
Florida International University
FIU Digital Commons

Economics Research Working Paper Series Department of Economics

5-27-2005

On Tail Index Estimation Using Dependent,
Heterogeneous Data
Jonathan Hill
Department of Economics, Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/economics_wps

This work is brought to you for free and open access by the Department of Economics at FIU Digital Commons. It has been accepted for inclusion in
Economics Research Working Paper Series by an authorized administrator of FIU Digital Commons. For more information, please contact
dcc@fiu.edu.

Recommended Citation
Hill, Jonathan, "On Tail Index Estimation Using Dependent, Heterogeneous Data" (2005). Economics Research Working Paper Series.
69.
https://digitalcommons.fiu.edu/economics_wps/69

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps/69?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


On Tail Index Estimation Using Dependent,
Heterogenous Data

Jonathan B. Hill∗

Dept. of Economics
Florida International University

May 27, 2005

Abstract

In this paper we analyze the asymptotic properties of the popularly
used distribution tail estimator by B. Hill (1975), for heavy-tailed het-
erogenous, dependent processes. We prove the Hill estimator is weakly
consistent for functionals of mixingales and L1-approximable processes
with regularly varying tails, covering ARMA, GARCH, and many IGARCH
and FIGARCH processes. Moreover, for functionals of processes near-
epoch-dependent on a mixing process, we prove a Gaussian distribution
limit exists. In this case, as opposed to all existing prior results in the
literature, we do not require the limiting variance of the Hill estimator
to be bounded, and we develop a Newey-West kernel estimator of the
variance. We expedite the theory by defining "extremal mixingale" and
"extremal NED" properties to hold exclusively in the extreme distribu-
tion tails, disbanding with dependence restrictions in the non-extremal
support, and prove a broad class of linear processes are extremal NED.
We demonstrate that for greater degrees of serial dependence more tail
information is required in order to ensure asymptotic normality, both in
theory and practice.

1. Introduction Denote byX = {Xt}= {Xt :−∞< t <∞} a stochastic
process defined on the probability space (Ω,=, µΩ), = = ∪t∈Z=t. The sigma
algebra induced by Xt is strictly increasing: =t−1 ⊂ =t = σ(Xs : s ≤ t). Let
F denote the marginal distribution of Xt. Without loss of generality, assume F
has support on (0,∞). We assume F̄ (x) ≡ P (Xt > x) is regularly varying at
∞: there exists some α > 0 such that for all λ > 1

F̄ (λx)/F̄ (x)→ λ−α (1)

∗Dept. of Economics, Florida International University, Miami, FL; www.fiu.edu/~hilljona;
jonathan.hill@fiu.edu.
JEL classifications : C12, C16, C52.
Keywords : Hill estimator; regular variation; infinite variance; near epoch dependence; mixin-
gales.

1



as x→∞, where α > 0 denotes the index of regular variation. Equivalently, X
has common marginal tail distributions that satisfy

F̄ (x) = x−αL(x), x > 0, (10)

as |x| → ∞, where L(x) is slowly varying1.
We are interested in the asymptotic properties of a moment-based estimator

of the tail index α under minimal restrictions on serial dependence and hetero-
geneity. From a theoretical point of view, the existence and type of central limit
theorem hinges intimately on the property of regular variation in the distrib-
ution tails, hence the magnitude of α and the structure of the slowly varying
component L(x) are of paramount interest. See Ibragimov and Linnik (1971).
Interest in estimation of the tail index spans the statistics, economics, econo-

metrics, finance and telecommunications literatures: tail thickness has been rig-
orously studied in the returns of financial and macroeconomic time series (e.g.
Akgiray and Booth, 1988; Mittnick and Rachev, 1993; Cheng and Rachev, 1995;
McCulloch 1996; Bidarkota and McCulloch, 1998, 2004), and estimators of α
have been used recently as foundations of tests of covariance stationarity (Lore-
tan, 1991; Loretan and Phillips, 1994), extremal structural change (Quintos et
al, 2001) and extremal bivariate, GARCH, and serial dependence (Stărică, 1999;
Quintos, 2004; Hill, 2005). See also Rachev (2003) and the extensive list of cita-
tions therein. Thus, it is of central importance that the asymptotic properties of
estimators of α be established in the most general environment regarding serial
dependence and heterogeneity.
Denote by X(i) > 0 the ith order statistic of Xt, X(1) ≥ X(2) ≥ ... Consider

a sequence of integers m such that m → ∞ as n → ∞, and m = o(n), and
define the function bn(m) > 0 by the inverse probability

(n/m)P (Xt > bn(m))→ 1. (2)

An intuitive approach to estimating the tail index α was conceived by B. Hill
(1975). Denoting z+ ≡ max{z, 0}, using (1) and the definition of bn(m), for any
integer k > 0 the kth moment of the excess of lnXt over ln bn(m) is evaluated
as (see also Hsing, 1991: eq. 1.5)

E (lnXt − ln bn(m))k+ =

Z ∞
0

P
³
(lnXt − ln bn(m))k > u

´
du (3)

= F̄ (bn(m))

Z ∞
0

F̄
³
bn(m)e

u1/k
´
/F̄ (bn(m)) du

≈ (m/n)

Z ∞
0

e−αu
1/k

du = (m/n)k!α−k,

1Although we allow for otherwise heterogenous processes, we assume the tail index α is
time-invariant. It seems that we may relax the time independence assumption on the tail
of X through L(x). In this case, we would assume F̄t(λx)/F̄s(x) → λ−α for every s, t ∈ Z.
Subsequent notational changes, however, will only complicate the discourse.
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as n → ∞, hence (n/m)E (lnXt − ln bn(m))+ → α−1 suggesting a method of
moments estimator for α−1:

(4)

α̂−1m ≡ 1

m

Xm

i=1

¡
lnX(i) − lnX(m+1)

¢
=

1

m

Xn

t=1

¡
lnXt − lnX(m+1)

¢
+
.

Known as the Hill estimator, α̂−1m has been utilized pervasively in the applied
finance, macroeconomics, physics, and telecommunications literatures.
Mason (1982) and Hall (1982) established asymptotic normality for the esti-

mator α̂−1m for iid processes; see also Davis and Resnick (1984), Hall and Welsh
(1984), and de Haan and Resnick (1998). Quintos (2001,2004) allows for co-
variance stationary conditional heteroscedasticity with finite variance indepen-
dent shocks. Stărică (1999) and Resnick and Stărică (1995, 1996, 1998) prove
consistency for processes approximable by a q-dependent process, including in-
finite order moving averages, simple bilinear processes, and stochastic difference
equations that include GARCH processes. A distribution limit, however, is not
established.
For the remaining discourse, define Tn,t ≡ (lnXt − ln bn(m))+ and T ∗n,t(�, ρ)

≡ I(lnXt − ln bn(ρm) > �) for any � ∈ R and ρ in a neighborhood of 1, where
I(·) denote the indicator function. Similarly, define the processes

{Un,t, U∗n,t} ≡ {Tn,t −E[Tn,t], T ∗n,t(�, ρ)−E[T ∗n,t(�, ρ)]}. (5)

Hsing (1991), in a seminal paper, proves consistency and establishes a general
distribution limit for α̂−1m under suitable conditions: for consistency, {Un,t, U∗n,t}
must satisfy law of large numbers; and for a distribution limit, the slowly
varying component L(x) is restricted, and a central limit theorem must hold
for {Un,t, U∗n,t}. The theory is exemplified by proving asymptotic normality
for strong mixing processes provided summability conditions for moments of
{Un,t, U∗n,t} are satisfied2. The mixing assumption on Xt is useful because the
functionals {Un,t, U∗n,t} will necessarily have the same mixing property, and a law
of large numbers and central limit theorem directly apply. Mixing properties,
however, in general do not extend to many important time series processes, in-
cluding infinite distributed lags, and therefore has limited appeal in the financial
and macroeconomic literatures3. Moreover, it is not obvious upon first glance
that the required law of large numbers or central limit theorem for {Un,t, U∗n,t}
will hold in arbitrary environments of dependence and heterogeneity, nor is it
clear which processes satisfy the rather abstract restrictions on L(x).
The purpose of this paper is to develop an asymptotic theory for the Hill

estimator for dependent, heterogenous data with regularly varying tails (1).
We prove consistency for mixingale and L1-approximable processes {Un,t, U∗n,t},
covering mixing, NED, and L0-approximable processes, which includes ARMA,
GARCH, and many IGARCH and FIGARCH processes, cf. Davidson (2004):

2See, also, Rootzen et al (1990) for properties of the Hill estimator for mixing processes
3For example, a stationary AR(1) processes with iid shocks which have unbounded support

are not strong mixing.
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see Appendix 1 for dependence definitions. We then prove a Gaussian limit for
NED processes {Un,t, U∗n,t} of size −1/2 with a uniform or strong mixing base
of respective size −r/[2(r − 1)], r ≥ 2, and −r/(r − 2), r > 2, for a sub-class
of (1) that includes the domain of attraction of the stable laws with α < 2.
Specifically, we prove

√
m(α̂−1m − α−1)/σm =⇒ N(0, 1) (6)

where σ2m = mE[(α̂−1m − α−1)]2 = O(nγ), γ ≥ 0, and therefore need not be
finite asymptotically. A straightforward Newey-West kernel estimator suffices
to generate a consistent estimate of σ2m, and we do not need to impose moment
summability conditions on {Un,t, U∗n,t}. In every existing Gaussian limit proved
in the literature (that we know of), by comparison, the limit limσ2m is assumed
to exist and therefore be finite (i.e. γ = 0).
Our initial dependence assumptions focus on the functionals {Un,t, U∗n,t}. In

order to generalize the assumptions to Xt itself, we define "extremal" mixingale
and NED properties to hold explicitly for Xt in the extreme right tail in terms
of tail probabilities, allowing us to disband with unnecessary restrictions on
the dependence structure of Xt in its non-extremal support. We prove that
processes of the form

P∞
i=0 ψiZt−i are extremal NED, where {Zt} is a process,

not necessarily mean-zero, that satisfies (1) and
P∞

i=0 |ψi|α < ∞.
We demonstrate that for a given sample of size n more serial dependence

implies more tail information is required for α̂m to approximately normally
distributed, both in theory and practice. Dumouchel’s (1983) famous rule of
thumb for independent processes, in which X(m+1) denotes the sample upper
10th percentile of Xt, is shown to generate potentially vastly positively skewed
estimates when the data are serially dependent. Similarly, popular plotting
techniques like the "Hill plot" (e.g. Drees et al, 2000), which are used to pinpoint
values α̂m are near, are shown to be essentially useless when the data are even
mildly serially dependent.
To the best of our knowledge the results presented here are the most general

available, even allowing for the fact that our distribution theory is restricted to
a sub-class of (1). Although we prove a Gaussian limit for processes extremal
NED on a mixing base, it would be straightforward to extend the result to
mixingales (and "extremal mixingales") with few additional assumptions.
As a simple extension of the developed theory, we prove asymptotic nor-

mality for an estimator of the scale parameter c in tail forms F̄ (x) = cx−α(1
+ o(x−θ)). An estimator of c has been used to derive covariance stationarity
tests (Loretan, 1991; Loretan and Phillips, 1994) and tests of serial extremal
dependence (Hill, 2005).
The remainder of the paper is organized as follows. In Section 2 we detail the

major assumptions. Sections 3 and 4 contain the main results and extensions to
new extremal dependence measures. Sections 5 and 6 contain an application of
the theory to a scale estimator and a simulation study. Parting comments are
left for Section 7. Appendix 1 contains notation conventions and dependence
definitions; Appendix 2 contains tables; and Appendix 3 contains all formal
proofs.
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2. Assumptions The environment of this paper is detailed in the fol-
lowing three assumptions. Assumption A.1 defines a general regularly varying
tail, while A.2 includes processes that belong to the domain of attraction of the
stable laws when α < 2 (see Feller, 1971; and Ibragimov and Linnik, 1971).
Assumption B restricts the rate m → ∞; and Assumption C defines mixingale
and NED processes.

Assumption A

1. The distribution tails satisfy

F̄ (x) = x−αL(x), x > 0, (7)

for some α > 0, as |x| → ∞, where L is slowly varying.
2. The distribution tails satisfy

F̄ (x) = cx−α(1 + o(x−θ)), x > 0, (8)

for some c > 0, α > 0 and θ > 0, as |x| → ∞.
Assumption B

1. m = o(n);

2. m = [nδ], 0 < δ < 2θ/(2θ + α) where θ > 0 is defined in Assumption
A.2.

Assumption C Let zt be an increasing sigma field on the measure space
(Ξ,z, µΞ) such that zt = σ(εs < s ≤ t) where {εt}∞−∞ is a stochastic
process. Let � ∈ R and ρ in a neighborhood of 1 be arbitrary.

1. For each U ∈ {Un,t, U∗n,t(�, ρ)}4, the sequence {Ut,zt}∞−∞ is an Lp-
mixingale, p ≥ 1, with constants dt ∈ {dn,t, d∗n,t} and coefficients {ψq, ψ∗q}
of size −λ(1/p − 1/r) for some λ > 0, r > p ≥ 1;
2. For each U ∈ {Un,t, U∗n,t(�/

√
m, 1)}, the sequence {Ut} is Lr-bounded,

r ≥ 1, L2-NED of size −1/2 on {εt}∞−∞, where εt is a uniform mixing
process of size −r/[2(r − 1)], r ≥ 2; or strong mixing of size −r/(r − 2),
r > 2.

Remark 1: The Lr-boundedness component of Assumption C for each
{Un,t, U∗n,t} follows from Lemma 1, below, and therefore is a non-binding as-
sumption.

3. Main Results We require the following lemma in order to make ex-
plicit mixingale and NED constants for {Un,t, U∗n,t(�, ρ)}.

4Throughout we write {Un,t, U∗n,t} to denote the bivariate process. We write U ∈
{Un,t, U∗n,t} when U = {Ut} represents either process {Un,t} or {U∗n,t}.

5



Lemma 1 Consider a process X such that Assumption A.1 holds. Each {Un,t}
and {U∗n,t(�, ρ)} is an Lr-bounded process for any r ≥ 1. Specifically, for every
� ∈ R and any ρ in a neighborhood of 1 there exists finite constant sequences
{Ar, Br, Cr}r≥1 > 0 such that for each t ∈ N as n → ∞°°U∗n,t(�, ρ)°°r ≤ Ar(m/n)1/r; (9)

kUn,tkr ≤ Br (m/n)
1/r , r ∈ N;

kUn,tkr ≤ Cr (m/n)
1/[r+1]

, r ∈ R+.

3.1. Weak Probability Convergence
The first result proves weak consistency of α̂−1m for mixingales that have

regularly varying tails (1) with m = o(n).

Theorem 2 (Weak Limit for Mixingales) Consider a process X such that
Assumptions A.1, B.1 and C.1 hold for each U ∈ {Un,t, U∗n,t(�, ρ)}. Then

m−1
Xn

t=1
Ut → 0 (10)

α̂−1m → α−1.

Moreover,
lnX([ρm]) − ln bn(ρm)→ 0. (11)

for any � ∈ R and ρ in a neighborhood of 1.

Remark 1: Because strong and uniform mixing processes, and processes
NED on a mixing base, are special cases of mixingales, the above theorem holds
in those cases for {Un,t, U∗n,t}.
Remark 2: Result (11) will be useful for deriving a Gaussian limit for

NED processes, below, and substantiates the use of X(m+1) in (4).
Remark 3: We generalize the dependence assumptions on {Un,t, U∗n,t} to

Xt itself in Section 3.3.
An NED process Xt is simply a process Lp-approximable by E[Xt|zt+q

t−q]. It
is straightforward to extend Theorem 2 to other forms of approximability.

Theorem 3 (Weak Limit for L1-approximable Processes) Let Assumptions
A.1 and B.1 hold. Assume each U ∈ {Un,t, U∗n,t(�, ρ)} is L1-approximable by
zt+q
t−q-measurable sequences h(q) ∈ {h(q)n,t, h

∗(q)
n,t } with approximating constants et

∈ {en,t, e∗n,t}. Assume lim supn→∞
Pn

t=1 et/m ≤ D < ∞ for some constant D,

and assume each (h(q)t − E[h
(q)
t ])/m satisfies a weak law of large numbers. Then

each conclusion of Theorem 2 holds.

Remark 1: In order for each (h(q)t − E[h
(q)
t ])/m to satisfy a law of large

numbers, we may assume each is a uniformly integrable L1-mixingale with con-
stants dt/m, lim supn→∞

Pn
t=1 dt/m < ∞, and limn→∞

Pn
t=1(dt/m)

2 = 0. In
this case, a mixingale law of large numbers due to Davidson (1993a) applies and
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Pn
t=1(h

(q)
t − E[h

(q)
t ])/m→ 0. Although this set of sufficient assumptions seems

prohibitive, each necessarily holds for mixingale Ut/m (consult the line of proof
of Theorem 2).
Remark 2: L1-approximable processes are L0-approximable, and L0- ap-

proximability implies L1-approximability provided the process is L1-bounded
(see Pötscher and Prucha, 1991; see also Davidson, 1994: p. 274 and Theorem
17.21). Because {Un,t, U∗n,t} are bounded in the Lr-norm for any r ≥ 1, cf.
Lemma 1, we conclude Theorem 3 holds for L0-approximable {Un,t, U∗n,t}.
3.2 Distribution Convergence
The previous results deal broadly with regularly varying tails by using only

Assumption A.1. In order to prove α̂−1m converges in law to a Gaussian random
variable we must refine the structure of the slowly varying component L(x).
Hsing (1991) does this by restricting L(x) to satisfy either of equations (2.3a) or
(2.3b) of that work. However, it is not obvious which class of distributions satisfy
either assumption. We consider the popularly studied class of distributions that
satisfies Assumptions A.2, and effectively prove this class satisfies Hsing’s (2.3a).
In general, the following environment (Assumptions A.2 and B.2) is quite similar
to the distribution tail setting studied in Hall (1982)5.
Let

σ2m = m×E(α̂−1m − α−1)2. (12)

In the following, we apply a powerful central limit theorem due to de Jong
(1997): see also de Jong and Davidson (2000)6.

Theorem 4 (Gaussian Limit for NED Processes) Let Assumptions A.2,
B.2, and C.2 hold. Let σ2m = O(nγ), γ ≥ 07 . Then

σ−1m
√
m
¡
α̂−1m − α−1

¢⇒ N(0, 1), (13)

if r > 2, δ ≥ 1− rγ/(r − 2) and γ > 0; or r = 2 and γ ≥ 0.
If additionally Assumption C.2 holds with r = 2 (i.e. the NED-mixing

base size is −1) and γ = 0, then
√
m
¡
α̂−1m − α−1

¢⇒ N(0, σ2), (14)

where σ2 = limn→∞ σ2m. If Xt is iid, then σ2 = α−2.

5Distributions which satisfy Assumption A.2 belong to the domain of attraction of a stable
law when α < 2 (see Ibragimov and Linnik, 1971), and have been utilized in the development
of asymptotic theory for least squares estimators (Cline, 1983), t-ratios, the Durbin-Watson
test (Loretan and Phillips, 1991), the Box-Pierce test (Runde, 1997), tests of covariance
stationarity (Loretan, 1991; Loretan and Phillips, 1994), cointegration (Caner, 1998), unit
roots (Chan and Tan, 1989; Phillips, 1990), extremal structural change (Quintos et al, 2001),
extremal dependence (Hill, 2005), etc.

6Other theorems due to Wooldridge and White (1988), Davidson (1992,1993b), Chen and
White (1997), and Lin and Qiu (2004) are also applicable, but do not improve the major
outcome due to size restrictions, or restrictions on the implied convergence property of σ2m.

7By convention the rate σ2m = O(nγ) implies σ2m → ∞ if γ > 0, and σ2m → σ2 ∈ (0,∞)
if γ = 0. We do not consider the degenerate case, γ < 0, such that σ2m → 0.
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Remark 1: For (13), when r = 2 no restrictions on δ are required other
than Assumption B.2. However, the NED-mixing base �t must be uniform
mixing in order to allow r = 2. Moreover, if γ = 0 such that σ2m converges, we
require r = 2, limiting the NED-uniform mixing size to −1.
Remark 2: Limit (14) is a generalized version of Hsing’s (1991) Theorem

3.3 for mixing processes, in which moments of the processes {Un,t, U∗n,t} are
assumed to satisfy summability conditions. The assumption σ2m = O(1) in
Theorem 4 replaces Hsing’s (1991) summability conditions.
Remark 3: If Xt is iid, then σ2 = α−2, and (14) is simply the limit

derived in Hall (1982) for a sub-class of distributions that satisfy Assumption
A.1: F̄ (x) = cx−α(1 + Bx−θ + o(x−θ)). If our case, B = 0.
Remark 4: Using Cramér’s Theorem it is straightforward to show (13)

implies √
mσ̃−1m (α̂m − α)⇒ N(0, α2), (15)

where σ̃m = ασm. If the process Xt is iid, then limn→∞ σ̃2m = α2 limn→∞ σ2m
= α2α−2 = 1.
As r increases such that the allowable degree of dependence through the

NED-mixing base size increases, the lower bound on δ, 1−rγ/(r−2), increases,
hence more tail information (largem ≈ nδ) in general is required for each sample
of size n. Strictly speaking, when Xt is "approximable" by a relatively "more
serially dependent" process �t, more tail information is required.
Intuitively, if Xt is strongly positively serially dependent, then clusters of Xt

may not reveal sufficient information concerning volatility in order to obtain a
sharp estimate of the tail shape, which itself characterizes dispersion. If depen-
dence is restricted such that the mixing base is uniform with size −1 (i.e. r =
2), then no restrictions on δ are required other than Assumption B.28.
3.3 Variance Estimator
The tail estimator α̂−1m is simply the first sample moment of the serially de-

pendent (lnXt − lnX(m+1))+, which is simply an estimator of the L2-process
(lnXt − ln bn(m))+, where L2-boundedness follows from Lemma 1. Hence a
Newey-West kernel estimator of the variance will suffice in practice. For back-
ground theory, see Newey and West (1987) and Gallant and White (1988). We
define

σ̂2m =
1

m

Xn

s=1

Xn

t=1
w((s− t)/ln)ẐsẐt (16)

where Ẑt = [
¡
lnXt/X(m+1)

¢
+
− (m/n)α̂−1m ], and w((s − t)/ln) denotes a stan-

dard kernel function with bandwidth ln, an increasing sequence of positive in-
tegers 1 ≤ ln < m, ln → ∞ as m → ∞ (see, e.g., de Jong and Davidson,
2000).

8An important caveat is the reliance of the distribution limit (13), and the subsequent
restriction (if any) on δ, on de Jong’s (1997) central limit theorem. In order for de Jong’s
result to apply here, we must bound δ when the mixing base size is such that r > 2. Whether
such a restriction on δ is required under any central limit theorem is debatable, and beyond
the scope of the present paper, although de Jong’s central limit theorem is evidently the most
powerful and inclusive available.
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Lemma 5 Let the kernel ws,t,n ≡ w((s − t)/ln) satisfy Assumption 1 of de Jong
and Davidson (2000) with ln = O(nς), ς ∈ [0, 1], and m−1

Pn
s=1

Pn
t=1 |wn,s,t|

= O(1). Under the conditions of Theorem 4, σ̂2m/σ
2
m → 1.

Remark 1: If r = 2 and γ = 0 such that the NED base �t is uniform
mixing and σ2m → σ2, then σ̂2m/σ

2 → 1.

4 Extremal Dependence It is straightforward to demonstrate that if
lnXt is L2-NED, then Un,t is an L2-NED processes. However, establishing an
NED property for Un,t based on Xt itself, or demonstrating U∗n,t is NED based
on either lnXt or Xt, is less transparent.
For brevity, denote by xn(u) the term bn(m)e

u for any u ∈ R. We circumvent
the problem by creating dependence properties based on the minimal require-
ments of this paper. The problem with the process U∗n,t = T ∗n,t − E[T ∗n,t] lies in
the fact that it is binary: in order for U∗n,t to be L2-NED we require°°U∗n,t −E[U∗n,t|zt+q

t−q]
°°
2
≤ d∗n,tψ

∗
q , (17)

which, using (5), reduces to9°°I (Xt > xn(u))−E[I (Xt > xn(u)) |zt+q
t−q]

°°
2

(18)

=
°°P (Xt > xn(u)|=t+qt−q)− P

¡
Xt > xn(u)|zt+q

t−q
¢°°
2
≤ d∗n,tψ

∗
q .

Moreover, consistency and the distribution limit established in Sections 3.1-
3.2 are, of course, limiting properties, and bne�/

√
m →∞ as n→∞ for any � ∈

R by (2). Thus, inequality (17) need only hold in the extreme right tail of Xt:
apparently the field zt+q

t−q need only contain extreme tail information concerning
Xt.
Assumption C.3 defines the sequence {Xt,zt} as an Lp-Extremal-Mixingale

(Lp-E-MIX), and Assumption C.4 defines the process {Xt} as Lp-Extremal-
Near-Epoch-Dependent (Lp-E-NED) on {zt}. Essentially we are defining U∗n,t
to be, respectively, an L1-mixingale or L2-NED on a mixing base as n → ∞,
and we prove in Theorem 7, below, that the dependence property of U∗n,t carries
over to Un,t. Let xn(u) ≡ bne

u, and define the field zb
a = σ(�t : a ≤ t ≤ b).

Assumption C.3 (Lp-E-MIX) Let �t satisfy the mixing properties of As-
sumption C.1. For each t there exists a Lebesgue measurable function
ẽ∗t : R → R+, integrable on R+, and a sequence of constants {υ̃∗q}∞q=0,
with υ̃∗q = O(q−λ), λ > 0, such that for any u ∈ R and some p ≥ 1

lim sup
n→∞

³ n
m

´1/p
kP (Xt > xn(u))− P (Xt > xn(u)|zt−q)kp (19)

≤ e∗t (u)υ̃
∗
q

lim sup
n→∞

³ n
m

´1/p °°P (Xt > xn(u)|=t+qt−q)− P (Xt > xn(u)|zt+q)
°°
p

≤ e∗t (u)υ̃
∗
q+1.

9Observe that P (Xt > xn(u)|=t+qt−q) = I(Xt > xn(u)) because Xt is =tt-measurable.
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Assumption C.4 (Lp-E-NED) Let �t satisfy the mixing properties of As-
sumption C.2. For each t there exists a Lebesgue measurable function ẽ∗t
: R → R+, integrable on R+, and a sequence of constants {υ̃∗q}∞q=0, with
υ̃∗q = O(q−λ), λ > 0, such that for any u ∈ R and some p ≥ 1

(20)

lim sup
n→∞

³ n
m

´1/p °°P (Xt > xn(u)|=t+qt−q)− P
¡
Xt > xn(u)|zt+q

t−q
¢°°

p

≤ ẽ∗t (u)υ̃
∗
q .

As in the standard case, an extremal NED process is also an extremal mixin-
gale.

Lemma 6 Let Xt be Lp-E-NED, p ≥ 1, on some {zt}, zt = σ(εs : s ≤ t),
with constants ẽ∗t and coefficients υ̃

∗
q of size −λ1, where εt is strong or uniform

mixing of size −λ0. Then {Xt,zt} is an Lp-E-MIX sequence with coefficients
of size −min{λ1−1/p0 , λ1}.
Theorem 7 Let Assumption A.1 hold.
i. Provided Assumption C.3 holds with E-MIX size −λ, then each {Ut,zt} is
an L1-mixingale as n → ∞, with constants

dn,t = (m/n)

Z ∞
0

e∗t (u)du, d∗n,t = (m/n)ẽ∗t (�/
√
m), (21)

and coefficients {ψq, ψ∗q} of size −λ.
ii. Provided Assumption C.4 holds with E-NED size −λ, then each {Ut} is
L2-NED on {zt} as n → ∞, with constants

dn,t = (m/n)1/2
Z ∞
0

e∗t (u)du, d∗n,t = (m/n)1/2ẽ∗t (�/
√
m), (22)

and coefficients {ψq, ψ∗q} of size −λ.
Remark 1: If {Xt,zt} is an L1-E-MIX sequence, then each {Ut,zt} is an

L1-mixingale as n→∞, and under Assumptions A.1 and B.1, Theorem 2 holds:
α̂−1m → α−1. Similarly, if {Xt} is L2-E-NED on {zt} with size −1/2, where zt

= σ(εs : s ≤ t) for a uniform or strong mixing process {εt} of appropriate size,
then each {Ut} is L2-NED on {zt} with size −1/2, and under Assumptions A.2
and B.2, Theorem 4 holds: σ−1m

√
m(α̂−1m − α−1) ⇒ N(0, 1).

4.1 Linear Processes
Consider the process

Xt =
X∞

i=0
ψiZt−i, ψ0 = 1,

X∞
i=0

|ψi|α <∞

where the Z0ts are iid random variables satisfying (1). Notice Zt does not nec-
essarily have a mean zero. By the following lemma, such processes {Xt} are
L2-E-NED on {Zt}.

10



Lemma 8 {Xt} is L2-E-NED on {Zt} with coefficients υ̃∗q = O([
P∞

i=q+1 |ψi|α]1/2)
and constants ẽ∗t (u) : R → R+ integrable on R+. If ψi = O(i−µ), µ > 1/α,
then the E-NED size is −(αµ − 1)/2.
Remark 1: Notice that the E-NED size magnitude satisfies (αµ − 1)/2

≥ 1/2 if and only if µ ≥ 2/α, in which case Theorem 4 holds. For processes
with relatively thick tails (small α), µ must be relatively large such that ψi
decays faster, effectively restricting the strength of allowed serial dependence.
This result nicely compliments Theorem 4. Together, relatively more serially
dependent processes, as measured by the a smaller mixing base size, require
more tail information per sample for tail estimation; and relatively more serially
dependent linear processes, as measured by a smaller decay rate µ, must have
thinner distribution tails.

5. Application For a slightly generalized version of the tail structure in
Assumption A.2, Hall (1982) considered the scale estimator

ĉm ≡ (m/n)Xα̂m
(m+1). (23)

Hall (1982) analyzed ĉm in an iid environment; and ĉm has been employed for
tests of covariance stationarity (Loretan, 1991; Loretan and Phillips, 1993); and
tests of extremal white noise (Hill, 2005).

Theorem 9 Consider a process X such that Assumptions A.2, B.2, and C.4
hold. Let σ2m = O(nγ), γ ≥ 0. Let X(m+1)/bn(m) = 1 + op(n

−ξ), ξ > (1 −
δ)θ/α. Then

σ̃−1m α−1
√
m [ln(n/m)]

−1
(ĉm − c) =⇒ N(0, c2), (24)

if r > 2, δ ≥ 1− rγ/(r− 2) and γ > 0; or r = 2 and γ ≥ 0. If Assumption C.4
holds with r = 2 (i.e. the E-NED-mixing base size is −1) and γ = 0,

√
m [ln(n/m)]

−1
(ĉm − c) =⇒ N(0, c2σ̃2), (25)

where σ̃2 = limn→∞ σ̃2m.

6. Simulation We now simulate linear processes Xt and analyze the per-
formance and distribution of α̂m. For brevity, we fix the sample size to n = 500.
We draw random samples of iid mean-zero time series Zt from a symmetric sta-
ble distribution10, or a symmetric Pareto distribution with probability density
function

f (z) = α|z|−α−1 if |z| ≥ ξ; f (z) = αξ−α−1 if |z| ≤ ξ, (26)

for α = 1.7. A tail index value near 2 will help characterize the propensity of
inference on α̂m to lead to the false conclusion that α ≥ 2. Simulation results
10We use McCulloch’s (1997) version of the simulation algorithm of Chambers et al (1976).
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for other values of α are qualitatively similar. The constant ξ > 1 is chosen such
that f(z) is a proper pdf: it is straightforward to show ξ = [2(1 + α)]1/α givesR +∞
−∞ f(z)dz = 1..
We consider a family of AR(1) processes

Xt = φXt−1 + �t, �t =
X∞

i=0
πiZt−i, (27)

where |φ| < 1, π0 = 1 and π(z) =
P∞

i=0 πiz
i 6= 0 ∀z ∈ C, |z| ≤ 1. In the

benchmark iid case, φ = πi = 0, i ≥ 1, and Xt = Zt.
In the simple AR(1) case we use φ ∈ {.2, .4, .6, .8, .9}, and set πi = 0 for

all i ≥ 1. Using Lemma 8, it is straightforward to show {Xt} is L2-E-NED on
{Zt} with coefficients υ̃∗q = O(|φ|qα/2) ≤ O(q−λ), for some λ > 0, hence the Hill
estimator is consistent and asymptotically normal, cf. Theorem 4.
We then fix φ= .9, and simulate general AR(1) processes with non-iid shocks

�t by setting π0 = 1 and πi = i−µ, i ≥ 1, for µ > (α + 2)/α ≥ 1. There
are two ways to interpret the resulting process (27). First, it is laborious but
straightforward to prove �t is strong mixing of size −λ, where

λ = [α(µ− 1)− 2]/(α+ 1), (28)

under appropriate restrictions on the probability density function of Zt, which
are satisfied in the present setting: see Theorem 14.9 of Davidson (1994), cf.
Chandra (1974). Clearly ∂λ/∂µ > 0 and ∂λ/∂α > 0. We consider µ = c(α +
2)/α for constants c ∈ {1.1, 1.8, 10}, giving mixing sizes λ ∈ {.137, 1.096, 12.33}
when α = 1.7.
Alternatively, of course Xt obtains the linear representation

Xt =
X∞

i=0
ψiZt−i, ψ0 = 1, ψi = φi +

Xi

j=1
j−µφi−j , i ≥ 1. (29)

Each term φi and j−µφi−j is O(i−µ)11, hence
Pi

j=1 j
−µφi−j is O(i−µ+1). It

follows that |ψi|α is O(i−(µ−1)α), where (µ − 1)α > 1 given µ > (α + 2)/α >
(α + 1)/α by assumption, hence

P∞
i=0 |ψi|α < ∞. Because µ > (α + 2)/α >

2/α is satisfied, {Xt} is L2-E-NED on {Zt} with size −1/2, cf. Lemma 8.
We approximate the infinite distributed lag

P∞
i=0 πiZt−i by simulating the

truncation
P1000

i=0 πiZt−i. For all AR(1) time series we simulate 3 × n obser-
vations and retain the last n. We simulate 1000 series of each process, and we
derive the Hill estimator for the absolute series |Xt|.
11 In order to see that j−µφi−j is O(i−µ), recall 0 < φ < 1 and µ > 1, and notice j−µφi−j

is strictly convex in j:

(∂/∂j) ln j−µφi−j = −µ/j + ln 1/φ, (∂/∂j)2 ln j−µφi−j = µ/j2 > 0.

For small j, (∂/∂j) ln j−µφi−j < 0 for some values of µ and φ, and for large j,
(∂/∂j) ln j−µφi−j > 0. Thus, because 1 ≤ j ≤ i we deduce for large i

j−µφi−j ≤ max©φi−1, i−µª = i−µ

and therefore j−µφi−j = O(i−µ).
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We plot the Hill estimator α̂m for simple AR(1) processes driven by Paretian
or stable innovations over φ, and for general AR(1) processes with φ = .9 over
mixing sizes λ: sees Figure 1 and 2. The comparative shape of the Hill estimator
as the tail fractilem increases is well known for independent Paretian and stable
processes: see, for example, Drees et al (2000). However, there does not appear
to be much discussion in this literature of the impact serial dependence has on
the usefulness of such plots (e.g. Resnick and Stărică, 1997). Indeed, the entire
premise of the ideas presented in Resnick and Stărică (1997) and Drees et al
(2000) is that an "alternative" Hill plot, a logarithmic plot of α̂[nδ] against δ ∈
[0, 1], can help stretch the plot "giving more display space to smaller values of
[the fractile index m]" (ibid, p. 254) and make more apparent the display space
neighborhood where values of α̂m predominantly occur (in theory, near α).
Their premise, however, is fundamentally predicated on the assumption the

process Xt is iid. This is well exemplified for iid Paretian random variables,
the distribution class Drees et al (2000) suggest is particularly suited to an
application of the Hill plot: see the bold line in Figure 1 which predominantly
hovers near α = 1.7. It is profoundly clear, however, that a plot of α̂m provides
little, or possibly no, useful information regarding α when a Paretian-noise
driven process is a simple AR(1) with φ ≥ .8, or general AR(1) with φ = .9
and non-iid innovations. In either case the tail fractile m must be near .4 ×
n = 200 for α̂m to be "near" α, a value substantially larger than Dumouchel’s
(1983) suggested 10th percentile .1 × n = 50. In general, as the mixing base
size decreases, implying a greater degree of serial dependence, the amount of
tail information required is comparatively larger.
For stable processes, the need for tail observations is even more attenuated:

as the degree of dependence increases, the general plot shape bows outward.
However, for each iid, simple AR and general AR stable process simulated, we
find that a large tail fractile m is required (near .4 × n) in order for α̂m to be
"near" α, although a slight increase in m is detectably necessary as the level of
dependence increases.
As a criterion for how "near" α̂m is to α, for independent, simple and general

stable AR(1) processes we estimate asymptotic 95% intervals using a Newey-
West estimator with Bartlett kernel and bandwidth ln = [

√
m]. We estimate α̂m

for all m = 2...n − 1, and note the minimum m at which 2 is not in the interval:
this gives the minimum required number of tail observations in order to deduce
correctly that the variance is infinite, at the 5%-level. Similarly, we note the
largest m such that α = 1.7 is in the 95%-bounds. See Table 1. Once again,
there is a clean monotonic increase in the required number of tail observations
m as the degree of serial dependence increases.
Despite the overwhelming evidence that more observations from the distribu-

tion tail are required for a sharp estimate of α̂m, the property of consistency only
requires m = o(n), cf. Theorem 2. The obvious question, then, is whether as-
ymptotic normality is influenced by the magnitude of m, as Theorem 4 predicts.
We provide kernel density plots based on a Gaussian kernel (see Silverman, 1986)
of a sequence of simulated α̂0ms for n = 500 symmetric stable random variables
with α = 1.7, using only m = 5, 10, 100, and 200. We then perform Cramér-von
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Mises tests of normality on the estimated density. See Figures 3 and 4 for plots
and test results. We only fail to reject normality when m is large: for m = 5
(not shown) or m = 10 we massively reject the normality hypothesis due to the
extreme right skewedness and kurtosis of the sequence of α̂m; when m ≥ 180
(not shown) in general, and m = 200 in particular, the density estimates are
reasonably similar to a Gaussian distribution with mean α = 1.7, in particular
when the mean, α, is estimated rather than imputed.

7. Conclusion For processes with regularly varying tails we prove weak
convergence of the Hill estimator for the class of mixingale {Un,t, U∗n,t}, covering
mixing, NED-mixing, and L1- and L0-approximable processes. Moreover, for a
sub-class of distributions that includes the domain of attraction of the stable
laws, we prove a Gaussian limit for processes {Un,t, U∗n,t} near-epoch-dependent
on a uniform or strong mixing process. We do not require the asymptotic
variance of α̂m to be finite, and we establish a consistent Newey-West type
kernel estimator of the variance. In theory, as the degree of permitted serial
dependence increases, the minimum number of tail observations per sample
used for estimation must increase.
In order to expand our dependence assumptions to Xt itself, we define "ex-

tremal mixingale" and "extremal NED" properties, disbanding with dependence
assumptions on the non-extremal support. A broad class of linear processes sat-
isfy the L2-extremal-NED property, and therefore permit asymptotically normal
estimation of the Hill estimator. A simulation study demonstrates the unavoid-
able need for more tail observations in order to estimate α when serial depen-
dence is present. Even for mildly dependent processes the so-called "Hill plot"
is essentially useless and data dependent methods for selection of the sample
fractile m is undoubtedly required (e.g. the bootstrap method of Danielsson et
al, 1998; or the co-relation ranking strategy of Hill, 2005).
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Appendix 1: Notation and Dependence

Althoughm depends on n, we omit such notation. Denote by→ convergence
in probability, and by =⇒ weak convergence with respect to finite dimensional
distributions. [x] denotes the integer part of x, with [|x|] ≤ |x|. I(A) denotes
the indicator function: I(A) = 1 if A is true.
Mixing12: Let Wn,t denote an =-measurable function of Xt. Denote by

=ba the σ-field σ(Wn,t: a ≤ t ≤ b) and let =t denote σ(Wn,s : s ≤ t). Define
respectively uniform and strong mixing coefficients q ≥ 1

φ(=t−∞,=∞t+q) ≡ sup
A∈=t−∞,B∈=∞t+q

{|P (B|A)− P (B)|

ϑ(=t−∞,=∞t+q) ≡ sup
A∈=t−∞,B∈=∞t+q

{|P (A ∩B)− P (A)P (B)|

We say Wn,t is uniform mixing if φq = supt φ(=t−∞,=∞t+q) → 0 as q → ∞.
Similarly, Xt is strong mixing if ϑq = supt ϑ(=t−∞,=∞t+q) → 0.
Mixingale: Denote by zt an arbitrary sigma-field on (Ξ,z, µΞ). We

say {Wn,t,zt−∞}∞−∞ is an Lp-mixingale, p ≥ 1, if for some sequence of positive
constants {dn,t}∞−∞ and {ψq}∞0 , with ψq → 0 as q → ∞,

kE[Wn,t|zt−q]kp ≤ dn,tψq

kWn,t −E[Wn,t|zt+q]kp ≤ dn,tψq+1.

Near-Epoch-Dependence: Let {εt}∞−∞ be a processes measurable with
respect to z: specifically, zb

a = σ(εt : a ≤ t ≤ b). We say {Wn,t}∞−∞ is Lp-
near-epoch-dependent on {εt}∞−∞ (synonymously on {zt−∞}∞−∞) if there exist
positive constants {dn,t}∞−∞ and {ψq}∞0 , with ψq → 0 as q → ∞, such that°°Wn,t −E[Wn,t|zt+q

t−q]
°°
p
≤ dn,tψq.

Approximability: We say Wn,t is L0-approximable if for each q ∈ N
there exists an zt+q

t−q-measurable function h
(q)
n,t such that for positive constants

{en,t}∞−∞ and coefficients {υq}∞q=0, with υq → 0 as q → ∞, and for every γ > 0

P
³¯̄̄
Wn,t − h

(q)
n,t

¯̄̄
> en,tγ

´
≤ υq.

We say Wn,t is Lp-approximable, p > 0, if for each q ∈ N there exists an zt+q
t−q-

measurable function h
(q)
n,t such that°°°Wn,t − h

(q)
n,t

°°°
p
≤ en,tυq.

12Consult Ibragimov (1962), McLiesh (1975), Hall and Hyde (1980), Gallant and White
(1988) and Davidson (1994) for theoretical and historical details on mixing, mixingale and
NED usages and properties. Consult Pötscher and Prucha (1991) and Davidson (1994) for
L0- and Lp-approximability.
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Appendix 2: Figures and Tables

Figure 1
Hill Plot, Pareto, α = 1.7, n = 500

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 20 211 22 23 24 251

m

α(φ=0)

α(φ=.2)

α(φ .=.4)

α(φ=.6)

α(φ=.8)

α(φ=.9)

α(λ = .137)

α(λ = 1.10)

α(λ = 12.33)

1.65

1.66

1.67

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 20 211 22 23 24 251

m

α(φ=0)

α(φ=.2)

α(φ.=.4)

α(φ=.6)

α(φ=.8)

α(φ=.9)

α(λ = .137)

α(λ = 1.10)

α(λ = 12.33)

Notes: The bottom figure is a magnification of the top figure.
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Figure 2
Hill Plot, Stable, α = 1.7, n = 500
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Figure 3
100 Simulated α̂0ms (Stable)

α = 1.7, m ∈ {5, 10, 100, 200}, n = 500
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Notes: The top two lines (m = 100 and m = 200) are plotted against
the left Y-axis; the bottom two lines (m = 5 and m = 10) are
plotted against the right axis. For m = 10, the sample mean
and standard deviation are 4.92 and 3.45. For m = 200, the
sample mean and standard derivation are 1.76 and .30.

Figure 4
Kernel Densities of α̂m, α = 1.7, n = 500 (Stable)
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Notes: For m = 10, the Cramer-von Mises p-value is below .01 when α = 1.7 is
assumed; and the p-value is below .0001 when α is estimated.
For m = 200, the Cramer-von Mises p-value is .146 when α = 1.7 is
assumed; and the p-value is .327 when α is estimated.
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Table 1: α̂m ± 1.96× b̃σm/√m (Stable)
α = 1.7, n = 500

Simple AR(1) General AR(1)a

φ λ
0 .2 .6 .9 12.33 1.096 .137

m α̂m±k α̂m±k α̂m±k α̂m±k α̂m±k α̂m±k α̂m±k
5 2.41±2.51 2.32±2.45 2.78±3.17 6.07±7.77 5.91±7.61 6.62±8.53 9.64±12.49
10 2.17±1.71 2.28±1.88 2.55±2.55 4.62±5.60 4.37±5.37 4.78±5.93 5.96±7.47
50 2.36±0.90 2.41±1.01 2.46±1.46 3.19±2.73 2.99±2.63 3.16±2.89 3.40±3.06
100 2.25±0.56 2.27±0.65 2.29±0.93 2.56±1.67 2.52±1.66 2.62±1.81 2.72±1.87
150 2.03±0.37 2.02±0.43 2.02±0.61 2.17±1.13 2.15±1.12 2.19±1.17 2.27±1.22
200 1.77±0.24 1.76±0.28 1.75±0.40 1.86±0.78 1.83±0.76 1.83±0.78 1.91±0.81
250 1.50±0.16 1.50±0.19 1.49±0.27 1.56±0.53 1.55±0.53 1.54±0.54 1.60±0.54
300 1.25±0.11 1.26±0.12 1.29±0.18 1.38±0.33 1.29±0.35 1.29±0.37 1.32±0.36
350 1.14±0.08 1.15±0.09 1.18±0.13 1.24±0.21 1.05±0.22 1.04±0.23 1.06±0.23
m
¯ 2

(δ)b 200 (.85) 207 (.86) 220 (.87) 261 (.90) 176 (.83) 260 (.89) 265 (.90)
m̄α (δ)b 240 (.88) 242 (.88) 253 (.89) 304 (.92) 280 (.91) 290 (.91) 294 (.91)

Notes: a. For each general AR(1) process, φ= .9.
b. Minimum m at which 2 does not occur in the 95% interval (δ = lnm/ lnn).
c. Maximum m at which α = 1.7 occur in the 95% interval (δ = lnm/ lnn).
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Appendix 3: Proofs of Main Results

Proof of Lemma 1. By Minkowski’s and Jensen’s inequality, (1) and the
definition of bn(ρm), cf. (2), for any � ∈ R and ρ in a neighborhood of 1 (without
loss of generality, let ρ ∈ (0, 2)), as n → ∞

||U∗n,t+q||r ≤ ||T ∗n,t+q||r + ||E[T ∗n,t+q]||r (30)

≤ 2||T ∗n,t+q||r
= 2P (lnXt+q − ln bn(ρm) > �)

1/r

= 2P (Xt+q > bn(ρm)e
�)1/r

= 2

·
P (Xt+q > bn(ρm))

P (Xt+q > bn(ρm)e
�)

P (Xt+q > bn(ρm))

¸1/r
≈ 2

£
(ρm/n)e−α�

¤1/r ≤ 4(m/n)1/re−α�/r = Ar(m/n)1/r,

where Ar = 4e
−α�/r.

Similarly, using (3), and Minkowski’s inequality, for any positive i and q and
any integer r ≥ 1, as n → ∞

kUn,t+qkr ≤ 2 kTn,t+qk (31)

= 2 (E |(lnXt+q − ln bn(m))+|r)1/r

≈ 2
¡
(m/n)r!α−r

¢1/r
= 2r!1/r (m/n)1/r α−1 = Br (m/n)1/r ,

where Br = 2r!1/rα−1. Finally, for any real-valued r ≥ 1 and recalling [r] ≤
r by convention such that [r + 1] ≥ r, by Liapanov’s inequality and using the
above derivations,

kUn,t+qkr ≤ kUn,t+qk[r+1] (32)

≤ 2[r + 1]!1/[r+1] (m/n)
1/[r+1]

α−1 = Cr (m/n)
1/[r+1]

.

Proof of Theorem 2.
Step 1 (m−1

Pn
t=1 Ut → 0): Under Assumption C.1, {Un,t, U∗n,t} =

{Un,t, U∗n,t(ρ, �)} are Lp-mixingales, p ≥ 1, with positive constants {dn,t, d∗n,t}
and coefficients {ψn,i, ψ∗n,i} of size −λ(1/p − 1/r) for some λ ≥ 0, r > p ≥
1. Fix p = 1. We show an L1-mixingale weak law of large numbers due to
Davidson (1993a) (see also Theorem 19.11 of Davidson, 1994) applies to each
{Un,t/m,U∗n,t/m}.
By Lemma 1, each processes {Un,t, U∗n,t} is bounded in the Lr-norm for any

r ≥ 1, hence the Lp-assumption itself is superfluous. In particular, for any � ∈
R and ρ in a neighborhood of 1

||U∗n,t||1 ≤ A1(m/n); ||Un,t||1 ≤ B1 (m/n) . (33)
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Consider U∗n,t. By construction the mixingale constants and coefficients sat-
isfy (consult Appendix 1)°°E £U∗n,t|=t−q¤°°1 ≤ (d∗n,t)ψ∗q (34)°°U∗n,t −E

£
U∗n,t|=t+q

¤°°
1
≤ (d∗n,t)ψ∗q+1.

From the boundedness property, (33), we may select d∗n,t = (m/n), hence U∗n,t/m
satisfies°°E £U∗n,t/m|=i−q¤°°1 ≤ (d∗n,t/m)ψ∗q = (1/n)ψ∗q = d∗0n,tψ

∗
q (35)°°U∗n,t/m−E

£
U∗n,t/m|=i+q

¤°°
1
≤ (d∗n,t/m)ψ∗q+1 = (1/n)ψ∗q+1 = d∗0n,tψ

∗
q+1.

From Davidson (1993a), for
Pn

t=1 U
∗
n,t/m→ 0 we require i. {(U∗n,t/m)/d∗0n,t}

to be uniformly integrable; ii. lim supn→∞
Pn

t=1 d
∗0
n,t <∞; and iii. limn→∞

Pn
t=1(d

∗0
n,t)

2

= 0.
For uniform integrability (i), choose some r, s > 0, 1/r + 1/s= 1. By Lemma

1, the construction 1 ≤ m ≤ n, and Hölder’s and Chebyshev’s inequalities, for
any M > 0

limM→∞ supn,tE
£¯̄
(U∗n,t/m)/d

∗0
n,t

¯̄
I
¡
(U∗n,t/m)/d

∗0
n,t > M

¢¤
(36)

= limM→∞ supn,tE
£¯̄
nU∗n,i/m

¯̄
I
¡
nU∗n,i/m > M

¢¤
≤ limM→∞ supn,t(n/m)

°°U∗n,t°°r °°I ¡U∗n,t > (m/n)M
¢°°

s

= limM→∞ supn,t(n/m)
°°U∗n,t°°r P ¡U∗n,t > (m/n)M

¢1/s
≤ limM→∞ supn,t(n/m)

°°U∗n,t°°r h°°U∗n,t°°ss /[(m/n)sMs]
i1/s

= limM→∞ supn,t
°°U∗n,t°°r °°U∗n,t°°s /M

≤ limM→∞ supn,tArAs(m/n)/M

≤ limM→∞ArAs/M = 0.

Therefore (U∗n,t/m)/d
∗0
n,t is uniformly integrable (see Billingsley, 1995: p. 216).

For (ii), using the constant sequence {d∗0n,t} = {1/n} we deduce

lim sup
n→∞

Xn

t=1
d∗0n,t = lim sup

n→∞
n(1/n) = 1. (37)

Similarly, for (iii) we have

lim
n→∞

Xn

t=1
(d∗0n,t)

2 = lim
n→∞n−1 = 0. (38)

Therefore
Pn

t=1 U
∗
n,t/m → 0.

Given the near identity of bounds in (33), an identical argument holds for
Un,t.
Step 2 (α̂−1m → α−1): Having demonstrated laws of large numbers hold

for {Un,t, U∗n,t}, Theorem 2.2 of Hsing (1991) applies such that α̂−1m → α−1.
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Step 3: By Step 1, m−1
Pn

t=1 Ut → 0 for each U ∈ {Un,t, U∗n,t}, hence
the result

lnX([ρm]) − ln bn(ρm)→ 0 (39)

follows immediately from the line of proof of Theorem 2.2 of Hsing (2.2).
Proof of Theorem 3. The proof follows upon application of Theorems 17.21
and 19.13 of Davidson (1994) and Theorem 2.2 of Hsing (1991). For Theorem
19.13 of Davidson (1994), see especially equation (19.42) in the line of proof:
as long as the centered approximating processes satisfy a law of large numbers,
the result goes through.
Proof of Theorem 4. Define

(40)

U∗n,t ≡ I
¡
lnX+

t − bn(m) > �/
√
m
¢−E[I

¡
lnX+

t − bn(m) > �/
√
m
¢
]

Un,t ≡ (lnXt − ln bn(m))+ −E(lnXt − ln bn(m))+
TTn,t(ω) ≡ m−1/2σ−1m (ω)

¡
ω1Un,t + ω2α

−1U∗n,t
¢

H+
n ≡ m−1

Xn

t=1
(lnXt − ln bn(m))+

H̃n ≡ m−1
Xm

t=1

¡
lnX(i) − ln bn(m)

¢
S∗n ≡ m−1

Xn

t=1
U∗n,t

where ω = [ω1, ω2] ∈ R2 is arbitrary, and define the variance term

σ2m(ω) = m−1E
³Xn

t=1

¡
ω1Un,t + ω2α

−1U∗n,t
¢´2

. (41)

The proof of the distribution limit (13) follows from Lemmas 10-14, below.
From Lemma 14, for some random vector (Z1, Z2), Zi ∼ N(0, 1),

√
m
³
σ−1m,1

³
H̃n −E[H+

n ]
´
, σ−1m,2

¡
lnX(m+1) − ln bn(m)

¢´
=⇒ (Z1, Z2), (42)

if r > 2, δ ≥ 1 − rγ/(r − 2) and γ > 0, or r = 2 and γ ≥ 0, where σ2m,1 and
σ2m,2 are defined in Lemma 11. If r = 2, it is understood that the NED base is
uniform mixing. By the continuous mapping theorem and Cramér’s Theorem,
we deduce for some random variable Y

σm,1

σm(1,−1)
√
m

Ã
H̃n −E[H+

n ]

σm,1

!
(43)

− σm,2

σm(1,−1)
√
m

µ
lnX(m+1) − ln bn(m)

σm,2

¶
=⇒ lim

n→∞

µ
σm,1

σm(1,−1)
¶
Z1 − lim

n→∞

µ
σm,2

σm(1,−1)
¶
Z2 ≡ Y.
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From Lemma 11 and the fact that each Zi has a unit variance, we deduce the
random variable Y satisfies

V [Y ] =

µ
lim
n→∞

σm,1

σm(1,−1)
¶2
+

µ
lim
n→∞

σm,2

σm(1,−1)
¶2

(44)

−2 lim
n→∞

µ
σm,1

σm(1,−1)
¶
lim
n→∞

µ
σm,2

σm(1,−1)
¶
cov(Z1, Z2)

= 1.

Therefore, from the stability property of normal random variables and the fact
that each Zi has a zero mean, we deduce Y ∼ N(0, 1), and from the definition
of H̃n, cf. (40), we obtain

σm,1

σm(1,−1)
√
m

Ã
H̃n −E[H+

n ]

σm,1

!
(45)

− σm,2

σm(1,−1)
√
m

µ
lnX(m+1) − ln bn(m)

σm,2

¶
=

1

σm(1,−1)
√
m
³³

H̃n −E[H+
n ]
´
− ¡lnX(m+1) − ln bn(m)

¢´
=

1

σm(1,−1)
√
m
¡
α̂−1m − α−1

¢− 1

σm(1,−1)
√
m
¡
E[H+

n ]− α−1
¢

=⇒ N(0, 1),

if r > 2, δ ≥ 1− rγ/(r − 2) and γ > 0; or r = 2 and γ ≥ 0.
Hsing (1991: p. 1554) shows that for the positive measurable function g

defined in Lemma 13,
√
m
¡
E[H+

n ]− α−1
¢
=
√
mg(bn(m)) (46)

where
√
mg(bn(m))→ 0, cf. Lemma 13. Because σ2m(ω) = O(nγ), γ ≥ 0, for any

ω ∈ R2, from (45) and (46) we deduce upon application of Cramér’s Theorem

1

σm(1,−1)
√
m
¡
α̂−1m − α−1

¢
+ o(1) =⇒ N(0, 1), (47)

if r > 2, δ ≥ 1− rγ/(r − 2) and γ > 0; or r = 2 and γ ≥ 0.
The proof of (13) is complete if we show σ2m(1,−1)/σ2m → 1, where σ2m =

E[
√
m(α̂−1m − α−1)]2. This follows immediately from (47), Cramér’s Theorem,

and by the construction E[
√
mσ−1m

¡
α̂−1m − α−1

¢
]2 = 1:

√
mσ−1m (1,−1) ¡α̂−1m − α−1

¢
(48)

=
√
m

σm
σm(1,−1)σ

−1
m

¡
α̂−1m − α−1

¢
=

σm
σm(1,−1)

√
m
¡
α̂−1m − α−1

¢q
E[
√
m(α̂−1m − α−1)]2

⇒ N (0, 1) ,
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if and only if σm/σm(1,−1) → 1.
If Xt is iid, then the mean-zero (ω1Un,t + ω2α

−1U∗n,t) is iid and

σ2m(1,−1) = m−1E
³Xn

t=1

¡
Un,t − α−1U∗n,t

¢´2
(49)

= m−1
Xn

t=1
E
¡
Un,t − α−1U∗n,t

¢2
= m−1

Xn

t=1

¡
E[U2n,t]− 2α−1E[Un,tU∗n,t] + α−2E[U∗2n,t]

¢2
.

Using (1)-(3), it is straightforward to show as n → ∞

E[U2n,t] ≈
m

n
2α−2 −

³m
n

´2
α−2 (50)

E[U∗2n,t] ≈
m

n
e−α�/

√
m −

³m
n

´2
e−2α�/

√
m

E[Un,tU
∗
n,t] ≈

m

n
α−1 −

³m
n

´2
α−1e−α�/

√
m,

hence

limσ2m(1,−1) (51)

= lim
n

m

·
m

n
2α−2 −

³m
n

´2
α−2 − 2α−1

µ
m

n
α−1 −

³m
n

´2
α−1e−α�/

√
m

¶¸
+ lim

·
n

m
α−2

µ
m

n
e−α�/

√
m −

³m
n

´2
e−2α�/

√
m

¶¸
= 2α−2 − 2α−2 + α−2 = α−2.

Lemma 10 Let Assumptions A.1, B.1 and C.2 hold. In particular, let m =
[nδ], 0 < δ < 1, and assume σ2m = O(nγ), γ ≥ 0. Then for any ω ∈ R2Xn

t=1
TTn,t(ω) =⇒ N(0, 1) (52)

pointwise in ω ∈ R2 if r > 2, δ ≥ 1− rγ/(r − 2) and γ > 0; or r = 2 and γ ≥
0.

Lemma 11 Under the assumptions of Lemma 10, for some Gaussian random
vector (Z1, Z2) with standard normal marginal distributions, Zi ∼ N(0, 1),

m−1/2
¡
σ−1n,1

¡
H+
n −E[H+

n ]
¢
, σ−1n,2α

−1 (S∗n −E[S∗n])
¢
=⇒ (Z1, Z2) (53)

where

σ2m,1 = m−1E
³Xn

t=1
Un,t

´2
(54)

σ2m,2 = m−1E
³Xn

t=1
α−1U∗n,t

´2
,
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and for any ω ∈ R2

ω21

µ
lim
n→∞

σm,1

σm(ω)

¶2
+ ω22

µ
lim
n→∞

σm,2

σm(ω)

¶2
(55)

+2ω1ω2 lim
n→∞

µ
σm,1

σm(ω)

¶
lim
n→∞

µ
σm,2

σm(ω)

¶
cov(Z1, Z2) = 1.

Lemma 12 If Assumption A.2 holds, then (m/n)bn(m)
α − c = o(n−(1−δ)θ/α).

If Assumption A.2 and B.2 hold, (m/n)bn(m)
α − c = o(1/

√
m). Moreover, if

Assumptions A.2 and B.2 hold, and X(m+1)/bn(m) = 1 + op(n
−ξ), ξ > (1 −

δ)θ/α, then (m/n)Xα
(m+1) − c = op (1/

√
m).

Lemma 13 Let Assumptions A.2 and B.2 hold. There exists a positive mea-
surable function g on (0,∞) such that

L(λz)/L(z)− 1 = O(g(z)). (56)

In particular, g has bounded increase such that g(λz)/g(z) ≤ Dλτ for some D
> 0, λ ≥ 1 and τ ≤ 013 and as n → ∞

√
mg(bn(m))→ 0. (57)

Lemma 14 Under the conditions of Lemma 10
√
m
¡
σ−1m,1

¡
H+
n −E[H+

n ]
¢
, σ−1m,2

¡
lnX(m+1) − ln bn(m)

¢¢
=⇒ (Z1, Z2), (58)

and
√
m
³
σ−1m,1

³
H̃n −E[H+

n ]
´
, σ−1m,2

¡
lnX(m+1) − ln bn(m)

¢´
=⇒ (Z1, Z2), (59)

where σ2m,1, σ
2
m,2 and the random vector (Z1, Z2) are defined in Lemma 11.

Proof of Lemma 10. We verify the applicability of Theorem 2 of de Jong
(1997) for

Pn
t=1 TTn,t(ω) pointwise in R2, which follows by Assumptions 2.a-d

of that work.
Assumption 2.a of de Jong (1997) holds by construction: E (TTn,t(ω)) = 0

and V (
Pn

t=1 TTn,t(ω)) = 1 for any ω ∈ R2.
For Assumption 2.c, observe that by Lemma 1 the processes {Un,t, U∗n,t} are

Lr-bounded for arbitrary r ≥ 1, and by assumption are L2-NED on {εt} with
constants {dn,t, d∗n,t} and coefficients {ψq, ψ∗q} of sizes {−1/2,−1/2}. Therefore
{m−1/2σ−1m Un,t,m

−1/2σ−1m U∗n,t} are L2-NED on {εt} with coefficients {ψq, ψ∗q}
and constants

{m−1/2σ−1m dn,t,m
−1/2σ−1m d∗n,t}, (60)

which implies {TTn,t} is L2-NED on {εt} with constants {ddn,t}
ddn,t = max{m−1/2σ−1m dn,t,m

−1/2σ−1m d∗n,t}, (61)

13A function g has bounded increase if for 0 < D, z0, τ < ∞, the condition g(λz)/g(z) ≤
Dλτ holds for λ ≥ 1, z ≥ z0.
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and coefficient size−min{1/2, 1/2} =−1/2, because it is a linear function of L2-
NED processes {n−1/2σ−1m Un,t, n

−1/2σ−1m U∗n,t} (e.g., Davidson, 1994: Theorem
17.8).This, along with the maintained mixing assumption, establishes Assump-
tion 2.c of de Jong (1997).
For Assumption 2.b, we require14 TTn,t(ω)/ddn,t to be Lr-bounded for r ≥

2 uniformly in t, n and ω, and additionally TTn,t(ω)2/dd2n,t to be uniformly in-
tegrable for r = 2. For ddn,t, cf. (61), we require the NED constants {dn,t, d∗n,t}
of {Un,t, U∗n,t}. By Lemma 1 for any r ≥ 1 (for notational brevity, assume r is
integer-valued)

||Un,t+q||r ≤ Br (m/n)
1/r , ||U∗n,t+q||r ≤ Ar(m/n)1/r, (62)

hence we may arbitrarily select the constants {dn,t, d∗n,t} to be

{dn,t, d∗n,t} = {(m/n)1/r , (m/n)1/r}. (63)

Thus, for any t

ddn,t = max{m−1/2σ−1m dn,t,m
−1/2σ−1m d∗n,t} (64)

= m−1/2σ−1m (m/n)1/r = m−(1/2−1/r)n−1/rσ−1m .

From the boundedness properties (62), the definition of ddn,t, and Minkowski’s
inequality, for r ≥ 2 and each ω ∈ R2 we deduce

supn,t kTTn,t(ω)/ddn,tkr (65)

= supn,t

°°°m−1/2σ−1m ¡
ω1Un,t + ω2α

−1U∗n,t
¢
/(σ−1m m−(1/2−1/r)n−1/r)

°°°
r

= supn,tm
−1/2m(1/2−1/r)n1/r

°°¡ω1Un,t + ω2α
−1U∗n,t

¢°°
r

= supn,t(n/m)
1/r
°°¡ω1Un,t + ω2α

−1U∗n,t
¢°°

r

≤ supn,t(n/m)
1/r
³
ω1 kUn,tkr + ω2α

−1 °°U∗n,t°°r´
≤ supn,t(n/m)

1/r
³
ω1Br (m/n)

1/r
+ ω2α

−1Ar(m/n)1/r
´

≤ ω1Br + ω2α
−1Ar <∞.

This demonstrates the Lr-boundedness of TTn,t(ω)/ddn,t for any r ≥ 2. Addi-
tionally, if r = 2 by the Cauchy-Schwartz and Hölder’s inequalities, and using

14de Jong (1997) uses two sets of constants for the boundedness and order conditions: the
NED constants ddn,t, and some positive constant array, say an,t. It is immediate that we
take them to be idenitcal, and do so here: in all that follows, we simply use ddn,t.
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(65),

limM→∞ supn,tE
£¡
TTn,t(ω)

2/dd2n,t
¢
I
¡
TT 2n,t/dd

2
n,t > M

¢¤
(66)

≤ limM→∞ supn,t
h
E
¡
TTn,t(ω)

2/dd2n,t
¢2i1/2

P
¡
TT 2n,t/dd

2
n,t > M

¢1/2
≤ limM→∞ supn,t

£
E
¡
TTn,t(ω)

4/dd4n,t
¢¤1/2 £

E
¡
TT 4n,t/dd

4
n,t

¢
/M2

¤1/2
= limM→∞ supn,t

³
kTTn,t(ω)/ddn,tk4 /M1/4

´4
≤ limM→∞

¡
ω1B4 + ω2α

−1A4
¢4
/M = 0.

Therefore for each point ω ∈ R2 the sequence TTn,t(ω)
2/dd2n,t is uniformly

integrable, cf. Billingsley (1995: p. 216). This proves Assumption 2.b of de
Jong (1997) holds.
Finally, for Assumption 2.d define the integer sequences gn = [n1−a] for

some a ∈ (0, 1] and rn = [n/gn], and define Mn,t = max(t−1)gn<s≤tgn{ddn,s}
and Mn,rn+1 = maxrngn<s≤n{ddn,s}. We require for some such sequences {gn}
and {rn}

max
1≤t≤rn+1

Mn,t = o(g−1/2n ),
Xrn

t=1
M2

n,t = O(g−1n ). (67)

By (64), we deduce for each t and rn

max
1≤t≤rn+1

Mn,t =Mn,t =Mn,rn+1 = m−(1/2−1/r)n−1/rσ−1m . (68)

We therefore require (recalling m ≈ nδ, gn ≈ n1−a, rn ≈ na)

max
1≤t≤rn+1

Mn,t = σ−1m m−(1/2−1/r)n−1/r (69)

≈ σ−1m n−δ(1/2−1/r)−1/r = o(n−(1−a)/2)

Xrn

t=1
M2

n,t = rnσ
−2
m m−(1−2/r)n−2/r

≈ σ−2m na−δ(1−2/r)−2/r = O(n−(1−a)).

Recall σ2m = O(nγ), γ ≥ 0. In turn, from (67) and (69) max1≤t≤rn+1Mn,t

= o(g
−1/2
n ) if and only if

σ−1m n−δ(1/2−1/r)−1/r = o(n−(1−a)/2) (70)

=⇒ σ−1m n−δ(1/2−1/r)−1/r+(1−a)/2 = o(1)

=⇒ σmn
δ(1/2−1/r)+1/r−(1−a)/2 →∞,

which is true if

γ/2 + δ(1/2− 1/r) + 1/r − (1− a)/2 > 0 (71)

=⇒ rγ + δ(r − 2)− (r − 2) + ra > 0.
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If r = 2, we therefore require
γ + a > 0, (72)

and if r > 2,
δ > 1− r(γ + a)/(r − 2). (73)

Next, from (67) and (69) we deduce
Prn

t=1M
2
n,t = O(g−1n ) if and only if

σ−2m na−δ(1−2/r)−2/r = O(n−(1−a)) (74)

=⇒ σ−2m n1−δ(1−2/r)−2/r = O(1)

=⇒ γ − 1 + δ(1− 2/r) + 2/r ≥ 0.
If r = 2, we require

γ ≥ 0, (75)

and if r > 2,
δ ≥ 1− rγ/(r − 2). (76)

Together, because a ∈ (0, 1] is arbitrary and δ ∈ (0, 1) by construction, if r
= 2, then (72) and (75) imply we must have γ ≥ 0; and if r > 2, (73) and (76)
imply we require δ ≥ 1 − rγ/(r − 2) and γ > 0. Under these two cases each
condition of Assumption 2 of de Jong (1997) holds, hence Theorem 2 of de Jong
(1997) applies, which completes the proof.
Proof of Lemma 11. By Lemma 10 and the definitions of H+

n , S
∗
n and TTn,t,

for any ω ∈ R2
√
mσ−1m (ω)

¡
ω1
¡
H+
n −E[H+

n ]
¢
+ ω2α

−1 (S∗n − E[S∗n])
¢

(77)

=
Xn

t=1
TTn,t(ω) =⇒ N(0, 1)

pointwise in ω ∈ R2, where

σ2m(ω) = m−1E
³Xn

t=1

¡
ω1Un,t + ω2α

−1U∗n,t
¢´2

. (78)

Setting ω = [0, 1] and ω = [1, 0], and invoking a Cramér-Wold device suffices to
prove the joint limit

√
m
¡
σ−1m,1

¡
H+
n −E[H+

n ]
¢
, σ−1m,2α

−1 (S∗n −E[S∗n])
¢
=⇒ (Z1, Z2) (79)

for some random vector (Z1, Z2), Zi ∼ N(0, 1), where σ2m,1 = σ2m(1, 0) and σ
2
m,2

= σ2m(0, 1).
From (77) and (79) and Cramér’s theorem, we therefore obtain

(80)µ
ω1

σm,1

σm(ω)

√
m

µ
H+
n −E[H+

n ]

σm,1

¶
+ ω2

σm,2

σm(ω)

√
mα−1

µ
S∗n −E[S∗n]

σm,2

¶¶
=⇒ ω1 lim

n→∞

µ
σm,1

σm(ω)

¶
Z1 + ω2 lim

n→∞

µ
σm,2

σm(ω)

¶
Z2 ∼ N(0, 1),
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pointwise in R2 for the same standard normal vector (Z1, Z2) in (79). From the
standard normality of limit (80), we immediately deduce

V

·
ω1 lim

n→∞

µ
σn,1
σn(ω)

¶
Z1 + ω2 lim

n→∞

µ
σn,2
σn(ω)

¶
Z2

¸
(81)

= ω21

µ
lim
n→∞

σn,1
σn(ω)

¶2
+ ω22

µ
lim
n→∞

σn,2
σn(ω)

¶2
+2ω1ω2 lim

n→∞

µ
σn,1
σn(ω)

¶
lim
n→∞

µ
σn,2
σn(ω)

¶
cov(Z1, Z2)

= 1.

Proof of Lemma 12.
Step 1 ((m/n)bαn): From (8) of Assumption A.2 and the definition of bn ≡
bn(m), we deduce

(m/n) = cb−αn 1 + o(b−θn )) (82)

hence

(m/n)bαn = c(1 + o(b−θn )) = c+ o(b−θn )) = c+ o(1) (83)

(m/n)bαn − c = o(b−θn ).

Define c̃ ≡ (m/n)bαn and recall m ≈ nδ. Hence, from (82) and (83) bθn can be
written as

(m/n)bαn = c(1 + o(b−θn )) (84)

(m/n)θ/αbθn = cθ/α(1 + o(b−θn ))θ/α

bθn = (n/m)
θ/α

cθ/α(1 + o(b−θn ))θ/α

= (n/m)θ/α c̃θ/α =
¡
n/nδ

¢θ/α
c̃θ/α

= n(1−δ)θ/α)c̃θ/α = n(1−δ)θ/α) (c+ o(1))θ/α

which gives
o(b−θn ) = o(n−(1−δ)θ/α)). (85)

Together, (82)-(85) give the convergence rate of (m/n)bαn:

(m/n)bαn − c = o(n−(1−δ)θ/α)) = o(1), (86)

given δ < 1. This implies

(m/n)bαn − c = o(1/
√
m), (87)

if and only if
nδ/2 × o(n−(1−δ)θ/α)) = o(1), (88)

if
δ/2− (1− δ)θ/α < 0, (89)
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which follows from simple manipulation and Assumption B.2:

δ/2− (1− δ)θ/α < 0 (90)
δ

2
− θ

α
+

δθ

α
< 0 =⇒ δ <

2θ

2θ + α
.

Step 2 ((m/n)Xα
(m+1)): Under the maintained assumptions and Step 1, we

can write

m

n
Xα
(m+1) =

µ
X(m+1)

bn

¶α
m

n
bαn (91)

= (1 + op(n
−ξ))α

m

n
bαn

= (1 + op(n
−ξ))αc(1 + o(1/

√
m)).

The term (1 + op(n
−ξ))α is bounded by (1 + o(1/

√
m)). In order to see this,

for any α > 0 let d(α) = [α + 1], the next integer great than α. Then, for any
α > 0

| ¡1 + o(n−ξ)
¢α | ≤ ¡

1 + |o(n−ξ)|¢α (92)

≤ ¡
1 + |o(n−ξ)|¢d(α)

=
Xd(α)

i=0
1i|o(n−ξ)|d(α)−i

µ
d(α)
i

¶
= 1 + o(n−ξ) = 1 + o(1/

√
m).

The last line follows from the maintained assumptions, cf. ξ > (1−δ)θ/α: o(n−ξ)
is o(1/

√
m) if

√
mn−ξ ≈ nδ/2−ξ → 0, if and only if ξ > δ/2. The equality ξ >

δ/2 holds sufficiently if (1− δ)θ/α > δ/2, which is true by Assumption B.2: see
(89) and (90).
Together, (91) and 92) imply

(m/n)Xα
(m+1) = (1 + op(n

−ξ))αc2(1 + o(1/
√
m)) (93)

= c(1 + o(1/
√
m)).

Proof of Lemma 13. By (8) of Assumption A.2 we have L(x) = c(1 +
o(x−θ)), θ > 0, hence it can be shown that

L(λx)/L(x)− 1 = o(x−θ). (94)

This implies we can simply choose g(x) = x−θ. In order to show
√
mg(bn(m))

= O(1), define c̃ ≡ (m/n)bαn(m). From Lemma 12 we have c̃ = c + o(1) for any
process that satisfies Assumption A.2. Moreover, using the definition of c̃ and
Lemma 12, we can write bn(m)θ as

bn(m)
θ = (n/m)θ/α c̃θ/α =

¡
n/nδ

¢θ/α
c̃θ/α (95)

= n(1−δ)θ/αc̃θ/α = n(1−δ)θ/α (c+ o(1))θ/α .
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Thus,
√
mg(bn(m) can be expressed as
√
mg(bn(m)) = nδ/2 × bn(m)

−θ (96)

= nδ/2 × n−(1−δ)θ/α × (c+ o(1))
−θ/α

= nδ/2−(1−δ)θ/α × (c+ o(1))
−θ/α

= o(nδ/2−(1−δ)θ/α).

The term o(nδ/2−(1−δ)θ/α) is o(1) if and only if δ/2 − (1 − δ)θ/α < 0, which
holds by Assumption B.2, δ < 2θ/(2θ + α).
In order to see that g has bounded increase, observe that for any z > 0 and

any λ ≥ 1:
g(λz)/g(z) = (zλ)−θ/z−θ = λ−θ. (97)

Because the right-hand-side holds for any z > 0 and θ > 0, the result is proved.

Proof of Lemma 14. The proof follows from Lemmas 11 and 13 and Theorem
2, and essentially mimics the line of proof Theorem 2.4 of Hsing (1991). From
Lemma 13, Hsing’s (1991) equation (2.3a) holds, and from Theorem 2 and the
maintained assumptions we have

lnX([ρm]) − ln bn([ρm])→ 0

for any ρ in a neighborhood of 1. Therefore imitating the line of proof of
Theorem 2.4 of Hsing (1991), it is straightforward to show that Lemma 11
implies
√
m
¡
σ−1m,1

¡
H+
n −E[H+

n ]
¢
, σ−1m,2

¡
lnX(m+1) − ln bn(m)

¢¢
=⇒ (Z1, Z2) (98)

and
√
m
³
σ−1m,1

³
H̃n −E[H+

n ]
´
, σ−1m,2

¡
lnX(m+1) − ln bn(m)

¢´
=⇒ (Z1, Z2) (99)

for the same random vector (Z1, Z2) in Lemma 10.
Proof of Lemma 5. Define

(100)

σ̂2m(ω) ≡
1

m

Xn

t=1

Xn

s=1
wn,s,t

¡
ω1Un,t + ω2α

−1U∗n,t
¢ ¡
ω1Un,s + ω2α

−1U∗n,s
¢
,

and recall

σ2m(ω) ≡
1

m
E
³Xn

t=1

¡
ω1Un,t + ω2α

−1U∗n,t
¢´2

. (101)

We may write

σ̂2m(ω)

σ2m(ω)
=
Xn

t=1

Xn

s=1
wn,s,tTTn,t(ω)TTn,s(ω), (102)
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where TTn,t(ω) = m−1/2σ−1m (ω)(ω1Un,t + ω2α
−1U∗n,t). We will prove in order:

σ̂2m(ω)/σ
2
m(ω)→ 1 pointwise in ω ∈ R2, σ̂2m/σ̂2m(1,−1)→ 1, and σ2m(1,−1)/σ2m

→ 1, from which follows σ̂2m/σ
2
m → 1.

Step 1 (σ̂2m(ω)/σ2m(ω) → 1): Under the maintained assumptions, from the
line of proof of Lemma 10, TTn,t(ω) is L2-NED of size −1/2 with constants

ddn,t = m−(1/2−1/r)n−1/rσ−1m (ω). (103)

Theorem 2.1 of de Jong and Davidson (2000) will be used to prove σ̂2m(ω)/σ
2
m(ω)

→ 1. We must demonstrate TTn,t(ω) satisfies for each point ω ∈ R2 Assumptions
2-3, and the kernel wn,s,t satisfies Assumption 1 of that work. We require for
some constant array cn,t and r ≥ 2

sup
n≥1

sup
1≤t≤n

¡kTTn,t(ω)kr + ddn,t
¢
/cn,t <∞ (104)

sup
n≥1

Xn

t=1
c2n,t <∞

lim
n→∞

µ
l−1n + ln max

1≤t≤n
c2n,t

¶
= 0,

pointwise in ω ∈ R2. If r = 2 we also require TTn,t(ω)2/c2n,t to be uniformly
integrable. Because cn,t is arbitrary, we may set cn,t = ddn,t.
From the line of proof of Lemma 10, cf. (65), we have

sup
n≥1

sup
1≤t≤n

¡kTTn,t(ω)kr /ddn,t¢ <∞. (105)

pointwise in ω ∈ R2. Similarly, for each point ω ∈ R2 (66) shows TTn,t(ω)2/dd2n,t
is uniformly integrable if r = 2. Moreover, from (103) and m ≈ nδ

sup
n≥1

Xn

t=1
dd2n,t = sup

n≥1
n×m−2(1/2−1/r)n−2/rσ−2m (ω) (106)

≈ sup
n≥1

n1−2/r−δ(1−2/r)σ−2m (ω) <∞

if 1 − 2/r − δ(1 − 2/r) − γ ≤ 0 given σ2m(ω) = O(nγ), γ ≥ 0. If r = 2, then
we require γ ≥ 0 which holds by assumption. If r > 2, then we require d ≥ 1 −
rγ/(r − 2).
Finally, because (103) holds for all t,

max
1≤t≤n

dd2n,t = m−2(1/2−1/r)n−2/rσ−2m (ω) (107)

≈ n−δ(1−2/r)−2/rσ−2m (ω) = o(n−δ(1−2/r)−2/r−γ).

Given σ2m(ω) =O(nγ), γ ≥ 0, and ln =O(nς), ς ∈ [0, 1], in order for lnmax1≤t≤n dd2n,t
= 0, we require

ς ≤ δ(1− 2/r) + 2/r + γ. (108)
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If r = 2, we require ς ≤ 1 + γ which holds by construction. If r > 2, we require

rς − 2
r − 2 −

γr

r − 2 ≤ δ. (109)

In summary, if r = 2 we we must have γ ≥ max{0, ς-1} = 0; and if r > 2 we we
must have

δ ≥ max
½
1− γr

r − 2 ,
rς − 2
r − 2 −

γr

r − 2
¾
= 1− γr

r − 2 . (110)

Step 2 (σ̂2m/σ̂
2
m(1,−1) → 1): We can write σ̂2m as

σ̂2m =
1

m

Xn

s=1

Xn

t=1
wn,s,tẐsẐt (111)

=
1

m

Xn

s=1

Xn

t=1
wn,s,t

¡
Un,s − α−1U∗n,s

¢
(Un,t − α−1U∗n,t)

+
X11

i=1
An,i

hence
σ̂2m − σ̂2m(1,−1) =

X11

i=1
An,i, (112)

where each An,i is defined as

An,1 = (m/n)2
£
α̂−1m − α−1

¤2 1
m

Xn

s=1

Xn

t=1
wn,s,t (113)

An,2 = 2(m/n)
£
α̂−1m − α−1

¤ £
E (lnX1/bn)+ − (m/n)α−1

¤×
1

m

Xn

s=1

Xn

t=1
wn,s,t

An,3 = −2©(m/n)
£
α̂−1m − α−1

¤− £E (lnXt/bn)+ − (m/n)α−1
¤ª×

1

m

Xn

s=1

Xn

t=1
wn,s,t

¡
Un,s − α−1U∗n,s

¢
An,4 = −2(m/n)

£
α̂−1m − α−1

¤ 1
m

Xn

s=1

Xn

t=1
wn,s,t ×h

(lnXt/bn)+ −
¡
lnXt/X(m+1)

¢
+
− α−1U∗n,t

i
An,5 = −2 £E (lnX1/bn)+ − (m/n)α−1

¤ 1
m

Xn

s=1

Xn

t=1
wn,s,t ×n

(lnXt/bn)+ −
¡
lnXt/X(m+1)

¢
+
− α−1U∗n,t

o
An,6 = −2 1

m

Xn

s=1

Xn

t=1
wn,s,t

¡©
Un,s − α−1U∗n,s

ª¢×n
(lnXt/bn)+ −

¡
lnXt/X(m+1)

¢
+
− α−1U∗n,t

o
An,7 = −2 1

m

Xn

s=1

Xn

t=1
wn,s,t

¡©
Un,s − α−1U∗n,s

ª¢× £lnX(m+1)/bn − α−1U∗n,t
¤

An,8 = −2 1
m

Xn

s=1

Xn

t=1
wn,s,t

¡©
Un,s − α−1U∗n,s

ª¢×n
(lnXt/bn)+ −

¡
lnXt/X(m+1)

¢
+
− lnX(m+1)/bn

o
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An,9 = 2
1

m

Xn

s=1

Xn

t=1
wn,s,t ×nh

(lnXs/bn)+ −
¡
lnXs/X(m+1)

¢
+

i
− ¡lnX(m+1)/bn

¢o×£
lnX(m+1)/bn − α−1U∗n,t

¤
An,10 = 2

1

m

Xn

s=1

Xn

t=1
wn,s,t

h
(lnXs/bn)+ −

¡
lnXs/X(m+1)

¢
+
− ¡lnX(m+1)/bn

¢i×nh
(lnXt/bn)+ −

¡
lnXt/X(m+1)

¢
+

i
− ¡lnX(m+1)/bn

¢o
An,11 = 2

1

m

Xn

s=1

Xn

t=1
wn,s,t

£
lnX(m+1)/bn − α−1U∗n,s

¤× £lnX(m+1)/bn − α−1U∗n,t
¤

We assume m−1
Pn

s=1

Pn
t=1 |wn,s,t| = O(1), and Theorem 2 implies α̂−1m −

α−1 = op(1). Hence, An,1 = op(1). Moreover, Arguments in Hsing (1991: p.
1554), Lemma 13 and (3) can be used to show (n/m)E (lnXt/bn)+ − α−1 =
op(1) for any t, hence An,2 = op(1).
Furthermore, by Lemma 1, kUn,tkr and

°°U∗n,t°°r are O((m/n)1/r); by Theo-
rem 2, m−1

Pn
t=1 U

∗
n,t = op(1); Lemma 1 implies ||Un,t − α−1U∗n,t||1 = O(m/n);

and Lemma 14 implies lnX(m+1)/bn = op(1/
√
m) and (lnXt/bn)+ −

¡
lnXt/X(m+1)

¢
+

− (lnX(m+1)/bn) = op(1/
√
m) for any t. Hence, An,i = op(1), i = 3...5.

Similarly, || (lnXs/bn)+ −
¡
lnXs/X(m+1)

¢
+
||2 and

°°lnX(m+1)/bn
°°
2
are

O(1/
√
m) by Lemma 14 and functional invariance of probability limits. In-

voking Markov’s inequality and recalling ||Un,t − α−1U∗n,t||1 is O(m/n) gives
An,i = op(1), i = 6...11.
Step 3 (σ2m(1,−1)/σ2m → 1): From the line of proof of Theorem 4, cf. (48),

σ2m(1,−1)/σ2m → 1 follows immediately.
Proof of Lemma 6. The proof is nearly identical to a conventional proof
that an NED process is a mixingale (e.g. Davidson, 1994: Theorem 17.5). For
brevity, therefore, we compress the proof. Let Assumption C.4 hold. Define
k = [q/2], and write Ea

b [·] = E [·|za
b ] with zb

a = σ(�a, .., �b). Notice by the
Minkowski inequality°°Et−q

−∞
£
U∗n,t

¤°°
p
≤ °°Et−q

−∞
¡
U∗n,t −Et+k

t−k [U
∗
n,t]
¢°°

p
+
°°Et−q
−∞(E

t+k
t−k [U

∗
n,t])

°°
p
. (114)

For the first term on the right-hand-side of (114), we have by Jensen’s in-
equality and the law of iterated expectations°°Et−q

−∞
¡
U∗n,t −Et+k

t−k [U
∗
n,t]
¢°°

p
≤ °°U∗n,t −Et+k

t−k [U
∗
n,t]
°°
p

(115)

=
°°I (Xt > bne

u)− P
¡
Xt > bne

u|zt+k
t−k
¢°°

p
,

hence, cf. Assumption C.4,

lim sup
n→∞

³ n
m

´1/p °°Et−q
−∞

¡
U∗n,t −Et+k

t−k [U
∗
n,t]
¢°°

p
≤ e∗t (u)υ

∗
k. (116)

For the second term in (114), Et+k
t−k [U

∗
n,t] is uniform mixing of size −λ0, hence

by Serfling (1968: Theorem 2.2), Jensen’s inequality and the law of iterated
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expectations,°°Et−q
−∞(E

t+k
t−k [U

∗
n,t])

°°
p
≤ 2φ1−1/pk

°°Et+k
t−k [U

∗
n,t]
°°
p
≤ 2φ1−1/pk

°°U∗n,t°°p (117)

where (n/m)1/p
°°U∗n,t°°p < Ap <∞ for some finite Ap, cf. Lemma 1, and φ

1−1/p
k

= O(q−λ0(1−1/p)) by the uniform mixing property. Together, (116)-(117) imply

lim sup
n→∞

³ n
m

´1/p °°Et−q
−∞

£
U∗n,t

¤°°
p
≤ e∗t (u)υ

∗
k + 2Apφ

1−1/p
k (118)

≤ 2×max{e∗t (u), 2Ap}max{υ∗k, φ1−1/pk },

where max{υ∗k, φ1−1/pk } has size −min{λ1, λ1−1/p0 }.
Proof of Theorem 7. We only prove the claim for E-NED processes X. The
proof in the E-MIX case is nearly identical
The proof for U∗n,t follows by definition and the boundedness property es-

tablished in Lemma 1. In particular, under Assumption C.4, as n → ∞°°P (Xt > xn(u)|=t+qt−q)− P
¡
Xt > xn(u)|zt+q

t−q
¢°°
2

(119)

≤ ẽ∗t (u)(m/n)1/2υ̃∗q ,

and from (17), (18) and the definition of U∗n,t,°°U∗n,t −E[U∗n,t|zt+q
t−q]

°°
2

(120)

=
°°I (Xt > xn(u))−E[I (Xt > xn(u)) |zt+q

t−q]
°°
2

=
°°P (Xt > xn(u)|=t+qt−q)− P

¡
Xt > xn(u)|zt+q

t−q
¢°°
2
. ≤ d∗n,tψ

∗
q .

Therefore U∗n,t is L2-NED with coefficients ψ∗q = υ̃∗q and constants d∗n,t =
ẽ∗t (u)(m/n)1/2.
For Un,t, we have°°Un,t −E[Un,t|zt+q

t−q]
°°
2

(121)

=
°°(lnXt − ln bn)+ −E[(lnXt − ln bn)+ |zt+q

t−q]
°°
2

=

°°°°(lnXt − ln bn)+ −
Z ∞
0

P
¡
(lnXt − ln bn) > u|zt+q

t−q
¢
du

°°°°
2

=

°°°°Z ∞
0

¡
I(Xt > bne

u)− P
¡
Xt > bne

u|zt+q
t−q
¢¢
du

°°°°
2

.

In order to evaluate the second moment of the integral, define

gn,i(ui) ≡ I(Xt > bne
ui)− P

¡
Xt > bne

ui |zt+q
t−q
¢
, i = 1, 2, (122)
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and observe that

E

µZ ∞
0

¡
I(Xt > bne

u)− P
¡
Xt > bne

u|zt+q
t−q
¢¢
du

¶2
(123)

= E

µZ ∞
0

gn,1(u1)du1

Z ∞
0

gn,2(u2)du2

¶
=

Z ∞
0

Z ∞
0

E [gn,1(u1)gn,2(u2)] du1du2,

where the last line follows from the Fubini theorem. Using the Cauchy-Schwartz
inequality and properties of the Lebesgue integral, we deduce

E

µZ ∞
0

¡
I(Xt > bne

u)− P
¡
Xt > bne

u|zt+q
t−q
¢¢
du

¶2
(124)

=

Z ∞
0

Z ∞
0

E [gn,1(u1)gn,2(u2)] du1du2

≤
Z ∞
0

Z ∞
0

kgn,1(u1)k2 kgn,2(u2)k2 du1du2

=

µZ ∞
0

kgn,1(u1)k2 du1
¶2

=

µZ ∞
0

°°I(Xt > bne
u)− P

¡
Xt > bne

u|zt+q
t−q
¢°°
2
du

¶2
.

Therefore, by Fatou’s Lemma and Assumption C.4,

lim sup
n→∞

r
n

m

°°Un,t −E[Un,t|zt+q
t−q]

°°
2

(125)

≤ lim sup
n→∞

r
n

m

Z ∞
0

°°I(Xt > bne
u)− P

¡
Xt > bne

u|zt+q
t−q
¢°°
2
du

≤
Z ∞
0

lim sup
n→∞

r
n

m

°°I(Xt > bne
u)− P

¡
Xt > bne

u|zt+q
t−q
¢°°
2
du

≤
µZ ∞

0

e∗t (u)du
¶
ν∗q .

Therefore, as n→∞, Un,t is L2-NED on {zt}, with constants dn,t = (m/n)1/2
R∞
0

e∗t (u)du and coefficients ψq = ν∗q .
Proof of Lemma 8. By iterated expectations and the Cauchy-Schwartz
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inequality, we have

n

m
E
¡
I(Xt > xn(u))− P

¡
Xt > xn(u)|zt+q

t−q
¢¢2

(126)

=
n

m
E
³
E
h¡
I(Xt > xn(u))− P

¡
Xt > xn(u)|zt+q

t−q
¢¢2 |zt+q

t−q
i´

=
n

m
E
³
P
¡
Xt > xn(u)|zt+q

t−q
¢− P

¡
Xt > xn(u)|zt+q

t−q
¢2´

=
n

m
E
£
P
¡
Xt > xn(u)|zt+q

t−q
¢ ¡
1− P

¡
Xt > xn(u)|zt+q

t−q
¢¢¤

≤ n

m

°°P ¡Xt > xn(u)|zt+q
t−q
¢°°
2

°°¡1− P
¡
Xt > xn(u)|zt+q

t−q
¢¢°°

2

≤ n

m

°°P ¡Xt > xn(u)|zt+q
t−q
¢°°
2
.

Now, because Zt is iid and zt+q
t−q = σ(Zs : t − q ≤ s ≤ t + q), P (Xt >

xn(u)|zt+q
t−q) can be written as

P
¡
Xt > xn(u)|zt+q

t−q
¢
= P

³X∞
i=0

ψiZt−i > bn(m)e
u|zt+q

t−q
´

(127)

= P
³X∞

i=q+1
ψiZt−i > bn(m)e

u − at,q

´
for some number at,q satisfying P (

Pq
i= ψiZt−i = at,q|zt+q

t−q) = 1. Using (1) and
(2), and the fact that Zt is iid, as n → ∞

P
¡
Xt > xn(u)|zt+q

t−q
¢

(128)

= P
³X∞

i=q+1
ψiZt−i > bn(m)e

u − at,q

´
=

X∞
i=q+1

|ψi|αP (Zt−i > bn(m)e
u − at,q)

=
X∞

i=q+1
|ψi|αP (Zt−i > bn(m)e

u(1− at,q/[bn(m)e
u]))

=
X∞

i=q+1
|ψi|αP (Zt−i > bn(m))

P (Zt−i > bn(m)e
u(1− at,q/[bn(m)e

u]))

P (Zt−i > bn(m))

≈ m

n

P∞
i=q+1 |ψi|αP∞
i=0 |ψi|α

e−αu (1− at,q/[bn(m)e
u])−α ,

where

P (Zt−i > bn(m)) ≈ m/nP∞
i=0 |ψi|α

(129)

as n → ∞ follows from

m/n ≈ P (Xt > bn(m)) = P
³X∞

i=0
ψiZt−i > bn(m)

´
(130)

=
X∞

i=0
|ψi|αP (Zt−i > bn(m)) .
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Hence, as n → ∞
n

m
E
¡
I(Xt > xn(u))− P

¡
Xt > xn(u)|zt+q

t−q
¢¢2

(131)

≤ n

m

°°P ¡Xt > xn(u)|zt+q
t−q
¢°°
2

≈
P∞

i=q+1 |ψi|αP∞
i=0 |ψi|α

e−αu
°°°(1− at,q/bn(m))

−α
°°°
2

→
P∞

i=q+1 |ψi|αP∞
i=0 |ψi|α

e−αu = ẽ∗t (u)
2υ̃∗2q ,

where

ẽ∗t (u) =
e−αu/2pP∞
i=0 |ψi|α

, υ̃∗2q =

rX∞
i=q+1

|ψi|α, (132)

and ẽ∗t : R → R+ is integrable on R+:
R∞
0

e−αu/2du = 2/α.
Finally, if ψi = O(i−µ), µ > 1/α, then

P∞
i=q+1 |ψi|α = O(q1−αµ) and υ̃q =

O(q(1−αµ)/2).
Proof of Theorem 9. For brevity, we prove only (25). Recall ĉm =
(m/n)Xα̂m

(m+1), define č ≡ (m/n)Xα
(m+1), and write

ln ĉm = ln(m/n) + α̂m lnX(m+1) (133)

= ln(m/n) + (α̂m − α) lnX(m+1) + α lnX(m+1)

= ln č+ (α̂m − α)α−1 lnXα
(m+1)

= ln č+ (α̂m − α)α−1 ln č+ ln(n/m) (α̂m − α)α−1.

From Lemma 12, under Assumptions A.2 and B.2, and provided X(m+1)/bn(m)

= 1 + op(n
−ξ), ξ > (1 − δ)θ/α, we deduce ln č = ln c + op(1/

√
m). From

Theorem 4, under Assumptions A.2, B.2 and C.2,
√
m(α̂m − α) =⇒ N(0, α2[1

+ χ + λ − 2ζ]), implying
√
m[ln(n/m)]−1 (α̂m − α) = op(1). (134)

Hence, by Theorem 4 and Cramér’s Theorem

ln ĉm = ln č+ (α̂m − α)α−1 ln č (135)

+ ln(n/m) (α̂m − α)α−1√
m

ln(n/m)
ln ĉm/c =

√
m

ln(n/m)
ln č/c+

√
m

ln(n/m)
(α̂m − α)α−1 ln č

+
√
m (α̂m − α)α−1√

m

ln(n/m)
ln ĉm/c = op(1/ ln(n/m)) + op(1) +

√
m (α̂m − α)α−1

=⇒ N(0, σ̃2),
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where σ̃2 = limn→∞ σ̃2m. Therefore, by the mean-value-theorem, for some c∗ ∈
(ĉm, c) √

m

ln(n/m)
ln ĉm/c =

√
m

ln(n/m)

1

c∗
(ĉm − c) =⇒ N(0, σ̃2). (136)

Because c∗ ∈ (ĉm, c)→ (c, c), the proof is complete upon application of Cramér’s
theorem.

39



References
[1] Akgiray, Vedat and G. Geoffrey Booth (1988) The Stable Law Model of Stock

Returns, Journal of Business and Economic Statistics 6, 51-57.

[2] Bidarkota, P. V., and J. H. McCulloch, 1998, Optimal Univariate Inflation Fore-
casting with Symmetric Stable Shocks, Journal of Applied Econometrics 13, 659-
670.

[3] Bidarkota, P. V., and J. H. McCulloch (2004) Testing for Persistence in Stock
Returns with GARCH-Stable Shocks, Quantitative Finance 4, 256-265.

[4] Billingsley, P. (1995) Probability and Measure. John Wiley & Sons: New York.

[5] Bingham, N. H., C. M. Goldie and J. L. Teugels (1987) Regular Variation. Cam-
bridge Univ. Press, Great Britain.

[6] Caner, M. (1998) Tests for Cointegration with Infinite Variance Errors, Journal
of Econometrics 86,155-175.

[7] Chambers, J. M., C. L. Mallows and B.W. Stuck (1976) A Method for Simulating
Stable Random Variable, Journal of the American Statistical Association 71, 340-
344.

[8] Chan, N.H., and L.T. Tran (1989) On the First Order Autoregressive Process
with Infinite Variance, Econometric Theory 5, 354-362.

[9] Chandra, K.C. (1974) Strong Mixing Properties of Linear Stochastic Processes,
Journal of Applied Probability 11, 401-408.

[10] Chen, X., and H. White (1997) Central Limit and Functional Central Limit The-
orems for Hilbert-Valued Dependent Heterogeneous Arrays with Applications,
University of California-San Diego, Dept. of Economics Discussion Paper 92-35R.

[11] Cheng, B.N. and S.T. Rachev (1995) Multivariate Stable Futures Prices, Math-
ematical Finance 5, 133-153.

[12] Cline, D.B.H. (1983) Estimation and Linear Prediction for Regression, Autore-
gression and ARMA with Infinite Variance Data, Unpublished Ph.D. Disserta-
tion, Department of Statistics, Colorado State University.

[13] Danielsson, J., L. de Haan, L. Peng, and C. G. de Vries (1998) Using a Bootstrap
Method to Choose the Sample Fraction in Tail Index Estimation, mimeo, Eramus
University Rotterdam.

[14] Davidson, J. (1992) A Central Limit Theorem for Globally Nonstationary Near-
Epoch-Dependent Functions of Mixing Processes, Econometric Theory 8, 313-
329.

[15] Davidson, J. (1993a) An L1-Convergence Theorem for Heterogeneous Mixing
Arrays with Trending Moments, Statistics and Probability Letters 16, 301-304.

40



[16] Davidson, J. (1993b) The Central Limit Theorem for Globally Non-Stationary
Near-Epoch-Dependent Functions of Mixing Processes: The Asymptotically De-
generate Case, Econometric Theory 9, 402-412.

[17] Davidson, J. (1994) Stochastic Limit Theory. Oxford Univ. Press: Oxford.

[18] Davidson, J. (2004) Moment and Memory Properties of Linear Conditional Het-
eroscedasticity Models, and a New Model, Journal of Business and Economics
Statistics 22, 16-29.

[19] de Haan, L., Drees, H. and S. Resnick, How to Make a Hill Plot (2000) Annals
of Statistics 28, 254-274.

[20] de Jong, R. M. (1997) Central Limit Theorems for Dependent Heterogeneous
Random Variables, Econometric Theory 13, 353-367.

[21] de Jong, R. M., and J. Davidson (2000) Central Limit Theorems for Dependent
Heterogenous Random Variables, Econometric Theory 13, 353-367.

[22] Drees, H., L. de Haan and S. Resnick (2000) How to Make a Hill Plot, Annals of
Statistics 28, 254-274.

[23] Dumouchel, W. H. (1983) Estimating the Stable Index α in order to Measure
Tail Thickness, Annals of Statistics 11 1019-1036.

[24] Feller, William (1971) An Introduction to Probability Theory and its Applica-
tions, 2 ed., vol. 2. (New York: Wiley.

[25] Gallant, A. R. and H. White (1988) A Unified Theory of Estimation and Inference
for Nonlinear Dynamic Models. Basil Blackwell: Oxford.

[26] Hall, Peter, and C. C. Hyde (1980) Martingale Limit Theory and Its Applications.
New York: Academic Press.

[27] Hall, Peter (1982) On Some Estimates of an Exponent of Regular Variation,
Journal of the Royal Statistical Society 44, 37-42.

[28] Hill, B.M. (1975) A Simple General Approach to Inference about the Tail of a
Distribution, Annals of Mathematical Statistics 3, 1163-1174.

[29] Hill, Jonathan B. (2005) Gaussian Tests of "Extremal White
Noise" for Dependent, Heterogeneous, Heavy Tailed Time Series,
Dept. of Economics, Florida International University; available at
http://econwpa.wustl.edu:80/eps/em/papers/0411/0411014.pdf

[30] Hsing, Tailen (1991) On Tail Index Estimation Using Dependent Data, Annals
of Statistics 19, 1547-1569.

[31] Ibragimov, I. A. (1962) Some Limit Theorems for Stationary Processes, Theory
of Probability and its Applications 7, 349-382.

41



[32] Ibragimov, I. A. and Y. V. Linnik (1971) Independent and Stationary Sequences
of Random Variables. Wolters-Noordhof.

[33] Lin, Z. and J. Qui (2004) A Central Limit Theorem for Strong Near-Epoch-
Dependent Random Variables, Chinese Annals of Mathematics 25B, 263-274.

[34] Loretan, M. (1991) Testing Covariance Stationarity of Heavy-Tailed Economic
Time Series, Unpublished Ph.D. Dissertation, Dept. of Economics, Yale Univer-
sity.

[35] Loretan, M., and P.C.B. Phillips (1991) The Durbin-Watson Ratio under Infinite-
Variance Errors, Journal of Econometrics 47, 85-114 .

[36] Loretan, M., and P.C.B. Phillips (1994) Testing the Covariance Stationarity of
Heavy-Tailed Economic Time Series: An Overview of the Theory with Applica-
tions to Financial Data Sets, Journal of Empirical Finance 1, 211-48.

[37] Mason, D. (1982) Laws of Large Numbers for Sums of Extreme Values, Annals
of Probability 10, 754-764.

[38] McCulloch, J. Houston (1996) Financial Applications of Stable Distributions. In:
G.S. Maddala and C.R. Rao, eds., Statistical Methods in Finance, Handbook of
Statistics, Volume 14, 393-425. Elsevier: New York.

[39] McCulloch, J. Houston (1997) Measuring Tail Thickness to Estimate the Stable
Index α: A Critique, Journal of Business and Economic Statistics 15, 74-81.

[40] Mittnick, S and S.T. Rachev (1993) Modeling Assets Returns with Alternative
Stable Distributions, Economic Reviews 12, 261-330.

[41] Newey, W.K., and K.D. West (1987) A Simple, Positive Semi-Definite, Het-
eroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica
55, 703-708.

[42] Phillips, P.C.B. (1990) Time Series Regression with a Unit Root and Infinite
Variance Errors, Econometric Theory 6, 44-62.

[43] Pötscher, B. M., and I. R. Prucha (1991) Basic Structure of the Asymptotic
Theory in Dynamic Nonlinear Econometric Models, Part I: Consistency and Ap-
proximation Concepts, Econometric Reviews 10, 125-216.

[44] Quintos, C., Z. Fan, and P.C.B. Phillips (2001) Structural Change Tests in Tail
Behavior and the Asian Crisis, Review of Economics Studies 68, 633-663.

[45] Quintos, C. (2004) Extremal Correlation for GARCH Data, manuscript, Dept. of
Applied Statistics, University of Rochester.

[46] Rachev, S. T. (2003) Handbook of Heavy Tailed Distributions in Finance. Elsevier
Science: New York.

42



[47] Resnick, S. (1996) Why Non-Linearities Can Ruin the Heavy Tailed Modeler’s
Day, mimeo, Dept. Statistics, Cornel University.
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[50] Resnick, S. and C. Stărică (1997) Smoothing the Hill Estimator, Advances in
Applied Probability 29, 271-293.
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