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Array Decomposition-Fast Multipole Method for finite

array analysis
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[1] An innovative approach is presented for analyzing finite arrays of regularly spaced
elements. We review the recently proposed Array Decomposition Method, which exploits
the block-Toeplitz property of regularly spaced arrays for significant storage reduction. To
further reduce storage, in this paper we incorporate a multipole expansion to treat distant
element interactions. The suggested approach overcomes the matrix storage bottleneck
associated with integral equation methods, resulting in fixed and minimal matrix storage
for any sized array (on the same order as the storage of a single array element). Hence, fast
and rigorous analysis of very large finite arrays can be accomplished with limited
resources. INDEX TERMS: 0604 Electromagnetics: Antenna arrays; 0644 Electromagnetics: Numerical

methods; 0669 Electromagnetics: Scattering and diffraction; KEYWORDS: finite array decomposition, Fast

Multipole Method, tapered-slot antenna

Citation: Kindt, R. W., and J. L. Volakis (2004), Array Decomposition-Fast Multipole Method for finite array analysis, Radio

Sci., 39, RS2018, doi:10.1029/2003RS002887.

1. Introduction

[2] The Fast Multipole Method (FMM) represents a
significant advance in generalized electromagnetic mod-
eling [Coifman et al., 1993]. For general problems, the
O(N log N) memory requirements of multilevel FMM
(MLFMM) can make large problems solvable, whereas a
conventional approach would be hindered by the O(N2)
storage limitations. The net benefit of conventional
FMM is that it makes dense matrices sparse. Thus, for
very complex problems, such as large finite arrays with
arbitrary and intricate antenna elements, a generalized
FMM approach can give significant memory savings. In
reducing the matrix storage requirements, FMM transfers
the burden to the iterative solution process, increasing
the cost of each iteration. Hence, excessive iterations
would lead to a negative impact on solution speed, a
problem that can easily occur with a lack of effective
preconditioning. Moreover, even though conventional
MLFMM features O(N log N) CPU and memory require-
ments, for increasingly large problems one is still hin-
dered by the matrix storage bottleneck.

[3] The obvious shortcoming of applying a general-
ized solution method to an array problem is that this
approach fails to exploit known redundancies in the
problem geometry. In a recent paper [Kindt et al.,
2003], a method referred to as the Array Decomposition
Method (ADM) was proposed and shown to signifi-
cantly reduce storage when using the Finite Element-
Boundary Integral (FE-BI) method to model array
elements. ADM features O(nm2) memory requirements
(n being the number of array elements, m being the
number of element unknowns, N = nm), which is
comparable with FMM for large problems and small
m. Further, ADM significantly increases solution speed
by applying the fast Fourier transform (FFT) to the
integral equation matrix operations, and demonstrates
superior convergence rates (over conventional FE-BI)
due in part to the symmetric matrix layout having a
better disposition towards effective preconditioning
schemes [Kindt et al., 2002]. However, like FMM,
ADM shares the same linear increase in memory
requirements as the array size increases.
[4] In this paper, we present a hybrid approach to

finite array-type problems that combines the benefits of
array decomposition with the benefits of a multipole
expansion for treating distant interactions [Kindt and
Volakis, 2003a, 2003b]. The analysis method presented
here is innovative for several reasons. First, the combi-
nation of near-zone array decomposition with multipole
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expansion for distant elements has the effect of truncat-
ing the near-zone matrix storage. That is, near-zone
matrix size is fixed for any sized array of regularly
spaced and arbitrary elements. This results in extremely
fast matrix fill times, and for all practical purposes,
matrix storage requirements are on the same order as the
storage of a single array element, namely, O(m2) com-
pared with O(n2m2). Hence, for large problems, storage
is dominated by the solution vector and not the matrix.
That is, for a problem having an overall solution vector
of length N, the total storage reduces to O(N). In
addition, since each element of the array can be modeled
with an identical unit cell, it is only necessary to
compute a single set of Fourier coefficients for basis
functions corresponding to the unit cell, as compared to
the conventional FMM which requires computation of
the coefficients for every array element (approximately n
sets). Moreover, the far-zone element interactions (trans-
lations) have an inherent Toeplitz property corresponding
to the array lattice that allows the FFT to be applied in
accelerating the solution process, similar to what is done
in the Adaptive Integral Method (AIM) [Bleszynski et al.,
1996] and in the FMM-FFT method [Wagner et al.,
1997]. This hybrid approach, to be referred to as
the Array Decomposition-Fast Multipole Method
(AD-FMM), benefits from the same disposition towards
effective preconditioning as ADM [Kindt et al., 2003],
meaning solution convergence in relatively few itera-
tions. Most importantly, AD-FMM is completely rigor-
ous, providing accurate solutions to large coupling
problems with negligible resource requirements. As an
example application, with AD-FMM it is possible to
excite a single array element and measure the resulting
voltages at other ports of the array.
[5] In this paper, we give an overview of how to

implement AD-FMM and then compare the theoretical
storage and CPU requirements in the context of other
methods (conventional FE-BI, FE-BI with MLFMM, and
FE-BI with ADM). Subsequently, we examine the bene-
fits of AD-FMM for several practical example problems
involving tapered-slot antenna arrays. For a short list of
historic and recent methods for array analysis, the
interested reader is referred to Kindt et al. [2003].

2. Underlying Formulation and

Decomposition Method

[6] The presented method can be generalized to any
integral equation formulation. Here, we choose to apply
the technique to the hybrid FE-BI method, as it allows us
to treat inhomogeneous materials and arbitrary element
geometries. We represent each individual array element
as a closed volume, modeling the inside of the volume
with the Finite Element Method (FEM) and discretizing

the boundary with surface elements treated via integral
equations.
[7] To present the method, let us begin with the

generalized FE-BI system given by

AII AIS 0

ASI ASS B

0 P Q

2
66664

3
77775

Ei

Es

Hs

8>>>><
>>>>:

9>>>>=
>>>>;

¼

bi

bs

be

8>>>><
>>>>:

9>>>>=
>>>>;
: ð1Þ

In (1), the AII,IS,SI,SS and B submatrices are sparse FEM
operators, whereas the P and Q sub-matrices are dense,
and refer to the BI enclosing the array element. Also, the
E and H column vectors refer to the discrete electric and
magnetic fields within and on the element boundary.
Further, the right-hand side {b} vectors refer to internal
and external excitations to the system. The details of the
FE-BI method are not within the scope of this paper, and
the interested reader is referred to Sheng et al. [1998] and
Volakis et al. [1998].
[8] For a general FE-BI or FE-BI with MLFMM

approach to a finite array problem, the matrix system
will conform to (1). In other words, the matrix is
constructed and grouped by operator type. However, this
expansion has no inherent symmetry, and precondition-
ing a large matrix system of this type is not expedient.
Consequently, in a recent paper [Kindt et al., 2003] an
alternative expansion was suggested for finite array
problems. The suggested expansion takes the form

a½ �110 a½ �120 � � � a½ �1n0

a½ �210 a½ �220 � � � a½ �2n0

..

. ..
. . .

. ..
.

a½ �n10 a½ �n20 � � � a½ �nn0

2
666666664

3
777777775

xf g1

xf g2

..

.

xf gn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

bf g1

bf g2

..

.

bf gn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

;

ð2Þ

where the diagonal terms [auu0] are full FE-BI coupling
systems given by

AII
uu0 AIS

uu0 0

ASI
uu0 ASS

uu0 Buu0

0 Puu0 Quu0

2
66664

3
77775; u ¼ u0; ð3Þ
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and the cross terms are the interelement coupling
matrices given by

0 0 0

0 0 0

0 Puv 0 Quv0

2
66664

3
77775; u 6¼ v0: ð4Þ

The unknown vector can be expanded as

xf gu¼ Ei
� �

u
Esf gu Hsf gu

n oT

; ð5Þ

and likewise

bf gu¼ bi
� �

u
bsf gu bef gu

n oT

: ð6Þ

[9] In (2), the system has been recast and grouped by
the physics of element interactions. This intuitive layout
leads to the strong self-coupling terms being located
along the main diagonal of the matrix system with the
nearest neighbor coupling terms adjacent to the main
diagonal (for consecutively numbered array elements).
This matrix restructuring induces a degree of symmetry
that (1) does not have. As suggested in Kindt et al.
[2003], an LU-decomposition of the self-cells [auu0]
along the diagonal of the matrix can be used as a
highly effective block-diagonal preconditioner. Perhaps
more importantly, this layout results in a block-Toeplitz
matrix structure, allowing us to easily reduce the dense
integral equation matrix storage from O(n2m2) down to
roughly O(nm2) with a simple array decomposition.
Moreover, the FFT can be used to significantly speedup
the matrix-vector product operations of the iterative
system solution.
[10] The material presented thus far accounts for the

near-zone array decomposition portion of AD-FMM.
This decomposition approach is described in greater

detail in Kindt et al. [2003]. To further reduce storage
requirements and allow for practical array simulation, we
next introduce a multipole expansion on the array
elements, with clusters conforming to the same grid used
for our near-zone decomposition. We then apply the
same decomposition principles to the far-zone interaction
of the elements.

3. Multipole Expansion

[11] It is assumed that the reader has sufficient back-
ground in the Fast Multipole Method, and the interested
reader is referred to Coifman et al. [1993]. As described
in Kindt et al. [2003], ADM treats every element of the
array as being in the near-zone, resulting in a linear
increase of the matrix storage, proportional to O(nmBI

2 ),
where mBI is the number of unknowns for the boundary
integrals. However, this rigor is not necessary or prudent,
as distant array interactions can be treated with far-zone
approximations at little cost to solution accuracy. In the
proposed AD-FMM approach, each element of the array
is treated as an inclusive cluster or unit cell [Kindt and
Volakis, 2003a, 2003b]. A regular clustering grid con-
forming to our array lattice is created and used to expand
the basis functions of each array element around the
center of the element’s lattice position (see Figure 1).
[12] The unit cluster has a maximum diameter of

extent that encompasses every basis function of the array
element, denoted here as D. The degree to which these
cluster diameters overlap determines the overall cost of
the near-zone storage. In an array of identical elements,
each element will have a unique field solution, but
identical basis representations, denoted as a(�r), where �r
is the usual position vector referenced to the center of the
array element or lattice grid. These basis functions have
an equivalent far-zone representation, which can be
calculated via the integral

V w; k̂
� �

¼
Z

S

a �rð Þei�k�rdS: ð7Þ

Again, as all clusters are identical, this is a single
calculation used to represent all array elements. In this
expression, w = 1..m, the basis function index. Note also
that �k = k0k̂, where the quantity k0 is the free-space wave
number and k̂ is a single k-space direction in the range
k̂ = 1..K. The number of k-space directions K ’ 2L2

required for accurate far-zone representation in q and f
has already been considered in the development of
FMM, where L is given by [Coifman et al., 1993; Sertel
and Volakis, 1999]

L ¼ k0Dþ aL ln k0Dþ pð Þ: ð8Þ

Figure 1. Depiction of element clustering grid.
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Here, aL is chosen to generate the desired accuracy for
the application type, but should be between 1 and 10. As
usual, it is required that L > k0D, which has a direct effect
on the required near-zone storage. It is important to note
that the required number of spectral points to represent
the element in the far-zone is dependent on the electrical
size D of the array element, and has no relation to the
complexity of the element features.
[13] To couple distant elements via the FMM, it is

necessary to precompute the translation operators to map
the currents of any given element of the array onto any
other element. If we impose regular spacing of the
element clusters and sequential numbering in each di-
mension, the unique translation operators are defined by
the difference in their array numbering, and are given by
[Coifman et al., 1993]

T qr; k̂
� �

¼ k0

4pð Þ2
XL
l¼1

il 2l þ 1ð Þh 1ð Þ
l k0 �rrj jð ÞPl k̂r̂r

� �
: ð9Þ

In this expression, hl
(1) is a spherical Hankel function of

the first kind, Pl is a Legendre function of order l, and �rr
is the vector separating the source and testing array
elements. In the method proposed here, each unique
vector between source and testing array elements �rr is
given a unique Toeplitz storage index qr. Consequently,
T(qr, k̂) will be a nearly full matrix of the same
dimension as the antenna array, plus one additional
dimension for k̂. The precomputed translation operators
are preserved in Toeplitz storage format for later
acceleration of the translation/interaction of array
elements via the FFT. Because the entire structure has
been allocated for the FFT acceleration, the placeholders
corresponding to interactions between nearby array
elements (handled in the near-zone) are filled with zeros.
This introduces some inefficiency, but is slight in the
context of large array structures. The FFT acceleration
process is described later in this section.
[14] To use (9), it is necessary that L is not larger than

k0j�rrj, otherwise the Hankel function will oscillate,
causing inaccuracies in the translation operators. This
imposes the primary criterion that determines which
elements can be treated as being in the far-zone. Specif-
ically, it must be that

Rnear > L=k0: ð10Þ

Any two array elements separated by less than Rnear will
be treated as being in the near-zone, and thus contribute
to matrix storage. While a larger L gives greater
accuracy, it also increases Rnear, the necessary distance
between array elements for which the far-zone expansion
is applicable.

[15] Given the above discussion, to perform the equiv-
alent of the matrix-vector product using far-zone inter-
actions of the array elements, the following steps are
taken. First, the far-zone fields of each array element are
generated from the precomputed far-zone basis function
expansions and stored in a vector grid via the step

su k̂
� �

¼
Xm
w¼1

V* w; k̂
� �

xf gu; ð11Þ

where {x}u is the unknown current vector of array
element u, u = 1. . .n in an n element array of arbitrary
dimensions. Recall that {x}u contains coefficients
corresponding to each basis function w = 1..m of the
array element u. For this implementation, s(u, k̂) will be a
matrix with the same dimensions as the array, plus an
additional dimension for k̂. In the notation used here,
su(k̂) signifies all k-space fields k̂ = 1..K for array
element u, whereas sk̂(u) signifies all array element
signatures u = 1..n at the single k-space direction k̂. The
coupling between source and testing elements is then
performed (for each k-space direction) via the arbitrary-
dimensional convolution

gk̂ uð Þ ¼ Tk̂ qrð Þ * sk̂ uð Þ: ð12Þ

For large systems, this is an expensive operation, but can
easily be accelerated with K FFT operations of the same
dimension as the finite array. More specifically, given a
finite array with NDIMS dimensions (e.g., NDIMS = 1, 2,
or 3, etc.), for each k-space direction, there will exist
a translation matrix Tk̂(qr) of dimension (2n1 � 1) �
(2n2 � 1)� � � � � (2nNDIMS � 1), where nd is the number
of array elements in dimension d (d = 1..NDIMS). For
each k̂ direction, we precompute the Fourier transform
of Tk̂(qr) using an FFT of the same dimension,
to give ~Tk̂(qr). For each matrix-vector product operation
then, the convolution in (12) is replaced with 2K FFT
operations on sk̂(u) (forward and inverse) of a size

matching ~Tk̂(qr), plus K
QNDIMS

d¼1

(2nd � 1) point-by-point

multiplications between ~Tk̂(qr) and ~sk̂(qr) (the FFT of
sk̂(u)). The overall savings of this alternative solution
approach is proportional to the size of the array. The
coupling to each testing basis of element u (from other
array elements in the far-zone) is then distributed via
incoming plane waves as

bf gu¼
Z

�

V w; k̂
� �

gu k̂
� �

d�; ð13Þ

where d� is the incremental portion of the solid angle
(sin qdqdf). Thus, {b}u represents the portion of the
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matrix-vector product of the operation in (2) carried out in
the far-zone. This result is simply added to the near-zone
contribution of the matrix-vector product operation to
give the overall contribution. The near-zone interaction of
nearby elements and interaction of basis functions within
each of the elements are performed via a standard matrix-
vector multiplication. We remark that the storage expense
of the near-zone terms is not too excessive when the
Toeplitz property of the array decomposition is used.
After the FMM expansion is applied, many of the array
interactions are no longer carried out in the near-zone.
The remaining unique near interaction terms can be
found in a tight cluster in the upper left-hand corner
of (2). Because of the block-Toeplitz property of the
near-zone matrix, this allows the near interactions to
approximately be described by the block convolution
operation

a½ �210 a½ �110 a½ �120
� �

* xf gT¼ bf gT : ð14Þ

From this, it can be seen that the near zone storage
requirement for an entire array is within an order of
magnitude of the storage required for a single array
element, [a110]. Typically, for l0/2 element spacing, one
might expect near terms from one or two neighboring
elements in each dimension. However, for elongated
array elements, the near-zone influence will increase.
We also remark that because of the truncated near-zone
storage, it is not possible to apply the FFT in
accelerating the near-zone interactions (as is done in
standard ADM). However, since the number or near-
zone terms is now small, there is no advantage in using
the FFT.

4. Storage Cost and Performance Analysis

[16] In this section, we explicitly evaluate the storage
and computational cost of AD-FMM and compare the
hybrid method with other methods. We evaluate the two
costs (storage and computation) separately, since it is

insightful to highlight the differences between the vari-
ous approaches. Consider a volumetric antenna array
element of arbitrary materials and shape. The element is
modeled as having a bounding surface S and a volume V
(see Figure 2). With FE-BI, the array element is sub-
divided into cells aligned along faces and edges. In our
case, we tessellate the volume V with curvilinear hex-
ahedral cells, which by default divide the surface S into
curvilinear quadrilateral patches. This meshing proce-
dure is depicted in Figure 2 for an antenna element used
in finite arrays (in this case, a tapered-slot antenna).
[17] Let us suppose that upon tessellation and assign-

ment of boundary conditions there are mFEM FEM edges
or unknowns and mBI boundary integral unknowns for
each antenna element. Roughly speaking, we will have
O(mFEM) FEM storage and O(mBI

2 ) boundary integral
storage in a conventional FE-BI formulation for this
single element. Now let us consider an arbitrary array
of n antennas, with the total number of FEM unknowns
equal to NFEM = nmFEM, and the total BI unknowns equal
to NBI = nmBI. For a conventional FE-BI approach, we
find that we have O(nmFEM) FEM storage, and O(n2mBI

2 )
boundary integral matrix storage.
[18] Next, let us consider a generalized FMM expan-

sion of the same array problem, again implemented for
FE-BI. Like the conventional FE-BI, FMM will have
O(nmFEM) FEM storage for the finite array. Regarding
the integral equation terms, FMM reduces the problem
storage down to O(nmBI log(nmBI)) for a multilevel
implementation.
[19] For ADM, since the method exploits the repeat-

ability of the array elements, the FEM storage is only
O(mFEM), the same as for a single element. Thus, the
FEM storage is n times less than that of conventional
FE-BI or even FE-BI with FMM. For the boundary
integral equation terms, the storage is O(nmBI

2 ), which
is typically larger than the corresponding FMM storage
for large array elements. Though it may require slightly
more BI storage, ADM has the advantage that matrix fill
times are considerably faster than FMM because of much
lower overhead. As will be shown later, the same is true
for solution times.
[20] For AD-FMM, like standard ADM, the FEM

storage is merely O(mFEM), because the decomposition
recognizes that each element has the same FEM coef-
ficients. However, unlike FMM or ADM, both of which
experience linear increase in the BI matrix storage, AD-
FMM has only O(mBI

2 ) integral equation coefficient
storage, i.e., the same order of magnitude as that of a
single element. This is remarkable because it will allow
solution of very large finite arrays using rigorous means.
However, this is with some caveats, because additional
overhead exists for the AD-FMM approach to finite
arrays verses the simpler analysis of a single array
element. For example, it is necessary to store the far-

Figure 2. Tessellation of a tapered-slot antenna
element.
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zone signatures of the array element for AD-FMM.
Fortunately, for an array of identical elements, the
signatures are identical as well, and only one set needs
to be stored. It is also necessary to precompute the
translation operators for interacting the elements in the
far-zone. However, as the clusters are aggregated to a
regular grid, the translation operators have a Toeplitz
property with the required storage of O(nK), K being the
number of points or k-space directions used to represent
the element signatures in the far-zone. Upon implemen-
tation, for very large problems the memory requirements
for storing solution vectors, excitation vectors, and solver
work vectors will exceed the storage of the translation
operators, assuming that the number of far-zone direc-
tions K will be less than the number of surface unknowns
per cluster, or K < mBI. Hence, the total storage require-
ments for larger problems will be proportional to the
length of the overall solution vector, or O(n(mFEM +
mBI)) = O(N).
[21] A performance analysis on the FEM portion of

the matrix-vector product reveals that both conventional
FE-BI and FMM have an O(nmFEM) cost. However, both
ADM and AD-FMM presolve or precondition the FEM
portions of the overall matrix system prior to the iterative
solution process [Kindt et al., 2003]. Iterations over FEM
matrices are typically costly due to the conditions of
these systems. For ADM and AD-FMM, this cost is
avoided entirely.
[22] The computational cost of the BI portion of the

matrix-vector product for conventional FE-BI is propor-
tional to its storage cost of O(n2mBI

2 ). The same principle
applies to MLFMM, which has a computational cost of
O(nmBI log(nmBI)). However, we would like to remark
that this estimate does not reflect the cost of excessive
iterations. The computational cost of ADM is based on
mBI FFT operations of cost nlogn, plus n matrix-vector
products with mBI

2 operations. This gives a combined
total cost of O(nmBI

2 + mBInlog(n)). Though it is hard
to make a direct comparison, in practice there is very
little overhead for ADM, resulting in significantly faster
solution times as compared to FMM or FE-BI for finite
arrays. This can be directly observed in the results of the
next section.
[23] By comparison, AD-FMM has a near-zone com-

putational cost of O(nmBI
2 ), plus a far-zone cost of

roughly O(Kn log(n)). For large problems, the far-zone
cost is largely dominated by the translation operations,
which can be reduced to O(nlogn) operations using the
FFT. In the same way that the FEM operations can be
precomputed, it is also possible to avoid a large fraction
of the BI matrix-vector product cost for the near-zone
interactions using block-diagonal preconditioning. The
fractional savings depends on the array element size and
spacing. For example, in a case where the element
spacing is larger than the array element diameter, the
near-zone CPU cost is reduced to zero, as the near-zone
interactions can be entirely precomputed. A cursory
glance shows that the computational cost of ADM and
AD-FMM are on par. Assuming that K < mBI, one may
expect the solution times for AD-FMM to be faster than
ADM. However, due to the additional overhead cost
associated with AD-FMM, whether or not AD-FMM is
faster will be implementation dependent. The storage
cost and performance analysis of the various methods
discussed here are summarized in Table 1.

5. Results

[24] In this section, we evaluate the storage cost and
performance of the various methods we discussed up to
this point using a specific array example. The analysis is
carried out on planar arrays of increasing size ranging
from 3 � 3 to 64 � 64. To form the array, the antenna
element (see Figure 2) is placed on a regularly spaced
grid of 6.25 centimeters in x and y – exactly l0/2 at
2.4 GHz, the frequency used in this analysis. The
element is a double-sided exponentially tapered-slot
antenna, fed via stripline and matched with a double-Y
balun (not depicted here). The element dimensions are
11.45 � 5.0 � 0.1524 cm. For the evaluation cases, this
element is modeled with mFEM = 805 and mBI = 892
unknowns, based on the tessellation depicted in Figure 2.
We remark that modeling structures of this type is
challenging due to the detailed feed characteristics and
the electrically large element size, as it can easily lead to
edge ratios of 50 to 1. For reference, the storage cost of
this single element is about 14MB.
[25] To begin, we compare the E-plane and H-plane

patterns for the 5 � 5 array shown in Figure 3. The
corresponding patterns for all methods are shown in

Table 1. Storage Cost and Performance Analysis of a Finite Array Problem

Storage
Cost FEM Storage Cost BI

Computational
Cost - FEM Computational Cost - BI

Conventional FE-BI O(nmFEM) O(n2mBI
2 ) O(nmFEM) O(n2mBI

2 )
Conventional MLFMM O(nmFEM) O(nmBI log(nmBI)) O(nmFEM) O(nmBI log(nmBI))
ADM O(mFEM) O(nmBI

2 ) - O(nmBI
2 + mBIn log(n))

AD-FMM O(mFEM) O(mBI
2 ) (small array) - O(nmBI

2 + Kn log(n))
O(nmBI) (large array)
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Figure 4, and it can be seen that the results from all
methods are nearly identical. While a 5 � 5 array may
seem small, for this electrically large element a MoM or
conventional FE-BI solution requires roughly 8.5GB of
matrix storage (apart from the challenges associated with
the poor conditioning of the matrix). For equivalent
comparisons, the analysis was performed on a 800MHz
Itanium with 12GB of RAM.
[26] Of particular interest in this comparison is the

required matrix storage for each problem, the matrix fill
time, the number of required iterations for solution, as
well as the full iterative solution time for each of the
methods. Each figure of merit has its own virtues. The
storage requirements are a measure of how well
the method can be implemented on various platforms,
in the sense that someone with no memory constraints
may opt to choose the method with the fastest solution
times. The matrix fill time is significant as well, as this
affects the overall solution time. The number of required
iterations reflects on the matrix conditioning as the effect
of the employed matrix preconditioning method, whereas
the CPU time per iteration reflects directly on the CPU
speed of the method. The results for the various figures
of merit on several example arrays of different sizes are
summarized in Table 2.
[27] For many of the test cases, the more expensive

methods (FE-BI, MLFMM) cannot solve the problems
with the allotted resources (or time constraints), and the
required resources were projected where possible. For
conventional FE-BI and FE-BI with MLFMM, it is
nearly impossible to project the solution times. Precon-
ditioning is difficult for these large systems, and the
number of iterations for convergence is very large (even
if the system converged at all). The results for AD-FMM

given in Table 2 speak for themselves. AD-FMM is
superior to all other methods compared here for finite
array analysis. In all test cases, a block-diagonal pre-
conditioner was employed with the BICGSTAB(L) iter-
ative solver, having the equivalent of eight matrix-vector
product operations per iteration [Sleijpen and Fokkema,
1993]. We remark that the overall storage cost for
AD-FMM consists of the matrix storage, the unknown
and excitation vector storage, the far-zone basis repre-
sentations and the precomputed translation operators.
While the 64 � 64 array required only 193MB for
near-zone matrix storage, a total storage of 432MB was
required for carrying out the solution (not counting
solver work vectors). This particular problem has crossed
the size threshold beyond which unknown and excitation
storage exceeds near-zone matrix storage. As a conclu-
sion, we performed here the rigorous analysis of a
7-million unknown problem using less than half a
gigabyte of total storage. The mere fact of being able
to rigorously solve such large systems in a reasonable

Figure 3. The 5 � 5 array used for consistency
comparisons.

Figure 4. Pattern comparisons of each method for the
5 � 5 array. (a) E-plane and (b) H-plane.

RS2018 KINDT AND VOLAKIS: ARRAY DECOMPOSITION-FAST MULTIPOLE METHOD

7 of 9

RS2018

 1944799x, 2004, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2003R

S002887, W
iley O

nline L
ibrary on [23/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



amount of time is significant in itself. What is not shown
in the table is the overhead time associated with the FMM
based methods necessary to calculate and fill the far-zone
operators. For FE-BI with MLFMM, this cost can be
quite high. However, for AD-FMM the overhead cost is
quite low (due to the hybrid decomposition approach).
[28] Finally, we remark that the matrix preconditioning

for the array decomposition methods is quite good, as
evidenced by the low number of iterations (to achieve
1% solution error). As mentioned, good preconditioning
is critical for iterative solution methods, especially for
FMM methods that shift computational burden to the
iterative process.

6. Conclusion

[29] The main theme of this work was exploitation of
known geometrical redundancies and the decomposition
of these redundancies into reusable cells where the
Toeplitz property of the Green’s function can be used
for reduced storage and accelerated solution. The con-
cept applies also to many simpler problems, such as large
flat or smoothly curving surfaces (namely, a cylindrical
airplane fuselage). The idea we would like to impress in
the mind of the reader is that while a generalized solution
approach is insensitive to geometric restrictions, explicit

decomposition of a problem into identical cells (when
possible) is extremely advantageous in terms of storage
reductions and solution speeds. In combination with a
multipole expansion method, array decomposition leads
to remarkable speed-ups for finite array-type problems.
[30] The method presented here is a major step for

rigorous analysis of large finite arrays without the
restrictions of matrix storage limitations. It is understood
that for very large array elements or closely packed
arrays of elongated elements, the near-zone storage can
potentially become prohibitively large. This drawback
can be circumvented by decomposing the array elements
into smaller clusters using intraelement decomposition.
However the concept of multidimensional decomposition
presents further challenges to be explored in future work.
[31] As a stand-alone method, AD-FMM has limited

utility. The advantage of this method is realized when
implemented for multiple systems. In other words, finite
arrays can be modeled in their actual environment, which
may be on the surface of a vehicle or in the presence of
other structures. This hybrid multicell approach to real-
world coupling problems has even greater promise
[Kindt and Volakis, 2003a, 2002b].
[32] It is important to consider the ramifications of

using methods that are not limited by matrix storage.
Typically, problems with large matrix storage are split up

Table 2. Comparison of a Finite Array Problem

Array Size

3 � 3 5 � 5 16 � 16 32 � 32 64 � 64

Unknowns 15,273 42,425 434,432 1,737,728 6,950,912
Matrix Storage Requirements FE-BI 1.1GB 8.5GB 868TB 13PB 217PB

MLFMM 162MB 502MB 5.3GB 21GB 88GB
ADM 193MB 612MB 7.2GB 29GB 121GB

AD-FMM 193MB 193MB 193MB 193MB 193MB
Matrix Fill-Time FE-BI 24m 3h 14da 218da 9.5ya

MLFMM 5m 18m 6h 28ha 5da

ADM 8m 25m 5h 20ha 3da

AD-FMM 7m 7m 7m 7m 7m
Iterations FE-BI 6 108 - - -

MLFMM 6 69 - - -
ADM 2 4 19 62a 100a

AD-FMM 2 4 19 62 100
Iterative Solution Time FE-BI 2m 1h - - -

MLFMM 1m 51m - - -
ADM 6s 27s 42m 7ha 25ha

AD-FMM 10s 1m 1h 17h 2d
Total Storage Cost FE-BI 1.1GB 8.5GB 868TB 13PB 217PB

MLFMM 175MB 536MB 5.6GB 23GB 94GB
ADM 194MB 613MB 7.2GB 29GB 121GB

AD-FMM 200MB 201MB 214MB 258MB 432MB
Total Solution Time FE-BI 26m 4h - - -

MLFMM 6m 1h - - -
ADM 9m 26m 6h 1da 4da

AD-FMM 8m 9m 1h 17h 2d

aEstimated results.
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using distributed memory and analyzed in pieces on
multiple machines, but the full solution vector is present
on all nodes. From the analysis presented here, we can
conclude that AD-FMM has the potential of analyzing
problems for which it is not possible to store the entire
solution vector on a single machine with 32-bit memory
addressing (making the present distributed memory
model obsolete). That is, using AD-FMM, it is possible
to analyze problems with 100 million or more unknowns,
requiring over two gigabytes to store the solution and
excitation vector alone using complex(8) data types
(exceeding the limit of 32-bit addressing). The advent
of this type of problem and larger ones will bring about
the necessity of a new paradigm in distributed processing
methods, a challenge to be explored in future work.

[33] Acknowledgments. The authors would like to thank
Dr. Kubilay Sertel for providing the original FE-BI and
MLFMM formulations that were used in these comparisons.
Dr. Sertel provided expert technical advice on FMM, and in
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