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Asset Pricing with Incomplete I nformation
under Stable Shocks

Abstract

We study a consumption based asset pricing model witmplete information
and a-stable shocks. Incomplete information leads to a Gauassian filtering problem.
Bayesian updating generates fluctuating confidence in thresagstimate of the persistent
component of the dividends’ growth rate. Similar resakte obtained with alternate
distributions exhibiting fat tails (Extreme Value distriion, Pearson Type IV distribution)
while they are not with a thin-tail distribution (Bimial distribution). This has the
potential to generate time variation in the volatilf model-implied returns, without
relying on discrete shifts in the drift rate of dividegwbwth rates. A test of the model
using US consumption data indicates strong support in tise $kat the implied returns

display significant volatility persistence of a magnitadenparable to that in the data.

Key phrases. asset pricing; incomplete information; time-varyindatitity; fat tails; stable

distributions;

JEL classification: G12, G13, E43



1. INTRODUCTION

We study a pure exchange Lucas (1978) asset pricing modesettiag with
incomplete information on the stochastic dividends mesc&he stochastic setting is
characterized by exogenous shocks coming from the fafnystable distributions. This
distributional assumption marks a departure from the titegaon asset pricing with
incomplete information in non-Gaussian settings. Tesature usually employs a discrete
switching process (which is necessarily non-Gaussaoharacterize the dynamics of the
drift rate of dividends.

In incomplete information asset pricing models, thdt date of the dividends
process is assumed to be unobservable. Agents needmatedhis drift rate based on
observed dividends in order to compute the expected futuskeddipayouts and hence
set equilibrium asset prices. This introduces a filtésiggal extraction problem into asset
pricing models.

Early work on incomplete information in asset pricingpdels used linear
stochastic differential equations with Brownian motioerements to characterize the
exogenous path of the dividends process. The unobservébleaty of the dividends
process is also characterized as a linear stoch@ifecential equation with Brownian
motion increments. Dothan and Feldman (1986), Detemple (1&&6notte (1986), and
more recently, Brennan and Xia (2001) study asset prigiagtfolio allocation problems
in this setting. Linear Gaussian setting permits usbeKalman filter to solve the signal
extraction problem in an optimal sense.

The Kalman filter is a Bayesian updating rule that perrgarning about the

unobservable dividend drift rate with the arrival of nmformation on dividends each



period. In all the above studies, the prior distributian tbe drift rate is invariably
Gaussian. With such a prior in a linear Gaussian gettite posterior distribution on the
drift rate is also Gaussian. Moreover, this postedensity has a dispersion that is
constant and does not react to new information &iesients have died out from startup
of the filter. However, it is more realistic to leatime-varying dispersion on the posterior
density, suggesting periods of greater or lower confideboatahe state of the dividend
drift (David 1997).

This limitation of the Gaussian setting was recognineehrly work by Detemple
(1991). He therefore uses a non-Gaussian prior distribatiaiie state variable in order
to generate a non-Gaussian posterior distribution witk-varying dispersion. Another
way to generate time-varying dispersion on the postdmbribution is by adopting a non-
Gaussian stochastic setting. This is done in artigfeBavid (1997) and Veronesi (1999,
2000). They assume that the drift rate of dividends foll@vdiscrete state process,
governed either by a Poisson arrival or Markov swighprocess. More recently,
Veronesi (2004) generalizes by allowing the drift ratefdlow a continuous-state
Gaussian process subject to discrete breaks. The breaggs\eerned by Markov process,
thus making the overall process for the drift rate nansSian.

All the papers discussed above on asset pricing with ipleden information
formulate the problem in continuous time. In a disct@tee setting, Cecchetti et al.
(2000) and Brandt et al. (2000) model dividends as a random weaéndry Gaussian
innovations and a drift term that follows a discreétges Markov switching process. Thus,
all extant non-Gaussian asset pricing models with iptete information, both in

continuous and discrete time, formulate the signal edraproblem facing investors as



an unobservable process for the drift rate of obsérdibidends that inherently involves
discrete breaks / regimes.

Time-varying dispersion on the posterior density, ortflating confidence as in
David (1997), related to the drift rate of dividends in nau€sian incomplete
information asset pricing models, leads to time vamein the volatility of implied returns,
thereby providing a mechanism for replicating this zgli fact documented in observed
returns. Thus, the current literature relying on signdfaetion generates volatility
persistence in asset pricing models as an outcomeraoingabout unobservable discrete
shifts or breaks in the underlying drift rate of dividends.

However, even continuous-valued dividend drift not inv@vidiscrete shifts or
breaks in non-Gaussian filtering/signal extractionirsgtith fat tails would lead to
fluctuating confidence (Kitagawa 1987), and thus presumabiynuarying volatility of
implied returns. It is more realistic to model dividenditdss a continuous valued fat-
tailed non-Gaussian process rather than assume tinadergoes periodic shifts that are
discrete in nature.

In order to demonstrate that Bayesian learning in atimeous-valued non-
Gaussian stochastic setting with fat-tails and incoteptdormation would lead to time-
varying volatility requires an appropriate probability disition with fat tails. One
immediately runs into difficulties here because, as Gew@001) notes, the theory of
choice under uncertainty in such settings often breaksrdowler the constant relative
risk aversion (CRRA) utility function. Geweke (2001) spealfy demonstrates the failure

of the choice theory with Studentistributions in such circumstances.



The family of a-stable distributions provides a way out of this diffiguThese
distributions have a fairly long history in financejrgpback to early work by Mandelbrot

(1963). A comprehensive survey on the financial applicatiohthese distributions is

provided by McCulloch (1996). Then D(O, 2] parameter (along with three other

parameters including a skewness paramBﬂE[—l,]]) characterizes these distributions,

with a =2 resulting in the Gaussian distribution amd<2 resulting in fat-tailed
distributions. While the difficulty noted by GeweK2001) also applies to the general
family of a-stable distributions with arbitrary skewnefs the sub-family of these
distributions with maximal negative skewneg8s—1 provides an operational theory of
choice under uncertainty.

In recent work, Carr and Wu (2003) use this subiyaai a-stable distributions
with maximal negative skewness for capturing theeoked behavior of the volatility
smirk implied by S&P 500 option prices. They toce dorced to work with these
distributions by imposingd = -1 in order to ensure finiteness of call option value

The a-stable distribution is also convenient in thaalibws us to derive a closed-
form expression for the price-dividend ratio. Onaynwonder, however, whether our
results may be induced by the special behaviomefotstable distribution or whether
alternative fat-tailed innovations have the abilyyield similar outcomes. To investigate
this issue we also apply the filter after havingnested the model with two alternative fat-
tailed distributions, namely the Extreme Value ribsition and the Pearson Type IV
distribution. We are able to show that in both sabe fluctuation in agents’ confidence is

achieved, just as in the case of thstable distribution.



One may also wonder whether the results are sip®/ to the non-Gaussian
nature of the error terms, in which case a thinestribution would also yield similar
outcomes. In order to address this concern, weydel filter after having this time
estimated a model whosestable shocks have been replaced by Binomiallyiloliged
innovations. The filtration reveals that such ttai-distributed shocks are not capable of
yielding fluctuation in the agent’s confidence. Weis conclude that the results obtained
with the a-stable distributions are not simply dgoi¢he non-Gaussian nature of the shocks
but are indeed the consequence of the fat-taireatiithe distribution.

In this paper we study the asset pricing probleth wicomplete information in a
purely continuous state stochastic setting. Wenasgihat the observed dividend growth
rate is the sum of an unobservable persistent coemtoand noise. The unobservable
persistent component is assumed to be an autosegrgwocess driven by shocks that
come from the family ofo-stable distributions with maximal negative skevene&n
incomplete information Gaussian asset pricing medalspecial case. Our model with
stable shocks allows for a simple way to numesicalve for equilibrium asset prices, and
hence implied returns, a convenience generally anailable under alternative non-
Gaussian distributional assumptions. The solusoa simple extension of the solution to
the asset pricing problem in complete informatiettisg witha-stable shocks studied in
Bidarkota and McCulloch (2003).

We characterize the solution to the asset pricingehin such a setting. We then
calibrate the model to data on quarterly US peitaagnsumption, and study the ability
of the model to replicate volatility persistencel arther stylized facts in implied returns.

Our model is in fact able to generate volatilitygigence of a magnitude close to that in



stock returns data. It is important to note thatmodel does not rely on discrete shifts in
the drift rate of dividend growth rates in ordergenerate volatility persistence, as much
of the extant literature on asset pricing with impdete information does.

Alternative approaches for endogenously generaitingrvarying volatility in asset
pricing models include an early idea due to Fresath Roll (1986) that it takes time for
market participants to digest newly arriving inf@ation and react to it. Using this idea,
and the assumption that agents face capacity eamtstin information processing, as in
the rational inattention scheme of Sims (2003),gPand Xiong (2001) endogenously
generate time-varying volatility in an asset pgcimodel. Sims (2003) argues that
outcomes resulting from information processing t@mss would resemble those from
signal extraction problems. In a different vein, Mezen and Vorkink (2004) develop a
model of asset pricing based on prospect theoryb@s et al. 2001) that generates
volatility persistence as investors’ level of rigkersion changes when their portfolio
performance differs from a mental scorecard they us

The paper is organized as follows. We describeetiomomic environment and the
asset pricing model in section 2. We study thetswluto the model in section 3. We
tackle empirical issues including estimation of thedel in section 4. We analyze the
model implied rates of return in section 5. The Isection provides some conclusions

derived from the paper.

2. THE ASSET PRICING MODEL
Is this section we lay out the economic environmertluding specification of

exogenous stochastic processes and informatioctsteuin the model.



2.1 Pure Exchange Economy
In a single good Lucas (1978) economy, with aesg@ntative utility-maximizing
agent and a single asset that pays exogenous rtigdef non-storable consumption
goods, the first-order Euler condition is:
RU(G)=08E U (G+1)[Rs1t Dy - 1)
Here, B, is the real price of the single asset in termthefconsumption good)J'(C) is
the marginal utility of consumption C for the repeatative agentf is a constant
subjective discount factor, D is the dividend frtdva single productive unit, an, is the
mathematical expectation, conditioned on inforrratiwailable at time t.
Assume a constant relative risk aversion (CRRAiwtunction with risk-aversion
coefficienty:
U(C) =(1-y)*c*, y=0. (2)
Since consumption simply equals dividends in timgpke model, i.e.C =D every period,

Equation (1) reduces to:
PD;Y =E(8D);[Pi+1 +Dpaal - 3

On rearranging this yields:

-y
D
P = Ete( Dtﬂj [Pt+1+ D41l - 4)
t

Let v; denote the price-dividend ratio, i.&; =P;/D;. Then, we can rewrite

Equation (4) in terms of; as:

Diaa ) !
Vi = Ete( DtHJ [Vier +1]. (5)
t



Thus, this equation implicitly defines the solutibm the asset pricing problem in this
model. One specifies an exogenous stochastic mdoedividends and solves for the

price dividend ratiov.

2.2 Simplifying the Difference Equation for the P/D Ratios

Let x; =In(D; /D¢-1) denote the natural logarithm of the dividend gtowate.
Then, we can express Equation (5) as:
Vi = Eteexp{(l—y)xt+1](vt+1 +1). (6)
Defining my ;1 =0exp[{L-Y)X;+1 ], we can rewrite Equation (6) as:
Vi = ExmysafVisg +1]. (7)

On forward iteration, this equation yields:

) i i
Vi :.z!(Et .|‘|1mt+jj+il|m E¢ .I_Ilmt+th+i (8)
— 00 i=

1= ]=
One solution to the above difference equationvip is obtained by imposing the

transversality condition:

| - 00 J:l

This condition rules out solutions to the assetipgi model that imply intrinsic bubbles

(Froot and Obstfeld 1991). Imposing the transviysabndition on Equation (8) gives:

i= =1

10



Thus, the solution to the price-dividend ratio ¢enfound by evaluating the conditional
expectations on the right hand side of Equation),(Lder a specified exogenous

stochastic process for the dividend growth rates.

2.3 Specification of the Endowment Process
We assume that dividend growth rates stochastiellyive according to the

following process:

X =P +€, & ~iid N(0,6%) (11a)

e -A=p(heq—A)+n,  0<p<l,  n¢~iidS@p.c,0) (11b)
We assume that; andn; are independent of each other contemporaneoushglaas at
all leads and lags. Her&a, ,cOppresents a stable distribution with characierist

exponenta, skewness paramet@r, scale parameter, and location parameter set to 0.

Appendix A defines these distributions and listsie®f their properties.
For technical reasons that will be evident in isecB, we need the autoregressive

coefficient p in Equation (11b) to be non-negative. This is adimitation of the model
from an empirical viewpoint since, as we shall sesubsection 4.3p is estimated to be

positive and large.

We also study a benchmark case where, in Equélibh), n; ~iid N(0,0’rzl).l

From Appendix A, this is obtained by settiag= 2 in the process given in Equation (11b)

! The model in Equations (11) has a reduced form ARIVL) representation. Bansal and

Yaron (2004) study such a model with conditionbiferoskedastic Gaussian errors with

11



above. In this case} loses its effect on the distribution gf and is unidentified, and

2 _~52
On—ZC.

2.4 Incomplete Information Structure of the Economy

We assume that agents in the economy have fullledlge about the structure of
the economy. They know the stochastic process gowgthe evolution of the dividend
growth rates, including the parameters of the mec&hey observe the dividend stream

(and hence the realized dividend growth raxgsas well). However, we assume that
agents do not ever observe the persistent compomentor equivalently the noise
componente; ) of the dividend growth rates.

Agents need to form conditional expectationspf in order to compute the

expected future dividend payouts, and hence daterenuilibrium prices. Thus, agents
face a filtering/signal extraction problem. We amsuthat agents form conditional

expectations ony; based on Bayesian updating rules. The signal @idraproblem
facing the agents is complicated here by the assomef a non-Gaussian distribution for
Nt -

In the benchmark case wheng is Gaussian, agents face a linear Gaussian signal

extraction problem. In this case, the conditionahsity of p; is Gaussian (see, for

non-expected recursive utility specification of s and Zin (1989). Note that in their
setup, unlike ours as will become evident in thet reubsection, there is complete

information.

12



instance, Harvey 1992, Ch.3) and, therefore, camiglspecified by its conditional mean
and variance. These are given recursively by @mesad Kalman filter.

When n; is non-Gaussian, the Kalman filter is still optinia a minimum mean

squared error sense) but only within the classneat estimators. The globally optimal

filter turns out to be non-linear in this instanBayesian updating still leads to a recursive

form for the conditional probability density(py | %, X2, %) -

2.5 Benchmark Case - Complete Information

In a benchmark full information economy, we assuha the innovatiore; in
Equation (11a) has zero variance (igg. is trivially zero). In this casep; = x;, and
therefore agents actually obserug. There is no signal extraction problem facing the

agents in such an economy. This model is studidldarkota and McCulloch (2003). A

Gaussian version of such a full information modakve n; ~ iid N(O,oﬁ) is studied in

Burnside (1998).

3. SOLUTION TO THE MODEL
We now proceed to evaluate Equation (10) for theepdividend ratio under the
assumed process for the dividend growth rates. eMpeessions for the price-dividend

ratio v; and its mean valu&(v; dlerived below, as well as those for returns amif th

mean values discussed in section 5, differ in & avhen the characteristic exponent

13



a =1 from those whero 1.7 In the rest of this paper we focus our attentionthe

more general case #1. All the results and theorems that follow farz1 are also
applicable fora =1 with appropriate modifications. The required dativns and proofs
of theorems fora =1 do not pose any additional difficulties, and candasily adapted

from those given fo # 1 in this paper.

3.1 Finiteness of Conditional Expectations

As noted in the introduction, theory of choice undecertainty with CRRA utility
and fat-tailed distributions is extremely fragi®gweke 2001). The difficulty stems from
the non-existence of the conditional expectatiorEguation (10) for most common
leptokurtic distributions, including the Studdnt-Under the assumed distribution
Ny ~1id S@ B ,c,0) in the dividend growth rate process in Equatiohb{l Appendix B
shows that the conditional expectation in Equat{@0) above is finite only when
Bsign(l-y) =-1. This condition is satisfied if either (J=— andy< lor (i) p=+1
and y> 1 Thus, an operational theory of choice under uagey can be worked out

under these conditions, despite the difficulty dabg Geweke(2001).

® This arises because of two reasons. One reasbatithe expressions fdge” differ in

the two cases (see Equation (A8) in Appendix A)sekond reason is that when we
aggregate iid random variables with stable distidms, the expressions for the location
parameterd for the aggregate random variable also diffehi two cases (see Equation

(A7) in Appendix A).

14



One can in principle obtain an operational theofyclwice under uncertainty
without having to impose the conditiofsign(l-y) =— Hy truncating thea-stable
distributions, as in the Dampened Power Law prooésd/u (2005). However, in that
case, one loses the convenience of solving the pssiig model in a simple way as will

become evident in the next subsection. Moreovesuimview, imposing3sign(l—-y) =— 1

for the purpose of demonstrating that signal ettvacin leptokurtic non-Gaussian
settings would generate volatility persistence ouththe need for discrete breaks in
dividend growth rates is not necessarily severe.

In the remainder of the paper, we assume fat- andy< 1 We shall see in
the empirical section of the paper that this chdme B is consistent with negative
skewness in dividends growth data. Carr and Wu 3R@éfer to thed = -1 case as the

finte moment log-stable process and use it foriooptpricing. The reason for this

terminology is as follows. Briefly, Appendix B (Egion (B5)) shows that the conditional
expectations in Equation (10) involve terms sucrEa{sexp(Kr]Hl)} for some constant
K . Such exponential moments do not exist for stdlsigibutions witha <2 because of
fat tails, except whefd = —1. Equation (A8) in Appendix A provides the exaxpression

for such moments in this case.

3.2 Solution for the P/D Ratios
We now proceed to evaluate Equation (10) for theepitividend ratio under the

assumed process for dividend growth rates givenEquations (11). Under the

15



assumptionsf=- land y< 1, one can derive a tractable expression for theepri
dividend ratiov;. Appendix C shows that; in Equation (10) can be reduced to:

Vi :iei.[Et exp{ B (i 11} ] .exy (12)
i=1

O
|
P
'?"?

O <

where b; = (1—y)(%j(1—p‘) .

It is not possible to evaluate the conditional expemtaterm in the above equation

analytically under the assumed processyfpin Equation (11b).

3.3 Convergence of the P/D Ratios
The following theorem provides conditions for the imérseries in Equation (12)
to converge, and hence for the price—dividend ratio tinibe.

Theorem 1. The series in Equation (12) converges if

" ngm <.

2
rseexp{ a-yp+ (1—v>2°—+Hu
2 1-p

Proof. See Appendix D.

Finiteness of the price-dividend ratio ensures thaetpected discounted utility is
finite in this model (see Burnside 1998). The next theadenves an expression for the

mean of the price-dividend ratio, i.e. the unconditi@xplectation ofv; in Equation (12).

It also provides conditions under which this mean itefin

16



Theorem 2. The mean of the price dividend ratio is given by:

) , ) )
. iHﬂ-W+K1-w2%;+{—@qPEi%@lse{fg]}+
E(v;)=> 0 exp . _
= Y] o med T o
{ Ul_p (¢ &e{ Zji%g(rp 7}

It is finite if r <1, wherer is the constant defined in Theorem 1.

(14)

Proof. See Appendix E.

3.4 Solution under Gaussian Distribution for n;
In the benchmark case whery ~ iid N(O,oﬁ), we can obtain all the results

derived in the previous subsections simply by gttt =2. In this case, the skewness
parameter of the stable distributiofis loses its significance (see Appendix A). We no
longer need the restrictiofssign(l-y) =-1 in order to ensure finiteness of the
conditional expectations term in Equation (10)cdssed in subsection 3.1 for the stable
case, and hence of the price-dividend ratio itsedf its mean value in Equations (12) and
(14), respectively.
As discussed in subsection 2.4, in the Gaussias tlas conditional density qf;

is Gaussian, and its conditional mean and varianeegiven by the Kalman recursions. In

this case, the conditional expectations teEgexp{ i (1; —f1 } appearing in the formula

17



for the price-dividend ratio given in Equation (&n be evaluated using the formula for

the moment generating function of Gaussian randanalsles’

3.5 Solution under Complete Information

In the complete information benchmark case, reftalin subsection 2.5 that
Mt = X¢, which is observed at time. All the analysis of section 3 goes through eyeasl
in the incomplete information case, with some gimoptions detailed below. The
condition for finiteness of conditional expectagoremains unchanged in subsection 3.1.

The expression for the price-dividend ratio giverEquation (12) remains the same but
with Eyexp{ h (i -1} = ex§ p (x-p ) and 02 =0. Theorem 1 goes through as
before with g =0 imposed onr defined by Inequality (13). The mean of the price-
dividend ratio given in Equation (14) remains theame but with
Erexp{ h (-} = ex§ p (x-p ) and 02 =0. The condition for its finiteness given
by Theorem 2 remains unchanged but with=0 imposed onr defined by Inequality
(13).

The price-dividend ratio and its related propertiesthe benchmark complete

information model with stable distribution foy, are derived in Bidarkota and McCulloch

(2003) and with Gaussian distribution figy in Burnside (1998).

1f x ~ N(u,oz), then E{ exp( x)} = exp€u+%02j.

18



4. EMPIRICAL ESTIMATION OF THE MODEL
In this section we report the data used to calibtlae theoretical model of section
2, discuss maximum likelihood estimation of theidbnd growth rates process given in

Equations (11), and report estimates of the paenmetbtained.

4.1 Data I ssues

We calibrate the asset pricing model to quartexgt per capita US consumption
growth rates on non-durables and services from :19%Brough 2004:2. Nominal
seasonally adjusted per capita consumption dat@nalot from NIPA tables are deflated
using the CPI index. Summary statistics indicatammualized mean growth rate of 2.02
percent and a standard deviation of 1.34 percéwmwgess is estimated to be -0.40 and
statistically different from O at the 1 percentdeundicating significant negative skewness.
This provides justification for our choice of a aége value forf3 in subsection 3.1.
Kurtosis is estimated to be 4.29 and statistiadiierent from 3 at the 1 percent level.
This provides preliminary justification for our use fat tailed distribution in the
specification of Equation (11b). The Jarque-Besa éasily rejects normality at better than
the 1 percent level. The first order autocorretatemefficient is 0.18 and statistically
different from O at the 1 percent level. This pd®& preliminary empirical justification for

our restrictionp = 0 in the specification of Equation (11b).

4.2 Maximum Likelihood Estimation
The dividend growth rates process in Equations @distitutes a linear non-

Gaussian state space model whgnhas the stable distribution. Equation (11a) is the

19



observation equation and Equation (11b) is theestednsition equation. The non-
Gaussian nature of the model renders the Kalntan §uboptimal. Recursive formulae for

obtaining the conditional densities of the stateiatde p;, as well as the likelihood

function, are available from an algorithm by Sommand Alspach (1971).

Let X; denote the history of dividend growth rates obsérat timet, i.e.
Xt ={Xy,....x¢} . The recursive formulae for obtaining one-stepaaheredictive and

filtering densities, due to Sorenson and Alspa@r(), are as follows:

PR 1Xi1)= | Pl 1Py | Xeg)die g, (15)
Pt [ Xe) =P e )PGt | %-1)/P0% [ %-1), (16)
PO 1Xe-1) = | POt I )Pt 1% )ds (17)

Finally, the log-likelihood function is given by:
T
logp(xq.,.... % )= 2 logp(t | %-1) (18)
t=1

These formulae have been applied to non-Gaussiten alad extended to include a
smoother formula by Kitagawa (1987).

In the Gaussian case, these integrals can beagedlanalytically and they collapse
to the Kalman recursions. In most other circumstanthe integrals cannot be evaluated
in closed form and one has to resort to numenitabration based either on quadarature

techniques (Kitagawa 1987) or Monte Carlo methddsrlfin and Koopman 2000).

20



In this paper we evaluate the integrals using aiade methods. Details on the
numerical method employed and accuracy achievedeiedled in Appendix G.

The probability density for stable distributiossabtained by Fourier inversion of
their characteristic function available as an exawlytical formula (Equations A.2 and
A.3 in Appendix A) using the Fast Fourier TransfqiffrT) methods discussed in Mittnik

et al. (1999).

4.3 Parameter Estimates

Maximum likelihood parameter estimates of the comsion growth rate process
(conditional on the first observation) in Equatiqfd) are reported in Table 1 (Panel A).
Three restricted versions of this most general hademely the incomplete information
Gaussian model, the complete information stable alaghd the complete information
Gaussian model are reported in Panels B througlkdpectively.

Parameter estimates from Panel A indicate a measuenption growth rate of
0.49 percent per quarter, or 1.96 percent per aniitnn autoregressive (AR) parameter

p is estimated to be 0.69, somewhat lower than #heevof 0.89 reported in Veronesi

(2004) with an autoregressive model with asymma@ings. Nonetheless, it is statistically

significantly different from O by the usual t-test better than the 1 percent significance
level. The signal-to-noise scale ratidc, (which equals\/ﬁc/crs) is estimated to be 0.34.

Parameter estimates for the incomplete informaG@ussian model in Panel B are very

similar, and the maximized log-likelihood valueydtops slightly in this case.
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Figure 1 plots the unconditional distributionjof for both the stable and Gaussian

models implied by Equation (11b), using the Maximuikelihood parameter estimates
reported above. With the stable indexestimated to be 1.86, so close to the value of 2
for a Gaussian distribution, the differences iniheonditional densities for the stable and

Gaussian models are modest. The assumftiorl does not generate much skewness in

the unconditional distribution for this high valoé a, as evident in the figure, and thus
does not seem overly restrictive.

Figure 2 plots the conditional probability deresitp(p; |%,Xo,....%). Panel A

plots the densities for the stable case and Pan&rBhe Gaussian case. A closer
examination of the density plots indicate that t@ditional densities in the stable case
display varied behavior, being at times even muital. Bidarkota and McCulloch (1998)

and Bidarkota (2003) provide detailed examinatibeuzh densities in non-Gaussian state
space models with stable errors fit to inflatiotadaOn the other hand, as noted earlier,

the conditional densities in the Gaussian cas&aressian.

Figure 3 plots the mean of the filter densit§1; | X, Xo,...,%), along with the
observed consumption growth ratgsg, in Panels A and B for the stable and Gaussian

incomplete information models, respectively.

Figure 4 plots the standard deviation of therfidensities for both the stable and
Gaussian incomplete information models. It is cfeam the figure that the variance of the
filter density in the Gaussian case quickly reachesonstant value (within 10 time
periods). This property of the Kalman filter wasalissed in the introduction. On the

other hand, the variance of the filter densityhia stable case never stabilizes to a constant
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value but is forever fluctuating. David (1997) msfeo this as ‘fluctuating confidence’ in
the investors’ estimate of the unobservable compioogthe dividend growth rate. This
fluctuating confidence drives the time varying @weristics of returns implied by our
asset pricing model, as will become evident in ma@lysis of the conditional moments of
these returns that we undertake in the next sectiba spike in the standard deviation at
startup in both the stable and Gaussian modelaused by the initialization of the filter
discussed in Appendix G. It neither impacts the ihaxn Likelihood parameter estimates
nor their standard errors much. Its possible effecthe analyses of model implications on
implied returns is eliminated as will become evidarthe next section.

The complete information stable model parametamasts are reported in Panel
C of Table 1. These estimates indicate a slightfizdr value fora when compared to the

estimates for the incomplete information stable enoHowever, the AR coefficienp is

now only 0.13, as against 0.69 for the incompletéormation model. This is

understandable, however, because the AR procesgifon Equation (11b) is now
combined with the iid process fa; in Equation (11a), and effectively an AR model is

being estimated for the resulting contaminatedh(vick noise) series. Nonetheless, the AR
coefficient is statistically significantly differéfrom O by the usual t-test at better than the
1 percent significance level.

The complete information Gaussian model parametémates are reported in
Panel D of Table 1. These estimates change oghtlsiifrom those in Panel C. However,

the maximized log-likelihood shows a large dropeTikelihood ratio (LR) test statistic
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for normality (test fora = 2) is calculated to be 4.11 and rejectethus, with complete
information models, there is significant statidtisapport for stable shocks. The LR test

statistic for complete information versus incompl@tformation model in the Gaussian

case turns out to be 3.76, witb(é p-value of 0.05. Thus, with Gaussian shocks, tigere

significant statistical support for the incomplet®rmation model.

As mentioned in the introduction, one may wondesethar the fluctuations in
agents’ confidence may be specific to thstable distribution only or whether is indeed
more general and thus robust to alternative fégetaspecifications. To answer this
guestion, we estimate and apply a filter to the ehachere the error terms display two
additional fat-tail distributions, namely the Extre Value distribution and the Pearson
Type IV distribution.

In the Extreme Value distribution case the dividegtbwth rates evolve

stochastically as:

X = +€, & ~iid N(0,6%)

Wi -H=p(hi—F)+n¢,  0<p<i, N, ~EV(Uey ,0g ). (19)
where y, ando,, are the location and scale parameters of them&tialue density

function.

* The distribution of the LR test statistic in thistance is not standar)dl2 because the

null hypothesis lies on the admissible boundargofThe 0.05 level critical value for such
a test, available through Monte Carlo simulations fidoCulloch (1997, table 4, panel

b), equals 1.12.
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In the Pearson Type IV distribution case the dividend grovates evolve

stochastically as:

X =M +€, & ~iid N(0,6%)

W -R=p(H-1—F)+ny, 0<p<l, m, ~PearsonlV(y,,mad)  (20)

In the interest of table space, we report the teddre in the text. The Extreme Value
model vyields parameter estimates @f=0.006066 ¢ =0.005863 p =0.72637Q

U, =0.000660and o, = 0. 001664for a log-likelihood of 755.6039. The Pearson Type
IV model yields parameter estimates gf=0.003063 ¢ =0.005711, p =0.70158Q

M- =0.000846, m=1.642600, a=0.00180%nd J = —-0.20715 for a log-likelihood of
756.3028. The standard deviations of the filteredsdties are plotted in figure 5 and
figure 6, indicating that even though the resulbsdiffer slightly in magnitude from the
Stable case, these alternative fat-tail distrimsiare also capable of generating fluctuating
confidence among the agents.

We also mentioned in the introduction that one mapnder whether these results
are driven by the non-Gaussian nature of the shoidkis would imply that even thin-
tailed distributions (thinner than Gaussian tailsyld generate fluctuating confidence. To
investigate this issue, we estimate and applyex ib the model where the error terms are
driven by a thin-tailed distribution, namely thenBmial distribution.

In the Binomial distribution case we loosely ddserihe dividend growth rates as

evolving stochastically according to:
X =M +E, & ~iid N(0,02)

Mt —A=p(Ke-1~R)+n, 0<p<1, m, +[min(range(n,)| ~ Binom(N,P) (21)
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This abuse of notation is the result of the faet the Binomial distribution is only
valid for positive variables. We must therefordtsiiie empirically selected range for the
innovations by the amount of its smallest negatiskie before applying the Binomial
density. The Binomial distribution being a discretee, we estimate the parameter P by
matching the parameter N with the number of elementhe possible range of values for
the shocks in a given periods. The Binomial modeldy parameter estimates of

7 =0.007633 ¢ =0.006645 p=0.601280and P =0.504300 for a log-likelihood

value of 750.6556. The standard deviations of ittexdd densities are plotted in figure 7.
We can see that, in a fashion very similar to thlathe Gaussian case, the standard
deviations quickly drop to a steady level, indiegtithat a thin-tail distribution does not
seem to be capable of generating fluctuating cenid among agents. It thus appears that
our previous results are not the mere effect ofmamality but indeed the work of fat

tails in the distribution of the shocks.

5. ANALYSISOF MODEL IMPLICATIONS

In this section we discuss the implications ofttteoretical model of section 2 for
rates of return on risky and risk free assetsupet simulation framework for analyses of
unconditional and conditional properties of modaeplied rates of returns, and report on

the results obtained.
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5.1 Model-Implied Rates of Return
Equilibrium gross equity returnBf on assets held from period t through period

t+1 are given by:

RS = [MJ _ (22)
P
t

Using vy =P, /D¢ andx; =In(D¢ /D_1 ), this reduces to:

1+v
R{ = [V—”J expXy 1] - (23)
t

It is not possible to analytically evaluate the plagon mean of the implied equity returns,

i.e. E(RY), in our model given the expression for in Equation (12).

The price of a risk free ass@;f in our endowment economy guarantees one unit

of the consumption good on maturity. It is given by

i =eEt[—UL'J(,fé:§)J. (24)

Gross equilibrium returns on the risk free asBét are given by:

R =—. (25)
P

Our assumptiord = —1 implies that the price of the risk free asﬁét is infinite and hence

the gross risk free returrR{ are zero. Appendix G has the formal proof.

Presumably, in the highly uncertain environmenttfer dividends process (due to

fat tails on n;), the uncertainty is so overwhelmingly unfavoraliiie to negative

skewness implied by = — )lthat as long as investors are risk averse, thewdling to
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pay an infinite amount to guarantee themselvestlstpositive consumption next period

(dictated by the conditionim U'(C)=c for the CRRA utility function). Infinite prices
C-0

for risk free assets simply mean that these assetisot exist in the economy under the
assumed stochastic process for dividends.

One can get around the difficulty of infinite rislee asset prices by truncating the
o-stable distributions in Equation (11b), as in Dbempened Power Law process in Wu
(2005). As noted in section 3.1, in this case, wendt need to restrict ourselves to
B=-1 and y<1 anymore. Although truncation may be appealing, lose the
convenience of solving the asset pricing model gingle way as described in section 3.
In any case, our main objective in this paper idémonstrate that signal extraction in fat-
tailed non-Gaussian continuous-valued stochastittinge can generate volatility
persistence in implied returns. Therefore, in witdibws, we restrict ourselves to an
analysis of implied returns on risky assets in otdeascertain the ability of the model to

generate stylized facts documented for observesl dat

5.2 Simulation Setup
We undertake a simulation study in order to anatyme model implications for
various endogenous quantities of interest includeigs of return. The simulations are

performed in the following manner. We draw randammhbers fore; andn; in Equations
(11) using parameter estimates reported in Tabl@ht value ofpg is set to the
unconditional mean ofi;, equal topi. We then use the simulatey] series to generate a

sequence[ut,tzl,z,...,'ﬁ using Equation (11b) witd =4000. We use this sequence
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and the simulatect, series to generate a sequence of artificial dadgrowth rates
{x¢,t=1,2,...,F according to Equation (11a).
We use the simulated sequer{oq} and the parameter estimates from Table 1 to

obtain the posterior densify(l; | X;) using the filtering Equations (15)-(17). We usis th

posterior density to numerically evaluate the comal expectations terms, and hence the
price-dividend ratios/;, in Equation (12). Calculations are done for vasioalues for the
preference parametess (discount factor) ang <1 (risk aversion coefficient) that satisfy
the convergence condition<1 in Equation (13). Model-implied returns on riskssats
are then generated using Equation (23).

In order to eliminate any effects from startuptled Kalman filter, as in Figure 4,
we drop the first ten implied returns. The follogiitwo subsections undertake analyses of

the unconditional and conditional moments of theilteng implied returns series.

5.3 Analysis of Unconditional M oments

Table 2, Panel A reports unconditional momentsarterly value-weighted real
returns on all NYSE, AMEX, and NASDAQ stocks obtinfrom CRSP dataset for the
period 1952:1 through 2004:2. We subtract CPlI twffafrom nominal returns to obtain
real returns, expressed in percent per annum.

Panel A indicates that quarterly real returns haveean of 8.07 percent per
annum and a standard deviation of 16.77. Panelsr@igh E report the unconditional

moments for returns implied by our theoretical maafesection 2 using the simulation
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setup from subsection 5.2. Moments are reportegidnous values of the discount factor

0 and the risk aversion coefficiegt

The maximum implied mean returns from our inconglaformation stable model
are only 3.90 percent and the maximum standarctieniis only 1.75 percent. Overall, it
is clear from looking at all the panels that nohéhe models do a good job of replicating
the unconditional moments of equity returns. Thisimply a manifestation of the equity
premium puzzle of Mehra and Prescott (1985).

It is clear from an examination of all the panélattadding incomplete information
to the asset pricing model reduces the mean asdsréhe standard deviation of implied
equity returns slightly. Generalizing from Gaussian stable models raises the mean
implied equity returns slightly in both incompleded complete information cases. Going
from Gaussian to stable models lowers the standiewétion of implied equity returns in
the incomplete information case but raises it @@¢bmplete information case.

The benchmark complete information asset pricingdeh) with stable and
Gaussian dividend growth rate processes, was studieBidarkota and McCulloch
(2003). Panels D and E of Table 2 here replicaseli® reported in that study closely,
although the model in that study was calibrated tandom walk process with drift, fit to
annual US consumption data for the period 1890uidino1987. Our results in Table 2
thus indicate that adding incomplete informatiortlie non-Gaussian framework of that
study does not generate high enough mean equiyngeto conform closely enough to

the numbers in the data.
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5.4 Analysis of Conditional M oments

The main assertion in our paper is that our the@emodel of section 2 with
incomplete information stable shocks can replicdte stylized fact of time varying
volatility documented in observed returns. We asmtend that this stylized fact can
neither be replicated by the incomplete informati&ussian model nor the two versions
of the complete information model. We now proceedtést this assertion in the

simulation setup of subsection 5.2 6r=0.98 and y=0.9, since for these preference

parameter values the unconditional mean stock netumplied by the incomplete

information stable model are closest to their samaplunterpart.

Let r, =Rf -1 denote the net rates of return on risky assetgrevR; is the

gross rate of return as in subsection 5.1. We gé¢he following model for analyzing net

returns:

h=ayg+&, & ~0;%, z ~iid N(0,1 (26a)
The volatility of returnso; is modeled alternatively as a GARCH(1,1) and amasetric
GARCH(1,1) process (AGARCH) as follows:

GARCH(1,1) :0f =a+a0¢t 1+ & |1~ & ] (26b)

AGARCH(L,1) :07 =a + a0t + & [£1- a1+ ali( 4 @ d¢.°  (260)

1 if r,_,-a,<0

wherel;_, =
i {O otherwise

We restrict & >0,a&=> 0,8> 0,andg@ . The AGARCH(1,1) process

(asymmetric GARCH) allows for leverage effects, toapd by the threshold term

involving the dummy variabld;_,. Leverage effects, widely reported in the literatu
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documenting time varying volatility of stock retsrnindicate that negative shocks to
returns have greater effect on future volatilitsritdo positive shocks of equal magnitude.
Table 3, Panel A reports estimates obtained taydithe above volatility processes
to quarterly value-weighted real returns on all N\YSAMEX, and NASDAQ stocks
obtained from CRSP dataset for the period 1952r@utih 2004:2. We subtract CPI
inflation from nominal returns to obtain real retsy expressed in percent per annum for
estimation. Panel A indicates that, with estimédeshe AGARCH process, quarterly real

returns have a volatility persistence parameteiof 0.44. It is well known in the literature

that quarterly returns exhibit lower volatility getence compared to higher frequency

returns, such as monthly or weekly returns. The AR rameterag is estimated to be
0.00. The leverage paramety is estimated to be 374.78.

An LR test for homoskedasticity (test fap = a3 = a, = () rejects easily using the
x% distribution (p-value less than 0.01). LR test @&RCH versus the AGARCH model

(test for a4 = 0) also rejects easily using tl*pgf distribution (p-value less than 0.05),
indicating strong statistical significance of tlevdrage effect. Strictly speaking, the LR
test does not have the standa(r?d distribution for these tests because the null thygses

lie on the boundary of admissible values fy, ag, and a, (see, also, footnote 4).

Andrews (2001) provides recent theoretical advamcéekis regard. Monte Carlo critical
values for these tests generated using 1000 raphsaindicated even stronger rejection
of the two hypotheses. We go on to examine whetheasset pricing model can replicate

these stylized features of stock returns volatility
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Panels B through E of Table 3 report Maximum Lik@bd estimates obtained by
fitting the above volatility processes to impliedturns discussed in subsection 5.3,
obtained by simulation of all the four models ibsection 5.2. Estimates of the AGARCH
process fit to implied returns from the incompl@t®rmation stable model indicate a
volatility persistence coefficient of 0.33, an ARGIdefficient of 0.01, and a leverage
parameter of 0.40. The low value for the leveragemeter as compared to that for the
data is simply a reflection of the fact that ourpmed returns do not match the
unconditional variance of returns in the data weefl, as evident from the discussion of
unconditional moments in subsection 5.3. LR teshfmoskedasticity is strongly rejected
in favor of time-varying volatility, and leveragdfeets are also strongly statistically
significant.

Our choice of negative skewness in consumption tiraates in subsection 3.1
leads to a greater probability of large negativeckl than large positive shocks. This
feature of our framework is directly responsible fpenerating the apparent leverage
effects. Thus, our asset pricing model is ableeficate volatility persistence and leverage
effects with incomplete information and stable #so@n examination of results reported
in the other panels indicates that implied retudrosm all other models fail to generate
statistically significant volatility persistence.

Implied returns from our incomplete (and completdyrmation stable model are
unlikely to be Gaussian. Therefore, the models&gdrreturns in Equations (26) are likely
to be misspecified, at least in the stable casesadcount for this, we also estimated

versions of the GARCH(1,1) and AGARCH(1,1) modelih the scaled innovatiog; in

Equation (26a) distributed dil S(a',',1,0. The volatility process in Equations (26b)
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and (26c) is formulated in this case in terms ofetivarying scale paramete using

o —powers instead of squares, as in Bidarkota and MuwtPu (2004). Maximum
Likelihood estimation of this model, and a subsetudr test fora =2 easily rejects as
suspected, indicating statistically significant farmality of implied returns. An LR test
indicates statistically significant volatility péstence with a larger volatility persistence

parameter & is now estimated to be 0.48 with GARCH-stable gigosed to 0.24 with

the GARCH-normal model). However, leverage effeaet® no longer statistically

significant.

6. CONCLUSIONS

We study the consumption based asset pricing mofldlucas (1978), in
incomplete information setting with stable shocksvidg the exogenous stochastic
dividends growth rate process. Although agents rebseealized dividends (and hence
their growth rates), they do not observe the persisand noise components that make up
the observed dividends. Estimation of the persistemponent is important for evaluating
conditional expectations of future dividends, udedset equilibrium asset prices. Its
unobservability under stable shocks introduces ra@aussian filtering/signal extraction
problem that agents solve using Bayesian updatingmses. Asset pricing with incomplete
information in a Gaussian framework, with the agded filtering problem whose solution
is given by the Kalman filter, is a special casssé& pricing with complete information, in
stable and Gaussian settings, is also a spec@aldamir framework.

The non-Gaussian filtering problem leads to ansee estimate of the persistent

component of the dividend growth rate, whose candhd variance always reacts to new
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data, and unlike the Kalman filter in the Gaussitting, never settles to a constant value.
This time variation in the conditional variance tbeé agents’ estimate of the persistent
component, or fluctuating confidence as in Davi@92), leads to time variation in the
volatility of implied returns from the model.

We test this implication of our model using qudyteper capita real US
consumption data. Our results indicate strong stdpo our model in the sense that the
implied equilibrium returns display statisticallygmsificant volatility persistence of a
magnitude comparable to that in the data. Our maldel replicates leverage effect noted
in the time-varying volatility of observed returrasthough this result is not robust to
changes in the distributional assumptions abouliechpeturns. It is important to note that
our model does not rely on discrete shifts in thi¢ hte of dividend growth rates in order
to generate volatility persistence. Neither incatglinformation in a Gaussian setting,
nor complete information in either Gaussian or Istalettings, is able to generate these

features in implied returns.
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APPENDIX A
Stable Distributionsand Their Properties
This section draws heavily from McCulloch (1996%al8e distributions

S(x;a,B,c,0) are determined by four parameters. The locatioarpaterd [1(—co, o)
shifts the distribution to the left or right, whilee scale parameter] (0,c0 expands or
contracts it aboud, so that
S(x;a,B,c,9) =(x - d)/c;a,p 10). (A1)

The standard stable distribution function leas1 andd = 0. If a random variableX has
a stable distribution, it is represented as X(a 8, ,0)c

The characteristic exponeat[J(0,2] governs the tail behavior, and therefore the
degree of leptokurtosis. When= 2, the normal distribution results, with varian2e? .
For a < 2, the variance is infinite. Whem >1, E(X) =9&; but if a <1, the mean is
undefined.

The skewness paramet@i][—-1,1] is defined such thgd >0 indicates positive
skewness. I =0, the distribution is symmetric stable. &Ast , 2 loses its effect and

becomes unidentified.

Stable distributions are defined most concisetgims of their log-characteristic

functions:
INEexp(Xt )=i& + Y,  €t) (A2)
_ = 1t]* @-ipsign(t) tan(m /2)) fora 21
h = A3
here Va,pll) {— [t]@+iB@/msign(t)In |t]) fora =1 (A3

is the log-characteristic function f&a, 10)
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Whena < 2, stable distributions have tails that behave asytigally like x ~©
and give the stable distributions infinite absoligulation moments of order greater than

or equal toa .

Let X~ S(a,B,¢,0) and a be any real constant. Then (A2) implies:
aX~ da, sigr( 3B.| & c@). (A4)
Let X4 ~(a,B1,¢1,01) and X, ~ (a,B5,C5,0, ) be independent drawings from stable

distributions with a common . ThenY =X, + X, ~Ya,f3,c,d ), where

¢ =g+q (A5)

B=(B.ci +B,c3)/ ¢ (A6)
_ 0, +9, fora z1 A7
- 0, +0, +2(Bcin(c) - B,c,In(c) —-PB,c,In(cy))/m forx =1 (A7)

Whenf, =,, B equals their common value, so that Y has the staeed distribution
as X, and X, . This is the “stability” property of stable didiutions that leads directly to

their role in the central limit theorem, and make=m particularly useful in financial

portfolio theory. Wher3, # 3,, B lies betweerf3, andf3,.
Fora <2 and > -1, the long upper Paretian tail of X (653, ,0¢ makes
E€* infinite. However, wher = -1,

— a Z
& :{5 c® secm /12), azl (A8)

0+ (2c/ minc, a=1

This formula greatly facilitates asset pricing unldg-stable uncertainty.

See also Zolotarev (1986, p.112) and McCulloch )99
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APPENDIX B
Evaluation of Conditional Expectationsin the Price-Dividend Ratio
In this appendix we derive conditions under whioé tonditional expectation

terms that appear in Equation (10) in the texffiaite. We need to derive conditions

i
under whichE; [Tmy,j < wheremg.j =8exp[L-y)X+jl-
j=1

Let w=1~-y. Thereforemy,j = 8explwx4j].
i i . [
1M =[] Bexg wx,; | =6"exp wy Xi4j | (B1)
=1 =1 J:]_

From dividend growth rate process in Equation (11a)

21Xt+1 Z Ut+] + Z 8t+J (B2)
1= j=1

From dividend growth rate process in Equation (11b}1t+j -p= P(Iit+j—1 —H) N+
we have
Merj A =P (M —R)+0 s P! PN+t P Nw oo + PN o1 + N -
(B3)
Therefore,
i
g Mesj =R+ (e =) +Naa] HE+P(Me =B +PNag +Nead +.

I [V o (TP v B B MR el WP P
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This can be written as:

I

{p(l-pi)

P } ~[a-0npa + @0 ez ok (=N |

i
i o
T Herj =TH+(He —H) -p

(B4)

Therefore,

i , i
|_| Mpsj =0 exp{oontﬂ}

=1 =1

inw+{%<1—p‘ )}(ut -+
P

w

zei
S

j{ (1_pi Ne+1 + (1_pi_l Nteo+ .+ (EPp mt+i}+ -
(Jl)i 8t+j

=1

Define b; = M{Lj @- pi) . From the iid nature of; andn;, we can write:
1-p

E _|I‘|lmt+j =0'.ex fiw] . exp pi —1 O
J:

E, exp{%{ @0 N+ EF T Nt o+ (Ep mﬂ

i
Er expg WY &4
=1

E _|I‘|lmt+j =0'.ex [iw] .§ exp b —f )0
J:

[ o ) 0] o) o]

Ey[ exp(weps ) Dex{oe o) - exfuokyi) ]

(BS)
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Sinceg; ~iid N(O,oz) in Equation (11a),

Et[eXp(wﬁtﬂ) Cex{wes o) ...ex(x,oem)] =
Ee{exp(wer)} B exfuwer o)} . exfuoe)}

From the moment generating function of normal randariables, we have

(B6)

Eef exp(wepy )} = B{ exfue o)} = = B exfuey)} = e>{p—w202} (B7)

Sincen; ~iidS(a,3,¢,0) in Equation (11b),

Et{ex{[%] (¢ )]Hl}mexgﬁl _ (}p"l aﬁz} | e{r{l—“’p o rﬂ}
i Jemll i or o] o]

(B8)
Al
1-p
Since Equation (11b) also specifies thai<1,

1—pi . 1—pi .
we have 1-p > 0. Therefore,sign ﬁ =sign(w) . Hence,

c,% : (B9)

c,% (B10)

Using Equation (A4) from Appendix A:

20PN - {a SIGNE B e

Similarly, we have:

&) i .
E(l—p' 1)rlt+2 "{0‘ ,Sign@ B |w

and so forth for all the othet's in Equation (B8).
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Now, E; .|i‘|lmt+j <o if the right hand side of Equation (B5) is finitghis
E
requires that each of the three conditional expectaerms on the right hand side of
Equation (B5) be finite. From Equation (B7), thedtconditional expectation term on the
right hand side of Equation (B5) is finite.

The second conditional expectation term on the hgind side of Equation (B5) is
finite if each of the conditional expectation teramsthe right hand side of Equation (B8)
is finite. Using Equations (B9), (B10) and (A8)isthappens whegsign(«) [ = - .Dr,
substituting foru, this happens whedsign(l-y) =- .1

From Equation (11b), we can solve foy—pg as:

MR = %p‘nt_i - (B11)
i=

Equation (11b) also specifies that ~ iid S(a,3, ¢, 0). Then, using Equation (A4) from
Appendix A and the fact thdd<p, we havepir]t_i ~ iid S(a ,[3,pi c,() :

Using Equations (A5), (A6), and (A7) from Appendixwe get:
1

Sonei~9ap,)> 6 Ff co
i=1 i=0

With | p <1 already assumed in Equation (11t§.i,(pi )¢ =

o

i=0 1-p
Therefore, from Equation (B11),
gy C
Ke—H=2 PN ~§ a B——"—75 10 (B12)
t Eo - { [-p e J
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From the definition ot = w[lij @-p"). sign(h )= sigr(w).
-p

Therefore,

i

b (M —F) ~§ o ,sign@ B ; T7q ©0. (B13)
[1-¢°)
The unconditional expectatio| exp{ iy (i —fi } | is finite if

sigh@)B =P sign(ty }F — - from Equation (A8). It follows from the law of it=&ted

expectations that the first conditional expectatinm on the right hand side of Equation

(BS) is finite if Bsign(1-y)=—1.

i
Therefore,E; Mi4j <0 when Bsign(l-y)=-1
j=1
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APPENDIX C
Derivation of the Tractable Expression for the Price-Dividend Ratio

In this appendix we derive the expression forpghee dividend ratiov; given in
Equation (12).

Equation (10) gives:

Vi = E!(Et .|I_|lmt+jj : (C1)

i= j=

i
From Appendix B, we know tha; [Tm;.j <c whenfsign(l-y) =-1
j=1

Under f3sign(1-vy) = - 1, we get from Equations (B9), (B10), and (A8):

E{“{hgﬂ@ﬂhﬁ@Fex_%%ﬁg
Et{ex%(I%%](l_d_lyh+2}}= o _(D[llfgala

and so forth for all the othet's in Equation (B8):

oo - oz k]

Substituting (C2), (C3), and (C4) into (B8) andhgdip < 1, we get:

e ] )

:exp{—n%a Ny [Be%%j]ij% o’ 3}

a

mems%ﬂgj (C2)

mems%ﬂgj (C3)

a

(C5)
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Substituting (C5) and (B7) into (B5) and collectiegms results in:

AN =6 [gex{ bl -R)] .exp
=

recognizing from Appendix B that =1-vy .

Finally, substituting (C6) into (C1) gives:

Vi =§:ei.[Et exp{ B (1 -1} ]| .exp

i=1

2

iH(l—y)+i(1—y)2%+

=

where, from Appendix B, we haJg = (1— y) (ﬁj @a- pi ).
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APPENDIX D
Proof of Theorem 1

From Equation (12),

(D1)

Vi :iei_[Et exp{ B (1 -1} ]| .exp { U

or, substitutingw =1-vy

i=1

Vi = Ze [Ecexe{ (i -1} ] .exp a i | B2
ltenslzon

Let v; = Zz, : (D3)

Zi+1 _
Zi

ei+1Et exp{ by Qt‘r‘} ex{ (*F o+ (# 1§L+{—U‘ D¢ Ds j]ilﬁ 6101 G)H

| . B .‘*)202 W | i o
0'E; exp{ b (4 p}.ex%muﬁ. 5 +{ [‘1 o 08 Dse[ j][JZ @p!l )H

which on simplifying becomes:
Zi+1=9Et eXp{ ] Qt‘ﬁ}exp HU)"'OOZOZ"' _ EEJ D(J:pi+l g
7 2 2

o
(0V)
Fp

Z E exq b (1 -
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With |p|<1 specified in Equation (11b),

_ oo’ | || w |a o - Erexg by (-1}
_eexp{u(;ﬁ 5 +{ [‘1—p| Et“[ise«E—zjiH i'llor? & oxf b1 ) .

(D4)

Ziy

Z

lim

| -» 00

One can easily show thdim b;,; = lim b; :(%jp. Therefore, we have
[N [N - p

im Eyexp{ By (1~}
i~ Epexp{h (-1}

=1. Using this in (D4), we have:

2 2 o
= eexp{aoﬁ w; +{—[I 1(—Dp| Ko [Seﬁ%]]H = (D5)

Substitutingw =1-y, we get:

r= eexp{ﬁ(l— y)+ (1—y2)2 o’ + {—U 1: ZIG i DseEE;]]H : (D6)

Proof for convergence of; in (D1) for r <1 now follows from the ratio test

Ziy

Z

lim

| -» 00

(see, for instance, Marsden 1974, Theorem 13, p.47)

46



APPENDIX E
Proof of Theorem 2
Derivation of Equation (14)

From Equation (12),

. , _
im(L-y) +i (1—y)2°_+
vi=> 6" [Eexd b (i —1 )] .exp a . (E1)
rezlgon
Therefore, from the law of iterated expectations,
. , _
iH(l—y)+i(1—y)2%+
Vi :Zei.[Eexp{ b -m}].exp (E2)
i 5 ) e}
From Equation (B13), we havg (u; —[1) ~ S o ,sign@ B - | I|l/G c,Q.
1-p )
Using Equation (A8):
a
Elexp{b; .(4 —F)}] =e><l{ {lh 7 a]l,a} DSGE%]] (E3)
Substituting into Equation (E2) gives:
. , ) _
iu(l—v>+i<1—v2°—+H|bi|“ i }se{mj}+
2 1- pa 2
| (E4)

& 2
1-p

E(vi)= iei exp { U

S Be({ ]]Dz tp 5‘}
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Proof of convergence of E(v;)

Let E(v)= 3 7 (E5)
i=1

Using Equation (E4), one can easily show that:

Ziy

Z

eexp{w wzzoz *{‘[pr " [Begw lim eXH_Lf‘;G} s{%}“ Be-| i|s}]

Using the definition ofr in Theorem 1,

:r.ilijnmexp[{—{lf:a }se{ﬂg]}“ bl” -| Ha}] (E6)

Following from the proof of Theorem 1 in Appendxit suffices to show that:

o ST 0]

or that, lim {|bi+1|°‘ ~|b;|* }:0. With | p <1 specified in Equation (11b),
i o0

lim

| -» 00

741

Z;

lim

| - 00

a

|y %= (1—y)(% [1—pi]°‘ . Therefore,

a

il - 22

_L“mo{[l_ ot _ [1_pi]a}} 0.
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APPENDIX F

Derivation of the Risk Free Asset Prices

The price of the risk free asset is givenFqSy= GE{%J . With the utility
t

function being of the constant relative risk avergiBRRA) class andC = D in the model

from Section 2, this reduces to:

f _ Dt+1 o
Pl =6E, . (F1)
D¢

Using X =In(D¢ /D¢-1 ), we getPt‘c = BE[exp(-yXt+1)] . Substituting forx ;44
using Equation (11) yields:
R = 0E; [expEy = YP (i ~ 1)~ Wiy = Versal.
Using independence @f;, €;+1 andn41, we can rewrite this as:
R =6 expE-yi}E, [exp{-ver+}IE fexp{-Ve i ~YE [exp{ M.} - (F2)
We have assumed that ~ iid N(O,oz) in Equation (11a). Therefore, using the

moment generating function for the normal randonatde:

y202

E¢[exp{-Vet+1}] =exp — [ (F3)
We have assumed thgt ~ iid S(a 3, ¢, 0) in Equation (11b). Therefore, using

Equation (A4) we can writeyn,; ~iidS(a,signcy B,y |c,D. Sincey =0,

—YNg+1 ~iidS(a,~B,yc, 0. Since it has been assumed tfat - , it follows from

Equation (A8) that:
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E¢[exp{-ynt+1}] = . (F4)

From Equation (B12),u; —H = pir]t_i ~5[0( B W Cﬂ . Sincey =0 and
i=0 B

p=0, it follows from Equation (A4) thatyp(p —f) ~S o -B —YC ol sinceit
[1_p0]1/0

has been assumed tHat — |, ittfollows from Equation (A8) that:
E¢[exp{-yp(u; —H)}] =co. (F5)

Equations (F2)-(F5) then imply thaEif = oo ., Gross equilibrium returns on the risk

f 1
free asseR; = — are consequently zero.
Pt
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APPENDIX G
Numerical Implementation of Filtering Equations

The Sorenson-Alspach (1971) filter and predictiemsities were evaluated at a
grid of 200 points equally spaced on a truncatediqgo of the real line. The left
truncation point was chosen to lie approximateBb4standard deviations of ttee shock
(6 times the scale parameter) below the minimunemesl consumption growth rate and
the right truncation point 4.25 standard deviatiGatsove the maximum observed
consumption growth rate. The likelihood and thedmté&/e density integrals (Equations
(17) and (15) respectively) were evaluated numigribg a piecewise cubic quadrature
technique, as follows: integration between any interior nodes was performed by fitting
a piecewise cubic function through the four neanestes and approximating the required
area under the integrand between those nodes areheunder the cubic. The outermost
intervals employ the same cubics as the adjaceéetvals. For equispaced nodes, 8 or
more in number, this quadrature procedure yieldswibights 8/24, 31/24, 20/24, 25/24,
1, 1, ..., 1, 25/24, 20/24, 31/24, 8/24 for thelimates. The numerically computed
predictive density was normalized in order to eesthat it integrated to unity. The
piecewise linear interpolation and the trapezoiddé for integration suggested by
Kitagawa (1987) was not employed. Hodges and HE}®J) propose an integration by
parts procedure to speed up the Kitagawa procelutehis was not employed either.

The accuracy of our numerical quadrature can bgegaby a comparison of the
maximized log-likelihood value for the model in Efgons (11) obtained from our
numerical integration witlo restricted to be 2, with that obtained from thénién filter

(which is optimal in this Gaussian case), for givatues of the other hyperparameters.
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We verified that, with 200 nodes, our numericalragpnation gives log-likelihood values
accurate to four decimal places at the estimatperparameters of the Gaussian model.
In light of this our numerical integration appe#osbe sufficiently accurate for drawing

valid inferences from data.

In the model given in Equations (11) in the maixt X, is the observed series,

P(X¢ Ky )= N — Iy ;00%)

and Py M) = S (Me—F =P (g ~H);07 1,8,
where N(x;O,oZ) and sy (x; 0,-1,c; are the probability densities dﬂ(O,oZ) and
S(cx . 1,c,() distributions evaluated at. The filter is initialized by setting the conditial
mean ofp(py | %) equal tox; and the conditional scale @y | X;) equal to the scale
of &;.

Starting points for hyperparameter estimation dtaioed from the Kalman filter

under normality.
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Table 1
Parameter Estimates

Panel A: Incomplete Information, Stable Model

V) p a C o Log Likelihood

0.0049 0.6889 1.8564 0.0014 0.0058 755.6100
0.0007 0.1724 0.2500 0.0007 0.0005

Panel B: Incomplete Information, Gaussian Model

M p a on o Log Likelihood

0.0050 0.7396 2.0000 0.0022 0.0058 755.4003
0.0007 0.1260 (restricted) 0.0008 0.0004

Panel C: Complete Information, Stable Model

M p a C Log Likelihood

0.0051 0.1343 1.9140 0.0043 755.5771
0.0003 0.0222 0.0545 0.0002

Panel D: Complete Information, Gaussian Model

M p a on Log Likelihood

0.0050 0.1758 2.0000 0.0066 753.5202
0.0006 0.0674 (restricted) 0.0003

This table reports the Maximum Likelihood estimatesthef model for dividend growth rates,

Xt =Mt +& where g ~iid N(0,062) and where the unobserved persistent comporpgnt
follows

He—H=p(Ht-—H)+N;.  with 0<p<1l and n ~iidS(a,B,c,0)
The model is calibrated to quarterly real per capitacoi&umption growth rates on non-durables
and services from the first quarter of 1952 through ¢ersd quarter of 2004. Nominal seasonally

adjusted per capita consumption data obtained from NaBkg are deflated using the CPI index.
Panel A reports estimates for the most general mBaelel B reports estimates for the special case

where n; ~iid N(O,orzl). Panels C and D report estimates for the compldi@nmation

counterparts of panels A and B, by settéjgto zero.

Conditional densities of the state variaple are obtained by applying the algorithm by Sorenson

and Alspach (1971) in panel A and a Kalman filter in p&eTlhe probability density for stable
distributions is obtained by Fourier inversion of trekaracteristic function available as an exact
analytical formula using the Fast Fourier TransforBTJ- methods discussed in Mittnik et al.
(1999). Standard errors are reported below each paragstitaate.
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Table 2
Unconditional Moments of Returns

Panel A: Data (1952:1 to 2004:2)

E(R) o(R)

Real Returns 8.07 16.77

Panel B: Incomplete Information, Stable Model

0 Y E(R) o(R) E(Vt)
0.98 0.60 3.2901  1.7459 80.599
0.98 0.75 3.5943  1.6466 64.898
0.98 0.90 3.8986 1.555 54.321
0.99 0.60 22753  1.7388 406.67
0.99 0.75 25511  1.6363 192.95
0.99 0.90 2.8494  1.5417 123.08

Panel C: Incomplete Information, Gaussian Model

0 Y E(R) o(R) E(Vt)
0.98 0.60 2.95 2.69 115.46
0.98 0.75 3.43 2.30 74.60
0.98 0.90 3.89 1.96 55.57
0.99 0.60 2.24 2.70 605.71
0.99 0.75 2.52 2.30 224.84
0.99 0.90 2.86 1.95 126.26
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Table 2 (Continued)

Panel D: Complete Information, Stable Model

0 Y E(R) o(R) E(Vt)
0.98 0.60 3.34 1.62 82.89
0.98 0.75 3.65 1.60 65.83
0.98 0.90 3.97 1.57 54.58
0.99 0.60 2.33 1.61 456.90
0.99 0.75 2.61 1.58 201.12
0.99 0.90 2.92 1.56 124.43

Panel E: Complete Information, Gaussian Model

0 Yy E(R) o(R) E(Vt)
0.98 0.60 3.31 1.48 82.07
0.98 0.75 3.63 1.45 65.51
0.98 0.90 3.94 1.42 54.50
0.99 0.60 2.30 1.47 438.09
0.99 0.75 2.58 1.44 198.24
0.99 0.90 2.89 1.41 123.97

Panel A reports unconditional moments of quarterly valaghted real returns on all
NYSE, AMEX, and NASDAQ stocks obtained from CRSP dat&sethe period going
from the first quarter of 1952 through the second quarter of 20@®4.inflation is
subtracted from nominal returns to obtain real retuempressed in percent per annum.
Moments are reported for a range of values for the clilgediscount factof, and the
risk-aversion coefficienty. Panels B-E report the unconditional moments of simdla
returns obtained from the asset pricing model by feedinglated consumption growth
rates data using the estimated parameters from each @ianable 1. The statistics
reported in percentage per annum are the mean re&fR3, standard deviation of

returnso(R), and the mean price-dividend raaV; ) .
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Table 3
Time-Varying Volatility of Returns

Homoskedastic Case

GARCH(1,1)

AGARCH(1,1)

Panel A: Data (1952:1 to 2004:2)

ai

1119.1760

108.9125

ai

300.7956
108.2858

ai
432.9833
186.9916

az

0.5814
0.1429

az
0.4368
0.1857

as

0.1520
0.0769

as
0.0000
0.0871

as
374.7812
193.4094

Log Likelihood
-1035.1148

Log Likelihood
-1031.3912

Log Likelihood
-1029.3003

Homoskedastic Case

GARCH(1,1)

AGARCH(1,1)

Panel B: Incomplete Information, Stable Model

ai

2.4188
0.0527

ai

1.5272
0.2240

ai
1.3537
0.2208

az

0.2435
0.1036

az
0.3291
0.1060

as

0.1121
0.0213

as
0.0113
0.0241

a4
0.3957
0.0965

Log Likelihood
-7421.9202

Log Likelihood
-7332.3004

Log Likelihood
-7318.2051

Homoskedastic Case

GARCH(1,1)

AGARCH(1,1)

Panel C: Incomplete Information, Gaussian Model

ai

3.8410
0.0867

ai

2.2062
1.4994

ai
2.3494
1.5083

az

0.4115
0.3928

az
0.3740
0.4765

as

0.0141
0.0158

as
0.0143
0.3770

as
0.0000
2.0041

Log Likelihood
-8344.1956

Log Likelihood
-8343.9301

Log Likelihood
-8343.9351

Homoskedastic Case

GARCH(1,1)

AGARCH(1,1)

Panel D: Complete Information, Stable Model

ai

24774
0.0556

ai

2.4706
1.1159

ai
2.4736
1.7834

az

0.0000
0.4428

az
0.0000
0.5602

as

0.0025
0.0023

as
0.0000
0.4814

a4
0.0069
1.1496

Log Likelihood
-7469.5978

Log Likelihood
-7468.6021

Log Likelihood
-7468.1900
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Table 3 (Continued)

Panel E: Complete Information, Gaussian Model

ai Log Likelihood
Homoskedastic Case 2.0171 -7059.6149
0.0453
ai az as Log Likelihood
GARCH(1,1) 1.7768 0.0960 0.0232 -7058.8237
0.6118 0.3061 0.0169
a1 az as a4 Log Likelihood
AGARCH(1,1) 1.9709 0.0000 0.0140 0.0367 -7058.6692

1.9305 0.9780 0.0361 0.0911

Panel A reports the estimates of a homoskedastidemd@GARCH(1,1) model and
AGARCH(1,1) model fitted to quarterly value-weigtiteeal returns on all NYSE,
AMEX, and NASDAQ stocks obtained from CRSP datdsethe period going from the
first quarter of 1952 through the second quarte2@ff4. The models assume that returns
are conditionally normally distributed. Thus
h=ag+&, & ~0t%z, % ~iidN(O]1

with volatility given by, respectively:

Homoskedastio; =g

GARCH(1,1)07 =a; + 8,071+ & L1~ &

AGARCH(1,1) .0t =&y + 071+ & £~ @1+ ali( i @ d44°

whert - = 1 if rny—-ay<0
B = 0 otherwise

The restrictionssg >0, & = 0,> 0, and g are enforced in all models. Panels B-E

report estimates of the above models with simulattdrns obtained from the asset
pricing model by feeding simulated consumption glowates data using the estimated
parameters from each panel of Table 1. A subjeciiseount facto® of 0.98 and a risk-
aversion coefficienyy of 0.9 are used to obtain simulated returns siheeunconditional
mean stock returns implied by the incomplete infation stable model are closest to their
sample counterpart for these preference parametees: Standard errors are reported
below each volatility parameter estimate.
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Figure 1. Unconditional Distribution of py
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Figure 1 uses the Maximum Likelihood parameteinesis reported in Panels A and B of
Table 1 to plot the unconditional distribution jof, the persistent component of dividend

growth rates defined by, = +&; and Wy —fi =p(ni-1 —H)+ny, for both the Stable
model wheren, ~iid S 3,c,0) and the Gaussian model wherg”™ iid N(O,orzl), with

g ~iid N(O,oz) andO<p<1.
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Figure 2. Filtered Probability Densities p(; | X, Xp,..., %)
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Figure 2 plots the filtered conditional probability déiesip(iy | X, X5, ..., %) . Panel A plots the

densities for the stable case with the densitiemastd by using the algorithm by Sorenson and
Alspach (1971) and the Maximum Likelihood parameter estisnat Panel A in Table 1. Panel B
plots the densities for the Gaussian case with thsitiEs estimated by using a Kalman filter and
the Maximum Likelihood parameter estimates of Panel Bable 1.
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Figure 3. Filtered Mean E(ut [ %, %Xo,..., x[)
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Figure 3 plots the mean of the filtered densitfeé,lt |X1,X2,...,Xt), along with the observed

consumption growth ratex;. Panel A plots the mean of the filtered densit@stiie stable case

with the densities (plotted in Figure 2A) estimatedibipng the algorithm by Sorenson and Alspach
(1971) and the Maximum Likelihood parameter estimatesanEPA in Table 1. Panel B plots the
mean of the filtered densities for the Gaussian eeiie the densities (plotted in Figure 2B)
estimated by using a Kalman filter and the Maximum litiked parameter estimates of Panel B in
Table 1.
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Figure 4. Filtered Standard Deviation of p(u; | X, Xp,..., %)
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Figure 4 plots the standard deviation of the #terdensities for both the stable and
Gaussian incomplete information models. The stahdawiations of the filtered densities
areestimated by using the algorithm by Sorenson amspah (1971) and the Maximum
Likelihood parameter estimates of each model.
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Figure5. Filtered Standard Deviation of p(u; | X, X ,..., %)
Fluctuating Confidence
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Figure 5 plots the standard deviation of the #terdensities for the Extreme Value
incomplete information model. The standard dewvetiof the fitered densities are
estimated by using the algorithm by Sorenson argpadh (1971) and the Maximum
Likelihood parameter estimates of the Extreme Vatoelel.
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Figure 6. Filtered Standard Deviation of p(p; | X, Xp,..., %)
Fluctuating Confidence
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Figure 6 plots the standard deviation of the #iteidensities for the Pearson Type IV
incomplete information model. The standard dewetiof the fitered densities are
estimated by using the algorithm by Sorenson argpadh (1971) and the Maximum
Likelihood parameter estimates of the Pearson Typwodel.
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Figure 7. Filtered Standard Deviation of p(u; | X, Xp,..., %)
Fluctuating Confidence
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Figure 7 plots the standard deviation of the #tedensities for the Binomial incomplete
information model. The standard deviations of ilberéd densities arestimated by using

the algorithm by Sorenson and Alspach (1971) aedMhaximum Likelihood parameter
estimates of the Binomial model.
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