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Division Rules, Network Formation, and the

Evolution of Wealth

Nejat Anbarci and John H. Boyd III∗

June 27, 2005

Abstract

In our model, each of n > 2 agents is endowed with an exogenous amount of
initial wealth. Each individual may establish at most one link with any agent he
prefers each period. A surplus will be generated from each link and the agents
involved in that link will bargain over its division. The payoffs obtained by an
agent at each period will be added to the existing wealth (ideal payoff) level of
the agent. Suppose in a society (or in a group of individuals), all agents adhere to
a particular division rule.

A variety of long-run wealth distributions can arise, depending on the divi-
sion rule and initial wealth distribution. These can range from situations where
the richest agent remains richest to cases where the poor are continually becom-
ing rich. We examine several division rules in detail: egalitarian, equal sacrifice,
proportional, dictatorship of the rich, dictatorship of the poor.

From the analysis of these cases, we find that two factors determine the long-
run wealth distribution: the size of the gain from a link, and the incentive to link
to rich or poor.

∗Department of Economics, Florida International University, Miami, FL 33199
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1 Introduction

In an important recent paper, Piccione and Rubinstein (2004) studied a model of strate-

gic network formation in which being wealthier initially did not necessarily imply being

wealthier ex post.1 They used a simple one-shot setup in which each individual can es-

tablish at most one link with a weaker agent, and the stronger agent can acquire the total

amount of wealth owned by the weaker agent. Although their main result does not hold

when agents are restricted to direct transfers only; it holds when indirect appropriations

too are allowed.

Needless to say, the limit (long-run) wealth distributions of such setups too can

be as interesting as the short-run fluctuations in the wealth rankings of the agents.

For instance, when the stage setup is repeated infinitely many times in Piccione and

Rubinstein (2004), one can see that the limit distribution is such that the agent with

the highest initial wealth will end up with the entire wealth in the economy.

We study a related framework where agents bargain over the wealth created by a

link, the links being recreated in each of infinitely many periods.

In our model, each of n > 2 agents is endowed with an exogenous amount of initial

wealth. As in Piccione and Rubinstein (2004), each individual may establish at most

one link with any agent he prefers each period. A surplus will be generated from each

link and the agents involved in that link will bargain over its division. Only direct links

generate payoffs. The payoffs obtained by an agent at each period will be added to the

existing wealth (ideal payoff) level of the agent. The status-quo point for each pair that

have a link is the origin.

The Pareto frontier is linear and connects the ideal payoffs of the parties. Each point

on the Pareto frontier represents a particular division of the pie; each such point can

be assigned as the outcome by a particular division rule. Among them, the midpoint of

the Pareto frontier has a focal importance. It assigns payoffs proportional to the ideal

1Although there were a few other papers on networks in the economics literature before that, the
most notable work on strategic network formation can be dated back to that of Jackson and Wolinsky
(1996). The introductory chapter of Dutta and Jackson (2003) provides an overview of this literature’s
progression and the role of the papers collected in their edited volume. Their edited volume includes
some of the papers that have been very influential in the literature of the formation of networks.
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payoffs of the two agents. Suppose in a society (or in a group of individuals), all agents

adhere to a particular division rule.

The division of the surplus from a link depends only on the current wealth of the

two agents. If the payoff is increasing in the other agent’s wealth, we call the division

rule rich-linking as agents will have an incentive to link with rich agents.2 If it is

decreasing in the other agent’s wealth, it is poor-linking. The proportional division rule

(which coincides with the outcome of the Kalai/Smorodinsky solution of the cooperative

bargaining problem) defines the border between rich-linking and poor-linking solutions.

Under proportional division, an agent does not have any particular incentive to link with

any particular agent.

Whether the division rule is rich-linking or poor-linking determines the structure of

the links. A link request by an agent is costless and cannot be declined by any agent.

(If both agents request each other, only one link is established between them.) Label

agents by initial wealth with the richest agent as agent 1. Given a rich-linking division

rule, all agents will want to link to the richest agent they are not already linked with.

It follows that the situation where all agents (except agent 1) link to agent 1 and agent

1 links to agent 2 is an equilibrium. Given a poor-linking division rule, the situation

where all agents (except agent n) link to agent n and agent n links to agent (n − 1) is

an equilibrium. Other equilibria exist, and are discussed in the appropriate sections.

There are several other divisions of the pie that are of prominence. They are the

egalitarian division, the equal sacrifice division, dictatorship of the poor, dictatorship of

the rich. The first one assigns equal payoffs to both agents, while in the last two one of

the agents receives his ideal payoff and the other agent receives nothing. In the equal

sacrifice outcome, each agent’s payoff is equally far from his ideal payoff.

The evolution of the wealth distribution as well as the limit wealth distribution can

differ dramatically according to the division rule, even in the simple equilibria. Two

aspects of the division rule are important: the share that goes to each individual and

the incentive to form links. We examine several cases in order to understand this better.

The egalitarian solution is rich-linking. Oddly, the long-run distribution is egalitarian

for everyone but the richest agent. The richest agent gets half of the wealth. The rest is

2Note that the actual division of the surplus may give more to the poor agent.
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split equally among the other agents. Here the number of links the rich agent participates

in overwhelms the smallness of the gain from linking.

The equal sacrifice solution is poor-linking. Everyone links with the poorest agent.

One might expect the poorest agent to gain wealth and eventually overtake the next

poorest while the richest agent (with only one link) grows slowly. Eventually, the poor

leapfrog their way up the income distribution. In fact, it is not so simple and for some

initial distributions the rich agent will end up growing fastest. Alternatively, other initial

distributions lead to the leapfrogging situation described above. The additional links

that the poor get can overcome small deficiencies in initial wealth, but when the gap is

large, the bigger gain that the richer agent receives is dominant.

The proportional division is link-neutral. As as result, everyone’s wealth grows at

the same rate. However, the wealth distribution may drift over time, depending on the

equilibrium path chosen.

In the case of dictatorship of the rich, the extreme wealth division overcomes the

benefits to the poor of poor-linking. Everyone but the poorest person links to someone

poorer. All but agent n have a 100% growth rate. Agent n’s wealth remains constant.

Finally, the dictatorship of the poor leads to leapfrogging and the income distribution

bunches up. Here the extra links the rich get are of no value to them. What counts is

that the poor gain more from the links.

Intuitively, it is clear that other long-run behavior is possible. Take a rich-linking

division which is arbitrarily close to the proportional division. Eventually, agent 1,

with whom everybody links, ends up owning nearly the entire wealth in the society;

the evolution of the wealth distribution always preserves the initial wealth ranking, but

skews the amounts. Alternatively, a poor-linking division which is arbitrarily close to

the proportional division will have all agents other than n link to agent n; this continues

until agent n leap-frogs over agent n − 1. The same pattern is followed as the poorer

agents catch up with richer agents; thus, the wealth distribution does not preserve the

initial wealth ranking, and relatively frequent reversals of fortunes are possible. We see

this in the egalitarian case.

We set up the model in Section 2. The egalitarian solution is examined in Section

3. Section 4 considers the equal sacrifice case and Section 5 analyzes the proportional
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division rule. Finally dictatorships of both rich and poor are considered in Section 6.

Some concluding remarks are in Section 7.

2 The Model

The set of agents is {1, ..., n}, where n > 2. Let wt
i denote agent i’s wealth at period

t = 0, ...∞. Each agent i is initially endowed at time 0 with wi > 0 amount of wealth,

such that w1 > w2 > . . . wn. Let wt
i denote agent i’s wealth at period t > 0. It evolves

according to wt+1
i = wt

i + bti where bt−1
i denotes the total bargaining payoffs i will earn

from the links he has at period t − 1. It will be convenient to write the payoff as a

proportion of current wealth. We set zt
i = bti/w

t
i , which implies wt+1

i = (1 + zt
i)w

t
i .

The bargaining set at time t for agent’s i and j depends solely on their wealth at

time t and is the convex hull of {(0, 0), (0, wt
i), (w

t
j, 0)}.3 We denote the set by S(wt

i , w
t
j)

and its Pareto frontier by ∂(wt
i , w

t
j). Of course, the Pareto frontier is the segment

[(wt
i , 0), (0, wt

j)]. The origin will be taken as the status-quo point.

We will consider consider a variety of bargaining solution concepts. Let F be the

bargaining solution. Given a match with wealth levels (w,w′), the payoffs are F (w,w′) =

(F1(w,w
′), F2(w,w

′)). We will require that the solution F be Pareto optimal and that

it obey constant returns to scale.4 We also require that the solution only depend on the

wealth levels, not their order. In sum:

Assumption 1. We assume that F : R2
+ → R2

+ obeys:

1. F exhibits constant returns to scale.

2. (F1(w,w
′), F2(w,w

′)) = (F2(w,w
′), F1(w,w

′)).

3. F is on the Pareto frontier ∂(w,w′).

The first two conditions allow us to write F (w,w′) = (wg(w′/w), w′g(w/w′)) where

g(x) = F1(1, x).

3More general cases could be considered, but at the cost of substantially complicating the analysis.
4Recall that the bargaining set itself exhibits constant returns to scale.

5



Since the bargaining set is the convex hull of {(0, 0), (w, 0), (0, w′)}, Pareto optimality

implies F1(w,w
′)/w + F2(w,w

′)/w′ = 1. This can be rewritten g(w′/w) + g(w/w′) = 1.

As this holds for all (w,w′), it is equivalent to g(x) + g(1/x) = 1. It follows that any

function g : [0, 1] → [0, 1] with g(1) = 1/2 can be extended to such a function on R+.

The payoff from the match (w,w′) is (wg(w′/w), w′g(w/w′)). When g′ > 0 (g′ < 0),

the payoff to each agent is increasing (decreasing) in the other agent’s wealth. Thus

both agents will want to link to the richest available agent when g′ > 0. When g′ < 0,

they will both link to the poorest available agent. Things are more complex if g′ changes

sign.

Now consider the Egalitarian, Proportional (which coincides with Kalai-Smorodinsky

here), and Equal Sacrifice solutions, as well as the two dictatorial solutions.

The Egalitarian solution, E, is such that its outcome, E(w,w′), is on ∂(w,w′) where

Ei(w,w
′) = Ej(w,w

′). The Pareto frontier consists of non-negative (x, y) such that

x/w + y/w′ = 1. Setting x = y, we obtain

E(w,w′) =

(
ww′

w + w′
,
ww′

w + w′

)
.

In this case g(x) = x/(1 + x).

The Proportional solution, P , is such that its outcome P (w,w′) is on ∂(w,w′) such

that Pj(w,w
′)/Pi(w,w

′) = w′/w. It is easily calculated as

P (w,w′) =

(
w

2
,
w′

2

)
.

This yields g(x) = 1/2.

The Equal Sacrifice solution, ES, is such that its outcome, ES(w,w′), is on ∂(w,w′)

where w − ESi(w,w
′) = w′ − ESj(w,w

′). Solving, we obtain

ES(w,w′) =

(
w2

w + w′
,

(w′)2

w + w′

)
.

Here, g(x) = 1/(1 + x).

The dictatorial solutions yield a discontinuous g. The Dictatorship of the Rich, DR,

is defined as the most preferred point of the rich agent. The Dictatorship of the Poor,
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DP , is the most preferred point of the poor agent. The dictatorship of the rich yields

g(x) = 1 for x < 1 while the dictatorship of the poor gives g(x) = 0 for x < 1.

We say that a solution F is rich-linking if F1(w,w
′) is increasing in w′ and poor-

linking if F1(w,w
′) is decreasing in w′. The solution is neutral if F1(w,w

′) is unaffected

by changes in w′. Rich-linking solutions give everyone an incentive to link to the richest

available agent. Poor-linking solutions create incentives to link with the poorest.

Theorem 2. Let g be the function associated with a solution F . If g′ > 0, F is rich-

linking. If g′ < 0, F is poor-linking. Finally, if g is constant, F is neutral.

Proof. Since F1(w,w
′) = wg(w′/w), ∂F1(w,w

′)/∂w′ = g′(w′/w) and the result follows.

It follows that the egalitarian solution is rich-linking, the equal sacrifice solution is

poor-linking, and the proportional solution is neutral. The two dictatorial solutions

yield discontinuous functions g. The dictatorship is the rich is weakly poor-linking, but

does not particularly encourage linking to the poorest as the payoff is independent of

the poorer agent’s wealth. Similarly, the dictatorship of the poor is weakly rich-linking.

Whether g is increasing or decreasing also determines whether the richer or poorer

agent gains proportionately more. Assume w > w′. The rich agent’s payoff is wg(w′/w)

while the poor agent gets w′g(w/w′). Dividing by their current wealth levels, we find

the rich agent gains by the ratio g(w′/w) while the poor agent gains by g(w/w′). Since

w/w′ > w′/w, the poor agent gains proportionately more when g′ > 0 and the rich agent

gains proportionately more when g′ < 0. Both gain in the same proportion when g is

constant.

Monotonicity properties of g also inform us about gains when two agents have a link

to the same agent (typically either the richest or the poorest). Suppose w > w′ for

two agents and both link to an agent with w∗. The richer agent gains in proportion

g(w∗/w) while the poorer gains g(w∗/w′). When g is increasing, the rich agent will

gain proportionately less from linking to a third party than the poor agent. When g is

decreasing, the situation is reversed.
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3 Egalitarian Solution

The egalitarian solution is rich-linking. In equilibrium, each agent will have links only

with the richest other agents. If there are k such links, they will be with the k richest

other agents. Since there are no richer agents left unlinked, this is a best response by

each player.

There are n possible equilibria. In the first equilibrium (call it equilibrium E1) each

agent links to agent 1. There are (n− 1) links in all. There are (n− 1) other equilibria.

In equilibrium Ei, agent 1 links to agent i. It is the best response for each of the other

agents to link to 1, and agent i then links to the best unlinked agent, agent 2. This

equilibrium has n links.5

The dynamics of equilibrium E1 are the simplest, and we will first focus our attention

on the case where equilibrium E1 occurs in each period.

Note that both agents receive the same absolute gain from a link. We also know

that the gains agents receive from linking to agent 1 are decreasing in their own wealth.

Thus 2 gains more than 3, who gains more than 4, etc. Moreover, agent 1’s absolute

gain is equal to the total gains of all of the other agents. There are no changes in the

ordering of agents by wealth in this equilibrium. The fifth wealthiest individual remains

fifth wealthiest forever.

In this equilibrium, player i > 1 has only one link, and wealth evolves according to

wt+1
i = (1 + zt

i)w
t
i where zt

i is

zt
i =

wt
1

wt
i + wt

1

=
1

1 + (wt
i/w

t
1)
. (1)

In the case of player 1, there are (n− 1) links, and zt
1 is given by

zt
1 =

n∑
i=2

wt
i

wt
i + wt

1

=
n∑

i=2

1

(wt
1/w

t
i) + 1

. (2)

5As a real-life example consider paper submissions to the Econometric Society Meetings where each
author can submit at most one paper. Despite that restriction, the programs of these meetings are
replete with instances where several prominent authors ending up having several papers on the program
since many other authors deem their chances of being on the program much higher if they submit a
joint work with a prominent author.
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Under these dynamics, there is a steady state wealth distribution of (w1, w, . . . , w)

where w1/(w1 + w) = (n − 1)w/(w1 + w) so w1 = (n − 1)w. In that case z1 = (n −
1)/(w1 + w) = w1/(w1 + w) = zi for i 6= 1. As a result, wealth grows by a factor of[

w1

w1 + w
+ 1

]
=

[
(n− 1)w

(n− 1)w + w
+ 1

]
=

[
2n− 1

n

]
.

Before analyzing the dynamics, we note that for each t, wt
1z

t
1 =

∑n
i=2w

t
iz

t
i . In other

words, fully half of the social gain from linking is captured by the richest individual.

Let At be the total wealth of i = 2, . . . , n at time t. Suppose wt
1 > At. Then

wt+1
1 = wt

1 + zt
1 and At+1 = At + zt

1 since the growth is split equally between agent 1 and

everyone else. It follows that wt+1
1 > At+1. So if w1

1 = w1 > A1 =
∑n

i=2wi, w
t
1 > At for

all t and if w1 < A1 then wt
1 < At for all t.

Now we consider the behavior of the shares over time.

Theorem 3. In equilibrium E1, limwt
1/A

t = 1.

Proof. Suppose wt
1 > At. Then

wt+1
1

At+1
=
wt

1 + zt
1

At + zt
1

<
wt

1

At
.

Similarly, if wt
1 < At, then wt

1/A
t rises over time. In the first case the ratio is bounded

below by 1 and falls, in the second it is bounded above by 1 and rises. Either way it

must converge to a limit r.

Now consider the wt
1 > At case and suppose the limit r < 1. Then

r = lim
wt

1

At
= lim

wt+1
1

At+1
= lim

wt
1 + zt

1

At + zt
1

= lim
wt

1/A
t + zt

1/A
t

1 + zt
1A

t
.

It is easy to show 1/2 < zt
1/A

t < 1, so we may take a subsequence where zt
1/A

t converges.

Call the limit α. Then r = (r + α)/(1 + α), so r = 1. The case wt
1 < At is similar.

Theorem 4. In equilibrium E1, the wealth distribution converges monotonically and

without changes in order to the steady state wealth distribution examined earlier.
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Proof. Of course, wealth never decreases. We already know that wealthier agents get

larger absolute gains, which insures that the order doesn’t change.

Fix i ∈ {3, . . . , n} and let bt = wt
2/w

t
i . Now

wt+1
2

wt
2

= 1 +
wt

1

wt
2 + wt

1

< 1 +
wt

1

wt
i + wt

1

=
wt+1

i

wt
i

.

Thus bt ≥ 1 declines over time. Call the limit b. Then

b = lim
wt

2

wt
i

= lim
at+1

2

wt+1
i

= lim
wt

2

wt
i

[
1 + wt

2/(w
t
2 + wt

1)

1 + wt
i/(w

t
i + wt

1)

]
Now the wt

j/(w
t
j + wt

1) are bounded, so we may consider a subsequence where they

converge to c2 and ci for j = 2, i, respectively. Then b = b(1 + c2)/(1 + ci). Since b ≥ 1,

c2 = ci. But then, limwt
i/w

t
1 = limwt

2/w
t
1. Each individual other than 1 will receive

the same asymptotic share of wealth. We conclude that limwt
1/(w

t
1 + At) = 1/2 and

limwt
i/(w

t
1 + At) = 1/2(n− 1) for i 6= 1.

We now turn our attention to equilibrium E2. Again, the ordering of agents 4 though

n, each of whom only link with agent 1, doesn’t change. Agents 2 and 3 have both links

with 1 and with each other. The gain from their mutual link is the same, while agent 2

gains more by linking with 1. Thus agent 2 remains wealthier than agent 3. The only

complication arises if agent 2 overtakes agent 1. This doesn’t happen. Agent 1 has links

with both 2 and 3. Agents 1 and 2 receive equal gains from their mutual link, but agent

1 gains more from the link with 3. This insures that 1 remains wealthier than 2. Once

again, the wealth ordering remains unchanged over time.

There is only one possible steady state wealth distribution. Let (w1, . . . , wn) be a

steady state income distribution. Setting all growth rates equal shows wi = w for i > 3

and that w2 = w3. Additional calculations show that w = 0 and thus the only possible

steady state has wealth distribution (1/3, 1/3, 1/3, 0, . . . , 0)

The same arguments as in Theorem 4 establish that agents 4 and above receive the

same asymptotic share of wealth.

Theorem 5. In equilibrium E2, the wealth distribution will converge to the steady state

(1/3, 1/3, 1/3, 0, . . . , 0).
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Proof. We know that all agents remain in the same place in the wealth distribution.

Only the magnitude of their share may change. The key is to compare the growth

factors of agents 3 and 4. We consider time period t, but drop time subscripts for

simplicity. Agent 4 has growth factor 1 +w1/(w1 +w4) < 2. Agent 3 has growth factor

1 + w1/(w1 + w3) + w2/(w2 + w3). We claim agents 3’s growth factor is greater than 2.

It is enough to show w1/(w1 +w3) +w2/(w2 +w3) > 1. Clearing the denominators, this

is equivalent to w1w2 +w1w3 +w1w2 +w2w3 > w1w2 +w1w3 +w2w3 +w2
3. Simplifying,

this is equivalent to w1w2 > w2
3, which is true as w1 > w2 > w3.

Now agent 4’s share relative to agent 3 shrinks monotonically. If it converges to

a positive number, agent 4’s growth factor will be bounded below 2. But then his

share relative to 3 (and hence 1 and 2) must converge to zero, which is a contradiction.

Therefore the share of agents 4 and above must converge to zero.

Since agents 4 and above have shares that converge to zero, agent 1’s growth factor

will approach 1 + lim[wt
2/(w

t
1 + wt

2) + wt
3/(w

t
1 + wt

3)]. This will be no larger than the

asymptotic growth rate of agent 2, which itself will be no larger than the asymptotic

growth rate of agent 3.

Comparison of the growth rates shows that if the shares of agents 1, 2, and 3 do not

converge to 1/3 each, then agent 3’s growth factor is bounded above the growth factor

of 1 and 2. This implies 3 eventually becomes wealthier than 2, which is impossible.

Thus all three shares converge to 1/3, which is the steady state value.

For the other (n− 2) equilibria we have to distinguish two ways of keeping the same

equilibrium over time. One maintains linkages based on initial wealth, the other based

on current wealth. In the first case, the dynamics are similar to equilibrium E2, with all

of the single-linked individuals finding their shares (but not absolute wealth) converging

to zero, and the multiply-linked individuals each having shares of 1/3. In the second

case, the wealth ordering is no longer maintained over time. The wealthiest single-linked

agent will eventually be overtaken, at which point the link structure changes. As a result,

the dynamics become more complex. Of course, cases where the equilibrium selected is

different in every period are not easily analyzed.
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4 Equal Sacrifice Solution

The equal sacrifice solution is poor-linking. In equilibrium, each agent will have links

only with the poorest other agents. If there are k such links, they will be with the

k poorest other agents. Since there are no poorer agents left unlinked, this is a best

response by each player.

There are n possible equilibria. In equilibrium ESi, agent n links to agent i. It is

the best response for each of the other agents to link to n, and agent i then links to the

best unlinked agent, agent (n− 1). This equilibrium has n links. In the last equilibrium

(call it equilibrium ESn) each agent links to agent n. There are (n− 1) links in all.

As in the egalitarian case, the dynamics of equilibrium ESn are the simplest, and we

will focus our attention on the case where equilibrium ESn occurs in each period.

When players with wealth levels i and j are linked at t in the equal sacrifice case,

the player with wealth wt
i gets (wt

i)
2/(wt

i +wt
j) while the player with wealth level wt

j gets

(wt
j)

2/(wt
i + wt

j).

Consider equilibrium ESn. Wealth evolves according to wt+1
i = (1 + zt

i)w
t
i . In this

equilibrium, player i > n has only one link and zt
i is

zt
i =

wt
i

wt
i + wt

n

=
1

1 + (wt
n/w

t
i)
. (3)

In the case of player n, there are (n− 1) links, and zt
n is given by

zt
n =

n−1∑
i=1

wt
n

wt
i + wt

n

=
n−1∑
i=1

1

(wt
i/w

t
n) + 1

. (4)

Theorem 6. Suppose the players have initial wealth levels w1 > w2 > · · · > wn and that

zn−1 =
wn−1

wn−1 + wn

>
n−1∑
i=1

wn

wi + wn

= zn. (5)

Consider equilibrium ESn. If i > j > n, then player i’s wealth will grow at a faster

rate than player j’s wealth. Moreover, lim zt
i = 1 for i = 1, . . . , n− 1. Player n’s wealth

grows at a decreasing rate. Asymptotically, the wealth of i = 1, . . . , n− 1 grows at factor

2 while n’s wealth is asymptotically constant.
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Proof. We first show that wt
1 > wt

2 > · · · > wt
n and zt

n−1 > zt
n for every t. Proceed by

induction. First suppose it is true for time t. Then for i = 1, . . . , n− 2,

zt
i =

1

1 + (wt
n/w

t
i)

1

1 + (wt
n/w

t
i+1)

= zt
i+1.

Also,

zt
n−1 =

wt
n−1

wt
n−1 + wt

n

n−1∑
i=1

wt
n

wt
i + wt

n

= zt
n

which implies that wealthier agents grow faster. Thus wt+1
1 > wt+1

2 > · · · > wt+1
n .

Moreover,

zt+1
n−1 =

1

1 + (wnt+ 1/wt+1
n−1)

1

1 + (wt
n/w

t
n−1)

= zt
n−1

and

zt+1
n =

n−1∑
i=1

wt+1
n

wt+1
i + wt+1

n

<
n−1∑
i=1

wt
n

wt
i + wt

n

= zt
n.

Thus zt+1
n−1 > zt

n−1 > zt
n > zt+1

n . Since the induction hypothesis is true for t = 1, it is

true for all t.

In fact, we have shown that growth for the richest n−1 agents occurs at an increasing

rate while the poorest agent’s wealth increases at a decreasing rate. It follows that

limt→∞w
t
i/w

t
n = 0. Now lim zt

i = lim 1/(1 + (wt
n/w

t
i)) = 1. Thus the growth factor for

player i approaches 2.

Player n’s growth rate shrinks with lim zt
n = 0. Player n’s wealth at time t is

wt
n = wn

∏t−1
s=1(1 + zt

n). This will converge if
∑∞

s=1 log(1 + zt
n) converges. Since log is

concave, that series is dominated by
∑
zt

n Because of the exponential growth in wt
i ,

∑
zt

n

converges. This implies player n’s wealth approaches a constant.

This result still leaves the question of long-run income distribution open. We know

the bottom agent’s share of income falls to zero (even though income itself is rising)

since it converges to a constant while everyone else experiences exponential growth. The

question is: Does the wealthiest agent end up with 100% of the income, or do the other

growing agents keep some fraction?

In fact, the following theorem establishes that only the bottom agent’s income share

will tend to zero.

13



Theorem 7. Suppose the players have wealth levels w1 > w2 > · · · > wn and that

equation (5) holds. Consider equilibrium ESn. If i, j 6= n, then limt→∞w
t
i/w

t
j exists.

Proof. Now wt
i = wi

∏t−1
s=1(1 + zs

i ), so

wt
i

wt
j

=
wi

wj

s=t−1∏
s=1

1 + zs
i

1 + zs
j

.

Notice that each term of the product is greater than 1 because wealthier agents will

see their wealth grow at a faster rate. Convergence of the product is equivalent to

convergence of the sum
∞∑

s=1

log
1 + zs

i

1 + zs
j

.

Since the logarithm is concave, log x ≤ x− 1. It is then enough to show that

∞∑
s=1

[
1 + zs

i

1 + zs
j

− 1

]
=

∞∑
s=1

zs
i − zs

j

1 + zs
j

converges. Rewriting in terms of wealth levels, we obtain:

∞∑
s=1

[
wt

i(w
t
j + wt

n)− wt
j(w

t
i + wt

n)

(wt
i + wt

n)(wt
j + wt

n)

/ (
2wt

j + wt
n

wt
j + wt

n

)]
=

∞∑
s=1

wt
n(wt

i − wt
j)

(wt
i + wt

n)(2wt
j + wt

n)
.

The terms of the last sum are dominated by wt
n/(2w

t
j + wt

n). Since wt
n converges to

a constant and wt
j grows asymptotically by a factor of 2, the sum converges, proving

existence of the desired limit.

Thus income shares converge to non-zero constants for everyone except the poorest

individual, whose share goes to zero.

If equation (5) fails to hold, it becomes difficult to characterize the long-run behavior

of the economy. Consider the case where there are 3 players and the initial wealth

distribution is (6, 5, 4). In this case, it is possible to show that no player ever gets more

than 40% nor less than 26% of the wealth, and that over time, players continue to shift

positions in the income distribution. The income distribution does not converge to a

limit.
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5 Proportional Solution

When players with wealth levels wt
i , w

t
j are linked in the Proportional case, they get a

gain of wt
i/2, wt

j/2, respectively. These gains do not depend on whom they link with,

but only on the fact that there is a link. This means that there is no incentive to link

in any particular direction and that there are many equilibria. We will consider two

equilibria: circular links and random links.

In the circular link, player i links to i+ 1 for i = 1, . . . , n− 1 and player n links to 1,

completing the link circle. Each player has exactly two links. The gain to player i is wi,

so in period 2 player i has wt
i = 2t−1wi. Each player’s wealth doubles in every period

and each continues to hold the same share of total wealth.

The random case is somewhat more interesting. In this case, each player indepen-

dently makes a random choice of which player to link with. There is an equal probability

(1/(n− 1)) of linking with any player.

Theorem 8. In the random equilibrium, each player’s wealth grows at an average rate

of 2− 1/(n− 1).

Proof. We will start by examining the gains received by one of the players, i. Let

p = 1/(n− 1) and q = 1− p. For each of the other players, there is a chance p of linking

with i and chance q of not linking. The chance that i will have exactly j incoming links

is Cn−1
j pjqn−1−j where Ck

j = k!/(k − j)!j! is the number of combinations of k things

taken j at a time.

Now consider the outgoing link. There are two ways we can get j total links. There

could be j incoming links and a redundant outgoing link. This happens with probability

j/(n− 1) when there are j incoming links. Or there could be j− 1 incoming links and a

non-redundant outgoing link. This happens with probability [(n−1)−(j−1)]/(n−1) =

(n− j)/(n− 1) when there are j − 1 incoming links.

The probability of exactly j total links is

j

n− 1
Cn−1

j pjqn−1 +
n− j

n− 1
Cn−1

j−1 p
j−1qn−j = Cn−2

j−1 p
j−1qn−j−1
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Let βj = Cn−2
j−1 p

j−1qn−j−1 be the probability of exactly j links. Now

n−2∑
j=0

βj+1 =
n−2∑
j=0

Cn−2
n pjqn−2−j = (p+ q)n−2.

Take the partial derivative with respect to p and set q = 1− p to obtain

n−2∑
j=0

jCn−2
n pj−1qn−j−2 = n− 2.

Then the expected number of links is

n−1∑
j=1

jβj =
n−2∑
j=0

(j + 1)βj+1 =
∑

βj+1 + p
∑

jβj+1 = 1 +
n− 2

n− 1
= 2− 1

n− 1
.

Slightly fewer links will be formed in the random case than in the circular case.

Now let ψ be the vector distribution of number of links and ψt its realization at time

t. The wealth of agent i at time t + 1 is then wt
i = wi(1 + ψ1

i /2) · · · (1 + ψt
i/2). Now

consider

logwt+1
i = logwi +

t∑
s=1

log(1 + ψs
i/2).

Let Xs
i = log(1 + ψs

i/2). Then X is an iid vector random variable. The law of large

numbers tells us that
∑t

s=1X
s
i /t converges to 2− 1/(n− 1).

On average, each player’s wealth grows at the same rate. This does not, however,

guarantee the income distribution remains unchanged over time. A run of bad luck

could permanently lower the share going to some agents while a run of good luck could

permanently raise it.

6 Dictatorship

The dictatorship of the rich is easiest to analyze. If w > w′, DR(w,w′) = (w, 0). Each

agent that can, links to someone poorer. As far as payoffs are concerned, it doesn’t

matter who the richer agent links to as long as that agent is poorer. Every such link
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leads to 100% growth. Only the poorest individual cannot profitably link. As a result,

wt
i = 2twi for i = 1, . . . , n− 1 and wt

n = wn.

The dictatorship of the poor is a bit more complex. If w > w′, DP (w,w′) = (0, w′).

Each agent that can, links to someone richer. Again, the identity doesn’t matter. The

richest agent cannot profit from any links and retains the same wealth. The others get

100% growth.

To reduce technical complications, we initially presume that wi/wj is never a power

of 2. Let t1 be such that 2t1−1w2 < w1 and 2t1w2 > w1. At time t1, agent 2 becomes

the wealthiest individual. But then wt1+1
2 = wt1

2 . Since agent one is more than half as

wealthy as agent 2 at time t1, person 1 vaults over agent 2 in the next period.6 Each

time an agent becomes leader, his wealth is unchanged in the next period and someone

else (with a wealth greater than 1/2 the leader’s) leapfrogs over him. Thus the group

that exchange leadership see their wealth grow by a factor that averages less than 2.7

Eventually, even the poorest individual will join the leader group as his wealth grows by

factor 2 until he becomes leader. We sum this up as follows.

Theorem 9. Suppose DP (a, b) = (0, b) when a > b. If wi/wj is never a power of 2,

wealth will asymptotically grow by a factor of 2(n−1)/n. Every agent will be wealthiest

infinitely often, with the poorest agent having asymptotic wealth greater than 1/2 that of

the richest agent.

When some wi/wj is a power of two, the possibility of a tie in wealth will slow down

overall growth. For example, consider the initial distribution of (4, 2, 1). In period 2, the

distribution is (4, 4, 2). Then (6, 6, 4), followed by (9, 9, 8), (13.5, 13.5, 16), (27, 27, 16),

etc. The possibility of multiple ties adds additional complexity.

7 Concluding Remarks

To our knowledge, ours is the first paper that studies the evolution of wealth distribution

of a society in the context of dynamic network formation. It highlights the role that

6Note that agent 3 may become the wealthiest individual at this point.
7In fact, it averages 2(l−1)/l where l is the current number in the leader group.
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different division rules play in such dynamics. With some division rules, the society

converges to a particular limit wealth distribution monotonically without changes in

order, regardless of the initial wealth wealth distribution. With certain other division

rules, the wealth order of individuals keeps changing constantly without converging to

any particular limit distribution. Oddly, the egalitarian division rule results in a very

un-egalitarian limit distribution of wealth, while a very un-equal division rule may lead

to a much more egalitarian limit distribution of wealth (depending on the initial wealth

distribution). Division rules that are arbitrarily close to the Proportional division rule,

lead to distinctly different evolution paths of link-preference, evolution of wealth, and

limit distributions. Remarkably, all of this complex dynamics occur within the confines

of a simple triangular wealth possibilities set.

Many papers in the network formation literature paid close attention to the circum-

stances under which individual incentives lead to efficient networks. It became clear that

the total value in a network does not only depend on who is connected but how these

individuals are connected. In this paper too one can observe an important link between

certain equilibrium network formations and (in)efficiency. Star network formations that

arise in equilibrium in the contexts of both rich-linking and poor-linking division rules,

fall short of efficiency (i.e., of reaching the total possible maximum value). Efficiency in

those contexts is restored when almost star formations arise in equilibria (where multiple

agents have multiple links).
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