore 
throat 

ALA6 Catharanthus 
roseus (L.) G. 
Don 

Apocynaceae Madagascar 
periwinkle 

flower, leaves asthma, 
flatulence, 
opthalmia, 
tuberculosis, 
vermifuge, 
mouthwash 

ALA10 Chamaesyce 
hypericifolia (L.) 
Millsp. 

Euphorbiaceae graceful 
sandmat 

aerial abrasions, 
diarrhea, 
dysentery, 
leucorrhea, 
opthalmia, 
respiratory 
problems 

ALA12 Chrysobalanus 
icaco L. 

Chrysobalanaceae cocoplum leaves dysentery, 
leucorrhea, 
diarrhea 

ALA13 Coccoloba uvifera 
(L.) L. 

Polygonaceae seagrape leaves dysentery, 
diarrhea, asthma, 
wounds, skin 
disease 

ALA14 Conocarpus 
erectus L. 

Combretaceae buttonwood leaves febrifuge, 
respiratory 
ailments, venereal 
disease 

ALA37 Costus 
pulverulentus  
C. Presl 

Costaceae costus flowers/bracts, 
leaves, rhizome 

cough, dysentery, 
venereal disease 

ALA17 Crotalaria pumila 
Ortega 

Fabaceae low rattlebox aerial Crotalaria incana 
L., Crotalaria 
fulva Roxb. for 
yellow fever, rash
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ALA51 Cymbopogon 
citratus (DC.) 
Stapf 

Poaceae lemongrass leaves stomachic, fever, 
colds, 
tuberculosis 

ALA32 Datura metel L. 
“Double Purple” 
c.v. 

Solanaceae angel’s 
trumpet 

flowers, leaves febrifuge, 
stomachache, 
asthma 

ALA33 Emilia fosbergii 
Nicolson 

Asteraceae florida 
tassleflower 

whole plant Emilia coccinea 
(Sims) G. Don for 
opthalmia, 
asthma, 
stomachache 

ALA18 Erigeron 
quercifolius Lam. 

Asteraceae oakleaf 
fleabane 

aerial Erigeron 
karvinskianus 
D.C. as cold 
remedy 

ALA15 Ficus aurea Nutt. Moraceae strangler fig leaves, latex coughs 

ALA16 Hamelia patens 
Jacq. 

Rubiaceae firebush flowers, leaves dysentery, skin 
disease, sores, 
blisters, eczema, 
stomachache 

ALA19 Heliotropium 
polyphyllum 
Lehm. 

Boraginaceae pineland 
heliotrope 

aerial other spp. sore 
throat, asthma, 
cough, bronchitis, 
dysentery, eye 
wash 

ALA38 Hibiscus rosa-
sinensis L. 

Malvaceae garden 
rosemallow, 
hibiscus 

flowers cold remedy, 
influenza, 
asthma, 
opthalmia, 
wounds 

ALA34 Ixora coccinea L. Rubiaceae scarlet 
jungleflame 

flowers, leaves bronchitis, 
catarrh, diarrhea, 
fever, sore 

ALA7 Lantana depressa 
L. 

Verbenaceae rockland 
lantana 

flowers, leaves stomachic, 
wound, colds, 
fever, asthma, 
veneral disease, 
bronhitis 

ALA40 Lepidium 
virginicum L. 

Brassicaceae pepperweed aerial mouth sores, skin 
disease, stomach 
ailments, 
vermifuge, 
diarrhea, 
dysentery 
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ALA1 Oxalis corniculata 
L. 

Oxalidaceae yellow 
woodsorrel 

leaves skin conditions, 
antiseptic, sore 
throat, stomach 
problems 

ALA23 Parthenocissus 
quinquefolia (L.) 
Planch. 

Vitaceae Virginia 
creeper 

aerial antiseptic, fever, 
diarrhea 

ALA42 Passiflora 
coccinea Aubl. 

Passifloraceae red passion 
vine 

flowers, leaves fever, 
conjunctivitis 

ALA24 Physalis walteri 
Nutt. 

Solanaceae groundcherry leaves Physalis angulata 
L. gonorrhea, 
fever, Physalis 
pubescens L. 
stomachic 

ALA43 Plantago major L. Plantaginaceae common 
plantain 

leaves wounds, boils, 
dysentery, 
diarrhea, colds 

ALA8 Psychotria 
nervosa Sw. 

Rubiaceae wild coffee leaves colds, stomach 
problems 

ALA44 Quercus 
virginiana Mill. 

Fagaceae live oak leaves febrifuge, 
diarrhea, 
antiseptic 

ALA11 Rhynchospora 
colorata (L.) H. 
Pfeiff. 

Cyperaceae starrush, 
whitetop 

aerial colds, bronchitis 

ALA25 Ricinus communis 
L. 

Euphorbiaceae castorbean leaves leaf decoction 
wash for sores 

ALA27 Schefflera 
actinophylla 
(Endl.) Harms 

Araliaceae Australian 
umbrella tree 

leaves wound 

ALA28 Schinus 
terebinthifolius 
Raddi 

Anacardiaceae Brazilian 
pepper 

leaves diarrhea, skin, 
wound 

ALA45 Senna alata (L.) 
Roxb. 

Fabaceae candlestick 
plant 

flowers, leaves diarrhea, 
vermifuge, 
venereal disease, 
ringworm, 
eczema, grippe, 
catarrh 

ALA50 Stachytarpheta 
jamaicensis (L.) 
Vahl 

Verbenaceae blue 
porterweed, 
joee 

leaves boils, vermifuge, 
coughs, fever, 
skin ailments, 
diarrhea, venereal 
disease 
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ALA46 Swietenia 
mahagoni Jacq. 

Meliaceae west Indian 
mahogany 

leaves diarrhea, 
febrifuge, colds, 
catarrh, venereal 
disease 

ALA35 Tabebuia aurea 
(Silva Manso) 
Benth. & Hook. f. 
ex S. Moore 

Bignoniaceae Caribbean 
trumpettree 

flowers, leaves Tabebuia 
bahamensis 
(Northr.) Britton 
for gonorrhea, 
Tabebuia rosea 
(Bertol.) A.D.C. 
fever, colds 

ALA2 Tetrazygia bicolor 
(Mill.) Cogn. 

Melastomataceae Florida 
clover ash 

leaves night sweats 

ALA47 Tillandsia 
recurvata (L.) L. 

Bromeliaceae ballmoss whole plant leucorrhea 

ALA9 Trema micrantha 
(L.) Blume 

Cannabaceae nettletree leaves, stem, 
fruits 

skin eruptions 

ALA29 Vitis rotundifolia 
Michx. 

Vitaceae muscadine aerial Vitis caribaea 
D.C. for venereal 
disease, skin 
condition, 
diarrhea 

ALA65 Annona glabra L. Annonaceae pond apple leaves, fruit diarrhea, burns, 
cough, dysentery 

ALA66 Ficus citrifolia 
Mill. 

Moraceae wild banyan 
tree 

leaves, latex, 
fruits 

wounds 

ALA64 Mangifera indica 
L. 

Anacardiaceae mango leaves cough, bronchitis, 
asthma, fever, 
diarrhea, sores, 
skin disorders 

ALA67 Solanum 
americanum Mill. 

Solanaceae American 
black 
nightshade 

leaves, fruits stomachic, 
ringworm, 
eyewash, 
earwash, wounds, 
abscess, sores 

 

a Species nomenclature follows (Wunderlin & Hansen, 2004). Family nomenclature follows (APGII, 2003).  
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2.3.2 Biomonitor organisms 

Chromobacterium violaceum: In C. violaceum (ATCC 12472), production of a 

purple pigment, violacein, is under QS-control (Lichstein & van de Sand, 1945; Throup 

et al., 1995). This wild type strain produces and responds to the cognate autoinducer 

molecules C6-AHL and C4-AHL. The second biomonitor strain, CVO26, is a mutant of 

the wild type strain that is unable to produce its own AHL signal, but responds to 

exogenous active signal molecules (Cha, 1998). Anti-QS compounds inhibit production 

of violacein in both cases making these strains excellent for screening (McClean et al., 

2004). 

Agrobacterium tumefaciens NTL4 (pZLR4):  A. tumefaciens strain NTL4 

harboring plasmid pZLR4 (Luo et al., 2003) was used for the detection of both short 

(C6) and long-chain (C12) AHL suppression.  In this system, the reporter gene (lacZ) is 

fused to a QS-dependant promoter.  Activation of this promoter by exogenous AHLs 

causes concomitant expression of β-galactosidase, which produces a blue color by 

cleaving the chromophor from supplemented 5-bromo-4-chloro-3-indoyl-β-D-

galactopyranoside (X-gal).  Anti-QS compounds inhibit the QS-dependant promoter and 

subsequent lacZ expression, thus limiting X-gal hydrolysis, and the appearance of blue 

color. 

 

2.3.3 Bioassays 

Fresh or dried plant material was ground using a mortar and pestle and placed 

directly onto Luria Bertani (LB) plates spread with either C. violaceum (wt), CV026 

supplemented with AHL, or A. tumefaciens NTL4 supplemented with AHLs and X-gal.  
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Plates were incubated overnight at 30 °C, and QS inhibition was detected by a ring of 

colorless, but viable, cells around the disk.  Purified halogenated furanone (100 µg ) was 

used as a positive control for QS inhibition, and ethanol (20 µL) as a negative control.  

The ethanol was allowed to evaporate from the control and sample discs before testing to 

eliminate toxicity.  A third control (tetracycline or gentamycin 10 µg per disc) was 

included to compare antibiotic effect with anti-QS activity.   

 

2.3.4 Disk diffusion method  

Standard disc-diffusion assays were used to detect anti-QS activity of the plant 

extracts (Bauer et al., 1966).  Each extract (20 µL) was loaded onto sterile disks (6 mm 

diameter) placed onto prepared LB plates spread with overnight culture (100 µL) of C. 

violaceum wt, CV026, or A. tumefaciens NTL4.  AHL (30 µg) was added to both the 

CV026 and NTL4 plates, and 50 µL of X-gal stock solution (20 mg/ml) was added to 

NTL4.  Plates were incubated at 30 °C overnight and QS inhibition was detected by a 

ring of colorless but viable cells around the disk.  Measurements were made from the 

outer edge of the disks to the edge of the zones of anti-QS inhibition. Controls were as 

previously described. 

 

2.4 Results 

2.4.1 Preliminary screen to determine effect of surface microbes and processing 

To determine whether anti-QS compounds were actually from the plants 

themselves or from epiphyllic microorganisms, ethanol-washed plant material was 

compared with unwashed, placing whole or macerated leaves directly onto a prepared C. 
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violaceum plate (Figure 2.1).  No difference in anti-QS activity was observed in leaves 

without visible contamination (Figure 2.1) and only a slight increase in activity with 

leaves covered in epiphylls (data not shown).  A second comparison between whole and 

macerated leaves revealed anti-QS activity only in crushed leaves (Figure 2.1).  A third 

comparison between fresh and dried macerated leaves illustrated that in all cases tested 

both states retained anti-QS effect though in some cases it was reduced (data not shown). 

 

 

 

Figure 2.1 Preliminary screening of C. erectus for anti-QS activity using C. violaceum 

biomonitor strain.  A yellowish “halo” of bacteria indicates an anti-QS effect. The 

samples were (1) washed whole leaf, (2) washed macerated leaves, and (3) unwashed 

macerated leaves of fresh C. erectus.  As negative controls (4) washed, and (5) unwashed 

leaves of Hamelia patens and (6) sterile paper disk were included. 
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2.4.2 Anti-quorum sensing activities in southern Florida plants using C. violaceum 

assays 

Loss of purple pigment in C. violaceum is indicative of QS inhibition by the plant 

products introduced (Figure 2a).  Out of 50 southern Florida plants (Table 2.1) screened 

for anti-QS activity, six species proved to be effective: C. erectus, Q. virginiana, T. 

bicolor, B. buceras, C. viminalis and C. hypericifolia (Table 2.2).  The anti-QS activity of 

the six active species as fresh, dried, water-extracts, and ethanol-extracts were screened 

using the C. violaceum bioassays (Figure 2.2a and Table 2.2).  Control discs containing 

halogenated furanone, gentamycin, and ethanol were included. As expected, a zone of 

growth inhibition was observed with gentamycin, a zone of QS inhibition (halo) was seen 

with the furanone, and no inhibition was apparent with ethanol (Figure 2.2a).  

Strong anti-QS activity was observed in both the water and ethanol extracts of C. 

erectus, C. viminalis (inflorescence), B. buceras, and T. bicolor (Figure 2a and Table 2).  

For all species except T. bicolor and C. hypericifolia, the water extracts were more 

effective than those in ethanol. CV026 produced smaller halos overall, and no activity 

was detected with water extracts of C. viminalis and Q. virginiana leaves using this strain 

(Table 2). 

 

2.4.3 Anti-quorum sensing activities in southern Florida plants using  

A. tumefaciens assays 

Loss of blue color in A. tumefaciens strain NTL4 (with added AHL) is indicative 

of QS inhibition by the plant products introduced as described in Materials and Methods. 

The six species, C. erectus, Q. virginiana, T. bicolor, B. buceras, C. viridis and C. 
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hypericifolia, with anti-QS activity determined using the C. violaceum assay were then 

analyzed using an A. tumefaciens assay (Figure 2.2b and Table 2.2).  Control discs 

containing halogenated furanone, tetracycline, and ethanol were included. As expected, a 

zone of growth inhibition was observed with tetracycline, a zone of QS inhibition was 

seen with the furanone, and no inhibition was apparent with ethanol  (Figure 2.2a).  

 

 

 

Figure 2.2 Anti-QS activity using (a) C. violaceum and (b) A. tumefaciens strains.  Anti-

QS activity was tested using 20 µL of water extracts of (1) C. erectus, (2) B. buceras, (3) 

C. viminalis-leaf, (4) C. viminalis-infloresence, (5) T. bicolor, (6) C. hypericifolia, and 

(7) Q. virginiana (7).  Also included as controls were (8) 10 µg gentamycin (a) and 

tetracycline (b), (9) 20 µl ethanol, and  (10) halogenated furanone. Discs  11 – 17 contain 

20 µL of ethanolic extracts of (11) C. erectus, (12) B. buceras, (13) C. viminalis-leaf, 

(14) C. viminalis-infloresence, (15) T. bicolor, (16) C. hypericifolia, and (17) Q. 

virginiana. 
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Again, strong anti-QS activity was observed in both the water and ethanol extracts 

of C. erectus, C. viminalis (inflorescence), B. buceras, and T. bicolor (Figure 2.2b and 

Table 2.2).  With C. erectus, C. viminalis (leaf), and Q. virginiana the water extracts were 

more effective than those in ethanol.  Extracts of B. buceras and C. viminalis 

(inflorescence) produced similar-sized halos regardless of solvent, whereas T. bicolor and 

C. hypericifolia showed higher activity as ethanol extracts. None of the biomonitor 

strains detected any activity with a C. hypericifolia water extract (Table 2.2). 

 

Table 2.2 Species showing anti-QS activity in this study 
 

    Zone of QS Inhibition (mm)c

Active Plant Species Part Tested Solvent % Yield b CV CVO26 NTL4 C6 NTL4 C12
 Conocarpus erectusa  Leaves   H2O 14.1 8.7 4.7 8.2 6.4 
     EtOH 12.3 5.9 2.1 6.2 4.3 
 Bucida burcerasa  Leaves   H2O 12.9 8.3 5.4 8.6 8.9 
     EtOH 13.9 8 3.2 8.4 9 
 Callistemon viminalis  Leaves   H2O 14.3 4.4 1.5 4.2 3.6 
     EtOH 21 1.7 0 1.7 2 
 Callistemon viminalis  Infloresence   H2O 23.2 7 3.4 6.9 6.9 
     EtOH 28 5.2 2.1 5.9 6.3 
 Tetrazygia bicolor  Leaves   H2O 22.5 5.7 2.2 5.8 5.4 
     EtOH 16 6.2 2.2 6.4 5.5 
 Chamaesyce hypericifolia  Aerial   H2O 12.2 0 0 0 0 
     EtOH 13.2 3.9 2.1 4.2 5.6 
 Quercus virginiana  Leaves   H2O 11.2 4 2 4.9 3.5 
      EtOH 13.2 1.2 0 2.3 1.2 

 

a Species marked that showed slight antibacterial activity in addition to anti-QS. 

b Percent yield and zone of QS inhibition for water (H2O) and ethanolic extracts (EtOH). 

c Average zones of QS inhibition using three biomonitor strains: Chromobacterium 

violaceum ATCC #12472 (CV), C. violaceum CVO26 (CVO26), and Agrobacterium 

tumefaciens NTL4 with added C6-AHL (NTL4 C6) or C12-AHL (NTL4 C12). Average 

zones of killing for 10 μg Gm and 10 μg Tc were 9.3 and 18.8 mm, respectively. 
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2.4.4 Antibacterial vs. anti-quorum sensing activity 

The halos produced on lawns of the biomonitor strains could be the result of 

either (i) inhibition of cell growth or (ii) quenching of QS signals.  Growth inhibition 

would produce a clear halo versus a turbid halo for the latter. To differentiate, the halo 

was examined under a higher magnification (Figure 2.3). As expected, the presence of the 

antibiotic gentamycin, created a clear zone of inhibition suggesting bactericidal activity. 

Under the same magnification, the area surrounding a disk containing crude extract of C. 

erectus showed normal cell growth.   

 

 

Figure 2.3 Antibacterial activity vs. anti-QS activity. Magnification of the areas 

surrounding (a) a gentamycin (Gm) disc, and (b) a disc containing ethanolic extract of C. 

erectus.  The area around the disk in (a) is clear of cells, whereas in (b) there is a 

confluent layer of bacteria which lose their ability to produce violacein (anti-QS effect) in 

proximity to the disk. 

 

The halo-effect is created by pigmentless (QS interrupted) cells adjacent to the 

disk, and the presence of violacein-producing (QS active) cells further out.  In both C. 
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violaceum and A. tumefaciens assays, C. erectus and B. burceras had antibacterial 

activity (zone of inhibition 1- 2 mm) in addition to anti-QS activity (Figure 2.1).  This 

activity was more pronounced with the A. tumefaciens biomonitor strain. 

 

2.5 Discussion and conclusions 

The aim of this study was to determine the anti-QS potential of southern Florida 

medicinal plants as a means to uncover a potential mode of action and to suggest a 

validation for continued traditional use.  To date, research has shown anti-QS activity in 

only a few higher plants and seaweed (Fray, 2002; Gao et al., 2003; Manefield et al., 

1999; Teplitski et al., 2000).  This study introduces six medicinal plant species having 

anti-QS activity, representing five different families: C. erectus (Combretaceae), Q. 

virginiana (Fagaceae), B. buceras (Combretaceae), C. viminalis (Myrtaceae), T. bicolor 

(Melastomataceae), and C. hypericifolia (Euphorbiaceae) (Table 2.2).  Our findings 

suggest that the anti-QS activity of plants on bacteria is perhaps more ubiquitous and 

diverse than previously thought.  

Screening for anti-QS activity using multiple biomonitors (Table 2.2) eliminates 

artifact effects.  If a plant showed activity with a C. violaceum strain and not A. 

tumefaciens, this activity might be limited to an aspect of violacein production 

downstream of the QS system.  In contrast, if a sample had activity with A. tumefaciens 

and C12-AHL only, it might be limited to an effect on long chain signaling molecules.  

Since the six active species were effective at inhibiting QS in all biomonitor strains, we 

can assume that the responsible compounds have multiple or broad-spectrum effects. 
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The preliminary screen provided some insight as to the effect of preparation on 

activity, something not often accounted for in medicinal plant studies.  Leaves with 

excessive microbial colonization resulted in false-positive results.  Therefore, care should 

be taken to eliminate bacterial and fungal causes of activity.  An anti-QS effect was seen 

only in macerated leaves, suggesting that these compounds are not secreted on the leaf 

surface.  Drying and extracting also affects efficacy in some cases, again indicating the 

importance of preparation.  Hot water and ethanolic extracts were tested, as opposed to 

organic solvents, providing greater congruity with traditional preparation methods.   

C. erectus, B. buceras, and T. bicolor have the highest anti-QS activities (Table 

2.2). Commonly known as buttonwood, C. erectus is mainly used in southern Florida as 

an ornamental.  The bark of this tree has been used for tanning leather and as a piscicide. 

Leaves are eaten or made into a decoction and taken for fever in parts of Africa and 

Puerto Rico (Burkhill, 1985; Irvine, 1961; Melendez, 1982). Buttonwood has also been 

used against catarrh, conjunctivitis, diarrhea, syphilis, and gonorrhea (Morton, 1981; 

Nellis, 1994).  B. buceras is also used for syphilis and gonorrhea (Morton, 1981).  A leaf 

decoction of T. bicolor is used in the Bahamas to treat “night sweats” (Morton, 1981), 

though it is unclear whether this ailment requires an analgesic or antibacterial treatment.  

The water and ethanol extracts of C. viminalis inflorescences and the water 

extract from C. viminalis leaves have strong anti-QS activity (Table 2). The essential oil 

of C. viminalis has antihelminthic properties (Garg & Kasera, 1982). Leaf decoctions, 

from species of the closely related genus Melaleuca, are used against a number of skin 

and respiratory conditions in the Bahamas, Puerto Rico, and Indochina (Duke, 1985; 

Melendez, 1982; Morton, 1981).  Tea tree oil, M. alternifolia, has a long history of use in 
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traditional medicine, and is a proven antimicrobial (Halcon & Milkus, 2004; Hammer et 

al., 1996). 

The water extract from Q. virginiana leaves exhibited more activity than its 

ethanol extracts. A bark decoction of Q. virginiana was used by Native Americans in the 

treatment of dysentery (Moerman, 1998). and in Cuba as a febrifuge and antiseptic 

(Morton, 1981).  The extracts from Q. virginiana leaves and bark were applied 

externally, as an astringent analgesic to treat pain, sores, and hemorrhoids (Moerman, 

1998).  

Only the ethanol extracts of C. hypericifolia exhibited anti-QS activity, suggesting 

the active components are either significantly less polar than water, or that they are heat 

labile. In Guadalupe, C. hypericifolia is used to treat abrasions, opthalmia, diarrhea, 

respiratory ailments, and dysentery (Duke, 1985).   It is also used in the Bahamas as a 

remedy for leucorrhea (Morton, 1981). A related species, C. hirta, has numerous 

medicinal uses in the Old World tropics and in the British Pharmacopoeia (Morton, 

1981).  It is used in Puerto Rico and many South American countries against fever, 

bronchitis, gonorrhea, and intestinal parasites (Bennett et al., 2002; Melendez, 1982).  

Both C. erectus and B. buceras possess antibacterial as well as anti-QS activity.  

This poses the question of whether reduced concentrations of antibacterial compounds 

can create an anti-QS effect by reducing the cell count to a number below the quorum.  

Although it cannot be completely ruled out, in the case of two common antibiotics 

(tetracycline, gentamycin) this proved untrue.  With both antibiotics, there was a distinct 

change from the zone of inhibition to viable cells.  There was no loss of pigment in the 

cells immediately surrounding the kill zone, and in fact there was a ring of darker color.  
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It is unclear at this stage whether the antibacterial and anti-QS effect in these plants are 

from the same or distinct chemical compounds. 

Differential TLC migration suggests that more than one compound may 

contribute to anti-QS effect in these plants (data not shown).  These compounds also 

seem distinct from those produced in bacteria and seaweed.  To date the only known anti-

QS compounds from higher organisms are structural mimics (Manefield et al., 1999; 

Manefield et al., 2002).  However, quorum quenching can occur through a number of 

other methods including signal binding, degradation, or direct interaction with QS genes 

(Smith & Iglewski, 2003b).  We are currently focusing on chemical identification of the 

anti-QS compounds in the screened efficacious extracts using chromatographic methods 

and mass spectrometry. 

In summary, the anti-QS potential of medicinal plants may be as important as the 

antibacterial effect.  In this study, we have shown six medicinal plants from southern 

Florida to have anti-QS activity.  We propose that the anti-QS effect of the plants 

reported could contribute in part to their efficacy and traditional use as medicines. Most 

recent studies test only the antibacterial effect of plants used to treat infection leaving 

useful plant species to go unnoticed (e.g.: (Bonjar, 2004; Hernandez et al., 2003; Kloucek 

et al., 2005; Mothana & Lindequist, 2005; Romero et al., 2005)).  We suggest that other 

mechanisms of action, including anti-QS activity, should not be overlooked.  Although 

biomonitor strains were chosen for ease of screening, similar QS systems exist in many 

human pathogens.  Future work will focus on the effect of anti-QS compounds in these 

model organisms.  
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3.1 Abstract  

 Quorum sensing (QS) is a key regulator of virulence and biofilm formation 

 in Pseudomonas aeruginosa and other medically relavent bacteria. Aqueous extracts of 

six plants: Conocarpus erectus, Chamaesyce hypericifolia, Callistemon viminalis, Bucida 

buceras, Tetrazygia bicolor, and Quercus virginiana were examined in this study for 

their effects on P. aeruginosa virulence factors and the QS system.  C. erectus, B. 

buceras, and C. viminalis cause significant inhibition of LasA protease, LasB elastase, 

pyoverdin production, and biofilm formation.  Additionally, each plant presents a distinct 

profile of effect on the las and rhl QS genes and their respective signaling molecules, 

suggesting different mechanisms responsible for efficacy. Extracts of all plants caused 

inhibition of QS genes and QS-controlled factors with marginal effects on bacterial 

growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects.  

 

Keywords: Quorum sensing, medicinal plants, virulence factor, Pseudomonas 

aeruginosa, LasA, LasB, pyoverdin, biofilm  

 

Abbreviations: QS, Quorum Sensing; AHL, Acyl-Homoserine Lactone; OdDHL, N-(3-

oxododecanoyl)-L-homoserine lactone; BHL, N-butanoyl-L-homoserine lactone; AB, 

Agrobacterium Broth (minimum media); LB Luria-Bertani broth 
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3.2 Introduction 

 Pneumonia due to microbial infections is a major cause of morbidity and 

mortality in immuno-compromised patients. Pseudomonas aeruginosa hails as the 

leading pathogen among patients suffering from cystic fibrosis, diffused pan-bronchitis, 

and chronic obstructive pulmonary disease (Hoiby, 1994; Lieberman, 2003; Registry, 

2005). In addition, P. aeruginosa remains one of the major causes of nosocomial 

infections (Centers for Disease Control and Prevention, 2004).  The success of this 

organism is largely due to the production of a myriad of virulence factors (including 

LasA protease, LasB elastase, pyoverdin, pyocyanin, and alginate) and its capability to 

form intractable biofilms (Lyczak et al., 2002). 

Expression of many of the virulence factors in P. aeruginosa is controlled by the 

quorum sensing (QS) system (Venturi, 2006), an intercellular communication scheme in 

which bacteria are able to detect population density (via signaling molecules and 

receptors) and control gene expression accordingly (Schuster & Greenberg, 2006).   P. 

aeruginosa elaborates two main sets of QS systems: lasI-lasR and rhlI-rhlR (Schuster & 

Greenberg, 2006). LasI and RhlI are synthetases that manufacture the autoinducer 

signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-

butanoyl-L-homoserine lactone (BHL), respectively.  These molecules diffuse out into 

the environment and, upon reaching a putative threshold concentration, activate receptors 

lasR and rhlR. These receptors, in turn, coordinate regulation of pathogenicity.  A third 

signal, PQS (Pseudomonas Quinolone Signal), also plays an integral role in the QS 

system (Pesci et al., 1999). This secondary metabolite of P. aeruginosa is incorporated 

into the QS hierarchy in times of cell stress (McKnight et al., 2000). This intricate 
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communication system of P. aeruginosa is mirrored in many gram-negative pathogenic 

bacteria, where it coordinates regulation of virulence, including motility, biofilm 

formation, and toxin production (De Kievit & Iglewski, 2000; Donabedian, 2003; Fuqua 

& Greenberg, 1998; Parsek & Greenberg, 2000; Schauder & Bassler, 2001).  

The misuse and abuse of antibiotics in pharmacotherapy has led to the 

development of widespread resistance in the target organism.  The failure of existing 

antibiotics to control infection makes it crucial to find alternatives to currently available 

drugs.  Since pathogenicity in many bacteria is regulated by QS, inhibition of this system 

may cause attenuation of virulence and protect against infection (Hentzer & Givskov, 

2003; Juhas et al., 2005; Smith & Iglewski, 2003a). In fact, an anti-QS approach has 

already shown promise in the battle against P. aeruginosa (Hentzer et al., 2003; Wu et 

al., 2004). 

 Anti-QS agents were first characterized in the red marine alga, Delisea pulchra, 

(Manefield et al., 1999; Manefield et al., 2002) and more recently, in a South Florida alga 

(Cumberbatch, 2002) and a few higher plants (Bjarnsholt et al., 2005; Gao et al., 2003; 

Teplitski et al., 2000).  It has been shown that terrestrial plants not only produce 

autoinducer mimics to confound the bacterial QS system, but receive and respond to 

microbial signals as well (Adonizio et al., 2006; Bauer & Mathesius, 2004). Given the 

promise of anti-QS compounds, efficient screening for these agents becomes imperative.  

In a previous study we utilized an ethnobotanically-directed search for anti-QS activity 

(Adonizio et al., 2006).  We confirmed six South Florida medicinal plants: Conocarpus 

erectus, Chamaesyce hypericifolia, Callistemon viminalis, Bucida buceras, Tetrazygia 

bicolor, and Quercus virginiana to have anti-QS properties using Chromobacterium 
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violaceum and Agrobacterium tumefaciens NTL4 biomonitor strains (Adonizio et al., 

2006). These plants were chosen based on traditional use against respiratory and skin 

infections, conditions potentially caused or complicated by bacteria such as Pseudomonas 

aeruginosa.  

 Here we have taken this work a step further by exploring the effect of these six 

plants on the production of virulence factors and biofilms, AHL levels, and QS gene 

transcription in this organism.  We demonstrate a significant decrease in the production 

of LasA protease, LasB elastase, pyoverdin, and biofilms in the presence of the extracts.  

Furthermore, each plant has a unique pattern of effect on the QS genes lasI/R and rhlI/R 

and their respective signaling molecules OdDHL and BHL.   

 

3.3 Materials and methods 

3.3.1 Plant extraction 

Conocarpus erectus (Combretaceae), Chamaesyce hypericifolia (Euphorbiaceae), 

Callistemon viminalis (Myrtaceae) (inflorescence), Bucida buceras (Combretaceae), 

Tetrazygia bicolor (Melastomataceae), and Quercus virginiana (Fagaceae), were 

collected and processed according to methods described previously (Adonizio et al., 

2006).  Briefly, pulverized plant material was extracted into boiling water, freeze-dried 

using a lyophilizer, and stored at -20 °C until needed.  Leaf extracts were tested unless 

otherwise noted.  To complement the six active plants from the previous study, an 

additional plant with no anti-QS activity was chosen (Schefflera actinophylla, Apiaceae) 

as a negative control.   
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3.3.2 Strains and media 

Prototypic P. aeruginosa strain PAO1 (Holloway & Morgan, 1986), and its 

derivatives (Kong et al., 2005) were used throughout this study.  In addition, 

Staphylococcus aureus (ATCC # 12600) was used in the LasA assay. Cells were 

maintained on Luria-Bertani broth (LB) plates and in LB liquid for overnight cultures. 

For quantitative assays, either LB (LasA assay only) or AB minimum media (added 

glucose and casein amino acids (20% w/v) was used (Clark & Maaloe, 1967). 

 

3.3.3 Culturing conditions  

For all assays except biofilm formation, culture conditions were as follows.  

Overnight cultures of PAO1 were grown in LB at 37 °C with shaking.  Cultures were 

then diluted 100-fold into AB or LB media and allowed to grow to an OD600 of 1.7 (early 

stationary phase).  At this point, the culture was divided into 10 ml aliquots, and an 

additional 1 ml of fresh media containing crude plant extract (or media control) was 

added to a final concentration of 1 mg/ml extract.  Cultures were recovered at late 

stationary phase (approximately 12 hours after addition). Cells were separated from the 

growth media by centrifugation at 10,000 x g for 10 minutes.   

 

3.3.4 LasA staphylolytic assay  

LasA protease activity was determined by measuring the ability of culture 

supernatants to lyse boiled S. aureus cells (Kong et al., 2005). A 100 μl aliquot of P. 

aeruginosa LB culture supernatant with or without plant extracts was added to 900 μl of 
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boiled S. aureus suspension. OD600 was determined after 0, 5, 10, 20, 30, 45, and 60 

minutes.  Activity was expressed as ∆OD600 / hour per μg protein. 

 

3.3.5 LasB elastolytic assay  

The elastolytic activity of AB culture supernatants was determined using elastin 

Congo red (ECR; Sigma, St. Louis, MO)(Ohman et al., 1980).  A 100 μl aliquot was 

added to 900 μl of ECR buffer (100 mM Tris, 1 mM CaCl2, pH 7.5) containing 20 mg 

ECR.  This was then incubated with shaking for 3 hours at 37 °C.  Insoluble ECR was 

removed by centrifugation, and the absorption of the supernatant was measured at 495 

nm.  Cell-free AB medium, alone, and with plant extracts were used as negative controls.  

Activity was expressed as ∆OD495 per μg protein.  

 

3.3.6 Pyoverdin assay  

The pyoverdin assay was adapted from the methods of Cox and Adams (Cox & 

Adams, 1985).  The AB supernatant was diluted tenfold into Tris-HCl buffer (pH 7.4), 

and 100 μL aliquots were added to 96-well microtiter plates on ice. Relative 

concentration of pyoverdin was based on fluorescence of the supernatant at an excitation 

wavelength of 405 nm and an emission wavelength of 465 nm (Thurion Genious 

FluorSpec).  Activity was expressed in relative fluorescence units (RFU).  Although we 

consider pyoverdin to be a marker of QS, a drop in production may be due to an indirect 

effect via pH or iron concentration changes (Jacques et al., 2003).  To eliminate the 

chance of false positives, iron concentration was tested using 1,10-phenanthroline and 

desferal (Yegorov et al., 1993), and solution pH was checked throughout the experiment. 

 73



3.3.7 Polyvinyl chloride (PVC) biofilm formation assay  

The effect of plant extracts on the attachment phase of biofilm formation was 

measured using the PVC biofilm formation assay (O'Toole & Kolter, 1998).  Briefly, 

overnight cultures of PAO1 were resuspended in fresh AB medium in the presence and 

absence of plant extracts.  After a 10 hour incubation period at 30 °C, biofilms were 

visualized in the microtiter plates by staining with a crystal violet solution. Plates were 

rinsed to remove planktonic cells, and surface-attached cells were then quantified by 

solubilizing the dye in ethanol and measuring absorbance at OD650   nm.  

 

3.3.8 AHL assay  

AHLs were extracted from AB culture supernatants with acidified ethyl acetate, 

dried under nitrogen, and quantified by electrospray mass spectroscopy (ESMS) after the 

methods of Makemson et al (Makemson et al., 2006).  Peak intensities for BHL (m/z = 

172) and OdDHL (m/z = 298), and their sodium adducts (m/z= 194 and 230 respectively) 

were combined and converted to concentration using a standard curve generated from the 

pure compounds. Background readings from samples extracted with alkaline ethyl acetate 

were subtracted from those of the acid-extracted bacterial cultures before conversion, as 

the lactone ring is broken by alkaline hydrolysis making AHLs too polar to be fully 

extracted into ethyl acetate.   

 

3.3.9 Growth curves 

The effect of plant extracts on cell proliferation was determined by monitoring of 

the PAO1 growth curve.  Briefly, an overnight culture (LB) of PAO1 was diluted 100-
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fold into 1 L AB or LB media. OD600 was monitored at 45-minute intervals until an 

OD600 of ~1.7 (approximately 8 hours).  The culture was then divided into 28 ml aliquots, 

to which 2 ml of AB or LB (controls) or 2 ml concentrated extract were added.  The final 

extract concentration was 1 mg/ml.  Cultures with added extract were normalized to the 

control OD600 of 1.7 at this time to account for plant pigmentation. Optical density was 

monitored at 1.5 hour intervals until a final time point of 24 hours.  All OD600 

measurements were verified at 1/10 dilution for greater accuracy. 

 

3.3.10 β-Galactosidase assay  

Transcriptional activity of QS-gene promoters was assayed using  PAO1-derived 

strains harboring promoter-lacZ fusions: PlasI-lacZ (pPCS223), PlasR-lacZ (pPCS1001), 

PrhlI-lacZ (pLPR1), PrhlR-lacZ (pPCS1002), and as a control, a promoterless-lacZ fusion 

strain (pLP170) (Kong et al., 2005).  Cultures were grown in AB media and monitored 

under the same conditions as PAO1, with extract added once the cultures reached an 

OD600 of 1.7. Assays for β-galactosidase activity in P. aeruginosa were performed using 

ONPG as previously described (Mathee et al., 1997).    

 

3.3.11 Bradford assay   

 In addition to growth curve monitoring, the Bradford assay (Bradford, 1976) was 

performed to confirm that the reduction in virulence factors was not due to a decrease in 

cell density.  Raw data from all assays were normalized to total protein concentration; 

however, there was no significant difference between sample sets. 
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3.2.12 Statistical analysis  

All experiments were performed independently in triplicate on pooled samples of 

biological replicates described in Adonizio et al 2006 (Adonizio et al., 2006).  Data were 

analyzed using one-way analysis of variance (ANOVA) with a P-value of 0.05 using the 

statistical software package SPSS (Chicago, IL).  

 

3.4 Results3.4.1 LasA protease activity in the presence of plant extracts 

LasA staphylolytic protease is a 20-kDa zinc metalloendopeptidase belonging to 

the β-lytic endopeptidase family of proteases (Kessler, 1995). There was a significant 

decrease in LasA activity when PAO1 was grown in the presence of B. buceras (96% 

decrease), C. erectus (94% decrease), T. bicolor (89% decrease), C. viminalis (71% 

decrease), or C. hypericifolia (49% decrease) when compared to the control (Table 3.1).  

Addition of Q. virginiana, had no significant effect on LasA protease production.  As 

expected, the negative control, S. actinophylla, also showed no significant change in 

LasA activity (Table 3.1). 

 

3.4.2 LasB elastase activity in the presence of plant extracts  

LasB elastase is a zinc metalloprotease capable of destroying or inactivating a 

wide range of biological tissues and immunological agents (Bever & Iglewski, 1988).  

There was a significant decrease in LasB activity when PAO1 was grown in the presence 

of C. erectus (65% decrease) or C. viminalis (63% decrease), when compared to the 

control.  Growth of PAO1 with B. buceras, T. bicolor, or S. actinophylla (negative 
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control) caused no significant effect, whereas C. hypericifolia, and Q. virginiana caused 

an increase in elastase activity.   

 

Table 3.1 Effect of plant aqueous extracts on P. aeruginosa virulence factors 

Culture conditions LasA activitya Elastase activityb Pyoverdin productionc Biofilm formationd

Media only 0.274 ± 0.016 145.5 ± 6.9 4918 ± 281 0.64 ± 0.01 

C. erectus 0.017 ± 0.005* 48.2 ± 11.8* 453 ± 85* 0.38 ± 0.19 

B. buceras 0.010 ± 0.011* 130.8 ± 31.5 800 ± 275* 0.14 ± 0.01* 

C. viminalis 0.080 ± 0.004* 53.9 ± 4.2* 1997 ± 271* 0.07 ± 0.01* 

T. bicolor 0.030 ± 0.015* 105.6 ± 14.3 2134 ± 304* 0.13 ± 0.02* 

Q. virginiana 0.197 ± 0.012  499.1 ± 36.0 4423 ± 422 0.08 ± 0.03* 

C. hypericifolia 0.139 ± 0.012* 553.6 ± 19.4 3068 ± 295* 0.70 ± 0.07 

S. actinophylla 0.224 ± 0.014 172.4 ± 9.2 4069 ± 611 0.53 ± 0.16 

 

a LasA activity was expressed as reduction in OD600 per hour per microgram total protein 

b Elastase activity was expressed as absorbance at OD495 per microgram of protein * 1000 

c Pyoverdin production was expressed as fluorescence at 465 nm (excitation λ=405 nm) 

per microgram of protein 

d Biofilm production was expressed as OD650 after incubation with crystal violet 

*Indicates significance at p=0.05 
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3.4.3 Extracts alter pyoverdin production 

Pyoverdins are virulence factors in that they compete with mammalian transferrin 

for iron, the successful sequestration of which essentially starves the host tissues (Meyer 

et al., 1996).  They also promote pathogenicity by stimulating bacterial growth (Cox & 

Adams, 1985).  One of the pyoverdins is suggested to be a QS-like molecule, regulating 

both itself and production of other toxins (Beare et al., 2003; Lamont et al., 2002).  All 

plant extracts with the exception of Q. virginiana and S. actinophylla (negative control), 

showed a significant reduction of pyoverdin production; however, C. hypericifolia was 

only marginally significant (Table 3.1).  The most active extracts were C. erectus and B. 

buceras, with a substantial decrease in pyoverdin activity (91% decrease and 84% 

decrease respectively) when compared to the control (Table 3.1). All of the culture 

supernatants retained a pH of ~7.0 regardless of amount or type of extract added. 

Although statistically significant differences were found between iron concentration in 

the extracts, there was no trend which could be correlated with activity on pyoverdin 

(data not shown). 

 

3.4.4 Plant extracts have an inhibitory effect on biofilm formation  

P. aeruginosa has the ability to form biofilms, a partially QS controlled 

phenomenon (Davies et al., 1998), where cells are organized into layers, and enmeshed in 

a matrix of mucoid polysaccharides (Costerton, 1995). A switch to the biofilm mode of 

growth confers increased antibacterial resistance and creates a considerably more severe 

infection in the cystic fibrosis lung (Lyczak et al., 2002). There was a significant 

decrease in biofilm formation when PAO1 was grown in the presence of C. viminalis 
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(89% decrease), Q. virginiana (88% decrease), T. bicolor (80% decrease), or B. buceras 

(78% decrease) when compared to the control (Table 3.1).  C. erectus caused a 41% 

decrease in biofilm formation; however, this result was marginally insignificant.   

 

3.4.5 Plant extracts affect QS gene expression   

With the exception of Q. virginiana, C. hypericifolia, and the negative plant 

control S. actinifolia, most extracts had a significant effect on QS gene expression (Table 

3.2).  The most significant decreases in lasI expression were found with C. viminalis 

(80% decrease), B. buceras (49% decrease), T. bicolor (41% decrease), and C. erectus 

(38% decrease).   C. erectus and C. viminalis show the greatest reduction of lasR 

expression (56% and 48% decrease, respectively).  Whereas T. bicolor (42% decrease), 

B. buceras (55% decrease), and C. erectus (40% decrease) show the greatest reductions 

in rhlI expression. These same three plants also affect the greatest reductions in rhlR 

expression (66%, 62%, and 66% decrease respectively). 

 

3.4.6 Plant extracts affect the production of AHL molecules  

Notable decreases in OdDHL levels were seen with C. viminalis (46% reduction 

from the control) and B. buceras (38% reduction).  Significant decreases in BHL levels 

corresponded to the addition of B. buceras, T. bicolor, and C. hypericifolia extract, with 

reductions of (41%, 39%, and 35%, respectively) (Table 3.2). 
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Table 3.2 Effect of plant extracts on P. aeruginosa QS genes and AHL production  

AHL Productiona Gene Expressionb

Culture conditions 
C12-AHL C4-AHL lasI lasR rhlI rhlR 

Media only 1.216 ± 0.19 0.789 ± 0.10 3363 ± 311 5008 ± 256 4855 ± 459 8271 ± 655

C. erectus 0.981 ± 0.14 0.597 ± 0.01 2101 ± 270* 1489 ± 102* 2917 ± 265* 3004 ± 406*

B. buceras 0.751 ± 0.16x 0.468 ± 0.12* 1718 ± 147* 2377 ± 179* 2200 ± 249* 3339 ± 440*

C. viminalis 0.659 ± 0.15* 0.533 ± 0.02* 662 ± 86* 1745 ± 182* 3370 ± 300* 3751 ± 120*

T. bicolor 1.501 ± 0.29 0.483 ± 0.03* 2000 ± 183* 2038 ± 202* 2810 ± 449* 2930 ± 282*

Q. virginiana 1.041 ± 0.19 0.586 ± 0.09 2806 ± 204 3374 ± 460* 3128 ± 299* 5324 ± 306*

C. hypericifolia 0.892 ± 0.02 0.511 ± 0.08* 2765 ± 249 3324 ± 97* 3433 ± 412* 3635 ± 319*

S. actinophylla 1.146 ± 0.17 0.761 ± 0.10 3715 ± 363 4692 ± 200 4748 ± 181 7347 ± 628

 

a AHL production was expressed in µM  

b Gene expression was measured via β-galactosidase activity of the lacZ gene fusion 

products and expressed as Miller Units 

*Indicates significance at p=0.05   xIndicates significance at p=0.10 

 

3.4.7 Extracts have minimal effect on PAO1 growth after log phase 

Addition of extract at early stationary phase was chosen to limit any confounding 

effects on growth.  When extracts were added at the beginning of the cell cycle (time 

zero), there were changes (slight delay or acceleration) in the logarithmic phase (data not 

shown).  This did not, however, impact the endpoint cell density in most cases.  To 

confirm an anti-QS mode of action, rather than logarithmic changes, a growth curve was 
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taken controlling for the latter (Figure 3.1). Cultures of PAO1 were grown to early 

stationary phase before addition of compound (Figure 3.1, arrow). This insures that all 

samples would have the same opportunity (length of time and cell density) to reach the 

point of QS-controlled production of virulence factors.  Stationary phase was reached in 

all samples (including control) approximately 8 hours after extract addition.  Addition of 

extract did not significantly affect cell density or total protein. 

 

 

Figure 3.1 Influence of medicinal plant extracts on growth of P. aeruginosa (semi-log 

graph).  Extracts were added during early stationary phase (approximately 8 hours) 

indicated by arrow.  The data represent mean values of experiments performed in 

triplicate. 
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 The majority of the samples have little effect on the growth curve of PAO1 after 

log phase (Figure 3.1).  The growth curve with added T. bicolor closely follows that of 

the media-only control, whereas Q. virginiana, B. buceras, C. hypericifolia, Q. 

virginiana, C. erectus and S. actinophylla all exhibit a slight increase in cell density 

(Figure 3.1).  This increase is not significant, and is possibly due to added nutrients. 

However, it verifies that the anti-QS effect of these plants is not due to cell death. 

 Incidentally, addition of T. bicolor and Q. virginiana at time zero resulted in cell 

densities below the control (data not shown).  This suggests an additional antibacterial 

effect of these plant extracts. However, total protein (measured via Bradford assay) of 

these samples did not differ significantly from the control.   

 

3.5 Discussion 

Six South Florida medicinal plants, C. erectus (Combretaceae), C. hypericifolia 

(Euphorbiaceae), C. viminalis (Myrtaceae), B. buceras (Combretaceae), T. bicolor 

(Melastomataceae), and Q. virginiana (Fagaceae), were examined for their anti-QS 

activity against P. aeruginosa PAO1.  The virulence of P. aeruginosa is owed to its 

capacity to degrade host tissue with proteases and toxins, and to evade antibiotic attack 

by forming biofilms. Biofilm formation and the virulence factors examined in this study 

are under QS control (Davies et al., 1998; Kharazmi, 1989; Meyer et al., 1996; Morihara 

& Homma, 1985).  Thus, the plant extracts were examined for their ability to interfere 

with QS-dependent production of P. aeruginosa virulence factors LasA, LasB, and 

pyoverdin. In addition, we examined the ability of the extracts to inhibit biofilm 

formation, QS gene expression, and AHL synthesis. 
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3.5.1 Plant extracts differentially affect biofilm formation   

Since QS is involved in biofilm formation (Davies et al., 1998), we expected the 

plants posessing anti-QS activity to have a significant effect. Indeed, all extracts tested 

affected a decrease in biofilm formation, with the exception of C. hypericifolia. 

Interestingly, Q. virginiana exhibited an effect on biofilm production, though no other 

virulence factors, suggesting either a physical inhibition of biofilm growth or repression 

of biofilm genes and components outside the QS system.  Disruption of the QS system 

using furanones has also been shown to inhibit biofilm growth (Hentzer et al., 2002).  

Previous work with garlic and D. pulchra furanones showed a qualitative change in 

biofilm morphology and a reduction in thickness; however, these analyses were not 

quantified (Hentzer et al., 2002; Hentzer et al., 2003; Rasmussen et al., 2005). 

 

3.5.2 Plant extracts differentially affect production of virulence factors 

P. aeruginosa proteases LasA and LasB are believed to play a major role in 

pathogenesis via host tissue degradation (Kharazmi, 1989; Morihara & Homma, 1985).  

With the exception of Q. virginiana, all other plant species resulted in a significant 

decrease in the LasA activity of P. aeruginosa, with the most drastic reductions seen in B. 

buceras, C. erectus, and T. bicolor.  No prior studies have considered LasA activity in the 

presence of anti-QS compounds. 

The LasB elastase activity was significantly reduced in the presence of C. erectus 

and C. viminalis.  Extracts from B. buceras and T. bicolor had no significant effect, 

whereas C. hypericifolia and Q. virginiana caused an increase in elastase activity.  It is 

likely that the compounds in the latter two plants may upregulate the production of LasB 
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and/or enhance the elastase activity. The compounds are not likely to be elastase-like 

proteins in the plants since the extraction process would have denatured most proteins.  In 

comparison, recent studies on garlic (at 2% v/v) show a 50% decrease in LasB activity 

(Rasmussen et al., 2005), whereas purified halogenated furanone from D. pulchra (10 

μM) induces an approximate 90% decrease (Hentzer et al., 2003). 

All plant extracts, with the exception of Q. virginiana, caused a significant 

reduction of pyoverdin production.  Mixed results on pyoverdin production have been 

previously observed with furanones.  A naturally-occurring furanone from D. pulchra 

((5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone) actually increases 

production of pyoverdin (Sakar et al., 2005).  Whereas furanone C-30, a synthetic 

derivative of a compound from D. pulchra, confers a 90% reduction in pyoverdin levels 

(Hentzer et al., 2003).  Neither iron-limitation nor pH is sufficient to explain the effect on 

virulence factor production.  There were also no significant changes in cell growth 

corresponding to pyoverdin production, leaving anti-QS effect as the most plausible 

hypothesis. 

 

3.5.3 Mechanistic musings: multiple targets or global effect.   

Quorum inhibition occurs via a number of different mechanisms, the most well 

known being signal mimicry, such as in the case of the furanones (Manefield et al., 1999; 

Manefield et al., 2002).  Other methods include signal degradation by proteins such as 

lactonase or acylase (Dong et al., 2001), signal binding, inhibition of genetic regulation 

systems, or interruption of downstream virulence and biofilm genes (for a review see 

(Whitehead et al., 2001b)).  
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The current view of the P. aeruginosa QS hierarchy suggests that las controls rhl 

with virulence proteins at the bottom of the ladder (Schuster & Greenberg, 2006). The 

virulence factors LasA (staphylolytic protease) and LasB (elastase) are generally thought 

to be under control of the lasI/R system (Gambello, 1991; Schuster & Greenberg, 2006), 

however rhlI/R also controls activity to a lesser extent (Brint & Ohman, 1995; Pearson et 

al., 1997). Pyoverdin is believed to be under rhlI/R control (Brint & Ohman, 1995; 

Whiteley, 1999), whereas biofilm production is only partially under QS control (Davies 

et al., 1998).  The redundant and auto-regulatory nature of the QS system is quite 

convoluted (Van Delden & Iglewski, 1998).  This, compounded with the complex 

phytochemistry of plant extracts prevents us from precisely linking QS gene expression, 

AHL level, and virulence factor production.  

Although the mechanism of action of these extracts is a complex problem, there is 

an overall inhibition of the QS system with each of the tested plant extracts (with the 

exception of the control S. actinifolia).  This somewhat general effect points to one of 

two explanations. The first, suggests that multiple chemicals in the plants may be causing 

distinct effects on different aspects of the QS system.  The second explanation is that the 

effect is not directly on the las/rhl system, but rather on a more global QS regulator such 

as Vfr (Albus et al., 1997) or GacA (Reimmann et al., 1997). 

There is also a trend in which the plant species that have less of an effect on AHL 

production and las/rhl expression also have less activity on P. aeruginosa virulence 

factors.  This is most clearly seen with Q. virginiana, C. hypericifolia, and the control, S. 

actinifolia (Tables 3.1 and 3.2). Although not absolute, the converse is generally true. 
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Overall, the most significant effects on the QS system were found with C. viminalis, B. 

buceras, and C. erectus. 

Distinct patterns of thin layer chromatography (TLC) migration in these three 

extracts (data not shown) suggest that they contain multiple active compounds, perhaps 

functioning with separate mechanisms. At this point we do not have sufficient data to 

pinpoint the method of quorum quenching, we will therefore withhold further 

mechanistic speculation until these compounds are purified from the plants. 

 

3.6 Conclusions    

In summary, this work presents six plant species, representing five distinct 

families, which have a differential but significant effect on virulence factors, biofilms, 

QS gene expression, and signal production at a concentration of 1 mg/ml.  This 

concentration, although high, is relevant to traditional medicinal use in teas and poultices.  

More significantly, this concentration represents a crude aqueous extract and therefore 

should be much lower as a putative anti-QS compound. Concentrations were tested down 

to 0.25 mg/ml, and some extracts, notably that of C. erectus, still had an effect on 

virulence factor production (unpublished results).  

None of the plant extracts tested had a significant effect on the growth of PAO1 

when added at early stationary phase (Figure 3.1, arrow).  However, addition of T. 

bicolor and Q. virginiana at time zero resulted in cell densities below the control (data 

not shown), which suggests an additional antibacterial effect of these plants. All other 

plant extracts significantly reduced one to four QS-controlled virulence factors, genes, 
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and AHL levels without a reduction in growth.  This would strongly suggest an anti-QS 

rather than an antibacterial effect. 

 The top candidates for further anti-QS investigation are C. erectus, B. buceras, 

and C. viminalis. C. erectus significantly decreases LasA, LasB, and pyoverdin 

production, but not biofilm formation, whereas B. buceras affects all but elastase activity. 

B. buceras also has a significant effect on the expression of lasI, lasR, rhlI, and rhlR, and 

the concentration of OdDHL and BHL. C. erectus exhibits the same pattern of effect on 

QS genes and signaling molecules, though to a lesser extent. C. viminalis decreases all 

three virulence factors and biofilm formation, all QS genes tested and OdDHL. Research 

is currently underway in our lab to isolate active chemicals from these species. 

 The plant kingdom has long been a source of medicines, and as such, there have 

been many ethnobotanically-directed searches for agents to treat infections  (e.g.: 

(Camporese et al., 2003; Cowan, 1999; Gnanamani et al., 2003; Hernandez et al., 2003)).  

However, most studies focus solely on bactericidal effects. Since the plants in this study 

show little, if any, cidal activity (Adonizio et al., 2006), quorum inhibition remains a 

potential mode of action. Shifting our focus to anti-QS and anti-virulence may reveal new 

quorum quenching compounds from medicinal plants and provide a novel method of 

treating infection.   

In conclusion, the effects of the studied plant extracts on P. aeruginosa are quite 

complicated, and perhaps extend beyond the domain of the QS hypothesis.  However, the 

reduction of QS gene expression and signaling molecules and the end-effect on virulence 

factor production provides some insight into why these plants were used in the past and 

how they can be used in the future to combat P. aeruginosa and other bacterial infections. 
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4.1 Abstract 

Expression of a myriad of virulence factors and innate antibiotic resistance 

enables the opportunistic human pathogen Pseudomonas aeruginosa to create intractable 

infections.  Using a nematode model we efficiently screened for novel inhibitors of this 

pathogen.  Aqueous extracts of three plants: Conocarpus erectus, Callistemon viminalis, 

and Bucida buceras were examined in this study for their effects on P. aeruginosa killing 

of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and 

infection-based assays with P. aeruginosa strains PAO1 and PA14.  The tested plant 

extracts prevented mortality via gut infection in almost 60% of the worms, and caused a 

50-90% reduction in death from toxin production.  All extracts inhibited nematode death 

by P. aeruginosa without host toxicity, indicating their potential for further development 

as anti-infectives. 

 

Keywords: Quorum sensing, medicinal plants, virulence factors, Pseudomonas 

aeruginosa, Caenorhabditis elegans, nematode 

 

Abbreviations: QS, Quorum Sensing; AHL, Acyl-Homoserine Lactone; WT, Wild 

Type; BHI, Brain-Heart Infusion media; NGM, Nematode Growth Media 
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4.2 Introduction 

Pseudomonas aeruginosa is one of the leading pathogens among patients 

suffering from cystic fibrosis, diffused pan-bronchitis, and chronic obstructive pulmonary 

disease (Hoiby, 1994; Lieberman, 2003; Registry, 2005). In addition, it remains one of 

the major causes of nosocomial infections (Centers for Disease Control and Prevention, 

2004). The success of this organism is attributed to numerous virulence factors (Smith & 

Iglewski, 2003a; Tang et al., 1996), its ability to form biofilms (Costerton, 1995) and 

innate antibiotic resistance (De Kievit et al., 2001; Fisher et al., 2005). 

Current anti-pseudomonal treatment includes elevated doses of beta-lactam, 

fluoroquinolone, or aminoglycoside antibiotics (Hauser & Sriram, 2005).  However, these 

drugs possess a high degree of toxicity, and mucoid strains of P. aeruginosa are rarely 

eradicated by these treatments (Hauser & Sriram, 2005; Pederson, 1992). The failure of 

existing antibiotics to control infection makes it crucial to find alternatives to currently 

available drugs. Since pathogenicity in many bacteria is regulated by quorum sensing 

(QS), or cell-to-cell communication, inhibition of this system can cause attenuation of 

virulence and protect against infection (Hentzer et al., 2003; Juhas et al., 2005; Smith & 

Iglewski, 2003b).  

Plants have evolved numerous chemical strategies for deterring pathogen attack, 

including the production of bactericidal and anti-infective compounds, leading to their 

use as medicines [for a review see (Lewis & Ausubel, 2006)].  In our previous work, we 

demonstrated that a number of medicinal plants exhibit anti-QS activity (Adonizio et al., 

2006). Extracts of these plants were later shown to have an effect on virulence factor 

production, biofilm formation, QS-gene expression, and autoinducer production in P. 
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aeruginosa (Adonizio et al., 2008b). In this study, we assessed the ability of three plant 

extracts to attenuate P. aeruginosa killing of the nematode, Caenorhabditis elegans. 

C. elegans is well established as a pertinent and practical model for studying 

bacterial virulence (Darby et al., 1999; Tan & Ausubel, 2000), as a number of P. 

aeruginosa factors important in the killing of C. elegans are also relevant to mammalian 

systems (Rahme et al., 1995; Tan et al., 1999a). “Fast-killing” of C. elegans by P. 

aeruginosa strain PA14 (on rich media) is mediated through production of virulence 

factors such as phenazines, whereas “slow-killing” (on minimal media) occurs via 

ingestion of the bacteria and subsequent infection (Mahajan-Miklos et al., 1999; Tan et 

al., 1999a; Tan et al., 1999b).  The related strain PAO1 causes death through cyanide 

poisoning and neuromuscular paralysis (Gallagher & Manoil, 2001). Importantly, P. 

aeruginosa-mediated killing of C. elegans in all three of these cases is dependent in part 

on the QS system (previous references).  Thus, addition of plant compounds that have an 

effect on P. aeruginosa QS, should therefore attenuate virulence factor production and 

subsequent death of C. elegans.   

The advantage in using a live animal model when screening for anti-infective 

compounds is that both efficacy and host toxicity of a plant extract can be tested 

concurrently.  In this report, we show that extracts from three different plant species 

cause a marked decrease in P. aeruginosa killing of C. elegans, without affecting worm 

fitness on E. coli.  This approach can be expanded to the screening of natural product 

libraries or native extract sources. 
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4.3 Methods 

4.3.1 Preparation of plant extracts 

Conocarpus erectus (Combretaceae), Callistemon viminalis (Myrtaceae), and 

Bucida buceras (Combretaceae) were collected and processed according to methods 

described previously (Adonizio et al., 2006).  Briefly, pulverized plant material was 

extracted into boiling water, freeze-dried using a lyophilizer, and stored at –20 °C until 

needed. Lyophilized extracts were reconstituted in a small volume of sterile water and 

added to the molten agar at a final concentration of 1 mg ml-1. 

 

4.3.2 Bacterial strains and growth conditions 

Because the tested extracts have been shown to affect the bacterial quorum 

sensing (QS) system (Adonizio et al., 2008b; Adonizio et al., 2006) the QS-mutant ΔlasR 

was used as a reference strain.  P. aeruginosa PAO1 (Holloway & Morgan, 1986) and its 

isogenic mutant PAO1ΔlasR (Gambello, 1991) were used in the paralytic assay.  PA14 

(Rahme et al., 1995) and PA14ΔlasR (Liberati et al., 2006) were used in the slow killing 

and fast killing assays. Escherichia coli OP50 was used as the control in all assays as it is 

the standard laboratory food of C. elegans (Brenner, 1974).  All bacterial strains were 

grown overnight in LB broth at 37 °C, and transferred to plates depending on the required 

conditions.  

 

4.3.3 Nematode culture 

The wild type C. elegans (Bristol) N2 hermaphrodite strain was used in this study 

(Brenner, 1974). Worms were synchronized by hypochlorite treatment of gravid adults, 
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hatching the eggs overnight in M9 minimum buffer (Brenner, 1974), and plating L1-stage 

worms onto lawns of E. coli on nematode growth media (NGM) plates (Brenner, 1974).  

Synchronized worms were grown to L4 or young adult stage at 25 °C for use in the 

killing assays.  

 

4.3.4 C. elegans paralytic assay (PAO1) 

Brain-heart infusion (BHI) agar plates with or without plant extract were seeded 

with 10 μl of an overnight culture of OP50, PAO1 or PAO1ΔlasR, and incubated at 37 °C 

for 24 hours to form lawns of bacteria (Darby et al., 1999). Nematodes were washed off 

stock plates and suspended in a minimal volume of M9 buffer (pH 6.5). Droplets 

containing 20-40 adult nematodes were placed onto the P. aeruginosa lawns and the 

plates were then incubated at room temperature (21–23 °C).  Worms were evaluated for 

viability every hour for a total of 4 hours. Worms were scored as dead when they no 

longer responded to physical stimuli.   

 

4.3.5 C. elegans fast killing assay (PA14)  

Fast killing plates (peptone-glucose medium with 0.15M sorbitol) (Mahajan-

Miklos et al., 1999) with or without plant extract were seeded with 10 μl of an overnight 

culture of OP50, PA14 wt, or PA14ΔlasR.  Plates were incubated for 24 hours at 37 °C, 

then at room temperature (~21-23 °C) for another 12 h.  Approximately 20 L4 stage C. 

elegans were transferred with a wire pick onto plates at this time.  Worms were evaluated 

for viability every hour for a total of 4 hours. As in the previous assay, worms were 

considered dead when they no longer responded to physical stimuli.  
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4.3.6 C. elegans slow killing assay (PA14) 

Slow killing plates (modified NGM) (Tan et al., 1999b) with or without plant 

extract were seeded with 10 μl of an overnight culture of OP50, PA14 wt, or PA14ΔlasR.  

Plates were incubated for 24h at 37 °C, then at room temperature (~21-23 °C) for another 

24 h.  Approximately 20 L4 stage C. elegans were transferred onto plates at this time.  

Worms were evaluated for viability every 2-4 hours for a total of 58 h.  As in the 

previous assays, worms were considered dead when they no longer responded to physical 

stimuli.  

 

4.3.7 Statistics and reproducibility  

All experiments were performed in triplicate. Killing curves represent the mean of 

three separate experiments. Data were analyzed using one-way analysis of variance 

(ANOVA) with a P-value of 0.05 using the statistical software package SPSS (Chicago, 

IL).  Since the starting number of worms was different in each case, the percent alive 

rather than actual number of worms was used for comparison. 

 

4.4 Results and discussion 

In this study we assess the potential of extracts from C. erectus, C. viminalis, and 

B. buceras to reduce nematode death resulting from P. aeruginosa infection. Prior work 

on these plants revealed an effect on the bacterial QS system (Adonizio et al., 2008b; 

Adonizio et al., 2006); thus the QS-mutant ΔlasR was used as a reference strain.  

Although there is some precedence for testing plant extracts in a nematode model system 
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(Rasmussen et al., 2005), this is the first study to evaluate a statistically significant 

number of worms in both toxin and infection-based assays. 

 

 

Figure 4.1  Nematode killing curves comparing wt, QS mutant, and wt with plant extract. 

(A) Paralytic (PAO1), (B) Fast-killing (PA14), and (C) Slow-killing (PA14) assays for C. 

elegans. P. aeruginosa wt (black dash), ΔlasR mutant (grey dash), wt + C. viminalis 

(black dot), wt + C. erectus (black line), wt + B. buceras (grey line).  In all cases, the 

addition of plant extract rescued the worms to a level at or above a ΔlasR QS mutant. 

 

4.4.1 Medicinal plants reduce C. elegans paralytic killing by P. aeruginosa 

Previous studies have shown that QS signaling is required for maximum levels of 

worm killing (Mahajan-Miklos et al., 1999; Tan et al., 1999b). Thus, the success of these 

plant extracts against P. aeruginosa strain PAO1 in terms of blocking QS signaling 

(Adonizio et al., 2008b) suggests they might also reduce death in a PAO1-nematode 

model.  Approximately 50% of the worms died between hours 1 and 2 after transfer to 

PAO1 with all nematodes dead after 4 hours (Figure 4.1a).  In contrast, all of the worms 

on E. coli OP50 remained alive throughout the assay. As expected, the QS-mutant 
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PAO1ΔlasR showed reduced nematode death with 85% alive between hours 1 and 2 and 

74% still alive at 4 hours (Figure 1a). At the 4-hour mark, approximately 85%, 84%, or 

87% of the worms were alive on PAO1 wt plates that contained C. erectus, C. viminalis, 

or B. buceras extracts, respectively (Figure 4.1a).  In this, and all assays in this study, 

there was no observable effect of the added plant extracts on worm survival, lifespan, or 

brood size on E. coli OP50 (not shown), indicating a lack of toxicity of the compounds 

therein. 

All three of the plant extracts, when added to plates containing PAO1 wt, 

suppressed killing to a level greater than the QS mutant (Figure 4.1a).  That is, there was 

a significant difference between PAO1ΔlasR and the extract plates (p < 0.05 in all cases), 

but not between individual extracts at the end of the assay. All extract plates and the lasR 

mutant were significantly different than PAO1 wt without treatment. 

Death via PAO1 is due to cyanide asphyxiation and paralysis of C. elegans 

(Gallagher & Manoil, 2001).  The hcn operon in P. aeruginosa mediates cyanide 

production and is controlled by the QS regulators LasR and RhlR (Pessi & Haas, 2000). 

Attenuation of virulence and nematode mortality has been shown with both ΔlasR (Darby 

et al., 1999) and Δhcn (Gallagher & Manoil, 2001) strains. Thus, the results from the 

paralytic assay suggest that the addition of these extracts are affecting the production of 

cyanide either through hcn directly; or indirectly via the QS genes. The latter hypothesis 

agrees with our previous in vitro analysis in PAO1 (Adonizio et al., 2008b) which 

showed a significant reduction of lasR and rhlR gene activity by these extracts. 
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4.4.2 Medicinal plants reduce C. elegans fast killing by P. aeruginosa  

The results of the fast killing assay are seen in Figure 4.1b.  On PA14 wt, 

approximately 50% of the worms were dead within two hours, with all worms dead by 4 

hours. At this point, all of the worms on OP50 were still alive. Again, the QS-mutant 

(PA14ΔlasR) reduced nematode death, with 75% alive between hours 1 and 2 and 47% 

alive at 4 hours. At the end of the assay, approximately 53%, 75%, or 90% of the worms 

were alive on PAO1 wt plates with added C. erectus, C. viminalis, or B. buceras extracts 

respectively (Figure 4.1b). As with PAO1, all three of the plant extracts suppressed 

killing at or above the level of the QS mutant.  There was no significant difference 

between PA14ΔlasR and the C. erectus extract plates at 4 hours (p > 0.05), however C. 

viminalis and B. buceras extracts were significantly better at preventing worm death (p < 

0.01 in both cases).  Extract-containing plates were all significantly different from each 

other and but still showed a large reduction in nematode death when compared to PA14 

wt without treatment.  Overall there is a pronounced inhibitory effect of the plant extracts 

on P. aeruginosa PA14 fast-killing of C. elegans.   

Fast-killing of C. elegans is mediated through production of virulence factors 

such as phenazines (Mahajan-Miklos et al., 1999). A ΔphnAphnB deletion mutant was 

shown to completely abolish nematode death, while a TnphoA mutation of the related 

gene phzB was shown to greatly reduce mortality in mice and Arabidopsis (Mahajan-

Miklos et al., 1999).  Like many virulence factors, phenazines are under control of the 

QS gene rhlR (Brint & Ohman, 1995; Latifi et al., 1995). The results from the PA14 fast-

killing assay suggest the addition of extracts affect phenazine production, either through 

the phz and phn genes or indirectly through the QS system via rhl. 
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All three extracts were shown previously to significantly affect the rhlI/R system; 

however, C. erectus has less of an effect on AHL production and biofilm formation 

(PAO1) (Adonizio et al., 2008b) than either B. buceras or C. viminalis.  Though still 

successful, C. erectus was less efficient in preventing nematode death in the fast-killing 

assay than the other extracts.  

 

4.4.3 Medicinal plants reduce C. elegans slow killing by P. aeruginosa  

 The slow killing assay left 50% of nematodes dead on PA14 wt between hours 48 

and 50 with all worms dead at 58 hours. (Figure 4.1c). The control worms on E. coli 

OP50 were alive throughout the assay. The QS-mutant (PA14ΔlasR) reduced nematode 

death, with 75% alive between hours 48 and 50 and 53% alive at 58 hours. At this time, 

approximately 60%, 59%, or 57% of worms were alive on PAO1 wt plates with added C. 

erectus, C. viminalis, or B. buceras extract respectively (Figure 4.1c). All three of the 

plant extracts when added to plates containing PA14 wt suppressed killing to the level of 

the QS mutant.  There was no significant difference between PA14ΔlasR and the extract 

plates or between individual extracts at 58 hours (p > 0.05 in all cases): however, all 

extracts were significantly different from PA14 wt without treatment.  This suggests a 

marked effect of the plant extracts on P. aeruginosa infection of C. elegans.  

Slow-killing of C. elegans occurs over approximately 60 hours due to ingestion of 

and subsequent infection by P. aeruginosa (Tan et al., 1999).  Nematode mortality is 

attenuated with TnphoA-mutations of lasR and gacA (Tan et al., 1999b), suggesting QS is 

required for the infection process. The addition of plant extracts in this assay drastically 

reduces nematode death suggesting an effect on lasR or gacA. 
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Previous work on these extracts corroborates the inhibitory effect on lasR, 

however the effect on gacA was not directly tested (Adonizio et al., 2008b). An effect on 

either of these factors remains a plausible hypothesis.  

 

4.5 Conclusions 

All three extracts in all three assays showed a highly significant reduction of 

virulence when compared to PAO1 and PA14 wt without treatment. Overall, the tested 

plant extracts reduced nematode death approximately 60-90 percent by P. aeruginosa wt.   

In each case, this reduction was equal to or greater than that of the corresponding QS 

mutant strain. The fact that the plant extracts reduce virulence across the board, suggests 

that they are most likely affecting an upstream QS gene such as las or rhl, or perhaps a 

global regulator such as gacA. This further corroborates our previous data on the anti-QS 

effect of these plant extracts (Adonizio et al., 2008b). All extracts inhibit nematode death 

without significant bactericidal effect, leaving QS inhibition as a plausible hypothesis. In 

addition, none of the tested plants showed any toxicity in the nematode model, making 

them reasonable candidates for purification and drug development.   

C. erectus, B. buceras, and C. viminalis (and closely related species) have been 

used medicinally to treat bacterial infection either as teas or poultices (Burkhill, 1985; 

Irvine, 1961; Melendez, 1982; Morton, 1981; Stewart & Percival, 1997).  Thus, the plants 

were extracted with hot water to provide greater congruity with traditional preparation 

methods. Although teas and poultices are many steps removed from modern formulae, 

traditional use suggests the potential success of topical or enteral routes of administration.  
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With the increase in bacterial resistance to antibiotics, we might look to the past 

in hopes of finding solutions for the future.  Plants have been used medicinally for 

thousands of years, and even without marked antibiotic activity, these three plants are 

still efficacious in ameliorating disease.  We have previously shown the activity of these 

plants on P. aeruginosa alone, and although the exact mechanism of action is not yet 

known, the nematode experiments described in this paper are consistent with their 

previous and potential further use as anti-infectives. 
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5.1 Abstract 

Two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an 

aqueous extract of Conocarpus erectus L. (Combretaceae). Structures were confirmed via 

mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease 

AHL production, quorum sensing (QS) gene expression, and virulence factor production 

in Pseudomonas aeruginosa. This is the first report of these compounds being isolated 

from this species, and also the first report of their activity on the QS system of P. 

aeruginosa. 

 

Keyword Index 

Conocarpus erectus; Combretaceae; quorum sensing inhibition; ellagitannins; castalagin; 

vescalagin 

 

Abbreviations: QS, Quorum Sensing; AHL, Acyl-Homoserine Lactone; OdDHL, N-(3-

oxododecanoyl)-L-homoserine lactone; BHL, N-butanoyl-L-homoserine lactone; TLC, 

Thin Layer Chromatography; HPLC, High Pressure Liquid Chromatography; NMR, 

Nuclear Magnetic Resonance  
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5.2 Introduction 

Overuse of antibiotics has led to widespread resistance in pathogenic bacteria 

including the model organism Pseudomonas aeruginosa. This ubiquitous Gram-negative 

pathogen is a frequent cause of morbidity and mortality in cystic fibrosis patients 

(Registry, 2005), and nosocomial infections in burn victims, and immunocompromised 

individuals (Centers for Disease Control and Prevention, 2004). P. aeruginosa and many 

other organisms are now highly resistant to current antibiotic treatment exposing the need 

for alternative methods of inhibition.  

In our previous work (Adonizio et al., 2008a; Adonizio et al., 2008b; Adonizio et 

al., 2006), we have shown a number of medicinal plants, including Conocarpus erectus, 

to be effective in inhibiting pathogenicity of P. aeruginosa via attenuation of the quorum 

sensing (QS) system (for a review of QS see (Fuqua & Greenberg, 1998)). Addition of C. 

erectus to culture media affected a significant reduction of QS gene expression and 

virulence factor production in P. aeruginosa (Adonizio et al., 2008b). It also prevented 

60-90% of nematode death from this organism in three different killing assays (Adonizio 

et al., 2008a). 

Commonly known as buttonwood, C. erectus has been used throughout the 

Caribbean, Puerto Rico, and parts of Africa against catarrh, conjunctivitis, diarrhea, 

syphilis, and gonorrhea (Burkhill, 1985; Irvine, 1961; Melendez, 1982).   

The activity of this plant on the bacterial QS system may explain its traditional use for 

these diseases. This work reveals two hydrolyzable tannins, vescalagin and castalagin, to 

be responsible for anti-QS activity in C. erectus. 
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Tannins are widespread throughout the angiosperms (Okuda et al., 1993), 

conferring structural benefits to the plant while providing protection through antioxidant 

and antifeedant activity (Forkner et al., 2004; Hagerman et al., 1998). Often classified as 

‘waste’ in natural products chemistry due to their abundance and lack of protein 

specificity (Zhu et al., 1997), tannins and other polyphenolics have been previously 

ignored by the pharmaceutical industry. However, recent studies on the health benefits of 

these types of compounds are creating a resurgence of interest from the medical field 

(Ferreira et al., 2005; Haslam, 1996; Okuda, 2005; Quideau et al., 2005).  

Castalagin and vescalagin were first characterized by Mayer et al (Mayer et al., 

1967; Mayer et al., 1970) and belong to a sub-class of hydrolyzable tannins known as C-

glycosidic ellagitannins derived from gallic acid metabolism (Quideau & Feldman, 

1996).  They are highly water-soluble compounds featuring an open-chain glucose core 

esterified to numerous oxidatively coupled galloyl moieties (specifically a 4,6-

hexahydroxybiphenoyl (HHBP) unit and a 2,3,5-nonahydroxyterphenoyl (NHTP) unit) 

(Khanbabaee & van Ree, 2001).  These complex structural units confer stereochemical 

rigidity to the molecule, and in fact, C-glycosidic ellagitannins would seem to have a 

higher tendency for selective protein interaction than other classes of polyphenolics 

(Haslam, 1996; Zhu et al., 1997). 

Many polyphenolics possess antimicrobial activity potentially explained by 

inhibition of microbial enzymes, substrate or iron deprivation, or inhibition of oxidative 

phosphorylation (Scalbert, 1991).  However, the same study shows most bacteria are not 

susceptible to ellagitannins, i.e. these compounds do not seem to have growth inhibition 

or cidal effects.  Furthermore, it has been shown that ellagic acid (a component of 
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ellagitannins) can interfere with bacterial quorum sensing (Huber et al., 2004).  This, 

combined with our previous work on the anti-QS activity of C. erectus leads to the 

hypothesis that ellagitannins may function as inhibitors of the bacterial quorum sensing 

(QS) system. 

 

5.3 Materials and methods 

5.3.1 Isolation and  verification of active compounds  

5.3.1.1 Plant extraction 

Leaves of Conocarpus erectus (Combretaceae), were collected and processed 

according to methods described previously (Adonizio et al., 2006).  Briefly, pulverized 

plant material was extracted into boiling water, freeze-dried using a lyophilizer, and 

stored at -20 °C until needed.  

 

5.3.1.2 Bioassay-guided fractionation  

Anti-QS activity was confirmed in the crude extract (Adonizio et al., 2006) and 

followed throughout the separation process using the P. aeruginosa PAO1-derived 

biomonitor strains pPCS1001 and pPCS1002 (Pesci et al., 1997). These strains harbor 

lacZ fusions to the QS gene promoter regions enabling blue/white selection for QS 

activity. Bioassays were carried out as previously described (Adonizio et al., 2006) with 

some modification.  Briefly, LB agar plates were seeded with a lawn of one of the 

biomonitor strains and allowed to dry for 1 hour.  Small wells were then cut and aspirated 

from the agar, and 10 μl aliquots of each fraction were pipetted into each well.  Wells 

were checked at 18h and 24h for zones of QS inhibition. 
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5.3.1.3 Preliminary thin layer chromatography  

 Approximately 1 μl of crude extract was spotted to reverse phase thin layer 

chromatography (TLC) plates (two spots run in tandem). Adequate separation for 

visualization of three distinct bands from each spot was achieved with an 80:20 

ACN/H2O mobile phase containing 0.1% formic acid (Figure 5.1a). A 1% ferric chloride 

stain was applied to one-half of the plate as a phenolic indicator (Figure 5.1b). The other 

side was overlaid with agar containing one of the aforementioned PAO1 biomonitor 

strains to indicate anti-QS activity (Figure 5.1c).  

 

5.3.1.4 Fractionation methods  

The fractionation of crude aqueous extract prior to HPLC separation is illustrated 

in Figure 5.2.  Separation was patterned after methods developed for wine polyphenolics 

(Sun et al., 2006). A C18 PrepSep column (Fisher Scientific 11-131-11 5 g / 20 ml) was 

conditioned with 200 ml methanol followed by 200 ml water at pH 7. The flow rate of 

approximately 2 ml/min was controlled through positive pressure applied via syringe.  

The crude aqueous extract of C. erectus (0.25g) was resuspended in 5 ml water, adjusted 

to pH 7 with sodium hydroxide, and added to the column.  Fraction A was eluted with 

approximately 150 ml water at pH 7.  The column was then washed with 100 ml water 

and dried under vacuum for several seconds. Fraction B was then eluted with 

approximately 400 ml ethyl acetate.  The column was washed with ethyl acetate and 

dried under vacuum before elution of fraction C with 200 ml of acidified methanol. The 

presence of phenolics in each fraction was monitored by periodically spotting to TLC 
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plates coated with ferric chloride reagent.  Each fraction was evaporated to dryness 

before bioassay at 1 mg/ml concentration. 

 

5.3.1.5 HPLC separation 

Fraction A was separated on an Agilent 1200 series LC system (Agilent 

Technologies, USA) using an Altima C18 column (5μ, 10 x 250 mm; 100μL injection 

volume).  A water-acetonitrile mobile phase with 0.1% formic acid was used with a 

flowrate of 1.5 ml/min.  Conditions were as follows: 0-2 min, 0% acetonitrile; 2-47 min, 

0-40% acetonitrile; 47-48 min, 40-100% acetonitrile; 48-50 min, 100% acetonitrile; 50-

51 min, 100-0% acetonitrile.  Fractions were collected manually based on absorbance at 

313 nm and tested for anti-QS activity. 

 

5.3.1.6 Mass spectrometric analysis  

Direct injection electrospray ionization mass spectroscopy and MS-MS analysis 

(Esquire 3000+, Ion Trap Mass Spectrometer Bruker Daltonics, Germany) were used for 

mass identification of vescalagin and castalagin.  The isolated peaks 3 and 4 (Figure 5.4) 

were injected directly into the ESI source with a syringe pump at a flow rate of 0.2 

ml/min. Nebulizer gas was maintained at 7 psi.  Capillary temperature was set at 300°C 

with a voltage of 3.5 kV.  Spectra were obtained in negative ion mode with a scanning 

range of 100-1000 m/z. MS-MS of compounds were also acquired in negative ion mode. 

Howevr, the conditions were modified by increasing capillary temperature and voltage to 

325 °C and 4 kV respectively.  Trap rolling and smart fragmentation settings were 

activated, and the instrument was set to scan from 50-1000 m/z. Exact mass 
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measurements were made with a Waters Q-Tof2 using reserpine as a lock mass. Samples 

were introduced via LC flow and reserpine flow from a syringe pump was T-ed in. 

Spectra were obtained in the positive ion mode with a scanning range from 100-1000 

m/z. 

 

5.3.1.7 NMR spectroscopy  

NMR spectra were recorded using a Varian Inova 600 MHz FT-NMR 

spectrometer with D2O acidified with d-TFA or D2O:[D6]-acetone (8:2) as solvents. 

Proton spectra were obtained using standard parameters. The structure was elucidated 

using COSY, HMQC, and HMBC, and through comparison with the standard spectra of 

vescalagin and castalagin. 

 

5.3.2 Biological assays  

Assays for AHL production, QS gene activity, and virulence factor production 

(LasA, LasB, and pyoverdin) were carried out as detailed in our previous work (Adonizio 

et al., 2008b). Samples were tested at the following concentrations: 1mg/ml crude extract 

of C. erectus, 40 μg/ml crude extract, 40 μg/ml vescalagin, or castalagin.  These 

additions were compared to a media-only control for the reduction of QS.  Prototypic P. 

aeruginosa strain PAO1 (Holloway & Morgan, 1986), and its promoter-fusion 

derivatives PlasR-lacZ (pPCS1001), and PrhlR-lacZ (pPCS1002),  (Adonizio et al., 2008b; 

Pesci et al., 1997) were used throughout this study.  In addition, Staphylococcus aureus 

(ATCC # 12600) was used in the LasA staphylolytic assay.  
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5.3.3 Statistical analysis  

All experiments were performed in triplicate.  Data were analyzed using one-way 

analysis of variance (ANOVA) with a P-value of 0.05 using the statistical software 

package SPSS (Chicago, IL).  

 

5.4 Results and discussion 

This report details the isolation and verification of two C-glycosidic ellagitannins, 

castalagin and vescalagin, from C. erectus and the confirmation of anti-QS activity of 

these compounds. The isolation procedure was largely directed by anti-QS bioassays 

using P. aeruginosa strains containing a lacZ fusion to the QS gene lasR or rhlR 

(Adonizio et al., 2008b; Pesci et al., 1997).  Each fraction was pipetted into a small well 

in an agar plate seeded with one of these biomonitor strains and the appropriate reagents 

for visualization of lacZ activity. Active fractions resulted in a change of color in the 

biomonitor strain from blue to off-white in the area surrounding the well indicating anti-

QS activity.  Only fractions with activity were subjected to further separation. 

 

5.4.1 Isolation and verification of active compounds 

5.4.1.1 TLC reveals a phenolic compound responsible for anti-QS activity 

Prior to column chromatography, separation was attempted with various mobile 

phases on thin layer chromatography (TLC) plates. Reverse phase TLC of crude extract 

of C. erectus using an acidified acetonitrile/water mobile phase revealed two long-wave 

UV-reactive bands and one chromatic band, the latter being brown in color and slightly 

tailing (Figure 5.1a).  
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Figure 5.1  Thin layer chromatography (TLC) of C. erectus crude extract and the 

visualization of phenolic anti-QS activity. (a) Two long-wave UV-reactive bands (circled 

in pencil) and one chromatic band are visible after running with an acidified 80:20 

ACN/H2O mobile phase (RP-C18 silica plates). (b) Phenolic compounds are indicated by 

a blue spot after reaction with ferric chloride stain.  (c) Overlay of the TLC plate with 

agar containing PAO1 derived biomonitor strain pPCS1001 (PlasR-lacZ ) indicates anti-

QS activity (loss of blue color) correlating with phenolic band.   

 

The plates were reacted with a number of different agents, the most notable being 

ferric chloride, a stain for phenolic compounds.  Ferric chloride staining resulted in the 

chromatic band turning dark blue, indicating phenolic compounds in this region (Figure 

5.1b).  An unstained portion of the TLC plate was overlaid with agar containing an anti-

QS biomonitor strain derived from P. aeruginosa (PlasR-lacZ (pPCS1001)) (Adonizio et 

al., 2008b; Pesci et al., 1997). Anti-QS activity was visualized as a loss of blue color over 
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the phenolic band due to reduced lasR expression and linked β-galactosidase activity 

(Figure 5.1c). 

 Anti-QS activity against the tested lasR biomonitor strain correlates with our 

previous data on the reduction of lasR gene expression seen with the crude extract of  C. 

erectus (Adonizio et al., 2008b).  The localization of this activity indicates phenolic 

compounds are responsible for the anti-QS activity seen in this species.  Phenolic 

compounds have been previously shown to interfere with bacterial QS (Huber et al., 

2004). 

 

5.4.1.2 Fractionation of polyphenolics in crude extract 

Since the TLC staining and overlay procedure revealed the phenolic band to 

contain the anti-QS activity in C. erectus, larger-scale fractionation was then tailored to 

separation of these compounds. We adopted a method based on the resolution of wine 

polyphenols (Sun et al., 2006) . A schematic of fractionation can be seen in Figure 5.2.  

Crude aqueous extract of C. erectus was separated into three fractions based on 

solvent polarity.  Fraction A eluted with water as a bright yellow liquid believed to 

contain phenolic acids and hydrolyzable tannins according to prior work on polyphenolic 

separation (Oszmianski et al., 1988; Sun et al., 2006). Fraction B, which eluted with ethyl 

acetate, was colorless to pale yellow and likely contained colorless proanthocyanins, 

flavanols, and some monomer and oligomer phenolic acids (He et al., 2006; Oszmianski 

et al., 1988; Sun et al., 2006). Fraction C, which eluted with acidified methanol, was dark 

brown indicating the presence of complex tannins, pigmented proanthocyanidins, and 

pyranoanthocyanins (He et al., 2006; Oszmianski et al., 1988; Sun et al., 2006). The 
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presence of phenolics in each fraction was monitored by periodically spotting to TLC 

plates coated with ferric chloride reagent. Each fraction was tested for anti-QS effect 

revealing Fraction A to contain the majority of activity (Figure 5.3, (Panel I)). 
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Figure 5.2 Schematic of fractionation of C. erectus crude extract.  The crude extract and 

all fractions were tested for anti-QS activity on PAO1-derived biomonitor strains 

pPCS1001 (ΔlasR) and pPCS1002  (ΔrhlR) (Adonizio et al., 2008b; Pesci et al., 1997).  

Anti-QS activity is indicated by grey blocks. 
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                               Panel I                                                           Panel II 

Figure 5.3  Anti-QS bioassay of fractionation products of C. erectus. Anti-QS activity 

was monitored using PAO1-derived biomonitor strain pPCS1001 (ΔlasR) (Adonizio et 

al., 2008b; Pesci et al., 1997). Lighter color indicates anti-QS activity. Fractions A, B, 

and C were separated by preparatory chromatography (Panel I). Subsequent fractions 1-6 

of initial fraction A were separated via HPLC (Panel II).  

 

Fraction A is the most polar fraction and thus contains phenolic acids and 

hydrolyzable tannins. Prior work on ellagic acid and EGCG (a hydrolyzable tannin) 

indicated that these compounds outperformed complex tannins (such as those found in 

Fraction C) in the inhibition of QS (Huber et al., 2004). 

 

5.4.1.3 HPLC separation reveals two fractions with anti-QS activity 

The separation of fraction A via HPLC resulted in six major peaks designated 1 to 

6, and a number of minor peaks (Figure 5.4).  The detection wavelength was set at 313 

nm based on work by Oszmianski et al (Oszmianski et al., 1988).  Fractions 1 through 6 

eluted at approximately 24, 26.8, 29, 31.7, 33.8, and 36.4 minutes, respectively.  Each 
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fraction was collected and tested with the anti-QS biomonitor strains revealing activity in 

Fractions 3 and 4 (Figure 5.3, (Panel II)). 

 

 

Figure 5.4  HPLC separation of Fraction A. Optimal separation was achieved using an 

Altima C18 column (5μ, 10 x 250 mm; 100μL injection volume) with an acidified water-

acetonitrile mobile phase. Absorbance was monitored at a wavelength of 313 nm. 

Fractions 1-6 represent pure compounds and were subsequently tested for anti-QS 

activity. 

 

5.4.1.4 Vescalagin and castalagin elucidated as active compounds 

Fractions 3 and 4 were checked for purity by TLC and behaved as pure 

compounds (single, non-tailing bands). Both Fractions 3 and 4 when subjected to mass 

spectrometric analysis produced a strong peak at m/z 933 [M-H]- and a smaller fragment 

peak at m/2z 466 [M-H]2-.  
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MS-MS of compounds 3 and 4 revealed strong peaks at m/z 915 and 613.  The 

former being simply the parent compound minus water, and the latter indicating the loss 

of ellagic acid (302 daltons), a fragment regarded as diagnostic of ellagitannins (Tang & 

Hancock, 1995).  A literature review suggested that these compounds may be the 

ellagitannins vescalagin and castalagin (Mayer et al., 1967; Mayer et al., 1970; Okuda et 

al., 1993; Tang & Hancock, 1995) as they both have a mw of 934 and contain ellagic acid 

components. Exact mass measurements revealed a mass of 935.0811 [M+1] for Fraction 

3 and 935.0794 for Fraction 4 [M+1], a difference of 2.8 and 1.0 ppm, respectively. The 

calculated exact mass for the [M+1] ion of both vescalagin and castalagin is: 935.0785 

for C41H27O26
+. 

 

Figure 5.5  Structures of the stereoisomeric ellagitannins castalagin and vescalagin. 

(Image: (Zhentian et al., 1999)) 
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NMR data (supplementary data, appendix) were compared with spectra from the 

known compounds (Glabasnia & Hofmann, 2006; Tang & Hancock, 1995), thus 

confirming the identity of Fractions 3 and 4 as vescalagin and castalagin, respectively 

(Figure 5.5). To avoid confusion, these fractions will hereafter be referred to by their 

compound names. 

 

5.4.2 Bioassays on P. aeruginosa confirm anti-QS activity of ellagintannins  

The anti-QS activity of the ellagitannins vescalagin and castalagin is corroborated 

by prior work on the QS-inhibiting properties of ellagic acid (Huber et al., 2004). 

However, specific bioassays were necessary to elaborate the precise effect on P. 

aeruginosa QS and virulence. Here, we compare the effect of the purified compounds to 

that of the crude extract of C. erectus examined in our previous works (Adonizio et al., 

2008a). 

Polyphenolics have been shown to act as QS-inhibitors at a concentration range of 

20-60 μg/ml (Huber et al., 2004) thus a 40 μg/ml concentration was chosen for the 

purified ellagitannins.  For comparison, we tested 40 mg/ml and 1 μg/ml concentrations 

of crude extract, the latter being the working concentration for our previous studies on of 

C. erectus (Adonizio et al., 2008a; Adonizio et al., 2008b). 

 

5.4.2.1 LasA protease activity is reduced in the presence of ellagitannins  

  LasA belongs to the β-lytic endopeptidase class of proteases (Kessler, 1995) and 

plays a major role in host tissue degradation (Kharazmi, 1989; Morihara & Homma, 

1985).  LasA protease activity was determined by measuring the ability of culture 
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supernatants to lyse boiled S. aureus cells (Kong et al., 2005).  There was a significant 

decrease in LasA activity compared to that of the control when strain PAO1 was grown 

in the presence of C. erectus crude extract at 1 mg/ml (91% decrease), and a lesser effect 

at 40 μg/ml (26% decrease) (Table 5.1).  Purified vescalagin and castalagin affected 

significant reductions in LasA activity as well, with decreases of 73% and 80%, 

respectively (Table 5.1). The significant effect on LasA protease production is in 

agreement with our previous data on C. erectus (Adonizio et al., 2008b), and suggests 

that vescalagin and castalagin are responsible for the reduction in LasA activity.  

 

5.4.2.2 LasB elastase activity is reduced in the presence of ellagitannins 

 LasB elastase is a zinc metalloprotease capable of affecting the host immune 

system and destroying biological tissue (Bever & Iglewski, 1988). The elastolytic activity 

of culture supernatants was determined using elastin Congo red (ECR; Sigma, St. Louis, 

MO) (Ohman et al., 1980). There was a significant decrease in LasB activity compared to 

that of the control when PAO1 was grown in the presence of C. erectus at 1 mg/ml (70% 

decrease) or 40 μg/ml (60% decrease) (Table 5.1). Purified vescalagin and castalagin also 

affected significant reductions in LasB activity, with decreases of 67% and 63%, 

respectively (Table 5.1). The effect on LasB production agrees with our previous data 

(Adonizio et al., 2008b) on C. erectus, and suggests vescalagin and castalagin are 

responsible for the reduction in LasB activity.  

Previous studies by Huber et. al. indicate a 40% decrease in lasB activity when 

the related organism Pseudomonas putida is grown in the presence of 30 μg/ml ellagic 

acid (a component of ellagitannins) (Huber et al., 2004).  
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Table 5.1 Effect of crude extract of C. erectus and purified ellagitannins on P. aeruginosa 

virulence factors 

Culture conditions LasA activitya Elastase activityb Pyoverdin productionc

Media only 0.243 ± 0.024    142.7 ± 17.7     4710 ± 238 

Crude 1 mg/ml 0.021 ± 0.004*    42.9 ± 2.1*     700 ± 212* 

Crude 40 μg/ml 0.179 ± 0.013*    56.7 ± 5.5*     4208 ± 205 

Vescalagin 0.066 ± 0.008*    47.2 ± 6.8*     4226 ± 138 

Castalagin 0.048 ± 0.003*    52.7 ± 9.0*     4207 ± 150 

 

a LasA activity was expressed as reduction in OD600 per hour per microgram total protein 

b Elastase activity was expressed as absorbance at OD495 per microgram of protein * 1000 

c Pyoverdin production expressed as fluorescence (405/465 nm) per microgram protein 

*Significantly different from the “Media only” control at p=0.05 

 

5.4.2.3 Ellagitannins do not affect pyoverdin production 

Pyoverdins function as siderophores essentially starving host tissues by 

competing with mammalian transferrin for iron (Meyer et al., 1996). They also promote 

pathogenicity by stimulating bacterial growth (Cox & Adams, 1985), while auto-

regulating themselves and the production of other toxins (Beare et al., 2003; Lamont et 

al., 2002). Relative concentration of pyoverdin was based on fluorescence of the 

supernatant at an excitation wavelength of 405 nm and an emission wavelength of 465 

nm (Gemini EM microplate reader). None of the experimental conditions significantly 

affected pyoverdin production, with the exception of C. erectus at a concentration of 1 
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mg/ml (85% reduction) (Table 5.1).   This is consistent with our previous data on C. 

erectus (Adonizio et al., 2008b). 

The inability of the purified compounds to reduce pyoverdin levels suggests that 

the crude extract contains some factor other than the ellagitannins that is responsible for 

this effect.  No significant reduction occurred with a crude extract concentration of 40 

μg/ml, indicating a relatively high amount of this unknown factor is needed for an effect 

on pyoverdin levels. 

 

5.4.2.4 Ellagitannins affect the production of QS signaling molecules 

P. aeruginosa manufactures two main quorum sensing signaling molecules N-(3-

oxododecanoyl)-L-homoserine lactone (OdDHL) and N-butanoyl-L-homoserine lactone 

(BHL) called autoinducers (Pearson et al., 1994; Pearson et al., 1995). These molecules 

diffuse into the environment, and when they reach a putative threshold concentration, 

they activate the QS receptor genes.  Inhibition of these signals has been shown to cause 

attenuation of pathogenicity (Adonizio et al., 2008a; Adonizio et al., 2008b; Manefield et 

al., 1999; Whitehead et al., 2001b).  

No significant decreases in OdDHL levels were seen with either the crude extract 

or the purified compounds (Table 5.2), the former being consistent with our previously 

acquired data (Adonizio et al., 2008b). BHL levels however, were affected by the crude 

extract at a concentration of 1 mg/ml (20% reduction) and purified vescalagin (21% 

reduction).  This is consistent with our previous work on C. erectus which revealed a 

25% decrease in BHL levels, suggesting that vescalagin is responsible for this reduction. 
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Table 5.2 Effect of ellagitannins on P. aeruginosa QS genes and AHL production  

AHL Productiona Gene Expressionb

Culture conditions 
C12-AHL C4-AHL lasI lasR rhlI rhlR 

Media only 1.328 ± 0.14 0.621 ± 0.03 3873 ± 260 4823 ± 385 4933 ± 333 7639 ± 216 

Crude 1 mg/ml 1.082 ± 0.07 0.496 ± 0.05* 3065 ± 247* 1325 ± 275* 3383 ± 111* 4535 ± 231* 

Crude 40 μg/ml 1.431 ± 0.06 0.578 ± 0.08 3367 ± 276 2873 ± 188* 3187 ± 249* 4667 ± 194* 

Vescalagin 1.227 ± 0.16 0.489 ± 0.01* 2049 ± 93* 1703 ± 297* 3514 ± 306* 4129 ± 287* 

Castalagin 1.389 ± 0.20 0.703 ± 0.01 2465 ± 116* 2160 ± 509* 4542 ± 199 4904 ± 348* 

 

a AHL production was expressed in µM 

b Gene expression was measured via β-galactosidase activity of the lacZ gene fusion 

products and expressed as Miller Units 

* Indicates significance at p=0.05 

 

5.4.2.5 Ellagitannins affect QS gene expression  

P. aeruginosa elaborates two main sets of QS systems: lasI-lasR and rhlI-rhlR 

(Schuster & Greenberg, 2006). LasI and RhlI are synthetases that manufacture the 

autoinducer signaling molecules mentioned in the previous section.  The receptors, lasR 

and rhlR, are activated by these signals and, in turn, coordinate the regulation of 

pathogenicity.  

We tested the effect of castalagin and vescalagin on the transcriptional activity of 

the QS-gene promoters using PAO1-derived strains harboring promoter-lacZ fusions (as 

described in (Kong et al., 2005) and (Adonizio et al., 2008b). Assays for β-galactosidase 
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(lacZ) activity in P. aeruginosa were performed with o-nitrophenyl-β-D-

galactopyranoside, as described previously (Mathee et al., 1997).  

Significant effects were seen on the activity of all tested QS genes with C. erectus 

at 1 mg/ml (Table 2) which agrees with previous results on this species (Adonizio et al., 

2008b).  Crude extract at 40 μg/ml reduced the expression of all QS genes to a lesser 

extent, leaving lasI marginally insignificant.  Castalagin reduced all QS gene levels save 

for rhlI which may correspond to the lack of effect on its signaling molecule OdDHL 

(Table 1). Vescalagin on the other hand reduced all QS gene levels including rhlI to a 

greater extent than castalagin. The significant reduction of rhlI by vescalagin may 

correspond to its effect on BHL. 

Interestingly, reduction of lasI is more pronounced with the addition of pure 

compounds than with the crude extract (Table 2).  This may suggest another compound in 

the crude extract causing up-regulation of lasI or simply blocking its repression by the 

ellagitannins thus balancing out the effect.  

 

5.4.2.6 Ellagitannins do not affect bacterial growth 

To confirm that the reduction in virulence was due to QS inhibition  and not static 

or cidal effects, cell proliferation was monitored using growth curve studies and the 

Bradford assay (Bradford, 1976).  No significant differences in growth of PAO1 were 

seen with either concentration of crude extract or the purified compounds. In comparison, 

previous work on ellagic acid shows no effect on growth of the related species P. putida 

at concentrations up to 30 μg/ml (Huber et al., 2004). 
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5.5 Concluding remarks 

 Previous research on C. erectus (Adonizio et al., 2008a; Adonizio et al., 2008b) 

indicates a marked reduction of QS and inhibition of P. aeruginosa virulence. The 

activity of the isolated compounds vescalagin and castalagin are shown here to account 

for the majority of the activity in this plant, suggesting a new mode of action for 

ellagitannins. Purified ellagitannins affected AHL levels, and QS-gene expression 

similarly to the parent extract.  Protease and elastase levels were also markedly reduced, 

however, pyoverdin was not affected. This may suggest that additional compounds within 

C. erectus are responsible for the entire anti-QS effect or that the regulation of pyoverdin 

extends beyond the QS system. The latter hypothesis is supported by previous research 

on the nature of pyoverdin (Beare et al., 2003; Lamont et al., 2002) and the mixed results 

of halogenated furanones on its production (Hentzer et al., 2003; Sakar et al., 2005). 

Unlike the furanones, which inhibit QS through competitive AHL inhibition, 

ellagitannins are unlikely candidates for signal mimicry based on their size and structure.  

The reduction of rhlI expression and BHL levels by vescalagin (Table 2) may suggest a 

more direct effect on the rhl QS system, however further studies are necessary to confirm 

this activity. 

In several cases (Table 1 and 2), differences in the degree of anti-QS activity 

between the crude extract and the purified compounds can be explained by a dosage 

effect. The extraction of vescalagin and castalagin from the crude extract was found to be 

roughly 6% in both cases with our particular methods. Thus, the working concentration 

of ellagitannins is as follows: 60 μg/ml  in the 1 mg/ml crude extract and 2.4 μg/ml in the 

40 μg/ml crude extract.  The tested concentration of the purified compounds falls 
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between these two as does the activity in most cases. This pattern is not absolute 

however, since unknown compounds in the crude extract may moderate activity.  

Castalagin and vescalagin have not been previously isolated from Conocarpus 

erectus, and although they may be part of a larger C-glycosidic ellagitannin oligomer, it 

is likely these compounds exist in their native state as well.  Although tannins are 

widespread throughout the plant kingdom, NHTP-bearing ellagitannins such as castalagin 

and vescalagin are mostly limited to the Combretaceae, Fagaceae, Melastomataceae, and 

Myrtaceae (Okuda et al., 2000).  Interestingly, the plant species found in our previous 

work to have the highest levels of anti-QS activity are within these four families 

Conocarpus erectus L. (Combretaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don 

(Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. 

(Melastomataceae), and Quercus virginiana Mill. (Fagaceae).  (Adonizio et al., 2008b). 

This would suggest that similar ellagitannins may be responsible for QS inhibition in 

these plants. 
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6.1 Overview 

 With the advent of antibacterial therapy in the 1940s came the consequent 

problem of bacterial resistance (Abraham et al., 1941). Early β-lactam antibiotics such as 

penicillin quickly lost efficacy, and by the 1960s new drugs were being developed to 

replace the old (Fairbrother & Taylor, 1961). Soon, they too would become obsolete, and 

so began the Sisyphean task of keeping pathogens at bay. 

The search for novel antibiotics is becoming increasingly necessary, though 

perhaps more important is the search for novel modes of action against pathogens.  A 

compound that does not kill an organism, but rather attenuates its virulence could allow 

the host immune system to more efficiently clear out an infection. In addition, this type of 

action against bacteria is less likely to provide the selective pressure to drive resistance 

(Hentzer & Givskov, 2003b).  Anti-QS agents seem to fit this niche, but are limited in 

number and structural diversity.  

This dissertation has served not only to direct research toward ethnobotanical 

sources of anti-QS activity (Chapter 2; (Adonizio et al., 2006)), but has confirmed the 

hypothesis that anti-QS compounds from medicinal plants can attenuate P. aeruginosa 

virulence. A number of plants were shown to reduce the production of virulence factors, 

biofilm formation, and QS activity in this intractable, opportunistic pathogen (Chapter 3; 

(Adonizio et al., 2008b)). Furthermore, three of these plants were able to prevent P. 

aeruginosa infection and toxicity in a live animal model (Chapter 4; (Adonizio et al., 

2008a)).  The ellagitannins vescalagin and castalagin were found to be responsible for the 

majority of anti-QS activity in the medicinal plant C. erectus (Chapter 5) revealing a 

class of compounds not previously tagged with this effect. 
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6.2 Anti-QS activity of medicinal plants  

The plant kingdom has long been a source of medicines, and the relatively 

untapped botanical arena of southern Florida seemed a likely reservoir for anti-QS 

compounds. The ability of higher organisms to produce QS inhibitors was first 

demonstrated in the marine algae Delisea pulchra (Manefield et al., 1999), and anti-QS 

activity has since been found in a number of higher plants (Teplitski et al., 2000).  

However, the screening of medicinal plants for this activity has not been explored prior to 

this study, and this research sought to forge a new path in the field of medical 

ethnobotany. 

Fifty medicinal plants of southern Florida were screened for their anti-QS 

potential against Chromobacterium violaceum and Agrobacterium tumefaciens (NTL4) 

biomonitor strains in a standard disc-diffusion assay (Chapter 2; (Adonizio et al., 2006)). 

These biomonitor strains provided a colorimetric assessment of QS inhibition seen as a 

zone of pigment loss surrounding the test disc (Chapter 2, Figure 2.2).  

Although the biomonitor strains rarely cause disease in humans, they remain 

medically relevant due to the similarity of Gram negative QS systems (Whitehead et al., 

2001a). It can be extrapolated that a plant effective against the QS systems of these 

species may have activity against disease-causing organisms as well thus validating the 

medicinal use of these plants. 

Of the tested plants, six showed QS inhibition: Conocarpus erectus 

(Combretaceae), Chamaecyce hypericifolia (Euphorbiaceae), Callistemon viminalis 

(Myrtaceae), Bucida burceras (Combretaceae), Tetrazygia bicolor (Melastomataceae), 

and Quercus virginiana (Fagaceae). 
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C. erectus and B. buceras both belong to the family Combretaceae. Leaves from 

these tree species have been used medicinally to treat fevers, respiratory ailments, 

diarrhea and sexually transmitted diseases throughout the native range of these plants 

(Burkhill, 1985; Irvine, 1961; Melendez, 1982; Morton, 1981; Nellis, 1994).  

C. viminalis, of the family Myrtaceae, is now considered to be in the genus 

Melaleuca. This group includes the “tea trees” (Chapter 1.2.1), which have long been 

used to treat skin and respiratory conditions (Duke, 1985; Halcon & Milkus, 2004; 

Hammer et al., 1996; Melendez, 1982; Morton, 1981). Results in this study suggest the 

antimicrobial action of C. viminalis and related species might be due, in part, to anti-QS 

activity. 

Q. virginiana and T. bicolor are trees of the Fagaceae and Melastomataceae 

respectively. Q. virginiana has a long history of use by Cuban peoples and Native 

American tribes as a febrifuge and for dysentery (Moerman, 1998; Morton, 1981), 

whereas T. bicolor has been used to treat fevers in the Bahamas (Morton, 1981). As 

suggested by this work, traditional use may be related to QS inhibition. 

C. hypericifolia (Euphorbiaceae), is used in the treatment of opthamalogical 

ailments, diarrhea and other digestive disorders, respiratory conditions, fever, and 

gonorrhea. This latex-containing, weedy species is found throughout the Caribbean, 

South American, and old world tropics. Interestingly, only the ethanol extract of this 

plant exhibited anti-QS activity, suggesting the active compounds to be either less polar 

than those found in the other tested plants, or possibly heat labile. 
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6.3 Attenuation of Pseudomonas aeruginosa virulence  

 After displaying promising anti-QS activity against several biomonitor strains 

(Chapter 1), six plants from that study were tested against the human opportunistic 

pathogen  P. aeruginosa.. Relevant to the traditional uses of these plants, P. aeruginosa 

may indeed be the causative agent for a number of conditions such as fever, eye and skin 

infections, and respiratory ailments (Bodey et al., 1983) (Chapter 1, Figure 1.10). 

 Additionally, this organism remains problematic, especially in the 

immunocompromised individual, due to its intrinsic and inherent resistance, massive 

exotoxin production, and the ability to form biofilms (Hancock & Speert, 2000; Lyczak 

et al., 2002). The production of toxins and biofilms is QS controlled (Venturi, 2006), and 

thus attenuation of P. aeruginosa virulence should be seen with plant inhibitors of the QS 

system. 

The active plants from the previous study were thoroughly evaluated for their 

effect on a number of virulence factors, QS-gene expression, and QS signal concentration 

(Chapter 3; (Adonizio et al., 2008b)). Effect on LasA production was gauged via 

staphylolytic assay, while LasB inhibition was visualized with chromophore-linked 

elastin. Pyoverdin concentrations in the supernatant were recorded based on florescence, 

and biofilm formation was assessed in PVC microtiter plates. Additionally, the direct 

effect on the main QS system was followed using ONPG visualization of lacZ-QS gene 

fusion products. AHL signal concentration was also monitored by LC-MS. 

The most effective plants, C. erectus, B. buceras, and C. viminalis, caused 

significant inhibition of LasA protease, LasB elastase, pyoverdin production, and biofilm 

formation (Chapter 3, Table 3.1).  Additionally, each plant demonstrated a distinct profile 
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of effect on the las and rhl QS genes and their respective signaling molecules (Chapter 3, 

Table 3.2), suggesting different mechanisms responsible for efficacy. Furthermore, 

extracts of all plants caused inhibition of QS genes and QS-controlled factors without a 

significant decrease in cell density. This suggests an inhibition of quorum sensing rather 

than a bactericidal effect.  

At this point, there is not sufficient data to pinpoint the exact method of QS 

inhibition, however a partial mechanistic picture can be drafted for the top three extracts 

based on the results in Chapter 3.  C. erectus and B. buceras exhibit a similar pattern of 

QS system repression. Both show a significant decrease in expression of all four QS 

genes tested (Table 3.2). Both extracts also decrease levels of the signaling molecules 

OdDHL and BHL, though only B. buceras does so significantly. With a few exceptions, 

both extracts also markedly reduce virulence and biofilm formation (Table 3.1). This 

general effect may suggest that the components from these plant extracts could affect a 

global QS regulator such as GacA (Figure 6.1).   

Additional information on the ellagitannins purified from C. erectus (Chapter 5) 

suggests that vescalagin may have a more direct effect on the rhl system as it 

significantly reduces both rhlI expression and BHL concentration (Table 5.2).  Since 

neither of the purified ellagitannins had an effect on pyoverdin, there may be a yet 

unidentified compound in C. erectus responsible for its attenuation. However, the 

unresolved effect of the purified ellagitannins on rhlR may suggest regulation of 

pyoverdin by factors outside of the QS system. 

 C. viminalis also generates an interesting profile of effect on P. aeruginosa. It 

shows a pronounced reduction of OdDHL, however no reduction of BHL (Chapter 3, 
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Table 3.2).  This could suggest a more direct inhibition of LasI, lifting the negative 

regulation of OdDHL on RhlR thus activating a feedback loop to increase production of 

BHL (Figure 6.1). The most significant decreases in lasI and lasR expressions were 

found with C. viminalis (Table 3.2).  As expected, the LasA and elastase activities are 

also significantly decreased (Table 3.1). 

 

 

 

Figure 6.1 QS pathway of P. aeruginosa (modified from Van Delden and Iglweski 1999) 

and possible activity of crude extracts and purified vescalagin. GacA is a global regulator 

of QS, LasI is a synthetase which produces the signal OdDHL, LasR is the regulator 

which binds OdDHL. RhlI synthetase produces BHL which binds to its cognate receptor 
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RhlR. Black arrows indicate known regulatory patheays. Grey arrows indicate possible 

mechanisms of action of C. erectus, B. buceras, C. viminalis, and vescalagin.  

 

6.4 Inhibition of P. aeruginosa virulence in a nematode model  

Results from in vitro studies, although significant, are often too far removed from 

a live host to suggest any clinical relevance. Thus, a Caenorhabditis elegans system was 

chosen to model the effect of the plant extracts on a P. aeruginosa infection (Darby et al., 

1999; Tan & Ausubel, 2000). Identical virulence factors are responsible for pathogenicity 

in both a human and nematode host (Rahme et al., 1995; Tan et al., 1999a), and in both 

cases virulence is QS-mediated. Thus, addition of plant compounds that have an effect on 

P. aeruginosa QS, should therefore attenuate bacterial virulence and subsequent death of 

C. elegans (Chapter 4; (Adonizio et al., 2008a)). 

Aqueous extracts of C. erectus, C. viminalis, and B. buceras were evaluated in 

both toxin-based and infection-based assays with P. aeruginosa strains PAO1 and PA14. 

Toxin based assays such as paralysis or “Fast-killing” of follow P. aeruginosa killing of 

C. elegans due to the absorption of virulence factors or cyanide toxicity. “Slow-killing” 

assays, report death via ingestion of the bacteria and subsequent infection (Mahajan-

Miklos et al., 1999; Tan et al., 1999a; Tan et al., 1999b).  

The tested plant extracts prevented mortality via gut infection in almost 60% of 

the worms, and caused a 50-90% reduction in death from toxin production (Figure 4.1). 

Although there was an unexplored possibility that the plants augmented the immune 

system of the nematode thus preventing massive infection, it is much more likely to be an 

anti-QS effect given the previous in vitro results (Chapter 3; (Adonizio et al., 2008b)). 
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Additionally, all extracts inhibited nematode death by P. aeruginosa without host 

toxicity, indicating their potential for further development as anti-infectives. 

  

6.5 Ellagitannins are responsible for anti-QS activity  

After establishing anti-QS activity of the plant extracts on P. aeruginosa both in 

vitro and in a live animal model, one extract (C. erectus) was chosen for isolation of 

active compounds. The isolation procedure was largely guided by anti-QS bioassays 

using P. aeruginosa lacZ-fusion strains discussed in Chapter 3. 

Two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from 

the aqueous extract of C. erectus using low-pressure column chromatography and HPLC. 

Structures were confirmed via mass spectrometry, proton-, and 2D-NMR spectroscopy.  

Both ellagitannins were shown to decrease AHL production, QS gene expression, 

and virulence factor production in P. aeruginosa (Chapter 5, Table 5.1 & 5.2). This is the 

not only the first report of these compounds being isolated from C. erectus, but also the 

first documentation of their activity on the QS system of P. aeruginosa. 

 An interesting retrospective is that all active plants from the first study belong to 

plant families known to contain ellagitannins (Chapter 5). This would suggest at least 

some of the active compounds to be ellagitannins in these species.  The Combretaceae, 

Fagaceae, Melastomataceae, Euphorbiaceae, and Myrtaceae families all produce C-

glycosidic tannins based on ellagic acid.  In addition, ellagic acid itself has been shown to 

possess anti-QS activity (Huber et al., 2004), further corroborating the findings in this 

study 
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6.6 Future directions 

This work demonstrated a number of medicinally-used plants to have anti-QS 

activity, most notably Conocarpus erectus (Combretaceae), Bucida buceras 

(Combretaceae), and Callistemon viminalis (Myrtaceae).  These plants effectively 

inhibited QS-gene expression, signal concentration, and virulence factors in P. 

aeruginosa.  Additionally, the attenuation of morbidity and mortality in a nematode 

model without toxicity validates past and potential future therapeutic use.  

Ellagitannins were elucidated as the active compounds in C. erectus, and 

displayed anti-QS activity against P. aeruginosa (Chapter 5).  It would be valuable to 

assess the dose-dependance of these compounds and to test their ability to prevent 

infection in a nematode model system (Chapter 4; (Adonizio et al., 2008a)) and perhaps 

the murine model developed for halogenated furanones (Wu et al., 2004).  

The medicinal plants B. buceras and C. viminalis also hold very promising anti-

QS activity and their chemistry should be explored. Since B. buceras is in the same 

family as C. erectus, its activity is potentially due to similar ellagitannins. Tannins in the 

Myrtaceae however are considerably different (Okuda et al., 1982; Yoshida et al., 2007), 

and may or may not be the responsible compounds in this species.   

Future research into the naturally-occurring ellagitannins is also quite valuable.  

Ellagitannin containing fruits such as raspberry, blackberry blueberry, and grape have 

been popularized as nutraceuticals for their anti-oxidant and heart-health benefits (Espin 

et al., 2007). However, a recent study shows these fruits to have anti-QS activity in vitro 

(Vattem et al., 2007). In light of the research contained herein, this activity is likely due 

to their high ellagitannin content. The variability of ellagic and other types of tannins in 
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the plant kingdom, combined with numerous opportunities for chemical modification, 

provides us a new resource with indispensable therapeutic potential.  Subtle changes 

made to the structure of these tannins such as the addition or removal of functional 

groups could increase their efficacy. The anti-QS activity of this class of compounds is 

relevant not only in the attenuation of Pseudomonas infections, but in the treatment of 

other bacterial diseases as well. 

Although a few potential modes of action have been proposed in this dissertation, 

exact mechanistic interactions with the QS system should at some point be resolved for 

ellagitannins. Tannins have been shown to interact with the bacterial cell membrane 

suggesting the ability of these compounds to cross the cell wall (Scalbert, 1991). Specific 

localization and protein binding studies could be used to gauge potential interactions with 

individual components of the QS system. Finally, the continued screening of medicinal 

plants and libraries for anti-QS activity is also of the utmost importance, as many new 

compounds await discovery. 
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APPENDIX  

NMR STRUCTURAL DATA FOR ISOLATED ELLAGITANNINS 

 

Vescalagin: 
 
1H NMR (600 MHz; D2O acidified with d-TFA): δ 4.20 [d, 1H, J=12.7 Hz, H-6], 4.73 
[dd, 1H, J=1.0, 6.8 Hz, H-3], 4.90 [dd, 1H, J=2.4, 13.2 Hz, H-6], 4.95 [d, 1H, J=2.1 Hz, 
H-1], 5.15 [t, 1H, J=7.1 Hz, H-4], 5.36 [t, 1H, J=1.6 Hz, H-2], 5.55 [d, 1H, J=7.3 Hz, H-
5], 6.73 [s, 1H, H-2(IV)], 6.86 [s, 1H, H-6(V)], 6.95 [s, 1H, H-6(III)] 
 
1H NMR (600 MHz; [D6]-acetone:D2O 8:2): δ 4.01 [d, 1H, J=12.6 Hz, H-6], 4.48 [d, 1H, 
J=7.3 Hz, H-3], 4.83 [d, 1H, J=2.1 Hz, H-1], 4.95 [dd, 1H, J=1.9, 13.1 Hz, H-6], 5.11 [t, 
1H, J=7.3 Hz, H-4], 5.20 [brs, 1H, H-2], 5.55 [d, 1H, J=7.5 Hz, H-5], 6.57 [s, 1H], 6.72 
[s, 1H], 6.73 [s, 1H] 
 
13C NMR (151 MHz; D2O acidified with d-TFA; partial assignment based on HMQC 
and HMBC correlations): δ 63.8 [C-1], 65.5 [C-6], 68.2 [C-3], 68.7 [C-4], 70.9 [C-5], 
77.3 [C-2], 107.0 [C-2(IV)], 108.8 [C-6(V)], 109.3 [C-6(III)], 113.5 [C-2(III)], 113.5 [C-
6(IV)], 115.2 [C-2(V)], 117.1 [C-2(I)], 123.3 [C-1(I)], 135.1 [C-4(IV)], 136.3 [C-4(III)], 
136.7 [C-4(V)], 144.4 [C-3(I)], 144.7 [C-5(V)], 145.2 [C-5(III)], 165.9 [C-7(II)], 166.3 
[C-7(I)], 167.2 [C-7(V)], 167.6 [C-7(III)], 170.3 [C-7(IV)] 
 
Castalagin:  
 
1H NMR (600 MHz; D2O acidified with d-TFA): δ 4.24 [d, 1H, J=12.8 Hz, H-6], 5.00 
[dd, 1H, J=2.1, 12.7 Hz, H-6], 5.10 [d, 1H, J=6.4 Hz, H-3], 5.16 [t, 1H, J=7.1 Hz, H-2], 
5.21 [d, 1H, J=4.7 Hz, H-4], 5.59 [d, 1H, J=7.3 Hz, H-5], 5.78 [d, 1H, J=4.8 Hz, H-1], 
6.80 [s, 1H], 6.86 [s, 1H], 7.00 [s, 1H] 
 
1H NMR (600 MHz; [D6]-acetone:D2O 8:2): δ 4.00 [d, 1H, J=12.6 Hz, H-6], 4.96 [dd, 
1H, J=1.0, 7.1 Hz, H-3], 4.98 [dd, 1H, J=1.4, 4.7 Hz, H-2], 5.00 [d, 1H, J=2.6, 13.0 Hz, 
H-6], 5.15 [t, 1H, J=7.3 Hz, H-4], 5.53 [dd, 1H, 1.1, J=7.5 Hz, H-5], 5.66 [d, 1H, J=4.7 
Hz, H-1], 6.60 [s, 1H, H-2(IV)], 6.74 [s, 1H, H-6(III)], 6.76 [s, 1H, H-6(V)] 
 
13C NMR (151 MHz; [D6]-acetone:D2O 8:2; partial assignment based on HMQC and 
HMBC correlations): δ 65.1 [C-6], 66.0 [C-3], 66.8 [C-1], 69.0 [C-4], 70.9 [C-5], 73.8 
[C-2], 107.3 [C-2(IV)], 108.0 [C-6(V)], 108.5 [C-6(III)], 114.2 [C-2(III)], 114.8 [C-
6(IV)], 115.7 [C-2(I)], 115.7 [C-2(V)], 121.7 [C-1(I)], 135.8 [C-4(IV)], 136.3 [C-4(III)], 
136.4 [C-4(V)], 143.3 [C-3(I)], 145.0 [C-5(V)], 145.2 [C-5(III)], 145.2 [C-3(IV)], 164.5 
[C-7(I)], 165.4 [C-7(II)], 166.5 [C-7(V)], 167.1 [C-7(III)], 169.1 [C-7(IV)]  
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