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ABSTRACT OF THE DISSERTATION 

FREEWAY TRAVEL TIME ESTIMATION AND PREDICTION 

USING DYNAMIC NEURAL NETWORKS 

by 

Luou Shen 

Florida International University, 2008 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Providing transportation system operators and travelers with accurate travel time 

information allows them to make more informed decisions, yielding benefits for 

individual travelers and for the entire transportation system.  Most existing advanced 

traveler information systems (ATIS) and advanced traffic management systems (ATMS) 

use instantaneous travel time values estimated based on the current measurements, 

assuming that traffic conditions remain constant in the near future.  For more effective 

applications, it has been proposed that ATIS and ATMS should use travel times predicted 

for short-term future conditions rather than instantaneous travel times measured or 

estimated for current conditions. 

This dissertation research investigates short-term freeway travel time prediction 

using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar 

traffic detectors installed along a freeway corridor.  DNN comprises a class of neural 

networks that are particularly suitable for predicting variables like travel time, but has not 

been adequately investigated for this purpose.  Before this investigation, it was necessary 

to identifying methods for data imputation to account for missing data usually 
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encountered when collecting data using traffic detectors.  It was also necessary to identify 

a method to estimate the travel time on the freeway corridor based on data collected using 

point traffic detectors.  A new travel time estimation method referred to as the Piecewise 

Constant Acceleration Based (PCAB) method was developed and compared with other 

methods reported in the literatures.  The results show that one of the simple travel time 

estimation methods (the average speed method) can work as well as the PCAB method, 

and both of them out-perform other methods.  This study also compared the travel time 

prediction performance of three different DNN topologies with different memory setups.  

The results show that one DNN topology (the time-delay neural networks) out-performs 

the other two DNN topologies for the investigated prediction problem.  This topology 

also performs slightly better than the simple multilayer perceptron (MLP) neural network 

topology that has been used in a number of previous studies for travel time prediction. 
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CHAPTER 1 

 INTRODUCTION 

1.1. Background 

Travel time is a fundamental measure in transportation engineering because it is 

strongly related to the quality of service and can be easily comprehended by a wide 

variety of audience, including engineers, planners, administrators, and commuters.  As a 

performance measure and decision-making variable, travel time information is becoming 

increasingly important for a variety of Advanced Traveler Information System (ATIS) 

and Advance Traffic Management System (ATMS) applications.  The estimation and 

prediction of travel time has attracted significant interests of researchers as well as 

practitioners.  The framework of travel time provision for ATIS is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Travel Time Provision in ATIS Framework 
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To be effective, the travel time information used for ATIS and ATMS 

applications should have two distinct characteristics: anticipative and dynamic.  This is 

because every piece of information provided to users, to be useful, should yield 

predictions to the future and must be updated in real-time. 

Providing transportation system operators and travelers with accurate traffic 

information allows them to make more informed decisions, yielding benefits for 

individual travelers and for the entire transportation system.  Even in cases where no cost 

or time savings result from the provision of traffic information, the dissemination of 

information to travelers reduces uncertainty and increases comfort of travelers. 

The increasing reliance on real-time travel time information indicates a need to 

measure travel time accurately and effectively.  Essentially, the available travel time 

measurement techniques can be divided into two categories: direct methods and indirect 

methods.  In the case of direct methods, the travel time information on corridor segments 

is collected directly from the field.  These methods include probe vehicles tracking based 

on license plate matching, electronic vehicle tag matching, or Global Positioning System 

(GPS).  In the indirect methods, the travel time of a corridor segment is estimated from 

traffic data like speed, flow, and/or occupancy collected by “point” traffic detectors such 

as microwave radar, infrared, loop detectors, and video image processing detectors. 

While probe vehicle techniques are more accurate, they are more expensive and 

not as widely deployed as point detectors (Turner, 1996).  On the other hand, freeways in 

most metropolitan areas in North America are or in the process of being instrumented 

with point traffic detectors. 
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Recently, Florida Department of Transportation (FDOT) Districts have deployed 

above-ground, side-fire roadside microwave radar detectors as part of their freeway 

management systems.  In general, these detectors are strategically placed approximately 

half mile apart.  The traffic data such as speed, flow and occupancy are captured by 

detectors in a 20 second interval, then transferred to the Traffic Management Center 

(TMC) and recorded in the central software.  In this study this traffic detector data will be 

used for travel time estimation and prediction. 

1.2. Problem Statement 

Most existing ATIS and ATMS use instantaneous travel times estimated based on 

the current measurements, assuming that traffic conditions will not change from the 

measured conditions in the near future.  For more effective applications, it has been 

proposed that ATIS and ATMS should use travel times predicted for short-term future 

conditions rather than the instantaneous travel times measured or estimated for current 

conditions.  The short term travel time prediction usually means to predict the current and 

near-future travel time up to 30 minutes and usually uses real-time and near-past traffic 

data.  In some cases, historical data is also used as an additional input. 

Providing accurate values for travel time is a complex and challenging problem.  

First, traffic detector data has inherent problems including missing and low quality data 

due to detector malfunctions.  Thus, there is a need to check the quality of traffic detector 

data and use data cleaning methods to correct any discrepancies. 

Second, as described above, travel times on roadway segments need be estimated 

from data collected using point traffic detectors.  An effective method to estimate travel 
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time from traffic detector data is needed for the success of the subsequent travel time 

prediction process. 

Third, in most applications such as that in the FDOT Smart SunGuide software, 

instantaneous travel time is estimated with no prediction capability.  Thus, these 

applications implicitly assume that the current traffic conditions remain constant until the 

vehicles finish their journeys.  The problem with this approach is that as the vehicles 

travel along their routes traffic conditions change.  Thus, there is a need for a method to 

more accurately and reliably predict travel times for the period that the vehicles are 

traveling on the road. 

Figure 1.2 presents the framework of the travel time prediction processes and data 

required for travel time prediction modeling system considering the above discussion. 

The discussion presented in this section leads to the objectives of this study discussed in 

Section 1.3.  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Framework of Travel Time Prediction Modeling System 
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1.3. Objectives and Scope 

This research aims to develop an improved method for the estimation and 

prediction of short-term freeway travel times from point traffic detector data.  The 

method takes into account spatial and temporal variations in traffic data simultaneously.  

In other words, the method will be able to predict travel time based on traffic measures 

collected from different locations at the current and previous time periods.  

The specific proposed research objectives are to:  

1) identify data cleaning methods to deal with missing and erroneous traffic detector 

data and examine the effectiveness of the data cleaning methods, 

2) identify and test a travel time estimation method along the link length based on 

point detector data, 

3) develop a data-driven travel time prediction model and test the performance of the 

developed model, and 

4) examine the influence of different model structures and parameters on the 

performance of the prediction model. 

1.4. Dissertation Organization 

This dissertation consists of six chapters: Chapter 1 introduces this dissertation 

research, puts forward the problem to be solved, and sets the goal and objectives to be 

achieved.  Chapter 2 presents a review of the literature related to data cleaning, common 

travel time estimation and travel time prediction techniques and applications.  Chapter 3 

describes the traffic data, experiment environment, and the used data preprocessing 

procedures such as data imputation and data transformation.  Chapter 4 presents an 
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investigation of the segment travel time estimation method, which is required to produce 

the travel times used as inputs to the travel time prediction model.  Chapter 5 presents the 

developed travel time prediction model and compares different dynamic neural networks 

topologies with varying parameters.  Chapter 6 summarizes the major research results 

from this study, draws conclusions based on these results, and recommends issues to be 

considered in future research and application.  
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CHAPTER 2 

LITERATURE REVIEW 

In the past few years, a large number of studies have been conducted which used a 

variety of mathematical methods to model traffic characteristics and produce travel time 

prediction. 

2.1 Classifications of Prediction Methods 

Below is a discussion of the classifications of the used methods based on the 

consideration of four basic factors: the scope of prediction, the prediction horizon and 

step, the input variables and the modeling approach. 

2.1.1. Scope of Application 

There are two broad categories of applications of travel time prediction: ATIS and 

ATMS.  The implementation can also be categorized by the type of the highway facility 

including freeways, rural highways, and urban arterial streets.  Predicting travel time has 

been proposed for use more in ATIS applications than in ATMS applications.  Travel 

time prediction is more easily done on freeways and rural highways compared to urban 

arterial streets due to the difficulties in measuring travel time on urban arterials. 

2.1.2. Prediction Horizon and Step 

The prediction horizon, which defines the time window after which the prediction 

is made, is usually set in the range of 0-15 minutes.  The prediction horizon is used to 

account for situations in which the vehicles receiving the information will arrive at the 
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point where the prediction is required at some time in the future.  This may be, for 

example, the cases of information provided by traveler information web sites, hand-held 

devices, and in-vehicle devices.  In these cases, the prediction will need to be made 

starting at the time that these vehicles are expected to arrive at the point of prediction. 

With the prediction horizon of zero minutes, the model predicts the travel time starting at 

the current time.  The use of a prediction horizon of zero is appropriate, for example, for 

the prediction of travel time displayed on Dynamic Message Signs (DMS) that provide 

travel time information to vehicles passing by the DMS.  Ishak and Al-Deek (2002) 

concluded that the prediction accuracy degrades as the predicting horizon increases.  Also, 

different prediction horizons yield different modeling approaches and methodologies. 

The prediction rolling step defines the temporal resolution of input data in terms 

of the time interval, at which the historical travel time data is aggregated for use in the 

analysis.  Previous studies have found that there is a decrease in the prediction accuracy 

due to the strong variability of traffic parameters when examined in short time intervals 

(e.g. 30 seconds).  For this reason, researchers have used aggregated data in 1-5 minutes 

intervals to obtain more stable traffic characteristics (Park and Rilett, 1998; Van Lint et al. 

2002).  The use of coarser levels of data aggregation (10 minutes or more) leads to 

reduced fluctuations in the data even further, and results in the loss of valuable real-time 

information.  Defining the appropriate data resolution is a very important issue because it 

affects the quality of information that is used as input to the travel time estimation and 

prediction models. 
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2.1.3. Input Variables 

Advanced traffic surveillance techniques such as probe vehicle techniques 

including automatic vehicle location (AVL) and automatic vehicle identification (AVI) 

systems allow direct travel time data collection (Chen and Chien, 2001; Chien and 

Kuchipudi, 2003).  However, the travel time measurements for a route from an origin to a 

destination become available only after a vehicle has finished the entire route with these 

technologies.  This makes this measurement not appropriate for online travel time 

prediction purposes because of the long time required to complete the paths.  Usually, 

however, the travel time is measured using probe vehicles at a short section level (one to 

two miles).  The travel time in many cases is required for short segments such as between 

DMS locations.  

 Another type of measurements that are more widely available is traffic point 

measurements that measure traffic parameters such as speed, flow, and occupancy using 

traffic detectors.  These are normally aggregated at a 20 second to one minute interval.  

The travel time can be estimated from these detector data when direct measurement of 

travel time is not available, as discussed later in this dissertation. 

2.1.4. Modeling Approach 

Travel time prediction approaches can be categorized into model-based and data-

driven approaches. 

Model based travel time prediction methods predict traffic conditions based on 

traffic flow theory or real-time traffic simulation.  Given the wide body of research on 

traffic flow theory in the past decades, this choice seems most appropriate.  However, it 



 10

inherently forces the modeler to predict the traffic conditions at the boundaries of the 

model used (traffic flow at origins/destinations and ramps, capacity restrictions, etc).  

Simulation models have been applied in real-time to predicting travel time using a rolling 

horizon process.  Examples of this approach are the use of DYNAMIT (Ben-Akiva et al. 

2003), METANET (Smulders et al. 1999), DYNASMART (Hu, 2001), and CORSIM 

(Liu, et al. 2006b).  The predictive quality of the model-based travel time prediction is 

strongly influenced by the quality of the input data, the used models, and the model 

calibration.  The accuracy of the model’s output, even if the model reproduces traffic 

patterns very accurately, can only be as good as the predictive accuracy of its inputs.  

Moreover, setting up real-time traffic flow models for online short term travel time 

prediction on the large number of routes typically encountered in a transportation 

network would require significant modeling effort in terms of design, implementation, 

calibration, and maintenance. 

Data-driven methods predict travel times based on current and past real-world 

detector data, without explicitly considering the physical traffic processes considered by 

the model-based methods.  For data-driven methods, the used method, the quality of data, 

and the parameters used in the development and implementation of the method influence 

the quality of prediction.   There are many successful applications reported on data-driven 

approaches for short term freeway travel time prediction. 

The availability of advanced traffic data collection, storage and maintenance 

system is required in order to apply data-driven approaches.  If no such system is 

available, only the model-based approaches can be used.  A densely spaced local data 

collection system enables a much more accurate and reliable applications of data-driven 
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travel time prediction models.  Further discussion of this approach is presented later in 

this chapter. 

2.2. Data Preprocessing 

Traffic detector data has inherent problems including missing and low quality 

data due to detector malfunctions.  In addition, point traffic detector can only collect the 

time mean speed which is not suitable to derive travel time as discussed later. Data 

preprocessing is usually needed before travel time estimation and prediction. This 

preprocessing includes data cleaning, imputation, and transformation as discussed in the 

following subsection. 

2.2.1. Data Cleaning and Imputation 

Input failure is the occurrence of erroneous or missing data in the input vector.  

This happens when a measurement device produces data that is dubbed unreliable, or 

when it produces no data at all.  Input failure can be classified into two types: random 

failure that occurs due to, for example, temporary power or communication failures of the 

freeway monitoring system; and structure failure that occurs mainly due to physical 

damage or maintenance blockage to the detectors or other associated roadside equipment.  

In real life, a mix of these input failure types will occur. 

Smith and Demetsky (1997) underlined the inability of Auto Regressive 

Integrated Moving Average Model (ARIMA) travel time prediction models to deal with 

missing values.  Later, Chen et al. (2001) commented on the effects of missing values in 

a comparative study between an ARIMA model and the neural networks (NNs) approach.  
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The findings showed that the ARIMA models were more sensitive in dealing with 

missing values and various types of imputation techniques than NNs models. 

Although non-parametric techniques such as NNs are more robust concerning the 

missing values given that it is designed and trained properly (Bishop, 1995), missing data 

is still expected to affect the accuracy of NNs training, significantly.  The use of an 

effectiveness of data cleaning method is crucial. 

As Chen et al. (2001) underlined, if the prediction models do not have the ability 

to deal with false or missing values, it is up to the practitioner to select the proper data-

cleaning technique.  This stage of traffic data preparation is very important, particularly 

for conventional statistical approaches.   

In general, three approaches have been used for replacing missing values: null 

replacement, simple imputation, and advanced imputation.  Null replacement refers to 

leaving the data as is or replacing missing data with some default values.  In this case, the 

model that uses the data has to be robust enough to deal with the missing data problems. 

Simple imputation involves replacing missing values by some statistical measures.  

These could include: the sample mean, median or other descriptive statistic (Chen et al. 

2001).  In practice, this is the most commonly used approach to remedy the missing and 

erroneous data problem.  Schafer (1997) shows that simple imputation schemes tend to 

change the covariance structure of the input-data and may induce bias.  Despite the clear 

theoretical shortcomings of simple imputation schemes as discussed from different 

perspectives by Armitage and Lo (1994), the results presented by Chen et al. (2001) 

indicate that simple imputation combined with NNs based traffic predictor does produce 

accurate traffic predictions, even when up to 30% of the input data is missing. 
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Advanced imputation is in essence a special case of simple imputation.  In this 

case missing values are replaced by procedures which can be treated as a prediction sub-

model, rather than a simple statistical method.  Examples include the use of traffic flow 

simulation models and Kalman Filters.  In the DACCORD project (Thijs et al. 1998a; 

Thijs et al. 1998b; Thijs et al. 1999), two imputation methods were implemented and 

extensively tested on three different test sites.  The first method was based on a Kalman 

filter and the second based on a cross-correlation algorithm.  Haj-Salem and Lebacque 

(2002) used a data cleaning strategy based on a first order (linear) traffic flow model, 

producing even better results than the methods applied in DACCORD.  Traffic flow 

model-based imputation schemes seem to be the most appropriate data cleaning tool for 

traffic prediction purposes, because they address the spatial and temporal characteristics 

of traffic processes.  On the down side, however, they require much more modeling effort 

than simple statistical methods such as interpolation or smoothing technique.  Secondly, a 

traffic flow simulation model is parameterized and requires calibration.  Another 

disadvantage to the use of model-based imputation is the computational expense which is 

particularly relevant in real-time operations of the models. 

2.2.2. Data Transformation 

Freeway ITS applications usually include traffic detectors (microwave radar, 

infrared, inductive loop, or video based systems) that measure the spot (time mean) speed, 

flow and occupancy.  However, travel time prediction requires predicting of link (space 

mean) speed along highway segments.  Thus, transformation from time mean speed to 

space mean speed is required. 
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 Wang and Nihan (2000) estimated space mean speed from flow and occupancy 

based on traffic flow theory.  Rakha and Zhang (2005) proposed a formulation for 

estimating space-mean speeds with a small margin of error (within 0 to 1 percent) given 

time mean speed and the variance.  Garber and Hoel (2002) described a linear 

relationship between time-mean and space-mean speeds.  Van Lint (2004) found that in 

congested conditions the speed variance is nearly constant, while in free-flow conditions, 

variance is a steeply increasing function of the mean speed.  He presented different linear 

models for these two traffic conditions separated by a transition point. 

2.3. Travel Time Estimation 

As stated in section 2.1.3, for most applications, travel time is not measured 

directly as in the case with the probe vehicle methods, but measured indirectly by traffic 

detectors (point measurements).  For data-driven models based on detector data, the 

travel time estimation pertains to reconstructing travel times of realized trips from traffic 

data recorded by detectors.  An accurate travel time estimation method is of vital 

importance to compile databases of estimated travel times with which subsequent travel 

time prediction models can be calibrated and validated.  The different methods reported 

for the estimation of travel time based on point measurements can be broadly divided into 

two main categories: trajectory methods and traffic flow model based methods. 

2.3.1. Trajectory Methods 

A trajectory method is a speed based method that requires the conversion of the 

inputs from spot time mean speed to an estimate of space mean speed for better 
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performance achievement.  This conversion has been discussed in Section 2.2.2 of this 

document. 

The Travel Time Data Collection Handbook (1998) reports the trajectory 

techniques as the simplest and most widely accepted method for the estimation of travel 

time from traffic detector data.  The speed is assumed to be constant for the small 

distance between the measurement points, usually the distance between the two detector 

stations (approximately 0.5 miles).  Since the distance between the two detectors is 

known a priori, the travel time is calculated as the distance divided by the speed (Dailey 

1997; Lindveld et al. 2000; Cortes et al. 2002; Van Lint and Van der Zijpp, 2003).  Thus, 

the trajectory methods assume that the point estimates of speed are representative of the 

average speed between the adjacent loop detectors. 

The three different extrapolation approaches normally adopted at present are 

explained below with the help of Figure 2.1. 

 

 

 

 

Figure 2.1: Schematic Diagram for Speed Interpolation 

1) Half distance method: the speed measured by a detector is applicable to half the 

distance on both sides.  
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2) Average speed method: the speed is assumed to be the average speeds measured 
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3) Minimum speed method: the speed is assumed to be the minimum speeds 

measured by detectors 1 and 2. 
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where 1v  and 2v  are the space mean speeds calculated based on the measurements at 

detector 1 and 2 respectively, 21−D  is the distance between detectors 1 and detector 2, and 

21−T  is the travel time from detector 1 to detector 2. 

The main disadvantage of the constant speed trajectory methods is the decreasing 

performance with increasing traffic congestion (Lindveld et al. 2000).  Also, the 

assumption of constant speeds between the detection points holds true only at low to 

moderate volume conditions, where the variability in the flow is lower (Coifman, 2002).  

At high volume conditions due to the variation of speed, the assumption of a constant 

speed no longer holds true even for a small section of road.  Thus, the error in the travel 

time results calculated using these methods tends to increase during congested periods. 

Van Lint (2003) proposed an improved travel time estimation algorithm called 

Piecewise Linear Speed Based (PLSB) algorithm.  With this algorithm, the section speed 

changes along the longitudinal position and is assumed to be a linear interpolation 

between the observed speed at the upstream and downstream locations.  Tested with 

simulation data, Van Lint’s study showed that the root mean squared error (RMSE) of the 

PLSB method is about half of the constant speed trajectory method which is the half 

distance method.  Further discussion of the PLSB method is presented in Section 3.2. 
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2.3.2. Traffic Flow Theory Method 

Theoretical models also have been developed for the estimation of travel time 

from loop detector data based on traffic flow theory.  The advantage of these models is 

that since they are based on the traffic flow theory, they can capture the dynamic 

characteristics of the traffic process.  One approach used the principle of conservation of 

vehicles by comparing the inflow of a section during previous time period with its 

outflow during the current time period.  This approach was used by Nam and Drew (1996, 

1998, 1999) who presented a macroscopic model for estimating freeway travel time in 

real-time directly from flow measurements based on the area between the cumulative 

volume curves from loop detectors at either end of the link.  Petty et al. (1998) suggested 

a model for estimating travel time directly from flow and occupancy data, based on the 

assumption that the vehicles that arrive at an upstream point during a given interval of 

time have a common probability distribution of travel times to a downstream point.  

Coifman (2002) utilized the linear approximation of the flow density relationship to 

estimate travel time from dual-loop detector data assuming constant shockwave speed.  

The results were reported as satisfactory except at the transition periods from congested 

to un-congested conditions and vice versa. 

Most of the theoretical studies used for travel time estimation from detector data 

give satisfactory results for specific conditions only.  For instance, some of the models 

performed well for normal-flow conditions only (Nam and Drew, 1996; Hoogendoorn, 

2000), while other models are applicable for congested traffic flow conditions only (Nam 

and Drew, 1998).  Another important premise for the traffic flow based models is that all 

the values of the input and output flows around the boundary of the study road section are 
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available, which in most cases is not the case since most of the ramp flows are not 

monitored by traffic detectors. 

2.4. Travel Time Prediction 

The effectiveness of the ATIS depends on the accuracy and timeliness of traffic 

information provided.  Predicted travel time for future is more beneficial than current 

information since traffic conditions may change significantly before travelers complete 

their journeys. 

There is a need for an effective methodology for predicting travel times.  Several 

short-term travel time prediction methods have been derived.  Based on the mathematical 

methodology used, the methods can be broadly classified into three categories: regression 

methods, time series methods, and NNs methods.  Some methods use historical data in 

addition to real-time data.   The following sections include an overview of the methods 

reported in the literature. 

2.4.1. Methods Based on Historical Data 

The methods that use historical data either alone or combined with real-time data 

are rational because historical profiles can represent the average traffic characteristics 

over days when the future traffic has a similar profile.  Thus, a historical average can be 

used for predicting the future values.  This approach involves the creation of a historical 

data profile and then classify days into day types with similar profile.  When not 

combined with real-time data, this approach is relatively easy to implement and fast in 

terms of computation speed.  Also, this method can be valuable in the development of 

prediction models since they explain a substantial amount of the variation in traffic over 



 19

time periods and days.  However, the value of static prediction is limited because of its 

implicit assumption that the projected traffic remains constant for different days of the 

same type.  Commuters in general have a good knowledge of average travel time under 

usual traffic conditions.  They are more interested in knowing travel time under not-so-

common conditions, when average values are not representative of the current or future 

traffic conditions.  The historical data method performs reasonably well under normal 

conditions.  However, it can misrepresent the conditions when the traffic is abnormal. 

The Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) 

project in the Chicago metropolitan area used a combination of historical and 

instantaneous data for their travel time prediction model (Tarko and Rouphail, 1993; 

Boyce et al. 1993).  Seki (1995) used historical data after correcting them by type of day 

for prediction of travel time.  Manfredi et al. (1998) developed a prediction system as 

part of the DACCORD project mentioned earlier, where the prediction was based on 

historical and instantaneous data.  Zhang and Rice (2003) used a varying coefficients 

linear model with past instantaneous travel time to predict the future travel time.  Rice 

and Zwet (2004) investigated the combined instantaneous and historical travel time data, 

using statistical methods such as principle component analysis and windowed nearest 

neighbor.  Chien and Kuchipudi (2003) explored the travel time prediction problem using 

travel time data directly collected through roadside terminals and found that using 

aggregated historical data in the same weekday (up to four weekdays) combined with 

real-time data have comparable results with using real-time data from previous time 

intervals. 
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2.4.2. Regression Methods 

Kwon et al. (2000) presented an approach to predicting travel time using linear 

regression with a stepwise variable selection method using flow and occupancy data from 

loop detectors and historical travel time information.  Rice and Zwet (2004), Zhang and 

Rice (2003) and Sun et al. (2007) proposed freeway travel time prediction methods using 

linear regression models with coefficients that varies with the time of day. 

2.4.3. Time Series Methods 

Researchers have used state-space models that belong to the multivariate family 

of time series models.  The time series method of travel time prediction involves the 

examination of historical data, extracting essential data characteristics, and effectively 

projecting these characteristics into the future to predict the travel time in future time 

steps from the travel time (and possibly other traffic characteristics) at the current and 

previous time steps. 

ARIMA was first introduced in traffic forecasting by Ahmed and Cook (1979) 

and Levin and Tsao (1980) as an alternative approach to model the stochastic nature of 

traffic.  Oda (1990) adopted an auto-regressive model for the prediction of travel time.  

Saito and Watanabe (1995) developed a system for predicting the travel time for 60 

minutes in the future using an auto regression model based on the change in traffic 

conditions for the previous 30 minutes.  Iwasaki and Shirao (1996) discussed a short-term 

prediction scheme of travel time a long a section of a motorway using an auto regressive 

method.  The parameters of the prediction model were identified by adapting an extended 

Kalman filtering method.  D’Angelo and Al-Deek (1999) and Ishak and Al-Deek (2002) 
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implemented models that used nonlinear time series with multi-fractal analysis for the 

prediction of travel time. 

If broadly defined, the time series class can also include the Kalman filter method, 

which has the advantage of updating the selected state variables continuously.   Chen and 

Chien (2001), Chien and Kuchipudi (2003), and Nanthawichit et al. (2003) used Kalman 

filtering for travel time prediction. 

2.4.4. Neural Networks Methods 

The real power of NNs is not only their proven ability to provide good predictions 

but also their overall performance and robustness in traffic modeling.  Some of their 

advantages can be summarized as follows: 

1) NNs can produce accurate multiple step-ahead prediction. 

2) NNs have been tested with significant success in modeling complex temporal and 

spatial relationships lying in datasets from different fields including transportation 

engineering. 

3) NNs is capable of modeling highly non-linear relationships in a multivariate 

setting (Zhang et al. 1998). 

NNs applications to short-term traffic prediction extend from the simple 

multilayer perceptron (MLP) (Smith and Demetsky, 1994; Park and Rilett, 1999; Zhang, 

2000; Huisken and Van Berkum, 2003; Innamaa, 2005) to more complex structures such 

as MLP with a learning rule based on a Kalman filter (Vythoulkas, 1993); modular neural 

networks (Park and Rilett, 1998); radial basis neural networks (Park et al. 1998); spectral 

basis neural networks (Park et al. 1999; Rilett and Park, 2001); time-delayed neural 
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networks (TDNN)  (Yun et al. 1998; Abdulhai et al. 1999; Dia, 2001; Lingras et al. 2002; 

Ishak et al. 2003); and state-space neural networks (SSNN) (Van Lint et al. 2002; Van 

Lint et al. 2005; Van Lint, 2006; Liu, et al. 2006a, Singh, and Abu-Lebdeh, 2007).  

The support vector machine (SVM) method can also be classified as a NNs 

method and has been investigated for travel time prediction by Wu et al. (2003) and 

Vanajakshi (2004). 

Another approach for traffic prediction is the hybrid methods that use a mixture of 

methods to construct a smaller (reduced dimensionality) and more efficient network.  

This concept was proven to be applicable in cases where clustering techniques were first 

applied to the available data.  For example, the ATHENA model (Danech-Pajouh and 

Aron, 1991) is a layered statistical approach that adopted a clustering technique to group 

the data and assign each cluster to a linear regression model.  Van der Voort et al. (1996) 

introduced a different hybrid model that combined Kohonen maps with ARIMA models 

to forecast traffic flow, which improved the performance compare to simple ARIMA 

model and MLP model.  Later Chen et al. (2001) presented two hybrid neural networks 

approaches, a Self-Organizing Map (SOM) combined with ARIMA model and a 

SOM/MLP model, and found that the SOM/MLP approach achieves superior results. 

New interest in hybrid methods arises from the use of fuzzy logic and genetic 

algorithms.  Palacharla and Nelson (1999) first applied a fuzzy-neural network for travel 

time prediction.  Yin et al. (2002) developed a fuzzy-neural model that consisted of two 

modules: a gate network for classification of the input data into a number clusters using 

fuzzy approach and an expert network for specifying input-output relationships based on 

the conventional neural networks approach.  The model performed better and in less 
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computational time than a simple neural networks model.  A recent application of neural-

fuzzy systems by Ishak and Alecsandru (2003) applied an adaptive neural-fuzzy 

inference system to reduce the dimensionality of the input space. 

Genetic algorithms (GA) have also been combined with NN.  The GA approach 

has the natural propensity of searching through cast and complex solution spaces that 

encompass a great number of local minima.  Abdhulai et al. (1999) developed a 

combined GA and time-delayed neural networks. In this case, the GA was used to 

optimize the look-back interval of the network.  Lingras et al. (2002) applied time-

delayed neural networks with embedded GA to maximize the statistical correlation for 

selecting connections between the input and hidden layers.  The hybrid application of GA 

could be extremely important in several optimization issues concerning the internal 

architecture of neural networks. 

2.5. Summary  

Chapter 2 has presented a review of the literature of traffic travel time estimation 

and prediction and related input data issues.  Previous studies illustrated that NNs can 

provide an accurate and robust approach to travel time prediction.  NNs’ applications to 

travel time prediction have included several types of NNs for dynamic travel time 

estimation.  It was reported in these studies that NNs can out-perform other travel time 

prediction techniques, including the regular time series and Kalman filtering approaches.  

Based on the previous literature, the SSNN topology has been used for travel time 

prediction.  The TDNN topology has been investigated for traffic volume prediction, but 

not for travel time prediction.  Both of these types of networks are sub-classes of 
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Dynamic Neural Networks (DNN), which takes into account spatial and temporal 

information about traffic conditions simultaneously which makes them particularly 

suitable for travel time prediction. 

This research will investigate the ability of a number of DNN topologies with 

different parameters settings to predict travel time and compares the performance of the 

prediction with a simple MLP neural network.  Other associated processes such as data 

cleaning and transformation and travel time estimation will also be applied and assessed. 
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CHAPTER 3 

DATA ACQUISITION AND PREPROCESSING 

3.1. Introduction 

This Chapter discusses the data acquisition and data preprocessing step of this 

research.  As described in previous chapters, traffic detector data has inherent problems 

including missing and low quality data due to detector malfunctions.  Thus, there is a 

need to check the quality of traffic detector data and use data cleaning methods to correct 

any discrepancies which is an important step required for the modeling of travel time 

prediction.  This chapter discussed the source of the data used in this study and the data 

preprocessing step of the travel time estimation. 

The traffic data used in this study was obtained from the Florida Department of 

Transportation (FDOT) District 4 traffic detection system deployed along the I-95 

corridor and stored in the traffic management center (TMC) database.  FDOT District 4 

has recently deployed above-ground, side-fire roadside microwave radar detectors along 

I-95 as part of their freeway management system.  In general, these detectors are 

strategically placed approximately half mile apart.  Traffic data such as speed, volume, 

and occupancy are captured by the traffic detectors at 20 seconds interval, then 

transferred to the TMC and stored in the central database.  The database records 

including the timestamp, detector ID, lane ID (varied from 4 up to 6 lanes), time mean 

speed, occupancy, and volume of the past 20 seconds before the TMC receives the data. 

The three basic traffic flow parameters (volume, occupancy, and speed) are 

directly related to each other as proved by the traffic flow theory.  Any one of these 
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parameters can be derived from the other two parameters.  Thus, in this study, to avoid 

redundant information input into the model, only speed and volume data is used for travel 

time prediction modeling and analysis.  Table 3.1 lists a sample of recorded traffic 

detector data used for in this study.  

 
Table 3.1:  Example of Traffic Detector Data Records 

ID timestamp detector id lane id speed (mph) volume 
294459 6:00:02 95SB019.5 95SB019.5-Lanes-lane1 85 3 
294458 6:00:02 95SB019.5 95SB019.5-Lanes-lane2 71 1 
294457 6:00:02 95SB019.5 95SB019.5-Lanes-lane3 68 2 
294456 6:00:02 95SB019.5 95SB019.5-Lanes-lane4 63 3 
294455 6:00:02 95SB019.5 95SB019.5-Lanes-lane5 64 1 
294410 6:00:02 95SB021.0 95SB021.0-Lanes-lane1 87 8 
294411 6:00:02 95SB021.0 95SB021.0-Lanes-lane2 84 5 
294412 6:00:02 95SB021.0 95SB021.0-Lanes-lane3 74 5 
294413 6:00:02 95SB021.0 95SB021.0-Lanes-lane4 80 4 
294414 6:00:02 95SB021.0 95SB021.0-Lanes-lane5 75 3 

 
Originally the traffic detector data obtained from the TMC was stored in an 

individual text file for each day.  For the convenience of data manipulation, the data was 

imported to a SQL database and merged together.  Based on a quick preview of the data, 

it was found that the data of the three months of June, July and August in 2007 was more 

complete than the other months.  Thus, the three months data was used for the travel time 

prediction modeling. June and July data was used for NNs model training and August 

data for NNs model testing.  Further, the detector data of the I-95 corridor between the I-

595 interchange and the Broward/Miami-Dade County line (about 8.25 miles) was found 

to be more complete than the other segments.   Thus, this segment was chosen for use in 

this research.  Figure 3.1 shows the map of the study corridor. 
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Figure 3.1: Map of the Study Corridor 
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In this study, traffic detector data from 11 out of the total of 16 detectors on the 

study section were used for travel time prediction modeling due to the detector 

malfunction problems that are associated with the remaining five detectors.  It is believed 

that the malfunction problems occur because the detectors were just installed at the time 

of the data collection and these problems had not been fixed by the contractor that 

installed the detectors.  The specific geometrical deployment of the 11 detectors is shown 

in Figure 3.2.  D1 to D11 in Figure 3.2 refer to the locations of the 11 detectors.  Also the 

Figure shows the locations of the on and off ramps. 

 
 

 

 

 

 

 

 

 

 Figure 3.2: Schematic Locations of the Traffic Detectors 

Another data source is the incident data which is gathered from the freeway 

incident management program of FDOT District 4 in Fort Lauderdale, FL, and stored in a 

comprehensive database called the Systems Management for Advanced Roadway 

Technologies (SMART) SunGuide database.  The stored data attributes include 

timestamps of the activities for all agencies involved, the tracking of lane and shoulder 

closures and clearances, incident location information, and other incident and incident 
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management attributes.  A sample incident data is shown in Table 3.2.  This data was 

used to confirm the reasons for non-recurrent peaking congestion during the analysis 

period. 

 
Table 3.2:  Sample Incident Data  

ID Type Report 
Time Location Milepost # Lanes

Closed
Response

Time 
Clearance 

Time 
367497 Disabled Vehicle August 14 Exit 23 6.188 1 9 22 
367591 Accident August 14 Exit 18 0.782 1 12 47 
369840 Accident August 21 Exit 21 4.414 1 0 74 
371992 Accident August 27 Exit 21 4.120 1 1 120 
372116 Disabled Vehicle August 27 Exit 21 3.860 1 15 41 

Note: Time unit is minute. 

3.2. Data Preparation 

After the data was imported to the SQL database, a program was written in C++ 

to manipulate the data in preparation for future use.  In the original data table, each data 

row has a timestamp attribute which indicates the time at which the data was received at 

the central database.  Because of difference in the detector clock setup and possible small 

delays in the transformation of the data from different detector locations, there was a 

need to synchronize the data to a common base timestamp.  Different segments on the 

study corridor have different number of lanes varying from 4 to 6 lanes.  The traffic data 

is collected by the detectors and stored in the database for each lane separately.  In this 

study, the traffic data for all lanes was aggregated together for each detector location.  

For the convenience of future data manipulation the traffic detector data was then re-

arranged according to location along the route to be used as the database for further 

analysis as shown in Table 3.3. 
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Table 3.3:  Rearranged Traffic Detector Data Table 
Det.1 Det.2 Det.3 Det.4 Det.5 Det.6 Det.7 Det.8 Det.9 Det.10 Det.11ID timestamp 

S V S V S V S V S V S V S V S V S V S V S V
1 06:00:00 70 26 72 18 72 20 75 13 73 33 66 36 68 29 79 19 74 19 73 24 66 23
2 06:00:20 69 23 77 16 68 16 74 26 73 35 70 25 69 20 80 26 75 11 70 16 67 12
3 06:00:40 70 20 77 19 68 27 70 35 72 25 71 21 72 33 83 29 72 17 69 20 66 13
4 06:01:00 71 29 81 17 63 34 69 31 70 19 74 30 72 12 81 22 71 13 65 15 66 26
5 06:01:20 75 21 76 25 68 52 70 23 71 27 73 26 74 21 80 34 64 14 70 13 67 10
6 06:01:40 76 18 80 35 67 25 71 20 74 21 72 36 72 30 80 16 72 13 71 18 70 13
7 06:02:00 78 23 75 44 68 27 74 25 71 31 72 25 72 15 76 31 72 15 72 12 69 16
8 06:02:20 75 37 74 27 73 30 77 26 72 23 75 24 72 24 74 23 74 12 70 10 68 18
9 06:02:40 72 39 72 15 73 27 73 31 77 22 76 32 70 16 73 30 73 6 75 18 70 18
10 06:03:00 70 39 73 23 75 32 76 29 78 27 77 14 66 13 75 25 72 16 75 32 69 10
11 06:03:20 70 22 76 26 73 28 76 22 74 15 75 30 68 17 72 9 71 13 76 11 67 23
12 06:03:40 72 20 74 26 73 32 78 23 74 26 73 19 66 29 75 22 69 14 73 16 66 13
13 06:04:00 68 37 70 30 70 28 78 15 72 17 73 23 69 37 79 22 71 18 78 19 65 16
14 06:04:20 72 24 70 28 72 19 75 28 71 21 72 18 69 15 75 33 71 9 71 13 67 26
15 06:04:40 70 31 75 26 69 27 72 15 72 15 69 29 72 21 78 15 70 9 74 20 68 20
16 06:05:00 73 27 70 28 71 21 71 24 71 28 67 34 73 21 78 23 71 9 75 32 66 16
17 06:05:20 75 35 73 21 74 23 71 18 68 27 66 12 71 29 77 22 72 16 72 15 67 15
18 06:05:40 76 25 75 15 71 16 69 27 67 17 68 26 68 28 80 35 71 14 69 16 63 13
19 06:06:00 74 31 75 26 68 19 70 24 68 21 68 24 69 13 79 30 71 17 70 14 64 11
20 06:06:20 74 26 76 12 69 33 67 19 70 24 71 39 70 22 72 27 71 9 73 15 65 32
21 06:06:40 73 25 78 18 68 23 67 34 72 35 75 33 72 22 71 18 68 15 72 15 62 17
22 06:07:00 75 24 73 34 68 20 65 19 73 27 75 19 71 34 75 21 69 16 75 24 68 18
23 06:07:20 77 11 72 27 70 26 68 36 73 19 76 17 69 20 75 18 71 10 75 24 70 18
24 06:07:40 72 38 76 21 75 38 69 23 71 15 75 28 71 18 77 33 71 14 73 24 66 12
25 06:08:00 72 43 76 31 72 37 71 19 71 19 71 38 69 18 80 27 68 21 74 16 67 16
26 06:08:20 72 24 77 29 71 27 74 16 69 38 70 24 68 21 82 17 70 16 73 12 63 20
27 06:08:40 71 24 70 35 74 16 73 25 69 24 71 27 68 26 82 35 69 13 74 13 67 16
28 06:09:00 73 41 72 24 72 22 73 35 73 25 72 19 67 33 80 27 70 6 70 25 66 18

Note: Speed (S) unit is mph; Volume (V) unit is number of vehicles, Det.x is the x number of detector. 
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With the creation of this database, the data can be aggregated to different rolling 

steps for travel time prediction purpose.  In this study, traffic detector data was 

aggregated to rolling steps of one to five minutes to investigate the effect of this 

aggregation on the analysis. 

The data used in this study is for weekday only.  The weekend data was excluded 

from the analysis because of the lower sample size of these days that may not be adequate 

for training and also because it is more challenging and useful to predict travel times for 

congested periods during weekdays.  Due to the low traffic volumes in the nighttime 

period, traffic data for a time period starting from 6:00 AM to 9:00 PM is used in this 

study.  This period is refer to as the daytime period in this study and is selected since it is 

more challenging to predict the travel time during the more congested traffic conditions 

encountered during this period compared to the other hours of the day. 

Unfortunately, due to the malfunction of the newly installed detectors, a large 

proportion of the data were found to be missing in some days.   The detailed information 

about the missing data is shown in Tables 3.4 and 3.5 for the training and test data, 

respectively. 

The missing data percent varied from 0.2% to 94.6% for any given day.  Further 

analysis was carried out to determine the proper threshold of percent of missing for the 

data to be used for modeling.  This analysis will be discussed in the next chapter. 
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Table 3.4:  Missing Percent of Training Data 
ID Day Original missing observation Original missing percent 
1 06/13/2007 15834 26.6% 
2 06/14/2007 15836 26.6% 
3 06/15/2007 10230                   17.2% 
4 06/18/2007                        176                     0.2% 
5 06/19/2007                        182                     0.3% 
6 06/20/2007                        174                     0.2% 
7 06/21/2007                        232                     0.3% 
8 06/22/2007                        186                     0.3% 
9 06/25/2007                        156                     0.2% 
10 06/26/2007                        356                     0.5% 
11 06/27/2007                        290                     0.4% 
12 06/28/2007                        344                     0.5% 
13 06/29/2007                        330                     0.5% 
14 07/02/2007                      1322                     2.2% 
15 07/03/2007                        600                     1.0% 
16 07/04/2007                        565                     0.9% 
17 07/05/2007                        398                     0.6% 
18 07/06/2007                        206                     0.3% 
19 07/09/2007                        206                     0.3% 
20 07/10/2007                      7982                   13.4% 
21 07/11/2007                    11058                   18.6% 
22 07/12/2007                    10876                   18.3% 
23 07/13/2007                    10980                   18.4% 
24 07/16/2007                    16484 27.7% 
25 07/17/2007                    16218 27.3% 
26 07/18/2007                    17330 29.1% 
27 07/19/2007                      2086                     3.5% 
28 07/20/2007                      6290 10.5% 
29 07/23/2007                    31336 52.7% 
30 07/24/2007                    56199 94.6% 
31 07/25/2007                    20466 34.4% 
32 07/26/2007                    10874 18.3% 
33 07/27/2007                    12816 21.5% 
34 07/30/2007                    11018 18.5% 
35 07/31/2007                    10896 18.3% 
36 08/01/2007                    15836 26.6% 
37 08/02/2007                    11390 19.0% 
38 08/03/2007                      2570                     4.3% 

Note: Missing percent greater than 20% is marked with shaded grey color. 
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Table 3.5:  Missing Percent of Testing Data  
ID Day Original Missing Number Original Missing Percent 
1 08/06/2007                          288                       0.4% 
2 08/07/2007 27830 46.8% 
3 08/08/2007 27830 46.8% 
4 08/09/2007 27820 46.8% 
5 08/10/2007 15699 26.4% 
6 08/13/2007                        5866                       9.8% 
7 08/14/2007                          274                       0.4% 
8 08/15/2007                        1900                       3.1% 
9 08/16/2007                          174                       0.2% 

10 08/17/2007                          156                       0.2% 
11 08/20/2007                        3458                       5.8% 
12 08/22/2007 16402 27.6% 
13 08/23/2007                        4486                       7.5% 

Note: Missing percent greater than 20% is marked with shaded grey color. 

3.3. Data Imputation 

Data imputation is required for off-line travel time estimation, off-line travel time 

prediction model training and for on-line travel time prediction model implementation.  A 

simple imputation method with interpolation strategy assessed by Van Lint (2004) was 

adopted in this study.  This method satisfies both the estimation accuracy and 

computational efficiency requirements.  Based on the different requirements of off-line 

and on-line applications, different methods will be used.  Chapter 4 presents the results of 

simulation analysis conducted to validate this data imputation method.  The following 

discussion presents the mathematical formulas of the interpolation methods. 

Since the travel time estimation method is an off-line method, interpolation can be 

carried out in both the spatial and temporal directions (see Figure 3.3), given a route 

equipped with detectors { }Nn ,...,1∈  located at specific locations on the corridor and a 

database of traffic measurements M  by these detectors at time period { }Tt ,...,1∈ .  The 

location of each detector is denoted by nx . 
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Figure 3.3: Simple Imputation Method: Interpolation over Space and Time 

Suppose that for detector n  during time periods t  no data is available, the spatial 

interpolation procedure will be used to fill in this gap according to: 
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where ( )tnM u , and ( )tnM d ,  are the first available upstream and downstream measurements 

for the detector location.  ux  and dx  are the first available upstream and downstream 

detector locations. 
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The temporal interpolation procedure fills in the gap according to: 
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where ( )ptnM ,  and ( )ntnM ,  are the first available past and next measurement.  pt  and nt  

are the first available past and next time intervals. 

These two interpolation methods were then combined to get the final value.  The 

gap was filled with the minimum of both interpolates.  The minimum is used because 

based on previous studies it was found that the travel times were usually underestimated 

because the traffic weaving effects is not properly considered.  The minimum is used in 

this study as follows: 

( ) ( ) ( )( )tnMtnMtnM timespace ,,,min,* =                                                                   (3-3) 

In the cases of structural detector failures, the temporal interpolation cannot be 

used because the data remains unavailable for long periods of time with these failures.  In 

these cases, the missing values can only be estimated from spatial interpolation.  An 

example data table of the training data interpolation is shown in Table 3-6. 

For online applications, the time interpolation is not applicable because the future 

measurements are not available.  Instead, an exponential moving average (EMA) method 

is proposed by Van Lint et al. (2004).  This method can be combined with the spatial 

interpolation method mentioned above to get the final value.  The method recognizes that 

traffic measurements from a given location exhibit strong autocorrelation over time.  

Missing or corrupt traffic measurements ( )1+tM  from detector n  at time instant 1+t  can 
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be replaced by a forecast ( )1+tf n  of a simple time series model (in this case by an 

exponentially moving average) as follows: 

( ) ( ) ( ) ( )( ) 101 <<−+=+ αα tftMtftf nnnn                                                      (3-4) 

This can also be expressed as: 

( ) ( ) ( ) ( ) 1011 <<−+=+ ααα tftMtf nnn                                                            (3-5) 

The discrete version of EMA is the following equation: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )0121111 2
n

t
nnnn MtMtMtMtf αααα −+−−+−−+=+ Λ                   (3-6) 

Typically α  can be set to 0.4 which means that 40% is used as the weight of the 

measured value in the current step and 60% is used for the past measured values.  In this 

study, ten period delays were used.  This means that the method accounts for a fraction of 

( ) %5.9811 10 =−− αα  out of the total weight considered in the EMA.   

In the above equations, ( )tf n  denotes the exponential forecast and ( )tM n  denotes 

the input value at time t instant.  Finally, the spatial and temporal interpolation methods 

are combined and each missing value is set to the minimum values obtained from the 

EMA and spatial interpolation method.  An example data table of the testing data 

interpolation is shown in Table 3-7. 
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Table 3.6:  Training Data Interpolation Example 
Det.1 Det.2 Det.3 Det.4 Det.5 Det.6 Det.7 Det.8 Det.9 Det.10 Det.11ID timestamp 

S V S V S V S V S V S V S V S V S V S V S V
1059 11:52:40   74 45 65 30 67 35 69 21   61 23 68 40 66 33     
1060 11:53:00 69 28 67 35 66 27 72 33 71 44 69 37 63 39 69 40 67 31 66 45 61 33
1061 11:53:20                       
1062 11:53:40   63 28     71 33             
1063 11:54:00 69 29   65 34 71 27   71 36 60 24 72 45 67 29 73 28 68 27

Space Filled 

1059 11:52:40 74 45 74 45 65 30 67 35 69 21 65 22 61 23 68 40 66 33 66 33 66 33
1060 11:53:00 69 28 67 35 66 27 72 33 71 44 69 37 63 39 69 40 67 31 66 45 61 33
1061 11:53:20                       
1062 11:53:40 63 28 63 28 65 29 68 31 71 33 71 33 71 33 71 33 71 33 71 33 71 33
1063 11:54:00 69 29 67 31 65 34 71 27 71 31 71 36 60 24 72 45 67 29 73 28 68 27

Time Filled 

1059 11:52:40 71 26 74 45 65 30 67 35 69 21 69 49 61 23 68 40 66 33 68 37 63 29
1060 11:53:00 69 28 67 35 66 27 72 33 71 44 69 37 63 39 69 40 67 31 66 45 61 33
1061 11:53:20 69 28 65 32 66 29 72 31 71 39 69 37 62 34 70 41 67 31 68 40 63 31
1062 11:53:40 69 28 63 28 66 31 72 29 71 33 70 37 61 29 71 43 67 30 70 34 65 29
1063 11:54:00 69 29 64 32 65 34 71 27 70 33 71 36 60 24 72 45 67 29 73 28 68 27

Training-Space&Time Fill Combined 

1059 11:52:40 71 26 74 45 65 30 67 35 69 21 65 22 61 23 68 40 66 33 66 33 63 29
1060 11:53:00 69 28 67 35 66 27 72 33 71 44 69 37 63 39 69 40 67 31 66 45 61 33
1061 11:53:20 69 28 65 32 66 29 72 31 71 39 69 37 62 34 70 41 67 31 68 40 63 31
1062 11:53:40 63 28 63 28 65 29 68 29 71 33 70 33 61 29 71 33 67 30 70 33 65 29
1063 11:54:00 69 29 64 31 65 34 71 27 70 31 71 36 60 24 72 45 67 29 73 28 68 27

Note: Speed (S) unit is mph; Volume (V) unit is number of vehicles. 
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Table 3.7:  Testing Data Interpolation Example 
Det.1 Det.2 Det.3 Det.4 Det.5 Det.6 Det.7 Det.8 Det.9 Det.10 Det.11ID timestamp 

S V S V S V S V S V S V S V S V S V S V S V
709 09:56:00 71 46 72 22 61 28   65 19 67 26 59 48 70 37 60 30   66 31
710 09:56:20 68 44 70 31 69 30 70 37 61 21 71 38 62 28 70 39 64 30 66 43 67 25
711 09:56:40 68 27     71 22       69 31 59 27 61 34 72 29
712 09:57:00                       
713 09:57:20 68 29 70 30 64 32 69 31 69 34 67 43 66 27 73 38 68 26 65 49 67 34

Space Filled 

709 09:56:00 71 46 72 22 61 28 63 24 65 19 67 26 59 48 70 37 60 30 63 30 66 31
710 09:56:20 68 44 70 31 69 30 70 37 61 21 71 38 62 28 70 39 64 30 66 43 67 25
711 09:56:40 68 27 69 26 70 24 71 22 71 24 71 26 70 28 69 31 59 27 61 34 72 29
712 09:57:00                       
713 09:57:20 68 29 70 30 64 32 69 31 69 34 67 43 66 27 73 38 68 26 65 49 67 34

EMA Filled 

709 09:56:00 71 46 72 22 61 28 67 38 65 19 67 26 59 48 70 37 60 30 71 32 66 31
710 09:56:20 68 44 70 31 69 30 70 37 61 21 71 38 62 28 70 39 64 30 66 43 67 25
711 09:56:40 68 27 71 30 65 31 71 22 64 25 69 36 62 33 69 31 59 27 61 34 72 29
712 09:57:00 69 35 71 30 65 31 69 31 64 25 69 36 62 33 69 35 61 27 65 35 68 28
713 09:57:20 68 29 70 30 64 32 69 31 69 34 67 43 66 27 73 38 68 26 65 49 67 34

Space & EMA Fill Combined 

709 09:56:00 71 46 72 22 61 28 63 24 65 19 67 26 59 48 70 37 60 30 63 30 66 31
710 09:56:20 68 44 70 31 69 30 70 37 61 21 71 38 62 28 70 39 64 30 66 43 67 25
711 09:56:40 68 27 69 26 65 24 71 22 64 24 69 26 62 28 69 31 59 27 61 34 72 29
712 09:57:00 69 35 71 30 65 31 69 31 64 25 69 36 62 33 69 35 61 27 65 35 68 28
713 09:57:20 68 29 70 30 64 32 69 31 69 34 67 43 66 27 73 38 68 26 65 49 67 34

Note: Speed (S) unit is mph; Volume (V) unit is number of vehicles. 
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Van Lint et al. (2003) tested this simple imputation method using simulation and 

showed that the simple method outperform the more complicated methods such as the 

first order Lighthill, Witham and Richards (LWR) model used by Haj-Salem and 

Lebacque (2002). 

3.4. Speed Transformation  

The Smart SunGuide system records the spot time mean speed in a 20 seconds 

interval.  The space mean speed ( Sμ ) is always equal or smaller than the time mean speed 

( Tμ ) with the difference being proportional to the speed variance ( TS
22 ,σσ ).  The 

explanation is that low speed vehicles influence the average of space mean speed more 

than vehicles with high speed, while both low speed and high speed vehicles have the 

same influence on the average time mean speed.  

Wardrop (1952) derived the relationship between the space mean speed and time 

mean speed as follows: 

S

S
ST μ

σμμ
2

+=                                                                                                  (3-7) 

This equation is applied to estimate the time mean speed from the space mean 

speed.  However, in our case, the time mean speed is available, and the space-mean speed 

needs to be estimated from time-mean speed.  Rakha and Zhang (2005) proposed a 

formulation for estimating space mean speeds from time-mean speeds with a small 

margin of error (within 0 to 1 percent) as follows: 

T

T
TS μ

σμμ
2

−=
                                                                                              (3-8) 
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They also derived the relationship between the time mean speed and space mean 

speed variance: 

2
22 2

⎟
⎠
⎞⎜

⎝
⎛−=

T

T
TS μ

σσσ
                                                                                              (3-9) 

Since the space mean speed and its variance is not recorded, the only possible 

way is to estimate space-mean speed is based on the time mean speed and its estimated 

variance using the combination of Equations (3-8) and (3-9). 

However, the model parameters based on field data are expected to be specific to 

the local roadway and traffic stream characteristics.  Based on field observed data, Van 

Lint (2004) found that in congested conditions, the variance of speed is nearly constant, 

while in free-flow conditions, the variance is a steeply increasing function of mean speed.  

He presented a linear model based on field data as follow: 

⎩
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+
≥−

=
km/h :unit502.0

74345.0
ˆ

otherwiseT

TT
S μ

μμ
σ                                              (3-10) 

Combining this equation with Equations (3-8) and (3-9), the space mean speed 

can be estimated based on time mean speed.   

Garber and Hoel (2002) derived a linear regression model between time mean and 

space mean speed based on field data collected from Virginia limited access highways, as 

follows: 

km/h :unit541.3966.0 += ST μμ                                                          (3-11) 

This empirical linear equation is very straight forward and easy for application.  

However, for application it needs to be calibrated and customized to the local condition.  

In this study, linear regression model was used to model the relationship between the 
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time mean speed and space mean speed for different speed conditions.  The data was 

obtained using the micro-simulation software of AIMSUN with a short freeway segment 

coded in the model.  Different traffic conditions were modeled with varied input traffic 

volumes, time mean speed, and standard deviation of time mean speed.  The space mean 

speed for various inputs was collected from the output of AIMSUN.  The output data is 

plotted in Figure 3.4. 
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Figure 3.4: TMS vs SMS Plot 

As discussed above, Garber and Hoel (2002) fitted the relationship with one 

straight line.  Van Lint (2004), on the other hand, found that the speed relationship was 

different for high speed condition compared to low speed condition.  The results in 

Figure 3.4 apparently show two clusters: one represents the un-congested conditions and 

the other represents the congested conditions.  As a result, two separate linear regression 
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models were developed to fit the data.  To develop the two linear models, the key point 

was to find the transition point of the two clusters.  When deriving the regression 

equations using the Excel software, the transition point was varied and the sum of 

residuals of the two straight lines was calculated and plotted in Figure 3.5.  The equations 

with the lowest total residual were selected to represent the model with the transition 

point found to be 38 miles/hour. 
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Figure 3.5: Total Residual with Varied Transition point of Regression Models 

For speed higher than 65 mph, the time mean speed was found to approach the 

space mean speed, as shown in Figure 3.5. Van Lint (2004) also found that the space 

mean speed becomes close to the time mean speed when the speed is high.  Thus, the 

time mean speed was set to equal the space mean speed for speeds higher than 65 mph in 

this study.  The final speed transformation formula is a combination of the three linear 

lines as shown in Equation 3-12. 
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As shown in Equation 3-12, for low speed condition, 2R  is 0.86, which is lower 

than the 2R  of the median speed condition of 0.99.  However, this value is still high 

enough and is an acceptable value.  Further validation of this transformation equation will 

be carried out in Chapter 4. 
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CHAPTER 4 

FREEWAY TRAVEL TIME ESTIMATION 

4.1. Introduction  

Travel time can be directly measured with probe vehicle techniques.  But they are 

more expensive and not available in FDOT for this research.  Since most of the Florida 

freeways are instrumented with point traffic detectors.  The traffic detector data can be 

used to estimate the travel times for further prediction modeling.  After the data cleaning 

and speed transformation, this chapter will investigate a travel time estimation method 

called trajectory algorithm to calculate the link travel time based on the already 

preprocessed data. 

The class of trajectory algorithm assumes an imaginary vehicle traversing through 

a database of measured mean speeds on detector locations along the route.  The PLSB 

method studied by Van Lint and Van der Zijpp (2003) leads to more accurate travel time 

estimates compared to constant speed trajectory methods, as discussed in Chapter 2.  The 

PLSB method assumes speed as a convex combination of upstream and downstream 

speeds.  The speed is assumed to vary linearly with the distance between the upstream 

and downstream detectors, as shown in Figure 4.1.  The obtained section-level travel 

times are added up as needed to constitute the path-level travel time.  A modification to 

the method is proposed in this study to assume that the speed is linearly changing with 

time rather than with distance, as assumed in the Van Lint study.  This implies that the 

drivers apply a constant acceleration or deceleration rate when a speed change is needed 

on the segment between two detectors.  For this reason, the new method used in this 
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study is the Piecewise Constant Acceleration Based method (PCAB).  Both the PLSB, 

PCAB methods and other constant speed methods found in literatures were tried in this 

study to calculate the estimated travel time.  The results were compared based on 

simulation data collected from the AIMSUN software to determine which method has 

better performance and will be used for travel time estimation. 

Figure 4.1 shows a map of the trajectory of a vehicle traversing through a route.  

To calculate the travel time for a route, first we developed a formula to calculate the exit 

point ( )**, tx  of a space-time region ( )pn,  given an entry point ( )00 , tx .  Below are the 

associated mathematical formulas for the PLSB and PCAB method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Vehicle Trajectory Demonstration of Linear Speed Method 
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Note: n is the number of detector; p is time period; x(t) is location at time t; l(n) is the location of detector 

Figure 4.2: Flow Chart of the Route Travel Time Estimation Method 

The estimated travel time calculation process flow chart that is applied for both 

the PLSB and PCAB methods are shown in Figure 4.2.  These methods were applied in a 

program coded in C++ with connections to the SQL database tables.  This allows the 

estimation of travel time for different rolling steps. 
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For the PLSB method the space mean speed is assumed to be a linear function of 

distance, as follows: 

( ) ( ) ( ) ( )( )pnpn
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pnxv ud

ud

u
u ,,, μμμ −

−
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+=                                                             (4-1) 

Then, the time location function can be derived from the following equation: 
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There are two scenarios: one is the vehicle reached the next detector location 

during the time period; the other one is at the end of the time period the vehicle is still not 

reached the next detector location.  Then the exit points for both scenarios can be 

calculated through the following equation: 
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By applying this method sequentially, one can get the whole link travel time. 

For the PCAB method the space mean speed is assumed to be a linear function of 

time.  In another word, the acceleration rate is constant and can be obtained using the 

following equation. 
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The speed function is: 
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Then location time function is derived through the following equation: 
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where ( )pnu ,μ  is the upstream detector speed, ( )pnd ,μ  is the downstream detector speed, 

ux  is the upstream detector location,  dx  is the downstream detector location. 

4.2. Validation of Travel Time Estimation Method with Simulation Data 

Traffic micro-simulation tools have the capability to model individual vehicle’s 

behavior through microscopic traffic models such as car-following models, lane-changing 

models and gap-accepting models.  One of the widely used tools, AIMSUN developed by 

Transportation Simulation Systems (TSS), was used in this study as the simulation tool to 

test the data preprocessing and the travel time estimation methods proposed in this study.  

The freeway corridor of I-95 (8.25 miles) with detectors installed along the freeway 

segment was simulated in AIMSUN.  Different scenarios with different traffic demands 

and incident conditions were generated using the model.  Traffic detector data such as 

time mean speeds and volumes were collected from the simulation model.  The real travel 

time assessed by AIMSUN for the simulated highway segment was also recorded.  With 

this data, the performance of the PLSB method, PCAB method and other constant speed 

methods were tested and compared.  The simulation data was also used to test the data 



 49

imputation method and speed transformation formula, discussed earlier in this 

dissertation.  To test the data imputation method, missing simulated detector data were 

created randomly with a program to emulate the real detector malfunctions. 

To test the travel time estimation method, different traffic conditions including 

varied congestion levels and incident conditions were generated in the simulation model.  

Varied congestion conditions were achieved by changing the input volumes in the 

simulation.  A total 15 hour period was modeled in AIMSUN from 6:00 AM to 9:00 PM.  

The modeled traffic conditions include a morning peak, an afternoon peak, and a PM 

peak.  In addition, a two lane blockage incident was also introduced in the simulation 

during the morning peak to test the used model performance under incident conditions.   

 

Table 4.1:  Traffic Conditions of the Simulated Network 
Time 
(hour) 

Car 
Volume 

Truck 
Volume 

Total 
Volume 

V/C 
Ratio Notes 

1 6349 334           7017 0.64  
2 7618 401   8420 0.77  
3 8888 468   9824 0.89  
4 9523 501 10525 0.96  

5 9523 501 10525 0.96 10:00-10:30 two  
center lanes blocked 

6 8888 468   9824 0.89  
7 7618 401   8420 0.77  
8 6983 368   7718 0.70  
9 7618 401   8420 0.77  
10 8888 468   9824 0.89  
11 9523 501 10525 0.96  
12      10158 535 11227 1.02  
13 8253 434   9122 0.83  
14 6983 368   7718 0.70  
15 6349 334   7017 0.64  

Note 1: Volume unit is vehicles per hour; 
Note 2: For the period with incident condition, the reported V/C ratio is for incident-free situation. 

 
To assess the congestion level in the system, an approximate V/C ratio was 

calculated based on the demand assuming a capacity of 2,200 vphpl and taking into 
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account the percent of truck vehicle of 5% with the passenger car equivalent parameter 

for the truck assumed to be 2.  The approximate V/C ratio of the modeled corridor for 

different hours of the day is listed in Table 4.1.  As shown in Table 4-1, different traffic 

congestion conditions were included in the evaluation. 

The performance measures used in assessing the performance of travel time 

estimation were the mean absolute error (MAE) and mean absolute percentage error 

(MAPE), calculated as follows:  

∑ −=
i

ii DO
n

MAE 1

                                                                                              (4-8) 

∑ −
=
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D
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n
MAPE 1

                                                                                           (4-9) 

where Oi is the model output value and Di is the desired value. 

With the PLSB method, PCAB method and other constant speed methods, travel 

time is estimated and compared to the real travel time as assessed by AIMSUN for the 

highway section.  Table 4.2 lists the performance measurements for the five different 

rolling steps assessed in this study.   Figure 4.3 shows the PCAB estimated travel time 

compared to the real link travel time.  In addition, results from the constant speed-based 

methods including the half distance speed method, the minimum speed method and 

average speed method are also included in Table 4.2 for comparison purpose.  The results 

show that the PLSB, average speed and the PCAB method are better than other constant 

speed methods.  The average speed method which can be classified as a constant speed 

method was found to work as well as the PCAB method.  
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Figure 4.3: PCAB Estimated Travel Time Compared to Real Travel Time 
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Table 4.2:  Performance Measure of the PCAB Method Comparing to Other Methods 
Rolling Step Estimation Method Half 

Distance 
Minimum 

Speed PLSB Average
Speed PCAB 

MAE (minutes) 0.94 2.89 0.45 0.27 0.26 One 
minute MAPE 8.9% 27.6% 4.3% 2.6% 2.5% 

MAE (minutes) 0.97 2.89 0.47 0.29 0.29 Two 
minutes MAPE 9.2% 27.5% 4.5% 2.7% 2.7% 

MAE (minutes) 0.97 2.88 0.45 0.30 0.29 Three 
minutes MAPE 9.2% 27.4% 4.3% 2.8% 2.8% 

MAE (minutes) 0.98 2.90 0.46 0.27 0.29 Four 
minutes MAPE 9.4% 27.6% 4.4% 2.7% 2.8% 

MAE (minutes) 1.01 2.86 0.44 0.26 0.26 Five 
minutes MAPE 9.6% 27.3% 4.1% 2.5% 2.5% 

MAE (minutes) 0.974 2.884 0.45 0.28 0.28 Average MAPE 9.3% 27.5% 4.3% 2.7% 2.7% 
 

 
Figure 4.4 shows the speed pattern and the vehicle trajectory of the average speed 

and PCAB method assuming the speed measurements will not change for a long period 

so that the vehicle can travel through the segment.  It can be seen that the segment travel 

times calculated using the average speed and PCAB method are the same. 
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In this study, the PCAB method was selected as the final method to calculate the 

estimated travel time.  From Table 4.2 and Figure 4.3, it can be seen that the PCAB travel 

time estimation method performs well for all traffic conditions.  Larger differences were 

found between estimated and assessed travel time during incident condition, which may 

be expected due the difficulty in relating the speed at the upstream and downstream 

locations of the incident location to the traffic conditions on the segment because of the 

complex traffic behavior under incident situation.   From Figure 4.3, it appears that the 

travel time estimates appear to frequently oscillate for a rolling step of one minute.  With 

the rolling step increased to two minutes, the estimated travel time become much more 

stable.  This may give us an indication of the appropriate rolling step, which will be 

further discussed in Chapter 5. 

4.3. Validation of Data Preprocessing Method with Simulation Data 

In this study, the traffic detector data was collected every 20 seconds, which is the 

same interval used to collect the data from the field detectors along the I-95 corridor.  

This simulated data were used in this study to test the data preprocessing method 

including the data imputation methods and data transformation formula.  

4.3.1. Validation of Data Imputation Method 

Before aggregated to different rolling steps, a program was written to randomly 

create missing data.  Two types of missing data were created: random missing data and 

structure missing data which emulate the malfunction of some detectors for some time 

periods.  Table 4.3 lists the results of the data imputation performance under various 

situations. 
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Table 4.3:  Influence of Missing Data 
Missing Data Percent Number of 

Malfunction Detector Rolling Step Measurement 
10% 20% 30% 40% 50% 2 4 

MAE (minutes) 0.440 0.597 0.774 0.894 1.071 0.099 2.067 One minute MAPE 4.2% 5.7% 7.4% 8.5% 10.2% 0.9% 19.7% 
 
From Table 4.3, one can conclude that random missing data affect the estimation 

accuracy less than the missing data due structure malfunctions, if the number of 

malfunctioned detectors is four.  In the case of only two malfunctioned detectors, the 

impact on the detection accuracy is small.  When the missing percent increased from 10% 

to 50%, the MAPE of the estimated travel time increased from 4.2% to 10.2% compared 

to the assessed travel time.  Accurate data is needed since the estimated travel time will 

be used in the travel time prediction process, which will introduce further error in the 

process.   In this study, a threshold of the percent of missing data in a given day was set 

to 20% with the corresponding MAPE of 5.7%.  In future studies, the impact of different 

errors in the estimation of travel time on the prediction accuracy should be investigated.  

With the criteria only those days with missing data less than 20% were selected for the 

prediction model development.  For the influence of the structure malfunction of 

detectors, it was found that two detector malfunctions do not affect the estimation 

accuracy.  However, when the number of malfunction detectors increase to 4, the MAPE 

approached 20%, which is not acceptable.  It appears that when malfunctioned detectors 

exceed two detectors on the investigated segment, the estimated travel time is not reliable 

enough.  Figure 4.5 and Figure 4.6 show the plot of the estimated travel time comparing 

to the real travel time. 
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Note: PCAB_TT-xx% means the PCAB Method Estimated Value with xx Percent Missing Data 

Figure 4.5: Estimated Travel Time with Different Missing Data Percent  
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Note: PCAB_TT-x% means the PCAB method estimated value with x number of malfunction detector. 

Figure 4.6: Estimated Travel Time with Different Malfunction Detectors 

4.3.2. Validation of Speed Transformation Equation 

In the previous chapter, we have developed an equation to transfer time mean 

speed to space mean speed.  The reason is based on previous research that the time mean 

speed is usually greater than the space mean speed.   If the time mean speed is used in the 

estimation, this would have under-estimated the travel time.  This is confirmed by the 

simulation data and the results are listed in Table 4.4 and Figure 4.7. 

 
Table 4.4:  Performance Measure of PLSB and PCAB Method with Time Mean Speed 

Rolling Step Estimation Method PLSB PCAB 
MAE (minutes) 0.626 0.740 One minute MAPE 6.0% 7.1% 
MAE (minutes) 0.619 0.735 Two minutes MAPE 5.9% 7.0% 
MAE (minutes) 0.629 0.755 Three minutes MAPE 6.0% 7.2% 
MAE (minutes) 0.640 0.740 Four minutes MAPE 6.1% 7.1% 
MAE (minutes) 0.622 0.719 Five minutes MAPE 5.9% 6.8% 
MAE (minutes) 0.627 0.738 Average MAPE 6.0% 7.0% 

 



 57

1 
Minute 
Rolling 

Step 
0.0

5.0

10.0

15.0

20.0

0 100 200 300 400 500 600 700 800 900

Time (minute)
Tr

av
el

 T
im

e 
(m

in
ut

e)

Real_TT PCAB_TT

 

2 
Minutes 
Rolling 

Step 
0.0

5.0

10.0

15.0

20.0

0 100 200 300 400 500 600 700 800 900

Time (minute)

Tr
av

el
 T

im
e 

(m
in

ut
e)

Real_TT PCAB_TT

 

3 
Minutes 
Rolling 

Step 
0.0

5.0

10.0

15.0

20.0

0 100 200 300 400 500 600 700 800 900

Time (minute)

Tr
av

el
 T

im
e 

(m
in

ut
e)

Real_TT PCAB_TT

 

4 
Minutes 
Rolling 

Step 
0.0

5.0

10.0

15.0

20.0

0 100 200 300 400 500 600 700 800 900

Time (minute)

Tr
av

el
 T

im
e 

(m
in

ut
e)

Real_TT PCAB_TT

 

5 
Minutes 
Rolling 

Step 
0.0

5.0

10.0

15.0

20.0

0 100 200 300 400 500 600 700 800 900

Time (minute)

Tr
av

el
 T

im
e 

(m
in

ut
e)

Real_TT PCAB_TT

 
Figure 4.7: Estimated Travel Time by PCAB Comparing to Real Travel Time 
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CHAPTER 5 

FREEWAY TRAVAL TIME PREDICTION 

5.1. Introduction 

To be effective, the travel time information used for ATIS and ATMS 

applications should have two distinct characteristics: anticipative and dynamic.  This is 

because every piece of information provided to users, to be useful, should yield 

predictions to the future and must be updated in real-time.  In the FDOT Smart SunGuide 

software, instantaneous travel time is estimated with no prediction capability.  Thus, there 

is a need for a method to more accurately and reliably predict travel times for the period 

that the vehicles are traveling on the road.  This chapter investigated the travel time 

prediction problem.   

Based on previous studies, NNs have improved to be an accurate and robust 

approach for travel time prediction.  Dynamic Neural Networks (DNN) as a sub-class of 

NNs, are particularly suitable for travel time prediction.  DNN take into account spatial 

and temporal information about traffic conditions simultaneously, and consider travel 

time from past time intervals as well as the current time interval when predicting travel 

time.  However, DNN have not been adequately explored for travel time prediction.  

Based on the previous literature, only a sub-class of DNN called state-space neural 

networks (SSNN) has been used for travel time prediction (Van Lint et al. 2002; Van Lint, 

2006; Liu, H. et al. 2006, Singh, and Abu-Lebdeh, 2007).  Another important type of 

NNs referred to as time-delayed neural networks (TDNN) has been investigated for 

traffic volume prediction, but not for travel time prediction (Abdulhai, 1999; Lingras et al. 
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2002; Ishak et al. 2003).  In these studies, TDNN were shown to have the potential to be 

superior to more widely used NNs, such as the MLP, for traffic volume prediction. 

This study explores the effectiveness of various topologies of DNN for travel time 

prediction.  These include the TDNN, Generalized SSNN, and Fully RNN.  The study 

compares the predictive qualities of these DNN structures with different parameter 

settings.  In addition, this study compares the effectiveness of using tapped delay time 

memory versus Gamma memory as part of the three DNN structures for travel time 

prediction.   

The qualities of the predicted travel times using the explored DNN were also 

compared with those obtained using a simple MLP, and also with the instantaneous travel 

times estimated for current traffic conditions with no attempt made to predict travel times 

for short-term future conditions.  As stated earlier in this dissertation, most current real-

world applications of ATIS and ATMS use instantaneous travel time estimation rather 

than travel time prediction.  

In addition to the above, this study investigates the influences of two important 

parameters of travel time prediction.  These are the rolling step, which defines the 

temporal resolution of input data in terms of the time interval at which the historical 

travel time data is aggregated for use in the analysis, and the prediction horizon, which 

defines the time window after which the prediction is made, usually set in the range of 0-

15 minutes.  The prediction horizon is used to account for situations in which the vehicles 

receiving the information will arrive at the point where the prediction is required at some 

time in the future. This may be, for example, the cases of information provided by 

traveler information web sites, hand-held devices, and in-vehicle devices.  Thus, the 
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prediction will need to be made starting at the time that these vehicles are expected to 

arrive at the point of prediction.  With the prediction horizon of zero minutes, the model 

predicts the travel time starting at the current time.  The use of a prediction horizon of 

zero is appropriate for the prediction of travel time displayed on Dynamic Message Signs 

(DMS) that provide travel time information to vehicles passing by the DMS. 

5.2. Dynamic Neural Networks 

Most of the NNs used in previous studies have used travel time information from 

the current time step to predict short-term future travel times.  Due to the dynamic nature 

of traffic conditions, short-term future travel time may also be correlated with traffic 

conditions at previous time steps.  Few of the studies have considered this correlation 

using NNs for travel time prediction as was described in the preceding section. 

DNN comprise a class of neural networks that are particularly suitable for 

predicting variables such as travel time.  A DNN model has a short-term memory, in 

which it stores previous outputs of the network or hidden neuron activities.  Thus, it can 

account for traffic information from previous time steps in its prediction (Haykin, 1999). 

The DNN model receives input signals from one time instant (the current time instant) 

and combines these with signals from its memory to make predictions in a manner that is 

similar to the moving average approach in a time series modeling context.  The 

advantages of this model are its straightforward design and the fact that the variations of 

traffic parameters with time are modeled implicitly.  DNN vary in how the short-term 

memory is built and how it is applied to the neural network. 
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5.2.1. Short-term Memory 

For NNs to account for past and present conditions, it must be given a memory.  

The simple way of building a short-term memory into the structure of a neural network is 

through the use of time delays which can be implemented at the synaptic level inside the 

network or at the input layer of the network.  Two types of delays have been used: tapped 

delay line memory (TM) and Gamma delay (GM).  TM is the simplest and most 

commonly used form.  With the help of the Z -transform, which is also called the unit 

delay operator, the current input signal can be transformed to a previous signal; that is, 

when 1−Z  operates on ( )tx , it yields its delayed version ( )1−tx .  In Figure 5.1, the 1−Z  

operator is applied p  times, resulting in p  unit delays (also called time lags).  GM was 

first introduced by De Vries and Principe (1992).  Figure 5.1 indicates that, with GM, the 

output of a junction has combined information from the current and the delayed inputs. 

 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

Figure 5.1: Short-term Memory Investigated in this Study 
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5.2.2. Feedback Application 

There are two basic ways of applying feedback to NNs: local feedback at the level 

of a single neuron inside the network and global feedback encompassing the whole 

network.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: DNN Model Structure Investigated in this Study 
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network mentioned earlier in this paper.  The NNs with global feedback is refereed to as 

a Recurrent Neural Network (RNN).  The use of global feedback has the potential to 

reduce the memory requirement significantly compared to normal NNs solutions, in 

which the high dimensional parameter space is difficult to tackle.   

The simplest RNN is the State-Space Neural Network (SSNN), which includes 

feedbacks from the hidden layer to the input layer.  The SSNN model allows the 

inclusion of only one time lag memory of the hidden activities.  However, a more 

generalized SSNN model allows variation in the number of time lags.  This study 

investigates the use of both the TDNN and generalized SSNN models.  In addition, this 

study investigates the use of a third structure refer to as the “fully RNN.”  This structure 

allows the implementation of a memory with varied time lags both on the input layer and 

the hidden layer.  The TDNN, generalized SSNN, and fully RNN network structures are 

shown in Figure 5.2. 

5.3. Model Development 

The investigated NNs were trained using traffic detector data collected for the 

study segment between 6:00 AM and 9:00 PM.  This period was selected because, for the 

remaining hours of the day, the traffic is light and free flow speed can be assumed.  This 

study used three month’s of data stored in the database for the months of June through 

August 2007.  The June and July data were used for NN training, while August data were 

used for model testing.  The DNN (with different structures and parameters) and MLP 

networks were trained and tested based on the same detector data.  To investigate the 

effect of the length of the rolling step and prediction horizon, the training and testing of 
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the MLP and different types of DNN were conducted separately for each aggregation 

rolling step and prediction horizon.   

5.3.1. Comparison of DNN and MLP 

The testing of the developed models was carried out first for the whole daytime 

period using data from three weekdays during the testing period.  However, it was also 

decided to test the models separately for selected periods that exhibit considerable 

congestion compared to other periods during the testing period.   

Four periods were identified that were particularly congested, as shown in Figure 

5.4.  The congested periods were from 3:02 PM to 6:04 PM of the first day, from 7:52 

AM to 9:14 AM and from 12:30 PM to 6:45 PM of the second day and from 11:13 AM to 

12:27 PM of the third day.  Note that, based on the FDOT District 4 incident management 

database, lane blockage incidents occurred for the first three of the four peaks mentioned 

above.  The duration of these lane blockages were 91, 32, and 59 minutes, respectively.  

The fourth peak also represents a non-recurrent congestion condition, although no 

incident could be identified based on the incident management database.   

Conducting separate testing for the congested periods that include lane-blockage 

incidents allows for better examination of the performance of travel time prediction 

during these periods, which is more challenging and useful than the prediction in other 

time periods. 
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Figure 5.4: Travel Time Predicted by DNN Model in a Three-Day Period 
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Figure 5.4 shows further comparison of the predicted and measured travel time 

data for the three weekdays with the four congested periods, the “desired TT” is the target 

travel time, which is the measured travel time, the “Output TT” is that predicted by the 

DNN.  As can be seen, the tested DNN models were able to predict travel time well in all 

investigated flow conditions, particularly with the 3-to-4-minute rolling step, the 

predicted travel time for a 1-minute rolling step is not as good as that for longer rolling 

steps.   

Figure 5.5 shows the performance of travel time prediction for the different types 

of DNN and MLP for different rolling steps, compared to the instantaneous travel time 

estimated based on the assumption of unchanged traffic conditions.  The results presented 

in Figure 5.5 are for a prediction horizon of zero minutes.  The MLP and the DNN 

models had only one hidden layer.  The results presented for the different DNN models 

were the best results obtained for each model, when varying the parameters settings, as 

discussed in the next section. 
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Figure 5.5: MAPE of DNN, MLP and Instantaneous Estimation 

The results presented in Figure 5.5 show that the predictions using the DNN and 

MLP outperform the instantaneous travel time estimation in predicting short-term future 

travel time.  The MAPE was reduced by 40% for predicted travel time for daytime 
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conditions and was reduced by about 25% for the congested conditions, compared to the 

instantaneous travel time.  The performance of the travel time prediction during the 

congested conditions of all tested networks was worse in incident/congested conditions 

than during daytime conditions. 

Figure 5.6 shows that the best DNN setup works better than the MLP, particularly 

for congested/incident conditions and rolling steps of 2, 3, and 4 minutes.  
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Figure 5.6: Performance Improvement of DNN Compared to MLP 

More specific percent improvement is listed in Table 5.1, up to a 16% 

improvement in the prediction as reflected by the MAPE value for daytime conditions 

and a 10% improvement for congested conditions was achieved with the DNN prediction 

compared to the MLP prediction.   
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Table 5.1: Performance of MLP and DNN models 
Daytime (6:00 AM~9:00 PM) 

Instantaneous MLP DNN Model Rolling 
Step 

MAE MAPE MAE MAPE MAE MAPE 

DNN Compare 
To MLP 

Improvement 

1 minute 1.05 12.2% 0.7 8.17% 0.66 7.70% 5.7% 
2 minutes 1.07 12.4% 0.6 7.00% 0.56 6.53% 6.7% 
3 minutes 1.07 12.5% 0.59 6.88% 0.53 6.21% 9.9% 
4 minutes 1.09 12.7% 0.53 6.18% 0.52 6.07% 1.9% 
5 minutes 1.10 12.8% 0.55 6.42% 0.56 6.53% -1.8% 

 Congestion Time  
1 minute 1.30 15.1% 1.02 11.90% 0.93 10.85% 8.8% 
2 minutes 1.46 17.0% 1.11 12.95% 0.94 10.97% 15.3% 
3 minutes 1.44 16.8% 0.98 11.44% 0.82 9.60% 16.0% 
4 minutes 1.40 16.3% 0.92 10.74% 0.78 9.10% 15.2% 
5 minutes 1.40 16.4% 0.95 11.09% 0.89 10.39% 6.3% 

Note: Unit of MAE is minute 

5.3.2. Effect of DNN Network Topology 

Tables 5.2a-5.2e show the results of a comparison of the three DNN structures 

investigated in this study: the TDNN, Generalized SSNN, and Fully RNN.   In addition, 

Table 5.1 includes the results using the two types of memories investigated in this study 

(the TM and the GM).  The results presented in Table 5.2(a,b,c,d,e) are for a zero-minute 

prediction horizon.  Because the performance trend is similar for the five rolling steps 

investigated in this study, only the results of the1- and 4-minute rolling steps are 

presented in this paper. 
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Table 5.2a: Prediction Results of Different DNN Models Compared to MLP Model 
Daytime (6AM~9PM) Congestion Time Rolling 

Step Model 
MAE MAPE MAE MAPE 

MLP 0.70 8.2% 1.02 11.9% 
TDNN - TM - 1 lag 0.66 7.8% 0.93 10.9% 
TDNN - TM - 2 lag 0.56 6.6% 1.40 16.4% 
TDNN - TM - 3 lag 0.55 6.4% 1.32 15.4% 
TDNN - GM - 1 lag 0.51 6.0% 0.95 11.0% 
TDNN - GM - 2 lag 0.50 5.8% 1.07 12.4% 
TDNN - GM - 3 lag 0.46 5.4% 1.08 12.6% 

Generalized SSNN - 1 lag 0.58 6.7% 1.15 13.4% 
Generalized SSNN - 2 lag 0.58 6.8% 1.27 14.9% 

Fully RNN+TM-1 lag 0.53 6.2% 1.25 14.6% 
Fully RNN+TM-2 lag 0.71 8.3% 1.42 16.6% 
Fully RNN+GM-1 lag 0.70 8.1% 1.23 14.4% 

1 minute 
 

Fully RNN+GM-2 lag 0.79 9.2% 1.06 12.3% 
Note: Unit of MAE is minute. 
 
Table 5.2b: Prediction Results of Different DNN Models Compared to MLP Model 

Daytime (6AM~9PM) Congestion Time Rolling 
Step Model 

MAE MAPE MAE MAPE 
MLP 0.6 7.0% 1.11 13.0% 

TDNN - TM - 1 lag 0.56 6.6% 0.94 11.0% 
TDNN - TM - 2 lag 0.76 8.9% 1.71 20.0% 
TDNN - TM - 3 lag 0.72 8.4% 1.38 16.1% 
TDNN - GM - 1 lag 0.65 7.5% 1.19 13.9% 
TDNN - GM - 2 lag 0.68 8.0% 1.26 14.7% 
TDNN - GM - 3 lag 0.62 7.3% 1.28 14.9% 

Generalized SSNN - 1 lag 0.70 8.2% 1.50 17.5% 
Generalized SSNN - 2 lag 0.75 8.7% 1.50 17.5% 

Fully RNN+TM -1 lag 0.72 8.3% 1.55 18.1% 
Fully RNN+TM -2 lag 0.79 9.2% 1.40 16.3% 
Fully RNN+GM -1 lag 0.67 7.8% 1.21 14.1% 

2 minutes 

Fully RNN+GM -2 lag 0.75 8.8% 1.72 20.1% 
Note: Unit of MAE is minute. 
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Table 5.2c: Prediction Results of Different DNN Models Compared to MLP Model 
Daytime (6AM~9PM) Congestion Time Rolling 

Step Model 
MAE MAPE MAE MAPE 

MLP 0.59 6.9% 0.98 11.4% 
TDNN - TM - 1 lag 0.53 6.2% 0.82 9.6% 
TDNN - TM - 2 lag 0.57 6.7% 0.99 11.6% 
TDNN - GM - 1 lag 0.65 7.6% 1.36 15.9% 
TDNN - GM - 2 lag 0.61 7.1% 1.28 15.0% 

Generalized SSNN - 1 lag 0.69 8.0% 1.19 13.9% 
Generalized SSNN - 2 lag 0.71 8.3% 1.53 17.9% 

Fully RNN+TM -1 lag 0.77 9.0% 1.60 18.7% 
Fully RNN+TM -2 lag 0.81 9.4% 1.38 16.1% 
Fully RNN+GM -1 lag 0.70 8.1% 1.51 17.6% 

3 minutes 

Fully RNN+GM -2 lag 0.76 8.9% 1.29 15.0% 
Note: Unit of MAE is minute. 
 
Table 5.2d: Prediction Results of Different DNN Models Compared to MLP Model 

Daytime (6AM~9PM) Congestion Time Rolling 
Step Model 

MAE MAPE MAE MAPE 
MLP 0.53 6.2% 0.92 10.7% 

TDNN - TM - 1 lag 0.52 6.0% 0.78 9.1% 
TDNN - TM - 2 lag 0.70 8.1% 1.28 14.9% 
TDNN - GM - 1 lag 0.56 6.5% 1.08 12.6% 
TDNN - GM - 2 lag 0.59 6.8% 1.11 13.0% 

Generalized SSNN - 1 lag 0.67 7.8% 1.46 17.1% 
Generalized SSNN - 2 lag 0.72 8.5% 1.33 15.5% 

Fully RNN+TM -1 lag 0.69 8.0% 1.39 16.3% 
Fully RNN+TM -2 lag 0.69 8.0% 1.35 15.7% 
Fully RNN+GM -1 lag 0.74 8.7% 1.53 17.9% 

4 minutes 

Fully RNN+GM -2 lag 0.76 8.9% 1.55 18.1% 
Note: Unit of MAE is minute. 
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Table 5.2e: Prediction Results of Different DNN Models Compared to MLP Model 
Daytime (6AM~9PM) Congestion Time Rolling 

Step Model 
MAE MAPE MAE MAPE 

MLP 0.55         6.42% 0.95 11.1% 
TDNN - TM - 1 lag 0.61 7.2% 1.18 13.8% 
TDNN - TM - 2 lag 0.74 8.6% 1.54 18.0% 
TDNN - GM - 1 lag 0.61 7.1% 1.01 11.7% 
TDNN - GM - 2 lag 0.56 6.5% 0.89 10.3% 

Generalized SSNN - 1 lag 0.65 7.6% 1.27 14.8% 
Generalized SSNN - 2 lag 0.72 8.4% 1.51 17.6% 

Fully RNN+TM -1 lag 0.64 7.4% 1.34 15.7% 
Fully RNN+TM -2 lag 0.68 8.0% 1.59 18.6% 
Fully RNN+GM -1 lag 0.64 7.4% 1.04 12.2% 

5 minutes 

Fully RNN+GM -2 lag 0.70 8.1% 1.36 15.9% 
Note: Unit of MAE is minute. 
 

Tables 5.2a-5.2e indicate that MLP can perform close to the best DNN.  This 

indicates that the travel time estimated at the current time step is an important 

determining factor for future travel time prediction.  However, the TDNN model was 

found to perform better than the MLP model for all aggregation time intervals.  This 

means that the use of the immediate past traffic conditions is also correlated with the 

future travel time and can improve travel time prediction accuracy. 

The TDNN model with tapped delay line memory worked best in all the models.  

The TDNN model with local feedback worked better than the generalized SSNN model 

with global feedback and the fully RNN that includes both local and global feedback.  In 

most cases, the TDNN models worked best with only one time lag.  Thus, it can be 

concluded that only the very near past information can be useful for prediction.  The best 

performance was achieved when a TDNN was used with one time lag and a 4-minute 

rolling step (MAPE equal to 9.1%).  The best performance achieved with the MLP was 

also with the 4-minute rolling step (MAPE equal to 10.7%). 
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5.4. Effect of Prediction Horizon 

Based on the results presented in preceding section, two types of NNs structures 

were selected for further investigation of the effects of the variation of the prediction 

horizon on the prediction quality.   They are the MLP and the TDNN with tapped delay 

line memory.  The results are list in Tables 5.3a and 5.3b and more visual plot is shown 

in Figure 5.7. 

 
Table 5.3a: Model Performance with Varied Prediction Horizon for Daytime 

Daytime (6AM~9PM) 
MLP TDNN Rolling 

Step 
Prediction 
Horizon 

MAE MAPE MAE MAPE 
Improvement 

Current 0.70 8.2% 0.66 7.8% 5.4% 
5 minutes 0.81 9.4% 0.71 8.3% 11.6% 
10 minutes 0.85 10.0% 0.98 11.5% -15.0% 

1 
minute 

15 minutes 0.97 11.4% 0.96 11.2% 1.1% 
Current 0.60 6.9% 0.56 6.6% 5.5% 

4 minutes 0.68 8.0% 0.70 8.1% -1.8% 
10 minutes 0.77 9.0% 0.84 9.8% -8.8% 

2 
minutes 

16 minutes 0.87 10.2% 1.00 11.7% -15.2% 
Current 0.59 6.9% 0.53 6.2% 10.3% 

6 minutes 0.70 8.2% 0.83 9.7% -19.4% 
9 minutes 0.76 8.9% 0.79 9.2% -3.3% 

3 
minutes 

15 minutes 0.91 10.7% 1.00 11.7% -9.4% 
Current 0.53 6.2% 0.52 6.0% 2.1% 

4 minutes 0.67 7.8% 0.75 8.8% -12.0% 
8 minutes 0.74 8.7% 0.75 8.8% -1.5% 

4 
minutes 

16 minutes 0.86 10.0% 0.94 11.0% -9.5% 
Current 0.55 6.4% 0.56 6.5% -0.9% 

5 minutes 0.72 8.4% 0.62 7.3% 13.6% 
10 minutes 0.75 8.8% 0.82 9.6% -9.2% 

5 
minutes 

15 minutes 0.83 9.7% 0.96 11.2% -16.0% 
 Note: Unit of MAE is minute. 
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Table 5.3b: Model Performance with Varied Prediction Horizon for Congestion Time 
Congestion Time 

MLP TDNN Rolling 
Step 

Prediction 
Horizon 

MAE MAPE MAE MAPE 
Improvement 

Current 1.02 11.9% 0.93 10.9% 8.1% 
5 minutes 1.60 18.7% 1.37 16.0% 14.5% 
10 minutes 1.83 21.3% 1.73 20.2% 5.1% 

1 
minute 

15 minutes 2.11 24.6% 2.12 24.8% -0.6% 
Current 1.11 12.9% 0.94 11.0% 15.0% 

4 minutes 1.36 15.8% 1.33 15.5% 1.7% 
10 minutes 1.68 19.7% 2.04 23.8% -21.0% 

2 
minutes 

16 minutes 2.01 23.5% 2.06 24.0% -2.2% 
Current 0.98 11.4% 0.82 9.6% 15.8% 

6 minutes 1.35 15.8% 1.59 18.6% -17.6% 
9 minutes 1.58 18.5% 1.79 20.9% -13.1% 

3 
minutes 

15 minutes 2.07 24.1% 2.14 25.0% -3.7% 
Current 0.92 10.7% 0.78 9.1% 15.3% 

4 minutes 1.37 16.0% 1.25 14.6% 8.5% 
8 minutes 1.55 18.1% 1.61 18.8% -3.9% 

4 
minutes 

16 minutes 2.00 23.4% 1.96 22.9% 2.1% 
Current 0.95 11.1% 0.89 10.3% 6.6% 

5 minutes 1.31 15.3% 1.13 13.2% 13.4% 
10 minutes 1.48 17.2% 1.57 18.4% -6.6% 

5 
minutes 

15 minutes 1.84 21.4% 2.17 25.3% -18.1% 
Note: Unit of MAE is minute. 
 

It can be concluded that the prediction accuracy decreases as the prediction 

horizon increases, particularly for short rolling steps and congested/incident conditions.   

The TDNN model does not out-perform the MLP model for longer prediction horizons. 

 

 

 

 

 



 74

MAPE - 1 Minute Rolling Step

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 5 10 15
Prediction Horizon (minute)

M
A

PE

Daytime-MLP Daytime-DNN
Congestion-MLP Congestion-DNN

MAPE - 3 Minutes Rolling Step

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 3 6 9 12 15
Prediction Horizon (minute)

M
AP

E

Daytime-MLP Daytime-DNN
Congestion-MLP Congestion-DNN  

MAPE - 2 Minutes Rolling Step

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 2 4 6 8 10 12 14
Prediction Horizon (minute)

M
AP

E

Daytime-MLP Daytime-DNN
Congestion-MLP Congestion-DNN

MAPE - 4 Minutes Rolling Step

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 4 8 12 16
Prediction Horizon (minute)

M
A

P
E

Daytime-MLP Daytime-DNN
Congestion-MLP Congestion-DNN

MAPE - 5 Minutes Rolling Step

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 5 10 15
Prediction Horizon (minute)

M
A

P
E

Daytime-MLP Daytime-DNN
Congestion-MLP Congestion-DNN  

Figure 5.7: MAPE with Varied Prediction Horizons 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation study has accomplished the following major research tasks: (1) 

identifying data imputation methods to deal with missing traffic detector data and 

examined the effectiveness of the speed transformation equations, (2) identifying and 

testing travel time estimation methods based on traffic detector data, (3) developing a 

data-driven travel time prediction model and testing the performance of the developed 

model, and (4) examining the influence of different Dynamic Neural Network (DNN) 

model structures and parameters on the performance of the travel time prediction model. 

6.1. Summary of Research Results and Conclusions 

 (1) Data Preprocessing 

A time and space interpolation method was selected to deal with random missing 

detector data and structure detector malfunction for off-line travel time prediction model 

training.   For on-line model application a method of Exponential Moving Average (EMA) 

method is used replacing the time interpolation method because the future measurement 

is not available.  In addition, two linear regression models were developed for high and 

low speed regions to transform time mean speed to space mean speed.  Based on 

simulation data, both the data imputation and data transformation methods identified in 

this study were validated and proved to be effective. 
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(2) Travel Time Estimation 

A new trajectory method referenced to as the Piecewise Constant Acceleration 

Based (PCAB) method was proposed in this study.  Tested with the simulation data, one 

of the constant speed trajectory methods (the average speed method) was found to 

perform almost as good as the proposed PCAB method.  Both of these methods perform 

better than the other investigated trajectory methods. 

(3) Travel Time Prediction 

Based on the results presented in this study, it can be concluded that both the 

Time Delay Neural Networks (TDNN) and Multilayer Perceptron (MLP) were able to 

produce better predictions of travel time compared to the use of instantaneous travel time.  

The prediction results in increasing the accuracy of travel time by about 40% for the 

whole daytime conditions and by 25% for congested peak periods.   

The TDNN topology with two, three, and four minute rolling steps and tapped 

delay time memory was found to out-perform various investigated configurations of MLP, 

Generalized State Space Neural Networks (SSNN), and Fully Recurrent Neural Networks 

(RNN).  However, the improvement in the prediction with the use of TDNN compared to 

the use of MLP was relatively small for the investigated transportation system.  The 

better performance of TDNN compared to Generalized SSNN and Fully RNN indicates 

that local feedback works better than global feedback.   

TDNN with only one time lag performed the best among the investigated time 

lags, indicating that only the information from the immediate past time step is useful for 

time prediction.  Based on the results of this study, it can be also concluded that the 
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prediction accuracy decreases as the prediction horizon increases, especially for shorter 

aggregation periods and congested conditions.  

6.2. Recommendations for Future Development 

Although this study has achieved the proposed objectives, much research remains 

to be done.  Some directions for future research are given below. 

The findings regarding the best NNs topology and parameters as discussed above 

may be affected by the size of the system under consideration.  For example, if data are 

available from detectors located long distances upstream of the segment for which travel 

time prediction is needed, the information from previous time lags will be more relevant 

to the estimation and the DNN structures are expected to become more effective 

compared to MLP.  It is recommended that an additional investigation be made of the 

effect of the size of the network and the location of upstream detectors on travel time 

prediction to determine how these factors will affect the conclusions from this study. 

In this study, only traffic detector data were used in the prediction.   There is a 

need to further explore the combination of detector and incident data in the prediction of 

travel time.  By including incident attributes as an input to the prediction, it is expected 

that improvements in travel time prediction can be achieved. 

In this study, only real-time data were used as an input to the model training and 

testing.  It is possible that combining the real-time data with historical data that represent 

the average conditions on the corridor at a given time interval may further improve the 

quality of prediction. 
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The methodology presented in this study can be classified as a data-driven method.  

It is recommended that an evaluation be done of model-based and data driven methods to 

decide on conditions for which each type of prediction is more appropriate. 

In this study, a threshold was set of the acceptable error in travel time estimation 

without further analysis of the effect of this threshold on travel time prediction.  It is 

recommended that this effect should be evaluated in future studies. 
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