
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

5-23-2008

An Innovative Approach to Teaching Structural
Induction for Computer Science
Irene Polycarpou
Florida International University, ipolyc01@cis.fiu.edu

DOI: 10.25148/etd.FI08121912
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Polycarpou, Irene, "An Innovative Approach to Teaching Structural Induction for Computer Science" (2008). FIU Electronic Theses and
Dissertations. 18.
https://digitalcommons.fiu.edu/etd/18

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/18?utm_source=digitalcommons.fiu.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

 

AN INNOVATIVE APPROACH TO TEACHING STRUCTURAL  

INDUCTION FOR COMPUTER SCIENCE 

 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY  

in  

COMPUTER SCIENCE 

by 

Irene Polycarpou 

 

2008 

 

 

 



 ii

To:  Interim Dean Amir Mirmiran    choose the name of dean of your college/school   
 College of Engineering and Computing    choose the name of your college/school  

 
This dissertation, written by Irene Polycarpou, and entitled An Innovative Approach to 
Teaching Structural Induction for Computer Science, having been approved in respect to 
style and intellectual content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Peter J. Clarke 

 
_______________________________________ 

Malek Adjouadi 
 

_______________________________________ 
Vagelis Hristidis 

 
_______________________________________ 

Cengiz Alacaci 
 

_______________________________________ 
Ana Pasztor, Major Professor 

 
 

Date of Defense: May 23, 2008 
 

The dissertation of Irene Polycarpou is approved. 
 
 

_______________________________________ 
choose the name of dean of your college/school   Interim Dean Amir Mirmiran 

choose the name of your college/school   College of Engineering and Computing 
 
 

_______________________________________ 
Dean George Walker 

University Graduate School 
 
 
 
 

Florida International University, 2008 



 
 
 

 

 

 

 

 

 

 

© Copyright 2008 by Irene Polycarpou 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 iii



 

 

 

 

 

 

 

DEDICATION 

I dedicate this dissertation with my deepest gratitude and love to my parents, who took on 

much more than their share to enable me to complete this effort. Without their patience, 

understanding, support, and more of all love, the completion of this work would not have 

been possible.  

 

 

 

 

 

 

 

 

 

 

 

 iv



ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my dissertation advisor, Dr. Ana 

Pasztor, for her guidance, support, patience, encouragement, and most of all, open-

mindedness throughout my graduate studies. Without her personal, technical, and 

editorial advice, as well as her confidence in my abilities, this dissertation would not have 

been possible. I would also like to thank her for the many things she taught me and for 

being a great mentor.  

I am very grateful and indebted to all the members of my committee for their 

continued support, direction, and suggestions on my dissertation. Many thanks to Dr. 

Malek Adjouadi for financially supporting most of my graduate studies through the NSF 

grants CNS 0426125 and HRD 0317692 with the CATE center, Dr. Peter J. Clarke for 

taking on much more than his share to help and support me complete this dissertation, Dr. 

Cengiz Alacaci for helping and guiding me toward a qualitative methodology for the 

studies I have conducted as part of this dissertation, and Dr. Vagelis Hristidis for all his 

thoughtful suggestions and feedback on my dissertation. 

My special thanks go to Dr. Yi Deng for his support and personal advise 

throughout my studies at the School of Computing and Information Sciences, Dr. Alex 

Pelin for helping me with the research studies I have conducted as part of this 

dissertation, and my friend Adeline Lenquette for helping me with the development of 

many of the animations that are part of the electronic book that I have developed as part 

of this dissertation. 

Last but not least, I would like to thank my dear friends and colleagues Phanos 

Achilleos, Jose Andre Morales, Medha Bhadkamkar, and especially, John Christofides, 

 v



who helped and supported me in many ways throughout my graduate studies and 

encouraged and enabled me to complete this effort.  

I gratefully acknowledge the financial support of NSF under grants CNS 0426125 

and HRD 0317692 with the CATE center, the School of Computing and Information 

Sciences in the form of a graduate assistantship, and the University Graduate School in 

the form of a Dissertation Year Fellowship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vi



ABSTRACT OF THE DISSERTATION 

AN INNOVATIVE APPROACH TO  

TEACHING STRUCTURAL INDUCTION FOR COMPUTER SCIENCE 

by 

Irene Polycarpou 

Florida International University, 2008 

Miami, Florida 

Professor Ana Pasztor, Major Professor 

Proofs by induction are central to many computer science areas such as data 

structures, theory of computation, programming languages, program efficiency-time 

complexity, and program correctness. Proofs by induction can also improve students’ 

understanding and performance of computer science concepts such as programming 

languages, algorithm design, and recursion, as well as serve as a medium for teaching 

them.  

Even though students are exposed to proofs by induction in many courses of their 

curricula, they still have difficulties understanding and performing them. This impacts the 

whole course of their studies, since proofs by induction are omnipresent in computer 

science. Specifically, students do not gain conceptual understanding of induction early in 

the curriculum and as a result, they have difficulties applying it to more advanced areas 

later on in their studies.  

The goal of my dissertation is twofold: 1. identifying sources of computer science 

students’ difficulties with proofs by induction, and 2. developing a new approach to 

teaching proofs by induction by way of an interactive and multimodal electronic book (e-

 vii



book). For the first goal, I undertook a study to identify possible sources of computer 

science students’ difficulties with proofs by induction. Its results suggest that there is a 

close correlation between students’ understanding of inductive definitions and their 

understanding and performance of proofs by induction.  For designing and developing 

my e-book, I took into consideration the results of my study, as well as the drawbacks of 

the current methodologies of teaching proofs by induction for computer science. I 

designed my e-book to be used as a standalone and complete educational environment. I 

also conducted a study on the effectiveness of my e-book in the classroom. The results of 

my study suggest that, unlike the current methodologies of teaching proofs by induction 

for computer science, my e-book helped students overcome many of their difficulties and 

gain conceptual understanding of proofs induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 viii



TABLE OF CONTENTS 

 
CHAPTER                     PAGE 
 
1.      INTRODUCTION…………………………………………………………………..1 

1.1  The Research Problem………………………………………………………….1 
1.2  My Approach to Solving the Problem………………………………………….3 
1.3  Dissertation Outline………………………………..…………………………...9 
 

2.      THEORETICAL FOUNDATIONS AND LITERATURE OVERVIEW………....11 
2.1  Proofs by Structural Induction…….…….…….…….…….…….…….……....11 
2.2  Documented Difficulties that Students have with Proofs by Induction….........17 
2.3  Literature Overview of Proposed Solutions…...................................................20   
      

3.     SIGNIFICANCE OF INDUCTION IN COMPUTER SCIENCE.............................24    
3.1  Data Structures...................................................................................................25 

 3.1.1   The List Data Structure...........................................................................25  
 3.1.2   The Tree Data Structure..........................................................................27 

3.2  Theory of Computation......................................................................................29  
 3.2.1   Regular Expressions................................................................................30  
 3.2.2   Context-Free Grammars..........................................................................35  
 3.2.3   Context-Free Languages.........................................................................39 

3.3  Algorithm Correctness.......................................................................................41  
 3.3.1   A Simple Algorithm: The Factorial........................................................41  
 3.3.2   A More Complex Algorithm: The Quicksort..........................................42 
 3.3.3   An Algorithm that Manipulates Inductively Defined Objects................45 

3.4  Programming Languages...................................................................................47  
        

4.     SOURCES OF COMPUTER SCIENCE STUDENTS’ DIFFICULTIES WITH 
PROOFS BY INDUCTION: A STUDY..................................................................50  
4.1  Questions and Hypotheses.................................................................................50  
4.2  Participants and Procedures...............................................................................51 
4.3  Instrument......................................................................................................... 52 
4.4  Results............................................................................................................... 55  
4.5  Summary............................................................................................................60 
          

5.      A NEW APROACH TO TEACHING PROOFS BY INDUCTION: AN 
ELECTRONIC BOOK.............................................................................................63 
5.1  Current Approaches to Teaching Proofs by Induction..................................... 63  
5.2  A New, Conceptual Approach to Teaching Proofs by Induction: “The 

Conceptual Route.”.............................................................................................68 
5.3  A Multimodal, Interactive Electronic Book for Teaching and Learning  

    Proofs by Induction........................................................................................... 73 
 5.3.1   Educational Systems in the Classroom...................................................74  
 5.3.2   The Teaching Approach..........................................................................75 

 ix



 5.3.3   A Multimodal Learning Environment....................................................76 
5.4  Effectiveness of the E-book in the Classroom: An Exploratory Study.............86 

 5.4.1   Participants and Procedures....................................................................86  
 5.4.2   Results.....................................................................................................87 

 
6. CONCLUSION AND FUTURE RESEARCH..............................................................92 

 
LIST OF REFERENCES...................................................................................................97 

 
APPENDICES.................................................................................................................105 

 
VITA................................................................................................................................138 

 

 

 
 

 

 

 x



 1

CHAPTER 1 

INTRODUCTION 

 

1.1   The Research Problem 
 

Proof by structural induction is one of the most powerful proof techniques used in 

computer science. It is most commonly used to prove that every element of an 

inductively defined set has a certain property. There is a special case of structural 

induction, where the inductively defined set involved in the proof is the set of all natural 

numbers. This is what we call proof by mathematical induction (induction on numbers). 

In the literature, the term “induction” refers to either mathematical induction or structural 

induction, or both. Here, I use the term “induction” to refer to both structural and 

mathematical induction. 

In the field of computer science, there are many concepts (sets) that are defined 

inductively and for which we often need to prove their properties. Therefore, proofs by 

induction are at the core of many areas of computer science, such as data structures, 

theory of computation (Hopcroft et al., 2001; Barwise & Etchemendy, 1998; Sipser, 

1997), programming languages (Pierce, 2002), program verification (Kaplan et al., 2004; 

Holland-Minkley, 2002; Bundy et al., 1991), program efficiency-time complexity 

(Cormen et al., 2001), and correctness of algorithms—be they recursive or non-recursive 

(Weiss, 2006; Page, 2003; Cormen et al., 2001; Krone & Feil, 2001; Best, 1996; Lynch, 

1996).  

Moreover, induction can improve students’ understanding and performance of 

computer science concepts such as programming languages, recursion (Fressola & Krone, 



 2

2003; Wu, Dale, & Bethel, 1998), and algorithm design (Manber, 1989), as well as serve 

as a medium for teaching them. According to Bruce, Drysdale, and Kelemen (2003), 

“Programmers with a good understanding of mathematical induction find it much easier 

to write and, even more importantly, provide convincing arguments for the correctness of 

recursive algorithms” (p.5). In addition, the results of a study conducted by Page (2003) 

suggest that proofs by induction play a major role in software design and implementation.  

Major professional computer science societies such as the Association for 

Computing Machinery (ACM), and the Institute of Electrical and Electronics Engineers, 

Inc. (IEEE), as well as the Curriculum Renewal Across the First Two Years (CRAFTY), 

the subcomittee of the Committee for the Undergraduate Program in Mathematics 

(CUPM) of the Mathematical Association of America (MAA), emphasize the necessity to 

include proofs by induction in the undergraduate computer science curriculum (Barker et 

al., 2004; Engel & Roberts, 2001). 

Even though proofs in general are indispensable in the teaching of numerous 

computer science concepts, it is a well known secret that students have proof phobia. This 

makes it difficult for the instructors to effectively convey the often complex nature of 

proofs. Proofs by induction are no exception. Students are exposed to proofs by induction 

in many courses of their curricula, and yet it is well documented in the literature that in 

general, students have difficulties understanding and performing them (Polycarpou, 2006; 

Polycarpou, Pasztor, & Alacaci, 2006; Wu Yu, 2000; Sheard, 1998; Thompson, 1996; 

Baker, 1995; Movshovitz-Hadar, 1993; Lowenthal & Eisenberg, 1992; Dubinsky, 1989; 

Dubinsky 1986; Dubinsky & Lewin, 1986; Ernest, 1984; Brumfiel, 1974). Such 

difficulties include difficulties understanding the steps involved in a proof by induction, 



 3

the substance of the proof (seeing the proof as a convincing argument and not as a 

procedure to be followed), how to prove an if-then statement (which results in difficulties 

understanding the logic behind the induction step), the necessity to include the base case, 

and difficulties performing proofs by induction on problems that are not similar to the 

ones students encountered before. 

Educators have been observing students’ struggles to understand proofs by 

induction and have tried for decades to present them to the students in a way that 

facilitates their learning. Through the years, researchers who looked into students’ 

difficulties with proofs by induction have proposed some solutions to mend the situation 

(Dubinsky, 1989; Dubinsky, 1986; Ernest, 1984), but little improvement has been 

achieved.  

1.2   My Approach to Solving the Problem 

The fact that computer science students have difficulties with proofs by induction 

impacts the whole course of their studies, since proofs by induction are omnipresent in 

the field of computer science. More precisely, students do not gain conceptual 

understanding of proofs by induction early in the curriculum and as a result, they have 

difficulties understanding and applying them to more advanced areas later on in their 

studies. For this reason, the major goal of my dissertation is to develop a new approach to 

teaching proofs by induction for computer science, in a way that facilitates computer 

science students’ learning and helps them overcome their difficulties, which so far has 

not been done. To be able to do so, it was important to identify and take into 

consideration the conceptual sources of computer science students’ difficulties with 

proofs by induction. 



 4

Study to identify sources of students’ difficulties 

As part of my dissertation, I conducted a study to identify possible sources of 

computer science students’ difficulties with proofs by induction and in particular, 

difficulties that students may have prior to proving a statement by induction. My focus 

was on finding whether students’ difficulties lie in proofs by induction, or there are other 

factors preventing them from understanding and appropriately applying the concepts 

presupposed in such proofs. More precisely, I backtracked students’ difficulties to their 

understanding of the set theoretical concepts involved in and leading up to proofs by 

induction, including but not limited to structures, closed sets, inductive sets, and 

inductive definitions. Such concepts are presupposed in the so-called Induction Principle 

(p. 72) that justifies proofs by induction—a fact that is often not made explicit.  

Based on my five year experience tutoring students in “Logic for Computer 

Science,” a course in which computer science students are introduced to proofs by 

structural induction, and grading their exams and quizzes over these years, as well as 

feedback from and conversations with professors who teach proofs by induction for 

decades, I came to realize that students’ difficulties with proofs by induction may arise 

from their lack of understanding of the implicit concepts leading up to proofs by 

induction, which are often ignored in the classroom.  

After an extensive review of the literature on students’ difficulties with proofs by 

induction, I concluded that nobody has looked at the role that the set theoretical concepts 

that are presupposed in proofs by induction (i.e., structures, closed sets, inductive sets, 

and inductive definitions) play in students understanding of such  proofs. The existing 

literature focuses on difficulties students have while performing a proof by induction and 



 5

the psychological sources of such difficulties, as well as the discrete mathematics 

elements necessary for understanding and performing proofs by mathematical induction 

(Wu Yu, 2000; Baker, 1995; Dubinsky, 1989; Dubinsky 1986; Dubinsky & Lewin, 1986; 

Ernest, 1984). 

For the above reasons, I decided to focus my study on the set theoretical concepts 

presupposed in proofs by induction and explore whether lack of understanding of them is 

a source of computer science students’ difficulties with proofs by induction, or 

conversely, whether understanding them leads to better results in using proofs by 

induction.  

My study was contextualized within the undergraduate computer science 

curriculum. As part of my study, I developed an instrument which I administered to a 

sample of undergraduate computer science students before and after formal instruction of 

induction.  

The results of my study suggest that there is a close correlation between students’ 

understanding of the set theoretical concepts presupposed in proofs by induction and 

students’ understanding and performance of proofs by induction. Additionally, they 

suggest that students who have conceptual difficulties with proofs by induction are those 

who have difficulties understanding such concepts. 

The “Conceptual route” of teaching induction 

Taking into consideration the results of my study and the fact that the current 

methodologies for teaching proofs by induction either ignore or pay inadequate attention 

to the set theoretical foundations of proofs by induction, I propose that the teaching 

material of proofs by induction be based on what I call the “conceptual route” of teaching 



 6

proofs by induction, which is an operationalization of the Induction Principle (see, e.g., 

Enderton, 2001). The idea behind the conceptual route is to decompose proofs by 

induction into their fundamental building blocks, and teach them based on these building 

blocks. Therefore, the teaching material that the conceptual route follows is streamlined 

towards teaching the set theoretical concepts leading up to proofs by induction such as, 

structures, closed sets, inductive sets, and inductive definitions, so that students’ 

understanding can emerge through the conceptual building blocks involved.  

An electronic book for teaching/learning proofs by induction 
 
Finally, as part of my dissertation I have designed and developed an interactive 

and multimodal electronic book (e-book) for teaching and learning proofs by induction. 

My e-book offers a complete educational environment. It is a standalone learning tool for 

students to learn proofs by induction, as well as a teaching tool for instructors.  

Unlike the traditional route of teaching proofs by induction, the teaching approach 

of my e-book is based on the conceptual route mentioned above. It presents each set 

theoretical concept presupposed in proofs by induction (i.e., structures, closed sets, 

inductive sets, and inductive definitions) as well as proofs by induction in a separate 

chapter, along with several examples and interactive exercises.  

I decided to develop an e-book, instead of a traditional textbook, because I wanted 

to present my teaching material not only in the form of text, but in the form of images, 

animations, and sound, as well. I wanted to create a multimodal learning environment—

an environment where students can use more than one modality (e.g., visual modality, 

auditory modality, and kinesthetic modality). Even though students have preferred 

learning modalities, they all learn best when they use multiple modalities simultaneously 



 7

(Lutzinger, 1995; Dunn, 1988). According to Dunn (1988), “multiple modalities provide 

a responsive vehicle for learning” (p. 432). My purpose is to help students learn proofs by 

induction in a constructive way that will help them get the “big picture” of induction, and 

overcome their difficulties.  

Moreover, there is a variety in students’ learning styles (Thomas et al., 2002; 

Lutzinger, 1991), as well as their ability to learn and their learning speeds (Baldwin & 

Kuljis, 2000). Some students may need more time and more practice to understand a 

concept, while others may be fast learners and one example can be enough for them to 

understand. Considering that the number of students in a classroom keeps increasing, 

their learning style diversity cannot be easily addressed by an instructor. In contrast, I 

have designed my e-book to accommodate most of the learning styles. Since students will 

be able to use my e-book to study and practice on their own time and at their own pace, 

they will have the opportunity to learn according to their own needs.  

In addition, with curricula becoming more and more demanding, instructors are 

being asked to teach more material during the same amount of time (Dunlap, 2001). This 

limits the time they have available for teaching each topic of the course and their 

opportunity to go over more examples and problems. My e-book saves classroom time 

for the instructors by exposing students to many examples and problems of a great 

variety. At the same time, it gives students the opportunity to spend an adequate amount 

of time focusing on the material that is harder for them to understand, and go over more 

examples. 

Furthermore, my e-book includes several interactive exercises and examples on 

each basic concept, so that students can embody it. For each exercise, students are 



 8

provided with hints (clues) in case they have difficulties solving the exercise, as well as 

with feedback on their performance and detailed explanation of the solution of the 

exercise. Also, some of the exercises in my e-book are contextualized within computer 

science, so that students can see its relevance and importance in the field, and be 

motivated to learn it. 

The overall purpose of my e-book is to help students understand induction in a 

way that allows them to apply it to problems that are not similar to the ones they solve in 

class, to connect it to their current knowledge, to understand its relevance and 

importance, and to recognize on their own when to apply and correctly apply it whenever 

appropriate. According to Dubinsky (1986), “the ultimate goal is that proof by induction 

becomes an integrated part of a student’s mathematics repertoire and that the student is 

more or less able to decide when it might be useful to apply it in a given situation, 

without having been told beforehand that this is an induction problem” (p. 316). 

An Exploratory Study on the effectiveness of the e-book in the classroom 

I have conducted an exploratory study on the effectiveness of my e-book in the 

classroom. Participants of my study were two groups of undergraduate computer science 

majors. One group of students was taught proofs by induction through the traditional 

route, whereas the other group through my e-book. Both groups were taught by the same 

professor and they spent the same amount of time on proofs by induction. The results of 

my study suggest that indeed, my e-book helped students overcome many of their 

difficulties and gain conceptual understanding of proofs by induction. They suggest that 

students who were taught induction through my e-book performed better on inductive 

definitions and proofs by induction than students who were taught through the traditional 



 9

route. Moreover, they suggest that more students of those who were taught through my e-

book gained conceptual understanding of proofs by induction, than of those who were 

taught through the traditional route.   

1.3   Dissertation Outline 

Proofs by induction are omnipresent in the computer science curriculum and 

therefore students come across them in many courses of their curricula. At the same time, 

it is well documented in the literature that in general, students have difficulties 

understanding and performing such proofs. Unfortunately, this has a broader impact on 

the whole course of studies of computer science students, since they do not understand 

proofs by induction early in the curriculum and as a result, face difficulties applying them 

to more advanced areas later on in their studies.  

Chapter 2 presents the theoretical foundations behind proofs by induction and 

gives a brief overview of previous research done on students’ difficulties with proofs by 

induction, as well as on proposed solutions for helping students overcome such 

difficulties. It also presents the reasons these solutions did not improve the situation. 

To demonstrate the importance of proofs by induction in computer science, 

Chapter 3 discusses some of their computer science applications. Specifically, it presents 

examples of how proofs by induction can be applied to the areas of data structures, theory 

of computation, algorithm correctness, and programming languages. 

Because of the importance of proofs by induction in computer science and the fact 

that the current teaching methodologies do not help students gain conceptual 

understanding of proofs by induction, I decided to focus my research on developing a 

new approach to teaching proofs by induction for computer science. My goal was to 



 10

facilitate computer science students’ conceptual understanding of proofs by induction and 

help them overcome their difficulties. For developing such an approach, it was important 

to identify the difficulties that students face understanding and performing proofs by 

induction, and more importantly, to identify the sources of such difficulties. I have 

conducted a study to identify possible sources of computer science students’ difficulties 

with proofs by induction, which I discuss in detail in Chapter 4.  

Taking into consideration the results of my study and the relevant literature on 

proofs by induction, I have designed and developed an interactive and multimodal 

electronic book (e-book) for learning and teaching proofs by induction for computer 

science. This e-book provides a complete educational environment and it can be used by 

students to learn proofs by induction as well as by instructors to teach them. Chapter 5 

presents the teaching approach I follow in the e-book, and discusses in detail the 

development and content of the e-book. Furthermore, it presents the results of an 

exploratory study I have conducted on the effectiveness of the e-book in the classroom, 

which suggest that the e-book was successful in helping computer science students gain 

conceptual understanding of proofs by induction and overcome many of their difficulties. 

Finally, Chapter 6 discusses the conclusions of my research and some future 

research directions. 

 

 

 

 

 



 11

CHAPTER 2 

THEORETICAL FOUNDATIONS AND LITERATURE OVERVIEW 

 

2.1   Proofs by Structural Induction  

Proof by induction is one of the most powerful proof techniques used in computer 

science, with a wide variety of applications (see chapter 3, p.24).  

We can think of a proof as “a logical argument that one makes to justify a claim 

and to convince oneself and others” (Blanton & Stylianou, 2003, p.113). More formally, 

a proof is “a logically rigorous deduction of conclusions from hypotheses” (Dreyfus, 

1990, as cited in Steen, 1999, p.273). Proofs by induction are most commonly used to 

prove a statement asserting that every element of an inductively defined set has a given 

property. Such a statement is usually of the form “Every element x in S has property P,” 

where S is an inductively defined set.  

Before going any further, let us have a closer look at inductive definitions, 

inductively defined sets, and proofs by induction. Let U be a non empty set (called the 

universe), B a subset of U (called the base set), I a set of indices, and for each i∈I, fi an 

ni-place operation on U, where ni∈IN, and ni is the arity of fi (i.e., fi: Uni→U). An 

inductively defined set S is a subset of U whose elements are generated by the elements 

in B using the operations on U.  

The general schema of an inductive definition of a set S⊆U is as follows: 

1)   Base Clause: Every element in B is in S. 
2)   Inductive Clause: For every i∈I and x1,…,xn i ∈U,  
      if x1, …, xn i  is in S, then fi(x1, …, xn i ) is also in S (i.e., S is closed 

under the operations in U). 
3)   Final Clause: No element of U is in S unless it has to be one by 1) or 

2) above. 



 12

Let us look at an example. Let X = {♣, ●,◘, ♦}. Let U = X* (the set of strings obtained by 

concatenating zero or more symbols from X). Let I = {1, 2}. Let B = {♣, ●}. Let f1: 

U→U be the unary operation (n1 = 1) defined as follows: f1(F) =  ◘ F ♦, for all F∈U. Let 

f2: U3→U be a ternary operation (n2 = 3) defined as follows: f2(F, G, H) = F ◘ G ♦ H, for 

all F, G, H∈U. The following is an example of an inductive definition. It defines some 

imaginary objects that I will call “bricklings”. 

1) Base Clause: ♣, ● are bricklings. 
2) Inductive Clause: If F is a brickling, then f1(F) = ◘ F ♦ is a brickling, 

as well, and if F, G, and H are bricklings, then f2(F, G, H) = F ◘ G ♦ H 
is a brickling, as well. 

3) Final Clause: No string in X* is a brickling unless it has to be one by 1) 
or 2) above. 

 
Some examples of bricklings are  ◘ ♣ ♦,   ◘ ♣ ♦ ◘ ◘ ♣ ♦ ♦ ◘ ♣ ♦, and  ◘ ◘ ● ♦ ♦. Notice 

that  ◘ ♣, and  ◘ ♦ ◘  are not bricklings. The set containing all the bricklings is an 

inductive set. 

As I said earlier, proofs by induction are called for whenever we want to prove 

that every element of an inductively defined set has a certain property. 

The general schema of a proof by (structural) induction is as follows: 

1) Base Case: Prove that every element of B⊆ S has property P.  
2) Induction Step: For every i∈I: Choose x1,…,xn i ∈S arbitrarily.  

                                Assume that x1,…,xn i  have property P (Induction Hypothesis). 
                                Prove that fi(x1,…,xn i ) has property P, as well. 

 
To illustrate this schema, let us go back to our example of bricklings. Assume that we 

want to prove the statement: “Every brickling F has the following property P: F has an 

odd length.”  



 13

For the sake of simplicity, let us denote the number of elements in F by #e(F). 

Note that F is a sequence of elements of the set {♣, ●,◘, ♦}. 

Proof by induction:  
Let F be an arbitrary brickling 
1) Base case: Assume F is ♣ or F is ●. Obviously, the number of 

elements in F is odd, since #e(F) = 1.  
So, F has property P. 

2) Induction Step: 
2a) Suppose F = f1(G) = ◘ G ♦ for some brickling G. 

         Induction Hypothesis: G has an odd length (#e(G) is odd),    
       i.e., G has property P. 

      Then, the number of elements in F is #e(G) + 2, which is also odd. 
      This proves that #e(F) is odd. Therefore, F has property P. 
2b) Suppose F = f2(K, G, H) = K ◘ G ♦ H for some bricklings K, G,                         
       and H. 

        Induction Hypothesis: K, G, and H have an odd length (#e(K),    
        #e(G), and #e(H) are odd), i.e., K, G, and H have property P. 
Then, the number of elements in F is #e(K) + #e(G) + #e(H) + 2,  
which is also odd. This proves that #e(F) is odd. Therefore, F has 
property P. 

Since F was an arbitrary brickling and we covered all possibilities for the 
structure of F, we proved the proposition.  
q.e.d. 

 
The idea of proofs by induction may be new to the students, but it is not at all new to the 

world of mathematics. Some argue that the roots of proofs by induction reach all the way 

back to 370 BCE when the first proof by induction appeared in Plato’s Parmenides 

(Kaplan et al., 2004; Wiznia, 2003), while others argue that they reach even further back 

to Socrates who introduced it into Greek philosophy. Even though there is a debate in the 

mathematical community over who invented and who formalized proofs by induction, 

most researchers agree that the first known proof by induction was published by 

Francesco Maurolico (an Italian mathematician and astronomer) in his book 

Arithmeticorum Libri Duo, in 1575. Maurolico used a proof by induction to prove that 

the sum of the first n odd integers is n2 (Fressola & Krone, 2003; Wiznia, 2003). The 



 14

formal definition of proofs by induction as we know it today emerged through the work 

of great mathematicians such as Pascal (1654), De Morgan (1838), and Dedekind (1878), 

who picked up on and improved Maurolico’s work  (Shonk, 2003; Wiznia, 2003; Acerbi, 

2000). 

The notion of proofs by induction has arisen from the need to prove properties of 

natural numbers. For this reason, its first formalization was mathematical induction 

(induction on numbers). Through the years, the need to prove properties of other 

inductively defined structures led to the generalization of mathematical induction to what 

we call today structural induction. Therefore, mathematical induction is a specific case of 

structural induction, where the inductively defined set involved in the proof is the set IN 

of all natural numbers. The following inductive definition of natural numbers is an 

instantiation of the general schema of an inductive definition that I gave earlier (p.11): 

Let U = IR (the set of all real numbers), I = {1}, and B = {0}. Let f1: 
U→U be the unary operation (n1 = 1) defined as follows: f1(n) = n + 1, for 
all n∈U. 
1)   Base Clause: 0 is a natural number. 
2)   Inductive Clause: If n is a natural number, then f1(n) = n + 1 is also a 

natural number. 
3) Final Clause: An element of U is a natural number if and only if it has 

to be one by 1) or 2) above. 
Note: This is just one possible inductive definition of natural numbers. Natural 
numbers can also be defined as a subset (up to isomorphism) of {0, 1, +}* 
generated from {0} by the operation “+1.” 

 
The general schema of a poof by mathematical induction is as follows: 

Statement: “Prove that every natural number n has property P.” 
 
Let n be an arbitrary natural number. 
1)   Base Case: Assume that n = 0 and prove that 0 has property P. 
2)   Induction Step: Assume that n = f1(k) = k+1 for some natural  
      number k.  

Induction Hypothesis: k has property P. 



 15

      Prove that k+1 has property P, as well. 
Note: The above schema of a proof by mathematical induction is also 
known as weak mathematical induction. 
 

For example, consider the statement “Every natural number n has the following property 

P: n3- n is divisible by 3.” 

Proof by mathematical induction: 
Let n be an arbitrary natural number. 
1)   Base Case: Assume that n = 0.  
      03 - 0 = 0 and 0 is divisible by 3.  
      Therefore, n has property P. 
2)   Induction Step: Assume that n = f1(k) = k + 1, where k is a natural 

number.  
   Induction hypothesis: k3- k is divisible by 3, i.e., k has property P.  

Show that (k + 1)3 - (k + 1) is divisible by 3. 
(k + 1)3 - (k + 1) =  
(k3 + 3k2 + 3k + 1) – (k + 1) =  
(k3 – k) + 3(k2 + k). 
Since (k3 – k) is divisible by 3 (by the Induction Hypothesis) and  
3(k2 + k) is divisible by 3 as well,  
we can conclude that (k3 – k) + 3(k2 + k) is divisible by 3.  
Therefore, n has property P.  

Since n can have only one of these two forms, we completed our proof 
that every natural number n has property P. 
q.e.d. 
 

In some cases, it is more convenient to have a stronger induction hypothesis for proving 

our claim than the one we have in the above schema of a proof by mathematical 

induction. There is another form of mathematical induction, which is called strong 

mathematical induction, that can be used in such cases. The only difference between 

weak mathematical induction and strong mathematical induction is the induction step. 

While in the induction step of a proof by weak mathematical induction we assume that a 

natural number k has a property P (induction hypothesis) and we prove that k+1 has 

property P, as well, in the induction step of a proof by strong mathematical induction we 

assume that all natural numbers less than or equal to k have property P (induction 



 16

hypothesis), and we prove that k+1 has property P, as well. Below is the schema of a 

proof by strong mathematical induction: 

General schema of a poof by strong mathematical induction: 

Statement: “Prove that every natural number n has property P.” 
 
Let n be an arbitrary natural number. 
1)   Base Case: Assume that n = 0 and prove that 0 has property P. 
2)   Induction Step: Assume that n = k+1 for some natural  
      number k.  

Induction Hypothesis: Every m ≤ k (m∈IN) has property P. 
      Prove that k+1 has property P, as well. 

 
Strong mathematical induction is equivalent to weak mathematical induction (i.e., 

whatever we can prove by one, we can prove by the other). A proof of their equivalence 

can be found in Schach (1958, p.84).  

Even though I did an extensive review of the literature on proofs by induction, I 

could not find anything on students’ difficulties with proofs by structural induction. It 

seems that the existing literature focuses only on mathematical induction. My dissertation 

focuses on structural induction, instead of mathematical induction. The reason I decided 

to focus on structural induction is that understanding of structural induction entails 

understanding of mathematical induction, it justifies recursive definitions of functions 

(see Recursion Theorem, Enderton, 2001, p.39), and it is at the core of many important 

areas of computer science (see chapter 3, p.24).  

In the literature, the term “induction” refers to either mathematical induction or 

structural induction, or both. Throughout my dissertation, I will use the term “induction” 

to refer to both structural and mathematical induction. 

 



 17

2.2   Documented Difficulties that Students have with Proofs by Induction 

Even though students are exposed to proofs by induction in many courses of their 

curricula, they still have difficulties understanding and performing them—a fact well 

documented in the literature (Polycarpou, 2006; Polycarpou, Pasztor, & Alacaci, 2006; 

Wu Yu, 2000; Sheard, 1998; Thompson, 1996; Baker, 1995; Movshovitz-Hadar, 1993; 

Lowenthal & Eisenberg, 1992; Dubinsky, 1989; Dubinsky 1986; Dubinsky & Lewin, 

1986; Ernest, 1984; Brumfiel, 1974). “Indeed, if you question students–even those who 

have had several mathematics courses–although almost all of them will have heard of 

induction, not many of them will be able to say anything intelligent about what it is, 

much less actually use it to solve a problem. Some students won’t even recall any kind of 

problem to which induction can be applied.” (Dubinsky, 1986, p.305). 

In the last few decades various specific difficulties that students have with proofs 

by induction have been reported in the literature. According to Ernest (1984), there are 

six difficulties and misconceptions that students have with proofs by mathematical 

induction:  

1)   There is an ambiguity in the word “induction,” since proofs by induction are based on 

steps that involve deductive, rather than inductive reasoning. This ambiguity can 

result in the confusion of the students.  

2) Students have difficulties understanding an implication statement (A→B). More 

precisely, students have difficulties understanding that they have to assume the first 

part of the implication (antecedent, i.e., A), to prove the second part (consequent, i.e., 

B). This often leads them to the misconception that they need to assume what they 

have to prove. 



 18

3)  Students have difficulties understanding quantifiers and free variables, resulting in 

their misconception that there is a circular reasoning behind a proof by mathematical 

induction. 

4)  Students often believe that the base case of a proof by mathematical induction is not 

necessary.  

5)  Students are not exposed to different areas to which proofs by mathematical induction 

can be applied, leading them to the misconception that proofs by mathematical 

induction are only used to prove the summing of finite series.  

6)  Students do not see the relevance of mathematical induction and its usages, which 

leads them to question why this concept was even adopted. 

Moreover, Baker (1995) conducted a study that revealed several difficulties that 

students have while performing proofs by mathematical induction, as well as factors that 

affect students’ performance with proofs by mathematical induction. He separated 

students’ difficulties into:  

1)  Procedural knowledge difficulties, which include students’ difficulties understanding 

the steps involved in a proof by mathematical induction, as well as lack of strategies 

required for performing the proof. 

2)  Conceptual knowledge difficulties, which include students’ difficulties understanding 

the substance of the proof and seeing the proof as a convincing argument and not as a 

procedure to be followed.  

3)  Mathematical resources difficulties, which include students’ difficulties understanding 

that for the induction step to be valid, the induction hypothesis must be true, and that 



 19

an example is not enough to prove the argument of the induction step, since it must be 

true for every case.  

In addition to these difficulties, Baker (1995) found that examples play an 

important role in students’ decisions about verifying a statement, and that students use 

problems they encountered before as templates to guide them through a new problem. 

The latter was accompanied by the fact that students had difficulties performing proofs 

by mathematical induction on problems that were not similar to the problems they 

encountered before. As I will show later (section 4.4, p.55), the results of my study on 

computer science students’ difficulties with proofs by induction strengthen these last two 

findings, as well as Baker’s (1995) findings that students have conceptual difficulties and 

difficulties understanding that an example is not enough to prove the argument of the 

induction step.  

Not surprisingly, Baker (1995) also found that students with less experience with 

proofs by mathematical induction had a poor performance compared to students with 

more experience, and that poor mathematical background was a factor contributing to 

students’ difficulties. Finally, he found no evidence that students’ performance was 

affected by their beliefs, but he did find evidence that negative attitudes and feelings were 

accompanied by poor performance. 

The results of a study conducted by Wu Yu (2000) validate Baker’s (1995) 

findings that students have difficulties with procedural and conceptual understanding of 

proofs by mathematical induction. They also confirm Ernest’s (1984) claim that students 

have difficulties understanding the implication involved in the induction step and the 

relevance of the base case. According to Wu Yu (2000), the reason for these two 



 20

difficulties is that students do not understand the difference between the validity of an 

implication statement (A→B) and the truth of the second part of the implication (the 

consequent, i.e., B), involved in the induction step, and they do not understand that the 

statement they are trying to prove must be true for all the elements, including those of the 

base set (base case).  

Furthermore, the results of Wu Yu’s (2000) study revealed that students have the 

misconception that the purpose of the induction step is the same as that of the whole 

proof, and that the induction hypothesis is the same as the result of the whole proof. 

Finally, she found that students’ procedural understanding might be affected by their 

content knowledge, which, as I will show later (section 4.4, p.55), is also confirmed by 

the results of my study on computer science students’ difficulties with proofs by 

mathematical induction. 

2.3   Literature Overview of Proposed Solutions                     

The facts that proofs are a “nightmare” for students and students have proof 

phobia make it difficult for educators to effectively convey the often complex nature of 

proofs to the students. This is especially the case with proofs by induction. Educators 

have been observing students’ struggles to understand proofs by induction and have tried 

for decades to present them to the students in a way that facilitates their learning. 

Through the years, researchers who looked into students’ difficulties with proofs by 

induction have proposed some solutions to mend the situation (Dubinsky, 1989; 

Dubinsky, 1986; Ernest, 1984), but little improvement has been achieved.  

According to Ernest (1984), there are three major behavioral skills that students 

need to have in order to be able to understand proofs by mathematical induction: 



 21

1)  the ability to prove the base case, which includes students ability to prove that 

particular numbers have fix numerical properties, which, in turn, depends on their 

ability to perform substitution into algebraic expressions in a single variable. 

2)  the ability to prove the induction step, which includes students ability to prove 

implication statements by deducing a conclusion from a hypothesis, which, in turn, 

involves their ability to make deductions from algebraic identities and the ability to 

manipulate algebraic identities.  

3)  the ability to present a proof by mathematical induction in the correct form, which 

includes students ability to communicate their knowledge of the correct form of a 

proof by mathematical induction.  

In Ernest’s (1984) opinion, teaching based on these behavioral skills will improve 

students’ understanding. Moreover, he goes one step further and based on his conceptual 

analysis of mathematical induction, he proposes to strengthen the teaching of concepts 

that are precursor to proofs by mathematical induction. Such concepts include elementary 

proofs, properties of natural numbers, implication (which is needed for the induction 

step), and inductively defined functions. 

 Dubinsky & Lewin (1986) take a different approach towards students’ difficulties 

with proofs by mathematical induction. They believe that to understand proofs by 

mathematical induction, students need to construct a cognitive schema of mathematical 

induction (“a collection of mental objects and mental operations which the subject is able 

to perform on these objects,” Dubinsky [1986], p.306). In their opinion, the reason for 

students’ difficulties understanding proofs by mathematical induction is that the current 

teaching methodologies do not provide the necessary tools for the students to be able to 



 22

construct such a schema. After interviewing students who were learning mathematical 

induction, Dubinsky & Lewin (1986) developed a general description of the construction 

of the cognitive schema of mathematical induction. Based on this general description, the 

subschemas of “method of proof,” “function,” and “logical necessity” are present when 

the students begin to learn proofs by mathematical induction, and through the learning 

process they are expected to construct the subschemas of “Modus Ponens,” “Explain 

Induction,” “Apply Induction,” and “Solve Problems.”   

Accordingly, Dubinsky (1986, 1989) proposes a new approach to teaching 

mathematical induction, one that involves activities to help students construct their own 

cognitive schema of mathematical induction. Based on his approach, students learn a 

programming language called SETL (or ISETL—a more interactive version of SETL), 

which helps the development of a good mathematical knowledge, and then work on 

different projects (writing programs) with SETL (or ISETL), where each individual 

project aims at the construction of a specific part of the proposed cognitive schema of 

mathematical induction. Dubinsky (1986, 1989) conducted two studies to examine the 

effectiveness of his approach to teaching mathematical induction. The results of his 

studies showed an improvement of students’ understanding of mathematical induction. In 

addition, after interviewing the students, Dubinsky concluded that students have passed 

through all the phases of the cognitive schema of mathematical induction proposed by 

Dubinsky & Lewin (1986).  

 Even though Ernest (1984) and Dubinsky (1986, 1989) proposed ways to help 

educators overcome the obstacles that they are facing when teaching proofs by induction, 



 23

today’s educators are still struggling with conveying the notion of proofs by induction 

effectively to their students.  

Ernest (1984) created a network of interrelated concepts which, in his opinion, 

students need to master before learning proofs by mathematical induction. He did not, 

however, propose any new methodology for teaching these concepts. On the other hand, 

Dubinsky (1986, 1989) proposed a new way of teaching proofs by mathematical 

induction, but nobody has picked up on it. His approach is not easy to adopt and deploy 

in the classroom. It requires the use of an outdated programming language, which can 

only be integrated into the curriculum at great cost in time and effort. 

Although Ernest and Dubinsky’s suggestions have some drawbacks and so far 

have not been very successful in solving the problem, I based my approach to teaching 

proofs by induction in part on their recommendations. By enhancing and combining their 

approaches I developed a new teaching methodology to improve students’ performance 

with proofs by induction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 24

CHAPTER 3 
 

SIGNIFICANCE OF INDUCTION IN COMPUTER SCIENCE 

 

Proofs by induction are omnipresent in the field of computer science. There are 

many important computer science concepts (sets) which are defined inductively, and for 

which we often need to prove their properties. For example, a number of data structures, 

such as the List and the Tree data structures, as well as graphs, regular expressions, 

context-free grammars, and programming languages are usually defined inductively 

(Weiss, 2006; Fressola & Krone, 2003; Page, 2003; Hopcroft et al., 2001). Regular 

expressions, context-free grammars, and the Tree data structure have a wide variety of 

applications in computer science, two of which are compiler construction and text-search 

applications (Appel, 2002; Hopcroft et al., 2001). Proofs by induction can also be used to 

prove properties of recursive programs (Manna, Ness, & Vuillemin, 1973). 

Furthermore, proofs by induction are central to many areas of computer science, 

such as graph theory, programming languages (Pierce, 2002), theory of computation 

(Hopcroft et al., 2001; Barwise & Etchemendy, 1998; Sipser, 1997), program verification 

(Kaplan et al., 2004; Holland-Minkley, 2002; Bundy et al., 1991), program efficiency-

time complexity (Cormen et al., 2001), and correctness of algorithms—be they recursive 

or non-recursive (Weiss, 2006; Page, 2003; Cormen et al., 2001; Krone & Feil, 2001; 

Best, 1996; Lynch, 1996).  

Moreover, induction can serve as a medium for teaching recursion—a powerful 

problem solving tool and a programming technique (Fressola & Krone, 2003; Wu, Dale, 

& Bethel, 1998), and it is important for students’ understanding and performance of 



 25

software development (Fressola & Krone, 2003; Page, 2003). A study conducted by Page 

(2003) shows that proofs by induction play a major role on software design and 

implementation. The results of his study suggest that learning proofs by induction in 

relation with their applications in software development improves students ability to 

design and develop algorithms in their data structure course, which according to Page, 

implies that proofs by induction can increase the effectiveness in the practice of software 

development. 

In what follows, I chose some specific areas of computer science to present in 

detail how proofs by induction are applied. 

3.1   Data Structures 

According to Weiss (2006), a data structure is a representation of data along with 

the operations allowed on the data. In computer science data structures serve as input and 

output domains of programs. Algorithm designers often face the dilemma of choosing the 

most appropriate data structure for writing a specific algorithm. To make an effective 

decision, designers must have a good understanding of the definition and properties of 

each data structure available to them. Some data structures, such as the List and the Tree 

data structures are usually defined inductively, and to prove their properties proofs by 

induction are necessary.  

3.1.1   The List Data Structure 

Lists are used as building blocks for implementing other data structures such as 

the Stack and the Queue data structures. The following is an inductive definition of the 

List data structure (c.f. section 2.1, p.11): 



 26

Let U = {[, ], |, i: i∈I}*, where I is a finite, non empty set, and let B = {[]}. 
For all i∈I, let fi: U→U be a unary operation (ni = 1) defined as follows: 
fi(L) = [i | L] for all L∈U. 
1) Base Clause: [] is a list, called the empty list. 
2) Inductive Clause: If L is a list, then for all i∈I, fi(L) = [i | L] is also a 

list. 
3) Final Clause: No element of U is a list unless it has to be one by 1) or 

2) above. 
 

Let I = IN. Some examples of lists are [3 | [ 8 | [] ] ], [5 | [6 | [4 | [] ] ] ], [4 | [3 | [2 | [1 | [] ] 

] ] ], and [24 | [10 | [3 | [67 | [ 50 | [] ] ] ] ] ]. 

Note: You can think of the list [3 | [ 8 | [] ] ] as [3, 8], the list [5 | [6 | [4 | [] ] ] ] as [5, 6, 

4], the list [4 | [3 | [2 | [1 | [] ] ] ] ] as [4, 3, 2, 1], and so forth. 

We define two functions Append and Length, so that given two lists L1 and L2, 

Append(L1, L2) concatenates the two lists, and given a list L, Length(L) returns the length 

of list L, i.e., the number of elements in the list. 

1. Append: 
Let L be a List. 

1.1) Append([], L) = L 
1.2) For every i∈I and a list L1,  
         Append([i | L1], L) = [i | Append(L1, L)]. 

 
2. Length: 

2.1) Length([]) = 0. 
2.2) For every i∈I and a list L,  

                                 Length([i | L]) = Length(L) + 1 
 

Now, consider the following property P of a list L: 

“Length(Append(L,L2))=Length(L)+Length(L2), for any list L2.”  

Claim: All lists L have property P. 

To prove the above claim, we use proof by induction on the structure of lists. 

Proof by structural induction: 
Let L be an arbitrary list. 
1)   Base Case: Suppose that L = []. Let L2 be an arbitrary list. 



 27

Length(Append([], L2)) =   (by 1.1) 
Length(L2) =      
0 + Length(L2)  =   (by 2.1) 
Length([]) + Length(L2)  = 
Length(L)+Length(L2).   
Therefore, L has property P. 

2) Induction Step: Suppose that L = [i | L1], for some i∈I, where L1 is  
      a list. Let L2 be an arbitrary list. 

Induction hypothesis: For any list L2’, Length(Append(L1, L2’)) = 
Length(L1) + Length(L2’), i.e., list L1 has property P. 

Length(Append([i | L1], L2)) =  (by 1.2) 
Length([i | Append(L1, L2)]) = (by 2.2) 
Length(Append(L1, L2)) + 1 =  (by the Induction Hypothesis) 
Length(L1) + Length(L2) + 1  =        
(Length(L1) + 1) + Length(L2) = (by 2.2) 
Length([i | L1]) + Length(L2)  
So, Length(Append([i | L1], L2)) = Length([i | L1]) + Length(L2).  
Therefore, L has property P. 

Since L was an arbitrary list and we covered all possibilities for the 
structure of L, we proved our claim. 
q.e.d. 
 

3.1.2   The Tree Data Structure 

The Tree data structure is used by almost every operating system for storing files, 

and it is the best choice for compiler construction (abstract syntax tree), and text-search 

applications (text processing and searching algorithms) (Weiss, 2006). To demonstrate 

the relation between the Tree data structure and proofs by induction, I will use a specific 

type of the Tree data structure, called Binary Tree data structure. In a binary tree, no node 

can have more than two children. The following is an inductive definition of binary trees 

(c.f. section 2.1, p.11): 

Let A = IN∪ { /, \, (, )}, U = A*, and B = I = IN. For all i∈I, let fi: U2→U 
be the binary operation (ni = 2) defined as follows: fi(T1, T2) =  
(T1 / i \T2) for all T1, T2∈U. 
1)   Base Clause: Any natural number n is a binary tree, called a node. 
 
      Note: You can think of a node as 
 

 n 



 28

2)   Inductive Clause: If T1 and T2 are binary trees, then for every i∈I,    
fi(T1, T2) =  (T1 / i \T2) is also a binary tree.  

 
Note: You can think of the natural numbers as labeled nodes of the 
tree and fi(T1, T2) = (T1 / i \T2) as   

 
i 

      
 

 
 
 

     
 

3) Final Clause: No element of A* is a binary tree unless it has to be one 
by 1) or 2) above. 

 
We define two functions Leaf and MaxLeaf, where Leaf(n, T) is a Boolean function that 

accepts a number n and a tree T, and returns true if n is a leaf node (a node with no 

children) of tree T, and MaxLeaf(T) returns the leaf node of tree T that is the largest 

natural number.  

1. Leaf: 
     1.1) For any n∈IN and any tree T, Leaf(n, T) returns true if and only if  
            T = n. 
     1.2) For any n∈IN, for all i∈I, and any trees T1 and T2,  
            Leaf(n, fi(T1, T2)) = Leaf(n, (T1 / i \T2)) returns true if and only if  
            Leaf(n, T1) returns true or Leaf(n, T2) returns true. 
 
2. MaxLeaf: 
     2.1) For any n∈IN, MaxLeaf(n) = n. 

  2.2) For any trees T1 and T2 and for all i∈I, MaxLeaf(fi(T1, T2)) =  
MaxLeaf((T1 / i \T2)) = maximum(MaxLeaf(T1), MaxLeaf(T2)), 
where the operation maximum(node1, node2) returns the node that 
is the largest natural number of node1 and node2.  

 
Let P be the following property of binary trees: “For every binary tree T, MaxLeaf(T) is a 

leaf node,” i.e., Leaf(MaxLeaf(T), T) returns true. To prove property P, we use induction 

on the structure of binary trees. 

  i 

  T1   T2 



 29

Proof by structural induction: 
Let T be an arbitrary binary tree. 
1) Base Case: Suppose T = n, for some n∈IN. 
      Leaf(MaxLeaf(n), n) =   (by 2.1) 
      Leaf(n, n). 
      By 1.1, Leaf(n, n) returns true. 

Therefore, T has property P.                                   
2) Induction Step: Suppose T = (T1 / i \T2) for some i∈I, where T1  

                and T2 are trees. 
Induction Hypothesis: Leaf(MaxLeaf(T1), T1) and 
Leaf(MaxLeaf(T2), T2) each return true, i.e., trees T1 and T2 have 
property P. 

Show that Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2)) returns true. 
MaxLeaf((T1 / i \T2)) =  (by 2.2) 
maximum(MaxLeaf(T1), MaxLeaf(T2)). 
By definition, the operation maximum(node1, node2) must return 
node1, or node2.  
So, maximum(MaxLeaf(T1), MaxLeaf(T2)) will return either 
MaxLeaf(T1) or MaxLeaf(T2). 
So, Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2))  
= Leaf(MaxLeaf(T1), (T1 / i \T2)) or Leaf(MaxLeaf(T2), (T1 / i \T2)). 
Case 1: If Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2)) = Leaf(MaxLeaf(T1),         

(T1 / i \T2)), then by 1.2 we get Leaf(MaxLeaf(T1), T1) or 
Leaf(MaxLeaf(T1), T2).  
By the induction hypothesis, we know that Leaf(MaxLeaf(T1), T1) is 
true, so Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2)) returns true. 

Case 2: If Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2)) = Leaf(MaxLeaf(T2),         
(T1 / i \T2)), then by 1.2 we get Leaf(MaxLeaf(T2), T1) or 
Leaf(MaxLeaf(T2), T2).  
By the induction hypothesis, we know that Leaf(MaxLeaf(T2), T2) is 
true, so Leaf(MaxLeaf((T1 / i \T2)), (T1 / i \T2)) returns true. 

Therefore, T has property P. 
Since T was an arbitrary binary tree and we covered all possibilities for 
the structure of T, we proved the proposition. 
q.e.d. 

 
3.2   Theory of Computation        

Theory of computation is an area of computer science that deals with whether a 

problem can be solved and how efficiently it can be solved on a computer (Hopcroft et 

al., 2001; Sipser, 1997). One subarea of theory of computation is automata theory. 

Automata theory is the study of abstract machines and the problems they can solve. Some 



 30

topics that are of importance in automata theory are finite automata, formal grammars, 

regular expressions, and Turing machines. Finite automata are used to model different 

hardware and software; formal grammars are used in the design of software that 

processes data with an inductive structure; regular expressions are used to denote the 

structure of such data (data with an inductive structure); and Turing machines are used to 

understand what we can expect from a software (Hopcroft et al., 2001). In what follows, I 

chose some specific areas of theory of computation to present in detail how proofs by 

induction are applied. 

3.2.1   Regular Expressions 

Regular expressions denote regular languages which can also be described by 

finite automata. They are essential in the areas of compiler construction (building a 

lexical analyzer) and text-search applications (searching for and recognizing patterns in a 

text), and also serve as the input languages for programs that process strings (Hopcroft et 

al., 2001). Regular expressions are inductively defined, and they are most commonly 

used to denote inductively defined languages (Fressola & Krone, 2003; Page, 2003; 

Hopcroft et al., 2001; Linz, 2001; Sipser, 1997).  

The inductive definition of regular expressions R that denote a language L(R), is 

as follows (c.f. section 2.1, p.11): 

Let U = {ε, Ø, α, +, *, (, ): α∈A}*, where A is a finite, non-empty set of 
characters. Let I = {1, 2, 3, 4}, and B = {ε, Ø, α: α∈A}. Let f1: U2→U be 
the binary operation (n1 = 2) defined as follows: f1(R1, R2) = R1 + R2, for 
all R1, R2∈U. Let f2: U2→U be the binary operation (n2 = 2) defined as 
follows: f2(R1, R2) = R1R2, for all R1, R2∈U. Let f3: U→U be the unary 
operation (n3 = 1) defined as follows: f3(R) = R*, for all R∈U. Let f4: 
U→U be the unary operation (n4 = 1) defined as follows: f4(R) = (R), for 
all R∈U.  



 31

1) Base Clause: ε, Ø, and any symbol α∈A, are regular expressions 
denoting the languages {ε}, Ø, and {α}, respectively. That is, L(ε) = 
{ε}, L(Ø) = Ø, and L(α) = {α}.  

2) Inductive Clause: If R1 and R2 are regular expressions denoting L(R1) 
and L(R2), respectively, then R1+R2 is a regular expression denoting 
the union of L(R1) and L(R2), that is, L(R1 + R2) = L(R1)∪L(R2); and 
R1R2 is a regular expression denoting the concatenation of L(R1) and 
L(R2), that is, L(R1R2) = L(R1)L(R2).  
If R is a regular expression denoting L(R), then R* is a regular 
expression denoting the closure of L(R), that is, L(R*) = (L(R))*; and 
(R) is a regular expression denoting the same language as R, that is, 
L((R)) = L(R). 

3) Final Clause: No element of U is a regular expression unless it has to 
be one by 1) or 2) above. 

(Linz, 2001, p.72)  
 

To prove properties of regular expressions denoting languages we use proofs by 

structural induction. For example, to prove that for every language L that is denoted by a 

regular expression R there is a finite automaton E that accepts L, we use induction on the 

structure of regular expressions.  

Let P be the following property: “Every language L that is denoted by a regular 

expression R is also accepted by a finite automaton E.”  

Proof by structural induction: 
Let R be an arbitrary regular expression. 
Suppose L = L(R). We need to show that L = L(E), where E is an ε-NFA 
(a non deterministic finite automaton that allows ε transitions) with 
exactly one accepting state, no edges into the initial state, and no edges out 
of the accepting state. 
1) Base Case:  

There are three cases we need to show in the base case:  
1a) Suppose R = ε. The language denoted by ε is {ε} (L(ε) = {ε}).  
We need to construct a finite automaton E that accepts L(ε).   
Let E be the finite automaton below:  

      
        Ε       ε   
 
 
        Finite automaton E 

 

q0 qf 



 32

E consist of an initial state (q0), a final state (qf) and a transition δ(q0, 
ε) = qf. In other words, from the initial sate with an ε-transition we 
move to the final state. E accepts only ε, therefore, E accepts L(R).  
So, R has property P. 

 
1b) Suppose R = Ø. The language denoted by Ø is Ø (L(Ø) = Ø). 
We need to construct a finite automaton E that accepts L(Ø). 
Let E be the finite automaton below: 

 
 
 
 
 
        Finite automaton E 
 

E consists of an initial state (q0) and a final state (qf), but it has no 
transitions from the initial state to the final state. E accepts nothing 
(Ø), therefore E accepts L(R).  
So, R has property P.   

 
1c) Suppose R = α for some symbol α∈S. The language denoted by α 
is {α} (L(α) = {α}). 
We need to construct a finite automaton E that accepts L(α). 
Let E be the finite automaton below. 
 

 
        Α           α 
 
   
 
                 Finite automaton E 

 
E consist of an initial state (q0), a final state (qf) and a transition δ(q0, 
α) = qf. In other words, from the initial sate we move to the final state 
with symbol α. E only accepts the string α, therefore E accepts L(R). 
So, R has property P. 

 
2) Induction Step:  

There are four cases we need to show in the induction step: 
2a) Suppose R = R1 + R2, for some regular expressions R1 and R2. The 
language denoted by R1 + R2 is the union of the languages denoted by 
R1 and R2, respectively (L(R1+R2) = L(R1)∪ L(R2)). 

Induction Hypothesis: The languages denoted by R1 and R2 are 
accepted by finite automata, say E1 and E2, respectively, i.e., R1 
and R2 have property P.  

q0 qf 

q0 qf 



 33

We need to construct a finite automaton E that accepts L(R1+R2). 
Let E be the finite automaton below:  

 
 
 
                                 ε          ε 
 
 
 
 
                                    ε       ε 
 
 
 
                                      Finite automaton E 
 

E is constructed from E1 and E2. E starts at initial state q0 and with an ε 
transition can go to the initial state of E1 or E2. It can reach the final 
state of E1 or E2 through a path labeled by a string in L(R1) or L(R2), 
respectively. Once it reaches the accepting state of either of E1 and E2, 
it can reach the final state qf with an ε transition. 
Since E accepts L(R1∪R2), we can conclude that R has property P. 

 
2b) Suppose R = R1R2, for some regular expressions R1 and R2. The 
language denoted by R1R2 is the concatenation of the languages 
denoted by R1 and R2, respectively (L(R1R2) = L(R1)L(R2)). 

Induction Hypothesis: The languages denoted by R1 and R2 are 
accepted by finite automata, say E1 and E2, respectively, i.e., R1 
and R2 have property P.  

We need to construct a finite automaton E that accepts L(R1R2). 
Let E be the finite automaton below:  

 
        ε 
    
 
    
                                           Finite automaton E 
 

E is constructed from E1 and E2. The initial state of E is the initial state 
of E1, and the final state of E is the final state of E2. The only possible 
paths from the initial state to the final state is through E1 (a path which 
is labeled by a string in L(R1)) and then E2 (a path which is labeled by 
a string in L(R2)). So, the only paths in E from initial state to final state 
are the ones labeled by strings in L(R1)L(R2). 
Since E accepts L(R1R2), we can conclude that R has property P. 

            E1 

            E2 

q0 qf 

            E1             E2 



 34

2c) Suppose R = R1
* for some regular expression R1. The language 

denoted by R1
* denotes the closure of L(R1) (L(R1

*) = (L(R1))*). 
Induction Hypothesis: The language denoted by R1 is accepted by 
a finite automaton, say E1, i.e., R1 has property P.  

We need to construct a finite automaton E that accepts L(R1
*). 

Let E be the finite automaton below:  
 

                                 ε 
 

                     ε                                    ε  
 
 
 
 
 
                 ε  
 
 
                                         Finite automaton E 

 
E is constructed from E1. From its initial state (q0), E has two possible 
moves. It can either go to its final state (qf) through an ε transition, or 
go to the initial state of E1. The fact that E can reach the final state 
with ε lets E accept the empty string (ε), which is in L(R1

*) no matter 
what R1 is. In the second case, from the initial state, E can go to the 
initial state of E1 from where it can go through the automaton E1 one 
or more times and then go to the final state. This allows E to accept 
strings in L(R1), L(R1)L(R1), L(R1)L(R1)L(R1), etc., which covers all 
the strings in L(R1

*). 
Since E accepts L(R1

*), we can conclude that R has property P. 
 

2d) Suppose R = (R1), for some regular expression R1. The language 
denoted by (R1) is the same language as R1 (L((R1)) = L(R1)). 

Induction Hypothesis: The language denoted by R1 is accepted by 
a finite automaton, say E1, i.e., R1 has property P. 

We need to construct a finite automaton E that accepts L((R1)). 
Since (R1) denotes the same language as R1 (L(R1) = L((R1))), we can 
define our automaton E to be the same automaton as E1.  
Since E accepts L((R1)), we can conclude that R has property P. 

 
Since R was an arbitrary regular expression and we covered all 
possibilities of the structure of R, we proved the proposition. 
q.e.d  
(Hopcorft et al., 2001, p.102) 
 

            E1 
qf q0 



 35

3.2.2   Context-Free Grammars 
 

Context-free grammars are a more powerful tool for defining languages. In 

addition to the regular languages, they can also formally express recursive definitions of 

languages that cannot be denoted by regular expressions (Hopcroft et al., 2001). Such 

languages are called “context-free languages.” Some of the most important applications 

of context-free grammars are in describing programming languages and data formats 

through document-type-definition (most commonly used in XML), as well as in compiler 

construction (implementing the parser) (ibid). In what follows, I demonstrate through an 

example how structural induction can be used in relation to context-free grammars. 

Consider the language Lpal of palindromes (strings that read the same forward and 

backward, e.g., madam) over the alphabet {0, 1}. 

So, if w is a string and wr is the reverse of w (for example, if w = abc, then wr = cba), 

then w is a palindrome if w = wr. So, Lpal = {w∈{0, 1}*: w = wr}. 

Consider the following inductive definition (c.f. section 2.1, p.11): 

Let A = {0, 1}, U = A*, I = {1, 2}, and B = {ε, 0, 1}, where ε denotes the 
empty string. Let f1: U→U be the unary operation (n1 = 1) defined as 
follows: f1(w) = 0w0, for all w∈U. Let f2: U→U be the unary operation 
(n2 = 1) defined as follows: f2(w) = 1w1, for all w∈U. 
1)   Base Clause: ε, 0, and 1 are palindromes. 
2)   Inductive Clause: If w is a palindrome, 0w0 and 1w1 are palindromes,                           

as well.  
3) Final Clause: No element of A* is a palindrome, unless it has to be one 

by 1) or 2) above. 
 

We call the inductive set defined by the above rules Pal.  

Note: Pal = Lpal. 

To prove that Pal = Lpal we need to prove that Pal⊆  Lpal and that Lpal⊆Pal. 
Statement: Pal⊆  Lpal. 
 



 36

Proof by structural induction: 
Let w be an arbitrary element in Pal.  
To show that w is in Lpal, we perform a proof by induction on the structure 
of w.  
1)   Base Case: Assume that w is either ε, 0, or 1. 
  By the definition of Lpal ε, 0, 1, are in Lpal. 

Therefore, w is in Lpal. 
2)   Induction Step: Assume that w = 0x0, or w = 1x1, where x is in Pal.  

Induction Hypothesis: x is in Lpal. 
By the induction hypothesis, we know that x is in Lpal. Since x is in 
Lpal, x = xr. If x = xr, then 0x0 = 0xr0 and 1x1 = 1xr1.  
So, w = 0x0 = 0xr0 = wr ((0x0)r = 0xr0) and w = 1x1 = wr ((1x1)r = 
1xr1). 
Therefore, w is in Lpal. 

Since w was an arbitrary element in Pal and we covered all possible forms 
of w, we proved the proposition. 

 
Statement: Lpal⊆Pal. 
Proof by strong mathematical induction: 
Let w be an arbitrary string in Lpal.  
To show that w is in Pal, we perform a proof by strong mathematical 
induction on the length of w. 
1)   Base Case: Assume that |w| = 0 or 1.  

If the length of w is 0 or 1, then w must be of the form ε, 0, or 1 (since 
ε denotes the empty string, |ε| = 0).  
Since ε, 0, and 1 are in Pal by the base clause of the inductive 
definition of Pal, we can conclude that w is in Pal. 

2) Induction Step: Assume that |w| > 1. 
      Induction Hypothesis: For all x in Lpal, if |x| < |w|, x is in Pal. 
Since w is in Lpal, it must begin and end with the same symbol (w = 
wr), and since its length is greater than one, w must be of the form 0x0 
or 1x1, where x is in Lpal. 
By the induction hypothesis x is in Pal. Since w is of the form 0x0 or 
1x1 and x is in Pal, 0x0 and 1x1 are also in Pal (by the inductive 
clause of the inductive definition of Pal).Therefore, w is in Pal. 

Since, w was an arbitrary string in Lpal and we covered all the possible 
lengths of w, we proved the proposition. 
q.e.d 
 

Now consider the following grammar Gpal, which expresses the above recursive 

definition of palindromes over {0, 1}:  



 37

Gpal(V, T, P, S}: the set of variables V = {0, 1}, the set of terminals T = {ε, 0,1}, the start 

symbol S = X, and the set of productions P = {X}, where X is defined as follows: 

1. X→ε  
2. X→0 
3. X→1 
4. X→0X0 
5. X→1X1 

 (Hopcroft et al., 2001, p. 171) 
 
For a grammar G, the language L(G) (the language defined by G) is the set of all terminal 

strings that are derived from its start symbol: 

L(G) = {w in T* | S⇒ *w}, where S is the start symbol, T the set of terminal symbols, and 

⇒ * is the derivation relationship that represents zero or more steps (⇒  is the derivation 

relationship for a single step). 

For example, consider the context-free grammar Gpal defined above and the language it 

defines L(Gpal). Let w = 0110110. We can derive w starting with X, therefore, w is a 

string in L(Gpal): X⇒0X0⇒01X10⇒011X110⇒0110110  (X⇒ *0110110). 

If L is defined by some context-free grammar G, then L is said to be a context-free 

language.  

For example, we said that Gpal defines the language of palindromes over {0, 1}. So, the 

set of all palindromes over {0, 1} is a context-free language. 

To prove that L(Gpal) is the set of all palindromes over {0, 1} (i.e., L(Gpal) = Pal), we use 

a proof by induction. We need to prove that Pal⊆  L(Gpal) and L(Gpal)⊆Pal. 

Statement: Pal⊆  L(Gpal).  
Proof by structural induction: 
Let w be an arbitrary element in Pal.  
To show that w is in L(Gpal), we perform a proof by induction on the 
structure of w.  
1)   Base Case: Assume that w is either ε, 0, or 1. 



 38

  Since there are productions X→ ε, X→0, and X→1, we can conclude 
that X ⇒ * w (from X we can derive w) in any of these cases. 
Therefore, w is in L(Gpal). 

2)   Induction Step: Assume that w = 0x0, or w = 1x1, where x is in Pal.  
Induction Hypothesis: x is in L(Gpal), i.e., X⇒ * x (we can derive x 
starting from X). 

2a) w = 0x0. 
There is a derivation of w from X:  X⇒0X0⇒ * 0x0 (by induction 
hypothesis we know that X⇒ * x). 
Therefore, w is in L(Gpal). 

2b) w = 1x1 
There is a derivation of w from X:  X⇒1X1⇒ *1x1 (by induction 
hypothesis we know that X⇒ * x). 
Therefore, w is in L(Gpal). 

Since w was an arbitrary element in Pal and we covered all possible forms 
of w, we proved the proposition. 
 
Statement: L(Gpal)⊆Pal. 
To prove the above statement we need to perform a proof by induction on 
the number of steps in a derivation of a string w in L(Gpal) from X 
(X⇒ *w) and show that w is in Pal.  
 
Since there is at least one step in a derivation of w from X, we need to 
perform a proof by induction on positive natural numbers (IN+ = {n∈IN: 
n>0}), rather than on natural numbers (IN). The set of all positive natural 
numbers is also an inductive set. The inductive definition of positive 
natural numbers is as follows: 
 
Let U = IR, I = {1}, and B = {1}. Let f1: U→U be the unary operation (n1 
= 1) defined as follows: f1(n) = n + 1, for all n∈U. 
1)   Base Clause: 1 is a positive natural number. 
2)   Inductive Clause: If n is a positive natural number, then f1(n) = n + 1 is 

also a positive natural number. 
4) Final Clause: An element of U is a positive natural number if and only 

if it has to be one by 1) or 2) above. 
 

            Now, let us prove our statement: 
 
Proof by mathematical induction (on positive natural numbers): 
Let w be an arbitrary string in L(Gpal), i.e., X⇒ *w.  
As I have mentioned above, to show that w is in Pal, we perform a proof 
by mathematical induction on the number n of steps in a derivation of w 
from X. 
1)   Base Case: Assume that n = 1, i.e., from X we can derive w in one 

step.  



 39

If the derivation consists of one step, then it must use one of the 
productions X→ ε, X→0, or X→1. Since ε, 0, and 1 are in Pal, we 
can conclude that w is in Pal. 

2)   Induction Step: Assume that n = k+1 for some natural number k (k≥1), 
i.e., from X we can derive w in k+1 steps. 

Induction Hypothesis: If X⇒ *x in k steps (if we can derive x from 
X in k steps), then x is in Pal. 

For the derivation of w to take k + 1 steps, it must be at least two steps. 
The only productions that allow that are X→0X0 and X→1X1. So, 
the derivation must be of the form X⇒0X0⇒ *0x0 = w or 
X⇒1X1⇒ *1x1 = w. 
We can derive x from X in k steps (X⇒ *x in k steps), so by the 
induction hypothesis, we can conclude that x is in Pal. If x is in Pal, 
then 0x0 and 1x1 are also in Pal (by the inductive clause of the 
inductive definition of Pal).  
Therefore, w is in Pal. 

Since, w was an arbitrary string in L(Gpal) and we covered all the possible 
number of steps in a derivation of w from X, we proved the proposition. 
q.e.d 

 
Note: Hopcroft et al. (2001) also proves this (p. 177), but in a different 
way. The difference is that they take it for granted that Lpal = Pal and 
therefore, they do not use structural induction. They instead use 
mathematical induction on the length of a string w over {0, 1}*. 

 
3.2.3   Context-Free Languages 

As I mentioned in the previous section, context-free grammars are the most 

commonly used vehicle to define context-free languages. Moreover, context-free 

languages can also be defined inductively (although sometimes it is by mutual induction, 

which we do not discuss here), and to prove their properties we can use structural 

induction. One important category of languages that can be defined inductively is 

programming languages—a fact that is often not made explicit. An inductive definition of 

a programming language along with proofs of its properties by structural induction can be 

found in Pierce (2002). 



 40

 In what follows, I present an example of how a simple context-free language can 

be defined inductively (rather than by a context-free grammar) and how structural 

induction can be used to prove its properties. 

Consider the following inductive definition of a context-free language L (c.f. section 2.1, 

p.11): 

Let U = {a, b}*. Let B = ε, where ε is the empty string. Let f1, f2: U2→U 
be binary operations (n1 = n2 = 2) defined as follows: f1(F, G) = aFbG and 
f2(F, G) = bFaG for all F, G∈U. 
1) Base Clause: ε∈L. 
2) Inductive Clause: If strings S1,S2∈L, then string aS1bS2∈L and string 

bS1aS2∈L. 
3) Final Clause: No element of U is in L unless it has to be one by 1) or 2)              
                          above. 

Now, consider the following statement: “Every string S∈L has the following property P: 

S has an equal number of a’s and b’s.” For the sake of simplicity, we denote the number 

of a’s and b’s in S by #a(S) and #b(S), respectively. To prove the above statement, we use 

a proof by induction on the structure of strings in L. 

Proof by structural induction: 
Let S be an arbitrary string in L 
1) Base Case:  

Suppose S = ε.  
     #a(S) = #b(S) = 0. Therefore, S has property P.  
2) Inductive Step:  

a) Suppose S = aS1bS2, where S1,S2∈L. 
Induction Hypothesis: #a(S1) = #b(S1) and #a(S2) = #b(S2) (i.e., S1 
and S2 have property P). 

#a(S) = #a(S1) + #a(S2) + 1.  
#b(S) = #b(S1) + #b(S2) + 1.  
So, by the induction hypothesis, #a(S) = #b(S). Therefore, S has 
property P. 

b) Suppose S = bS1aS2, where S1,S2∈L. This case is the same as 2a). 
Since S was an arbitrary string in L and we covered all possibilities of the 
structure of S, we proved the statement. 

            q.e.d. 



 41

3.3   Algorithm Correctness        

 An important area of computer science where proofs by induction are also used is 

algorithm correctness (Weiss, 2006; Page, 2003; Cormen et al., 2001; Krone & Feil, 

2001; Best, 1996; Lynch, 1996). An algorithm is correct if it terminates and produces the 

correct output for every possible input (Cormen et al., 2001), meaning that it does what it 

is supposed to do according to its specifications. In what follows, I chose some specific 

algorithms to demonstrate how proofs by induction can be applied to prove their 

correctness. To prove the correctness of an algorithm, we have to prove that the algorithm 

terminates and that it produces the correct output for every possible input. Termination of 

an algorithm is not of interest in my dissertation, so I will only focus on proving that an 

algorithm produces the correct output for every possible input. One can think that we can 

do this by testing the output of the algorithm for all possible inputs, but, it cannot really 

help us prove the correctness of the algorithm for all inputs, since the set of all possible 

inputs can be infinite and we will not be able to test the algorithm with every possible 

input. That is where proofs by induction come into place.  

3.3.1   A Simple Algorithm: The Factorial 

Let us consider the following recursive algorithm which calculates the factorial of 

a natural number n: 

Factorial (n) 
1. if n = 0  
2.    return   1  
3. else 
4.    return   n*Factorial (n-1) 
 

Statement: For every natural number n (every possible input), Factorial(n) returns n! 

(produces the correct output). 



 42

Proof by mathematical induction: 
Let n be an arbitrary natural number (arbitrary input). 
1)   Base Case: Assume that n = 0. 

According to lines 1 and 2 of the algorithm, Factorial(0) returns 1. We 
also know by the definition of factorial that 0! = 1. 
Therefore, Factorial(0) returns 0! 

2)   Induction Step: Assume that n = k+1, where k is a natural number. 
Induction Hypothesis: Factorial(k) returns k! 

We need to show that Factorial(k+1) returns (k+1)! 
Since n ≠ 0, lines 3 and 4 of the algorithm will be executed. 
According to line 4, Factorial(k+1) returns (k+1)*Factorial(k).  
By the induction hypothesis, we know that Factorial(k) returns k!.  
So, Factorial(k+1) returns (k+1)*k! 
By the definition of factorial, (k+1)! = (k+1)*k! 
Therefore, Factorial(k+1) returns (k+1)! 

Since the possible inputs to Factorial(n) can have only one of these two 
forms, we have completed our proof that for every possible input n∈IN, 
Factorial(n) produces the correct output n!. 
q.e.d 
 

3.3.2   A More Complex Algorithm: The Quicksort 

The Quicksort algorithm is used to sort a non-empty list of elements. The 

algorithm is as follows: 

Quicksort ( A, p, r)  
1. if p < r  
2.     then pivot := Partition(A, p, r)  
3.              Quicksort (A, p, pivot-1)  
4.              Quicksort (A, pivot+1, r)  
 
Partition (A, p, r)  
x := A[p]  
i := p - 1  
j := r + 1  
while True  
   do repeat  j := j - 1  
          until A[j] <= x  
        repeat  i := i + 1  
          until A[i] >= x  
      if i < j  
        then exchange A[i] <-> A[j]  
     else return j 
(Cormen et al., 2001, p.146)  



 43

Note: A is the list we want to sort, p is the first index of the list (or sublist), and r is the 

last index.  The first call to our algorithm is Quicksort(A, 1, A.length()).We consider that 

the first index of a list is one and that the last index of a list is the length of the list, where 

the length of a list refers to the number of elements in the list. For example, if a list 

contains only two elements, then the index of the first element will be one and of the 

second (and last) element will be two. 

To sort a list A, Quicksort(A, p, r) is called recursively with two sublists 

A[p…pivot-1] and A[pivot+1…r] as input, where pivot is an index chosen by the 

Partition(A, p, r) algorithm. 

The Partition(A, p, r) algorithm accepts a list A[p…r], chooses an index that 

serves as the pivot, and rearranges the elements of A according to the element at the pivot 

position. The elements of A are rearranged into two sublists A[p…pivot-1] and 

A[pivot+1…r], where each element of A[p…pivot-1] is less than or equal to A[pivot], 

which is less than or equal to each element in A[pivot+1…r]. Partition(A, p, r) also 

calculates and returns the new index (after the rearrangement of the elements) of the 

element originally at pivot index. 

For the sake of simplicity, I will omit the proof of the Partition(A, p, r) and 

assume that we already proved that it is correct (the proof of correctness of the 

Partition(A, p, r) algorithm can be found in Cormen et al., 2001, p.147-148). 

To prove that Quicksort(A, p, r) correctly sorts list A, we use a proof by induction 

on the length of A (proof by induction on numbers). To be more precise, we use strong 

induction on numbers, which allows us to perform a “cleaner” proof. 



 44

Consider the following statement: For every list A[p…r] (every possible input), 

Quicksort(A, p, r) correctly sorts A[p…r] (produces the correct output). 

Note: since A is a non-empty list (it contains at least one element), to prove the above 
statement we perform a proof by strong induction on positive natural numbers (IN+), 
rather than on natural numbers (IN).  
 

Proof by strong mathematical induction (on positive natural numbers): 
Let A be an arbitrary list of length n. 
1)   Base Case: Assume that n = 1 (the length of A is 1, i.e., A contains 

only one element).  
This means that the call to the algorithm is Quicksort(A, 1, 1). 
Then, p = 1 and r = 1. So, p is not less than r (actually, p = r) and the 
statement in line 1 will fail (the algorithm will terminate).  
Since there was only one element in A, A is sorted. 
Therefore, Quicksort(A, p, r) correctly sorts list A. 

2) Induction Step: Assume that n = m+1, where m is a positive natural 
number greater than 0 (A is of length m+1, i.e., A contains more than 
one element). 

Induction Hypothesis: Quicksort(A, p, r) correctly sorts any list 
A of length r, for all 1 < r ≤ m.  

We want to prove that Quicksort(A, p, m+1) correctly sorts list A, 
where A is of length m+1. 
The first call to the algorithm is Quicksort(A, 1, m+1). Then, the 
statement in line 1 is true, since p < r (1 < m+1). So, lines 2, 3, and 4 
will be executed. 
By line 2, pivot = Partition(A, p, r). 
Since we assumed that we proved Partition(A, p, r) to be correct, 
Partition(A, p, r) will correctly rearrange the elements in A and will 
return the index pivot, on which the recursive call will be made on the 
sublists A[p…pivot-1], which is of length pivot-1, and 
A[pivot+1…m+1], which is of length m+1-pivot (lines 3 and 4). 
By induction hypothesis, every call to Quicksort(A, p, pivot-1) and 
Quicksort(A, pivot+1, m+1) will correctly sort A[p…pivot-1] and 
A[pivot+1…m+1], since both sublists have length less than or equal to 
m. (for the first sublist we have pivot – 1 <  m+1 and for the second 
sublist we have m+1-pivot < m+1). 
 
In the last recursive calls to Quicksort(A, p, pivot-1) and Quicksort(A, 
pivot+1, r) p will not be less than r (actually p = r) and line 1 will fail 
(the algorithm will terminate), since there will be only one element in 
the sublists A[p…pivot-1] and A[pivot+1, r] (p = pivot-1 and pivot+1 = 
r).  



 45

Since the sorting of the sublists of A is performed directly on A, upon 
termination of the algorithm, A will be sorted.  

Since A was an arbitrary list and we covered all the possible lengths of A, 
we proved the proposition. 
q.e.d 
 

3.3.3   An Algorithm that Manipulates Inductively Defined Objects 

When we want to prove the correctness of an algorithm that manipulates 

inductively defined elements (objects), a proof by structural induction is the best 

approach, since it can provide a streamlined proof that follows directly from the structure 

of the algorithm. In what follows, we consider an algorithm on well-formed formulas 

(wffs), which are inductively defined.  

The inductive definition of wffs is as follows (c.f. section 2.1, p.11): 

Let U = {(, ), ∨¬, , Ai: i∈IN}*, where the Ai’s (i∈IN) are atomic 
sentences, I = {1,2}, and B = {Ai: i∈IN}. Let f1: U→U be the unary 
operation (n1 = 1) defined as follows: f1(x) = neg(x) = ¬ x, for all x∈U. 
Let f2(x): U2→U be the binary operation (n2 = 2) defined as follows: 
f2(x,y) = or(x, y) = (x∨ y), for all x,y∈U.  
1) Base Clause: All atomic sentences Ai (i∈IN) are wffs, called atomic 

formulas. 
2) Inductive Clause: If F is a wff, then neg(F) = ¬F is also a wff, called 

“negation of F.” If G and H are wffs, then or(G, H) = (G∨H) is also a 
wff, called “disjunction of G and H.”  

3) Final Clause: No element of U is a wff unless it has to be one by 1) or 2) 
above. 

Now, consider the following recursive algorithm on wffs, which returns true if the input 

string is a wff and false otherwise. Note: For the sake of simplicity (and because programs 

are finite), in our algorithm we consider A and B to be the only atomic sentences. 

             is_wff(String S)    
1.     if (S.equals(‘A’) || S.equals(‘B’)) 
2.                 return true; 
3.     else if (S.stratsWith(‘¬ ’)) 
4.                 return is_wff(S.substring(1)); 
5.     else if (S.startsWith(‘(‘) && S.endsWith(‘)’))    



 46

6.                 int pos = S.indexOf(‘∨ ’); 
7.                 if (pos > -1) 
8.                       return(is_wff(S.substring(1,pos)) &&                             
                           is_wff(S.substring(pos + 1, S.length() - 1)));      
9.      return false;     

 
Also for simplicity, we will only consider the following claim on our algorithm: 

Claim: For any input string S that is a wff, our algorithm (i.e., is_wff(S)) will return true. 

For example, given the input string S = (¬A∨ ¬ ¬B), our algorithm will return true. 

If the input string to the algorithm is a wff, then it can only be of one of three types: A or 

B, ¬G, where G is a wff, or (G∨H), where G and H are wffs.  

To prove our claim, we use induction on the structure of wffs. 

Proof by structural induction: 
Let F be an arbitrary wff. 
1) Base Case:  

a) Suppose F = A. When we call our algorithm with F as the input 
string (i.e., is_wff(A)), line 1 will be satisfied and our algorithm 
will return true (line 2).  

b) The case F = B is the same as the above. 
 
2) Induction Step:  

a) Suppose F =¬G, where G is a wff. 
Induction Hypothesis: For the input string G, our algorithm                  
                                    returns true (i.e., is_wff(G) returns true). 

When we call our algorithm with F as the input string (i.e., 
is_wff(¬G)), line 3 will be satisfied and our algorithm will return 
the result of a call to itself with G as the input string (line 4). 
By the induction hypothesis, we know that our algorithm will return 
true for the input string G. 
Therefore, for wff F, our algorithm returns true. 

b) Suppose F = (G∨H), where G and H are wffs. 
Induction Hypothesis: For the input strings G and H, our algorithm                
                   returns  true (i.e., is_wff(G) and is_wff(H) return true). 

When we call our algorithm with F as the input string (i.e., 
is_wff((G∨H))), line 5 will be satisfied, and since ∨  is included in 
F, variable pos will get the index position of ∨  in F (line 6). Then, 
our algorithm will return the result of a call to itself with G and H as 
the input strings (line 8). 



 47

By the induction hypothesis, we know that our algorithm will return 
true for both input strings G and H. 
Therefore, for wff F, our algorithm returns true. 

Since F was an arbitrary wff and we covered all possibilities for the 
structure of F, we proved the claim. 
q.e.d. 

 
3.4   Programming Languages   
 

Programming languages are defined through syntactic and semantic rules that 

determine their structure and meaning, respectively. The purpose of the syntactic rules 

(syntax) of a programming language is to describe all the possible combinations of 

symbols that form a program, and the purpose of the semantic rules (semantics) is to give 

meaning to these combinations of symbols. There are different ways of defining the 

syntax of a programming language. One of them is through an inductive definition of the 

terms of the language (Pierce, 2002).  

For the sake of simplicity, in the next example I will use a rudimentary 

programming language over the alphabet {true, false, 0, succ, pred, iszero, if, then, else}. 

The following is the inductive definition of the syntax of the terms of our programming 

language (c.f. section 2.1, p.11): 

Let U = {true, false, 0, succ, pred, iszero, if, then, else}*, I = {1, 2, 3, 4}, 
and B = {true, false, 0}. Let f1: U→  U be the unary operation (n1 = 1) 
defined as follows: f1(t) = succ t, for all t∈U. Let f2: U→  U be the unary 
operation (n2 = 1) defined as follows: f2(t) = pred t, for all t∈U. Let f3: 
U→  U be the unary operation (n3 = 1) defined as follows: f3(t) = iszero t, 
for all t∈U. Let f4: U→  U be the ternary operation (n4=3) defined as 
follows: f4(t1, t2, t3)= if t1 then t2 else t3, for all t1, t2, t3∈U. 
1)   Base Clause: true, false, and 0 are terms. 
2)   Inductive Clause: If t1 is a term, then f1(t1) = succ t1, f2(t1) = pred t1, 

and f3(t1) = iszero t1 are terms, as well. If t1, t2, and t3 are terms, then 
f4(t1, t2, t3) = if t1 then t2 else t3 is a term, as well. 

3)   Final Clause: No element of U is a term, unless it has to be one by 1) 
or 2) above. 

(Pierce, 2002, p. 26) 



 48

According to the above definition, some examples of terms are succ succ 0,  if 

iszero then true else false,  succ pred succ 0,  is zero true,  and  succ pred iszero true.  

Notice that the above definition of terms only defines the syntax of our programming 

language and not the semantics. Therefore, some terms may be syntactically correct in 

our programming language, but semantically incorrect. For example, let true and false be 

Boolean constants, 0 a numeric constant, and succ an arithmetic operation (the successor 

operation). Then, succ succ 0 (the successor of the successor of 0) is syntactically as well 

as semantically correct. On the other hand, succ succ true (the successor of the successor 

of true) is syntactically correct, but semantically incorrect, since succ is an arithmetic 

operation and not a Boolean operation. 

Now, consider the following property P of terms: “The number of distinct 

constants in t is no greater than the size of t (i.e., |Consts(t)| ≤ size(t)).” 

Consts(t) is the set containing all the constants in a term t, and size(t) is the size of t. A 

constant is any of the elements true, false, and 0, and the size of a term t is defined as 

follows: 

size(t): 

size(true) = size(false) = size(0) = 1.  

size(succ(t)) = size(pred(t)) = size(iszero(t)) = size(t) + 1.  

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1. 

Claim: Every term t has property P.  

To prove the above claim, we use proof by induction on the structure of terms. 

Proof by structural induction: 
Let t be an arbitrary term. 
1)   Base Case: Assume that t is either true, false, or 0. 



 49

true, false, and 0 are all constants. So, |Consts(t)| = |{t}| = 1. Also, 
size(t) = 1. Therefore, t has property P (1≤1). 

2)   Induction Step:  
2a) Assume that t is of the form succ t1, pred t1, or iszero t1, where t1 is a 

term. 
 Induction hypothesis: Term t1 has property P, i.e., |Consts(t1)| ≤ 
size(t1). 

Consts(t) = Consts(succ t1) = Consts(t1). So, |Consts(t)|  = |Consts(t1)|. 
size(t) = size(succ t1) = size(t1) + 1. 
By the induction hypothesis, |Consts(t1)| ≤ size(t1).  
We also know that size(t1) < size(t1) + 1. So, |Consts(t1)| < size(t1) + 1, 
which implies that  |Consts(t)| < size(t). 
Therefore, term t = succ t1 has property P. 
The same is true for terms pred t1 and iszero t1. 
Consts(t) = Consts(pred t1) = Consts(t1). So, |Consts(t)|  = |Consts(t1)|. 
size(t) = size(pred t1) = size(t1) + 1. 
By the induction hypothesis, |Consts(t1)| ≤ size(t1). 
We also know that size(t1) < size(t1) + 1. So, |Consts(t1)| < size(t1) + 1, 
which implies that  |Consts(t)| < size(t). 
Therefore, term t = pred t1 has property P. 
Consts(t) = Consts(iszero t1)= Consts(t1). So, |Consts(t)|  = |Consts(t1)|. 
size(t) = size(iszero t1) = size(t1)+1. 
By the induction hypothesis, |Consts(t1)| ≤ size(t1) 
We also know that size(t1) < size(t1) + 1. So, |Consts(t1)| < size(t1) + 1, 
which implies that  |Consts(t)| < size(t). 
Therefore, term t = iszero t1 has property P. 

2b) Assume that t is of the form if t1 then t2 else t3, where t1, t2, and t3 are 
terms. 

            Induction hypothesis: The terms t1, t2, and t3 have property P, i.e.,  
            |Consts(t1)|≤ size(t1), |Consts(t2)| ≤size(t2), and |Consts(t3)|≤size(t3). 

Consts(t)=Consts(if t1 then t2 else t3)=Consts(t1)∪Consts(t2)∪Consts(t3). 
size(t) = size(if t1 then t2 else t3) =  size(t1) + size(t2) + size(t3) +1. 
So, |Consts(t)| = |Consts(t1)∪Consts(t2)∪Consts(t3)| ≤ | Consts(t1)| + 
|Consts(t2)| + |Consts(t3)|. 
By the induction hypothesis, |Consts(t1)| + |Consts(t2)| + |Consts(t3)| ≤ 
size(t1) + size(t2) + size(t3), since |Consts(t1)| ≤ size(t1), |Consts(t2)| ≤ 
size(t2), and |Consts(t3)| ≤ size(t3). 
We also know that size(t1) + size(t2) + size(t3) < size(t1) + size(t2) + 
size(t3) +1. 
So, |Consts(t1)| + |Consts(t2)| + |Consts(t3)| < size(t1) + size(t2) + 
size(t3) + 1, which implies that |Consts(t)| < size(t). 
Therefore, term t has property P. 

Since t was an arbitrary term and we covered all the possibilities of the 
structure of t, we proved the proposition. 
(Pierce, 2002, p. 30) 



 50

CHAPTER 4 

SOURCES OF COMPUTER SCIENCE STUDENTS’ DIFFICULTIES WITH 

PROOFS BY INDUCTION: A STUDY 

 

As I mentioned earlier (section 1.2), as part of my dissertation I conducted a study 

to identify possible sources of computer science students’ difficulties with proofs by 

induction, and more precisely, to find whether students’ lack of understanding of the set 

theoretical concepts presupposed in proofs by induction is a source of such difficulties 

(see also Polycarpou, Pasztor, & Alacaci, 2006 and Polycarpou, 2006). My study was 

contextualized within the undergraduate computer science curriculum.  

4.1   Questions and Hypotheses 
 
Question #1:  How does students’ understanding of an inductive definition and 

their performance on proofs by induction change after formal 
instruction? 

 
Question #2:  Do students have difficulties with the procedural or rather the 

conceptual aspects of proofs by induction? In other words, do 
students have difficulties understanding the steps involved in a 
proof by induction or do they have difficulties understanding the 
concepts involved in and leading up to proofs by induction? 

 
Question #3:  Do students who successfully perform proofs by induction have a 

deep and general understanding of induction, or do they perform 
them mechanically, and if so, to what extent? 

 
Hypothesis #1:  Students’ performance with proofs by induction will improve after 

class instruction but still not be as it is desirable. 
 
Hypothesis #2:            There is a close correlation between students’ understanding of                             
                                    inductive definitions and their performance of proofs by induction. 
 
Hypothesis #3:  Students will perform proofs by induction without a conceptual 

understanding of the process involved.   
 



 51

Hypothesis #4:  Students’ performance will be affected by their previous 
encounters with similar problems, as well as their everyday life 
experiences.  

 
4.2   Participants and Procedures 
 

As part of my study, I developed an instrument which I administered to a sample 

of computer science students twice: once before (pretest), and once after (posttest) formal 

instruction of induction. To minimize the possibility of students remembering the 

problem presented in the instrument, I administered the pretest two months prior to 

formal instruction of induction. 

Participants of my study were 66 undergraduate (mostly junior) computer science 

majors taking a “Logic for Computer Science” course. I chose this course because it 

introduces students to proofs by structural induction. In addition, a prerequisite of this 

course is “Discrete Math,” which introduces students to proofs by mathematical 

induction. In a “Logic for Computer Science” course, usually four class periods are spent 

on structural induction. My study was done as part of the course. Students were given 

participation or extra credit points for the class, contingent on making an honest effort to 

answer all questions in the instrument to the best of their knowledge. To ensure diversity 

of my population, I administered the instrument to two sections of the course taught by 

different professors. 

Between pretest and posttest, students were first introduced to the inductive 

definition of well-formed formulas (wffs) and proofs by induction of their properties, 

followed by a number of similar inductive definitions and proofs.  The students were then 

introduced to the general procedure involved in proofs by structural induction. This was 



 52

backed up by examples and homework problems, to amplify students’ mastering of 

induction. 

4.3   Instrument 

I designed my instrument to check students’ understanding of inductive 

definitions and its correlation with students’ performance on proofs by induction. In the 

instrument, I defined inductively variable names (IPO-words) for a fictive programming 

language (IPO). The following text was presented at the beginning of the instrument: 

 “As most of you know by now, most programming languages have their 
own requirements for defining variable names. There is a new 
programming language out on the market, called IPO. In IPO, variable 
names are called IPO-words, and they are constructed from the 
characters of the set {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, 
w, x, y, z, “, ”, _}, using the following rules:  
 
1.   Any member of the set {a, …, z} is an IPO-word. 
2.   If W is an IPO-word, then “W” is also an IPO-word (in other words, 
an IPO-word in quotes is also an IPO-word). 
3.   If W 1 and W 2 are IPO-words, then W 1_W 2 is also an IPO-word (in 
other words, two IPO-words concatenated by underscore form a new IPO-
word). 
4.   Nothing is an IPO-word unless it has to be one by 1., 2., or 3. above. 
 
The length of an IPO-word refers to the number of characters in an IPO-
word, where a character is any lower case letter a through z, an opening 
or closing quotation mark, or an underscore.” 

 
Following this text and definition were six questions concerning the structure of IPO-

words.  I designed each question to test students’ conceptual understanding of the 

definition of IPO-words. 

1) First question: “Identify which of the following strings are and which 
are not IPO-words and explain why. Mark the appropriate box.  

      S1: Apple                       □  No   □  Yes _______________ 
      S2: A_p_p_l_e               □ No    □  Yes  _______________ 
      S3: a_p“_p_l”_e            □  No   □  Yes _______________ 
      S4: “a_p”_“p_l_e”            □  No   □  Yes  _______________ 



 53

      S5: a_“p_p”_l_e               □  No   □  Yes _______________ 
      S6: a_p“”_p_l_e               □  No   □  Yes _______________ 
      S7: a_p“_”_p_l_e              □  No   □  Yes _______________ 
      S8: a_p_p_L_e                   □  No   □  Yes _______________ 
      S9: “r_e_d”_“a_p_p_l_e”        □  No   □  Yes _______________ 
      S10: green_apple              □  No   □  Yes ______________ .”  
 

In order to correctly identify the above strings, students must have a good understanding 

of the inductive definition of IPO-words. Strings S4 (“a_p”_“p_l_e”), S5 

(a_“p_p”_l_e), and S9 (“r_e_d”_“a_p_p_l_e”) are the only IPO-words.  

I included strings S1 (Apple), S2 (A_p_p_l_e), and S10 (green_apple) to test the 

robustness of students’ understanding of the definition, specifically, whether familiarity 

from earlier encounters with similar strings in other programming languages or just 

everyday English affects students’ understanding. I expected more students to misidentify 

strings S1, S2, and S10 than any other string. I also included strings S2 (A_p_p_l_e) and 

S8 (a_p_p_L_e) to differentiate students’ biases in cases where the first letter is 

uppercase (S2) from the cases where an uppercase letter appears in the middle of the 

string (S8). I expected more students to misidentify string S2 as an IPO-word than string 

S8. 

2) Second question: “What is the minimum length of an IPO-word? Give 
an example of an IPO-word of that length.” 

 
To answer this question, students must understand the base clause in the definition of an 

IPO-word. The smallest length of an IPO-word is one—the length of an element of the 

set {a, …, z}. 

3) Third question: “Can you also give the maximum length of an IPO-
word? Explain.” 
 



 54

To answer this question, students need to understand that the set of IPO-words, which is 

an inductive set, is infinite. There is no limit on the length of an IPO-word. 

4) Fourth question: “Try to construct an IPO-word of length greater  
than 6.”  
 

Constructing an IPO-word of length greater than 6 forces students to use more than one 

rule of the definition of IPO-words, each more than once. 

5) Fifth question: “Can you also construct an IPO-word of length  
equal to 8?”  
 

Here, I expected students to realize that they cannot construct such an IPO-word, because 

IPO-words can only have odd length. This is exactly what I asked them to prove in the 

next question. 

6) Sixth question: “Statement: For every IPO-word W, the following 
property P(W) holds: The length of W is odd (that is, W has an odd 
number of characters, where a character is any member of the set {a, …, 
z, “, ”, _}).  
Do you think the above statement is correct? Whatever your answer is, try 
to prove it (Hint: use the rules for constructing an IPO-word).” 
 

If a student correctly answers question five, I expect her/him to also realize that the given 

statement is correct. The aim of this question is to test whether a) students recognize that 

the proof of the statement calls for induction, and b) they are able to correctly perform the 

proof. 

At the end of each question, I asked students to report the thoughts and feelings 

they experienced while answering the question. In Alacaci & Pasztor (2002), this 

information has provided powerful qualitative insights into students’ thinking.  

The full instrument along with the answers to its questions can be found in Appendix A, 

p.105. 



 55

4.4   Results 
 

I analyzed data from both pretest and posttest quantitatively, as well as 

qualitatively. My quantitative analysis was only based on students’ answers, and its 

results are summarized in Graphs 1 and 2. The percentages in each graph are rounded to 

the nearest whole number. Graph 1 reports the percentages of students’ correct answers in 

each question for the pretest and posttest, respectively. The percentage for the first 

question (Q1) represents the students who correctly identified all strings. The percentage 

for the sixth question (Q6) represents the students who agreed with the statement, 

recognized that they can prove it by induction, and did so correctly. Graph 2 shows a 

more detailed analysis of the first question, where the students’ success rate for each 

individual string is presented for the pretest and posttest, respectively. My qualitative 

analysis was based on students’ answers and comments, as well as their thoughts and 

feelings documented at the end of each question. 

 

 

 

 

 

 

 

 Graph 1: Percentages of students’ correct answers for each question. 
 

 

0%

50%

100%

Su
cc

es
s 

ra
te

Question
Pretest 42% 90% 86% 62% 38% 15%

Posttest 65% 95% 97% 79% 71% 56%

Q1 Q2 Q3 Q4 Q5 Q6



 56

 

 

 

 

 

 

 

 
       Graph 2: Percentages of students’ correct answers for each string in the first question. 

 

As we can see in Graph 1, there was an increase in the students’ success rate in all 

of the questions in the posttest compared to the pretest. This suggests that students’ 

understanding of inductive definitions and their performance on proofs by induction 

improved after instruction. However, this was not the case with some individual strings. 

According to Graph 2, my hypothesis for strings S2 (A_p_p_l_e) and S8 (a_p_p_L_e) 

was confirmed. In the posttest, string S2 had a 77%, while string S8 had a 97% success 

rate. Neither string is an IPO-word: each includes an “illegal” character (A and L, 

respectively). Moreover, the success rate for strings S1 (Apple) and S2 actually decreased 

after instruction, and string S10 (green_apple) had the lowest success rate. This suggests 

that even after formal instruction students had difficulties identifying these strings, which 

is again what I expected. Based on these results, I concluded that students were 

influenced by their current (background) knowledge on variable naming in other 

programming languages and/or on strings in their everyday language.  

0%

20%

40%

60%

80%

100%

Su
cc

es
s 

Ra
te

String

Pretest 94% 86% 77% 97% 94% 82% 70% 91% 94% 59%

Posttest 90% 77% 91% 100 97% 94% 91% 97% 97% 74%

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10



 57

Furthermore, the results of my qualitative analysis suggest that students were also 

influenced by the context in which the problem is presented. For example, one student 

commented, “it is confusing to know that a variable name or IPO-word can have opening 

(“) and closing (”) quotes within it, although it is defined by rule 2.” On average, students 

who made similar comments misidentified three out of nine strings in the first question, 

and incorrectly answered questions four, five, and six. The same was true for students 

who commented that the maximum length of an IPO-word depends on the computer’s 

capacity and performance. Although these students realized that there is no length limit 

on IPO-words, they were influenced by the fact that there is a limit on the computer’s 

ability to process variable names. Due to their context bias, they overlooked the fact that 

this question was purely theoretical, and they approached the solution from the 

implementation point of view, which was irrelevant to the question. 

In addition, my results suggest that there is a close correlation between students’ 

understanding of inductive definitions and their performance on proofs by induction. In 

the posttest 73% of the students understood the definition of IPO-words (i.e., correctly 

answered most of the questions), while 27% did not (i.e., misidentified at least two out of 

nine strings in the first question, and incorrectly answered at least two more questions). 

Furthermore, 71% of the students who understood the definition of IPO-words 

successfully proved the statement by induction (i.e., recognized that they can prove the 

statement by induction, and did so correctly). Finally, 83% of the students who did not 

understand the definition were not able to successfully perform the proof.  

I further analyzed qualitatively the answers of the students who were not able to 

successfully prove the statement in the sixth question in the posttest (29 students). I 



 58

divided students into the following four categories (A-D), according to their conceptual 

level of understanding:  

Category A (eight students): students who had conceptual understanding of both the 

process involved in the proof and the definition of IPO-words, but had difficulties 

articulating their thoughts, especially on the induction step.  

The following is a typical example of a student’s proof in this category:  

“The minimum length of an IPO-word is one, for example a or b. 
 In order to create a larger IPO-word I can either concatenate another 
length one IPO-word using underscore or use quotes, for example, a_b or 
“a,” which both have length three.  
So, the length is going to be always odd, for example, |W| = 1, or 3, or 5, 
or 7, or 9, and so on.”  

 
Students in this category correctly answered all of the previous questions. 

Category B (four students): students who used problems encountered earlier in class as 

templates for the proof, had a conceptual understanding of the process involved in the 

proof, but did not have a conceptual understanding of the definition of IPO-words. At 

each step of the proof, they were able to make the necessary adaptations to the structure 

of IPO-words, but they had difficulties proving the induction step, which involves a 

conceptual understanding of the definition of IPO-words.  

For example, one student wrote:  

“Let F be an arbitrary IPO-word.  
1)  Base Case: Assume that F is an IPO-word and we want to prove that 
P(W) holds.  
P(W) holds because an IPO-word can be a character, which is of length 
one.      2)  Induction Step:  
    2a) Suppose that F = “G” where G is an IPO-word.  

 Induction Hypothesis – The IPO-word G has the property P(W).  
         Then assume G holds P(W) and the addition of quotes, then it still   
         holds the property P(W). 
         So P(W) holds.  



 59

   2b) Suppose that F=W1_W2.  
Induction Hypothesis – The IPO-word W1 has the property P(W) 
and the  IPO-word W2 has the property P(W).  

   Since F was an arbitrary formula (underline mine) and we have covered  
  all possibilities for the structure of F, we have proved the proposition.” 

 
Two students in this category answered question five incorrectly, while the other two 

answered all questions correctly.   

Category C (four students): students who used problems encountered earlier in class as 

templates for the proof, but had no conceptual understanding of the process involved or 

the definition of IPO-words. Although they were able to retrieve a similar problem from 

their memory, they were not able to adapt it to the problem at hand.  

For example, one student used the structure of wffs instead of that of IPO-words to prove 

the statement:  

“Let W be an arbitrary IPO-word.  
1) Let W = a, where a is an IPO-word.  
     Then the length of a is one, which is odd. So P(W) holds.  
2a) Let W = ¬G, where G is an IPO-word. P(G) holds by rule 1.  
      Since P(G) holds, then P(¬G) means that the length of G is even. 
However, IPO-words must be constructed be rule 1, 2, or 3, so the length 
of “G” is odd.   
     a_b is odd and a_b_ is even but it is not an IPO-word.  
2b) Let W = G∨H where G and H are IPO-words. Since G and H are 
IPO- words, P(G) and P(H) holds. By induction step 2a there is no IPO-
word of even length. So, P(G∨H) holds.”  

 
This student answered all questions correctly. The other three incorrectly answered 

questions four and five and misidentified strings S2 and S10. 

Category D (six students): students who just agreed with the statement, without even 

trying to prove it. Three students answered all previous questions correctly and three 

answered questions two and five incorrectly and misidentified strings S2 and S7. 



 60

Of the remaining seven students, three did not answer the question and four 

disagreed with the statement. 

Finally, according to Graph 1 (Q5), in the pretest 62% of all students incorrectly 

answered question five (by constructing a string of length eight which they thought was 

an IPO-word). I expected these students to disagree with the statement that all IPO-words 

have odd length, but to my surprise, only 53% of these did so. This implies that 47% of 

these students contradicted themselves in those two questions. The situation did not 

improve much in the posttest. 29% of all students incorrectly answered question five, but 

only 63% of these students disagreed with the statement in the sixth question. Moreover, 

in the posttest 28% of the students who contradicted themselves in questions five and six 

(37%) not only agreed with the statement in the sixth question, but also successfully 

proved it by induction. Based on my qualitative analysis, I concluded that students who 

incorrectly answered the fifth question did not have a good understanding of the 

definition of IPO-words. This suggests that these students performed the proof without 

having a conceptual understanding of the process involved. 

4.5   Summary  

To sum up, the results of my study suggest that there is a close correlation 

between students’ understanding of inductive definitions and their performance on proofs 

by induction. In addition, they suggest that some students perform proofs by induction 

without a conceptual understanding of the process involved. This latter finding refines the 

results of Baker (1995) and the claim of Lowenthal & Eisenberg (1992) and Thompson 

(1996) that students tend to apply induction in a “mechanical way”. According to 

Thompson (1996), sometimes “students appear to be approaching the proof process very 



 61

algorithmically, having memorized a process instead of understanding its origin” (p. 

479). Specifically, I found that students who had conceptual difficulties with proofs by 

induction were those who had difficulties understanding inductive definitions. This 

suggests that the latter is a major source of student’s difficulties with proofs by induction.  

According to Wu Yu (2000), students’ performance with induction can be 

influenced by their current content knowledge. Based on my results, students’ 

performance is additionally influenced by their previous experiences and the context in 

which the problem is presented. Although some students performed well on their class 

quizzes and homework problems on induction, they did not do as well on the problem 

presented in the instrument. Despite of the fact that the latter was very similar to the 

problems students encountered in class, it was situated in a different context. This 

suggests that students have difficulties generalizing proofs to new contexts.  

In addition, the results of my study reinforce Baker’s (1995) findings that 

examples play an important role for students’ decisions about verifying a statement, and 

that students do not understand that an example is not enough to prove their arguments.  

As I mention in the previous section, students in category A used specific examples of 

IPO-words to prove their arguments of the induction step, but they did not prove them to 

be true for every IPO-word. Baker (1995) also pointed out that students use problems 

they encountered before as templates to guide them through a new problem, which is 

accompanied by the fact that students have difficulties performing proofs on problems 

that are not similar to the ones they encountered before. This was also the case with the 

students participating in my study, specifically students in categories B and C. These 

students used problems they encountered earlier in class and more precisely, problems on 



 62

well-formed formulas, as templates for the problem at hand. They created analogies 

between well-formed formulas and IPO-words and used solutions to problems on well-

formed formulas without correctly adapting them to IPO-words—a phenomenon that was 

observed often during the quizzes. According to Thagard (1998), analogical thinking can 

be very beneficial for problem solving and learning, if it is used appropriately. In my 

study, students were given a new problem (IPO-words) and they were able to retrieve a 

similar problem (well-formed formulas) from their memory, but they were not able to 

make the correct mapping between the relevant elements or they were not able to make 

the correct adaptations to the new problem. This suggests that students did not have a 

conceptual understanding of proofs by induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63

CHAPTER 5 

A NEW APROACH TO TEACHING PROOFS BY INDUCTION: AN 

ELECTRONIC BOOK 

 

As I mentioned previously, the major goal of my dissertation is to develop a new 

methodology for teaching proofs by induction for computer science in a way that will 

help computer science students overcome their difficulties and gain conceptual 

understanding of proofs by induction. I have designed and developed an interactive and 

multimodal electronic book (e-book) for learning and teaching proofs by induction for 

computer science. For developing my e-book as well as the teaching methodology I 

follow in my e-book, I took into consideration three things: 1) the results of my study on 

finding possible sources of computer science students’ difficulties with proofs by 

induction, 2) the documented difficulties that students have with proofs by induction, and 

3) the drawbacks of the current methodologies of teaching proofs by induction for 

computer science. 

5.1   Current Approaches to Teaching Proofs by Induction.    

It is a well known secret that students are afraid of proofs and they try to avoid 

them whenever possible. They perceive proofs as “a ritual without meaning” (Ball et al., 

2002) and as something they have to learn as part of a course. Students’ struggle to 

understand proofs, coupled with instructors being so “put off” with students’ 

performances of proofs, leads instructors to often omit proofs of theorems or avoid asking 

students to perform any kind of proofs during their course (Epp, 2003), and to move 



 64

quickly to more “interesting” topics (Epp, 1996). Currently, many instructors teach 

proofs in a mechanical way, based on some underlying pattern. This way of teaching 

proofs has no effect on students’ reasoning abilities, and in addition, it leads students to 

believe that proofs are all about memorizing some steps (Epp, 2003; Steen, 1999). 

Moreover, by asking students to perform a proof according to a certain pattern, 

instructors may be unwillingly reinforcing students’ belief that there is no meaning 

behind proofs (Ball et al., 2002). 

Proofs by induction are no exception. It has been documented in the literature that 

students have difficulties understanding and performing such proofs, even after repeated 

instruction in different courses of their curricula (Polycarpou, 2006; Polycarpou, Pasztor, 

& Alacaci, 2006; Wu Yu, 2000; Sheard, 1998; Thompson, 1996; Baker, 1995; 

Movshovitz-Hadar, 1993; Lowenthal & Eisenberg, 1992; Dubinsky, 1989; Dubinsky 

1986; Dubinsky & Lewin, 1986; Ernest, 1984; Brumfiel, 1974). Even though induction is 

omnipresent in the field of computer science, and the idea of proofs by induction is 

reinforced in many courses of the computer science curriculum, it seems that the seeds 

are not there for students’ understanding to grow.  

Teaching of proofs by induction takes up too little of the current computer science 

curriculum. In most undergraduate computer science programs proofs by structural 

induction are taught as part of a “Logic for Computer Science” course. This is a one 

semester course in which on average three to four class periods are spent on proofs by 

structural induction. Reviewing some of the best textbooks which are being used to teach 

“Logic for Computer Science” (e.g., Gallier, 2003 ; Reeves & Clarke, 2003; Ben-Ari, 

2001; Huth & Ryan, 2001; Burris, 1998; Mendelson, 1997; Schöning, 1989, to mention 



 65

just a few), I found that the current practices of teaching proofs by induction do not 

present the conceptual foundations of proofs by induction. They present proofs by 

induction as a “recipe” to be followed, without explaining the purpose and the role of 

each “ingredient”. To be more precise, they do not connect proofs by induction to the 

Induction Principle that justifies proofs by induction, and they either ignore or pay 

inadequate attention to the set theoretical concepts, such as structures, closed sets, 

inductive sets, and inductive definitions, presupposed in proofs by induction.  As a result, 

students accept proofs by induction as a valid proof technique without having any 

knowledge of the Induction Principle, and they memorize the steps involved in proofs by 

induction without understanding the rationale behind them (Thompson, 1996). According 

to Epp (2003), simply memorizing abstract concepts and learning to apply them 

mechanically has no impact on students’ broader reasoning powers.  

In addition, some textbooks present proofs by structural induction only in a 

specific context. For example, they present them only in relation to well-formed formulas 

(Burris, 1998; Schöning, 1989), which is another topic covered in a “Logic for Computer 

Science” course. According to Hatano (1996), when learners construct their knowledge, it 

is usually domain specific to the context in which the learning occurs, which leads 

learners to not be able to apply their knowledge in other domains (Hatano, 1996, as cited 

in Henderson et al., 2001).  

Moreover, according to the results of the Third International Mathematics and 

Science Study, instructors focus more on teaching students how to do mathematics, rather 

than on understanding what they are doing  (NCES 96, as cited in Steen, 1999). 

Additionally, most educators share what Gibbs (1994) calls the “disseminating 



 66

knowledge” view. According to this view, instructors are more interested in covering the 

appropriate material in class, than ensuring students’ conceptual understanding of the 

material. This is also the view that most instructors who teach proofs by induction share 

today. With such a small time frame allocated to the teaching of proofs by structural 

induction (usually three to four class periods), and with limited time available through the 

whole course and a lot of material to be covered, instructors choose to move towards 

“easier” concepts, rather than struggle to convey the idea of proofs by induction to the 

students. 

According to Baldwin & Kuljis (2000), many authors criticize formal instruction 

for leading students to develop misconceptions and misunderstandings. Regarding proofs 

by induction, students have the following misconceptions and misunderstandings:  

1) Students have the misconception that there is no need to prove the base case and that 

in the induction step they have to assume what they have to prove (Wu Yu, 2000; 

Cuoco & Goldenberg, 1992; Ernest, 1984). This is a result of the current teaching 

practices, which do not accommodate students’ conceptual understanding of the steps 

involved in proofs by induction. If students do not understand the rationale behind the 

base case, then they cannot see why they have to prove it. The same applies to the 

induction step. If students do not understand the rationale behind the induction step, 

and more precisely, the induction hypothesis, then they cannot see the difference 

between the assumption of the induction hypothesis and the claim of the whole proof. 

2) Students have the misconception that an example or several examples are sufficient to 

prove an argument (specifically, the argument of the induction step) (Epp, 2003; 

Ross, 1998; Baker, 1995). According to Epp (2003), this may be due to the fact that 



 67

often instructors omit a proof of a statement and they rely on examples to justify it to 

the students. She also argues that instructors may be unwillingly conveying to the 

students the impression that empirical evidence is sufficient to prove a statement.  

3) Students have the misconception that proofs by induction are only used to prove 

properties of certain structures (Ernest, 1984), and they have difficulties performing 

proofs by induction on problems that are not similar to problems they encountered 

before (Baker, 1995). This misconception arises from the current teaching practices 

of presenting proofs by induction only in relation to specific structures (e.g., well-

formed formulas), and not exposing students to several examples and problems from 

different domains. 

4) Students do not understand that to prove the implication involved in the induction 

step, it suffices to assume the first part of the implication (antecedent) and prove the 

second part (consequent) (Epp, 2003; Hoyles & Küchemann, 2002; Raffalli & David, 

2002; Wu Yu, 2000; Ernest, 1984). According to Wu Yu (2000), this is the result of 

students’ misunderstanding of the difference between the validity of an implication 

statement and the truth of the consequent. This is a more general problem that also 

applies to areas other than computer science, as well as to students’ everyday life. For 

students to fully understand and appreciate the use of implication Hoyles & 

Küchemann (2002) recommend that its teaching includes activities that “focus on 

developing meanings for the structural properties of logical implication in 

mathematics” and “sustains and develops these meanings over time” (p. 219).  

 

 



 68

5.2   A New, Conceptual Approach to Teaching Proofs by Induction: “The 
Conceptual Route.” 

According to Dubinsky (1989), “Induction itself presents specific cognitive 

obstacles and students will continue to be unsuccessful with induction as long as teaching 

methodology continues to ignore these difficulties” (p. 285).  

As I have said in the previous section, neither the ones who theorize about 

teaching, nor the ones who write textbooks for teaching “Logic For Computer Science” 

are concerned with conveying to students the conceptual foundations of proofs by 

induction that are needed for students to get the “big picture” and develop a conceptual 

understanding of proofs by induction. This impacts the whole course of studies of 

computer science students, since proofs by induction are omnipresent in the field of 

computer science. More precisely, computer science students do not gain conceptual 

understanding of induction early in the curriculum and as a result, they have difficulties 

understanding and applying it to more advanced areas later on in their studies. Presenting 

proofs by induction to computer science students as a step-by-step procedure to be 

followed is not enough for them to gain conceptual understanding and get the “big 

picture” of induction.  

  Moreover, the results of my study on finding possible sources of computer 

science students’ difficulties with proofs by induction (see section 4.4, p.55) suggest that 

there is a close correlation between students’ understanding of the set theoretical concepts 

presupposed in proofs by induction and students’ understanding and performance of 

proofs by induction. Additionally, they suggest that students who have conceptual 



 69

difficulties with proofs by induction are those who have difficulties understanding such 

concepts. 

Accordingly, I recommend that the teaching material for proofs by induction be 

based on what I call the “conceptual route” of teaching proofs by induction (Polycarpou, 

Pasztor, & Adjouadi, 2008), which is an operationalization of the Induction Principle 

(see, e.g., Enderton, 2001). The aim of the conceptual route is to shift students’ focus 

from the syntactic form of proofs by induction to their substance, and not to just impose 

proofs by induction on the student like the current methodologies do. Specifically, I 

propose that the teaching material on proofs by induction be streamlined towards 

teaching the set theoretical concepts presupposed in proofs by induction, so that students’ 

understanding can emerge through the conceptual building blocks involved. I propose 

that educators introduce students to the concepts of structures, closed sets, inductive sets, 

and inductive definitions, then connect these concepts to the Induction Principle, and 

finally connect the Induction Principle to proofs by induction. The set theoretical “story” 

behind the conceptual route of teaching proofs by induction that needs to be told for the 

students to get the “big picture” of proofs by induction unfolds as follows (c.f. Enderton, 

2001):  

Note: Even though the literature uses the term “inductive set,” here I use 
the term “B-inductive set,” because I wish to make clear for the students 
that there is a base set (B) from which the inductive set is build up. 
 
A structure is a sequence α = <U, fi>i∈ I, where U is a non empty set, I a 
set of indices, and for each i∈I, fi an ni-place operation on U, where 
ni∈IN, and ni is the arity of fi (i.e., fi: Uni→U). 
 
If α is a structure and S⊆U, then we say that S is closed in α, if for all i∈I 
and for all x1,…, xn i ∈S, fi(x1,…, xn i )∈S. If B⊆U, then we say that S is 
B-inductive in α, if B⊆S and S is closed in α. 



 70

Let α be a structure, B⊆U, and C(B) =∩ {S: S⊆U and S is B-inductive  
in α}. Note that C(B) is a non-empty intersection. 
 
Lemma: C(B) is the smallest B-inductive set in α. 
 
Proof of the above Lemma: 
To show that C(B) is the smallest B-inductive set in α, we first need to show 
that C(B) is B-inductive in α, and then show that it is the smallest such set. 
 
1) Show that C(B) is B-inductive in α: 

To show that C(B) is B-inductive in α, we need to show that B⊆C(B) and 
C(B) is closed in α. 
1a) Show that B⊆C(B). 

C(B) is the intersection of all subsets S of U (S⊆U) that are B-
inductive in α. Since C(B) is a non-empty intersection and B is a 
subset of every B-inductive subset of U, it is also a subset of their 
intersection. Therefore, B is a subset of C(B) (B⊆C(B)). 

1b) Show that C(B) is closed in α. 
To show that C(B) is closed in α, we need to show that for every i∈I 
and every ni-tuple (x1, …, xn i ), if x1, …, xn i ∈C(B), then fi(x1, …, 
xn i )∈C(B). 
Let i∈I and x1, …, xn i ∈C(B) be arbitrary.  
Since C(B) is the intersection of all S that are B-inductive in α,  x1, …, 
xn i ∈S for all such S (by the definition of intersection). 
Knowing that x1, …, xn i ∈S for all S that are B-inductive in α, and that 
every such S is closed in α, we can conclude that fi(x1, …, xn i )∈S for 
all such S (by the definition of closed sets).  
Finally, knowing that fi(x1, …, xn i )∈S for all S that are B-inductive in 
α, we can conclude that fi(x1, …, xn i )∈C(B), by the definition of 
intersection. 
Since we chose i∈I and x1, …, xn i ∈C(B) arbitrarily, and we have 
shown that fi(x1, …, xn i )∈C(B), we can conclude that C(B) is closed 
in α. 

By steps 1a) and 1b) we know that B⊆C(B) and C(B) is closed in α, 
therefore, C(B) is B-inductive in α. 

 
2) Show that C(B) is the smallest B-inductive set in α: 

Since we already proved that C(B) is B-inductive in α, the only thing left 
is to show that it is a subset of every B-inductive set in α, which is a direct 
consequence of the fact that it is the intersection of all S that are B-
inductive in α.  



 71

Let α = <U, fi>i∈ I be a structure and let B⊆U. 
The set of all elements generated from B in α is defined by the following 
inductive definition: 

   1) Base Clause: For all x∈B, x is generated from B in α.  
2) Inductive Clause: For all i∈I and x1,…, xn i ∈U, if x1,…, xn i  are 

generated from B in α, then fi(x1, …, xn i ) is also generated from B 
in α.  

3) Final Clause: Any element of U is generated from B in α only if it is 
so by 1) or 2) above. 

We denote by C*(B) the set of all elements generated from B in α.  
 
Statement: The set of all elements generated from B in α (C*(B)) is a B-
inductive set in α. Moreover, it is the smallest B-inductive set in α. 
 
Proof of the above statement: 
 
1) Prove that C*(B) is B-inductive in α.  
    To prove that C*(B) is B-inductive in α, we need to show that B⊆C*(B)     
    and that C*(B) is closed in α. 
 

1a) Show that B⊆C*(B). 
According to the base clause of the definition of C*(B), all the 
elements of B are in C*(B). Therefore, B⊆C*(B). 

 
1b) Show that C*(B) is closed in α.   

According to the inductive clause of the definition of C*(B), for each 
i∈I and x1, …, xn i ∈U, if x1, …, xn i  are generated from B in α, then  
fi(x1,…, xn i ) is also generated from B in α. So, C*(B) is closed in α, by 
the definition of closed sets. 

 
By steps 1a) and 1b) we know that B⊆C*(B) and C*(B) is closed in α, 
therefore, C*(B) is B-inductive in α. 

 
   2) Prove that C*(B) is the smallest B-inductive set in α. 

To prove that C*(B) is the smallest B-inductive set in α, it suffices to 
show that C*(B)⊆C(B).  
To prove that C*(B)⊆C(B), we need to show that for all x∈C*(B), 
x∈C(B). 
Proof:  
Let x be an arbitrary element of C*(B), i.e., let x be an arbitrary element 
generated from B in α. 



 72

By the final clause of the definition of C*(B), any element generated 
from B in α is either in B (base clause) or is generated from B by 
repeated applications of the inductive clause. 
Case 1: x∈B.  
      This implies that x∈C(B), since B⊆C(B). 
Case 2: x∉B.  

This implies that for some n≥1, x is generated from B by n 
applications of the inductive clause. 
Lemma: For any n≥1 and any element y that is generated from B by 
m applications of the inductive clause, where 1 ≤ m ≤ n, y is in C(B). 
Proof by strong mathematical induction on n: 
1) Base Case: Let n =1 (y is generated from B by one application of the 

inductive clause).  
Then, y = fi (x1,…, xn i ) for some i∈I and some x1, …, xn i ∈B. 
Since x1,…, xn i ∈B and B⊆C(B),  x1,…, xn i ∈C(B).  
Knowing that x1,…, xn i ∈C(B) and C(B) is closed in α, we can 
conclude that fi(x1,…, xn i )∈C(B). 

2) Induction Step: Let n = k+1 for some k≥1.  
Then, y = fi(x1,…, xn i ) for some i∈I and some x1,…, xn i  that are 
generated from B by m applications of the inductive clause, where 
1 ≤ m ≤ k. 

Induction Hypothesis: Any element y that is generated from B by m 
applications of the inductive clause, where 1 ≤ m ≤ k, is in C(B). 

By the induction hypothesis, x1,…, xn i ∈C(B). 
Knowing that x1,…, xn i ∈C(B) and C(B) is closed in α, we can conclude 
that fi(x1,…, xn i )∈C(B). 

    By the above Lemma, we can conclude that x∈C(B). 
 

Since we proved that for all x∈C*(B), x∈C(B), we can conclude that 
C*(B)⊆C(B), and therefore, C*(B) is the smallest B-inductive set in α.  

 
The set of all B-legal elements in α (C*(B)) is the smallest B-inductive set 
in α, therefore C*(B) = C(B).  

 
The Induction Principle is a direct consequence of the fact that C*(B) = C(B). 
Let α be a structure and B⊆U. 
 
Induction Principle:  
 
   If S is a B-inductive subset of C*(B), that is, B⊆ S and S is closed in α,    
   then S = C*(B). 
 



 73

Proofs by induction are about proving properties of inductively defined 
sets, specifically of the elements of C*(B). 
Let P be a property.  
To prove that every element x∈C*(B) has property P, we use the 
Induction Principle as follows. 
Theorem T: Every x∈C*(B), has property P. 
Schema of a Proof by Induction:   
Let Sp = {x: x∈C*(B) and x has property P}. Then, Sp⊆C*(B). 
Theorem T claims that Sp = C*(B). How do we prove it?  
By the Induction Principle, we only need to show that Sp is B-inductive: 
a) Base Case: Show that B⊆Sp. In other words, all elements in B have 

property P. 
b) Inductive Step: Show that Sp is closed in α, i.e., for all i∈I and x1,…, 

xn i ∈U, if x1, …, xn i ∈Sp, then fi(x1, …, xn i )∈Sp.  
      In other words, let i∈I and x1, …, xn i ∈C*(B) be arbitrary. 

 Induction Hypothesis: x1, …, xn i ∈Sp (i.e., x1, …, xn i  have 
property P.) 

      Show that fi(x1, …, xn i )∈Sp (i.e., fi(x1, …, xn i ) has property P.) 
 
5.3   A Multimodal, Interactive Electronic Book for Teaching and Learning Proofs 
by Induction.  

As I mentioned at the beginning of this chapter, I have designed and developed an 

electronic book (e-book) for learning and teaching proofs by induction for computer 

science by taking into consideration the drawbacks of the current methodologies of 

teaching proofs by induction (section 5.1, p.63), as well as the documented difficulties 

that students have with proofs by induction (section 2.2, p.17), and the results of my 

study on finding the sources of computer science students’ difficulties with proofs by 

induction (section 4.4 , p.55). I decided to present my teaching material on proofs by 

induction in an e-book, instead of a regular textbook, because I wanted to move away 

from the exclusively verbal and “passive world” of traditional textbooks towards a more 

active and multimodal learning environment, by taking advantage of what multimedia has 

to offer. For this reason, to develop my e-book, I chose to use “ToolBook Instructor,” 



 74

which is a tool for creating interactive e-learning content, and it allows easy integration 

of multimedia into it.  

5.3.1   Educational Systems in the Classroom 

In the last few decades, there has been a rapid growth of the use of technology in 

education, and more precisely, there has been a dramatic increase in the use of 

instructional software available for teaching and learning different mathematical concepts 

(Abraham et al., 2001; Jones et al., 1999; Reiser & Kegelmann, 1994). Such software 

provide an environment where the students can learn and practice, as well as have access 

to tutorial programs, different views on the topics at hand and different approaches to 

solving problems, explanations and feedback on their performance, and much more. 

Currently, in the field of computer science there is a number of such software available 

for the instructors to use in the classroom and for the students to use on their own time, 

including software for the areas of algorithms (algorithm visualization/animation 

systems) (Naps, 2005; Puntambekar et al., 2002; Boroni et al., 1998), programming 

(program visualization/animation systems) (Dann, Cooper, & Pausch, 2001; Carlisle, 

2000; Boroni et al., 1998), automata theory (Rodger & Finley, 2006), Turing machines 

(Barwise & Etchemendy, 1998), and predicate logic (Barwise & Etchemendy, 1998).  

Some universities have already integrated such systems into their curricula (Byrne, 

Catrambone, & Stasko, 2000). 

 Even though educational software, especially interactive multimedia systems, can 

be very effective for learning when appropriately designed, recent surveys show a 

significant disconnect between instructors’ belief that such systems will enhance students 

understanding and their willingness to integrate them into their teaching (Naps et al., 



 75

2003). Their reluctance to use educational systems in the classroom is a result of the 

problems that they are currently facing with some of them. Such problems include: 

platform dependence, access to the software, time and complexity to download and install 

the software, time it takes to learn the software, difficulties to integrate the software into 

their course material, time it takes to create examples and problems based on the 

software, and difficulties to maintain and upgrade the software (Naps et al., 2006; Naps et 

al., 2003; Boroni et al., 1998). 

To overcome some of these obstacles, my e-book is bundled on a CD, which 

eliminates the problem of downloading and installing it; it is a complete educational 

environment, which makes it easy to integrate into most instructors’ material; and it 

contains a large amount of examples and problems, which saves time for the instructors, 

since they do not have to create their own.     

5.3.2   The Teaching Approach 

The teaching approach in my e-book follows the conceptual route of teaching 

proofs by induction described in the previous section (p.68). Consequently, the teaching 

material of the e-book strictly follows the whole set theoretical “story” of proofs by 

induction. The e-book presents each basic concept involved in this “story” in its own 

chapter, therefore, the outline of the chapters in the e-book is as follows: 

Chapter 1: Structures 
Chapter 2: Closed Sets 
Chapter 3: Inductive Sets 
Chapter 4: Inductive Definitions 
Chapter 5: Proofs by Induction 

             (see Appendix B, section B.1, p.109)  



 76

 In addition, all chapters in my e-book are organized in the same way: each chapter 

starts with an informal introduction of the concept at hand, followed by a number of 

examples, followed by a number of interactive exercises, and finally, a brief summary of 

the current chapter and a brief introduction to what the next chapter will be about. An 

example of how a typical chapter in my e-book is organized can be found in Appendix B, 

section B.3, p.111.  

Furthermore, for each chapter in my e-book I present a large amount of examples 

and exercises of a great variety to demonstrate each basic concept, so that students can 

embody it. For the students to be able to recognize on their own when to apply and 

correctly apply proofs by induction, as well as to generalize them and apply them to 

problems that are not similar to the ones they encountered before, they need to solve 

many problems. Such level of understanding can only be achieved through a lot of 

experience and different encounters with different types of problems. According to 

Boroni (1998), “repetition is one of the keys to learning” (p. 146), and according to Bjork 

& Druckman (1994), “real competence comes only with extensive practice” (as cited in 

Steen 1999, p. 273). Furthermore, presenting a variety of problems to the students to 

choose the ones that are more interesting for them serves as a motivation and increases 

the interest of the students (Dunlap, 2001).  

5.3.3   A Multimodal Learning Environment 

It is documented in the literature that different people learn in different ways 

(Thomas et al., 2002; Lutzinger, 1991). In the last few decades, researchers have 

developed many theories on how people learn best (learning styles) (Burgess, 2005; 



 77

Thomas et al., 2002; Bohlen & Ferratt, 1993). The one of interest for my work is the 

Felder-Silverman learning style model. 

According to Thomas et al. (2002), the Felder-Silverman learning style model 

classifies students as: 

1) Active or reflective learners: active learners learn best when they are actively involved 

in the learning process and by trying things out, whereas reflective learners learn best 

by thinking things through and when the material is presented in an abstract form. 

2) Sensing or intuitive learners: sensing learners learn best when the material is presented 

as facts and methods to be followed, and it is connected to the real world, whereas 

intuitive learners learn best when the material is presented in an abstract form, and by 

discovering relationships between concepts on their own.  

3) Visual or verbal learners: visual learners learn best when the material is presented in 

the form of pictures, diagrams, and other external graphical representations, whereas 

verbal learners learn best when the material is presented linguistically, in the form of 

words (written or spoken). 

4) Sequential or global learners: sequential learners learn best when the material is 

presented in an incremental order (in sequential, logical steps), whereas global learners 

learn best when the whole material is presented at once.  

5) Inductive or deductive learners: inductive learners learn best when the material is 

presented from its specific to its general form, whereas deductive learners learn best 

when the material is presented from its general to its specific form. 

Moreover, based on the sensory modality that people are using while learning, 

they are classified as visual, auditory, and kinesthetic learners (Thomas et al., 2002; 



 78

“Overview of Learning Styles”, n.d.). As I mentioned above, visual learners learn best 

when the material is presented in the form of external graphical representations, whereas 

auditory learners learn best when the material is presented in the form of sound, and 

kinesthetic learners learn best when the material is presented through hands on 

experiences. Most people learn best when they use a combination of sensory modalities 

simultaneously (multimodal learning) (“Overview of Learning Styles”, n.d), and they 

may use different combination of sensory modalities for learning different concepts 

(Lutzinger, 1995; Dunn, 1988).  

Considering that the number of students in a classroom keeps increasing, their 

learning style diversity cannot be easily addressed by an instructor. In contrast, I have 

designed my e-book in a way that will accommodate the different learners classified by 

the Felder-Silverman learning style model and provide a multimodal learning 

environment for the students. 

To present the material of my e-book, I added to the traditional text form different 

external graphical representations, such as images and animations. For example, when 

students are presented with a specific structure, they can view an animation of the 

operations in the structure. Also, when students are presented with an inductive definition 

and some specific elements which are defined by it, they can view an animation of how 

each given element can be constructed by following the rules of the inductive definition. 

(Fig. 1). Graphical representations have been proven to be especially helpful for learning 

complex concepts (White & Fresrickson, 1998, as cited in Puntambbekar, 2002). They 

are currently used as learning tools in many disciplines, from math, chemistry, and 

physics to computer science. In computer science we represent network protocols with 



 79

Petri nets, model resource allocation (deadlock) with directed graphs, represent the 

structure of a software system with graphs (flow of control, data flow, etc), and let us not 

forget Turing machines, DFAs, and basic Data Structures, such as Trees, Lists, and 

Arrays, which are also represented graphically (Henderson et al. 2001, Barwise & 

Etchemendy, 1998). Without the graphical representations of these concepts, it will be 

nearly impossible for instructors to explain them to the students on an intuitive level. 

According to Raeder (1985), people acquire knowledge faster by discovering 

relationships between images than by reading a text (as cited in Baldwin & Kuljis, 2000), 

and according to  Grissom, McNally, & Naps (2000), graphical representations serve as a 

motivational factor for the students. Furthermore, learning experience with graphical 

representations becomes more enjoyable and fun (Naps et al., 2003). The use of graphical 

representations also benefits visual learners, whose needs are totally ignored by the 

current teaching methodologies of proofs by induction, and at the same time, helps 

auditory and kinesthetic learners develop their visualization skills. This is essential, since 

mathematics is intrinsically visual in nature (Sierpinska, 2003). According to Sierpinska 

(2003), in learning and doing mathematics “visualization is not a matter of didactic 

choice; it is a cognitive necessity” (p. 174). 



 80

 
 
 
 
 
 

     Fig. 1: This figure shows a sample animation where given an inductive definition, the animation 
shows whether the structure of a given element follows the definition. 

 
 

Moreover, in my e-book I use different learning techniques that have been shown 

to be effective for students’ learning. For example, for each exercise in my e-book, I 

provide students with a hint, as well as with feedback on their performance and detailed 

explanation of the solution of the exercise:  

• Hints (clues): For each exercise, I provide students with a hint (clue), in case they 

have difficulties solving it. The hint guides and leads students through questions that 

Animation Window 
This is the pop window where 
the animation appears. 

Animation Control 
Users can start, pause, or 
stop an animation. 



 81

will help them find solutions on their own. This guiding questions method goes all the 

way back to Socrates (“Socratic seminar”), who used it to help his students discover 

the knowledge they sought (Tsovaltzi, 2003; Dunlap, 2001). On each exercise page in 

my e-book, there is a hint icon available, and when students click on it, a pop up text 

field appears with the hint information (Fig.2).   

• Feedback: For each exercise, I provide visual and auditory feedback to the students 

on their performance. On each exercise page in my e-book, there is a “Submit” button 

for students to submit their answer. After the students click the “Submit” button, the 

systems responds by letting them know whether their answer was correct or incorrect. 

The system displays the message “Congratulations!” for a correct answer and the 

message “Incorrect Answer” otherwise (Fig.2). Both messages are accompanied by 

the appropriate sound.  

• Explanation: For each exercise, I provide students with the solution of the exercise 

along with a detailed explanation. According to Abraham et al. (2001), exercises are 

only beneficial with the appropriate feedback. Students need to know their mistakes 

and the reason they are wrong. Actively learning, making mistakes, and learning from 

them, is more effective than passively listening to a lecture (Turban, 2003). With the 

increasing number of students in every classroom, it is impossible for the instructors 

to devote time and attention to every single student, and concentrate on his/her 

individual mistakes. In every exercise page in my e-book, when students click the 

“Submit” button and after they are presented with the appropriate exercise feedback, a 

“Solution” button appears on the screen next to the “Submit” button (Fig.2). Students 

can click the “Solution” button to view a detailed explanation of the solution of the 



 82

exercise. The explanation appears on a pop up window (see Appendix B, section 

B.5.1, p.121). 

 
 
 
 
 
 
 
 
 

 
Fig. 2: This figure shows a sample exercise page form the e-book. 

 
 

In addition, I have designed some of the exercises (questions) in my e-book not 

only to ensure students understanding of the concept at hand, but also to gently lead to 

concepts that students need to conquer in the chapter right after. This way, students get a 

Hint Icon 
When the users 
need help 
answering a 
question, they can 
click on the Hint 
Icon and the Hint 
Text will pop up. 

Hint Text 
The Hint Text 
provides the users 
with guidance for 
answering the 
question at hand.  

Submit Button 
The users can click 
the Submit Button to 
submit their answer 
for evaluation.

Solution Button 
When the users click 
the Submit Button the 
Solution Button 
appears on the screen. 
By clicking the 
Solution Button users 
can view a detailed 
explanation of the 
solution of the exercise.

Feedback Message 
When the users click the 
Submit Button the Feedback 
Message is displayed. 



 83

chance to think about and come to an intuitive understanding of what is coming next. For 

example, when students are introduced to inductive definitions, they are presented with 

exercises in which, given an inductive definition, they are asked questions such as, “What 

is the minimum length of an element of the set defined by the inductive definition at 

hand? Give an example for an element of that length.”. Such a question aims at students’ 

understanding of the base clause of the inductive definition, which later on will serve as 

the base case of a proof by induction. Also, students are presented with the following 

kind of exercises: given a statement claiming that all the elements of the set defined by 

the inductive definition at hand have a certain property, they are asked whether the 

statement is correct. This type of question aims at developing students’ thinking on how 

to prove such statements and prepares them for the next chapter on proofs by induction. 

Furthermore, some of the exercises in my e-book are contextualized within 

computer science. According to Hatano (1996) and Cox (1994), exposing students to a 

variety of problems in relation to different contexts of students’ interest (in our case 

computer science), can help students broaden their knowledge and apply it in different 

domains (of computer science) (as cited in Henderson et al., 2001). In addition, 

connecting the material to computer science serves as a motivation for the students, since 

they can realize its different usages. According to Krone (2001), we should teach 

computer science concepts such as induction side-by-side with their applications in the 

field, so that students can experience directly their relevance and importance. 

Finally, my e-book offers a flexible navigation through the chapters, which makes 

it easy for students to follow the learning path most appropriate for them. Throughout my 

e-book, students also have the option to print the content of a page and call upon a help 



 84

menu by clicking on the “Print” and “Help” buttons, respectively. Both buttons are 

available on every page of the e-book (see Appendix B, section B.2, p110).  

• Help: Once in the help menu, students can get information on how to navigate 

through the e-book, how to respond to a question, how to submit their answer to a 

question, how to view the solution of an exercise, and how to view and play 

animations available in the e-book (see Appendix B, section B.6, p.130). In the help 

menu, students also have the option to view a list of all the symbols used in the e-

book, along with their corresponding meaning. 

Some of the functionalities of my e-book are a result of students’ suggestions and 

comments. I gave students who were using my e-book a questionnaire aiming to check 

whether they liked my e-book, whether it helped them in any way, and whether there was 

anything else that they would like to see in a future version of the e-book that they think 

can improve it (the questionnaire can be found in Appendix C, p.131). I also interviewed 

the students who used my e-book to get additional feedback. As a result of students’ 

responses in the questionnaire and their comments during the interview, I improved some 

of the functionality and design of my e-book: 1) I added the Help menu and Print option; 

2) I added an animation icon in every page of the e-book that contains an animation, so 

that students know in advance that they can view an animation on that page; and 3) in 

addition to running the e-book from a CD, I added an installation feature on the CD, so 

that students can install the e-book on their personal computers. The questionnaire and 

interviews also helped me get some insights into students’ thoughts about the e-book. My 

e-book was very well received by the students. Most of them enjoyed working with it and 

found it very helpful. Below are some of the students’ general comments on my e-book:   



 85

-  “I thought that the e-book was a very good idea. Great Job!”  
- “I prefer the e-book than any other textbook I have seen so far.” 
- “The e-book made things very easy for me.” 
- “The e-book was very easy to understand and I can use it on my own 

pace. I prefer the e-book than any other regular textbook because it is 
very interactive. I love to push buttons.” 

- “If you read induction from a regular book you do not understand why 
you have to do things. But, the e-book makes the connections for you, 
using B-inductive sets. This was very helpful.” 

- “This e-book is exactly what we need. It helped me a lot. The fact that 
is structured the same (every chapter) helped me a lot. ” 

- “The e-book is very nice and easy to understand. I like the way that the 
chapters are organized. It is really helpful.” 

Students also commented on how helpful the animations as well as the examples and 

exercises in the e-book were for them: 

- “For someone who has difficulties, the animations can be very helpful.” 
- “The animations helped me a lot. They were very easy to follow.” 
- “Usually professors may skip some steps of the solution/explanation in 

class because of time. But, with the e-book I have all the details and I 
can take as much time as I want.” 

- “The fact that the e-book had a lot of examples was very helpful. If I had 
a question on the first one, by the time I was at the third one, my 
question was answered.” 

- “Exercises where attractive, so I worked on more than what I would if it 
was a regular book.” 

- “I am motivated to solve more exercises in the s/w than in a regular 
book.” 

- “Having explanations of the exercises was very helpful to understand my 
mistakes.” 

 
I am not suggesting that my e-book is a comprehensive treatment of the problem at hand 

(completely overcoming students’ difficulties with proofs by induction), but rather that it 

is a big step toward a solution. My intention was to provide an educational environment 

to help students learn and create a mental model of proofs by induction. Once students 

are exposed to a variety of problems on proofs by induction, as well as the basic concepts 

involved in and leading up to proofs by induction, they will embody the whole concept of 



 86

induction, and it will become part of their vocabulary. Then, they will be able to 

concentrate on correctly applying proofs by induction when appropriate, rather than 

struggling on how to perform them. As I will show in the next section, my e-book can 

help students overcome their difficulties and gain conceptual understanding of proofs by 

induction, which makes it a good starting point from which better and more 

comprehensive approaches can be build on.  

5.4   Effectiveness of the E-book in the Classroom: An Exploratory Study 

In addition to the questionnaire and the interview, I conducted an exploratory 

study to check the effectiveness of my e-book in the classroom (see also Polycarpou & 

Pasztor, 2008). For my study, I used the same instrument and procedures as in my study 

on identifying possible sources of computer science students’ difficulties with proofs by 

induction (section 4.4, p.55). The instrument can be found in Appendix A, p.105.  

5.4.1   Participants and Procedures        

Participants of my study were two groups of undergraduate (mostly junior) 

computer science majors—although the two groups did not consist of the same number of 

students. Group A consisted of 44 students and group B of 26 students. Each group took a 

different section of a “Logic for Computer Science” course. Even though both sections 

were taught by the same professor, students in group A were taught induction through the 

traditional route, and students in group B were taught through the e-book. In both 

sections of the course, four class periods were spent on induction.  

I administered the instrument to both groups after formal instruction of proofs by 

induction. The study was done as part of the course, and students were given participation 

or extra credit points for the class, contingent upon making an honest effort to answer all 



 87

questions in the instrument to the best of their knowledge. It is also worth mentioning that 

according to the results of their class quizzes, on average, students in the two groups 

performed similarly in most of the topics covered in the course. 

5.4.2   Results          

As with my previous study, I analyzed the data quantitatively, as well as 

qualitatively. My quantitative analysis was based on students’ answers, and my 

qualitative analysis was based on students’ answers and comments, as well as their 

thoughts and feelings documented at the end of each question.   

 The results of my analysis are summarized in Graphs 1, 2, and 3. The percentages 

in each graph are rounded to the nearest whole number. Graph 1 reports the percentages 

of students’ correct answers in each question for group A (students who were taught 

through the traditional route) and B (students who were taught through the e-book), 

respectively. The percentage for the first question (Q1) represents the students who 

correctly identified all strings. The percentage for the sixth question (Q6) represents the 

students who successfully proved the statement by induction (they agreed with the 

statement, recognized that they can prove the statement by induction, and did so 

correctly).  

 

 

 

 

 

Graph 1: Percentages of students’ correct answers for each question. 

0%

20%

40%

60%

80%

100%

120%

Question

Su
cc

es
s 

R
at

e

Group A 61% 89% 89% 75% 68% 20.50%

Group B 85% 96% 100% 100% 100% 46%

Q1 Q2 Q3 Q4 Q5 Q6



 88

I further analyzed students’ answers for the sixth question and I divided their 

responses into six categories (A - D, N, and I). Graphs 2 and 3, present the percentage of 

students in each category for group A and B, respectively. 

Category A represents the students who agreed with the statement, recognized that they 

can prove the statement by induction, and did so correctly.  

Category B represents the students who agreed with the statement, recognized that they 

can prove the statement by induction, and made valid arguments to prove the statement 

correct for each rule of the definition of IPO-words, but without following the usual 

format of a proof by induction. 

                        

Category C represents the students who agreed with the statement and recognized that 

they can prove the statement by induction, but made some mistakes in their proofs, or 

their proofs were incomplete. 

Category D represents the students who agreed with the statement and recognized that 

they can prove the statement by induction, but used incorrect arguments to prove it.  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Category

St
ud

en
ts

Group A 20.50% 13.50%

Group B 46% 27%

A B 

Graph 2: Percentages of students in categories A and B  for question six. 



 89

Category N represents the students who agreed with the statement, but did not recognize 

that they can prove the statement by induction or they did not prove it at all.  

Category I represents the students who disagreed with the statement. 

 
 
As we can see in Graph 1, overall, group B had a higher success rate in all of the 

questions compared to group A. This suggests that the e-book enhanced students’ 

understanding of inductive definitions and their performance on proofs by induction.  

Based on the results of my study on identifying possible sources of computer 

science students’ difficulties with proofs by induction (section 4.4, p.55), I expected 

students in group A to be influenced by the context in which the problem was presented 

and to apply proofs by induction without a conceptual understanding of the process 

involved (mechanically apply proofs by induction). I did not expect the same from 

students in group B. Indeed, the results of my qualitative analysis suggest that students in 

group A were influenced by the context in which the problem was presented, whereas 

0%

5%

10%

15%

20%

25%

Category

St
ud

en
ts

Group A 16% 23% 16% 11%

Group B 11.5% 11.5% 4% 0%

C D N I 

   Graph 3: Percentages of students in categories C  through I  for question six. 



 90

students in group B were not. A number of students from group A commented that the 

maximum length of an IPO-word depends on the computer’s capacity and performance, 

but there was no similar comment by any student in group B. My second expectation was 

also met. Some students in group A applied proofs by induction mechanically, whereas 

there was no indication that any student in group B did so. According to Graph 1 (Q5), 

32% of the students in group A incorrectly answered question five (by constructing a 

string of length eight which they thought was an IPO-word), and only half of them 

disagreed with the statement in question six that all IPO-words have odd length. This 

implies that 16% of the students in group A contradicted themselves in those two 

questions. Additionally, almost half of the students who contradicted themselves in the 

two questions, correctly proved the statement in question six using proof by induction. 

Based on these students’ performance in previous questions and their reported thoughts 

and feelings, I concluded that they did not have a clear understanding of the inductive 

definition of an IPO-word, which suggests that they applied proof by induction 

“mechanically.” In contrast, there was no such contradiction among the results of 

students in group B, since all of them answered question five correctly and all of them 

agreed with the statement in question six. This suggests that my e-book helped students 

overcome their biases and understand the substance of proofs by induction. 

Finally, according to Graph 2, the percentage of students in both categories A and 

B together was significantly higher for group B (73%) than for group A (34%). This 

implies that students who were taught through my e-book performed significantly better 

on the proof by induction on the sixth question than the students who were taught through 

the traditional route. I further analyzed students’ answers for question six qualitatively 



 91

and I found that students in categories A and B had conceptual understanding of both the 

process involved in a proof by induction and the definition of IPO-words. The only 

difference between the students in these two categories was that students in category B 

had some difficulty articulating their thoughts, compared to students in category A. This 

suggests that my e-book not only improved students’ performance, but it also helped 

students gain conceptual understanding of proofs by induction, which was one of its main 

goals. 

 Even though the two sample populations of my study did not consist of the 

same number of students (44 students in group A and 26 students in group B) and this 

may weaken my study, the results are very promising and inducing to further research. 

Moreover, since my study is not focused on teaching but rather on learning, I chose to 

administer my instrument to students taking a class with one specific professor who has 

been teaching this course for decades. I believe that I can strengthen my findings by 

administering the instrument to students taking classes taught by different professors. 

 

 

 

 

 

 

 

 

 



 92

CHAPTER 6 

CONCLUSION AND FUTURE RESEARCH 

 

Induction is a core concept in the field of computer science, and yet, students have 

difficulties understanding it. Even though this has been well documented in the literature 

for decades and different solutions have been proposed, little improvement has been 

made. The purpose of my dissertation was to find a new approach to teach proofs by 

induction to computer science students in way that facilitates their conceptual 

understanding of proofs by induction and help them overcome their difficulties. For 

developing such an approach, it was important to not only identify what students’ 

difficulties with proofs by induction are, but also to identify possible sources of such 

difficulties.  

 As part of my dissertation, I have conducted a study to identify possible sources 

of computer science students’ difficulties with proofs by induction, which I have 

presented in Chapter 3. My study was contextualized within the undergraduate computer 

science curriculum. Its results suggest that understanding of the set theoretical concepts 

presupposed in proofs by induction (i.e., structures, closed sets, inductive sets, and 

inductive definitions) is a major source of computer science students’ difficulties with 

proofs by induction. More precisely, the results of my study show that there is a close 

correlation between students’ understanding of the set theoretical concepts presupposed 

in proofs by induction and students’ understanding and performance of proofs by 

induction. In addition, the results of my study suggest that students who have conceptual 



 93

difficulties with proofs by induction are those who have difficulties understanding such 

concepts. 

 Taking into consideration the results of my study, as well as the fact that the 

current methodologies of teaching proofs by induction pay inadequate attention to the set 

theoretical concepts presupposed in proofs by induction, I proposed that proofs by 

induction are taught through what I call the “conceptual route” of teaching proofs by 

induction. In contrast to the traditional route, which presents proofs by induction as a step 

by step “recipe” to be followed without explaining the rationale behind each step, the 

conceptual route is streamlined towards teaching the set theoretical concepts presupposed 

in proofs by induction. Specifically, it introduces students to the concepts of structures, 

closed sets, inductive sets, and inductive definitions, then it connects these concepts to 

the Induction Principle that justifies proofs by induction, and finally, connects the 

Induction Principle to proofs by induction. I have presented the whole set theoretical 

“story” behind the conceptual route in section 5.2. 

 In addition, as part of my dissertation, I have designed and developed a 

standalone electronic book (e-book), which I have presented in section 5.3. My e-book 

provides an interactive and multimodal educational environment for learning/teaching 

proofs by induction for computer science. Since my aim with this e-book was to help 

computer science students gain conceptual understanding of proofs by induction, I have 

designed its teaching material based on the conceptual route of teaching proofs by 

induction. Moreover, my e-book contains numerous images, animations, examples, and 

interactive exercises on each individual concept, so that students can truly embody it. It 

can also accommodate many different learning styles, something that is hard to address in 



 94

the classroom. Additionally, my e-book eliminates many of the problems that generally 

make educators reluctant to use educational software in their classrooms. It is bundled on 

a CD, which eliminates the problem of downloading and installing it; it is a complete 

educational environment, which makes it easy to integrate into most instructors’ material; 

and it contains a large amount of examples and problems, which saves time for the 

instructors, since they do not have to create their own.     

 Last but not least, as part of my dissertation, I have conducted an exploratory 

study on the effectiveness of my e-book in the classroom, which I have presented in 

section 5.4. The e-book was very well received by the students, but more importantly, the 

results of the exploratory study suggest that students who were taught proofs by induction 

through my e-book performed better on inductive definitions and proofs by induction 

than students who were taught through the traditional route. Furthermore, the results of 

my qualitative analysis suggest that more students of those who were taught through the 

e-book gained conceptual understanding of proofs by induction than of those who were 

taught through the traditional route. 

 The sample population of my exploratory study was not consistent, since I had 44 

students who were taught proofs by induction through the traditional route and 26 

students who were taught through my e-book. At the same time, all the participants of my 

study were taught by the same professor. In the future, I am planning to conduct another 

study with a more consistent and larger sample population and with different professors 

teaching proofs by induction through my e-book, so that I can validate and strengthen the 

results of my exploratory study. I am also working towards improving the accessibility of 



 95

my e-book, so that more instructors and students can have access to it. I am planning to 

have an on-line version of the e-book. 

Even though the results of my exploratory study suggest that the e-book helped 

computer science students gain conceptual understanding of and improved students’ 

performance with proofs by induction, I am not claiming that my e-book is a 

comprehensive “treatment” of the problem. Currently, there is no unified framework used 

for proofs by induction throughout the computer science curriculum that would help 

students realize that all the applications of proofs by induction are instantiations of the 

same schema (Polycarpou, 2008). Every time computer science students come across 

proofs by induction in different courses of their curricula, they think that they have to 

learn something new. This does not allow them to focus on the substance of the concepts 

at hand and instead, they are trying to memorize the different ways that proofs by 

induction can be applied in computer science.  

“Induction itself presents specific cognitive obstacles and students will continue 

to be unsuccessful with induction as long as teaching methodology continues to ignore 

these difficulties.” (Dubinsky, 1989, p.285). Even though there is a pressure on university 

educators to skip some of the “less useful” theory to focus on the latest trends (Yurcik 

and Doss, 2001), I hope that they will take into consideration the relevant research and 

will see the “big picture” and the importance of enhancing the undergraduate computer 

science curriculum by updating the teaching material on proofs by induction. Hopefully, 

they will not consider proofs by induction as one of the “less useful” topics. 

I agree with Tucker et al. (1996) that there is no unique curriculum that applies to 

all universities/computer science schools, since different universities/computer science 



 96

schools have different educational priorities. However, no matter what these priorities 

are, teaching proofs by induction in a way that will facilitate computer science students’ 

conceptual understanding is vital, since it will provide students with an essential tool for 

effective learning in many courses of their curricula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 97

LIST OF REFERENCES 

Abraham, D., Crawford, L., Lesta, L., Merceron, A. & Yacef, K. (2001, October). The 
Logic Tutor: A multimedia Presentation. Interactive Multimedia Electronic Journal of 
Computer-Enhanced Learning, 3, (2). Available World Wide Web: 
http://imej.wfu.edu/articles/2001/2/03/index.asp. 
 
Acerbi, F. (2000). Plato: Parmenides 149a7-c3. A Proof by Complete Induction?. Archive   
for history of exact sciences, 55, 57-76. 

 
Alacaci, C. & Pasztor, A. (2002). Effects of flawed state assessment preparation materials 
on students’ mathematical reasoning: A study. The Journal of Mathematical Behavior, 
21, 225-253. 
 
Appel, A. (2002). Modern Compiler Implementation In Java (2nd ed.). New York,  
NY: Cambridge University Press. 

 
Baker, D. (1995). Characterizing students’ difficulty with proof by mathematical 
induction. Doctoral Dissertation, School of Education, Indiana University, Bloomington. 
 
Baldwin, P. L. & Kuljis, J. (2000). Visualization Techniques for Learning and Teaching 
Programming. In the Proceedings of the 22nd International Conference in Information 
Technology Interfaces (ITI 2000), 83-90. 
 
Ball L. D., Hoyles, C., Jahnke, N. H., & Movshovitz-Hadar, N. (2002). The teaching of 
Proof. In the Proceedings of the ICM, Beijing, vol. 3, 907-920. 
 
Barker, W., Bressoud, D., Epp, S., Ganter, S., Haver, B., & Pollatsek, H. (2004). 
Undergraduate Programs and Courses in the Mathematical Science: CUPM Curriculum 
Guide 2004. The Mathematical Association of America. 
 
Barwise, J., & Etchemendy, J. (1998). Computers, visualization, and the nature of  
reasoning. In Ward, B., Ward, T, Moor, H. J. (Eds), The Digital Phoenix: How   
Computers are Changing Philosophy (pp. 93-116). Oxford, UK and Malden, MA: 
Blackwell Publishing, Inc. 

 
Ben-Ari, M. (2001). Mathematical Logic for Computer Science (2nd ed.). London, U.K.:  
Springer-Verlag. 

 
Best, E. (1996). Semantics of Sequential and Parallel Programs. New York,  
NY: Prentice Hall. 

 
 
 
 



 98

Blanton, L. M. & Stylianou, A. D. (2003). The nature of Scaffolding in undergraduate  
students’ transition to mathematical Proof. In the Proceedings of the 27th conference of 
the International group for the Psychology of Mathematics Education held jointly with 
the 25th Conference of PME, 113-120. 

 
Bohlen, A. G. & Ferratt, W. T. (1993). The Effect of Learning Style and Method of  
Instruction on the Achievement, Efficiency and Satisfaction of End-users Learning 
Computer Software. In the Proceedings of the 1993 conference on Computer personnel 
research, 273-283.  

 
Boroni, M. C., Goosey, W. F., Grinder, T. M., & Ross, J. R. (1998). A Paradigm Shift!  
The Internet, the Web, Browsers, Java, and the Future of Computer Science Education. 
ACM SIGCSE Bulletin , Proceedings of the twenty-ninth SIGCSE technical symposium 
on Computer science education SIGCSE '98, 30 (1), 145-152.  

 
Bruce, B. K., Drysdale, L. S. R., & Kelemen, C. (September, 2003). Why Math? 
Communications of the ACM, 46, (9), 40-44. 
 
Brumfiel, C. (1974). A note on mathematical Induction. Mathematics Teacher, 67 (7),   
616-618.  

 
Bundy, A., Harmelen, F., Hesketh, J., & Smaill, A. (1991). Experiments with proof plans 
for induction. Journal of Automated reasoning, 7, 303-324. 
 
Burgess, A. G. & Hanshaw, C. (2005). Application of Learning Styles and Approaches in  
Computing Sciences Classes. Consortium for Computing Sciences in Colleges (CCSC), 
60-68. 

 
Burris, S. (1998). Logic for Mathematics and Computer Science. Upper  
Saddle River, NJ: Prentice Hall. 

 
Byrne, D. M., Catrambone, R., & Stasko, T. J. (2000). Evaluating Animations as Student  
Aids in Learning Computer Algorithms. Computers & Education, 33, 253-278. 

 
Carlisie, E. G. (2000). EROSI – Visualising Recursion and Discovering New Errors. In  
the Proceedings of the ACM SIGCSE 2000 Conference, 305 – 309. 

 
Cormen, T., Leiserson, C.,  Rivest, R., & Stein, C. Introduction to algorithms (2nd ed.)  
Cambridge, Massachusetts London, England: The MIT press.  

 
Cuoco, A. A. & Goldenberg, E. P. (1992). Mathematical Induction in a Visual Context.  
Interactive Learning Environments, 2 (3/4), 181-204. 

 
Dann, W., Cooper, S., & Pausch, R. (2001). Using Visualization To Teach Novices  
Recursion. ACM SIGCSE Bulletin, 33  (3), 109-112. 



 99

Dubinsky, E. (1986). Teaching Mathematical Induction I. Journal of Mathematical   
Behavior, 5, 305-317. 
 
Dubinsky, E. (1989). Teaching Mathematical Induction II. Journal of Mathematical 
Behavior, 8, 285-304. 
 
Dubinsky, E. & Lewin, P. (1986). Reflective abstraction in mathematics education: The 
genetic decomposition of induction and compactness. Journal of Mathematical Behavior, 
5, 55-92. 
 
Dunlap, J. (2001, November). Mathematical Thinking. Available: 
http://www.mste.uiuc.edu/courses/ci431sp02/students/jdunlap/WhitePaperII.doc 
 
Dunn, R. (1988). Capitalizing on Students’ Perceptual Strengths to Ensure Literacy 
While Engaging in Conventional Lecture/Discussion. Reading Psychology: An 
International Quarterly, 9, 431-453. 
 
Enderton, H. (2001). A Mathematical Introduction to Logic. Burlington, MA: Harcourt  
Academic press. 

 
Engel, G. & Roberts, E. (Eds.) (2001). Computing Curricula 2001–Computer Science.  
IEEE, ACM. Final Report. 

 
Epp, S. S. (1996). A Cognitive Approach to Teaching Logic and Proof. In DIMACS  
Symposium on Teaching Logic and Reasoning in an Illogical World. Piscataway, New 
Jersey: Rutgers University. 

 
Epp, S. S. (2003). The role of Logic in Teaching Proof. American Mathematical Monthly   
110 (10), 886-899. 

 
Ernest, P. (1984). Mathematical Induction: A pedagogical Discussion. Educational  
Studies in Mathematics, 15, 173-189. 

 
Fressola, R. A. & Krone, J. (2003, October). Integer Construction by Induction. 
Available: www.denison.edu/mathsci/mcurcsm2003/papers/Induction.pdf 
 
Gallier, H., J. (2003). Logic For Computer Science. Foundations of Automatic Theorem  
Proving. John Wiley & Sons Inc.  
 
Gibbs, G. (1994). Improving Student Learning. Oxford, UK: The Oxford Center for Staff 
Development. 
 
Grissom, S., McNally, F. M., & Naps, T. (2003). Algorithm Visualization in CS  
Education: Comparing Levels of Students Engagement. In the Proceedings of the 2003 
ACM symposium on Software visualization, 87-94.  



 100

Henderson, B. P., Hamer, J., Baldwin, D., Hitchner, L., Dasigi, V., Lloyd, W., Dupras, 
M., Marion, B., Fritz, J., Riedesel, C., Ginant, D., Walker, H., & Goelman, D. (2001). 
Striving for Mathematical Thinking. ACM SIGCSE Bulletin, 33 (4), 114-124. 
 
Holland-Minkley, A. (2002). Planning Proof Content for Communicating Induction. In 
the Proceedings of Second International Natural Language Generation Conference, 167-
172. 
 
Hopcroft, J.,  Motwani, R., & Ullman, J. (2001). Introduction to automata theory (3rd ed.)  
Boston, MA: Addison-Wesley. 

 
Hoyles, C. & Küchemann, D. (2002). Students’ Understanding of Logical Implication.  
Educational Studies in Mathematics, 51, 193-223. 

 
Huth, M. & Ryan, M. (2000).  Logic In Computer Science: modeling and reasoning  
about systems. Cambridge, UK: University Press. 

 
Jones, A., Scanlon, E., Tosunoglu, C., Morris, E., Ross, S., Butcher, P., & Greenberg, J.  
(1999). Contextx for Evaluating Educational Software. Interacting with Computers, 11, 
499-516. 

 
Kaplan, M. K., Burge, L., Garuba, M., & Kaplan, J.J. (2004). Mathematical Induction:  
The Basis Step of Verification and Validation in a Modeling and Simulation Course. In 
the Proceedings of the 2004 American Society for Engineering Education Annual    
Conference & Exposition, session number: 1465. 

 
Krone, J. & Feil T. (2001). Incorporating Mathematics Into the First Year CS Program:  
A new Approach to CS2. Consortium for Computing in Small Colleges, 17 (1), 44-51. 

 
Linz, P. (2001). An Introduction to Formal Languages and Automata. Sudbury, MA: 
Jones and Bartlett Publishers, Inc. 
 
Lowenthal, F. & Eisenberg, T. (1992). Mathematical Induction in School: An illusion of 
Rigor? School Science and Mathematics, 92, 233-238. 
 
Lutzinger, F. D. (1991, September). Smart Stuff: Learning Styles – A never ending story. 
Anchor Point Magazine, 19-23. 
 
Lutzinger, F. D. (1995, August). What is your not learning style?. Anchor  
Point Magazine, 3-6. 

 
Lynch, N. (1996). Distributed Algorithms. San Francisco, CA: Morgan Kaufmann 
Publishers, Inc. 
 



 101

Manber, U. (1989). Introduction to Algorithms. A creative Approach. USA: Addison-
Wesley Publishing Company, Inc.  
 
Manna Z., Ness, S., & Vuillemin, J. (1973). Inductive Methods for Proving Properties of 
Programs. Communications of the ACM, 16 (8), 491-502. 
 
Mendelson, E. (1997). Introduction to Mathematical Logic. Great Britain: Chapman & 
Hall. 
 
Movshovitz-Hadar, N. (1993). Mathematical Induction: A Focus on the Conceptual 
Framework. School Science and Mathematics, 93, 408-417. 
 
Naps, T., Rodger, S., Rössling, G., & Ross, R. (2006). Animation and Visualization in the 
Curriculum: Opportunities, Challenges, and Success. ACM SIGCSE Bulletin , 
Proceedings of the 37th SIGCSE technical symposium on Computer science education 
SIGCSE '06, 38 (1), 328-329.  
 
Naps, T. (2005). JHAVE – Addressing the Need to Support Algorithm Visualization with 
Tools for Active Engagement. IEEE Computer Graphics and Applications.  
 
Naps, T., Röβling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C.,  
Korhonen, A., Malmi, L., McNally, M., Rodger, S., & Velázquez-Iturbide, J. A. (2003). 
Exploring the Role of Visualization and Engagement in Computer Science Education. 
ACM SIGCSE Bulletin, 35 (2), 131-152. 

 
Naps, T., Röβling, G., Anderson, J., Stephen, C., Dann, W., Fleischer, R., Koldehofe, B.,  
Korhonen, A., Kuittnen, M., Leska, C., Malmi, L., McNally, Rantakokko, J., & Ross, J. 
R. (2003). Evaluating the Educational Impact of Visualization. Report of the Working 
Group from ITiCSE 2003 on “Evaluating the Educational Impact of Visualization.”  

 
Niederhauser, S. Dale & Stoddart, T. (2000). Teachers’ instructional perspective and use 
of educational software. Teaching and Teacher Education, 17, 15-31. 
 
Overview of Learning Styles. Retrieved November 27, 2006 from  
http://www.learning-styles-online.com/overview/ 

 
Page, L. R. (2003). Software is Discrete Mathematics. In the Proceedings of the eighth  
ACM SIGPLAN international conference on Functional programming, 79-86. 
 
Pierce, C. B. (2002). Types and Programming Languages. Cambridge, Massachusetts 
London, England: The MIT press. 
 
 
 



 102

Polycarpou, I. & Pasztor, A. (2008). An Interactive and Multimodal Software for 
Teaching Induction for Computer Science. To appear in the Proceedings of the 2008 
International Conference on Frontiers in Education: Computer Science and Computer 
Engineering (FECS’08). 
 
Polycarpou, I. (2008). Induction as a Tool for Conceptual Coherence in Computer 
Science. In the Proceedings of the 46th ACM Southeast conference. 
 
Polycarpou, I, Pasztor, A., & Adjouadi, M. (2008). A Conceptual Approach to Teaching 
Induction for Computer Science. In the Proceedings of the 39th ACM Technical 
Symposium on Computer Science Education (SIGCSE’08), 9-13.   
 
Polycarpou, I., Pasztor, A., & Alacaci, G. (2006). Sources of Students’ Difficulties with 
Proofs by Induction: A Study. In the Proceedings of the Third International Conference in 
Teaching Mathematics (ICTM3) in Turkey, paper 446. 
 
Polycarpou, I. (2006). Computer Science students’ difficulties with proofs by induction: 
An exploratory study. In the Proceedings of the 44th ACM Southeast conference, 601-
606. 
 
Puntambekar, S., Stylianou, A, Suthers, D., Hundhausen, C., & Hübscher-Younger, T.  
(2002). External Representations for Collaborative Learning and Assessment. In the 
Proceedings of the CSCL conference.  

 
Raffali, C. & David, R. (2002). Computer Assisted Teaching in Mathematics. In the  
Proceedings of the Workshop on 35 years of Automath (Edingurgh, France).  
 
Reeves, S. & Clarke, M. (reprinted in 2003). Logic For Computer Science. England: 
Wokingham; Reading, MA: Addison-Wesley. 
 
Reiser, A. R. & Kegelmann, W. H. (1994). Evaluating Instructional Software: A review 
and Critique of Current Methods. Educational Technology Research and Development 
(ETR&D), 42 (3), 63-69. 
 
Rodger, H. S. & Finley, W. T. (2006). JFLAP: An interactive Formal Languages and 
Automata Package. Sudbury, MA: Jones and Bartlett Publishers. 
 
Ross, K. (1998). Doing and Proving: The Place of Algorithms and Proofs in School 
Mathematics. The American Mathematical Monthly, 105 (3), 252-255. 
 
Schach, A. (1958). Two Forms of Mathematical Induction. Mathematics Magazine, 32 
(2), 83-85. 
 
Schöning, U. (1989). Logic for Computer Science. Boston, MA: Birkhäuser. 
 



 103

Sheard, M. (1998). Induction the Hard Way. The American Mathematical Monthly, 150 
(4), 348-353. 
 
Shonk (2003). I proved all odds are prime – With Inductive Reasoning. Selling Waves. 
Available: http://www.sellingwaves.com/archives/2003/11/ 
 
Sierpinska, A. (2003). Visualization is in the mind of the beholder. New Zealand Journal  
of Mathematics, 32 (1), 173-194. 
 
Sipser, M. (1997). Introduction on the Theory of Computation. Boston, MA: PWS 
Publishing Company. 
 
Steen A. L. (1999). Twenty Questions about Mathematical Reasoning. In L. Stiff (ed),  
Developing Mathematical Reasoning in Grades K-12. (pp. 270 - 285). Reston, VA: 
National Council of Teachers of Mathematics. 

 
Thagard, P. (1998). Mind. Introduction to Cognitive Science. Cambridge, MA: MIT 
Press. 
 
Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning Styles and  
Performance in the Introductory Programming Sequence. ACM SIGCSE Bulletin, 
Proceedings of the 33rd SIGCSE technical symposium on Computer science education 
SIGCSE '02, 34 (1), 33-37.  

 
Thompson, D. (1996). Learning and Teaching Indirect Proof. The Mathematics Teacher, 
89, 474-481. 
 
Tsovaltzi, D. & Fiedler, A.(2003). An Approach to Facilitating Reflection in a  
Mathematics Tutoring System. In Vincent Aleven, Ulrich Hoppe, Judy Kay, Riichiro 
Mizoguchi, Helen Pain, Felisa Verdejo, and Kalina Yacef (eds), AIED2003 - 
Supplementary Proceedings of the 11th International Conference on Artificial 
Intelligence in Education, V (pp. 278-287).  

 
Tucker, B.A., et al. (1996). Strategic Directions in Computer Science Education. ACM 
Computing Surveys, 28 (4), 836-845. 
 
Turban, R. (2003). Approaches to Implementing and Teaching Human Computer     
Interaction. In the Proceedings of the International Conference on Information 
Technology: Computers and Communications (ITCC’03), 81-84. 
 
Weiss, M. (2006). Data Structures & Problem Solving Using Java.Boston, MA: Pearson  
Education, Inc. 

 
 
 



 104

Wu, C., Dale, B. N., & Bethel, J. L. (1998). Conceptual Models and Cognitive Learning     
Styles in Teaching Recursion. ACM SIGCSE Bulletin, Proceedings of the twenty-ninth 
SIGCSE technical symposium on Computer Science Education SIGCSE ’98, 30 (1), 292- 
296.  

 
Wu Yu, J. (2000). Reasoning Difficulty related to validity of arguments and truth of 
assertions in mathematics. Doctoral Dissertation, School of Education, University of 
Pittsburgh, Pittsburgh, PA. 
 
Wiznia, M. (2003, November). A Brief History of Proof Theory. Available: 
http://info.med.yale.edu/therarad/summers/abstract.htm 
 
Yurcik, W. & Doss, D. (2001). Different Approaches in the Teaching of Information 
Systems Security. In the Proceedings of the Information Systems Education Conference 
(ISECON), paper 04a. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 105

APPENDIX A 

STUDY INSTRUMENT 

 

Class: COT 3420, Logic for Computer Science 
This in NOT for a grade, however, you will get 5 participation points for the course. 
 
Your name: 

 
IPO-WORDS 

As most of you know by now, most programming languages have their own requirements 
for defining variable names. The reason for this is for the compiler of the programming 
language to be able to identify a specific string of characters as a variable name. There is 
a new programming language out on the market, called IPO. In IPO, variable names are 
called IPO-words, and they are constructed from the characters of the set {a, b, c, d, e, f, 
g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, “, ”, _}, using the following rules:  

1. Any member of the set {a, …, z} is an IPO-word. 
2. If W is an IPO-word, then “W” is also an IPO-word (in other words, an IPO-word 

in quotes is also an IPO-word). 
3. If W 1 and W 2 are IPO-words, then W 1_W 2 is also an IPO-word (in other words, 

two IPO-words concatenated by underscore form a new IPO-word). 
4. No sequence of characters is an IPO-word unless it has to be one by 1., 2., or 3. 

above. 
The length of an IPO-word refers to the number of characters in an IPO-word, where a 
character is any letter a through z, an opening or closing quotation mark, or an 
underscore. 
Questions: 

1. Identify which of the following strings are and which are not IPO-words and 
explain why. Mark the appropriate box. 

 
 Apple     □  No   □  Yes  __________________________________ 
             
 _________________________________________________________________ 
  
 A_p_p_l_e    □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
 a_p“_p_l”_e    □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
 “a_p”_“p_l_e”     □  No   □  Yes  __________________________________ 



 106

 _________________________________________________________________ 
 
 a_“p_p”_l_e     □  No   □  Yes  __________________________________ 
  
 _________________________________________________________________ 
 a_p“”_p_l_e     □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
 a_p“_”_p_l_e     □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
  a_p_p_L_e                  □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
            “r_e_d”_“a_p_p_l_e”   □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
 green_apple    □  No   □  Yes  __________________________________ 
 
 _________________________________________________________________ 
 
      Describe in a few sentences your experience (thoughts-feelings) with this question: 
 
 

2. What is the minimum length of an IPO-word? Give an example of an IPO-word 
of that length. 

  __________________________________________________ 
 
Describe in a few sentences your experience (thoughts-feelings) with this question: 
 
 
3. Can you also give the maximum length of an IPO-word? Explain. 
  __________________________________________________ 
 

       Describe in a few sentences your experience (thoughts-feelings) with this question: 
 
 
4.    Create an IPO-word of length greater than 6.  

        __________________________________________________ 
 
       Describe in a few sentences your experience (thoughts-feelings) with this question: 



 107

5.  Create an IPO-word of length equal to 8.  
  __________________________________________________ 
 
       Describe in a few sentences your experience (thoughts-feelings) with this question: 
 
 
 

6. Statement: 
 For every IPO-word W, the following property P(W) holds: The length of W is 
 odd (that is, W has an odd number of characters, where a character is any member 
 of the set {a, …, z, “, ”, _}). 
 Do you think the above statement is correct? Whatever your answer is, try to 
 prove it (Hint: use the rules for constructing an IPO-word).  
 
 
   
     Describe in a few sentences your experience (thoughts-feelings) with this question: 
 
 
 

SOLUTIONS TO THE QUESTIONS IN THE INSTRUMENT 
 
Question 1 
 
Apple                           □  No        
 
A_p_p_l_e                   □  No       
 
 a_p“_p_l”_e                □  No      
 
“a_p”_“p_l_e”              □  Yes   
 
a_“p_p”_l_e                 □  Yes 
 
a_p“”_p_l_e                 □  No      
 
a_p“_”_p_l_e               □  No       
 
a_p_p_L_e                   □  No      
 
“r_e_d”_“a_p_p_l_e”  □  Yes  
 
green_apple   □  No      
 
 



 108

Question 2 
The minimum length of an IPO-word is one: any character between lowercase a through 
lowercase z. This is given by the Base Clause of the inductive definition of IPO-words. 
 
Question 3 
There is no limit on the length of an IPO-word. The set of all IPO-words is infinite. 

Question 4 
You can follow the rules of the inductive definition of IPO-words to construct an IPO-
word of length greater than six. You can start with any element defined in the Base 
Clause ({a, …, z}) and apply the operations defined in the Inductive Clause. 
For example, you can choose a, and then apply the first rule of the induction clause 
repeatedly: e.g.,  “ “ “ a ” ” ” (length is 7). You can also choose more elements and use 
the second rule: e.g., a_b_c_d_e  (length is 9). Finally, you can have a combination of the 
rules: e.g., “a”_ “b”_c (length is 9). 
 
Question 5 
This is not possible, because IPO-words can only have odd length. 
 
Question 6 
Let F be an arbitrary IPO-word. 
1) Base Case: Assume that F is any member of the set {a, …, z}.  
                        Then the length of F is one, and therefore odd.  
                        So, F has property P. 
2) Induction Step: 
2a) Assume that F = “G”, where G is an IPO-word.  
               Induction Hypothesis: G has odd length, i.e., G has property P. 

The length of F is equal to the length of G plus two (two additional element, namely 
“, and ”). By  the induction hypothesis we know that G has odd length. Adding two to 
an odd number results to another odd number.  
So, F has an odd length and therefore, F has property P. 

2b) Assume that F = G_H, where G and H are IPO-words. 
              Induction Hypothesis: G and H both have odd length, i.e., G and H have   
                                                  property P. 
      The length of F is equal to the length of G plus the length of H plus one (one 

additional element, namely _ ). By the induction hypothesis we know that G and H 
both have odd length, therefore the length of F is the result of the addition of two odd 
numbers (even number) and one, which results to an odd number (even number plus 
one results to another odd number). 

      So, F has an odd length, and therefore, F has property P. 
Since F was an arbitrary IPO-word and we covered all the possibilities for the structure of 
F, we proved the proposition. 
 
 
 



 109

APPENDIX B 

THE E-BOOK 

 
 

B.1   Main Menu 
 

                        
 
                                           Main Menu – Outline of the chapters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 110

B.2   Navigation and Functionality 
 
Throughout the e-book users have the choice to print the content of a page, access a help 
menu, go to the main menu from which they can move from one chapter to another, and 
they have a navigation bar available to be able to move from one page to the next and 
back. 
 
 

 
                                      Functionality Buttons                      Navigation Buttons 
 
 

 

 
    
 

 
 
 
 
 



 111

B.3   Chapter Organization 
 
Each chapter in the e-book starts with an informal discussion of the concept at hand, 
followed by a formal definition of the concept, followed by a number of examples 
illustrating the definition, followed by a number of exercises, followed by a brief 
summary of the chapter and a brief introduction to the next chapter. 
The following figures demonstrate the above organization through chapter 1: Structures. 
 
 
 

 
                                          Informal discussion on Structures 
 



 112

 
                                                    Formal definition of Structures 
 



 113

                                                An example of a Structure. 
 
 
 
 



 114

 
                                            An exercise on Structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 115

 
                                           The summary page for Structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 116

B.4   Animations 
 
Throughout the e-book students can view animations of different concepts. The pages 
that contain an animation have an animation icon (see figure below), so that students 
know in advance that they can view an animation. When the users click on the animation 
icon a pop up window appears in which the animation is presented. Users can control the 
animation in three ways: start the animation (START), pause the animation (PAUSE), and 
stop the animation (STOP). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Animation Icon 
When users click the animation 
icon, the animation pop up 
window appears and the users 
can play the animation. 



 117

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Animation Window 
This is the pop window where 
the animation appears. 

Animation Control 
Users can start, pause, or 
stop an animation. 



 118

B.5   Exercises 
 
For all exercises in the e-book, users can get a hint to help them answer the question, they 
can submit their answer and get feedback from the system, and they can view the solution 
of the exercise along with a detailed explanation. 
In every exercise page, there is a Hint icon. When users click the Hint icon a pop up text 
area appears with the hint information. Users can click inside the text area for the hint 
information to go away. Also, in every exercise there is a Submit button. Users can click 
the Submit button to submit their answer and get feedback from the system. If the answer 
is correct the system displays the message “Congratulations!” and otherwise, the message 
“Incorrect Answer.” Along with the feedback, the Solution button appears on the screen, 
next to the Submit button. When users click the Solution button, a pop up window 
appears with the solution of the exercise and a detailed explanation of it. 
 
 

 
 
 
 
 
 
 
 

Hint Icon 
When the users need help 
answering the question at hand, 
they can click on the Hint Icon 
and the Hint Text will pop up. 

Submit Button 
The users can click 
the Submit Button to 
submit their answer 
for evaluation.



 119

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hint Text 
The Hint Text provides 
the users with guidance 
for answering the 
question at hand.



 120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feedback Message 
When the users click the 
Submit Button the Feedback 
Message is displayed. 

Solution Button 
When the users click the Submit 
Button the Solution Button appears 
on the screen. By clicking the 
Solution Button users can view a 
detailed explanation of the solution of 
the exercise. 



 121

B.5.1   Solution to Exercises 
 
 

 
 
 
 
 



 122

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Window 
When users click the Solution Button on 
an exercise page, the pop up Solution 
Window appears with a detailed 
explanation of the solution of the exercise. 



 123

B.5.2   Type of Exercises 
 
There are three major types of exercises in the e-book: multiple choice, fill in the blank, 
yes or no, and drag and drop exercises. 
 
 

 
                                     An example of a multiple choice exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 124

 
                        An example of a multiple choice/multiple answers exercise 
 
 



 125

 
 
         An example of a multiple choice exercise containing a fill in the blank field.  
 
  



 126

 
 
                                    An example of a drag and drop exercise 



 127

 



 128

 
                         An example of a fill in the blank and a yes or no exercises. 
 



 129

 
                                     An example of a fill in the blank exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 130

B.6   Help 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Help Window 
When users click the Help Button, 
the Help Window appears. 



 131

APPENDIX C 

QUESTIONNAIRE 

 
 

E-BOOK QUESTIONNAIRE 
 
CLASS: COT 3420, Logic for Computer Science 
 
NAME:  
 
 
QUESTIONS ON CHAPTER 1: STRUCTURES 
 
1) When you were presented with the first example in this chapter was it easy to 

understand what action to take to view the animation?      Yes            No 
 
       If your answer is No, what was the problem? 
  
 
2) When you were presented with the first Exercise in this chapter did you understand 

right away:  
a) How to select your answer?      Yes            No 

 
                        If your answer is No, what was the problem? 
 
 

b) How to view the solution of the exercise?      Yes            No 
 
                        If your answer is No, what was the problem?  

 
 
3) In cases where the solution of an exercise is accompanied by an animation, do you 

prefer to see the animation first and then the text explanation or first the text 
explanation and then the animation? _____________________________ 
 
Explain in a few words why. 
 
 

4) On a scale of 1 (easy) to 5, how would you rate:  
 

a) The level of difficulty of the reading material in this chapter? 
 
1 2 3 4 5 



 132

b) The level of difficulty of the exercises in this chapter? 
 
1 2 3 4 5 
 

5) Approximately, how many hours did you spend on this chapter? ____________ 
 

6) Was the number of exercises in this chapter:  
           more than necessary                      sufficient          insufficient 
 
7) On a scale of 1 (least) to 5, how helpful were the animations in this chapter? 

 
1 2 3 4 5 

 
 
8) Were the animations in this chapter easy to understand?      Yes            No 
       If your answer is No, explain in a few words what your difficulties were. 
 
 
9) Did the animations in this chapter enhance your understanding?      Yes            No 

If your answer is No, explain in a few words why. 
 

 
10) Did you find the exercise hints in this chapter:  

 
           not necessary                    necessary               more than necessary 
       
      Do you have any suggestions to improve the exercise hints in this chapter? 
 

 
11) Did you find the order that the material was presented in this chapter appropriate?                                
 
                                                            Yes            No 
 
       If your answer is No, how would you change it? 
 
 
12) Do you have any suggestions for improving this chapter? 
 
 
QUESTIONS ON CHAPTER 2: CLOSED SETS 
 
1) When you were presented with the first Exercise in this chapter did you understand 

right away how to select your answer?      Yes            No 
 

If your answer is No, what was the problem? 



 133

2) On a scale of 1 (easy) to 5, how would you rate:  
 

a) The level of difficulty of the reading material in this chapter? 
 
1 2 3 4 5 

 
b) The level of difficulty of the exercises in this chapter? 

 
1 2 3 4 5 
 

3) Approximately, how many hours did you spent on this chapter? ____________ 
 

4) Was the number of exercises in this chapter:   
           more than necessary                      sufficient          insufficient 
 
5) Did you find the order that the material was presented in this chapter appropriate?                               
 
                                                            Yes            No 
 
      If your answer is No, how would you change it? 
 
 
6) Did you find the exercise hints in this chapter: 
 
           not necessary                    necessary               more than necessary 
 
      Do you have any suggestions to improve the exercise hints in this chapter? 
 
 
7) Do you have any suggestions for improving this chapter? 
 
 
QUESTIONS ON CHAPTER 3: INDUCTIVE SETS 
 
1) When you were presented with the first Exercise in this chapter did you understand 

right away how to select your answer?      Yes            No 
 

If your answer is No, what was the problem? 
 
 

2) On a scale of 1 (easy) to 5, how would you rate:  
 

a) The level of difficulty of the reading material in this chapter? 
 
1 2 3 4 5 



 134

b) The level of difficulty of the exercises in this chapter? 
 
1 2 3 4 5 
 

3) Approximately, how many hours did you spent on this chapter? ____________ 
 

4) Was the number of exercises in this chapter:   
           more than necessary                      sufficient          insufficient 
 
5) Did you find the order that the material was presented in this chapter appropriate?                               
 
                                                            Yes            No 
 
      If your answer is No, how would you change it? 
 
 
6) Did you find the exercise hints in this chapter: 
 
           not necessary                    necessary               more than necessary 
 
      Do you have any suggestions to improve the exercise hints in this chapter? 
 
 
7) Do you have any suggestions for improving this chapter? 
 
 
QUESTIONS ON CHAPTER 4: INDUCTIVE DEFINITIONS 
 
1) When you were presented with the Exercises in this chapter did you understand right 

away:  
a) How to select your answer?      Yes            No 

 
                        If your answer is No, what was the problem? 
 

 
b) How to view the solution of the exercise?      Yes            No 

 
                        If your answer is No, what was the problem?  

 
 
2) In cases where the solution of an exercise is accompanied by an animation, do you 

prefer to see the animation first and then the text explanation or first the text 
explanation and then the animation? _____________________________ 

 
Explain in a few words why. 



 135

3) On a scale of 1 (easy) to 5, how would you rate:  
 

a) The level of difficulty of the reading material in this chapter? 
 
1 2 3 4 5 

 
b) The level of difficulty of the exercises in this chapter? 

 
1 2 3 4 5 
 

4) Approximately, how many hours did you spend on this chapter? ____________ 
 

5) Was the number of exercises in this chapter:  
          
           more than necessary                      sufficient          insufficient 
6) On a scale of 1 (least) to 5, how helpful were the animations in this chapter? 

 
1 2 3 4 5 

 
7) Were the animations in this chapter easy to understand?      Yes            No 
       If your answer is No, explain in a few words what your difficulties were. 
 
 
8) Did the animations in this chapter enhance your understanding?      Yes            No 

If your answer is No, explain in a few words why. 
 
 

9) Did you find the order that the material was presented in this chapter appropriate?                               
 
                                                            Yes            No 
 
       If your answer is No, how would you change it? 
 
 
10) Did you find the exercise hints in this chapter: 
 
           not necessary                    necessary               more than necessary 
 
      Do you have any suggestions to improve the exercise hints in this chapter? 
 
 
11) Do you have any suggestions for improving this chapter? 
 
 
 



 136

QUESTIONS ON CHAPTER 5: PROOFS BY INDUCTION 
 
1) On a scale of 1 (easy) to 5, how would you rate:  
 

a) The level of difficulty of the reading material in this chapter? 
 
1 2 3 4 5 

 
b) The level of difficulty of the exercises in this chapter? 

 
1 2 3 4 5 
 

2) Approximately, how many hours did you spend on this chapter? ____________ 
 

3) Was the number of exercises in this chapter:  
 
           more than necessary                      sufficient          insufficient 
 
4) Did you find the order that the material was presented in this chapter appropriate?                               
 
                                                            Yes            No 
 
       If your answer is No, how would you change it? 
 
 
5) Do you have any suggestions for improving this chapter? 
 
 
GENERAL QUESTIONS ON THE E-BOOK 
 
1) On a scale of 1 (lowest) to 5, how would you rate: 
 

a) The navigation through this e-book?           
 
1 2 3 4 5 

 
b) The overall design of this e-book? 
 

1 2 3 4 5 
 
c) The ease of using this e-book? 
 

1 2 3 4 5 
 
 



 137

2) Did you like the sounds that accompanied this e-book’s response to your answers 
(congratulations and incorrect answer responses)?      Yes            No 
 
If your answer is No, what would you prefer?     Different Sound              No sound  

 
 
3) Did you encounter any difficulties/problems with this e-book?      Yes            No 

 
If your answer is Yes, describe in a few words what kind of difficulties/problems. 

 
 
4) Is there anything else you would like to see in this e-book that can help you learn the 

concepts? 
 
 
5) Do you have any suggestions for improving this e-book? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 138

VITA 

IRENE POLYCARPOU 

 

November 19, 1979  Born, Cyprus 
 

1997-2000  Associate Diploma in Computer Studies 
Higher Technical Institute  of Cyprus 
Nicosia, Cyprus 
 

2000-2002  B.S., Computer Science 
Florida International University 
Miami, Florida 
 

2002-2004  M.S., Computer Science 
Florida International University 
Miami, Florida 
 

2004-2008  Doctoral Candidate in Computer Science 
Florida International University 
Miami, Florida 
 

  Teaching and Research Assistant 
School of Computing and Information Sciences 
Florida International University 
Miami, Florida 

 
 
 

PUBLICATIONS  
 
Polycarpou, I. and Pasztor, A. (2008). An Interactive and Multimodal Software for 
Teaching Induction for Computer Science. In the Proceedings of the 2008 International 
Conference on Frontiers in Education: Computer Science and Computer Engineering 
(FECS’08). 
 
Polycarpou, I. (2008). Induction as a Tool for Conceptual Coherence in Computer 
Science. In the Proceedings of the 46th ACM Southeast conference. 
 
Polycarpou, I, Pasztor, A., and Adjouadi, M. (2008). A Conceptual Approach to Teaching 
Induction for Computer Science. In the Proceedings of the 39th ACM Technical 
Symposium on Computer Science Education (SIGCSE’08), pp.9-13.   
 
Polycarpou, I. (2007). A New Approach to Teach Proofs by Induction for Computer 
Science. In the Proceedings of the Grace Hopper 2007 conference. (Poster Session) 



 139

 
Polycarpou, I., Pasztor, A., and Alacaci, G. (2006). Sources of Students’ Difficulties with 
Proofs by Induction: A Study. In the Proceedings of the Third International Conference in 
Teaching Mathematics (ICTM3) in Turkey, paper 446. 
 
Polycarpou, I. (2006). Computer Science students’ difficulties with proofs by induction: 
An exploratory study. In the Proceedings of the 44th ACM Southeast conference, pp.601-
606. 
 
Polycarpou, I. and Achilleos, P. (2000). Cypriot Artists. Multimedia software about 
Cypriot artists. Ministry of Education of Cyprus. 
 
Polycarpou, I. and Achilleos, P. (2000). Design and Analysis for Cypriot Artists software. 
Ministry of Education of Cyprus. 
 
Polycarpou, I. and Achilleos, P. (2000). User Manual for Cypriot Artists software. 
Ministry of Education of Cyprus. 
 
The last three publications are available in all public libraries of Cyprus. 
 

 

AWARDS 
 
Florida International University Graduate School Dissertation Year Fellowship (2008).     
 
Graduate Assistantship, sponsored by National Science Foundation (2005-2007). 
 
Grace Hopper Conference Travel Scholarship, sponsored by National Science 
Foundation (2007).  
 
VMware Academic Scholarship (2007).     
 
Dean’s Leadership and Community service Scholarship from the College of Engineering 
and Computing at Florida International University (2006 and 2007).                                                            
 
Outstanding Service award from the College of Engineering and Computing at Florida 
International University (2006).  
 
Best Student Leadership award from the School of Computing and Information Sciences 
at Florida International University (2005). 
 
Best Scientific Project award from the Cyprus Institute of Neurology and Genetics for the 
development of “Cypriot Artists” multimedia software for Ministry of Education of 
Cyprus (2000).      


	Florida International University
	FIU Digital Commons
	5-23-2008

	An Innovative Approach to Teaching Structural Induction for Computer Science
	Irene Polycarpou
	Recommended Citation


	TitlePage.doc
	dissertation_5_members.doc
	PreliminaryPages.doc
	FULL22.doc

