
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

Electrical and Computer Engineering Faculty 
Publications College of Engineering and Computing 

12-1-2007 

A uniform geometrical theory of diffraction for predicting fields of A uniform geometrical theory of diffraction for predicting fields of 

sources near or on thin planar positive/negative material sources near or on thin planar positive/negative material 

discontinuities discontinuities 

T. Lertwiriyaprapa 
The Ohio State University 

P. H. Pathak 
The Ohio State University 

J. L. Volakis 
The Ohio State University 

Follow this and additional works at: https://digitalcommons.fiu.edu/ece_fac 

Recommended Citation Recommended Citation 
Lertwiriyaprapa, T.; Pathak, P. H.; and Volakis, J. L., "A uniform geometrical theory of diffraction for 
predicting fields of sources near or on thin planar positive/negative material discontinuities" (2007). 
Electrical and Computer Engineering Faculty Publications. 72. 
https://digitalcommons.fiu.edu/ece_fac/72 

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital 
Commons. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an 
authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/ece_fac
https://digitalcommons.fiu.edu/ece_fac
https://digitalcommons.fiu.edu/coec
https://digitalcommons.fiu.edu/ece_fac?utm_source=digitalcommons.fiu.edu%2Fece_fac%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ece_fac/72?utm_source=digitalcommons.fiu.edu%2Fece_fac%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


A Uniform Geometrical Theory of Diffraction

for predicting fields of sources near or on thin

planar positive/negative material

discontinuities

T. Lertwiriyaprapa,1 P. H. Pathak,1 and J. L. Volakis1

Received 7 May 2007; revised 19 August 2007; accepted 30 August 2007; published 13 December 2007.

[1] Relatively simple and accurate closed form Uniform Geometrical Theory of
Diffraction (UTD) solutions are obtained for describing the radiated and surface wave
fields, respectively, which are excited by sources near or on thin, planar, canonical two-
dimensional (2-D) double positive/double negative (DPS/DNG) material discontinuities.
Unlike most previous works, which analyze the plane wave scattering by such DPS
structures via the Wiener-Hopf (W-H) or Maliuzhinets methods, the present development
can also treat problems of the radiation by and coupling between antennas near or on
finite material coatings on large metallic platforms. The latter is made possible mainly
through the introduction of important higher-order UTD slope diffraction terms which are
developed here in addition to first-order UTD. The present solutions are simpler to use
because, in part, they do not contain the complicated split functions of the W-H solutions
nor the complex Maliuzhinets functions. Unlike the latter methods based on approximate
boundary conditions, the present solutions, which are developed via a heuristic spectral
synthesis approach, recover the proper local plane wave Fresnel reflection and
transmission coefficients and surface wave constants of the DPS/DNG material. They also
include the presence of backward surface waves in DNG media. Besides being asymptotic
solutions of the wave equation, the present UTD diffracted fields satisfy reciprocity,
the radiation condition, boundary conditions on the conductor, and the Karp-Karal lemma
which dictates that the first-order UTD space waves vanish on a material interface.

Citation: Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis (2007), A Uniform Geometrical Theory of Diffraction for

predicting fields of sources near or on thin planar positive/negative material discontinuities, Radio Sci., 42, RS6S18,

doi:10.1029/2007RS003689.

1. Introduction

[2] Relatively simple and accurate closed form expres-
sions are obtained, in the format of the asymptotic high
frequency UTD ray method [Kouyoumjian and Pathak,
1974; Pathak, 1992], for describing the first-order dif-
fraction, as well as slope diffraction, by discontinuities in
thin, planar 2-D, canonical, isotropic and homogeneous
DPS/DNG material configurations which are excited by
a line (or line dipole) source. As is commonly classified,
DPS materials are those which exhibit positive values of

electrical permittivity and permeability while DNG mate-
rials are supposed to exhibit negative values for these
quantities [Engheta and Ziolkowski, 2005]. Actually the
UTD solutions obtained here also remain valid if one of
these electrical parameters of the material is positive,
while the other is negative. The source can be placed
nearby or directly on, or even be embedded in the
material; furthermore the source can also be allowed to
recede far away from the surface. These UTD solutions
would be useful for predicting the behavior of the fields
radiated by antennas far from, near, or on metallic
structures with a finite size material coating, and for
predicting the coupling between such antennas. The
specific canonical configurations of interest are shown
in Figures 1 and 2. In particular, Figure 1a illustrates the
diffraction from the junction between two thin, planar
DPS/DNG grounded material slabs of different thickness
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and different electrical properties. Also Figure 2a illus-
trates the problem of wave diffraction by a thin, DPS/
DNG material half plane. The configurations in Figures 1
and 2 are surrounded by free space. The material
thickness is assumed to be a small fraction (e.g., one
tenth) of the free space wavelength. The uniform line
source or line dipole source can be either of the electric

or magnetic type. Unfortunately, exact analytical solu-
tions to the above problems of discontinuities in diffrac-
tion by material coated metallic surfaces are not currently
available in a form suitable and tractable for engineering
applications. Also it is noted that conventional numerical
approaches for solving problems in Figures 1a and 2a
become highly inefficient and lack physical insight. In

Figure 1. Junction between two different, thin, planar DPS/DNG material slabs on a perfect
electric conductor (PEC) ground plane with a line source excitation. (a) A line source excitation.
(b) Ray mechanisms.

Figure 2. Thin, DPS/DNG material half plane illuminated by a line source. (a) A line source
excitation. (b) Ray mechanisms.

RS6S18 LERTWIRIYAPRAPA ET AL.: UTD FOR DNG/DPS MATERIAL DISCONTINUITIES

2 of 14

RS6S18

 1944799x, 2007, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2007R

S003689, W
iley O

nline L
ibrary on [23/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



contrast, the present work, based on a heuristic spectral
synthesis method, provides relatively simple closed form
solutions that describe, in a physically appealing manner,
the fields associated with the various UTD ray contribu-
tions, namely, the geometrical optics (GO), surface wave,
and diffraction effects, respectively, which contribute to
an observation point as shown in Figures 1b and 2b. It is
noted that while the source may be near, or on, or far
from the surface, it must remain at a distance which is
somewhat larger than a free space wavelength from the
discontinuity at ‘‘0’’. When the source is sufficiently far
from the discontinuity and from the material surface, and
when this source is a line dipole in which the direction of
the dipole axis is oriented (or pointed) either directly
toward the discontinuity, or close to that direction, then
the UTD slope diffraction phenomena dominates over
the first-order UTD based diffraction effects. In this
case, the pattern of the field incident on the discontinuity
from the line dipole is rapidly varying in angle as
measured from the dipole axis on which its radiation
pattern exhibits a null. One notes that the first-order UTD
diffracted field is proportional to the value of the incident
field at the discontinuity, while the slope diffraction is
proportional to the derivative (slope) of the angular
variation of the incident field at the discontinuity; hence,
the slope effect alone remains dominant when the first-
order diffraction either vanishes or becomes small in
comparison. Furthermore, it is important to note that the
first-order UTD ray field directly incident from a line
source, or a line dipole source, which is placed either in
or directly on a DPS/DNG material also vanishes along
the material interface in accordance with the Karp-Karal
lemma [Zucker, 1969], irrespective of the dipole orien-
tation, but again the slope of the field incident from the
source in this case does not. Thus, in the latter case,
which arises for antennas placed on a DPS/DNG mate-
rial, the space wave excited directly by the source also
undergoes slope diffraction at the discontinuity, in addi-
tion to surface wave diffraction which also exists if that
source is able to directly excite a surface wave (SW) in
the material. Clearly, slope diffraction effects are there-
fore very important in most practical antenna and scat-
tering problems involving material discontinuities. It is
noted that DPS materials typically excite forward surface
waves (FSWs), while DNG materials can support back-
ward surface waves (BSWs) [Engheta and Ziolkowski,
2005]. BSWs are also included in the UTD solution
developed below.
[3] Most previous works in the literature dealing with

the diffraction by material discontinuities generally re-
place the original coated metallic surfaces or material
slabs by approximate impedance or transmissive (for the
geometry of Figure 2) boundary conditions, respectively,
in order to arrive at a rigorous analytical solution to the
resulting approximate problem configuration. These pre-

vious works primarily addresses the scattering problem
in which the illumination is a uniform plane wave that is
incident on the thin material discontinuity. In contrast,
the present work applies not only to scattering situations
but also to antenna problems which are of equally great
practical importance. Moreover, slope diffraction effects
were not treated in almost all previous works on the
problems of scattering by material discontinuities, since
the illumination used therein was typically a uniform
plane wave. The present work incorporates plane, cylin-
drical, and surface wave illumination. Among related
previous works, the one by Tiberio et al. [1989] provides
a cylindrical or plane wave diffraction by a 2-D imped-
ance wedge; and another paper by Manara et al. [1993]
analyzes surface wave diffraction by the same geometry.
However, although valid for the more general wedge
geometry, those solutions in Tiberio et al. [1989] and
Manara et al. [1993] are given in terms of rather
complicated Maliuzhinets functions. Some initial, useful,
related work is discussed by Burnside and Burgener
[1983] where the earlier work by Kouyoumjian and
Pathak [1974] for a perfectly conducting wedge is
generalized heuristically for constructing a UTD solution
for the diffraction by a DPS material half plane; however,
the resulting diffracted field is non reciprocal and does
not satisfy the Karp-Karal lemma on the material half
plane; also, the solution does not contain surface wave
(SW) effects. In Luebbers [1989] and Nechayev and
Constantinou [2006], the work of Burnside and Burgener
[1983] is directly extended to study the approximate UTD
scattering by a wedge with impedance boundary condi-
tions; these solutions also suffer from the same limitations
as those in Burnside and Burgener [1983]. A W-H
solution is available in Volakis [1988] for the plane wave
diffraction by a thin DPS material half plane modeled
using an approximate transmissive boundary condition.
Also Rojas and Pathak [1989] analyzed the plane wave
diffraction by a junction formed by a thin, planar two-part
DPS material backed by an infinite ground plane which
was modeled approximately by higher-order impedance
boundary conditions on either side of the junction,
respectively. Unlike the W-H and Maliuzhinets type
solutions based on the impedance type approximation,
the present solutions recover the proper, local plane wave
Fresnel reflection and transmission coefficients (FRTCs),
and surface wave constants, respectively, for the actual
material. More importantly, the expressions for the first-
order UTD as well as slope diffracted UTD fields
obtained in this paper remain free of the complicated
integral forms of the W-H split (or factorization) func-
tions, and they also remain free of any complicated
Maliuzhinets functions.
[4] In this paper, the solutions to the problems in

Figures 1 and 2 are formulated initially in terms of a
cylindrical wave spectral (CWS) integral for the scattered
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field (satisfying the wave equation). First the spectral
weight function in the CWS for the problem in Figure 1
is synthesized heuristically based on an ansatz provided
by the W-H solution to a special canonical problem of
the plane wave diffraction by a two part impedance
surface [Rojas and Pathak, 1989]. A bisection method,
also described by Rojas and Pathak [1989], can be
employed to directly synthesize a CWS for the problem
in Figure 2 in terms of the CWS for the problem in
Figure 1.
[5] This paper is organized as follows. Section 2 sum-

marizes UTD ray solutions for the problem in Figure 1,
including the slope diffraction terms. The UTD for the
launching and diffraction of SWs is also discussed later in
that section. The radiation and scattering from canonical
problems of interest is calculated in section 3 using the
UTD solutions obtained here, and are shown to compare
very well with the modified W-H solutions obtained from
Volakis [1988] and Rojas and Pathak [1989], which were
developed originally to deal with very thin DPS materials
via approximate boundary conditions. The case of a
surface wave type antenna on a thin finite material strip,
with a perfect electric conductor (PEC) backing is also
analyzed via the UTD based on the results presented in
section 2. It is noted that all the fields in this work are
assumed to have an e jwt time dependence which is
suppressed throughout the paper.
[6] Although this paper analyzes 2-D configurations,

the corresponding 2-D UTD solutions developed here
serve as crucial building blocks for constructing the
related three-dimensional (3-D) configurations involving
point source (or spherical wave) excitation of the geom-
etries in Figures 1 and 2, respectively. The latter 3-D
analysis is currently being completed; furthermore, it
appears that the development of such 3-D solutions will
not only solve more realistic problems, but would also
potentially provide a physical picture, based on the UTD
ray physics, for describing focusing effects in DNG flat
lens geometries. The 3-D solutions pertaining to config-
urations in Figures 1 and 2, respectively, will be reported
separately.

2. Development of the UTD Solution for

Wave Diffraction by a Junction Between

Two Different Planar DPS/DNG Material

Slabs on a PEC Ground Plane

[7] The geometrical configuration of the problem of
interest is shown in Figure 1a. A UTD solution to the
problem in Figure 1a is obtained first in section 2.1 for
the case of plane wave incidence. This solution is based
on a useful ansatz which is provided by a heuristic
simplification of the W-H solution to a related special
canonical two-part impedance diffraction problem. The

simplification in question involves the replacement of a
term involving the W-H split functions with a constant
term (unity). This replacement occurs within the steepest
descent path (SDP) integral in W-H solution, and it
greatly simplifies the solution. Next, in section 2.2, the
ansatz of section 2.1 is extended to treat the case of line-
source illumination. UTD slope-diffraction terms are
introduced in section 2.3.

2.1. Ansatz for the Plane Wave Illumination Case

[8] For the sake of simplicity, and with no loss of
generality, consider a special case of the geometry of
Figure 1a in which the o-face is defined to be a uniform
surface impedance (or admittance) whose value is Zs

o

(or Ys
o ) for the TM (or TE) case, respectively, while the

n-face is just a PEC. Here, the o-face exists for x > 0 and
y = 0, and the n-face exists for x < 0 and y = 0. When this
special two-part geometry is illuminated by an incident,
unit amplitude, plane wave field, upw

i , where upw
i is the

incident electric (or magnetic) field ẑEz
i (or ẑHz

i) for the
TE (or TM) case, then the total field, upw

t for y > 0 (free
space) may be expressed as

utpw ¼ uipw þ uspw ð1Þ

where upw
t represents the total electric field ẑEz for the TE

case (or the total magnetic field ẑHz for the TM case).
The upw

s is the scattered field component corresponding
to ẑEz

s (or ẑHz
s) for the TE (or TM) case. It is noted that

uipw ¼ e jkr cos f�f0ð Þ: ð2Þ

[9] From the W-H solution for the canonical two part
problem in Rojas and Pathak [1989], the upw

s at P(r, f) is

uspw ¼ Ro
e;h f0ð Þe jkr cos fþf0ð Þ þ uppw r;fð Þ ð3Þ

where k is free space wave number, and Re, h
o is the o-face

reflection coefficient, namely

Ro
e;h f0ð Þ ¼

sinf0 � doe;h
sinf0 þ doe;h

: ð4Þ

[10] It is noted that the special case of plane wave
illumination of the discontinuity results when the line
source at (r0, f0) as in Figure 1a is allowed to recede to
infinity (i.e. r0 ! 1). The first term on the right hand
side (RHS) of (3) is chosen here to correspond to the
field reflected from an ‘‘unperturbed’’ surface which is
assumed to be an entire (infinite) plane at y = 0
characterized by the impedance Zs

o (or admittance Ys
o)

for the TM (or TE) case. The de, h
o in (4) are defined by de

o =
Ys
o/Yo and dh

o = Zs
o/Zo, respectively, where Zo (= Yo

�1) is
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the free space impedance. Thus, the second term, upw
p , on

the RHS of (3) constitutes a ‘‘perturbation’’ to the first
term; it arises from the fact that the special geometry
being considered is actually a two-part problem (of
which one part, namely that for x < 0 and y = 0 is
PEC) rather than just an ‘‘unperturbed’’ entire impedance
(admittance) surface at y = 0. From Rojas and Pathak
[1989], one obtains

uppw ¼� 1

2pj

Z
Ca

Ro
e;h f0ð Þ � Rn

e;h f0ð Þ
h i

	 Le;h a;f0ð Þe�jkr cos a�fð Þ da ð5Þ

where

Le ¼
sin a

2

cos f
0

2

Ge
� k cosað Þ

Ge
� �k cosf0ð Þ

( )

	 þ 1

2

� �
sec

a� f0

2

� �
þ sec

aþ f0

2

� �� 	
ð6Þ

and

Lh ¼
cos f

0

2

sin a
2

Gh
� k cosað Þ

Gh
� �k cosf0ð Þ

( )

	 � 1

2

� �
sec

a� f0

2

� �
� sec

aþ f0

2

� �� 	
: ð7Þ

[11] The contour Ca in the complex angular spectral a
plane is shown in Figure 3; it is chosen to satisfy the
radiation condition. In the above, the reflection coeffi-
cient Re

n(f0) = �1 and Rh
n(f0) = 1 for the n-face because it

is PEC in this canonical problem. The G+
e,h and G�

e,h

constitute the W-H factors (or split functions) of the
functions,

Ge að Þ ¼ 1

k sinaþ Ys=Yoð Þ

and

Gh að Þ ¼ sina
sinaþ Zs=Zo

;

respectively. The W-H factorization of Ge,h(a) into
G+
e,h(a)G�

e,h(a) leads to explicit expressions for the split
functions in terms of an integral for each [Rojas and
Pathak, 1989]. The spectral integral in (5) may be
evaluated for large kr via the method of steepest descent.
Thus, deforming Ca into the steepest descent path (SDP)
through the saddle point at a 
 as (= f), as in Figure 3,
allows one to obtain

uppw ¼� Ro
e;h f0ð Þ � Rn

e;h f0ð Þ
h i

	 e jkr cos fþf0ð ÞU f� pþ f0ð Þ � uswpwUsw

� 1

2pj

Z
SDP

Ro
e;h f0ð Þ � Rn

e;h f0ð Þ
h i

Le;h a;f0ð Þ

	 e�jkr cos a�fð Þ da: ð8Þ

[12] The first term involving [Re,h
o � Re,h

n ]e jkrcos(f + f0)

on the RHS of (8) is 2pj times the residue arising from
crossing the GO pole of sec(aþf0

2
) at a 
 ago = p � f0 in

deforming Ca to SDP. Likewise, the second term upw
sw is

the surface wave (SW) field launched on the o-face via
diffraction by the discontinuity at ‘‘0’’; it is given by 2pj
times the residue arising from a capture of the SW pole
of G�

e,h(k cos a) at a = asw in this contour deformation.
The U(	) is the Heaviside step function whose value is
unity for positive arguments and zero for negative argu-
ments. Also Usw is a step function which is unity if a
surface wave pole is captured; otherwise it is zero.
[13] A heuristic approximation, based on a set of

physical arguments enumerated below, can be introduced
in (8) to remove the cumbersome W-H split functions

G�
e,h. In the vicinity of the RSB, where the saddle point

as = f approaches p � f0, the dominant contribution to
the SDP integral in (8) comes from a region where
sec(asþf0

2
) approaches a singularity, and within this region

the bracketed term that involves the ratio of the W-H split

Figure 3. Deformation of the Sommerfeld contour Ca
used in the spectral synthesis into the steepest descent
path (SDP) in the a plane.
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functions
Ge;h

� k cosasð Þ
Ge;h

� �k cosf0ð Þ can be approximated by unity.

Thus, one obtains a simplified form for upw
p as follows:

uppw ffi� 1

2pj

Z
Ca

da Ro
e;h að Þ � Rn

e;h að Þ
h i

� 1

2

� �

	 sec
a� f0

2

� �
� sec

aþ f0

2

� �� 	
e�jkr cos a�fð Þ:

ð9Þ

[14] It is important to note that the Re,h
o (f0) and Re,h

n (f0)
in (5) are now replaced by Re,h

o (a) and Re,h
n (a), respec-

tively, in (9). The latter is necessary because asw is a pole
of G�

e,h(a) in the integrand of (5), and to preserve this
important property in the approximate integrand of (9)
(which is now devoid of G�

e,h(a)) it is necessary to have it
manifest as a pole at a = asw of the spectral reflection
coefficient Re,h

o (a) in (9) for the o-face. Of course,
Re,h
n (a) = 
1, as before for the PEC n-face. Deforming

Ca into the SDP contour allows one to express (9) as

uppw ffi� Ro
e;h f0ð Þ � Rn

e;h f0ð Þ
h i

	 e jkr cos fþf0ð ÞU f� pþ f0ð Þ � ~uswpwUsw

� 1

2pj

Z
SDP

da Ro
e;h að Þ � Rn

e;h að Þ
h i

� 1

2

� �

	 sec
a� f0

2

� �
� sec

aþ f0

2

� �� 	
e�jkr cos a�fð Þ:

ð10Þ

[15] One notes that the ~upw
sw in (10) is now an approx-

imation to upw
sw of (8); likewise, the SDP integral in (10) is

an approximation to the SDP integral of (8). Neverthe-
less, the approximation result in (10) contains the same
GO pole contribution and the surface wave propagation
constant as does the exact W-H result in (8). Also, a
closed from evaluation of the SDP integral in (10) via the
non-uniform steepest descent method, yields the dif-
fracted field ~upw

d given by

~udpw �� e�jp=4ffiffiffiffiffiffiffiffi
2pk

p Ro
e;h fð Þ � Rn

e;h fð Þ
h i

� 1

2

� �

	 sec
f� f0

2

� �
� sec

fþ f0

2

� �� 	
e�jkrffiffiffi

r
p ; ð11Þ

which still continues to satisfy the PEC boundary
condition on the n-face and the Karp-Karal lemma on
the o-face, respectively despite the approximations used
to arrive at (9). Thus, the solution in (10) (and (11)),
which is based on the approximate expression of (9),
clearly retains many of the important physical properties
which are present in the corresponding exact W-H result

of (8), thereby lending more confidence to the heuristic
approximation of (9). In contrast, a solution based on a
Kirchhoff type approximation generally will not retain
most of the above properties.
[16] While upw

d , based on the W-H method, satisfies
reciprocity, the approximate diffracted ~upw

d of (11) does
not; it will be shown later in section 2.2 how reciprocity
can be restored into ~upw

d in very simple fashion. As
expected, the non-uniform results for upw

d and ~upw
d ,

respectively, become unbounded at the RSB. Bounded
results for these diffracted fields can be easily obtained in
terms of the UTD Fresnel integral type transition func-
tions via a uniform asymptotic evaluation of the SDP
integrals. The latter uniform approach has not been
incorporated above as it is not essential for arriving at
the desired ansatz; it will be employed later in section 2.2
when developing the UTD solution for the original
problem in Figure 1a. The desired ansatz is now estab-
lished by the set of equations (1)–(4) and (9), respectively.

2.2. Extension to Treat the Uniform Line Source
Excitation Case

[17] The problem treated below is that of a uniform
line source excitation of a junction between two semi-
infinite, thin, planar DPS/DNG material slabs of different
electrical properties and thickness on a PEC ground
plane as shown in Figure 1. The incident, ẑ-directed,
electric field, Ez

i , (or the magnetic field, Hz
i ) at an

observer location �r(r, f), which is produced by a
uniform electric (or magnetic) line source of strength Io
(or Mo) at �r0(r0, f0), respectively, can be expressed as
[Felsen and Marcuvitz, 1994]

ui 
 Ei
z

Hi
z

� �
¼ �jk

ZoIo
YoMo

� �
Go kj�r� �r0jð Þ ð12Þ

Go kj�r� �r0jð Þ ¼ �j

4
H 2ð Þ

o kj�r� �r0jð Þ ð13Þ

where Ho
(2) is a Hankel function of the second kind and

order zero. The �r and �r0 are shown in Figure 1a. For
sufficiently large kr0 (i.e. for source not close to the
discontinuity at ‘‘0’’ which is assumed true), Go may be
replaced by its large argument form, namely

Go kSi

 �

� �j

4

ffiffiffiffiffiffi
2j

pk

r
e�jkSiffiffiffiffi

Si
p : ð14Þ

where j�r � �r0j = Si, and

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos f� f0ð Þ

q
: ð15Þ
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[18] The solution for the total field ut, which corre-
sponds to ẑEz (or ẑHz) for the TE (or TM) case, for the
problem Figure 1a, may be based on the ansatz estab-
lished in (1)–(4) and (9) as described above. Following
(1), one may express

ut ¼ ui þ us ð16Þ

where the scattered field us for the geometry in Figure 1a
can be decomposed as in (3), if one assumes that the line
source is sufficiently far from the o and n faces,
respectively. Thus, under the latter assumption,

us ffi � k

4

ZoIo
YoMo

� � ffiffiffiffiffiffi
2j

pk

r
Ro

e;h f0ð Þ e
�jkSrffiffiffiffiffi
Sr

p þ up r;fð Þ ð17Þ

where, as in (3), the first term on the RHS of (17)
represents the field scattered from the ‘‘unperturbed’’
structure, which is assumed to be an infinite planar
structure consists of a thin PEC backed material that is
identical (in its geometrical and electrical properties) to
the original PEC backed material pertaining to the o-face
in Figure 1a. Under the present assumption of source far
from the surface at y = 0, one can show that the
unperturbed scattered field is asymptotically given by the
first term on the RHS of (17) which is the GO reflected
field, where Re,h

o is the Fresnel reflection coefficient
(FRC) for this unperturbed surface, and Sr is the GO ray
path corresponding to the GO field reflected from that
unperturbed surface, where

Ro
e;h f0ð Þ ¼

Po
e;h f0ð Þ

Qo
e;h f0ð Þ ð18Þ

with

Po
e;h f0ð Þ ¼ sinf0 � he;hN f0ð Þ

� �

 sinf0 þ he;hN f0ð Þ
� ��

	 e�j2ktoN f0ð Þge j2kto sinf0
ð19Þ

and

Qo
e;h f0ð Þ ¼ sinf0 þ he;hN f0ð Þ

� �

 sinf0 � he;hN f0ð Þ
� �

	 e�j2ktoN f0ð Þ: ð20Þ

Also,

N f0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr�r � cos2 f0

q
: ð21Þ

[19] In the above, to is the material thickness for the o-
face, and he = 1/mr for the TE (or e) case, while hh = 1/�r
for the TM (or h) case, respectively. Also,

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos fþ f0ð Þ

q
: ð22Þ

[20] As in (3), the up(r, f) represents the ‘‘perturba-
tion’’ to the first term on the RHS of (17); it arises from
the fact that the actual geometry in Figure 1a is com-
posed of two different PEC backed materials on the o
and n faces, instead of a single ‘‘unperturbed’’ surface.
The up(r, f) can be expressed as a CWS integral [Pathak
and Kouyoumjian, 1970] by

up ¼ � 1

2pj

Z
Ca

Ae;h a;f0ð ÞGo kS að Þ½ � da: ð23Þ

[21] In (23), the Ae, h(a) is the appropriate spectral
amplitude or weight function, and Go[kS(a)] denotes the
CWS kernel based on the free space line source Green’s
function, namely, Go[kS(a)] =

�j
4
Ho
(2)[kS(a)] with

S að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 þ 2rr0 cos a� fð Þ

p
: ð24Þ

[22] It is important to note that if the line source is not
assumed to be sufficiently far from the o and n faces,
then additional contributions (not present in (17)) must
be included. Such additional contributions arise because
the line source can excite SWs directly in the material;
these SWs become incident on the discontinuity at ‘‘0’’
to produce a reflected SW and a transmitted SW, as well
as a diffracted space wave. The reflected and transmitted
SWs can be deduced from the W-H solution to appro-
priate, simpler, canonical two-part diffraction problems
in which the excitation is an incident SW. In the radiation
problem, these SW effects are not significant. The latter
will be reported in a separate paper. Only the diffraction
of the incident SW by the discontinuity contributes to the
radiation field; its effect is discussed separately in section
2.3. The Go[kS(a)] in (23) may now be replaced by its
large argument form valid for large kr0 (or kr) as

Go kS að Þ½ � � �j

4

ffiffiffiffiffiffi
2j

pk

r
e�jkS að Þffiffiffiffiffiffiffiffiffiffi
S að Þ

p : ð25Þ

[23] The spectral function Ae,h is proportional to the
strength of the line source, and may be expressed as

Ae;h a;f0ð Þ 
 �jk
ZoIo
YoMo

� �
Dc

e;h a;f0ð Þ ð26Þ

where the unknown spectral weight De,h
c is to be

determined using the ansatz of section 2.1 based on the
special canonical problem which retains all the features
of the original problem in Figure 1a. In order to identify
De,h

c , the exponential in (25) may be approximated by
the first two terms of its binomial expansion for large
k rr0

rþr0, which is assumed here to be the large parameter
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(for the asymptotic development). Then, (23) becomes

up r;fð Þ ¼ � 1

2pj

Z
Ca

Ae;h a;f0ð Þ �j

4

ffiffiffiffiffiffi
2j

pk

r !

	 e
�jk rþr0ð Þffiffiffiffiffiffiffiffiffiffi
S að Þ

p e
jk

rr0
rþr0 1�cos a�fð Þ½ �

da: ð27Þ

[24] If the line source is allowed to receded to infinity,
i.e., if r0 ! 1, while r is kept finite, then one obtains the
scattered field upw

p due to plane wave illumination,
namely

up r;fð Þ � Co kr0ð Þuppw ð28Þ

where Co is the line source factor given by

Co kr0ð Þ ¼ �jk
ZoIo
YoMo

� �
�j

4

ffiffiffiffiffiffi
2j

pk

r
e�jkr0ffiffiffiffi

r0
p ð29Þ

and

uppw ¼ � 1

2pj

Z
Ca

Dc
e;h a;f0ð Þe�jkr cos a�fð Þ da: ð30Þ

[25] By directly comparing (30) with the desired ansatz
in (9), one can easily identify De,h

c by inspection to be

Dc
e;h a;f0ð Þ ¼ � 1

2
Ro

e;h að Þ � Rn
e;h að Þ

h i
	 sec

a� f0

2

� �
� sec

aþ f0

2

� �� 	
; ð31Þ

except that new material FRCs Re,h
o,n must now be used in

(31) to replace Re,h
o,n of (9) pertaining to the two part

impedance boundary approximation of the W-H solu-
tion. The Re,h

o (a) is defined in (18) with f0 replaced by
a in (31), and Re,h

n (a) is likewise the spectral FRC for

the n-face at (x < 0, y = 0). Here Re,h
o,n(a) =

P
o;n
e;h

að Þ
Q

o;n
e;h

að Þ,

where Pe,h
o,n(a) = {[sin a � he,hN (a)] 
 [sin a +

he,hN (a)]e�j2ktN (a)}e j2ktsina, and Qe,h
o,n(a) = [sin a +

he,hN (a)] 
 [sin a � he,hN (a)]e�j2ktN (a) with the

slab thickness t = to for the o-face and t = tn for the
n-face. It is noted that if one removes the material slab
for x > 0 (or x < 0), then the Re,h

o (or Re,h
n )

automatically reduces to (
1) for the PEC case
pertaining to the

� e
h

�
polarization. The he = 1/mr for

TE (e) case, hh = 1/�r for TM (h) case, and N (a) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rmr � cos2 a

p
as before. The Re,h

o,n(a) term yields the
proper material FRC for describing the GO reflected field
from the residue of the GO pole at a = ago = p � f0 in

(27) (together with (31)) where the sec(aþf0

2
) function in

De,h
c (a, f0) becomes singular.
[26] After deforming the integral contour of (27) to the

steepest descent path (SDP) through the saddle point at
a 
 as = f as shown in Figure 3, one defines the SDP
integral, which yields the diffracted field ud, to be

ud ¼
Z
SDP

F e;h a;f0ð Þekf að Þ da; ð32Þ

where

F e;h a;f0ð Þ ¼ k

8pj
ZoIo

YoMo

� � ffiffiffiffiffiffi
2j

pk

r

	 Dc
e;h a;f0ð Þ e

�jk rþr0ð Þffiffiffiffiffiffiffiffiffiffi
S að Þ

p ;

the k denotes k rr0

rþr0, and f(a) = j[1 � cos(a � f)]. It is
noted that in (27) (together with (31)), the a = asw marks
the location of the SW pole where the denominator of
Re,h

o,n in De,h
c (a, f0) vanishes. This leads to an exact form

of the transcendental or characteristic equation for the
SWs which may be of the FSW or BSW type,
respectively. Since the saddle point at a 
 as = f
moves with the observation point, the pole at ago is
captured to provide a non zero GO reflected field ur

where ur = uro for the o-face when f + f0 < p and ur = urn

for the n-face when f + f0 > p. The residue from the pole
at asw yields either a FSW or a BSW field contribution,
usw. The integral along the SDP in (32) may be evaluated
asymptotically in a uniform fashion for large k to yield
the UTD closed form expression for the diffracted field
contribution ud. It is desirable to decompose the spectral
function in the integrand of (32) into a term containing
only GO pole singularities and a term containing only
SW pole singularities. Such a decomposition allows one
to conveniently obtain the GO dominant UTD diffraction
coefficient from the spectral part containing the GO type
pole in a simple form using the Pauli-Clemmow (PC)
approach [Pathak and Kouyoumjian, 1970], while the
remainder spectral part can be treated by the Van der
Waerden (VDW) approach [Felsen and Marcuvitz, 1994].
The total field ut for corresponding DPS/DNG material
configuration at an observation point (P) or at (r, f) may
be expressed via (16), (17) and (32) as the sum of the
classical line source incident field (with target absent) and
scattered field, i.e., ut(r, f) = ui + us, in which us = ur +
usw + ud. The ud denotes the first-order diffracted field
emanating from the material discontinuity at ‘‘0’’, and usw

denotes the FSW/BSW field along the o or n-face after
being launched at ‘‘0’’. Note that the classical incident
field is given asymptotically (for kr0 � 1) by (12)
(together with (14)). Since 0 < f, f0 < p, the ui is also the
GO incident field for y > 0. The reflected field ur is given
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by the sum of the ‘‘unperturbed’’ GO reflected field
contained in the first term on the RHS of (17) and the
pole contribution from a = ago = p � f0 in (27) (together

with (26) and (31)) given by k
4

�
ZoIo

YoMo

� ffiffiffiffi
2j
pk

q
[Re,h

o (f0) �
Re, h

n (f0)] U[f � (p � f0)] as

ur r;fð Þ ¼ � k

4

ZoIo
YoMo

� � ffiffiffiffiffiffi
2j

pk

r
Re;h f0ð Þ e

�jkSrffiffiffiffiffi
Sr

p ð33Þ

where Sr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos fþ f0ð Þ

p
, and

Re;h f0ð Þ ¼
Ro

e;h f0ð Þ ¼
Po
e;h f0ð Þ

Qo
e;h f0ð Þ

; fþ f0 < p

Rn
e;h f0ð Þ ¼

Pn
e;h f0ð Þ

Qn
e;h f0ð Þ

; fþ f0 > p

8>>><
>>>:

ð34Þ

in which Re,h
o,n denotes the FRC. Also, usw is given by

the pole contribution from a = asw to (27) as

usw r;fð Þ ¼ � k

4

ZoIo

YoMo

� � ffiffiffiffiffiffi
2j

pk

r

	
"
Rswo
e;h ao

sw;f
0
 � e�jkS ao

sw;fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S ao

sw;f

 �q U fo

sw � f

 �

� Rswn
e;h an

sw;f
0
 � e�jkS an

sw;fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S an

sw;f

 �q

	 U fn
sw � p� f½ �


 �#
ð35Þ

where fsw
o,n (and asw

o,n) denote fsw (and asw) for the (o, n)
face. Here,

fsw ¼
cos�1 1

cosh xsw

� �
; for asw ¼ �jxsw

p� cos�1 1

cosh xsw

� �
; for asw ¼ pþ jxsw

8>><
>>: :

ð36Þ

[27] It is noted that asw = �jxsw case is for FSW, and
asw = p + jxsw is for BSW, respectively. Also,

Rswo
e;h ao

sw;f
0
 �
¼�

Po
e;h ao

sw


 �
2Qo0

e;h ao
sw


 �
	 sec

ao
sw � f0

2

� �
� sec

ao
sw þ f0

2

� �� 	
:

ð37Þ

[28] The Qe,h
o0 (asw) is the derivative of Qe,h

o (a) with
respect to a and evaluated at a = asw. The U(	) denotes

the Heaviside unit step function as before. The Re,h
swn

(asw
n , f0) is given by (37) with o replaced by n, likewise,

S(asw
o ,f) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 þ 2rr0 cos ao

sw � f

 �q

and S(asw
n ,f)

can be found similarly. The expressions for the UTD first-
order diffracted field is given by

ud r;fð Þ ¼ ui 0ð ÞDe;h f;f0ð Þ e
�jkrffiffiffi
r

p ð38Þ

where De,h = De,h
go + De,h

sw. Here ui(0) denotes the GO
incident field at the diffraction point corresponding to
the discontinuity at ‘‘0’’ (see Figure 1a). The De,h

go is
based on the PC method and De,h

sw is based on the VDW
method as explained previously; they are given by

D
go
e;h f;f0ð Þ ¼ 
 e�jp=4

2
ffiffiffiffiffiffiffiffi
2pk

p Go
e;h f;f0ð Þ � Gn

e;h f;f0ð Þ
h i

	 sec
f� f0

2

� �
FKP kLa�go

� ��

� sec
fþ f0

2

� �
FKP kLaþgo

� �	
; ð39Þ

where ago
± = 2 cos2(f�f0

2
) and L = r0r

r0þr. The function
FKP(x) is the well-known UTD edge transition function
defined by Kouyoumjian and Pathak [1974]. The proper

branch of
ffiffiffiffiffiffiffiffi
kLa

p
is chosen such that �3p

4
< arg(

ffiffiffiffiffiffiffiffi
kLa

p
) <

p
4
, where a = ago

± , to satisfy the radiation condition. The

Ge,h
o,n(f, f0) is an ad hoc modification to Re,h

o,n(a) such that
sin a in the latter is split into 2 sin(a/2) sin(f0/2) so as to
preserve reciprocity (symmetry) in De,h

go with respect to
f and f0 when a = f at the saddle point, and to also let
Ge, h
o, n(f, f0) reduces exactly toRe,h

o,n(a) at the GO reflection
shadow boundary (a = f = p � f0) as it should. Thus,

Go;n
e;h f;f0ð Þ ¼

z � he;hN
� �


 z þ he;hN
� �

e�j2kto;nN

z þ he;hN
� �


 z � he;hN
� �

e�j2kto;nN
	 ej2kto;nz

ð40Þ

where z = 2 sin(f/2) sin(f0/2), and N =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rmr � 1þ z2

q
.

Dsw
e;h f;f0;aswð Þ ¼ 
 e�jp=4

2
ffiffiffiffiffiffiffiffi
2pk

p

	
"
Rswo
e;h ao

sw;f
0
 �

sin
ao
sw�f
2

� � 1� FKP kLaosw

 �� �

þ dswoe;h f;f0;ao
sw


 �
þ
Rswn
e;h an

sw;f
0
 �

sin
an
sw�f
2

� �

	 1� FKP kLansw

 �� �

þ dswne;h f;f0;an
sw


 �#
;

ð41Þ
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where asw
o = 2 sin2(

ao
sw�f
2

), asw
n = 2 sin2(

an
sw�f
2

). Also

dswoe;h f;f0;ao
sw


 �
¼

Po
e;h ao

sw


 �
Qo

e;h fð Þ

	 sec
ao
sw � f0

2

� �
� sec

ao
sw þ f0

2

� �� 	
;

ð42Þ

likewise, de, h
swn(f, f0;asw

n ) can be found by replacing o by n
in (42). The solution for the plane wave excitation case
can be obtained by letting r0 ! 1 in the solution for the
uniform line source illumination presented above.

2.3. Slope Diffraction Contribution

[29] When the source is a line dipole as shown in
Figure 4, the dipole axis could be oriented to produce an
incident field with a pattern null either in the direction of
the discontinuity or close to it. In that case, the slope
diffraction field dominates over the first-order UTD
diffracted field. It is thus important to extend the UTD
solution (given in section 2.2) to include a slope diffrac-
tion term. To do so, let the line dipole source be of the
magnetic type at P0 whose density is given by �Md =
d̂mod(x

00 � x0)d(y00 � y0) with d̂ � ẑ = 0, and mo is a
known constant. Note also that d̂ 	 r̂0 = �cos(f0 + fs) and
d̂ 	 f̂0 = �sin(f0 + fs). One may invoke the reciprocity
theorem to find the electric field �E, which is produced by
�Md, and thus directly use the solution developed in
section 2.2 to accomplish this task. Specifically, since
the electric field �E from a magnetic line dipole source �Md

is entirely ẑ-directed, it can ‘‘react’’ with a ẑ-directed
uniform electric line test source �J 0 = ẑI0od(x

00 � x)d(y00 � y)
at P, with I0o being a known constant. The test source

�J 0 produces the fields (�E0, �H 0) where �E0 = ẑE0 can be
obtained from section 2.2, i.e. �E0(r, f) = �Ei0 + �Es0, where
�Ei0 and �Es0 represent the ẑ-directed incident and scattered
fields, respectively.
[30] Now, one can find �E(r, f) from a knowledge of

�E0(r0, f0) via the reciprocity (or ‘‘reaction’’) theorem
as: ZZ

W

�E 	 �J 0ds00 ¼ �
ZZ

W

�H 0 	 �Mdds
00 ð43Þ

where ds00 = dx00dy00, and the closed region W is defined
for (jxj < 1, 0 < y < 1) as shown in Figure 4.
Substituting for �J 0 and �Md it then follows that �E(r, f) 	
ẑ = �mo

d̂	 �H 0

I 0o
. A UTD field description for �E can be

written symbolically as

�E r;fð Þ � �Ei þ �Er þ �Esw þ �~E
d ð44Þ

where the superscripts have the same meaning as in
section 2.2. The ‘‘tilde’’ on the field quantities on the

RHS of (44) denote that the diffracted (�~Ed) terms, which
includes both ordinary plus slope effects. One obtains
the �Ei, �Er, �Esw, and �~Ed after evaluating the CWS integral
for �H 0 on the RHS of (43) asymptotically. As indicated
above �~Ed contains a superposition of the first-order
diffracted UTD space wave field originating from ‘‘0’’,
and a slope diffracted UTD space wave field from ‘‘0’’,
which can be expressed as

~Ed
z r;fð Þ ¼ Ei

z 0ð Þ Dgo
e f0;fð Þ þ Dsw

e f0;f;aswð Þ
� ��

þ 1

jkr0
@

@f0 E
i
z 0ð Þ Dsd

e f0;fð Þ
�

þDswd
e f0;f;aswð Þg� 	 e

�jkrffiffiffi
r

p ð45Þ

where Ez
i(0) denotes the incident field at ‘‘0’’, which is

given by �k
4

ffiffiffi
2j

p
pk mosin(f

0 + fs)e
�jkr0ffiffiffi
r0

p . In (45), the De
go and

De
sw terms are the ordinary UTD contribution for the ray

diffracted into space from ‘‘0’’ as discussed previously
in (39) and (41), while the De

sd and De
swd refer to the

slope effects (in the UTD ray context). In particular

Dsd
e f0;fð Þ ¼ � e�jp=4

4
ffiffiffiffiffiffiffiffi
2pk

p Ro
e fð Þ � Rn

e fð Þ
� �

	
sin f0�f

2

� �
cos2 f0�f

2

� �Fs
KP kLa�go

� �8<
:

þ
sin f0þf

2

� �
cos2 f0þf

2

� �Fs
KP kLaþgo

� �9=
;; ð46Þ

Figure 4. Line dipole source illumination of a junction
between two different thin, planar DPS/DNG material
slabs of different thickness on a PEC ground plane.
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with FKP
s (c) = 2jc[1 � FKP(c)]. Also, the De

swd = De
swdo +

De
swdn with

Dswdo
e f0;f;ao

sw


 �
¼ e�jp=4

2
ffiffiffiffiffiffiffiffi
2pk

p
"
Rswdo
e ao

sw;f

 �

sin
ao
sw�f0

2

� �

	 1�FKP kLaosw

 �� �

þ dswdoe f0;f;ao
sw


 �#

ð47Þ

where

Rswdo
e ao

sw;f

 �

¼�
Po
e ao

sw


 �
2 Qo

e ao
sw


 �� �2 Qo0

e ao
sw


 �

	 sec
ao
sw � f
2

� �
þ sec

ao
sw þ f
2

� �� 	

ð48Þ

dswdoe f0;f;ao
sw


 �
¼�

Po
e ao

sw


 �
Qo

e f0ð Þ
� �2 Qo0

e f0ð Þ

	 sec
ao
sw � f
2

� �
þ sec

ao
sw þ f
2

� �� 	
:

ð49Þ

[31] Note that all of the terms corresponding to n-face
are the same as for the o-face case with o replaced by n,
and the (�ro, mro) for the o-face replaced by its material
values (�rn, mrn) for n-face.
[32] If the magnetic line dipole source �Md in the above

analysis is replaced by an electric line dipole source �Jd,
then instead of �Md which radiates �E = ẑEz, the �Jd will
produce a magnetic field �H = ẑHz, which is entirely ẑ
polarized. Hence, the test source in this case would have
to be a ẑ-directed uniform magnetic line source of
strength M0

o at P and the diffraction coefficients in (45)
are now replaced by Dh

go, Dh
sw, Dh

sd, and Dh
swd, respec-

tively. It is also important to note that the result obtained
in (45) for the �Md case is equally applicable to the case
of a uniform electric line source of strength Io when it is
located directly on the material. In the latter case the ~Ez

d

in (45) is now produced by the slope diffraction of Ez
i

incident from Io. This Ez
i vanishes on the surface; hence,

@
@f0Ez

i represents its slope which is non zero. Likewise, the
result for the �Jd case will be directly applicable to the
case of a uniform magnetic line source of strength Mo

when it moves on to the material surface.

2.4. Surface Wave Diffraction

[33] Expressions for the launching of conventional
FSWs, and BSWs (on the material slabs of Figure 1)
due to diffraction at ‘‘0’’ of the wave incident from an
external line source or line dipole source are presented
above in sections 2.2 and 2.3, respectively. However, if
the line source (or line dipole source) is placed very
close to or on the thin material slab in Figure 1, but far
from ‘‘0’’, then the source can noticeably and directly
excite a FSW/BSW on the material slab as indicated
earlier in section 2.2. Such a FSW/BSW carries power
directly from the source to the discontinuity at ‘‘0’’ from
where it can be diffracted into space. This is particularly
true for the DPS (or DNG) junctions. The latter interac-
tion is simply reciprocal to the launching of an FSW/
BSW on the slab by diffraction of the wave incident at
‘‘0’’ from the source which is off the slab surfaces at y =
0 in Figure 1. Hence, the diffraction of an FSW/BSW at
‘‘0’’ which launches a diffracted ray into space is found
directly via reciprocity from the result given in sections
2.2 and 2.3, for the launching of an FSW/BSW along the
material slab in Figure 1 due to the diffraction at ‘‘0’’ of
a wave incident from the source. This problem is useful
in the design of surface wave antennas with DPS/DNG
media.

3. Results

[34] Figure 5a shows the total field for TM plane
wave scattering by the material half plane on a PEC
entire plane of Figure 1, while Figure 5b shows the
corresponding result for the geometry of Figure 2 with
the same material half plane without a PEC entire plane.
The new UTD results for the magnetic line source case
are employed here to obtain the numerical plots with the
line source removed to infinity (r0 ! 1) to simulate a
TM plane wave illumination in the vicinity of the
discontinuity at ‘‘0’’. The material thickness and electri-
cal parameters are shown in the figures indicating that it
is a thin negative (or DNG) material. The UTD based
numerical plot of Figure 5a is compared in the same
figure with a plot obtained from a corresponding W-H
solution of Rojas and Pathak [1989] for the DPS half
plane with a PEC entire plane after it is modified to
remain valid for the DNG case. The approximate bound-
ary conditions in the W-H solution become valid for the
extremely thin half plane chosen here for the compari-
son. Likewise, the UTD plot in Figure 5b is compared
with the W-H solution of Volakis [1988] which is also
modified so that it becomes applicable to the DNG case.
The UTD and W-H plots agree extremely well and are
almost indistinguishable from each other for all cases in
Figure 5. Figure 6 shows the pattern of a magnetic line
dipole source placed tangentially on a DPS material strip
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Figure 5. Comparison of UTD and W-H solutions for total magnetic fields at r = 10l from
(a) two-part DNG material plane and (b) DNG material half plane. The material is l/20 thick with
�r = �2 and mr = �3. The illumination is a TM plane wave incident at �0 = 135�.
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of finite size on a PEC entire plane. This case is
interesting because there is no SW excited by this type
of source for the chosen thickness of the strip. Hence,
the UTD slope diffraction effects become important
because the first-order UTD field diffracted from both
edges vanishes in this case. If the slope diffraction
effects were not included, then only the pattern directly
radiated by the source remains as would be true only if
the strip edges were absent! Figure 7 illustrates the
patterns of a surface wave antenna (or magnetic line
source here) on a material half plane placed directly over
a PEC entire plane as a special case of the geometry in
Figure 1. In Figure 7a, the material is positive (DPS) and
its thickness and electric properties are indicated in the

Figure 7. Only the Forward (Backward) surface wave
diffracted field component of the total field is shown for
an antenna (unit magnetic line source) at r0 = 5l, and �0 =
0� on a positive (negative) material half plane of thickness
l/20 over PEC entire plane. (a) FSW diffraction from a
DPS half plane with �r = 2 and mr = 3. (b) BSW diffraction
from a DNG half plane with �r = �18 and mr = �19.

Figure 6. Effect of slope diffraction on the magnitude
of total TE fields at r = 100l for a 5l long material strip
on a PEC entire plane. Strip has �r = 3.4 and mr = 10 with
thickness l/20. The excitation is a tangential (�s = 0�)
magnetic line dipole source located on the center of the
strip.
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figure; in contrast, the material is negative (DNG) for the
case in Figure 7b. It is noted that the source excites a FSW
in the case of Figure 7a, while in the case of Figure 7b it
excites a BSW. The BSW diffraction in the DNG case
produces an antenna pattern which is markedly different
from the FSW diffraction for the DPS case.

4. Conclusions

[35] Accurate closed form asymptotic high frequency
solutions are presented in the UTD format for the
canonical problems of diffraction by thin planar positive
(or negative) material structures with a discontinuity.
These solutions can deal with different kinds of incident
fields such as a plane wave, a cylindrical wave
corresponding to a line/line dipole source excitation,
and a forward (or backward) surface wave. They can
be used to describe the radiation by (and coupling
between) antennas near or on the material. The latter
requires one to include higher UTD slope diffraction
terms which are developed here in addition to the UTD
fields diffracted to first order. Almost all previous related
solutions do not contain slope diffraction effects because
they deal with only uniform plane wave illumination.
The latter solutions are typically based on W-H or
Maliuzhinets methods, respectively, and use approximate
impedance type boundary conditions. In contrast, the
present asymptotic solutions of the wave equation, which
are developed here via a heuristic spectral synthesis
approach, provide UTD diffracted fields which satisfy
reciprocity and the PEC boundary conditions as well as
the Karp-Karal lemma. These UTD solutions also recover
the proper FRTCs and the exact surface wave propagation
constants, whereas the W-H or Maliuzhinets based
solutions do not; consequently, the present solutions
may be applicable to slightly thicker materials than is
possible by the latter methods. Interesting radiation
properties are observed for BSW antennas associated
with negative (DNG) materials.
[36] Finally, a bisection method, described by Rojas

and Pathak [1989], can be employed to directly synthe-
size a CWS for the problem in Figure 2 in terms of the
CWS for the problem in Figure 1. This will be reported
in a separate paper.

[37] Acknowledgments. The authors thank the reviewers
for their helpful suggestions.
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