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Defending against pathogens –  
immunological priming and its 
molecular basis in a sea anemone, 
cnidarian
Tanya Brown & Mauricio Rodriguez-Lanetty

Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common 
pathogens during their lifespans. It remains unknown whether these early diverging animals 
possess some type of immunological reaction that strengthens the defense response upon repeated 
infections, such as that described in more evolutionary derived organisms. Here we show results 
that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a 
higher survivorship during a subsequently lethal challenge than naïve anemones that encountered 
the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after 
the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared 
to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure 
showed no increase in survivorship. We argue that this short-lasting priming of the defense response 
could be ecologically relevant if pathogen encounters are restricted to short seasons characterized 
by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve 
sea anemones and those primed after pathogen exposure suggesting a clear molecular signature 
associated with immunological priming in cnidarians. Our findings reveal that immunological priming 
may have evolved much earlier in the tree of life than previously thought.

The ability of the immune system to respond more rapidly and effectively to a pathogen that has been 
encountered previously is a trait well-characterized in vertebrates and mechanistically explained by the 
functional uniqueness of the adaptive immune system1. This trait has profound implications for a wide 
array of epidemiological and evolutionary phenomena. In contrast, it has long been assumed that inver-
tebrates have an immune response that differs considerably from the acquired immune response found 
in vertebrates1.Invertebrates possess only an innate immune system, which is characterized by invari-
able pattern recognition receptors (PRRs) that target general pathogens-associated molecular patterns 
(PAMPs). The current consensus is that invertebrates lack the components of the adaptive immune sys-
tem, such as those well characterized in vertebrates including highly variable major histocompatibility 
complex (MHC) receptors, immunoglobulins, and B and T cells that undergo clonal expansion and long 
term cell survival following antigen induced activation1–4. These elements of the adaptive immune sys-
tem underlie the mechanism of the immunological memory phenomenon demonstrated in vertebrates. 
However, increasing evidence over the past years suggests that invertebrate immunity is much more 
complex than was generally believed. Immunological priming, the stimulation of the immune system 
with long-lasting effects that accelerate subsequent exposures to infectious pathogens, has been docu-
mented for a few groups of invertebrates, such as insects and crustaceans5–10. The first studies to demon-
strate that initial pathogen exposure confers lasting specific protection were for the crustacean copepod 
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Macrocyclops albidus6 and for the social insect Bombus terrestris9. Nevertheless, evidence of immunolog-
ical priming in many other invertebrates remains absent, particularly for early diverging animals.

Cnidarians, including corals and sea anemones, are evolutionarily early-diverged metazoans and of 
great interest since some of these invertebrates can live for hundreds of years, suggesting they are poten-
tially exposed to the same pathogens on many occasions during their lifespans. This has led to the 
mystery of how these long-lived organisms have done so well with only an innate immune system as 
the protective mechanism against infectious agents. As of yet, it is unknown if the defense response of 
these organisms strengthens upon repeated infections. Pioneering studies on coral skin grafts conducted 
in the late 1970s demonstrated that corals were able to reject skin grafts from genetically distinct donors 
more rapidly the second time the grafts were applied, suggesting a capacity for non-self recognition11–13. 
Self- and allogeneic recognition has also been described in sea anemones14 and soft corals15. While this 
phenomenon is not directly comparable with a defense against a pathogen, it might indicate that these 
basal metazoans have the capacity to remember foreign biological interactions. Additionally, understand-
ing this aspect of immunology in corals and other cnidarians is imperative in light of the global concern 
of increasing epizootic disease outbreaks currently affecting the health of corals16–19 and the persistence 
of these fragile coral reef ecosystems20–23.

In the present study, we investigated whether priming is existent in cnidarians in response to patho-
genic infections. If the protective response and survivorship of the host to pathogen challenges improve 
as a result of repetitive encounters with the infectious agent as compared to single encounters, it would 
suggest the existence of defense priming. Furthermore, presence of immune priming should also be 
associated with molecular changes underpinning the phenomenology, which is another fundamental 
investigation we conducted in this study.

Results
Host response to bacterial pathogen improves upon repeated pathogen encounter. To test 
the hypothesis that a sub-lethal exposure of cnidarians to a pathogen induces a defense response that is 
memorized and expressed in an accelerated manner upon subsequent exposure, the host sea anemone 
Exaiptasia pallida (formerly Aiptasia pallida) was used as a cnidarian model (Fig. 1). E. pallida is easily 
reared and grown in the laboratory and these anemones closely resemble coral species in their associa-
tions with the same symbiotic dinoflagellate genus, Symbiodinium, and many of the same bacterial spe-
cies24,25. These characteristics make the sea anemone an adequate system for asking biological questions 
of relevance for coral reef systems. The clonal line of sea anemones (CC7, originally obtained from Dr. 
John Pringle’s lab at Stanford University) was used for these experiments and has been reared in the lab-
oratory for more than six years. Using the clonal line of anemones was advantageous as it removed any 
potential physiological and disease resistance variability that could be associated with unknown genetic 
differences among individual anemones found in a natural population. Moreover, the clonal anemones 
harbor the same symbiotic dinoflagellate type of Symbiodinium A4 (sensu: cp23S rRNA genotyping26), 
indicating that the photo-physiology of these clonal anemones is likely the same. Since experimental 
anemones were reared under the same environmental conditions for the last six years, the nutritional and 
physiological status of all anemones were presumed to be the same. The known coral bacterial pathogen 

Figure 1. The sea anemone, Exaiptasia pallida, utilized in the immunological studies as a Cnidarian 
model system. 
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Vibrio coralliilyticus was used as the infectious agent to elicit a defense response in the sea anemone. It 
is a major coral pathogen known to cause coral bleaching27 and white syndrome in Acropora corals28. It 
has also been shown to cause disease and mortality in Exaiptasia pallida29. The anemone responds to V. 
coralliilyticus with darkening of the tissues and retraction of tentacles, followed by complete disintegra-
tion of polyp tissues29,30. The disease progression pattern is consistent with the behavior of necrotizing 
pathogens29.

To assess the response of E. pallida anemones to repetitive encounters with the infec-
tious agent, we first determined a sub-lethal exposure of the bacterial pathogen V. coralliilyti-
cus that would allow priming of the host without causing mortality. It was determined that a 
concentration of 1 ×  108 CFU ml−1 of this bacterial agent causes stress and mortality in E. pallida 
anemones after four days of exposure (Supplementary Fig. S1A online). Within a ten-day bacterial expo-
sure, mortality ranged from 60 to 90% in the anemones (Supplementary Fig. S1A online). However, if 
anemones were removed from the bacterial challenge, washed, and placed in pathogen-free seawater after 
the third day of pathogen exposure, anemones would recover and show 100% survivorship comparable 
to unexposed (control) anemones (Supplementary Fig. S2 online). Based on these results, a sub-lethal 
challenge of a three-day pathogen exposure at 1 ×  108 CFU ml−1 was used for the immune priming 
experiments. The bacterial challenges were conducted at 30 °C as it has been shown the virulence in this 
pathogen increases at temperatures above 28 °C27,31. We demonstrated that this experimental temperature 
was not a factor of mortality during the bacterial exposure trials (Supplementary Fig. S1B online).

Following these trials, three experiments were performed to evaluate the existence of a priming 
response. Anemones were first subjected to a sub-lethal exposure of V. coralliilyticus followed by resting 
periods (pathogen-free recovering time from the sub-lethal challenge) of either two, four, or six weeks 
before exposing the sea anemones again to a lethal exposure (ten day pathogen challenge). It is impor-
tant to note that none of the anemones died during the resting period or prior to the lethal challenge. 
The response and survivorship of these anemones (primed group) were compared to anemones that 
were exposed to a lethal challenge but without prior sub-lethal exposure (non-primed group), and also 
to a control group in which anemones were never exposed to sub-lethal or lethal bacterial challenges. 
The results showed that anemones that had previously encountered the pathogen (primed) had a higher 
survivorship than those anemones that encountered the pathogen for the first time (Fig. 2; Kaplan Meier; 
Mantel – Cox Post hoc test, p =  0.0001). The survivorship rate appeared to vary as a function of the 
lapsed time between the two consecutive pathogen exposures. Anemones exposed to the lethal chal-
lenge two and four weeks after the sub-lethal exposure presented seven- and five fold increases in sur-
vival, respectively, compared to the non-primed anemones (Fig. 2A-B; Kaplan-Meier; Mantel - Cox Post 
hoc test; Two weeks, p =  0.031; Four weeks, p =  0.039). However, the experimental group of anemones 
challenged six weeks after the sub-lethal exposure showed a 1.4 fold increase in survivorship that was 
not statistically significant (Fig. 2C; Kaplan-Meier; Mantel - Cox Post hoc test, p >  0.05). The improved 
response of the anemones to repeated encounters of the pathogen suggests the existence of transient 
defense priming that lasts for up to four weeks.

To determine whether the improved response in the primed anemones was not due to a chronic infec-
tion that continued over the experimental period, the pathogen load on the subjected anemones after the 
sub-lethal exposure was quantified using quantitative PCR (qPCR). Results from the assay indicated that 
by day four of the recovery period, V. coralliilyticus was no longer detectable in E. pallida (Supplementary 
Fig. S3A online; ANOVA, p <  0.05), suggesting that the improved response to pathogen upon repetitive 
encounters was due to a priming phenomenon and not to chronic infection. The same qPCR assay was 
used to confirm that V. coralliilyticus was present in E. pallida hosts throughout the lethal experiment, 
which showed considerable presence of pathogen load throughout the lethal exposure (Supplementary 
Fig. S3B online).

Proteomic analysis to dissect the molecular changes associated with the immune priming 
response. Further exploration of the immunological priming phenomenon took place at the protein 
level by analyzing samples collected four weeks following the post-priming phase and immediately before 
the lethal exposure. A two-dimensional fluorescence gel electrophoresis combined with mass spectrom-
etry was used for the analysis. Based on the replicated 2D fluorescent in-gel analysis, a total of 1400 
spots were detected. From this proteome, 39 spots (2.79%) with at least 1.3-fold change were identi-
fied as being differentially expressed between primed and non-primed anemones four weeks after the 
sub-lethal exposure to the primed anemones (Biological Variation Analysis, BVA, p <  0.05). Among these 
proteins, 16 were up-regulated, and 23 proteins were down-regulated in the primed anemones (Fig. 3). 
Of the 39 identified spots, the protein identities of 32 spots were determined using MALDI-TOF mass 
spectrometry and proteomic database comparisons with high confidence (Confidence Interval > 95%; 
table  1). The protein profiles showed surprising complexity as some of these spots represented multi-
ple isoforms of proteins varying in molecular mass and/or charge (Supplementary Fig. S4 online). The 
differentially expressed proteins identified through this method were involved in 27 different biological 
processes. The most represented biological processes were metabolic process (n =  14, GO: 0008152), 
cellular process (n =  13, GO: 0009987), response to stimulus (n =  8, GO: 0050896), and single organism 
process (n =  12, GO: 0044699) (Fig.  4, Supplementary Table S1 online). The representation of biolog-
ical processes was similar between up-regulated and down-regulated proteins except the categories of 
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Figure 2. Kaplan-Meier survival plots for Exaiptasia pallida during 10-day lethal challenge to the 
pathogen Vibrio coralliilyticus following: (A) two weeks; (B) four weeks; and (C) six weeks recovery 
period post priming with a sub-lethal exposure. Green lines indicate those anemones that were primed 
with a sub-lethal exposure prior to the lethal challenge; orange lines represent anemones that were exposed 
only to the 10-day lethal challenge with no prior priming, and blue lines indicate control anemones that 
were not exposed at all to the pathogen. Different letters next to the graphed lines indicate statistically 
significant difference among the treatment at p <  0.05 (Kaplan-Meier; Mantel-Cox Post hoc test) N =  20 per 
treatment.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:17425 | DOI: 10.1038/srep17425

developmental processes and cellular component organization and biogenesis, which were only repre-
sented by up-regulated proteins.

Of the proteins identified in this study, heat shock protein 70 was the most highly up-regulated pro-
tein in primed E. pallida with a 2.02-fold-higher expression in primed as opposed to control anemones 
(Table 1). Interestingly, a second protein also identified as heat shock protein 70, based on amino acid 
sequence of the generated mass-spec polypeptides was the most highly down-regulated protein with a 
9.73 fold decrease in expression in primed anemones when compared to controls. However the size of 
this protein on the gels does not correspond to a 70 kda protein (Supplementary Fig. S4 online) indicat-
ing that this protein might be a smaller Heat Shock Protein.

Discussion
The sea anemone, Exaiptasia pallida, showed susceptibility to bacterial challenge with Vibrio coralliilyt-
icus similar to coral species affected by the same bacterial pathogen at seawater temperatures 3 to 5 °C 
warmer than ambient temperatures27,31. However, the survivorship of the challenged anemones depended 
on previous pathogen exposure. Anemones that encountered the pathogen in sub-lethal conditions prior 
to lethal exposures showed higher survivorship than naïve anemones encountering the pathogen for 
the first time. Such findings suggest the potential presence of a protective priming defense mechanism 
in some members of the phylum Cnidaria. The priming response was also shown to be short-lived, 
lasting up to one month. The improved response of primed compared to non-primed anemones was 
not the result of a sustained immune response due to a chronic infection from the sub-lethal exposure, 
as the pathogen V. corallilyticus was cleared by the sea anemones four days after the termination of the 
sub-lethal exposure and several weeks before the second pathogen exposure. This is critical as a chronic 
infection in which a low level response of the immune system continues actively combating an infec-
tion32 and cause a more rapid secondary response in a subsequent pathogen challenge due to an already 
engaged immune system of the attacked host9. It is important to note that it is possible that even though 
V. corallilyticus presence decreases beyond detection, the presence of large concentrations of Vibrio at 
the onset of the experiment may have impacted the other microbial species associated with the anemone 
that may function as beneficial symbionts. Further studies are required to explore this possibility. Our 
findings demonstrate that the cnidarian defense system is functionally capable of unexpectedly durable 
induced protection. This suggests that selective pressures that triggered the evolution of immunological 
priming have a signature from early diverging animals.

Immunological priming has been documented in other invertebrates including crustaceans and 
insects5–10. In these cases, the improved response to the pathogens upon multiple encounters was also 
shown to be short-lived. For instance, the social bumble bee, Bombus terrestris, gain increased protection 
against pathogens upon a secondary exposure that lasted up to 27 days9. In this case, the priming of this 
duration would compare with an average life span of around 4 weeks for adult B. terrestris workers in the 
field. It highlights the clear ecological, and thus evolutionary, benefits of immunological priming in these 
organisms. In the case of cnidarians, such as anthozoans that can live for hundreds of years, immunolog-
ical priming that confers a lasting protection of a month might appear to have a low ecological and evo-
lutionary value. Interestingly, a similar timeframe of priming has also been described within the context 
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primed with a sub-lethal exposure to the pathogen; and red bars indicates down-regulated proteins in the 
same treatment.
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of allorecognition in cnidarians. For example, specific memory of tissue transplantation immunity has 
been demonstrated to last four weeks in the coral Montipora verrucosa13, and eight weeks in the gorgon-
ian, Swiftia exerta15. Yet some corals, such as the hydrocoral Millepora dichotoma appear not to possess a 
memory component to allorecognition33. The three above examples show a varying memory response to 
previously encountered allografts. In the cases that do show allomemory, it appears also to be relatively 
short-lived. While the mechanisms used in alloimmunity by cnidarians are unknown, it is possible that 
common ground might exist between the mechanisms modulating the processes of allografting and path-
ogen recognition. Regardless of the similarity between the mechanisms, the question remains as to what 
would be the advantage for a long-lived organism to have such a short-lived priming of their defense 

2D Gel 

Protein Identification

Exaiptasia Protein

Protein Fold

P

Spot Genome MW value

Number Gene ID (Da) PI Change T test

2 Heat Shock Protein (70 KDa) AIPGENE12496 74,685 5.6 2.02 0.091

6 Signal Recognition Particle AIPGENE24594 72,108 6.4 1.88 0.12

84 MRP Protein AIPGENE1468 95,674 9.3 1.72 0.029

32 Calumenin-A AIPGENE25880 35,247 4.5 1.69 0.015

34 Glutamate Receptor AIPGENE24462 101,286 9.2 1.63 0.0081

50 Myosin Heavy Chain AIPGENE8264 220,878 5.4 1.63 0.022

27 Aminopeptidase AIPGENE26826 53,551 6.4 1.59 0.0046

3 Zona Pellucida AIPGENE843 47,035 5.0 1.57 0.044

11 Heat Shock Protein (60 KDa) AIPGENE15267 62,708 5.3 1.57 0.051

13 Moesin/ezrin/radixin AIPGENE9804 66,884 5.8 1.56 0.064

43 Fructose-Bisphosphate Aldolase AIPGENE2871 38,732 7.6 1.50 0.055

61 Heat Shock Protein (70 KDa) AIPGENE12775 41,848 5.4 1.47 0.067

57 Voltage Dependent Anion Selective 
Channel AIPGENE3808 35,188 9.1 1.45 0.027

82 Rho GDP-Dissociation Inhibitor AIPGENE26434 22,251 4.8 1.32 0.12

65 Cathepsin AIPGENE26157 36,124 6.7 1.25 0.041

42 Aspartate Aminotransferase AIPGENE19338 45,969 6.8 − 1.47 0.0043

87 Zinc Finger Protein AIPGENE28354 68,856 8.8 − 1.48 0.015

35 Cysteine Desulfurase AIPGENE22361 54,104 6.2 − 1.48 0.091

39 Fumarylacetoacetase AIPGENE8362 46,370 6.2 − 1.49 0.013

15 Selenium Binding Protein AIPGENE13749 53,877 5.9 − 1.50 0.0025

28 Cysteine Desulfurase AIPGENE22361 54,104 6.2 − 1.50 0.0046

14 Bleomycin Hydrolase AIPGENE9335 55,335 5.8 − 1.53 0.015

41 Pancreatic Triacylglycerol Lipase AIPGENE19570 38,517 8.7 − 1.55 0.025

71 Heat Shock Protein (70 KDa) AIPGENE8252 41,986 5.3 − 1.58 0.055

46 Calumenin B AIPGENE9938 38,837 5.5 − 1.59 0.0044

38 Cysteine Desulfurase AIPGENE22361 54,104 6.2 − 1.69 0.0021

56 Hemicentin AIPGENE28714 49,371 6.6 − 1.70 0.011

55 Thyroglobulin AIPGENE20635 314,272 8.6 − 1.85 0.0039

74 Nuclear Receptor AIPGENE629 49,435 5.4 − 1.91 0.046

70 Heat Shock Protein (70 KDa) AIPGENE8252 41,986 5.3 − 2.67 0.0018

68 Cyclic AMP and cGMP Phosphodiesterase AIPGENE4644 51,903 5.8 − 4.05 0.017

69 Heat Shock Protein (70 KDa) AIPGENE8252 41,986 5.3 − 9.73 0.0037

Table 1. Identification of the 32 proteins subjected to Mass Spectrometry analysis. 2D Gel Spot Number: 
Number as indicated on the 2D-DIGE gel on supplemental Fig. 4; Protein Identification: Identity assigned 
by BLAST data base searches; Exaiptasia Genome Gene ID: Gene ID is based on the gene mapping 
identification for the Exaiptasia genome (aiptasia.reefgenomics.org73); Protein MW: Molecular weight of 
the protein; Protein PI: Isoelectric point of the protein; Fold Change: The fold change is based on protein 
expression of primed anemones versus non-primed (naïve) anemones; P Value T test: The significance 
probability value based on statistical T test.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:17425 | DOI: 10.1038/srep17425

system. We speculate that short-lasting priming of the defense response could be ecologically relevant if 
pathogen encounters are concentrated and restricted to particular seasons (short period of time) char-
acterized by high stress. In such seasons when pathogens are more active and virulent, cnidarians could 
be ecologically and evolutionary benefited if they have the capability to remember pathogenic encounters 
during the duration of the high stress season. This would allow maximizing the allocation of energy 
towards immunological priming when it is most needed since it has been shown to be energetically 
taxing on other organismal processes34. In recent years we have learned that sustained high temperatures 
above the average seasonal maximum are often related to an increase of disease outbreaks21,23,27,35–37. 
For example, Bruno and collaborators (2007) showed a highly significant relationship between the fre-
quencies of warm temperature anomalies and the occurrence of white syndrome in Pacific reef-building 
corals. High temperatures during the summer months have also been associated with the activation of 
virulence among bacterial pathogens that are common residents in the coral reef environment27,38,39. 
Moreover, the high virulence and disease prevalence is seasonal in the majority of cases and ceases as 
the water temperature declines at the end of the summer17,21. Therefore, it is conceivable that the short 
duration of immunological priming described for Exaiptasia pallida mirrors the short time window 
when pathogens are seasonally active and during which they could be encountered repetitively by the sea 
anemone. This strategy would allow the sea anemone to reallocate energy use to other vital physiological 
needs during times where pathogens are less infectious. Additionally, the duration of priming might also 
be pathogen-specific. For example, in mice different pathogens elicit varying durations of priming and 
memory40. Pathogens that are encountered more often by a given organism could cause longer priming/
memory. Further investigations are needed to understand whether different pathogens trigger longer 

noitcnuF lacigoloi
B snietor

P ll
A

noitcnuF lacigoloi
B snietor

P detaluge
R p

U
noitcnuF lacigoloi

B snietor
P detaluge

R n
wo

D

0 5 10 15 20 25

Cellular process

Metabolic process

Single-organism process

Biological regulation

Response to stimulus
Developmental process

Cellular and molecular localization
Signaling

Growth
Cellular component organization

or biogenesis
Multicellular organism process

Multi-organismal process

Cellular process
Metabolic process

Single-organism process
Biological regulation

Developmental process
Response to stimulus

Cellular and molecular localization

Growth
Cellular component organization

or biogenesis
Signaling

Multi-organism process
Multicellular organismal process

Cellular process

Metabolic process

Single-organism process

Response to stimulus

Biological regulation

Signaling

Cellular and molecular localization

Multicellular organismal process

Percent Proteins

Figure 4. Representation of biological processes Gene Ontology (GO) terms for the 32 Exaiptasia 
pallida characterized proteins. The results are summarized in three subgroups: all GO terms, GO terms 
from up-regulated and down-regulated proteins.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:17425 | DOI: 10.1038/srep17425

immunological priming, and also to reveal how pathogen-specific the priming phenomenon is in the 
defense system of cnidarians, which could shed light about the existence of immunological memory.

Proteomic analysis of immune priming in E. pallida. The phenomenological data presented above 
indicate that there are responses in cnidarians that might be trained by past experience and increase upon 
a second exposure. This adds to the growing notion that invertebrates have extremely plastic immune 
effectors that can generate novel and functional immune response changes in relation to past experience. 
In the past the logical fallacy that because an organism lacks B and T cells, the organism will also lack an 
adaptive immune response has hindered our appreciation of the capability of basal metazoans to possess 
immunological priming and memory41. These organisms could generate a trained immune response in 
another way as has been documented for insects42,43. In our study we attempted to characterize molec-
ular changes correlated with the priming phenomenon using a comparative proteomic approach to start 
dissecting the mechanism underlying an inducible enhanced immunity in cnidarians.

Statistically significant differences in proteomic profiles between naïve sea anemones and those primed 
after pathogen exposure suggests a clear molecular signature associated with immunological priming in 
cnidarians. The group of differentially expressed genes was diverse, suggesting that the molecular regula-
tion of the priming defense is governed by changes in multiple cellular processes. None of these proteins 
were identified as antimicrobial peptides, which are the molecules normally produced during the actual 
fighting and clearing of pathogen infections in cnidarians44–46. In other invertebrates such as bumblebees, 
antimicrobial peptides are produced immediately after the bacterial challenge and then subside thereafter 
when the pathogen load decreases9. Therefore, the lack of differentially expressed antimicrobial peptides 
was expected as the proteomic analysis was conducted in primed anemones at least three weeks after 
the pathogen from the sub-lethal exposure was cleared. Consequently, the changes in protein expression 
detected in the primed anemones four weeks after the first pathogen exposure seem to be related the 
phenomenon of immunological priming rather than to pathogen clearance.

Gene ontology analysis indicated that many of the differentially produced proteins linked to immune 
defense priming were grouped into metabolic processes pathways, a pattern that has also been detected 
from transcriptomic analyses in corals affected with disease signs47,48. An example of a metabolic pro-
tein is the Fructose-Bisphosphate Aldolase protein that is an enzyme involved in glycolysis, a metabolic 
process that assures the production of energy required for a large number of other metabolic processes. 
We detected a higher amount of this protein in primed anemones, suggesting an enhanced metabolic 
function in primed animals. Previous studies have also shown a correlation between increased expres-
sion of metabolic enzymes in the response to secondary exposure of pathogens49. Recently, it was pro-
posed that a shift of central glucose metabolism from oxidative phosphorylation to aerobic glycolysis 
(the “Warburg effect”) is the metabolic basis for trained immunity (i.e. the memory characteristics of 
the innate immune system recently described in vertebrates50), providing the energy and metabolic sub-
strates for the increased activation of trained immune cells51. Further experimental and physiological 
studies are needed to investigate whether an increase of glycolysis is indeed a fundamental process in 
primed “trained” immunity in early-diverging metazoans, such as cnidarians. Findings from these future 
research avenues will provide an appreciation of the evolutionary origin for the key role of metabolism 
in innate host defense.

Many of the identified proteins in this study show homology to immune genes functionally char-
acterized in other organisms. Although we need to be cautious when borrowing functionality of these 
proteins based on homology to other organisms52, their expression in this study bolsters the idea that 
they may be involved in the immune response of E. pallida. In the context of cnidarian immunology, we 
discuss key changes in protein production involved in following functional groups: stress response, ion 
transport and proteolysis.

Several proteins involved in stress response were detected in association with defense priming: 
two putative heat shock protein 70 (HSP70) orthologs and one heat shock protein 60 (HSP60) were 
up-regulated whereas three small heat shock proteins (~20 kDa) were down-regulated. It is well-known 
that the up-regulation of HSP synthesis provides resistance to toxic stresses such as heat shock53,54; how-
ever, their involvement has also been shown in response to many other environmental and biological 
insults, such as pathogenic infections55. Recently, we also documented transcriptional up-regulation of 
a HSP70 gene in the scleractinian coral, Acropora millepora, within hours of exposure to bacterial path-
ogens56. There is still no clear understanding of the molecular mechanisms involving HSP in response 
to pathogenic infection and whether its action in the immune defense is at the intracellular and/or at 
the extracellular level. However, it has been suggested that many HSPs have the property of damage 
associated molecular patterns (DAMPs) as they can bind to exposed hydrophobic residues of a wide 
spectrum of polypeptides57. HSPs could play a critical role in mediating innate immunity by activating 
Toll-like receptor (TLR) signaling due to their status as DAMPs and thus induce cytokine-mediated 
inflammatory responses. For instance, some evidence indicates that extracellular HSP70 can interact 
with TLR4 under a number of pathological situations58,59. Furthermore, HSP70 has been implicated in 
immunity stimulation either by antibody-independent activation of the complement immune system60 
or by enhancing the expression of the prophenoloxidase system61. Under the hypothesis of DAMP-acting 
HSPs, it is possible that a higher synthesis of HSPs in primed organism, such as in the case of the sea 
anemone from this study, could allow for a faster response at the detection of infection-associated danger 
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through interaction of TLR-HSP-DAMP, and thus induce a quicker inflammatory response upon a new 
exposure to pathogens (see model at Fig. 5). This model is supported by studies conducted on the brine 
shrimp Artemia showing that heat-induced accumulation of HSP70 appears to protect crustacean from 
pathogenic infection by Vibrio campbellii62. Current findings have shown that direct delivery of HSP vac-
cines to crustaceans improve their defense response and success to fight infections of pathogens61–63. For 
example, feeding with E. coli YS2 over-producing DnaK, the prokaryotic equivalent of Hsp70, enhances 
gnotobiotic Artemia larvae survival approximately two- to three-fold upon challenge with pathogenic V. 
campbellii63.

Other proteins detected in this study were putatively characterized as being involved in ion trans-
port. One of particular attention was the inotropic glutamate receptor (iGluR)-like protein found to be 
up-regulated in the primed anemones. iGluRs are ligand-gated ion channels best known for their role in 
fast excitatory neurotransmission in vertebrate and invertebrate nervous systems. However, new findings 
have shown that many homologs of these receptors are implicated in other biological process. A novel 
family of iGluR-related genes from insects (referred to as Ionotropic Receptors, IR) have been character-
ized as chemosensory receptors and are involved in olfaction and gustation processes64,65. The findings 
that these receptors are present across diverse groups of organisms from bacteria, plants and animals 
also suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both 
internal and external chemical cues64. Of great interest are the findings showing that plant iGluRs are 
implicated in sensing a broad range of amino acids as part of the defense mechanism against infectious 
agents66. Recent studies examining the wound response and disease susceptibility in Arabidopsis thaliana 
Glutamate-Like Receptors (GLR) knockout mutants have provided evidence that some members of the 
GLR gene family encode important components of the plant’s defense response67. These discoveries are 
in line with our finding of higher production of iGluR-like proteins in primed Exaiptasia anemones. 
If involved in recognizing/sensing danger associated molecular components, a primed anemone with 
higher levels of expression of iGluRs would be better prepared to respond faster to infectious agents 
upon secondary exposures (Fig. 5).

Figure 5. Proposed model of Heat Shock Proteins (HSP), Capthesin and Glutamate Receptor (iGluR) roles 
in cnidarian molecular defense priming: (1) HSP are up regulated and some are extracellularly secreted 
where bind to peptides and act as DAMPs; (2) as DAMPs, HSP help with a faster activation of the innate 
complement system, and/or (3) interact and cause a quicker activation of outer host cell membrane TLRs; 
(4) intracellularly, up-regulated HSP proteins can be delivered into lysosomes in which they can also 
interact and activate endosomal cell membrane TLRs; (5) higher production of Capthesin are delivered 
into lysosomes in which they can also interact and activate endosomal cell membrane TLRs; (6) activated 
TLRs either from the outer membrane or endosomal membranes will trigger cell signaling pathways that 
will converge in the activation of transcription factors (likely NF-kappa β) that will ultimately induce the 
expression of immune-related genes (7) resulting in the production of potential pro-inflammatory molecules; 
(8) Higher expression of iGluR expressed on the outer membrane will also facilitate a faster sensing of 
potential DAMPs upon secondary exposure of pathogens.
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Finally, we detected a higher production of immune-related proteolytic proteins including amino-
peptidases and cathepsin, suggesting a potential enhancing key role of proteolysis in immune prim-
ing. For instance, capthepsins are key lytic enzymes and members of the proteases machinery packed 
in host lysosomes. These enzymes are not only involved in lysosome-contained pathogen degradation 
but also have been implicated in activating endosomal Toll-Like Receptors (TLR), which induce down-
stream cytokine-mediated pro-inflammatory responses68,69. Cathepsins generate a proteolytic cleavage, 
a prerequisite for TLR7 and TLR9 signaling70,71. Greater amounts of this protein in primed anemo-
nes implies that up-take of pathogens via phagocytosis will be digested and cleared faster through the 
phagosome-lysosome pathway. Additionally, their recognition by TLRs could be enhanced by a higher 
rate of proteolytic cleavage.

In summary, while immune priming has been found in several invertebrates6,9, this study discovered 
for the first time a similar phenomenon in an early diverging animal. Our findings support the notion 
that immunological priming may have evolved much earlier in the tree of life than previously thought. 
Additionally, the considerable amount of proteins that appear to be involved in the immune response of 
primed E. pallida suggests immunological priming in cnidarians is a more complex phenomenon than so 
far has been recognized. Furthermore, finding immunological priming in a sea anemone implicates the 
potential presence of the same mechanisms in other cnidarians such as corals. Future research addressing 
these mechanisms might be of crucial influence on developing restoration strategies for threatened and 
endangered coral reef species. As a potential outcome, “immunization” could become a tool to improve 
tolerance and survivorship of long-lived wild and re-introduced corals and thus, mitigate the deteriora-
tion of coral reef ecosystems.

Materials and Methods
Exaiptasia pallida Anemone Husbandry. Anemones used in these experiments were from the 
clonal CC7 population (John Pringle Lab, Stanford University) and were maintained in filtered artificial 
seawater at approximately 27 °C. Populations were kept on a day:night cycle of 12 h light:12 h dark with 
30 to 60 μ mole photons m−2 s−1 of light and fed freshly hatched brine shrimp nauplii twice a week. E. 
pallida used in this study were all approximately 3 mm in diameter and 10 mm high.

Pathogenic Bacterial Species and Culture Preparation. Vibrio coralliilyticus strain BAA 450 
(ATCC) was used for the infection experiment. To recover the bacteria from the glycerol stocks, the 
frozen culture was streaked out and grown overnight on Marine Agar (Difco, USA) at 30 °C. The follow-
ing day a single colony was picked with an inoculating loop and grown to logarithmic phase at 30 °C in 
Marine Broth-2216 (Difco, USA) while shaking at 100 rpm. Cultures were centrifuged at 10,000 g for five 
minutes, washed and re-suspended in sterile seawater. Bacterial cells were prepared to the designated 
final concentration based on a growth curve of V. coralliilyticus generated with optical density readings 
at 600 nm plotted against known bacterial culture concentration (CFU).

Determination of Vibrio coralliilyticus Concentration for Infection Trials. In order to determine 
an infective dose of the coral pathogen Vibrio coralliilyticus, ten-day infection trials were conducted on 
E. pallida anemones. Single anemones, acclimated to the experimental temperature (30 °C), were placed 
into single wells of a twelve-well culture dish containing filtered artificial seawater. During these trials, 
anemones (six per concentration) were challenged with three concentrations of the bacterium: 106, 107, 
or 108 CFU ml−1 at 30 °C. V. coralliilyticus becomes virulent at temperatures greater than 28 °C27,31. The 
inoculation of bacteria was conducted using via balneation56. Anemones were monitored daily over ten 
days to assess behavioral changes and mortality events.

Temperature Dependent Pathogen Virulence. To test if V. coralliilyticus showed similar 
temperature-dependent infectivity in E. pallida as it does in corals, infection trials were conducted 
at 25 °C and 30 °C for ten days. This experiment also allowed for the determination of the effect of 
experimental temperature on anemone survivorship. The concentration of V. coralliilyticus used for this 
experiment was 108 CFU ml−1 as this inoculum dose showed the most consistent infectivity pattern 
on anemones (Supplementary Fig. S1A online). Four treatments were conducted (+ Bacteria at 25 °C,  
+Bacteria at 30 °C, −Bacteria at 25 °C, and −Bacteria at 30 °C). Each treatment contained a total of six 
anemones. The anemones were allocated in single wells of twelve-well tissue culture plates. The inocu-
lation of bacteria on the +Bacteria treated anemones were conducted using the balneation technique56. 
Anemones were monitored daily over ten days to assess behavioral changes and mortality events.

Determination of Sub-lethal Pathogen Exposure. The sub-lethal exposure was not defined based 
on bacterial dose but based on the duration of exposure to the pathogen. From the infections experi-
ments described above, the survivorship curves showed consistently that no anemone died during the 
first three days of pathogen exposure at a dose of 108 CFU ml−1 (Supplementary Fig. S1 online). Based on 
these results, an additional experiment was conducted aiming to confirm if a 3-day exposure at 108 CFU 
ml−1 to V. coralliilyticus could be considered a sub-lethal treatment. For this, anemones were exposed 
to V. coralliilyticus pathogen for a period of only three days, and placed in pathogen-free filtered sea-
water. The inoculation was carried out using via balneation56. The survivorship of these anemones was 
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compared to a second group of anemones that remained under the bacterial exposure for a total of 10 
days. Along with these two treatments, a control group of anemones were maintained in pathogen-free 
sea-water. The results from this experiment were fundamental to define the sub-lethal challenge used in 
subsequent priming experiments described below.

Priming Experiments on Exaiptasia pallida anemones. All experiments in this section were con-
ducted at 30 °C and at a final concentration of 108 CFU ml−1 of V. coralliilyticus. Individual E. pallida, 
acclimated to the experimental temperature (30 °C) were placed into a single well of a twelve-well tissue 
culture plate containing filtered artificial seawater. Studies were conducted in three phases: sub-lethal 
exposure, recovery period, and lethal exposure. During the sub-lethal exposure, as indicated in the pre-
vious section, anemones (referred to as primed anemones) were challenged for three days with V. coral-
liilyticus (Supplementary Fig. S1B online). The sub-lethal exposures were followed by recovery periods, 
which varied as two, four, or six weeks. In this phase, anemones were removed from the sub-lethal 
exposure wells, transferred to pathogen-free seawater and left to recover during the designated recovery 
times. The final phase of the experiment consisted of the lethal exposure. From the previous experiment, 
it was determined that exposure to pathogen concentration of 108 CFU ml−1 between 4 and 10 days was 
considered a lethal challenge (Supplementary Fig. S1 online). During this phase the primed anemones 
were challenged again with V. coralliilyticus. Additionally, a second treatment (defined as non-primed E. 
pallida) was composed of naive anemones that were not subjected to sub-lethal exposure but challenged 
with V. coralliilyticus in the last phase of the experiment. The control anemones were kept at 30 °C for 
the entire experiment but were never challenged with the bacterium.

Quantitative PCR Assay for Determining Vibrio coralliilyticus Load on the Anemones. To 
determine the clearance dynamics of the V. coralliilyticus pathogen by the exposed anemones after the 
sub-lethal exposure time and during the lethal challenge, a quantitative real time PCR (qPCR) assay 
specific to test for pathogen presence was conducted. Anemone samples were collected immediately after 
finishing the sub-lethal exposure, and two and four days afterwards. During the lethal challenge (second-
ary exposure), anemones were collected at the following time points: one, three, seven and ten days after 
the start of the lethal exposure. For all the sampling times, three anemones were collected from each of 
the three treatments (primed, non-primed and controls). Total DNA was extracted from the collected 
anemones using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA). DNA concentrations were estimated 
using the NanoDrop 2000c (Nano-Drop Technology, Wilmington, DE). V. coralliilyticus specific primers 
designed by Polson 2008 were used for the qPCR: 96F (5′ -GTTRTCTGAACCTTCGGGGAACG-3′ ) 
and 1019R (5′ - CTGTCTCCAGTCTCTTCTGAGG-3′ )72. Reactions were conducted in 23 μ l reactions 
with 12.5 μ l of SYBR green master mix (BioRad, Hercules, CA) and 0.2 μ M of each primer. The PCR 
conditions were as follows: 95 °C at 5 min followed by 40 cycles of 95 °C at 30 sec, 67 °C at 30 sec, and 
72 °C at 60 sec. Dissociation curves were analyzed to confirm single product amplification at the end of 
qPCR runs. Samples were run in triplicate and mean values were used for calculations. Pathogen load 
on the infected anemones was expressed as relative proportion to amount of bacteria used at the initial 
inoculation (108 CFU ml−1). For the calculations, we used the following equation; 2(Ct

i
–Ct

a); where Cti rep-
resented the mean amplification cycle value for the DNA extracted from the initial inoculum (108 CFU 
ml−1), and Cta represented the mean amplification cycle value for the DNA extracted from the infected 
anemone. A relative proportion of 1 means the pathogen load on an infected anemone corresponds to 
the same amount of pathogen found in concentration of 108 CFU m−1.

Statistical Analysis of Survivorship Data and Pathogen Load on Inoculated Anemones. For 
the priming experiments, Kaplan Meier estimators and survival plots were constructed for each of the 
three different recovery periods using the statistical software SPSS 21 (IBM). Post hoc comparisons using 
the Mantel–Cox test were further conducted to determine significant differences among the survival 
curves for each of the treatments. Analysis of variance (ANOVA) was performed in conjunction with a 
Tukey’s posthoc test to assess significance difference in the bacterial load on the anemones during dif-
ferent times after the sub-lethal challenge and during the lethal challenge using square root transformed 
data.

Proteomic Analysis. In order to determine the molecular changes underpinning immunological 
priming in E. pallida anemones, a proteomic analysis was conducted by Applied Biomics (Hayward, CA) 
according to the company’s standard protocol. In this analysis, the proteomic profiles of anemones primed 
with the pathogen during a sub-lethal exposure were compared to naïve anemones never exposed to the 
pathogen four weeks after the experimental anemones were subjected to the sub-lethal exposure. Fifteen 
anemones were collected from each of two treatments. These fifteen anemones were pooled in three 
groups of five anemones each and snap frozen in liquid nitrogen. The pooling of anemones was necessary 
since it allowed enough tissue material for extraction of proteins to run the proteomic analyses. Samples 
were sent to Applied to Biomics (Hayward, CA) for two-dimensional differential in-gel electrophoresis 
(2D DIGE) profiling and separation. The 2D DIGE gels were scanned using a Typhoon image scanner 
(GE Healthcare). The images were analyzed using Image Quant software (GE-Healthcare), and then 
subjected to in-gel analysis and cross-gel analysis using DeCyder software version 6.5 (GE-Healthcare). 
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Protein differential expression ratio changes were obtained by in-gel DeCyder software analysis. Of the 
spots that were differentially expressed, 32 were subjected to isolation using an Ettan Spot Picker (GE 
Healthcare) followed by MALDI-TOF (MS) using a 5800 mass spectrometer (AB Sciex).

Proteins were identified by submitting the peptide mass and fragmentation spectra to GPS Explorer ver-
sion 3.5 using the MASCOT search engine (Matrix Science) where the National Center for Biotechnology 
Information non-redundant (NCBInr) database and Exaiptasia pallida genome (aiptasia.reefgenomics.
org73) were explored. Significant candidates had either protein score C.I.% or Ion C.I.% greater than 95. 
Once the proteins were identified, gene ontology analysis was conducted using Blast2GO. E-values less 
than 1 ×  10−30 and a percent identity of 97% were used as a cut off for identifying the gene fragments.

References
1. Janeway C., Travers P., Walport M. & Capra J. Immunobiology: the immune system in health and disease. (ed. Elsevier Science 

Ltd./Garland Publishing) (1999).
2. Beck G. & Habicht G. S. Immunity and the invertebrates - The fabulously complex immune systems of humans and other 

mammals evolved over hundreds of millions of years-in sometimes surprising ways. Sci. Am. 275, 60− +  (1996).
3. Loker E. S., Adema C. M., Zhang S. M. & Kepler T. B. Invertebrate immune systems-not homogeneous, not simple, not well 

understood. Immunol Rev 198, 10–24 (2004).
4. Little T. J., Hultmark D. & Read A. F. Invertebrate immunity and the limits of mechanistic immunology. Nature Immunol 6, 

651–654 (2005).
5. Kurtz J. Memory in the innate and adaptive immune systems. Microbes and Infect. 6, 1410–1417 (2004).
6. Kurtz J. & Franz K. Evidence for memory in invertebrate immunity. Nature 425, 37–38 (2003).
7. Little T. J., O’Connor B., Colegrave N., Watt K. & Read A. F. Maternal transfer of strain-specific immunity in an invertebrate. 

Curr. Biol. 13, 489–492 (2003).
8. Roth O., Sadd B. M., Schmid-Hempel P. & Kurtz J. Strain-specific priming of resistance in the red flour beetle, Tribolium 

castaneum. Proc. R. Soc. B 276, 145–151 (2009).
9. Sadd B. M. & Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol. 

16, 1206–1210 (2006).
10. Johnson K. N., van Hulten M. C. W. & Barnes A. C. “Vaccination” of shrimp against viral pathogens: phenomenology and 

underlying mechanisms. Vaccine. 26, 4885–4892 (2008).
11. Hildemann W. H., Bigger C. H. & Jokiel P. L. Characteristics of immune memory in invertebrates. Am. Zool. 19, 911–911 (1979).
12. Hildemann W. H., Jokiel P. L., Bigger C. H. & Johnston I. S. Allogeneic polymorphism and alloimmune memory in the coral, 

Montipora verrucosa. Transplantation 30, 297–301 (1980).
13. Hildemann W. H., Raison R. L., Cheung G., Hull C. J., Akaka L. & Okamoto J. Immunological specificity and memory in a 

scleractinian coral. Nature 270, 219–223 (1977).
14. Bigger C. H. Interspecific and intraspecific acrorhagial aggressive-behavior among sea anemones - a recognition of self and not-

self. Biol. Bull. 159, 117–134 (1980).
15. Saltercid L. & Bigger C. H. Alloimmunity in the gorgonian coral Swiftia exerta. Biol. Bull. 181, 127–134 (1991).
16. Bourne D. G., Garren M., Work T. M., Rosenberg E., Smith G. W. & Harvell C. D. Microbial disease and the coral holobiont. 

Trends Microbiol. 17, 554–562 (2009).
17. Richardson L. L. Coral diseases: what is really known? Trends Ecol. Evol. 13, 438–443 (1998).
18. Rosenberg E., Koren O., Reshef L., Efrony R. & Zilber-Rosenberg I. The role of microorganisms in coral health, disease and 

evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).
19. Sheridan C., Kramarsky-Winter E., Sweet M., Kushmaro A. & Leal M. C. Diseases in coral aquaculture: causes, implications and 

preventions. Aquaculture 396, 124–135 (2013).
20. Harvell C. D. et al. Ecology - climate warming and disease risks for terrestrial and marine biota. Science. 296, 2158–2162 (2002).
21. Harvell D. et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography. 

20, 172–195 (2007).
22. Hoegh-Guldberg O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
23. Burge C. A. et al. Climate change influences on marine infectious diseases: implications for management and society. Ann. Rev. 

Mar. Sci. 6, 249–277 (2014).
24. Weis V. M., Davy S. K., Hoegh-Guldberg O., Rodriguez-Lanetty M. & Pringe J. R. Cell biology in model systems as the key to 

understanding corals. Trends Ecol. Evol. 23, 369–376 (2008).
25. Otero C., Brown T. & Rodriguez-Lanetty M. Genomic analysis shows bacterial community shifts in Aiptasia pallida between 

environments. Proc. 43rd Benthic Ecology Meeting. (2014). Available at: http://imageslab.fiu.edu/sites/default/files/Otero_et_
al_2014.pdf

26. Santos S. R., Gutierrez-Rodriguez C. & Coffroth M. A. Phylogenetic identification of symbiotic dinoflagellates via length 
heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Mar. Biotechnol. 5, 130–140 (2003).

27. Ben-Haim Y. et al. Vibrio coralliilyticus sp nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. 
Syst. Evol. Microbiol. 53, 309–315 (2003).

28. Sussman M., Willis B. L., Victor S. & Bourne D. G. Coral pathogens identified for white syndrome (WS) epizootics in the Indo-
Pacific. Plos One. 3, e2393 (2008).

29. Zaragoza W. J., Krediet C. J., Meyer J. L., Canas G., Ritchie K. B. & Teplitski M. Outcomes of infections of sea anemone Aiptasia 
pallida with Vibrio spp. pathogenic to corals. Microb. Ecol. 68, 388–396 (2014).

30. Brown T. & Rodriguez-Lanetty M. Molecular mechanisms underpinning immunological memory in a basal metazoan (Cnidaria). 
Integrative and Comparative Biology. 55, E21–E21 (2015).

31. Ben-Haim Y., Zicherman-Keren M. & Rosenberg E. Temperature-regulated bleaching and lysis of the coral Pocillopora 
damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 69, 4236–4242 (2003).

32. Young D., Hussell T. & Dougan G. Chronic bacterial infections: living with unwanted guests. Nature Immunol. 3, 1026–1032 
(2002).

33. Rinkevich B. Allorecognition and xenorecognition in reef corals: a decade of interactions. Hydrobiologia 530, 443–450 (2004).
34. Contreras-Garduno J., Rodriguez M. C., Rodriguez M. H., Alvarado-Delgado A. & Lanz-Mendoza H. Cost of immune priming 

within generations: trade-off between infection and reproduction. Microbes Infect. 16, 261–267 (2014).
35. Bruno J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. Plos Biol. 5, 1220–1227 (2007).
36. Cervino J. M. et al. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean 

corals. Appl. Environ. Microbiol. 70, 6855–6864 (2004).
37. Ruiz-Moreno D., Vargas I. S., Olson K. E. & Harrington L. C. Modeling dynamic introduction of Chikungunya Virus in the 

United States. PloS Negl. Trop. Dis. 6, e1918 (2012).

http://imageslab.fiu.edu/sites/default/files/Otero_et_al_2014.pdf
http://imageslab.fiu.edu/sites/default/files/Otero_et_al_2014.pdf


www.nature.com/scientificreports/

13Scientific RepoRts | 5:17425 | DOI: 10.1038/srep17425

38. Ward J. R., Kim K. & Harvell C. D. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329, 
115–121 (2007).

39. Miller A. W. & Richardson L. L. Fine structure analysis of black band disease (BBD) infected coral and coral exposed to the BBD 
toxins microcystin and sulfide. J Invertebr. Pathol. 109, 27–33 (2012).

40. Abdul-Careem M. F. et al. Genital HSV-2 infection induces short-term NK cell memory. Plos One. 7, e32821 (2012).
41. Ziauddin J. & Schneider D. S. Where does innate immunity stop and adaptive immunity begin? Cell Host Microbe. 12, 394–395 

(2012).
42. Dong Y. M., Taylor H. E. & Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the 

Anopheles gambiae innate immune system. Plos Biol. 4, 1137–1146 (2006).
43. Watson F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).
44. Hemmrich G., Miller D. J. & Bosch T. C. G. The evolution of immunity: a low-life perspective. Trends Immunol. 28, 449–454 

(2007).
45. Jesus Otero-Gonzalez A. et al. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. 

Faseb J. 24, 1320–1334 (2010).
46. Mydlarz L. D., Jones L. E. & Harvell C. D. Innate immunity environmental drivers and disease ecology of marine and freshwater 

invertebrates. Annu. Rev. Ecol. Evol. Syst. 37, 251–288 (2006).
47. Libro S., Kaluziak S. T. & Vollmer S. V. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis 

infected with white band disease. Plos One 8, e81821 (2013).
48. Pinzon J. H. C., Beach-Letendre J., Weil E. & Mydlarz L. D. Relationship between phylogeny and immunity suggests older 

Caribbean coral lineages are more resistant to disease. Plos One. 9, e104787 (2014).
49. Bolte S., Roth O., Philipp E. E. R., Saphoerster J., Rosenstiel P. & Reusch T. B. H. Specific immune priming in the invasive 

ctenophore Mnemiopsis leidyi. Biol. Lett 9 (2013).
50. Netea M. G., Quintin J. & van der Meer J. W. M. Trained immunity: a memory for innate host defense. Cell Host Microbe. 9, 

355–361 (2011).
51. Cheng S. C. et al. mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345, 

1579− +  (2014).
52. Rinkevich B. The ‘immunology trap’ of anthozoans. Invertebr. Surviv. J. 8, 153–161 (2011).
53. Li G. C. & Werb Z. Correlation between synthesis of heat-shock proteins and development of thermotolerance in Chinese 

hamster fibroblasts. . Proc. Natl. Acad. Sci. USA 79, 3218–3222 (1982).
54. Lindquist S. & Craig E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).
55. Zugel U. & Kaufmann S. H. E.. Immune response against heat shock proteins in infectious diseases. Immunobiology. 201, 22–35 

(1999).
56. Brown T., Bourne D. & Rodriguez-Lanetty M. Transcriptional activation of c3 and hsp70 as part of the immune response of 

Acropora millepora to bacterial challenges. Plos One 8, e67246 (2013).
57. Kono H. & Rock K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).
58. Sanchez-Perez L. et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large 

established melanomas. J. Immunol. 177, 4168–4177 (2006).
59. Zhang K., Zhou B., Wang Y. Y., Rao L. & Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic 

review and meta-analysis. Eur. J. Cancer. 49, 946–954 (2013).
60. Prohaszka Z. et al. Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones. 7, 17–22 

(2002).
61. Baruah K., Ranjan J., Sorgeloos P., MacRae T. H. & Bossier P. Priming the prophenoloxidase system of Artemia franciscana by 

heat shock proteins protects against Vibrio campbellii challenge. Fish Shellfish Immunol. 31, 134–141 (2011).
62. Sung Y. Y., Pineda C., MacRae T. H., Sorgeloos P. & Bossier P. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress 

promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress Chaperones. 13, 
59–66 (2008).

63. Sung Y. Y. et al. Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of Artemia franciscana larvae. Cell Stress 
Chaperones. 14, 603–609 (2009).

64. Benton R., Vannice K. S., Gomez-Diaz C. & Vosshall L. B. Variant ionotropic glutamate receptors as chemosensory receptors in 
Drosophila. Cell. 136, 149–162 (2009).

65. Croset V. et al. et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste 
and olfaction. Plos Genet. 6, e1001064 (2010).

66. Forde B. G. & Roberts M. R. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime 
Rep. 6, 12703 (2014).

67. Mousavi S. A. R., Chauvin A., Pascaud F., Kellenberger S. & Farmer E. E. Glutamate receptor-like genes mediate leaf-to-leaf 
wound signalling. Nature. 500, 422− +  (2013).

68. Conus S. & Simon H.-U. Cathepsins and their involvement in immune responses. Swiss Med. Wkly. 140, 4–11 (2010).
69. Matsumoto F. et al. Cathepsins are required for toll-like receptor 9 responses. Biochem. Biophys. Res. Commun. 367, 693–699 

(2008).
70. Ewald S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature. 456, 658–U688 

(2008).
71. Park B., Brinkmann M. M., Spooner E., Lee C. C., Kim Y. M. & Ploegh H. L. Proteolytic cleavage in an endolysosomal 

compartment is required for activation of Toll-like receptor 9. Nature Immunology. 9, 1407–1414 (2008).
72. Polson S. W., Higgins J. L. & Woodley C. M. PCR-based assay for detection of four coral pathogens. Proc. 11th Int. Coral Reef 

Symposium. 8, 247–251 (2008).
73. Baumgarten et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl. Acad. Sci. USA 112, 11893–11898 

(2015).

Acknowledgements
We would like to thank Dr. John Pringle for providing the CC7 Exaiptasia pallida clonal line used in this 
study. We are grateful to Dr. John Pringle and Dr. Christian Voolstra for allowing us to use the E. pallida 
genome for the proteomic analysis. We are also grateful to Dr. Don Ennis and Dr. Anthony Bellantuono 
for helpful suggestions and discussions during the early anemone infection trials. We would like to thank 
IMaGeS lab members: Dan Merselis, Cindy Lewis, Katherine Dougan, Ellen Dow, Carolina Guillot, 
Christopher Otero, Melissa Morlote-Triana, and Leidy Gonzalez for comments on the manuscript. This 
research was funded by NSF-IOS (1453519) and NSF-OCE (0851123) grants awarded to MRL.



www.nature.com/scientificreports/

1 4Scientific RepoRts | 5:17425 | DOI: 10.1038/srep17425

Author Contributions
M.R.L. conceptualized the project. T.B. and M.R.L designed the experiments and wrote the paper. T.B. 
conducted the experiments and analyzed the data.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Brown, T. and Rodriguez-Lanetty, M. Defending against pathogens – 
immunological priming and its molecular basis in a sea anemone, cnidarian. Sci. Rep. 5, 17425; doi: 
10.1038/srep17425 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Florida International University
	FIU Digital Commons
	12-2-2015

	Defending against pathogens - immunological priming and its molecular basis in a sea anemone, cnidarian
	Tanya Brown
	Mauricio Rodriguez-Lanetty
	Recommended Citation


	Defending against pathogens – immunological priming and its molecular basis in a sea anemone, cnidarian
	Results
	Host response to bacterial pathogen improves upon repeated pathogen encounter. 
	Proteomic analysis to dissect the molecular changes associated with the immune priming response. 

	Discussion
	Proteomic analysis of immune priming in E. pallida. 

	Materials and Methods
	Exaiptasia pallida Anemone Husbandry. 
	Pathogenic Bacterial Species and Culture Preparation. 
	Determination of Vibrio coralliilyticus Concentration for Infection Trials. 
	Temperature Dependent Pathogen Virulence. 
	Determination of Sub-lethal Pathogen Exposure. 
	Priming Experiments on Exaiptasia pallida anemones. 
	Quantitative PCR Assay for Determining Vibrio coralliilyticus Load on the Anemones. 
	Statistical Analysis of Survivorship Data and Pathogen Load on Inoculated Anemones. 
	Proteomic Analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  The sea anemone, Exaiptasia pallida, utilized in the immunological studies as a Cnidarian model system.
	Figure 2.  Kaplan-Meier survival plots for Exaiptasia pallida during 10-day lethal challenge to the pathogen Vibrio coralliilyticus following: (A) two weeks (B) four weeks and (C) six weeks recovery period post priming with a sub-lethal exposure.
	Figure 3.  Histogram of the differentially expressed proteins as a function of fold change from Exaiptasia pallida anemones four weeks post priming in comparison to naïve anemones never exposed to the pathogen.
	Figure 4.  Representation of biological processes Gene Ontology (GO) terms for the 32 Exaiptasia pallida characterized proteins.
	Figure 5.  Proposed model of Heat Shock Proteins (HSP), Capthesin and Glutamate Receptor (iGluR) roles in cnidarian molecular defense priming: (1) HSP are up regulated and some are extracellularly secreted where bind to peptides and act as DAMPs (2)
	Table 1.  Identification of the 32 proteins subjected to Mass Spectrometry analysis.



 
    
       
          application/pdf
          
             
                Defending against pathogens – immunological priming and its molecular basis in a sea anemone, cnidarian
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17425
            
         
          
             
                Tanya Brown
                Mauricio Rodriguez-Lanetty
            
         
          doi:10.1038/srep17425
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17425
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17425
            
         
      
       
          
          
          
             
                doi:10.1038/srep17425
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17425
            
         
          
          
      
       
       
          True
      
   


