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RESEARCH ARTICLE
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Di Wen1,2, Crisalejandra Rivera-Perez3, Mohamed Abdou4, Qiangqiang Jia1, Qianyu He1,
Xi Liu1, Ola Zyaan4, Jingjing Xu5, William G. Bendena6, Stephen S. Tobe7,
Fernando G. Noriega3, Subba R. Palli5, Jian Wang4*, Sheng Li1*

1 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China,
2 Department of Life Science, Qiannan Normal College for Nationalities, Duyun, Guizhou, China,
3 Department of Biological Sciences, Florida International University, Miami, Florida, United States of
America, 4 Department of Entomology, University of Maryland, College Park, Maryland, United States of
America, 5 Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky,
United States of America, 6 Department of Biology, Queen’s University, Kingston, Ontario, Canada,
7 Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada

* jianwang@umd.edu (JW); lisheng01@sibs.ac.cn (SL)

Abstract
Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality

in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III

bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the

most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl

transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF bio-

synthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA re-

ductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three

sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the

jhamtmutant further decreased MF titer to a very low level, and caused complete lethality.

JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce ex-

pression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to

JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF pre-

cluded lethality in JH-deficient animals, but not in theMet gce double mutant. Taken togeth-

er, these experiments show that MF is produced by the larval CA and released into the

hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to

JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce.

Author Summary

Methyl farnesoate (MF) is the immediate precursor of juvenile hormone (JH) III in the JH
biosynthetic pathway, and lacks the epoxide moiety characteristic of JHs. The potential
role of MF as a JH in arthropods has been an issue of a long-standing debate. In this report,
comprehensive molecular genetics studies demonstrated that MF plays a dual role in regu-
lating Drosophilametamorphosis. MF is produced by the larval CA and released into the
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hemolymph, from where it exerted its anti-metamorphic effects indirectly after conversion
to JHB3, as well as acting as a hormone itself through a direct interaction with Met and
Gce, the two JH receptors.

Introduction
Juvenile hormones (JHs) are members of a family of sesquiterpenoid compounds synthesized
primarily by the corpus allatum (CA) of insects. Several forms of JH have been identified, in-
cluding JH 0, JH I, 4-methyl JH I, JH II, JH III, JH bisepoxide (JHB3) and JH skipped bisepox-
ide. JH III is found in most insect orders, whereas JH 0, JH I, and JH II are exclusive to
Lepidoptera [1]. JHB3 is unique to higher Diptera, such as the fruit fly, Drosophila melanoga-
ster [2], and JH skipped bisepoxide has been described in Heteroptera [3]. Methyl farnesoate
(MF) is the major sesquiterpenoid identified in the hemolymph of crustaceans, in which it
might play the role of a JH [4]. MF lacks the epoxide moiety present in other JHs, and it is usu-
ally considered as an immediate precursor of JH III in Insecta [1]. The potential role of MF as a
true JH in insects has been an issue of a long-standing debate; it has JH activity in the Drosophi-
la white puparial bioassays and is abundant in the hemolymph of several insects [5–10].

The biosynthetic pathway of JH III in the CA of insects involves 13 discrete enzymatic reac-
tions and is conventionally divided into early and late steps (S1 Fig) [1]. The early steps follow
the mevalonic acid pathway to form farnesyl pyrophosphate [11]. 3-hydroxy-3-methylglutaryl
CoA reductase (HMGCR), the rate-limiting enzyme for mevalonic acid biosynthesis in mam-
mals, is also an important enzyme in the early steps of JH biosynthesis [11]. In the late steps of
JH III biosynthesis, farnesyl pyrophosphate is sequentially transformed to farnesol, farnesal
and farnesoic acid (FA) [1]. The order of the last two biosynthetic steps, methyl esterification
and epoxidation, catalyzed by a JH acid (JHA) methyltransferase (JHAMT) and a P450 epoxi-
dase, differs among insect species: epoxidation precedes methylation in Lepidoptera, whereas
epoxidation follows methylation in Diptera, Orthoptera, Dictyoptera, Coleoptera and probably
most other insect orders [12–17]. The Drosophila CA produces and releases three sesquiterpe-
noids: JHB3, JH III, and MF [2, 9, 10, 18, 19]. However, the entire JH biosynthetic pathway in
Drosophila has not been well defined to date.

One major function of JH is to inhibit action of the molting hormone (20-hydroxyecdysone,
20E) for preventing metamorphosis during the larval molts [1]. In JH-deficient animals in
which the CA is genetically ablated, JH prevents 20E-triggered apoptosis of the larval fat body
[20, 21] and precocious differentiation of the optic lobe in the adult brain [22] in Drosophila.
JH serves an equally important function, regulating various aspects of reproductive maturation
in most insects [1]. For example, incomplete ablation of the CA results in a partial deficiency of
JH with an associated reduction in reproductive capacity in Drosophila [23].

The recent discovery that the JH-resistance gene,Methoprene-tolerant (Met), plays a critical
role in insect metamorphosis has been followed by a rapid increase in our understanding of JH
signaling [24]. Met and Gce, two paralogous bHLH transcription factors in Drosophila, are in-
volved in JH action [25, 26]. Although both theMet and gce null mutants are viable, theMet
gce double mutant dies during the larval-pupal transition [21], similar to that observed in JH-
deficient animals [20, 22]. Functionally, Met and Gce mediate JH action to prevent the 20E-
triggered metamorphic events [20–22]. Moreover, Met and Gce bind to JH at physiological
concentrations in vitro [27, 28], suggesting that they are JH receptors. In parallel, Met is also in-
volved in JH action as a receptor in the red flour beetle, Tribolium castaneum [28, 29]. Down-
stream of Met, the anti-metamorphic action of JH is transduced by Krüppel-homolog 1 (Kr-
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h1), a transcription factor involved in JH action. A number of studies in Drosophila [21, 30, 31]
and several other insect species [24] have shown that Kr-h1 is a JH primary-response gene.

As shown in previous studies [20, 22], genetic ablation of the CA results in JH deficiency
and pupal lethality in Drosophila. To further clarify the roles of JHs in Drosophila, we generated
a jhamtmutant. Surprisingly, the jhamtmutant is viable and its MF biosynthesis was not af-
fected. Further, MF was demonstrated to exert crucial roles for completion of Drosophilameta-
morphosis, by both acting directly as a JH and indirectly after conversion to JHB3.

Results

Mutation of jhamt did not increase JH-dependent lethality
Genetic ablation of the CA results in JH deficiency and pupal lethality in Drosophila [20, 22],
while traces of the CA cells are often still present in the ring gland (RG) of the ablated animals
during the early larval stages. To further clarify the roles of JHB3, JH III, and MF in Drosophila,
we generated a jhamtmutant, which was expected to disrupt the JH biosynthetic pathway and
to result in lethality at pupal or earlier stages. The ends-out gene targeting method was utilized
to replace the entire jhamt open reading frame with the white gene via homologous recombina-
tion [32] (Fig. 1A). Three independent jhamtmutant lines (jhamt1, jhamt2, and jhamt3) were
obtained and validated by PCR analysis of genomic DNA (Fig. 1B). The mRNA of jhamt was
not detectable in the CA of the jhamtmutants at 3 h after the initiation of wandering (3h
AIW), a time when JH titer [10], JH biosynthesis [2] and jhamtmRNA levels [13] are high
(Fig. 1C). Immunohistochemical studies revealed the absence of JHAMT protein in the CA of
the jhamtmutants at 3h AIW (Fig. 1D and 1D’). Taken together, these studies showed that
jhamt1 and jhamt2 are null alleles. For consistence, jhamt2 was used in all the
subsequent studies.

JH-dependent phenotypes were evaluated in jhamt2 in comparison with w1118, the wild type
fly used to generate jhamtmutants. Approximately 10% of jhamt2 larvae died during the larval
stage, with the rest surviving to adulthood (Fig. 1E). In addition, the initiation of wandering
was delayed for about 4 hours in jhamt2 larvae (S2A Fig), whereas body weight was not affected
(S2B Fig). The fecundity of jhamt2 adult females decreased by about 80%, whereas topical ap-
plication of methoprene (0.5×10-3 μmol per female) partially restored fecundity (S2C Fig). The
ovary size of the 6-day-old jhamt2 virgin females was significantly reduced. However, metho-
prene partially restored ovary growth (S2C’ Fig). The CA-specific Aug21-GAL4 was used for
genetic ablation of the CA in previous studies [20, 22]. We performed a genetic rescue experi-
ment with Aug21-GAL4 driving UAS-jhamt overexpression in a jhamt2 background. Impor-
tantly, fecundity and ovary growth of jhamt2/jhamt2; Aug21-GAL4>UAS-jhamt were restored
to similar levels to those in w1118 (S2D and S2D’ Fig), showing that the reproductive capacity in
jhamt2 was fully rescued by CA-specific jhamt overexpression. Overall, the phenotypic changes
in jhamt2 were similar to those described for Aug21-GAL4>UAS-reaper::UAS-hid animals, in
which the CA is incompletely ablated and JH is partially deficient [23]. However, jhamt2

showed less robust effects than those observed in JH-deficient Aug21-GAL4>UAS-Grim
(Aug21>Grim) animals, in which CA activity is efficiently disrupted [20, 22].

Mutation of jhamt decreased JHB3 but not MF biosynthesis
To verify whether jhamt2 might be only partially JH-deficient, we measured the activity of
methyltransferase in the brain-RG complexes isolated from 3h AIW larvae using either FA or
JHA as substrates [14, 20, 23, 33]. In w1118 larvae, the methyltransferase activity using FA as
substrate was at least 10-fold higher than that using JHA (Fig. 2A). In jhamt2 larvae, the activity
of methyltransferase using JHA as the substrate was similar to that of wild-type glands, whereas
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the activity of methyltransferase using FA as the substrate decreased by 90% when compared
to that in wild-type glands (Fig. 2A).

Using the radiochemical assay followed by thin layer chromatography analysis, we studied
the biosynthesis of JHB3, JH III, and MF by the brain-RG complexes dissected from 3h AIW
larvae. As previously reported [2, 18, 19], JHB3 was the most abundant product released by
wild-type glands, the amount of MF released was about half that of JHB3, whereas JH III was
produced at the lowest rate. Remarkably, although JHB3 biosynthesis in jhamt2 larval glands
decreased by 75% when compared to that in wild-type glands, the rates of JH III and MF bio-
synthesis were not affected (Fig. 2B).

Finally, using a recently developed HPLC-FD protocol [34], we measured whole body titers
of JHB3, JH III, and MF in 3h AIW larvae. In w1118 larvae, MF was the most abundant

Fig 1. Generation and characterization of the jhamtmutants. (A) Scheme for jhamt targeting. jhamt (black box) is replaced withwhite (gray box) by
homologous recombination of the flanking sequences (white boxes). Red bars represent the primer pairs jhamt-1/jhamt-2; green bars, jhamt-3/jhamt-4;
purple bars, jhamt-1/jhamt-5; blue bars, jhamt-6/jhamt-4. (B) Genomic DNA PCR to detectwhite and jhamtDNA using the above-mentioned primer pairs
and genomic DNA extracted from pw25-jhamt and jhamt1, jhamt2, and jhamt3 lines. (C) Reverse transcription PCR to detect jhamtmRNA (rp49 as the
internal control) from pw25-jhamt and jhamt1, jhamt2, and jhamt3. All of the mRNAs were isolated from the brain-RG complexes at 3 hours after initiation of
wandering (3hAIW). (D and D’) Immunohistochemistry to detect JHAMT in the CA ofw1118 (D) and jhamt2 (D’) at 3hAIW. The red arrow points to the CA
showing JHAMT expression. (E) The lethality ofw1118 and jhamt2 homozygous mutant during embryonic, larval and pupal stages.

doi:10.1371/journal.pgen.1005038.g001

MF Regulates DrosophilaMetamorphosis

PLOS Genetics | DOI:10.1371/journal.pgen.1005038 March 16, 2015 4 / 19



sesquiterpenoid (~670 fmol/larva), followed by JHB3 (~18 fmol/larva) and JH III (~2.5 fmol/
larva) (Fig. 2C–2C”). Although JHB3 showed higher biosynthetic rates, MF showed a higher
titer in the larvae, suggesting that MF could be more stable than JHB3 in the body. Whole body
titers of JHB3, JH III, and MF in jhamt2 larvae decreased by approximately 70%, 50%, and 30%
(no statistical difference) to their respective control levels (Fig. 2C–2C”). Our data thus suggest
that 1) jhamt is critical for JHB3 biosynthesis, but not for the biosynthesis of MF and JH III,
and 2) the highly abundant MF might play important roles during Drosophilametamorphosis.

Decrease in biosynthesis and titers of the three sesquiterpenoids result
in complete lethality
To better understand the relation between the JH-deficient lethal phenotypes and the biosyn-
thesis of the three sesquiterpenoids by the larval CA, we further explored the effect of addition-
al loss-of-function of enzymes in the JH biosynthetic pathway. Drosophila CG10527 is an
ortholog of a crustacean FA methyltransferase [35], which has been reported as not involved in
JH biosynthesis in Drosophila [33, 36]. We generated a jhamt CG10527 double mutant, jhamt2

CG10527187 (S3 Fig). Mutation of CG10527 in a jhamt2 background did not increase JH-

Fig 2. Mutation of jhamt decreases JHB3 but not JH III and MF biosynthesis. (A) Measurements of methyltransferase activity in the brain-RG complexes
inw1118 and jhamt2 at 3hAIW using FA or JHA as the substrate. (B) Measurements of JH biosynthesis in the brain-RG complexes inw1118 and jhamt2 at
3hAIW using the RCA-TLCmethod. (C-C”) Quantitative measurements of whole body titers of JHB3 (C), JH III (C’), and MF (C”) inw1118 and jhamt2 at 3hAIW
using the HPLC-FD protocol.

doi:10.1371/journal.pgen.1005038.g002
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deficient phenotypes (S4 Fig), confirming that CG10527 is not involved in FA or JHA methyla-
tion in Drosophila.

Different promoters can be used to drive CA-specific expression in Drosophila. We have
previously shown that jhamt-GAL4 has a more robust CA-specific expression than Aug21-
GAL4 [21]. Therefore, we generated jhamt-GAL4>UAS-GFP flies, which exhibited strong CA-
specific expression of GFP (Fig. 3A and 3A’). As expected, similar to jhamt2/jhamt2; Aug21-
GAL4>UAS-jhamt, fecundity and ovary growth of jhamt2/jhamt2; jhamt-GAL4>UAS-jhamt
were restored to levels similar to those in w1118 (S2D and S2D’ Fig). We then generated Aug21-
GAL4>UAS-hmgcr dsRNA and jhamt-GAL4>UAS-hmgcr dsRNA animals, in which hmgcr ex-
pression is specifically reduced in the CA by RNAi. As detected by quantitative real-time PCR
(qPCR), hmgcr expression in the brain-RG complexes at 3h AIW decreased by ~35% in Aug21-
GAL4>UAS-hmgcr dsRNA animals and ~50% in jhamt-GAL4>UAS-hmgcr dsRNA animals
(S5A Fig). Lethality of ~55% and ~70% was observed in Aug21-GAL4>UAS-hmgcr dsRNA
(S5B Fig) and jhamt-GAL4>UAS-hmgcr dsRNA animals (Fig. 3B), respectively. Moreover, the
lethality in jhamt2/jhamt2; Aug21-GAL4>UAS-hmgcr dsRNA was about 93% (S5C Fig), where-
as 100% lethality before adult emergence was observed in jhamt2/jhamt2; jhamt-GAL4>UAS-
hmgcr dsRNA (Fig. 3B’). Most jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA animals died
during the pupal stage (60%), exhibiting a variety of developmental defects (Fig. 3C). These
data not only confirmed that jhamt-GAL4 has a more robust CA-specific expression than
Aug21-GAL4, but also demonstrated that reduction of hmgcr expression in the CA in a jhamt2

background causes stronger lethal phenotypes than the jhamtmutant alone.
Overall, these experiments suggest that reduction of hmgcr expression in the CA in a jhamt2

background decreases biosynthesis and titers of the three sesquiterpenoids to very low levels,
resulting in complete lethality. In the following experiments, jhamt-GAL4>UAS-hmgcr dsRNA
(hmgcrRNAi) and jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA (jhamt2 hmgcrRNAi) were
used to further confirm the above hypothesis. We measured JH biosynthesis in larval brain-RG
complexes isolated from four different lines at 3h AIW: w1118, jhamt2, hmgcrRNAi, and jhamt2

hmgcrRNAi. In comparison with the w1118 larvae, JHB3 biosynthesis decreased by 75% in
jhamt2 and hmgcrRNAi larvae and by more than 90% in jhamt2 hmgcrRNAi larvae. JH III bio-
synthesis was not altered in jhamt2 larvae, but decreased by 30–40% in hmgcrRNAi and jhamt2

hmgcrRNAi larvae. MF biosynthesis was not altered in jhamt2 larvae, but decreased to about
50% in hmgcrRNAi and jhamt2 hmgcrRNAi larvae (Fig. 4A).

We also measured titers of the three sesquiterpenoids in the whole larval bodies of the four
above mentioned genotypes at 3h AIW. In comparison with the w1118 larvae, JHB3 titer de-
creased by 60–70% in jhamt2, hmgcrRNAi, and jhamt2 hmgcrRNAi larvae (Fig. 4B). JH III titer
decreased by 50% in jhamt2 larvae, whereas it decreased by 70–75% in hmgcrRNAi and jhamt2

hmgcrRNAi larvae (Fig. 4B’). MF titer decreased by 30% (not statistically significant difference)
in jhamt2 larvae, whereas the decrease was approximately 40% in hmgcrRNAi larvae (Fig. 4B”).
Interestingly, MF titer decreased by 98% in jhamt2 hmgcrRNAi larvae (Fig. 4B”), implying that
most of MF is converted to JHs in jhamt2 hmgcrRNAi larvae. Overall, these experiments sug-
gest that the three sesquiterpenoids synthesized and released by the larval CA are required for
Drosophila to survive to adulthood; in particular, that the very abundant MF plays essential
anti-metamorphic roles during Drosophila development (Table 1).

MF acts through Met/Gce to induce Kr-h1 expression and prevents
lethality of JH-deficient flies but notMet gce double mutant
To further understand the anti-metamorphic roles of each of the three sesquiterpenoids syn-
thesized by the larval CA, we performed a series of experiments by treating JH-deficient
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Fig 3. Reduction of hmgcr expression in the CA of jhamtmutant results in complete lethality. (A and A’) The brain-RG complex in jhamt-GAL4>UAS-
GFP. BR, brain; CA, corpus allatum. Observed under bright-field (A) or fluorescence (A’) using the same microscope. The CA cells expressing JHAMT were
labeled with GFP. (B and B’) (B) Lethality of jhamt-GAL4>UAS-hmgcr dsRNA during the embryonic, larval, and pupal stages. jhamt-GAL4/+ andUAS-
hmgcr dsRNA/+were used as the controls. (B’) Lethality of jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA during the embryonic, larval, and pupal stages.
jhamt2/+; jhamt-GAL4/+ and jhamt2/+; UAS-hmgcr dsRNA/+were used as the controls. (C) Images of various pupal lethal phenotypes of jhamt2/jhamt2;
jhamt-GAL4>UAS-hmgcr dsRNA. (1–6) the abdominal sides; (1’-6’) the dorsal sides. The black asterisks point to empty portions of the pupae; the white
asterisks, eye defects showing no pigmentation; the red asterisks, wing defects showing a unilateral wing loss.

doi:10.1371/journal.pgen.1005038.g003
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animals with methoprene or sesquiterpenoids to evaluate their ability to prevent lethality, as
well as their efficiency in inducing expression of the JH-responsive gene Kr-h1. Topical appli-
cation of high doses of methoprene, JHB3, JH III, and MF (0.5×10-2 μmol per larva) to third in-
star larvae when JH titers are low (at 96h AEL: 96 hours after egg laying) [10] was able to
decrease mortality significantly (40–75%) in the two JH-deficient animals (Aug21>Grim and
jhamt2 hmgcrRNAi). By contrast, neither methoprene nor sesquiterpenoids (0.5×10-2 μmol per
larva) prevented the lethality ofMet27 gce2.5k (Fig. 5A). Additional experiments were performed
on jhamt2 hmgcrRNAi to evaluate the dose-responses for methoprene and the three

Fig 4. Reduction of hmgcr expression in the CA of jhamtmutant dramatically decreases biosynthesis and titers of the three sesquiterpenoids.
Measurements of biosynthesis of JHB3, JH III, and MF in the brain-RG complexes (A) and whole body titers of JHB3 (B), JH III (B’), and MF (B”) titer inw1118,
jhamt2, jhamt-GAL4>UAS-hmgcr dsRNA, and jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA at 3h AIW.

doi:10.1371/journal.pgen.1005038.g004

Table 1. Comparisons of JH biosynthesis, JH titer, and lethality among three genotypes.

Biosynthesis Titer Lethality

JHB3 MF JH III JHB3 MF JH III

jhamt2 # No change No change # No change # No

jhamt-GAL4>UAS-hmgcr dsRNA # # # # # ## Partial

jhamt2/jhamt2; jhamt-GAL4> UAS-hmgcr dsRNA ## # # # ## ## Complete

doi:10.1371/journal.pgen.1005038.t001
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Fig 5. MF plays a dual role: as a JHB3 precursor and as a hormone. (A) Percentage of rescuing Aug21-GAL4>UAS-Grim, jhamt2/jhamt2; jhamt-
GAL4>UAS-hmgcr dsRNA, andMet27 gce2.5k to adults by topical application of methoprene, JHB3, JH III and MF (0.5×10-2 μmol per larva) at 96h AEL. (B)
Percentage of rescuing jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA to adults by topical application of a dose gradient of methoprene, JHB3, JH III, and
MF (0.5×10-9~-2 μmol per larva) at 96h AEL. (C) qPCRmeasurements of fold-changes of relative Kr-h1mRNA levels in Kc cells treated with methoprene,
JHB3, JH III, and MF (1×10-10~-6 M) for 30 min. (D) qPCRmeasurements of relative Kr-h1mRNA levels in fat body tissues isolated fromw1118 andMet27
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sesquiterpenoids in preventing lethality. These compounds showed significant effects at
0.5×10-4 μmol/larva, with MF being the most effective, followed by JH III, methoprene, and
JHB3. At higher doses (0.5×10-3 and 0.5×10-2 μmol/larva), only the effects of JHB3 and JH III
continued to increase (Fig. 5B).

qPCR was utilized to examine whether MF acts through Met/Gce to induce Kr-h1 expres-
sion [20, 30, 31]. Methoprene and the three sesquiterpenoids induced Kr-h1 expression in
both Drosophila Kc cells (1×10-10~-6 M) (Fig. 5C) and cultured fat body tissues isolated from
w1118 larvae at 96h AEL (1×10-7 M) (Fig. 5D, left panel); although induction with MF was
weaker than JHB3 and JH III. We also determined Kr-h1mRNA levels in jhamt2 larvae,
wherein JHB3 biosynthesis but not MF biosynthesis is reduced (Fig. 2A). Kr-h1 expression
was normal in 3h AIW jhamt2 larvae, indicating that the other two sesquiterpenoids (in par-
ticular the very abundant MF) were sufficient to induce Kr-h1 expression to control levels. In
contrast, as previously reported [21], inMet27 gce2.5k larvae, Kr-h1mRNA levels were reduced
by about 95% when compared to its levels in w1118 larvae (Fig. 5E). As expected, methoprene
and the three sesquiterpenoids failed to induce Kr-h1 expression in cultured fat body tissues
isolated fromMet27 gce2.5k larvae at 96h AEL (Fig. 5D, right panel). These data from in vitro
and in vivo experiments revealed that, in addition to JHB3 and JH III, MF also has an anti-
metamorphic or “JH-like” role in Drosophila larvae, acting through Met/Gce to induce Kr-
h1 expression.

We then extended our study to Tribolium, in which JH III directly induces heterodimeriza-
tion of the JH receptor (TcMet) and its partner (TcSRC) in mouse embryonic fibroblast 3T3
cells [37]. Here we found that MF also induced heterodimerization of TctMet and TcSRC in
3T3 cells in a dose-dependent manner, although its induction ability was weaker than JH III
(Fig. 5F). This experiment provides strong evidence that MF acts as a hormone itself through a
direct interaction with the JH receptor Met in Tribolium, supporting the above findings in
Drosophila.

MF plays a dual role: As a JHB3 precursor and as a hormone
Finally, we examined whether once released by the CA, MF could be converted to JHB3 or JH
III in the fly hemolymph or peripheral tissues. The jhamt2 hmgcrRNAi larvae were topically
treated with acetone or MF (0.5×10-2 μmol per larva) at 108h AEL, and the three sesquiterpe-
noid titers were measured at 3h AIW (about 24 hours after treatment). While JH III titer did
not change, MF and JHB3 titers in the MF-treated animals increased approximately 9- and 7-
fold respectively when compared to control animals treated with acetone (Fig. 5G–5G”). The
topical application experiments showed that a portion of the exogenous MF was converted to
JHB3 in the hemolymph or peripheral tissues, consistent with the results obtained from jhamt2

(Fig. 2C–2C”) and jhamt2 hmgcrRNAi larvae (Fig. 4B–4B”). We conclude that MF is required
for completion of Drosophilametamorphosis, playing a dual role: as a JHB3 precursor and as a
hormone (Fig. 6).

gce2.5k at 96h AEL after treatments with methoprene, JHB3, JH III, and MF (1×10-6 M) for 30 min. (E) qPCRmeasurements of the relative Kr-h1mRNA levels
in the fat body tissues isolated fromw1118, jhamt2,Met27, gce2.5k, andMet27 gce2.5k at 3h AIW. (F) MF promotes interaction of Met and SRC in mouse
embryonic fibroblast 3T3 cells. 3T3 cells were transiently transfected with GAL4:TcMet and TcSRC. And the transfected cells were cultured in the medium
containing different concentrations of MF and JH III (DMSO as control). After 24 hours exposure to the ligands, cells were assayed for luciferase reporter
activity. The luciferase activity was normalized based on the total protein concentration determined for cells in each well. (G-G”) Measurements whole body
titers of JHB3 (G), JH III (G’), and MF (G”) in jhamt2/jhamt2; jhamt-GAL4>UAS-hmgcr dsRNA at 3hAIW after topical application of MF (0.5×10-2 μmol per
larva; dissolved in acetone) at 96h AEL (about 24 hours after treatments).

doi:10.1371/journal.pgen.1005038.g005

MF Regulates DrosophilaMetamorphosis

PLOS Genetics | DOI:10.1371/journal.pgen.1005038 March 16, 2015 10 / 19



Discussion

Requirement of the three sesquiterpenoids for completion of Drosophila
metamorphosis
This study (Table 1; Figs 1–4) confirmed and expanded previous studies, showing that genetic
ablation of the CA caused JH deficiency and pupal lethality in Drosophila [20, 22]. Knockdown
and/or knockout of enzymes in the early and late steps of the JH biosynthetic pathway generat-
ed different phenotypes depending on the background of the animals: 1) null mutation of
jhamt resulted in significant decrease in JHB3 biosynthesis, as well as JHB3 and JH III titers,
without compromising development and survival, 2) RNAi-mediated reduction of hmgcr ex-
pression in the CA decreased biosynthesis and titers of the three sesquiterpenoids produced by
the larval CA, resulting in partial lethality, and 3) RNAi-mediated reduction of hmgcr expres-
sion in the CA of the jhamtmutant further decreased JHB3 biosynthesis and MF titer, leading

Fig 6. A possible model showing the last two steps of biosynthesis and the molecular actions of the three sesquiterpenoids inDrosophila. In the
CA, FA is the common precursors for JHB3, JH III, and MF biosynthesis. In the hemolymph and peripheral tissues, MF either directly acts through Met/Gce or
is converted to JHB3. JHAMT only accounts for JHB3 biosynthesis; and other methyltransferases and P450 epoxidase with question marks have not been
identified. Please see Discussion for details on the model. Text and arrow sizes convey magnitude of treatment and response. The gray line separates CA
from hemolymph and peripheral tissues.

doi:10.1371/journal.pgen.1005038.g006
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to complete lethality. These results lead us to conclude that only dramatic decreases in biosyn-
thesis of the three sesquiterpenoids resulted in very low circulating titers and caused complete
lethality in the two JH-deficient animals (Aug21>grim and jhamt2 hmgcrRNAi). Moreover, the
requirement of the three sesquiterpenoids for Drosophilametamorphosis was further strength-
ened by the rescue experiments in the two JH-deficient animals (Fig. 5A and 5B), showing that
JHB3, JH III, and MF are able to functionally replace one another.

MF plays a dual role: As a JHB3 precursor and as a hormone during
Drosophilametamorphosis
Although accepted as the anti-metamorphic hormone in Crustacea, the potential role of MF as
a true JH in Insecta has been an issue of a long-standing debate [1, 4, 24, 37]. Our experiments
provide additional evidence that supports the anti-metamorphic or “JH-like” role of MF in
Drosophila, including: 1) the fact that MF is released by the CA and is the most abundant ses-
quiterpenoid present in extracts of larval body, 2) the ability to phenocopy anti-metamorphic
roles following topical application to JH-deficient animals (“rescue” experiments), 3) the capa-
bility to act through the JH receptors (Met and Gce) and induce a dose-dependent expression
of Kr-h1, a JH primary-response anti-metamorphic gene, and 4) the conversion to JHB3 in the
hemolymph or peripheral tissues.

The presence of high circulating MF levels has been previously described in Drosophila lar-
vae [9, 10], as well as the production of MF by the larval brain-RG complexes [3]. MF might
also play an anti-metamorphic role during early larval development in Bombyx; high levels of
MF might exist in Bombyx dimolting, a P450 epoxidase mutant, that contains no detectable JH
I, JH II, and JH III in the hemolymph [16].

The ability of MF to phenocopy anti-metamorphic roles has been previously established in
the white puparia JH bioassay [6, 7]. The importance of MF during Drosophilametamorphosis
was validated by the RNAi-mediated reduction of hmgcr expression in the CA of the jhamtmu-
tant, in which only MF was further decreased leading to complete lethality (Table 1); as well as
by the observation that JHB3, JH III and MF efficiently precluded lethality in two JH-
deficient lines.

It has been suggested that MF could play anti-metamorphic roles acting through ultraspira-
cle (USP, an ortholog of the retinoid X receptor and a molecular partner of the 20E receptor,
EcR) [9]. On the other hand, MF efficiently competes with JH III for binding to Met and Gce
in Drosophila [28], MF directly induces heterodimerization of Met and SRC of Crustacea in
mammalian cells [38], and MF induces Kr-h1 promoter activity in mammalian cells in the
presence of BombyxMet and SRC [39]. We validated and expanded those results, showing that
MF induces a dose-dependent Kr-h1 expression in Drosophila cell lines and fat body tissues
isolated from JH-deficient animals (Fig. 5C–5E). Moreover, MF induces heterodimerization of
Met and SRC of Tribolium in mammalian 3T3 cells in a dose-dependent manner (Fig. 5F).
Data included in this paper show that MF acts through Met/Gce (Fig. 5C–5F), but not USP (S6
Fig), at least in the induction of Kr-h1 expression and Met-SRC heterodimerization.

Finally we showed that MF can be converted in the hemolymph or peripheral tissues to
other active JHs in Drosophila. In jhamt2 larvae, JHB3 biosynthesis is dramatically reduced and
MF and JH III biosynthesis are unaffected (Fig. 2B), whereas whole body titers of JHB3, JH III,
and MF decreased by approximately 70%, 50%, and 30% (no statistical difference) relative to
their respective control levels (Fig. 2C–2C”). The decrease in whole body levels of MF could be
the consequence of a portion of the MF pool undergoing conversion to JHB3 in jhamt2 larvae.
In comparison with hmgcrRNAi larvae, JHB3 biosynthesis is further reduced in jhamt2

hmgcrRNAi larvae, whereas the biosynthesis of MF and JH III is unaffected (Fig. 4A). Similarly,
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although MF titer decreased to almost zero in jhamt2 hmgcrRNAi larvae, JHB3 and JH III titers
remained at the same levels (Fig. 4B–4B”), suggesting again that most of MF is converted to
JHB3 in jhamt2 hmgcrRNAi larvae. The possibility that MF can be converted to other JHs was
further confirmed by topical application of MF to jhamt2 hmgcrRNAi larvae (Fig. 5G–5G”).

We conclude that MF plays a dual role in regulating Drosophilametamorphosis: through its
conversion to JHB3, as well as through its role as a bona fide juvenoid (Fig. 6).

Was MF the ancestral ‘JH’ of Arthropods? Ongoing studies of the metabolic pathways for
JH biosynthesis and degradation in other Arthropods, including Myriapods and Chelicerates,
indicate that these groups all possess the requisite enzymes to produce at least MF. In particu-
lar, these groups all appear to possess a JHAMT ortholog, indicating that MF may have been
synthesized and functional in these groups. These groups also possess enzymes known to be in-
volved in the degradation of the sesquiterpenoids, as well as binding proteins [40, 41]. At pres-
ent, it is unknown if these groups possess a functional member of the CYP family of
cytochrome P450 enzymes that would be responsible for the epoxidation of MF. The apparent
absence of this enzyme in crustaceans and possibly in Drosophila argues for the importance of
MF in the regulation of metamorphosis. These studies suggest that the ‘JH’ signaling pathway
has deep evolutionary roots [40, 41] and our present results on Drosophila support such a view.
These authors also suggest that the pathway “might have evolved together with the emergence
of the exoskeleton”. This suggestion highlights the importance of MF, particularly in metamor-
phosis. During evolution in arthropods, MF maintains its anti-metamorphic role from crusta-
ceans to insects and probably across the phylum. Subsequently, different JHs emerged in
different orders of insects. Diversification of the JH(s) might contribute to variation and novel-
ty during arthropod evolution. The co-existence of three JHs and two JH receptors in a single
organism makes Drosophila a complicated but fascinating system for studying the JH signal
transduction pathway, from both molecular and evolutionary perspectives.

The last two steps of JH biosynthesis in Drosophila
Compared with other insects producing only JH III, the last two steps of the JH biosynthetic
pathway in Drosophila are much more ambiguous. We propose a JH biosynthetic pathway in
which FA is the common precursor for JHB3, JH III, and MF in Drosophila (Fig. 6). Our previ-
ous studies [19] and the data included in this paper (Fig. 2) show that overexpression and mu-
tation of jhamt increased and decreased JHB3 biosynthesis, respectively, but did not affect the
production of JH III and MF, suggesting that JHAMT is responsible only for JHB3 biosynthesis
in the CA. Moreover, mutation of jhamt significantly decreased the activity of methyltransfer-
ase using FA but not JHA as substrate, implying the existence of one or more additional
methyltransferases converting FA into MF and JHA into JH III in the CA of Drosophila larvae.

It has been suggested that the lack of a clear ortholog of a P450 epoxidase in Drosophila
might be explained on the basis of the different chemistry of the fly JHs [15]. The CYP15 of
higher flies could have evolved to allow the epoxidation at both the 6, 7 and 10, 11 double
bonds, and this evolution resulted in such significant changes so that the sequence is no longer
recognizable as a CYP15. A global analysis of CYP enzymes in Drosophila revealed specific ex-
pression of CYP6G2 in the CA [42], but whether it functions as a P450 epoxidase is currently
unknown. One possibility is that CYP6G2 preferably epoxidizes FA to 6, 7; 10, 11-epoxyfarne-
soic acid (JHB3 acid) rather than 6, 7-epoxyfarnesoic acid (JHA), resulting in a much higher
JHB3 biosynthesis ratio compared to the JH III biosynthesis ratio. Moreover, we found that a
portion of MF was converted to JHB3 in the hemolymph or peripheral tissues (Fig. 2, 4, 6), pre-
sumably by an uncharacterized P450 epoxidase. The identification of the methyltransferases
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and P450 epoxidases that are involved in the last two steps of JH biosynthesis in Drosophila re-
mains as a future challenge.

Materials and Methods

Flies and genetics
To generate the jhamtmutant, we used the homologous recombination—mediated ends-out
gene targeting technique [32]. Two genomic DNA fragments flanking the jhamt (CG17330)
coding region were amplified by PCR. The upstream flanking region (4245-bp length: -4212 bp
to +33 bp from the translational start site of jhamt) was cloned into the pw25 plasmid using the
Not I (jhamt-5’end-Not I) and Acc65 I (jhamt-5’end-Acc65 I) restriction sites introduced by
PCR primers. Subsequently, the downstream flanking region (3977-bp length: +1050 bp to
+5027 bp from the start site of the jhamt gene) was cloned into the above generated vector
using the Asc I (jhamt-3’end-Asc I) and BsiW I (jhamt-3’end-BsiW I) restriction sites. The re-
sulting construct of pw25-jhamt (Fig. 1A) was used to generate transgenic flies using P-ele-
ment-mediated germline transformation. Then, the pw25-jhamt transgenic flies were crossed
with yw; p{70FLP}23 p{70I-SceI}4A/TM6 to generate the jhamt knock-out strains (jhamt1,
jhamt2, and jhamt3) (Fig. 1B and 1C). Primers used here and elsewhere are listed in S1 Table.

The putative promoter sequence (2540-bp length: -2544 bp to-4 bp, from the translational
start site of jhamt) of jhamt was amplified as a Sac II-BamH I fragment, and cloned into the
pChsGAL4 plasmid to generate the jhamt-GAL4 construct. The jhamt-GAL4 transgenic flies
were then produced.

w1118, Aug21-GAL4, Act-GAL4, UAS-GFP, UAS-grim, CG10527187,Met27, gce2.5k, andMet27

gce2.5k were reported previously [14, 20, 21, 31, 33]. Multiple UAS-hmgcr dsRNA lines (stock
number 11635 is reported) were obtained from the Vienna Drosophila RNAi Center. RNAi
lines were also obtained from the Bloomington Drosophila Stock Center, and similar results
were obtained. Other flies used in this paper were generated by recombination. All fly strains in
this paper were grown at 25°C on standard cornmeal/molasses/agar medium.

PCR and western blot analysis
For genomic DNA PCR, genomic DNA was extracted from flies using phenol-chloroform-iso-
amyl alcohol. To confirm the jhamtmutants and the jhamt2 CG10527187 double mutants, ge-
nomic DNA PCR was performed with 4 primer pairs, including jhamt-1 and jhamt-2 (689-bp
length), jhamt-3 and jhamt-4 (812-bp length), jhamt-1 and jhamt-5 (671-bp length), and
jhamt-6 and jhamt-4 (1259-bp length) (Fig. 1A and 1B). To identify and confirm the
CG10527187 mutation in the jhamt2 CG10527187 double mutant, genomic DNA PCR were per-
formed with primer pairs CG10527-F and CG10527-R (1968-bp for wild type and ~600-bp for
the CG10527187 mutant) (S3 Fig). For reverse transcription PCR, a primer pair jhamt-7 and
jhamt-8 (405-bp) were used to detect jhamtmRNA expression from the brain-RG complexes
isolated from larvae at 3hAIW (Fig. 1C). qPCR was performed as previously described [14, 20,
21, 31, 33].

DmCG10527 rat polyclonal antibody [33] was used to conduct the Western blot analysis of
the brain-RG complexes isolated from larvae at 3hAIW. The tubulin mouse monoclonal anti-
body (#AT819, Beyotime, China) was used as an internal control.

Immunohistochemistry
For detecting JHAMT in the CA by immunohistochemistry, the brain-RG complexes were dis-
sected from larvae at the EW stage. The Drosophila JHAMT rabbit polyclonal antibody (1:100)
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[13] and the FITC-conjugated Affinipure Goat Anti-Rabbit IgG secondary antibody (Jackson
ImmunoResearch Inc.) were used, and the fluorescence signals were captured with an Olympus
IX71 invert fluorescence microscope (Japan) [14, 20, 31].

JH treatments and cell culture
Methoprene (Service Chemical Inc., Germany), JH III (Sigma-Aldrich), and MF (Echelon)
were purchased. JHB3 was synthesized from MF using m-chloroperbenzoic acid in dichloro-
methane (Sigma-Aldrich) [19]. For rescue of fertility of jhamt2, newly eclosed females were
placed in vials with standard medium; after 24 hours, virgin females were topically treated with
acetone-dissolved methoprene (0.5 μl × 10-3 M per female) [21, 23]. For rescue of pupal lethali-
ty of Aug21>grim and jhamt2 hmgcrRNAi, methoprene, JHB3, JH III, and MF (0.5 μl × 10-9~-2

M per larva) were dissolved in acetone and topically applied to the larvae at 96h AIW [14, 20,
21, 31, 33]. For inducing Kr-h1 expression in w1118 andMet27 gce2.5k, fat body tissues were iso-
lated at 96h AIW and treated with methoprene, JHB3, JH III, and MF (1×10-6 M; DMSO as a
control) for 30 min. For testing the conversion of MF to other JHs, the jhamt2 hmgcrRNAi lar-
vae were topically treated with acetone or MF (0.5×10-2 μmol per larva) at 108h AEL, and the
three sesquiterpenoids titers were measured at 3hAIW (about 24 hours after treatment).

For inducing Kr-h1 expression in Drosophila Kc cells cultured in Schneider’s medium, the
cells were treated with methoprene, JHB3, JH III, and MF (1×10-11~-6 M; DMSO as a control)
for 30 min [31]. Using the T7 RiboMAX Express RNAi System (Promega), dsRNAs of USP
and EGFP (as a control) were synthesized. Reduction of gene expression by RNAi in Kc cells
was performed by transfecting dsRNAs using Effectene at a final concentration of 1 μg/ml
dsRNA. The transfected cells were cultured for 48 h and treated with MF (1×10-6 M; DMSO as
a control) for 30 min [31].

Luciferase assay in 3T3 cells
3T3 cells were grown at 37°C with 5% CO2 in a DMEM (life technology) containing 10% fetal
bovine serum. For transfection experiments, 50,000 cells/well were seeded in a 48-well plate.
On the following day, the cells were transiently transfected with 67 ng each of receptor/partner
and 200 ng each of pFRLUC reporter construct, using a “Polyfect” transfection reagent (Qia-
gen). After 4 hours, different final concentration of MF (0.4, 2, 10 and 50 μM) were added to
the wells along with DMEMmedium with 20% FBS as well. DMSO and 10 μM JH III were
used as a negative and positive control, respectively. After 24 hours exposure to the ligands,
cells were washed with PBS, 60 μl of reporter lysis buffer was added to each well and luciferase
reporter activity was measured using the luciferase reporter assay system from Promega
(Madison, WI). To standardize the luciferase activity, protein concentration in cells from well
was determined using the Bradford reagent. Details on the constructs GAL4:TcMet in the
pBIND vector and TcSRC in the pACT vector, as well as JH III treatment experiments were
published previously [37].

Measurements of methyltransferase activity, JH biosynthesis, and JH
titer
S-Adenosyl-L-methionine (SAM) was purchased from Sigma-Aldrich and S-Adenosyl-L-
[methyl-3H] methionine (370GBq mmol, 10 Ci/mmol) from Perkin-Elmer Life Sciences (Wal-
tham). Methyltransferase activity in the brain-RG complexes isolated from larvae at 3hAIW
was measured with JHA and FA as substrates, as described previously [14, 20, 23, 33]. L-
[Metyl-3H] methionine (2.92–3.70 TBq/mmol) was purchased from Perkin-Elmer Life Sci-
ences and TLC plates (20×20 cm2 plastic plate coated with silica gel F254) fromMerck KgaA
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(Germany). JH biosynthesis in the brain-RG complexes was detected using the radiochemical
assay followed by thin layer chromatography analysis as reported previously [18, 19, 37]. JH ti-
ters from the whole bodies of each genotype were determined using the recently developed
HPLC-FD protocol [34].

Statistics
Experimental data were analyzed with the Student’s t-test and ANOVA. t-test: �, p<0.05; ��,
p<0.01. ANOVA: the bars labeled with different lowercase letters are significantly different
(p<0.05). Throughout the paper, values are represented as the mean ± standard deviation of at
least five independent experiments.

Supporting Information
S1 Fig. The scheme of JH III biosynthetic pathway in insects.
(TIF)

S2 Fig. Phenotypic changes of the jhamtmutant. (A and B) Measurements of the periods
from egg laying to wandering (A) and the body weights at the white prepupal stage (B) of w1118

and jhamt2. (C and C’) Topical applications of acetone (control) and methoprene (0.5×10-3

μmol per female) on newly eclosed females of w1118 and jhamt2, and measurements of the aver-
age number of eggs laid by each pair of flies per 24 hours (C) and the ovary size of 6-day-old
virgins (C’). (D and D’) Comparisons of the average number of eggs laid by each pair of flies
per 24 hours (D) and the ovary size of 6-day-old virgins (D’) among w1118, jhamt2, jhamt2/
jhamt2; Aug21-GAL4>UAS-jhamt, and jhamt2/jhamt2; jhamt-GAL4>UAS-jhamt.
(TIF)

S3 Fig. Generation of jhamt2 CG10527187. (A) Genomic structures of CG10527. CG10527187

has an intragenic deletion of CG10527 compared to w1118 [33]. The black boxes indicate the
coding region, whereas the white boxes denote the non-coding exons. The black bars marked
with F and R represent the primer pair CG10527-F/CG10527-R. The brown line indicates the
PCR products (1968 bp length and ~600 bp length) obtained with the above primer pair using
the genomic DNA extracted from w1118 and CG10527187 as templates, respectively. The blank
region denotes the deletion region of CG10527 in CG10527187. (B and B’) Three lines of the
jhamt2 CG10527187 double mutants were confirmed by genomic DNA PCR. (B) The 1968-bp
and ~600 bp PCR products were obtained with primer pair CG10527-F/CG10527-R (the black
bars) from w1118 and CG10527 187, respectively. (B’) The white PCR products of expected sizes
with the primer pairs jhamt-1/jhamt-2 (the red bars) and jhamt-3/jhamt-4 (the green bars) (as
shown in Fig. 1A) as well as the 1968 bp and ~600 bp PCR products with primer pair
CG10527-F/CG10527-R (the black bars) were obtained in the 3 heterozygous jhamt2

CG10527187 lines (lane 1, 2 and 3). In the following experiments, the number 1 homozygous
jhamt2 CG10527187 double mutant was used. (C) As detected by Western blot analysis,
CG10527 was expressed in the brain-RG complexes of w1118 and jhamt2 but not those of
CG10527187 and jhamt2 CG10527187. Tubulin was used as the internal control. (D) Immunohis-
tochemistry revealed no expression of JHAMT in the CA of jhamt2 and jhamt2 CG10527187,
while JHAMT was expressed in the CA of w1118 and CG10527187. Arrows indicate the CA.
(TIF)

S4 Fig. Mutation of CG10527 does not enhance JH-associated effects of the jhamt mutant.
(A and A’) Measurements of methyltransferase activity of the brain-RG complexes in w1118,
jhamt2, CG10527187, and jhamt2 CG10527187 at 3h AIW using FA (A) or JHA (A’) as substrates.
(B) Measurements of JH biosynthesis in the brain-RG complexes in w1118, jhamt2, CG10527187,
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and jhamt2 CG10527187 at 3h AIW using the RCA-TLC method. (C-C”) Quantitative measure-
ments of whole body titers of JHB3 (C), JH III (C’), and MF (C”) in w1118, jhamt2, CG10527187,
and jhamt2 CG10527187 at 3h AIW according to the HPLC-FD protocol. (D) qPCR measure-
ments of the relative mRNA levels of Kr-h1 in the fat body tissues isolated from w1118, jhamt2,
CG10527187, and jhamt2 CG10527187 at 3h AIW. (E and E’) Comparisons of the average num-
ber of eggs laid by each pair of flies per 24 hours (E) and the ovary size of 6-day-old virgins (E’)
among w1118, jhamt2, CG10527187, and jhamt2 CG10527187.
(TIF)

S5 Fig. Lethality of Aug21-GAL4>UAS-hmgcr dsRNA and jhamt2/jhamt2; Aug21-
GAL4>UAS-hmgcr dsRNA. (A) RNAi efficiency of Aug-GAL4>UAS-hmgcr dsRNA and
jhamt-GAL4>UAS-hmgcr dsRNA at 3h AIW. (B) Lethality of Aug21-GAL4>UAS-hmgcr
dsRNA during the embryonic, larval, and pupal stages. Aug21-GAL4/+ and UAS-hmgcr
dsRNA/+ were used as the controls. (C) Lethality of jhamt2/jhamt2; Aug21-GAL4>UAS-hmgcr
dsRNA during the embryonic, larval, and pupal stages. jhamt2/+; Aug21-GAL4/+ and jhamt2/
+; UAS-hmgcr dsRNA/+ were used as the controls.
(TIF)

S6 Fig. Reduction of USP expression does not affect JH-induced Kr-h1 expression. qPCR
measurements of fold-changes of relative USP (A) and Kr-h1 (B) mRNA levels in Kc cells in
which USP expression was reduced by RNAi (GFP RNAi and DMSO as a control) for 48 h, fol-
lowed with treatments with MF (1×10-10~-6 M) for 30 min.
(TIF)

S1 Table. Primers used in this paper.
(PDF)
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