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Using phylogenetically-informed annotation (PIA)
to search for light-interacting genes in
transcriptomes from non-model organisms
Daniel I Speiser1,2, M Sabrina Pankey1, Alexander K Zaharoff1, Barbara A Battelle3, Heather D Bracken-Grissom4,
Jesse W Breinholt5, Seth M Bybee6, Thomas W Cronin7, Anders Garm8, Annie R Lindgren9, Nipam H Patel10,
Megan L Porter11, Meredith E Protas12, Ajna S Rivera13, Jeanne M Serb14, Kirk S Zigler15, Keith A Crandall16,17

and Todd H Oakley1*

Abstract

Background: Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes
(i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it
can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses
are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming
because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In
response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based
approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA),
which places uncharacterized genes into pre-calculated phylogenies of gene families.

Results: We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of
genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched
protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis
in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes
from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement
Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees.
Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from
the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for
LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we
demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/).

Conclusions: Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or
other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships
to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be
used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

Keywords: Bioinformatics, Eyes, Evolution, Galaxy, Next-generation sequence analysis, Orthology, Phototransduction,
Transcriptomes, Vision
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Background
An integrated understanding of the function and evolu-
tion of complex biological traits – such as eyes – is a
major goal for biologists. Ideally, we will learn how spe-
cific genes evolved to influence particular phenotypes at
multiple levels of organization. Eyes are an excellent sys-
tem for establishing causative links between genotype
and phenotype because their genetic components tend
to be well-characterized and deeply conserved [1-4].
However, we lack genomic or transcriptomic resources
for many species that are amenable to the physiological,
developmental, or evolutionary study of eyes and vision.
New tools for high throughput sequencing (e.g. 454, Illu-
mina, SOLiD) and de novo assembly provide a solution
to this problem, as they make the development of tran-
scriptomic resources feasible for almost any organism,
even invertebrate animals where few full genomes are
available relative to species diversity [5].
A remaining challenge is that it can be difficult to as-

sign identities to the sequences that comprise transcrip-
tomes from non-model organisms. Existing methods for
annotating transcriptomes – e.g. Blast2GO [6], GOtcha
[7], GoFigure [8], OntoBlast [9], and AutoFACT [10] –
tend to rely upon similarities between new sequences
and previously characterized genes, an approach which
can give misleading results because there is no consist-
ent method for predicting how similar an uncharacter-
ized gene must be to a characterized one to share a
common function. Phylogenetic analyses provide a more
objective way to annotate transcriptomes: if a sequence
falls in a clade of genes whose functions are character-
ized and similar to each other, we can use parsimony to
infer that the sequence has a similar function. A draw-
back to phylogenetic analyses is that they tend to be
time-consuming because of the need to re-calculate trees
each time that new data are collected (e.g. [3]).
In response, we used existing tools for phylogenetic ana-

lysis in the Osiris package [11] of Galaxy [12-14] – an
open-source workflow management system – to produce
a computationally efficient, tree-based approach for an-
notating transcriptomes that we term Phylogenetically-
Informed Annotation (PIA). First, we used tools in Galaxy
and protein sequences predicted from 29 fully-sequenced
genomes to produce trees for 109 gene families from a
metazoan Light-Interaction Toolkit (LIT 1.0), i.e. a set of
genetic components that metazoans use to build eyes and
other light-interacting structures. LIT 1.0 includes genes
that animals use to detect light (e.g. opsins and crypto-
chromes; [15,16]), absorb light (e.g. pigment synthesis en-
zymes; [17]), and refract light (e.g. lens crystallins; [18,19]),
as well as transcription factors associated with the devel-
opment of eyes and other light-interacting structures (e.g.
Pax6; [20,21]). Second, we designed a workflow in Galaxy
that uses e-values from BLAST [22] to identify potential

homologs of LIT genes. The workflow then employs a
choice of multiple sequence alignment programs (MUSCLE
[23] or MAFFT [24,25]) and a repurposed Evolutionary
Placement Algorithm (implemented in RAxML; [26,27])
to place these sequences using Maximum Likelihood on
to the trees that we calculated earlier for genes from LIT
1.0. Finally, we tested our approach by using PIA to search
for LIT genes in 28 new transcriptomes that we generated
using the Roche 454 platform. These transcriptomes –
generated from RNA expressed in light-interacting tissues
from a range of cephalopod mollusks, arthropods, and
cubozoan cnidarians – are all from animals that are not
traditional model organisms, but are well-suited for an-
swering particular questions about the function and evolu-
tion of eyes and other light-interacting structures.

Implementation
Here, we describe the implementation of Phylogenetically-
Informed Annotation (PIA), a new approach for using
phylogenetic methods to rapidly annotate transcriptomes
from non-model organisms. We focus on a set of 109
genes that we selected to form a metazoan Light Inter-
action Toolkit (LIT). We make LIT-PIA available through
an instance of Galaxy on a publicly accessible web server
(http://galaxy-dev.cnsi.ucsb.edu/pia/). Users can find a
written tutorial and a screencast demonstration linked on
that site. In Galaxy, we implemented a tool called pia,
which executes a perl script that calls a series of bioinfor-
matics tools, including BLAST [22], a choice of multiple
sequence alignment programs (MUSCLE [23] or MAFFT
[24,25]) and RAxML [27,28]. Implementing PIA in Galaxy
allows us to integrate the pia tool with other useful tools,
such as tab2trees of the Osiris package [11], which visual-
izes multiple phylogenetic trees in a single PDF file.
Furthermore, the Galaxy instance allows for user-friendly
annotation of LIT genes using PIA. Our pre-calculated
trees for LIT genes can be selected from a menu on our
Galaxy pia tool, and all the gene trees are also available
on the Bitbucket public repository and documentation
for using the public website is available there (http://
bitbucket.org/osiris_phylogenetics/pia/src/) in the docs
subdirectory.

Results and discussion
New trees for 109 LIT genes
We generated maximum likelihood trees for 109 genes
from a metazoan Light Interaction Toolkit (LIT 1.0;
Additional file 1: Table S1; Additional file 2). From our ef-
forts, we noted that many LIT genes do not have ortholo-
gous relationships across Metazoa. For example, we find
that LIT genes with similar functions in distantly related
taxa (e.g. arthropods and vertebrates) are often paralogs,
not orthologs, due to lineage-specific gene duplications.
Although evidence suggests that orthologs tend to be
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more similar functionally than paralogs, this does not hold
true in the case of all gene families [26,27]. Thus, we con-
clude that tree-building is a useful approach for inferring
the function of certain LIT genes, yet we still urge re-
searchers to use caution when assigning functions to
uncharacterized genes in the absence of functional tests
and based on phylogenetic relationships alone. Further,
how one selects the sequences used to build a tree may
have a significant influence on the inferences drawn about
the ancestral function and patterns of diversification of
gene families. Thus, we advocate for an objective, repeat-
able approach to choosing sequences for gene trees (such
as the one we employ here), especially when using phylo-
genetic relationships between these sequences to make in-
ferences about the functions of newly sequenced genes.

New transcriptomes for integrative and comparative
vision research
We generated 28 transcriptomes for light-interacting tis-
sues from a range of cephalopod mollusks, arthropods,
and cubozoan cnidarians (Table 1). We sequenced tran-
scriptomes from these taxa because they lacked genomic
or transcriptomic resources, but are well-suited for answer-
ing certain questions about the function, development, and
evolution of eyes and other light-interacting structures.
The sizes of our transcriptomes varied (Additional file 3:
Table S2). For example, the number of total bases in our
transcriptomes averaged 2,903,000 ± 1,185,000 (mean ± std
deviation) with a low of 89,000 bp (for an eye from the
cephalopod Vampyroteuthis infernalis) and a high of
5,185,000 bp (for a ventral eye from the horseshoe crab
Limulus polyphemus). The number of isotigs per transcrip-
tome ranged from 168 (V. infernalis eye dataset) to 5,447
(for tissue from the eyes and head of the isopod Asellus
aquaticus) and the mean sizes of isotigs ranged from
530 bp (V. infernalis eye dataset) to 1,397 bp (L. polyphemus
ventral eye dataset).

Phylogenetically-informed annotation
To rapidly identify potential LIT 1.0 genes in our genetic
datasets, we implemented PIA in Galaxy. Unlike past
efforts at using phylogenetic methods to annotate tran-
scriptomes, PIA does not require the re-calculation of
gene trees every time a new sequence is to be analyzed.
The output from PIA is a gene tree or a set of gene trees
in Newick format that can be viewed using existing tools
in Galaxy, such as tab2trees from the Osiris package [11].
These trees include sequences identified from predicted
protein databases associated with 29 fully-sequenced ge-
nomes (Additional file 4: Table S3 and Additional file 5:
Supplementary References for Table S3). The trees also in-
clude sequences marked as either Landmarks or Queries
(Figure 1). Landmarks are genes (usually from model or-
ganisms) whose functions and/or patterns of expression

have been characterized relatively well. Sequences marked
"LANDMARK1" – which are highlighted with red squares
when the trees are viewed using our tab2trees tool – are
well-characterized LIT genes. Sequences marked "LAND-
MARK2" are also well-characterized genes, but are those
that have functions different than the LIT genes that we are
seeking. For example, we included certain non-opsin
GPCRs in our trees for opsins, but we labeled them as
LANDMARK2s because we have evidence that they are
not involved in the detection of light. Queries marked
“QUERY” – which are noted by yellow circles in the output
from the tab2trees tool – represent potential LIT genes that
PIA has identified from a particular genetic dataset. Prom-
ising queries from a transcriptome (i.e. ones that may repre-
sent orthologs of LIT genes) will tend to fall on short
branches in phylogenetic positions that are sensible given
established relationships between species (for an example,
see the query tagged “Gprk1 hit UN0029 ORF1” in
Figure 1). The output from PIA may also include query se-
quences that are close relatives, but not orthologs, of LIT
genes (for examples, see the queries tagged “Gprk1 hit
UN1121 ORF1” and “Gprk1 hit UN2338 ORF1” in
Figure 1). Thus, we urge users of PIA to inspect carefully
where queries fall on their respective gene trees and to
make inferences about function accordingly.
Building additional gene trees will allow researchers to

use PIA to search for LIT genes that are not included in
our initial list or to search for new sets of genes. For ex-
ample, there has been much recent interest in the sets of
genes that underlie the process of biomineralization in an-
imals [28,29]. Extensive databases of these genes have
been published for invertebrate taxa (e.g. mollusks) that
are not traditional model systems [30]. By building trees
for these sets of genes and applying our methods for PIA,
researchers will be able to survey new transcriptomes rap-
idly for genes that may be involved in biomineralization.

The distribution of LIT genes across 28 new vision-related
transcriptomes
Across our 28 newly-sequenced transcriptomes, PIA iden-
tified potential orthologs of 69 of the 109 genes included
in LIT 1.0 (Figure 2). We recovered certain genes from
our transcriptomes far more often than others. Genes
from LIT 1.0 that were expressed in ten or more of our
transcriptomes included several components of the rhab-
domeric phototransduction pathway, which is employed
by the photoreceptors found in the eyes of many inverte-
brates [3,15]. These components include: Arrestin (Arr),
Gq alpha (Galpha49B), Gq beta (Gbeta76C), protein kin-
ase C (inaC), r-opsin (ninaE), phospholipase C (norpA),
and transient receptor potential protein (trp). Ten or more
of our transcriptomes also contained the enzyme aminole-
vulinate synthase (Alas), a component of the heme synthe-
sis pathway [31], as well as an aldehyde dehydrogenase
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Table 1 Collection data for the samples from which we generated 28 new transcriptomes

Species Description Tissue Collection Location Lat. Long. Depth
(m)

1 Chiroteuthis calyx Cephalopod (squid) Adult eye tissue ROV (MBARI) CA, USA 36°69'N 122°05'W 446

2 Euprymna scolopes Cephalopod (squid) Adult eye tissue Hand net Honolulu, HI, USA 21°27'N 157°77'W 0.5

3 Galiteuthis armata Cephalopod (squid) Adult eye tissue ROV (MBARI) CA, USA 36°69'N 122°05'W 556

4 Octopus bimaculoides Cephalopod (octopus) Adult dermal tissue SCUBA Santa Barbara, CA, USA 34°43'N 119°71'W ?

5 Uroteuthis edulis Cephalopod (squid) Adult eye tissue Fishmarket Numazu, Japan 35°08'N 138°86'E ?

6 Vampyroteuthis infernalis Cephalopod (vampire squid) Adult eye tissue ROV (MBARI) CA, USA 36°08'N 122°30'W 1096

7 Asellus aquaticus Arthropod (cave isopod) Adult head Hand net Planina cave, Slovenia 45°82'N 14°25'E 65

8 Asellus aquaticus Arthropod (surface isopod) Embryos and hatchlings Lab colony Planina cave, Slovenia 45°82'N 14°25'E N/A

9 Asellus aquaticus Arthropod (hybrid isopod) Adult head Lab colony Planina cave, Slovenia 45°82'N 14°25'E N/A

10 Asellus aquaticus Arthropod (surface isopod) Adult head Lab colony Planina cave, Slovenia 45°82'N 14°25'E N/A

11 Benthesicymus bartletti Arthropod (shrimp) Adult eye tissue Benthic skimmer Northern Gulf of Mexico 28°48’N 88°12’W 1350

12 Caecidotea bicrenata Arthropod (cave isopod) Adult head Hand net Franklin County, TN, USA 35°15'N 86°10'W 0.1

13 Caecidotea bicrenata Arthropod (cave isopod) Whole embryos Hand net Franklin County, TN, USA 35°15'N 86°10'W 0.1

14 Caecidotea forbesi Arthropod (surface isopod) Adult head Hand net Sewanee, TN, USA 35°22'N 85°97'W 0.5

15 Caecidotea forbesi Arthropod (surface isopod) Whole embryos Hand net Sewanee, TN, USA 35°22'N 85°97'W 0.5

16 Euphilomedes carcharodonta Arthropod (ostracod) Whole embryos Hand net Half Moon Bay, CA, USA 37°29'N 122°29'W 1

17 Hemisquilla californiensis Arthropod (stomatopod, male) Adult eye tissue Dredge Orange County, CA, USA 33°67'N 117°78'W ?

18 Ischnura ramburii Arthropod (damselfly, female) Adult head Hand net Austin, TX, USA 30°28'N 97°78'W N/A

19 Limulus polyphemus Arthropod (horseshoe crab) Adult lateral eye Hand Indian River near Titusville, FL, USA 28°74'N 80°75'W Surface

20 Limulus polyphemus Arthropod (horseshoe crab) Adult median eye Hand Indian River near Titusville, FL, USA 28°74'N 80°75'W Surface

21 Limulus polyphemus Arthropod (horseshoe crab) Adult ventral eye Hand Indian River near Titusville, FL, USA 28°74'N 80°75'W Surface

22 Procambarus alleni Arthropod (crayfish) Adult eye tissue Hand net Fisheating Creek, Glades County, FL, USA 26°90'N 81°24'W Surface

23 Procambarus franzi Arthropod (crayfish) Adult eye tissue Hand net Orange Lake Cave, Marion County, FL, USA Contact Authors Contact Authors Surface

24 Pseudosquilla ciliata Arthropod (stomatopod) Adult eye tissue Dredge Isla Magueyes, Puerto Rico 17°97'N 67°05'W ?

25 Systellaspis debilis Arthropod (shrimp) Adult eye tissue Benthic skimmer Nothern Gulf of Mexico 28°48’N 88°12’W 1350

26 Telebasis salva Arthropod (damselfly) Juvenile head Hand net Austin, TX, USA 30°28'N 97°78'W N/A

27 Tripedalia cystophora Cnidarian (cubozoan) Adult rhopalia Snorkel La Parguera, Puerto Rico 17°58'N 67°04'W Surface

28 Tripedalia cystophora Cnidarian (cubozoan) Whole planula larvae Snorkel La Parguera, Puerto Rico 17°58'N 67°04'W Surface
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(Aldh) that is related to the Ω-crystallins expressed in the
lenses of the camera eyes of cephalopods [32,33] and the
mirror-based eyes of scallops [34-36]. Amino acid and nu-
cleotide sequences for the potential LIT genes that we
identified from our 28 transcriptomes, along with the cor-
responding gene trees, are available on our publicly-
accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/)
under the Shared Data tab.
The transcriptomes that we generated for cephalopods

contained between two (Vampyroteuthis infernalis) and
sixteen (Euprymna scolopes) LIT genes (Figure 2). The
majority of these genes represent components of the rhab-
domeric phototransduction pathway, which is known to

confer light-sensitivity to photoreceptors from the retinas
of cephalopods [37-40]. These components include r-
opsins, subunits of the hetero-trimeric Gq protein with
which r-opsins interact, phospholipase C, and the ion
channel TRP. We also recovered a number of lens crystal-
lins, including relatives of the S- and Ω-crystallins indenti-
fied previously from the lenses of cephalopods [18]. Lastly,
we found orthologs of LIT genes that are associated with
two vision-related features that may be unique to the eyes
of cephalopods. First, we found orthologs of the
retinoid-binding protein RALBP, which is involved in
regenerating the chromophores employed by the visual
pigments of cephalopods [41,42]. Second, we found

Figure 1 An example of results from phylogenetically-informed annotation (PIA). Here, we search a transcriptome generated for an eye from
the squid Chiroteuthis calyx for relatives of the gene G protein-coupled receptor kinase 1 (Gprk1), a component of the rhabdomeric phototransduction
pathway. Sequences marked with red squares and labeled "LANDMARK1" are homologs of Gprk1 that have been well-characterized functionally and
are thought to share similar functions. In contrast, sequences labeled "LANDMARK2" are well-characterized genes that are more distantly related to
Gprk1. Sequences marked with yellow circles and labeled "QUERY" are protein sequences predicted from our transcriptome for C. calyx. Based on their
phylogenetic positions and branch lengths, it is likely that one hit (UN0029) represents an ortholog of Gprk1 and that two hits (UN1121 and UN2338)
represent genes that are distant paralogs of Gprk1. We conclude that the eyes of C. calyx express an ortholog of Gprk1, a component of the
rhabdomeric phototransduction pathway.
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GENE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
decapentaplegic
engrailed
hedgehog
wingless
egfr 1 1
glass 1 1
notch 1 1
ocelliless
Pph13 1
Vsx1/2
dachsund 1
eyeless
eyes absent 1 1
Optix
ovo 1
retinal homeobox
Six4
sine oculis
Arr1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Galpha49B 1 1 1 1 1 1 1 1 1 1 1 1
Gbeta76C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ggamma30A 1 1 1
Gprk1 1 1 1 1 1 1
Gprk2 1 1 1 1 1 1
inaC 1 1 1 1 1 1 1 1 1 1
ninaE (r-opsin) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C
norpA 1 1 1 1 1 1 1 1 1 1 1 1
rdgA 1
rdgB 1
rdgC
trp 1 1 1 1 1 1 1 1 1 1 1 1 1
Cnga1
Gnat1 1 1 1 1 1 1 1
Gngt1
Grk1
Gucy2f
Pde6a/b/c 1
Pde6d 1 1
Rcvrn
Rgs9 1 1 1 1
Rgs9bp
Rho (c-opsin) 1
Sag
Abca4 1 1 1
Lrat
Rbp1
Rbp3
Rdh5
Rdh8
Rlbp1
Rpe65 1
RALBP 1 1 1 1
ninaB 1 1 1 1 1
ninaD 1 1 1 1
ninaG 1 1 1
pinta 1 1 1
santamaria 1 1 1 1
black (CSAD) 1
Dat 1
Ddc 1
ebony (NBAD) 1 1 1
laccase2
ple (TH) 1
proPO (PPO) 1
tan 1 1 1
yellow (DCE) 1
Tyr 1 1
Mitf
hoepel1 (Oca2)
clot 1 1 1 1 1
Dhpr 1 1 1 1 1 1 1 1 1
Pcd 1 1 1 1 1
pr (PTS)
Pu (GCH1) 1 1 1 1 1
rosy (XDH) 1 1
sepia 1 1 1
Sptr (SPR) 1 1
cinnabar (KMO) 1 1 1 1
Kfase (KF) 1 1
vermilion (TDO) 1 1 1 1 1 1 1 1
scarlet/brown 1 1
white
Alas1/2 1 1 1 1 1 1 1 1 1 1
Alad 1 1 1 1
Cpox 1
Fech 1 1
Hmbs (Pbgd) 1 1
Ppox
Urod 1 1
Uros 1
reflectin 1a 1 1 1 1 1 C C
Alpha crystallin
Beta crystallin 1
D crystallin (Cry)
J crystallin 1 1 1
Omega crystallin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S crystallin 1 1 1 1 1 1 1 1
clock
cryptochrome 1/2 1 1
cycle
clockwork orange
lark 1 1 1 1 1 1 1
period
Pdfr (pdf)
Pdp1 (par) 1
slowpoke 1 1 1 1 1
tango
timeout 1 1
vrille
Total

A B C

0
0
0
0
2
2
2
0
1
0
1
0
2
0
1
0
0
0

19
12
17
3
6
6

10
19
12
1
1
0

13
0
7
0
0
0
1
2
0
4
0
1
0
3
0
0
0
0
0
0
1
4
5
4
3
3
4
1
1
1
3
0
1
1
3
1
2
0
0
5
9
5
0
5
2
3
2
4
2
8
2
0

10
4
1
2
2
0
2
1
5
0
1
0
3

18
8
0
2
0
0
7
0
0
1
5
0
2
0

13 16 11 14 12 2 5 7 12 10 11 13 12 7 10 12 8 28 11 15 17 9 3 8 10 11 13 7

Figure 2 (See legend on next page.)
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sequences that may represent reflectins, which are pro-
teins that contribute to the biological mirrors that ceph-
alopods use to camouflage their eyes [43,44].
Our transcriptomes from arthropods contained be-

tween three (Procambarus franzi – a crayfish) and 28
(Ischnura ramburii – a damselfly) potential orthologs of
genes from LIT 1.0 (Figure 2). As in cephalopods, many
of the genes we identified in arthropods represent com-
ponents of the rhabdomeric phototransduction pathway.
We also identified a number of genes that are associated
with the synthesis of pterins and ommochromes, types
of pigment found previously in the compound eyes of
certain arthropods [45]. Additionally, several transcrip-
tomes contained genes (e.g. pinta, ninaG, ninaD, ninaB,
and santamaria) related to those that help synthesize
the chromophores employed by the visual pigments in
the eyes of the fruit fly Drosophila melanogaster [46,47].
Finally, our transcriptomes for the adult rhopalia and

planula larvae of the cubozoan cnidarian Tripedalia
cystophora contained thirteen and seven light-interacting
genes, respectively (Figure 2). The majority of these
genes are related to those associated with phototransduc-
tion in bilaterians. For example, we found a previously char-
acterized opsin in our transcriptome for rhopalia from
adult T. cystophora [48], as well as a Gs alpha subunit that
is associated with light-detection in other cnidarians [49].
We also found evidence of J-crystallins, which are lens crys-
tallins unique to the camera-type eyes of cubozoans [50].
It is important to note that the absence of a particular

gene from a transcriptome is not necessarily informative.
Even if a transcriptome is “complete”, it is only complete
for a particular piece of tissue, from a particular animal,
at a particular time. Thus, we have tried to draw general
conclusions and points of future interest from the genes
that we identified from our transcriptomes. We hope re-
searchers will apply the approach that we have devel-
oped here to re-visit these light-interacting tissues and
sequence more deeply and more broadly so that statisti-
cally meaningful comparisons of gene expression may be
drawn between them.

Conclusion
In this study, collaborators from multiple institutions
worked together to produce new data and new ap-
proaches for studying genes expressed by eyes and other
light-interacting tissues. We used high throughput se-
quencing to discover orthologs of light-interacting genes
expressed in 28 vision-related tissues from a range of
cephalopod mollusks, arthropods, and cnidarians. We
have made available to vision researchers these genetic
data, as well as new resources for analyzing high
throughput genetic data. Specifically, we calculated trees
to understand the evolutionary histories of 109 separate
genes known to be involved with the function or devel-
opment of light-interacting structures such as eyes.
These trees can now be used to annotate transcriptomes
by comparing the evolutionary similarities between
newly identified sequences and genes that have been
characterized previously through studies of their expres-
sion patterns and functions. These tools and analyses
can be implemented by anyone using a set of online,
flexible, user-friendly workflows implemented in Galaxy.
These new data and tools will accelerate the understand-
ing of genotype-phenotype connections and evolution in
a diversity of animal visual systems.

Methods
Taxon selection
We sequenced 28 transcriptomes from 20 invertebrate
taxa that lack genomic resources, but are well-suited for
answering questions about the function, development, and
evolution of eyes and other light-interacting structures
(Table 1). For example, we generated transcriptomes from
RNA expressed by the eyes and skin of certain cephalo-
pod mollusks (squid and octopus). These animals may
have the most complex light-influenced behaviors of any
invertebrate [51,52], but it appears that the eyes of cepha-
lopods tend to contain only a single spectral class of
photoreceptor ([53]; though see [54] as an exception).
Additional physiological complexity may be suggested by
the results of high throughput sequencing. It is also

(See figure on previous page.)
Figure 2 The results of using phylogenetically-informed annotation (PIA) to search 28 new transcriptomes for light-interacting genes.
Here, cells shaded in black represent orthologs of LIT genes that are present in our transcriptomes. We have named genes based on conventions
for Drosophila melanogaster whenever possible. Otherwise, gene names are given for Mus musculus. Cells marked "C" are hits from our
transcriptomes that may represent contamination or assembly errors. The columns represent the following transcriptomes (where A =
Cephalopods; B = Arthropods; and C = Cnidarians): 1 = Chiroteuthis calyx eye; 2 = Euprymna scolopes eye; 3 = Galiteuthis armata eye; 4 = Octopus
bimaculoides skin; 5 = Uroteuthis edulis eye; 6 = Vampyroteuthis infernalis eye; 7 = Asellus aquaticus cave head; 8 = Asellus aquaticus embryos and
hatchlings; 9 = Asellus aquaticus hybrid head; 10 = Asellus aquaticus surface head; 11 = Benthesicymus bartletti eye; 12 = Caecidotea bicrenata adult
head; 13 = Caecidotea bicrenata embryos; 14 = Caecidotea forbesi adult head; 15 = Caecidotea forbesi embryos; 16 = Euphilomedes carcharodonta
embryos; 17 = Hemisquilla californiensis eyes; 18 = Ischnura ramburii head; 19 = Limulus polyphemus lateral eye; 20 = Limulus polyphemus median
eye; 21 = Limulus polyphemus ventral eye; 22 = Procambarus alleni eye; 23 = Procambarus franzi eye; 24 = Pseudosquilla ciliata eye; 25 = Systellaspis
debilis eye; 26 = Telebasis salva head; 27 = Tripedalia cystophora eyes; 28 = Tripedalia cystophora planula larvae.
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possible that certain visually-influenced behaviors in cepha-
lopods – such as dynamic camouflage – may be influenced
by molecular components that are expressed outside of
their eyes. For example, past work suggests that certain
cephalopods express LIT genes in their light-producing
photophores [55] and in certain dermal cells [56].
We also sequenced transcriptomes for a range of

arthropods. We chose to study stomatopods (mantis
shrimp) because they have an unsurpassed ability to dis-
tinguish different aspects of light. Certain species are
maximally sensitive to twelve distinct wavelength peaks
and some species can identify both linearly and circu-
larly polarized light [57-60]. Similarly, we chose to study
odonates (damselflies and dragonflies) because they
have physiologically complex eyes [61] and display a diver-
sity of visually-influenced behaviors [62-64]. To study the
degeneration of eyes in arthropods from subterranean en-
vironments, we examined certain species of isopods and
crayfish in which closely related species or populations
live either above or below ground. Specifically, we se-
quenced tissues from the eye-bearing, surface-dwelling
isopod Caecidotea forbesi and its eyeless, cave-dwelling
congeneric C. bricrenata. We also sequenced transcrip-
tomes for different populations of the isopod Asellus
aquaticus, which has a surface-dwelling form and
multiple cave-dwelling populations with typical cave
morphologies like degenerated eyes [65,66]. Likewise,
we generated transcriptome data from a pair of surface
(Procambarus alleni) and cave (P. franzi) freshwater
crayfish. Crayfish have previously been the focus of
molecular evolutionary studies of opsin in cave/surface
comparisons [67]. To study the evolution of sexually
dimorphic eyes, we generated a transcriptome for the
RNA expressed by developing eyes from the ostracod
Euphilomedes carcharodonta, a species in which males
have compound eyes, but females do not [68,69]. Other
species in this family of ostracods exhibit a similar, but in-
dependently evolved eye dimorphism, suggesting that
these ostracods may be a promising system for the study
of sex-specific convergent phenotypic evolution [70].
Lastly, we sequenced transcriptomes for Tripedalia

cystophora, a cubozoan cnidarian (box jellyfish).
Cubozoans are the only cnidarians with camera-type eyes
and, for that reason, have been the subject of numerous
studies of visual neurobiology [71-74], morphology [75,76],
and behavior [77,78]. Transcriptomic resources will aid
these efforts. Further, as cnidarians, cubozoans may help us
understand the evolutionary origins of the metazoan
phototransduction cascade [79-81].

RNA extraction, cDNA construction, and transcriptome
sequencing
We extracted RNA from our tissue samples using either
the organic solvent TRIzol (Invitrogen) or the Nucleospin

RNA XS kit (Macherey-Nagel), in both cases following
manufacturer’s protocol. In cases where we used TRIzol,
we removed trace DNA with the Ambion TURBO DNA-
free kit (Invitrogen). In all cases, we quantified RNA yield
with a Qubit Fluorometer (Invitrogen), following manufac-
turer’s protocol. To generate cDNA from RNA, we used
the SMARTer cDNA synthesis kit (Clontech). To reduce
sequencing artifacts due to poly-T tracts, we used modified
3’-primers for first-strand synthesis: 5’-AAG CAG TGG
TAT CAA CGC AGA GTA CTTTTTTCTTTTTT-3’. For
second strand synthesis, we used the protocol outlined in
the SMARTer cDNA kits and a number of cycles deter-
mined by a series of optimization procedures. We then
purified the amplified cDNA using one volume per sample
of phenol:chloroform:isoamyl (25:24:1 v/v/v) and standard
protocols. Finally, we sequenced cDNA using the Roche
454 platform. Here, we followed manufacturer’s instruc-
tions and employed partial runs with a manifold to separate
samples. To assemble our transcriptomes, we used GS De
novo Assembler v2.3 (“Newbler”; 454 Life Sciences/Roche
Branford, CT USA) set to default threshold options, and
using the –vt option to remove adapters. Following assem-
bly, we used LUCY [82,83] to trim low-quality nucleotide
reads and delete any assembled contigs below 100 bp in
length. Next, we ran isotigs from Newbler through the pro-
gram iAssembler [84] to combine redundant isotigs, then
ran the resulting sequences through the program ‘Get
ORFs’ [12,85], ignoring any sequences less than 30 amino
acids in length, to produce the predicted protein sequences
that we used in our PIA analyses. Assembled sequences
and ORFs for our 28 transcriptomes are available on
the Bitbucket public repository (http://bitbucket.org/osiris_
phylogenetics/pia) and on a publicly-accessible web server
(http://galaxy-dev.cnsi.ucsb.edu/pia/).

Assembling the light-interaction toolkit (LIT)
We assembled the LIT 1.0 by reviewing past research into
the molecular components that underlie the function and
development of light-interacting structures in metazoans
(Additional file 1: Table S1). Specifically, the LIT 1.0 con-
tains molecular components of rhabdomeric- and ciliary-
type phototransduction [1,15,16,86], transcription factors
involved in the specification and development of photore-
ceptors and eyes [3,20,87], genes involved in the synthesis
and regeneration of the chromophore retinal [46,47,88],
lens crystallins [18,19,36,50], reflectins [44], components
of the circadian clock pathway [15] , and the enzymes that
transport and produce pigments such as melanins [89,90],
pterins [91], ommochromes [15,17], and hemes [31].
Genes from LIT 1.0 are an appropriate test case for PIA
because the specific functions and expression patterns of
many of these genes are well-characterized. Also, certain
fundamental aspects of light detection – such as opsin-
based phototransduction – appear to involve molecular
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components that are conserved broadly across metazoan
phyla. Thus, we can make well-informed inferences about
the functions of new sequences from transcriptomes based
on their phylogenetic relatedness to LIT genes that have
been characterized previously.
After assembling our list of genes for LIT 1.0, we used

functionally characterized exemplars of each of these
genes (i.e. those from model systems such as fly or
mouse; see Additional file 1: Table S1) and the blastp al-
gorithm to search the predicted protein databases asso-
ciated with 29 fully-sequenced genomes, including those
from 24 metazoans, two choanoflagellates, and three
fungi (see Additional file 1: Table S1 for search settings
and Additional file 4: Table S3 for details on the pre-
dicted protein databases that we searched). After remov-
ing duplicate genes with Similar Sequence Remover [11],
we aligned BLAST hits for each gene using MAFFT
[24,25]. We removed genes on long branches using Long
Branch Remover [11] and built trees with RAxML
assuming WAG as the protein model, and using 100
bootstrap pseudoreplicates followed by maximum
likelihood search for the best tree [92,93].

Phylogenetically-informed annotation (PIA)
We used PIA to search our 28 new transcriptomes for po-
tential orthologs of genes from LIT 1.0. First, we searched
translated versions of our transcriptomes using blastp and
the same queries that we used to identify sequences for
our pre-calculated gene trees (Additional file 1: Table S1).
We used stringent settings for blastp, specifically taking
the top three hits that surpassed an e-value cut-off of 1e-
20. Future users of PIA have the option of retaining differ-
ent numbers of top hits and adjusting the e-value cut-off
point as they see fit. Next, we used MAFFT to align the
hits from our BLAST searches against the sequences that
we used to calculate trees for our 109 LIT genes. PIA pro-
vides the option of aligning sequences using MUSCLE
[23], MAFFT [24,25], or MAFFT-profile [94]. MAFFT-
profile is the fastest of the three options because it does
not re-align all sequences, but rather aligns the new se-
quences to an existing alignment. Finally, PIA uses an Evo-
lutionary Placement Algorithm (implemented in RAxML;
[26,27]) to place the potential LIT genes on to our pre-
calculated gene trees using Maximum Likelihood. Briefly,
EPA places new genes on each branch of a pre-calculated
phylogeny and calculates a likelihood score. The place-
ment with the best score is retained. This is much faster
than recalculating the entire gene tree.

Availability and requirements
Project Name: Phylogenetically-Informed Annotation (PIA).
Project Home Page: http://galaxy-dev.cnsi.ucsb.edu/pia/.
Project Demonstration Page: http://galaxy-dev.cnsi.ucsb.
edu/pia/.

Operating System: Any Internet Browser.
Programming Language: Python, Perl, C, Java, and others.
Other Requirements: For a local instance, install Galaxy
(http://galaxyproject.org) and required tools.
License: All original source code for PIA is available under
the MIT license (http://opensource.org/licenses/mit-license.
html). See below:
The MIT License (MIT).
Copyright (c) 2014 Speiser et al.
Permission is hereby granted, free of charge, to any

person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Soft-
ware without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distrib-
ute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do
so, subject to the following conditions: The above copy-
right notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUTNOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Restrictions: None.

Additional files

Additional file 1: Table S1. Genes from a metazoan Light Interaction
Toolkit (LIT 1.0). For each gene in the table, we provide the following: a full
name; abbreviations for orthologs (or paralogs) of the gene from the model
systems Drosophila melanogaster (Dmel) and Mus musculus (Mmus); the
gene set under which each gene can be found on our public website for
Phylogenetically-Informed Annotation (PIA); a citation for a paper discussing
the gene (see References in the main text); and, finally, the e-value cut-offs
and the queries (identified by NCBI accession numbers) that we used to
search for relatives of each gene when building our trees.

Additional file 2: LIT PIA trees.

Additional file 3: Table S2. Statistics for the transcriptomes that we
generated using the Roche 454 platform. We generated these statistics
using the tool assemblystats (version 1.0.1) available in Galaxy. In the table,
the numbered columns represent the following transcriptomes: 1 =
Chiroteuthis calyx eye; 2 = Euprymna scolopes eye; 3 = Galiteuthis armata eye;
4 = Octopus bimaculoides skin; 5 = Uroteuthis edulis eye; 6 = Vampyroteuthis
infernalis eye; 7 = Asellus aquaticus cave head; 8 = Asellus aquaticus embryos
and hatchlings; 9 = Asellus aquaticus hybrid head; 10 = Asellus aquaticus
surface head; 11 = Benthesicymus bartletti eye; 12 = Caecidotea bicrenata
adult head; 13 = Caecidotea bicrenata embryos; 14 = Caecidotea forbesi adult
head; 15 = Caecidotea forbesi embryos; 16 = Euphilomedes carcharodonta
embryos; 17 = Hemisquilla californiensis eyes; 18 = Ischnura ramburii head;
19 = Limulus polyphemus lateral eye; 20 = Limulus polyphemus median eye;
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21 = Limulus polyphemus ventral eye; 22 = Procambarus alleni eye;
23 = Procambarus franzi eye; 24 = Pseudosquilla ciliata eye; 25 = Systellaspis
debilis eye; 26 = Telebasis salva head; 27 = Tripedalia cystophora eyes;
28 = Tripedalia cystophora planula larvae.

Additional file 4: Table S3. The fully sequenced genomes that we
searched for relatives of genes from LIT 1.0 when building our gene
trees. For each genome, we provide the following: the species name; the
group responsible for generating the genome; the version of the
genome that we searched; and a citation for a paper that describes the
genome (see Supplementary References).

Additional file 5: Supplementary References for Table S3.
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