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Asset Pricing with Incomplete Information 

under Stable Shocks 

 

Abstract 

 We study a consumption based asset pricing model with incomplete information 

and α-stable shocks. Incomplete information leads to a non-Gaussian filtering problem. 

Bayesian updating generates fluctuating confidence in the agents' estimate of the persistent 

component of the dividends’ growth rate. Similar results are obtained with alternate 

distributions exhibiting fat tails (Extreme Value distribution, Pearson Type IV distribution) 

while they are not with a thin-tail distribution (Binomial distribution). This has the 

potential to generate time variation in the volatility of model-implied returns, without 

relying on discrete shifts in the drift rate of dividend growth rates. A test of the model 

using US consumption data indicates strong support in the sense that the implied returns 

display significant volatility persistence of a magnitude comparable to that in the data. 

 

 

Key phrases: asset pricing; incomplete information; time-varying volatility; fat tails; stable 

distributions;  

 

JEL classification: G12, G13, E43 
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1. INTRODUCTION 

 We study a pure exchange Lucas (1978) asset pricing model in a setting with 

incomplete information on the stochastic dividends process. The stochastic setting is 

characterized by exogenous shocks coming from the family of α-stable distributions. This 

distributional assumption marks a departure from the literature on asset pricing with 

incomplete information in non-Gaussian settings. This literature usually employs a discrete 

switching process (which is necessarily non-Gaussian) to characterize the dynamics of the 

drift rate of dividends. 

 In incomplete information asset pricing models, the drift rate of the dividends 

process is assumed to be unobservable. Agents need to estimate this drift rate based on 

observed dividends in order to compute the expected future dividend payouts and hence 

set equilibrium asset prices. This introduces a filtering/signal extraction problem into asset 

pricing models.  

Early work on incomplete information in asset pricing models used linear 

stochastic differential equations with Brownian motion increments to characterize the 

exogenous path of the dividends process. The unobservable drift rate of the dividends 

process is also characterized as a linear stochastic differential equation with Brownian 

motion increments. Dothan and Feldman (1986), Detemple (1986), Gennotte (1986), and 

more recently, Brennan and Xia (2001) study asset pricing / portfolio allocation problems 

in this setting. Linear Gaussian setting permits use of the Kalman filter to solve the signal 

extraction problem in an optimal sense. 

The Kalman filter is a Bayesian updating rule that permits learning about the 

unobservable dividend drift rate with the arrival of new information on dividends each 



 4 

period. In all the above studies, the prior distribution on the drift rate is invariably 

Gaussian. With such a prior in a linear Gaussian setting, the posterior distribution on the 

drift rate is also Gaussian. Moreover, this posterior density has a dispersion that is 

constant and does not react to new information after transients have died out from startup 

of the filter. However, it is more realistic to have time-varying dispersion on the posterior 

density, suggesting periods of greater or lower confidence about the state of the dividend 

drift (David 1997). 

This limitation of the Gaussian setting was recognized in early work by Detemple 

(1991). He therefore uses a non-Gaussian prior distribution on the state variable in order 

to generate a non-Gaussian posterior distribution with time-varying dispersion. Another 

way to generate time-varying dispersion on the posterior distribution is by adopting a non-

Gaussian stochastic setting. This is done in articles by David (1997) and Veronesi (1999, 

2000). They assume that the drift rate of dividends follows a discrete state process, 

governed either by a Poisson arrival or Markov switching process. More recently, 

Veronesi (2004) generalizes by allowing the drift rate to follow a continuous-state 

Gaussian process subject to discrete breaks. The breaks are governed by Markov process, 

thus making the overall process for the drift rate non-Gaussian. 

All the papers discussed above on asset pricing with incomplete information 

formulate the problem in continuous time. In a discrete time setting, Cecchetti et al. 

(2000) and Brandt et al. (2000) model dividends as a random walk driven by Gaussian 

innovations and a drift term that follows a discrete state Markov switching process. Thus, 

all extant non-Gaussian asset pricing models with incomplete information, both in 

continuous and discrete time, formulate the signal extraction problem facing investors as 
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an unobservable process for the drift rate of observable dividends that inherently involves 

discrete breaks / regimes. 

Time-varying dispersion on the posterior density, or fluctuating confidence as in 

David (1997), related to the drift rate of dividends in non-Gaussian incomplete 

information asset pricing models, leads to time variation in the volatility of implied returns, 

thereby providing a mechanism for replicating this stylized fact documented in observed 

returns. Thus, the current literature relying on signal extraction generates volatility 

persistence in asset pricing models as an outcome of learning about unobservable discrete 

shifts or breaks in the underlying drift rate of dividends.  

However, even continuous-valued dividend drift not involving discrete shifts or 

breaks in non-Gaussian filtering/signal extraction setting with fat tails would lead to 

fluctuating confidence (Kitagawa 1987), and thus presumably to time-varying volatility of 

implied returns. It is more realistic to model dividend drift as a continuous valued fat-

tailed non-Gaussian process rather than assume that it undergoes periodic shifts that are 

discrete in nature.  

In order to demonstrate that Bayesian learning in a continuous-valued non-

Gaussian stochastic setting with fat-tails and incomplete information would lead to time-

varying volatility requires an appropriate probability distribution with fat tails. One 

immediately runs into difficulties here because, as Geweke (2001) notes, the theory of 

choice under uncertainty in such settings often breaks down under the constant relative 

risk aversion (CRRA) utility function. Geweke (2001) specifically demonstrates the failure 

of the choice theory with Student-t distributions in such circumstances.  
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The family of α-stable distributions provides a way out of this difficulty. These 

distributions have a fairly long history in finance, going back to early work by Mandelbrot 

(1963). A comprehensive survey on the financial applications of these distributions is 

provided by McCulloch (1996). The ](0,2α ∈  parameter (along with three other 

parameters including a skewness parameter [ ]1,1β∈ − ) characterizes these distributions, 

with 2α =  resulting in the Gaussian distribution and 2α <  resulting in fat-tailed 

distributions. While the difficulty noted by Geweke (2001) also applies to the general 

family of α-stable distributions with arbitrary skewness β , the sub-family of these 

distributions with maximal negative skewness 1β = −  provides an operational theory of 

choice under uncertainty.  

In recent work, Carr and Wu (2003) use this sub-family of α-stable distributions 

with maximal negative skewness for capturing the observed behavior of the volatility 

smirk implied by S&P 500 option prices. They too are forced to work with these 

distributions by imposing 1β = −  in order to ensure finiteness of call option values. 

The α-stable distribution is also convenient in that it allows us to derive a closed-

form expression for the price-dividend ratio. One may wonder, however, whether our 

results may be induced by the special behavior of the α-stable distribution or whether 

alternative fat-tailed innovations have the ability to yield similar outcomes. To investigate 

this issue we also apply the filter after having estimated the model with two alternative fat-

tailed distributions, namely the Extreme Value distribution and the Pearson Type IV 

distribution. We are able to show that in both cases the fluctuation in agents’ confidence is 

achieved, just as in the case of the α-stable distribution. 
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One may also wonder whether the results are simply due to the non-Gaussian 

nature of the error terms, in which case a thin-tail distribution would also yield similar 

outcomes. In order to address this concern, we apply the filter after having this time 

estimated a model whose α-stable shocks have been replaced by Binomially distributed 

innovations. The filtration reveals that such thin-tail distributed shocks are not capable of 

yielding fluctuation in the agent’s confidence. We thus conclude that the results obtained 

with the a-stable distributions are not simply due to the non-Gaussian nature of the shocks 

but are indeed the consequence of the fat-tail nature of the distribution. 

In this paper we study the asset pricing problem with incomplete information in a 

purely continuous state stochastic setting. We assume that the observed dividend growth 

rate is the sum of an unobservable persistent component and noise. The unobservable 

persistent component is assumed to be an autoregressive process driven by shocks that 

come from the family of α-stable distributions with maximal negative skewness. An 

incomplete information Gaussian asset pricing model is a special case. Our model with α-

stable shocks allows for a simple way to numerically solve for equilibrium asset prices, and 

hence implied returns, a convenience generally not available under alternative non-

Gaussian distributional assumptions. The solution is a simple extension of the solution to 

the asset pricing problem in complete information setting with α-stable shocks studied in 

Bidarkota and McCulloch (2003). 

We characterize the solution to the asset pricing model in such a setting. We then 

calibrate the model to data on quarterly US per capita consumption, and study the ability 

of the model to replicate volatility persistence and other stylized facts in implied returns. 

Our model is in fact able to generate volatility persistence of a magnitude close to that in 
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stock returns data. It is important to note that our model does not rely on discrete shifts in 

the drift rate of dividend growth rates in order to generate volatility persistence, as much 

of the extant literature on asset pricing with incomplete information does. 

Alternative approaches for endogenously generating time-varying volatility in asset 

pricing models include an early idea due to French and Roll (1986) that it takes time for 

market participants to digest newly arriving information and react to it. Using this idea, 

and the assumption that agents face capacity constraints in information processing, as in 

the rational inattention scheme of Sims (2003), Peng and Xiong (2001) endogenously 

generate time-varying volatility in an asset pricing model. Sims (2003) argues that 

outcomes resulting from information processing constraints would resemble those from 

signal extraction problems. In a different vein, McQueen and Vorkink (2004) develop a 

model of asset pricing based on prospect theory (Barberis et al. 2001) that generates 

volatility persistence as investors’ level of risk aversion changes when their portfolio 

performance differs from a mental scorecard they use. 

 The paper is organized as follows. We describe the economic environment and the 

asset pricing model in section 2. We study the solution to the model in section 3. We 

tackle empirical issues including estimation of the model in section 4.  We analyze the 

model implied rates of return in section 5. The last section provides some conclusions 

derived from the paper. 

 

2.  THE ASSET PRICING MODEL 

Is this section we lay out the economic environment, including specification of 

exogenous stochastic processes and information structure in the model. 
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2.1 Pure Exchange Economy 

 In a single good Lucas (1978) economy, with a representative utility-maximizing 

agent and a single asset that pays exogenous dividends of non-storable consumption 

goods, the first-order Euler condition is: 

  t t t t 1 t 1 t 1P U (C ) E U (C )[P D ]+ + +′ ′= θ + .    (1) 

Here, tP  is the real price of the single asset in terms of the consumption good, U (C)′  is 

the marginal utility of consumption C for the representative agent, θ  is a constant 

subjective discount factor, D is the dividend from the single productive unit, and tE  is the 

mathematical expectation, conditioned on information available at time t. 

Assume a constant relative risk aversion (CRRA) utility function with risk-aversion 

coefficient γ: 

 U C C( ) ( ) ,( )= − ≥− −1 01 1γ γγ .    (2) 

Since consumption simply equals dividends in this simple model, i.e. C D=  every period, 

Equation (1) reduces to: 

  ]DP[DEDP 1t1t1tttt ++
γ−
+

γ− +θ= .     (3) 

On rearranging this yields:  

]DP[
D

D
EP 1t1t

t

1t
tt ++

γ−
+ +θ= .     (4) 

Let tv  denote the price-dividend ratio, i.e. ttt D/Pv = . Then, we can rewrite 

Equation (4) in terms of tv  as: 

]1v[
D

D
Ev 1t

1

t

1t
tt +θ= +

γ−
+ .     (5) 



 10 

Thus, this equation implicitly defines the solution to the asset pricing problem in this 

model. One specifies an exogenous stochastic process for dividends and solves for the 

price dividend ratio tv .  

 

2.2 Simplifying the Difference Equation for the P / D  Ratios 

 Let )D/Dln(x 1ttt −=  denote the natural logarithm of the dividend growth rate. 

Then, we can express Equation (5) as: 

[ ] )1v(x)1(expEv 1t1ttt +γ−θ= ++ .     (6) 

Defining ]x)1exp[(m 1t1t ++ γ−θ≡ , we can rewrite Equation (6) as: 

  ]1v[mEv 1t1ttt += ++ .      (7) 

On forward iteration, this equation yields: 

it
i

1j
jtt

1i i

i

1j
jttt vmElimmEv +

=
+

∞

= ∞→=
+ ∏∑ + ∏=     (8) 

One solution to the above difference equation in tv  is obtained by imposing the 

transversality condition: 

0vmElim
i

1j
itjtt

i
= ∏

=
++

∞→
.      (9) 

This condition rules out solutions to the asset pricing model that imply intrinsic bubbles 

(Froot and Obstfeld 1991). Imposing the transversality condition on Equation (8) gives:  ∑  ∏=
∞

= =
+

1i

i

1j
jttt mEv .      (10) 
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Thus, the solution to the price-dividend ratio can be found by evaluating the conditional 

expectations on the right hand side of Equation (10), under a specified exogenous 

stochastic process for the dividend growth rates. 

 

2.3 Specification of the Endowment Process 

We assume that dividend growth rates stochastically evolve according to the 

following process: 

t t tx = µ + ε , 2
t ~ N(0, )iidε σ       (11a) 

( )t t 1 t−µ − µ = ρ µ − µ + η , 0 1≤ ρ < ,  t ~ S( , , ,0)iid cη α β .  (11b) 

We assume that tε  and tη  are independent of each other contemporaneously as well as at 

all leads and lags. Here, )0,c,,(S βα  represents a stable distribution with characteristic 

exponent α , skewness parameter β , scale parameter c , and location parameter set to 0. 

Appendix A defines these distributions and lists some of their properties. 

 For technical reasons that will be evident in section 3, we need the autoregressive 

coefficient ρ  in Equation (11b) to be non-negative. This is not a limitation of the model 

from an empirical viewpoint since, as we shall see in subsection 4.3, ρ  is estimated to be 

positive and large. 

 We also study a benchmark case where, in Equation (11b), ( )2
t ~ iid N 0, ηη σ .1 

From Appendix A, this is obtained by setting 2α =  in the process given in Equation (11b) 

                                                        
1 The model in Equations (11) has a reduced form ARMA(1,1) representation. Bansal and 

Yaron (2004) study such a model with conditionally heteroskedastic Gaussian errors with 
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above. In this case, β  loses its effect on the distribution of tη  and is unidentified, and 

2 22cησ = .  

 

2.4 Incomplete Information Structure of the Economy 

 We assume that agents in the economy have full knowledge about the structure of 

the economy. They know the stochastic process governing the evolution of the dividend 

growth rates, including the parameters of the process. They observe the dividend stream 

(and hence the realized dividend growth rates tx  as well). However, we assume that 

agents do not ever observe the persistent component tµ  (or equivalently the noise 

component tε ) of the dividend growth rates.  

 Agents need to form conditional expectations of tµ  in order to compute the 

expected future dividend payouts, and hence determine equilibrium prices. Thus, agents 

face a filtering/signal extraction problem. We assume that agents form conditional 

expectations on tµ  based on Bayesian updating rules. The signal extraction problem 

facing the agents is complicated here by the assumption of a non-Gaussian distribution for 

tη .  

 In the benchmark case where tη  is Gaussian, agents face a linear Gaussian signal 

extraction problem. In this case, the conditional density of tµ  is Gaussian (see, for 

                                                                                                                                                                     
non-expected recursive utility specification of Epstein and Zin (1989). Note that in their 

setup, unlike ours as will become evident in the next subsection, there is complete 

information.  
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instance, Harvey 1992, Ch.3) and, therefore, completely specified by its conditional mean 

and variance. These are given recursively by the classic Kalman filter.  

 When tη  is non-Gaussian, the Kalman filter is still optimal (in a minimum mean 

squared error sense) but only within the class of linear estimators. The globally optimal 

filter turns out to be non-linear in this instance. Bayesian updating still leads to a recursive 

form for the conditional probability density ( )t 1 2 tp | x , x ,..., xµ .  

 

2.5 Benchmark Case - Complete Information 

In a benchmark full information economy, we assume that the innovation tε  in 

Equation (11a) has zero variance (i.e. tε  is trivially zero). In this case, t txµ = , and 

therefore agents actually observe tµ . There is no signal extraction problem facing the 

agents in such an economy. This model is studied in Bidarkota and McCulloch (2003). A 

Gaussian version of such a full information model where ( )2
t ~ iid N 0, ηη σ  is studied in 

Burnside (1998). 

 

3.  SOLUTION TO THE MODEL 

We now proceed to evaluate Equation (10) for the price-dividend ratio under the 

assumed process for the dividend growth rates. The expressions for the price-dividend 

ratio tv  and its mean value )v(E t  derived below, as well as those for returns and their 

mean values discussed in section 5, differ in the case when the characteristic exponent 
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1=α  from those when 1≠α .2 In the rest of this paper we focus our attention on the 

more general case 1≠α . All the results and theorems that follow for 1≠α  are also 

applicable for 1=α  with appropriate modifications. The required derivations and proofs 

of theorems for 1=α  do not pose any additional difficulties, and can be easily adapted 

from those given for 1≠α  in this paper. 

 

3.1 Finiteness of Conditional Expectations 

As noted in the introduction, theory of choice under uncertainty with CRRA utility 

and fat-tailed distributions is extremely fragile (Geweke 2001). The difficulty stems from 

the non-existence of the conditional expectation in Equation (10) for most common 

leptokurtic distributions, including the Student-t. Under the assumed distribution 

t ~ S( , , ,0)iid cη α β  in the dividend growth rate process in Equation (11b), Appendix B 

shows that the conditional expectation in Equation (10) above is finite only when 

1)1(sign −=γ−β . This condition is satisfied if either (i) 1−=β  and 1<γ  or (ii) 1+=β  

and 1>γ . Thus, an operational theory of choice under uncertainty can be worked out 

under these conditions, despite the difficulty noted by Geweke(2001). 

                                                        
2 This arises because of two reasons. One reason is that the expressions for EeX  differ in 

the two cases (see Equation (A8) in Appendix A). A second reason is that when we 

aggregate iid random variables with stable distributions, the expressions for the location 

parameter δ  for the aggregate random variable also differ in the two cases (see Equation 

(A7) in Appendix A). 
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One can in principle obtain an operational theory of choice under uncertainty 

without having to impose the condition 1)1(sign −=γ−β  by truncating the α-stable 

distributions, as in the Dampened Power Law process of Wu (2005). However, in that 

case, one loses the convenience of solving the asset pricing model in a simple way as will 

become evident in the next subsection. Moreover, in our view, imposing 1)1(sign −=γ−β  

for the purpose of demonstrating that signal extraction in leptokurtic non-Gaussian 

settings would generate volatility persistence without the need for discrete breaks in 

dividend growth rates is not necessarily severe. 

In the remainder of the paper, we assume that 1−=β  and 1<γ . We shall see in 

the empirical section of the paper that this choice for β  is consistent with negative 

skewness in dividends growth data. Carr and Wu (2003) refer to the β = −1 case as the 

finite moment log-stable process and use it for option pricing. The reason for this 

terminology is as follows. Briefly, Appendix B (Equation (B5)) shows that the conditional 

expectations in Equation (10) involve terms such as ( ){ }t t 1E exp +κη  for some constant 

κ . Such exponential moments do not exist for stable distributions with 2α <  because of 

fat tails, except when β = −1. Equation (A8) in Appendix A provides the exact expression 

for such moments in this case.  

 

 

3.2 Solution for the P / D  Ratios 

We now proceed to evaluate Equation (10) for the price-dividend ratio under the 

assumed process for dividend growth rates given in Equations (11). Under the 
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assumptions 1−=β  and 1<γ , one can derive a tractable expression for the price-

dividend ratio tv . Appendix C shows that tv  in Equation (10) can be reduced to: 

{ }
( )

2
2

i
t t i t i

ji 1

j 1

i (1 ) i 1
2

v . E exp b ( ) .exp
1

c sec (1 )
1 2

∞
α

α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∑ ∑  (12) 

where  )1(
1

)1(b i
i ρ− ρ−

ργ−= . 

It is not possible to evaluate the conditional expectation term in the above equation 

analytically under the assumed process for tµ  in Equation (11b).  

 

3.3 Convergence of the P / D  Ratios  

The following theorem provides conditions for the infinite series in Equation (12) 

to converge, and hence for the price–dividend ratio to be finite. 

Theorem 1. The series in Equation (12) converges if  

2
2 1

r exp (1 ) (1 ) c sec 1
2 1 2

α
α

   σ − γ πα    ≡ θ − γ µ + − γ + − ⋅ ⋅ <   − ρ       . (13) 

Proof. See Appendix D. 

 

Finiteness of the price-dividend ratio ensures that the expected discounted utility is 

finite in this model (see Burnside 1998). The next theorem derives an expression for the 

mean of the price-dividend ratio, i.e. the unconditional expectation of tv  in Equation (12). 

It also provides conditions under which this mean is finite.  
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Theorem 2. The mean of the price dividend ratio is given by: 

 

2
2

i

i
t

ii 1 j

j 1

c
i (1 ) i(1 ) b sec

2 21
E(v ) exp

1
c sec (1 )

1 2

αα
α∞

α
= α α

=

   σ πα   µ − γ + − γ + − ⋅ +     − ρ     = θ    − γ πα    − ⋅ ⋅ ⋅ − ρ   − ρ      ∑ ∑  (14) 

It is finite if 1r < , where r  is the constant defined in Theorem 1.  

Proof. See Appendix E. 

 

3.4 Solution under Gaussian Distribution for tη   

In the benchmark case when ( )2
t ~ iid N 0, ηη σ , we can obtain all the results 

derived in the previous subsections simply by setting 2α = . In this case, the skewness 

parameter of the stable distributions β  loses its significance (see Appendix A). We no 

longer need the restriction 1)1(sign −=γ−β  in order to ensure finiteness of the 

conditional expectations term in Equation (10), discussed in subsection 3.1 for the stable 

case, and hence of the price-dividend ratio itself and its mean value in Equations (12) and 

(14), respectively. 

As discussed in subsection 2.4, in the Gaussian case, the conditional density of tµ  

is Gaussian, and its conditional mean and variance are given by the Kalman recursions. In 

this case, the conditional expectations term { }t i tE exp b ( )µ − µ appearing in the formula 
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for the price-dividend ratio given in Equation (12) can be evaluated using the formula for 

the moment generating function of Gaussian random variables.3  

 

3.5 Solution under Complete Information  

In the complete information benchmark case, recall from subsection 2.5 that 

t txµ = , which is observed at time t . All the analysis of section 3 goes through exactly as 

in the incomplete information case, with some simplifications detailed below. The 

condition for finiteness of conditional expectations remains unchanged in subsection 3.1. 

The expression for the price-dividend ratio given in Equation (12) remains the same but 

with { } { }t i t i tE exp b ( ) exp b (x )µ − µ = − µ  and 2 0σ = . Theorem 1 goes through as 

before with 2 0σ =  imposed on r  defined by Inequality (13). The mean of the price-

dividend ratio given in Equation (14) remains the same but with 

{ } { }t i t i tE exp b ( ) exp b (x )µ − µ = − µ  and 2 0σ = . The condition for its finiteness given 

by Theorem 2 remains unchanged but with 2 0σ =  imposed on r  defined by Inequality 

(13).  

The price-dividend ratio and its related properties in the benchmark complete 

information model with stable distribution for tη  are derived in Bidarkota and McCulloch 

(2003) and with Gaussian distribution for tη  in Burnside (1998). 

 

                                                        

3 If ( )2x ~ N ,µ σ , then ( ){ } 21
E exp x exp

2
 = µ + σ   . 
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4.  EMPIRICAL ESTIMATION OF THE MODEL 

In this section we report the data used to calibrate the theoretical model of section 

2, discuss maximum likelihood estimation of the dividend growth rates process given in 

Equations (11), and report estimates of the parameters obtained.  

 

4.1 Data Issues 

 We calibrate the asset pricing model to quarterly real per capita US consumption 

growth rates on non-durables and services from 1952:1 through 2004:2. Nominal 

seasonally adjusted per capita consumption data obtained from NIPA tables are deflated 

using the CPI index. Summary statistics indicate an annualized mean growth rate of 2.02 

percent and a standard deviation of 1.34 percent. Skewness is estimated to be -0.40 and 

statistically different from 0 at the 1 percent level, indicating significant negative skewness. 

This provides justification for our choice of a negative value for β  in subsection 3.1. 

Kurtosis is estimated to be 4.29 and statistically different from 3 at the 1 percent level. 

This provides preliminary justification for our use of fat tailed distribution in the 

specification of Equation (11b). The Jarque-Bera test easily rejects normality at better than 

the 1 percent level. The first order autocorrelation coefficient is 0.18 and statistically 

different from 0 at the 1 percent level. This provides preliminary empirical justification for 

our restriction 0ρ ≥  in the specification of Equation (11b).  

 

4.2 Maximum Likelihood Estimation 

The dividend growth rates process in Equations (11) constitutes a linear non-

Gaussian state space model when tη  has the stable distribution. Equation (11a) is the 



 20 

observation equation and Equation (11b) is the state transition equation. The non-

Gaussian nature of the model renders the Kalman filter suboptimal. Recursive formulae for 

obtaining the conditional densities of the state variable tµ , as well as the likelihood 

function, are available from an algorithm by Sorenson and Alspach (1971).  

 Let tX  denote the history of dividend growth rates observed at time t , i.e. 

{ }t 1 tX x ,..., x≡ . The recursive formulae for obtaining one-step ahead predictive and 

filtering densities, due to Sorenson and Alspach (1971), are as follows: 

  t t 1 t t 1 t 1 t 1 t 1p( | X ) p( | )p( | X )d
∞

− − − − −
−∞

µ = µ µ µ µ∫ ,   (15) 

  t t t t t t 1 t t 1p( | X ) p(x | )p( | X ) / p(x | X )− −µ = µ µ ,   (16) 

 t t 1 t t t t 1 tp(x | X ) p(x | )p( | X )d
∞

− −
−∞

= µ µ µ∫ .    (17) 

Finally, the log-likelihood function is given by: 

  
T

1 T t t 1
t 1

log p(x ,..., x ) log p(x | X ).−
=

=∑     (18) 

These formulae have been applied to non-Gaussian data and extended to include a 

smoother formula by Kitagawa (1987).  

 In the Gaussian case, these integrals can be evaluated analytically and they collapse 

to the Kalman recursions. In most other circumstances, the integrals cannot be evaluated 

in closed form and one has to resort to numerical integration based either on quadarature 

techniques (Kitagawa 1987) or Monte Carlo methods (Durbin and Koopman 2000). 
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 In this paper we evaluate the integrals using quadrature methods. Details on the 

numerical method employed and accuracy achieved are detailed in Appendix G. 

 The probability density for stable distributions is obtained by Fourier inversion of 

their characteristic function available as an exact analytical formula (Equations A.2 and 

A.3 in Appendix A) using the Fast Fourier Transform (FFT) methods discussed in Mittnik 

et al. (1999).  

 

4.3 Parameter Estimates 

 Maximum likelihood parameter estimates of the consumption growth rate process 

(conditional on the first observation) in Equations (11) are reported in Table 1 (Panel A). 

Three restricted versions of this most general model, namely the incomplete information 

Gaussian model, the complete information stable model, and the complete information 

Gaussian model are reported in Panels B through D, respectively.  

 Parameter estimates from Panel A indicate a mean consumption growth rate of 

0.49 percent per quarter, or 1.96 percent per annum. The autoregressive (AR) parameter 

ρ  is estimated to be 0.69, somewhat lower than the value of 0.89 reported in Veronesi 

(2004) with an autoregressive model with asymmetric jumps. Nonetheless, it is statistically 

significantly different from 0 by the usual t-test at better than the 1 percent significance 

level. The signal-to-noise scale ratio c / cε  (which equals 2c / εσ ) is estimated to be 0.34. 

Parameter estimates for the incomplete information Gaussian model in Panel B are very 

similar, and the maximized log-likelihood value only drops slightly in this case.  
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 Figure 1 plots the unconditional distribution of tµ  for both the stable and Gaussian 

models implied by Equation (11b), using the Maximum Likelihood parameter estimates 

reported above. With the stable index α  estimated to be 1.86, so close to the value of 2 

for a Gaussian distribution, the differences in the unconditional densities for the stable and 

Gaussian models are modest. The assumption 1β = −  does not generate much skewness in 

the unconditional distribution for this high value of α , as evident in the figure, and thus 

does not seem overly restrictive.  

 Figure 2 plots the conditional probability densities ( )t 1 2 tp | x , x ,..., xµ . Panel A 

plots the densities for the stable case and Panel B for the Gaussian case. A closer 

examination of the density plots indicate that the conditional densities in the stable case 

display varied behavior, being at times even multimodal. Bidarkota and McCulloch (1998) 

and Bidarkota (2003) provide detailed examination of such densities in non-Gaussian state 

space models with stable errors fit to inflation data. On the other hand, as noted earlier, 

the conditional densities in the Gaussian case are Gaussian.  

 Figure 3 plots the mean of the filter densities ( )t 1 2 tE | x ,x ,..., xµ , along with the 

observed consumption growth rates tx , in Panels A and B for the stable and Gaussian 

incomplete information models, respectively. 

 Figure 4 plots the standard deviation of the filter densities for both the stable and 

Gaussian incomplete information models. It is clear from the figure that the variance of the 

filter density in the Gaussian case quickly reaches a constant value (within 10 time 

periods). This property of the Kalman filter was discussed in the introduction. On the 

other hand, the variance of the filter density in the stable case never stabilizes to a constant 
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value but is forever fluctuating. David (1997) refers to this as ‘fluctuating confidence’ in 

the investors’ estimate of the unobservable component of the dividend growth rate. This 

fluctuating confidence drives the time varying characteristics of returns implied by our 

asset pricing model, as will become evident in an analysis of the conditional moments of 

these returns that we undertake in the next section. The spike in the standard deviation at 

startup in both the stable and Gaussian models is caused by the initialization of the filter 

discussed in Appendix G. It neither impacts the Maximum Likelihood parameter estimates 

nor their standard errors much. Its possible effect on the analyses of model implications on 

implied returns is eliminated as will become evident in the next section.  

The complete information stable model parameter estimates are reported in Panel 

C of Table 1. These estimates indicate a slightly higher value for α  when compared to the 

estimates for the incomplete information stable model. However, the AR coefficient ρ  is 

now only 0.13, as against 0.69 for the incomplete information model. This is 

understandable, however, because the AR process for tµ  in Equation (11b) is now 

combined with the iid process for tε  in Equation (11a), and effectively an AR model is 

being estimated for the resulting contaminated (with iid noise) series. Nonetheless, the AR 

coefficient is statistically significantly different from 0 by the usual t-test at better than the 

1 percent significance level.  

The complete information Gaussian model parameter estimates are reported in 

Panel D of Table 1. These estimates change only slightly from those in Panel C. However, 

the maximized log-likelihood shows a large drop. The likelihood ratio (LR) test statistic 
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for normality (test for 2α = ) is calculated to be 4.11 and rejected.4 Thus, with complete 

information models, there is significant statistical support for stable shocks. The LR test 

statistic for complete information versus incomplete information model in the Gaussian 

case turns out to be 3.76, with a 2
1χ  p-value of 0.05. Thus, with Gaussian shocks, there is 

significant statistical support for the incomplete information model. 

As mentioned in the introduction, one may wonder whether the fluctuations in 

agents’ confidence may be specific to the α-stable distribution only or whether is indeed 

more general and thus robust to alternative fat-tailed specifications. To answer this 

question, we estimate and apply a filter to the model where the error terms display two 

additional fat-tail distributions, namely the Extreme Value distribution and the Pearson 

Type IV distribution. 

In the Extreme Value distribution case the dividend growth rates evolve 

stochastically as: 

t t tx = µ + ε , 2
t ~ N(0, )iidε σ        

( )t t 1 t−µ − µ = ρ µ − µ + η , 0 1≤ ρ < ,  ),(~η t EVEVEV σµ .  (19) 

where EVEV σµ and  are the location and scale parameters of the Extreme Value density 

function. 

                                                        
4 The distribution of the LR test statistic in this instance is not standard 21χ  because the 

null hypothesis lies on the admissible boundary of α . The 0.05 level critical value for such 

a test, available through Monte Carlo simulations from McCulloch (1997, table 4, panel 

b), equals 1.12. 
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In the Pearson Type IV distribution case the dividend growth rates evolve 

stochastically as: 

t t tx = µ + ε , 2
t ~ N(0, )iidε σ        

( )t t 1 t−µ − µ = ρ µ − µ + η ,    0 1≤ ρ < ,     ),,,(~η t δµ amPearsonIV P          (20) 

In the interest of table space, we report the results here in the text. The Extreme Value 

model yields parameter estimates of 006066.0=µ , 005863.0=σ , 726370.0=ρ , 

000660.0=EVµ and 001664.0=EVσ  for a log-likelihood of 755.6039. The Pearson Type 

IV model yields parameter estimates of 003063.0=µ , 005711.0=σ , 701580.0=ρ , 

000846.0=Pµ , 642600.1=m , 001809.0=a and 20715.0−=δ  for a log-likelihood of 

756.3028. The standard deviations of the filtered densities are plotted in figure 5 and 

figure 6, indicating that even though the results do differ slightly in magnitude from the 

Stable case, these alternative fat-tail distributions are also capable of generating fluctuating 

confidence among the agents. 

We also mentioned in the introduction that one may wonder whether these results 

are driven by the non-Gaussian nature of the shocks. This would imply that even thin-

tailed distributions (thinner than Gaussian tails) could generate fluctuating confidence. To 

investigate this issue, we estimate and apply a filter to the model where the error terms are 

driven by a thin-tailed distribution, namely the Binomial distribution. 

In the Binomial distribution case we loosely describe the dividend growth rates as 

evolving stochastically according to: 

t t tx = µ + ε , 2
t ~ N(0, )iidε σ        

( )t t 1 t−µ − µ = ρ µ − µ + η ,  0 1≤ ρ < ,  ),(~)η(min(η tt PNBinomrange+    (21) 
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This abuse of notation is the result of the fact that the Binomial distribution is only 

valid for positive variables. We must therefore shift the empirically selected range for the 

innovations by the amount of its smallest negative value before applying the Binomial 

density. The Binomial distribution being a discrete one, we estimate the parameter P by 

matching the parameter N with the number of elements in the possible range of values for 

the shocks in a given periods. The Binomial model yields parameter estimates of 

0.007633=µ , 0.006645=σ , 0.601280=ρ  and 0.504300=P  for a log-likelihood 

value of 750.6556. The standard deviations of the filtered densities are plotted in figure 7. 

We can see that, in a fashion very similar to that of the Gaussian case, the standard 

deviations quickly drop to a steady level, indicating that a thin-tail distribution does not 

seem to be capable of generating fluctuating confidence among agents. It thus appears that 

our previous results are not the mere effect of non-normality but indeed the work of fat 

tails in the distribution of the shocks. 

 

 

5.  ANALYSIS OF MODEL IMPLICATIONS 

In this section we discuss the implications of the theoretical model of section 2 for 

rates of return on risky and risk free assets, set up a simulation framework for analyses of 

unconditional and conditional properties of model implied rates of returns, and report on 

the results obtained. 
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5.1 Model-Implied Rates of Return 

Equilibrium gross equity returns etR  on assets held from period t through period 

t+1 are given by:  +
= ++

t

1t1te
t P

DP
R .       (22) 

Using ttt D/Pv =  and )D/Dln(x 1ttt −= , this reduces to: 

  ]xexp[
v

v1
R 1t

t

1te
t +

+  +
= .      (23) 

It is not possible to analytically evaluate the population mean of the implied equity returns, 

i.e. )R(E e
t , in our model given the expression for tv  in Equation (12). 

The price of a risk free asset ftP  in our endowment economy guarantees one unit 

of the consumption good on maturity. It is given by:  ′
′

θ= +
)C(U

)C(U
EP

t

1t
t

f
t .      (24) 

Gross equilibrium returns on the risk free asset f
tR  are given by: 

  
f
t

f
t

P

1
R = .        (25) 

Our assumption 1−=β  implies that the price of the risk free asset f
tP  is infinite and hence 

the gross risk free returns ftR  are zero. Appendix G has the formal proof. 

Presumably, in the highly uncertain environment for the dividends process (due to 

fat tails on tη ), the uncertainty is so overwhelmingly unfavorable (due to negative 

skewness implied by 1−=β ) that as long as investors are risk averse, they are willing to 
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pay an infinite amount to guarantee themselves strictly positive consumption next period 

(dictated by the condition ( )
C 0

U Clim
→

′ = ∞  for the CRRA utility function). Infinite prices 

for risk free assets simply mean that these assets cannot exist in the economy under the 

assumed stochastic process for dividends. 

One can get around the difficulty of infinite risk free asset prices by truncating the 

α-stable distributions in Equation (11b), as in the Dampened Power Law process in Wu 

(2005). As noted in section 3.1, in this case, we do not need to restrict ourselves to 

1β = −  and 1γ <  anymore. Although truncation may be appealing, we lose the 

convenience of solving the asset pricing model in a simple way as described in section 3. 

In any case, our main objective in this paper is to demonstrate that signal extraction in fat-

tailed non-Gaussian continuous-valued stochastic setting can generate volatility 

persistence in implied returns. Therefore, in what follows, we restrict ourselves to an 

analysis of implied returns on risky assets in order to ascertain the ability of the model to 

generate stylized facts documented for observed data. 

 

5.2 Simulation Setup 

We undertake a simulation study in order to analyze the model implications for 

various endogenous quantities of interest including rates of return. The simulations are 

performed in the following manner. We draw random numbers for tε  and tη  in Equations 

(11) using parameter estimates reported in Table 1. The value of 0µ  is set to the 

unconditional mean of tµ , equal to µ . We then use the simulated tη  series to generate a 

sequence { }t , t 1,2,...,Tµ =  using Equation (11b) with T 4000= . We use this sequence 
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and the simulated tε  series to generate a sequence of artificial dividend growth rates 

{ }tx , t 1,2,...,T=  according to Equation (11a).  

We use the simulated sequence { }tx  and the parameter estimates from Table 1 to 

obtain the posterior density t tp( | X )µ  using the filtering Equations (15)-(17). We use this 

posterior density to numerically evaluate the conditional expectations terms, and hence the 

price-dividend ratios tv , in Equation (12). Calculations are done for various values for the 

preference parameters θ  (discount factor) and 1γ <  (risk aversion coefficient) that satisfy 

the convergence condition 1r <  in Equation (13). Model-implied returns on risky assets 

are then generated using Equation (23). 

 In order to eliminate any effects from startup of the Kalman filter, as in Figure 4, 

we drop the first ten implied returns. The following two subsections undertake analyses of 

the unconditional and conditional moments of the resulting implied returns series.  

 

5.3 Analysis of Unconditional Moments 

 Table 2, Panel A reports unconditional moments of quarterly value-weighted real 

returns on all NYSE, AMEX, and NASDAQ stocks obtained from CRSP dataset for the 

period 1952:1 through 2004:2. We subtract CPI inflation from nominal returns to obtain 

real returns, expressed in percent per annum. 

 Panel A indicates that quarterly real returns have a mean of 8.07 percent per 

annum and a standard deviation of 16.77. Panels B through E report the unconditional 

moments for returns implied by our theoretical model of section 2 using the simulation 
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setup from subsection 5.2. Moments are reported for various values of the discount factor 

θ  and the risk aversion coefficient γ .  

The maximum implied mean returns from our incomplete information stable model 

are only 3.90 percent and the maximum standard deviation is only 1.75 percent. Overall, it 

is clear from looking at all the panels that none of the models do a good job of replicating 

the unconditional moments of equity returns. This is simply a manifestation of the equity 

premium puzzle of Mehra and Prescott (1985).  

It is clear from an examination of all the panels that adding incomplete information 

to the asset pricing model reduces the mean and raises the standard deviation of implied 

equity returns slightly. Generalizing from Gaussian to stable models raises the mean 

implied equity returns slightly in both incomplete and complete information cases. Going 

from Gaussian to stable models lowers the standard deviation of implied equity returns in 

the incomplete information case but raises it in the complete information case.  

 The benchmark complete information asset pricing model, with stable and 

Gaussian dividend growth rate processes, was studied in Bidarkota and McCulloch 

(2003). Panels D and E of Table 2 here replicate results reported in that study closely, 

although the model in that study was calibrated to a random walk process with drift, fit to 

annual US consumption data for the period 1890 through 1987. Our results in Table 2 

thus indicate that adding incomplete information to the non-Gaussian framework of that 

study does not generate high enough mean equity returns to conform closely enough to 

the numbers in the data. 
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5.4 Analysis of Conditional Moments 

 The main assertion in our paper is that our theoretical model of section 2 with 

incomplete information stable shocks can replicate the stylized fact of time varying 

volatility documented in observed returns. We also contend that this stylized fact can 

neither be replicated by the incomplete information Gaussian model nor the two versions 

of the complete information model. We now proceed to test this assertion in the 

simulation setup of subsection 5.2 for 0.98θ =  and 0.9γ = , since for these preference 

parameter values the unconditional mean stock returns implied by the incomplete 

information stable model are closest to their sample counterpart. 

 Let e
t tr R 1≡ −  denote the net rates of return on risky assets, where e

tR  is the 

gross rate of return as in subsection 5.1. We set up the following model for analyzing net 

returns: 

t 0 t t t t tr a , ~ z , z ~ iid N(0,1)= + ε ε σ    (26a) 

The volatility of returns tσ  is modeled alternatively as a GARCH(1,1) and an asymmetric 

GARCH(1,1) process (AGARCH) as follows: 

GARCH(1,1)  : 2 2 2
t 1 2 t 1 3 t 1 0a a a | r a |− −σ = + σ + −      (26b) 

AGARCH(1,1) : ( )2 2 2 2
t 1 2 t 1 3 t 1 0 4 t 1 t 1 0 t 1a a a | r a | a I | r a / |− − − − −σ = + σ + − + − σ . (26c) 

where t 1 0
t 1

1 if r a 0
I

0 otherwise
−

−
− <

=  . 

We restrict 1 2 3 4a 0, a 0,a 0, and a 0> ≥ ≥ ≥ . The AGARCH(1,1) process 

(asymmetric GARCH) allows for leverage effects, captured by the threshold term 

involving the dummy variable t 1I − . Leverage effects, widely reported in the literature 
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documenting time varying volatility of stock returns, indicate that negative shocks to 

returns have greater effect on future volatility than do positive shocks of equal magnitude.  

 Table 3, Panel A reports estimates obtained by fitting the above volatility processes 

to quarterly value-weighted real returns on all NYSE, AMEX, and NASDAQ stocks 

obtained from CRSP dataset for the period 1952:1 through 2004:2. We subtract CPI 

inflation from nominal returns to obtain real returns, expressed in percent per annum for 

estimation. Panel A indicates that, with estimates for the AGARCH process, quarterly real 

returns have a volatility persistence parameter 2a  of 0.44. It is well known in the literature 

that quarterly returns exhibit lower volatility persistence compared to higher frequency 

returns, such as monthly or weekly returns. The ARCH parameter 3a  is estimated to be 

0.00. The leverage parameter 4a  is estimated to be 374.78.  

An LR test for homoskedasticity (test for 2 3 4a a a 0= = = ) rejects easily using the 

2
3χ  distribution (p-value less than 0.01). LR test for GARCH versus the AGARCH model 

(test for 4a 0= ) also rejects easily using the 21χ  distribution (p-value less than 0.05), 

indicating strong statistical significance of the leverage effect. Strictly speaking, the LR 

test does not have the standard 2χ  distribution for these tests because the null hypotheses 

lie on the boundary of admissible values for 2a , 3a , and 4a  (see, also, footnote 4). 

Andrews (2001) provides recent theoretical advances in this regard. Monte Carlo critical 

values for these tests generated using 1000 replications indicated even stronger rejection 

of the two hypotheses. We go on to examine whether our asset pricing model can replicate 

these stylized features of stock returns volatility. 



 33 

Panels B through E of Table 3 report Maximum Likelihood estimates obtained by 

fitting the above volatility processes to implied returns discussed in subsection 5.3, 

obtained by simulation of all the four models in subsection 5.2. Estimates of the AGARCH 

process fit to implied returns from the incomplete information stable model indicate a 

volatility persistence coefficient of 0.33, an ARCH coefficient of 0.01, and a leverage 

parameter of 0.40. The low value for the leverage parameter as compared to that for the 

data is simply a reflection of the fact that our implied returns do not match the 

unconditional variance of returns in the data very well, as evident from the discussion of 

unconditional moments in subsection 5.3. LR test for homoskedasticity is strongly rejected 

in favor of time-varying volatility, and leverage effects are also strongly statistically 

significant.  

Our choice of negative skewness in consumption growth rates in subsection 3.1 

leads to a greater probability of large negative shocks than large positive shocks. This 

feature of our framework is directly responsible for generating the apparent leverage 

effects. Thus, our asset pricing model is able to replicate volatility persistence and leverage 

effects with incomplete information and stable shocks. An examination of results reported 

in the other panels indicates that implied returns from all other models fail to generate 

statistically significant volatility persistence.  

 Implied returns from our incomplete (and complete) information stable model are 

unlikely to be Gaussian. Therefore, the models for net returns in Equations (26) are likely 

to be misspecified, at least in the stable cases. To account for this, we also estimated 

versions of the GARCH(1,1) and AGARCH(1,1) models, with the scaled innovation tz  in 

Equation (26a) distributed as ( )iid S ', ',1,0α β . The volatility process in Equations (26b) 
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and (26c) is formulated in this case in terms of time-varying scale parameter tc  using 

α − powers instead of squares, as in Bidarkota and McCulloch (2004). Maximum 

Likelihood estimation of this model, and a subsequent LR test for 2α =  easily rejects as 

suspected, indicating statistically significant non-normality of implied returns. An LR test 

indicates statistically significant volatility persistence with a larger volatility persistence 

parameter (2a  is now estimated to be 0.48 with GARCH-stable as opposed to 0.24 with 

the GARCH-normal model). However, leverage effects are no longer statistically 

significant.  

 

6. CONCLUSIONS 

 We study the consumption based asset pricing model of Lucas (1978), in 

incomplete information setting with stable shocks driving the exogenous stochastic 

dividends growth rate process. Although agents observe realized dividends (and hence 

their growth rates), they do not observe the persistent and noise components that make up 

the observed dividends. Estimation of the persistent component is important for evaluating 

conditional expectations of future dividends, used to set equilibrium asset prices. Its 

unobservability under stable shocks introduces a non-Gaussian filtering/signal extraction 

problem that agents solve using Bayesian updating schemes. Asset pricing with incomplete 

information in a Gaussian framework, with the associated filtering problem whose solution 

is given by the Kalman filter, is a special case. Asset pricing with complete information, in 

stable and Gaussian settings, is also a special case of our framework. 

 The non-Gaussian filtering problem leads to a recursive estimate of the persistent 

component of the dividend growth rate, whose conditional variance always reacts to new 
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data, and unlike the Kalman filter in the Gaussian setting, never settles to a constant value. 

This time variation in the conditional variance of the agents’ estimate of the persistent 

component, or fluctuating confidence as in David (1997), leads to time variation in the 

volatility of implied returns from the model.  

 We test this implication of our model using quarterly per capita real US 

consumption data. Our results indicate strong support for our model in the sense that the 

implied equilibrium returns display statistically significant volatility persistence of a 

magnitude comparable to that in the data. Our model also replicates leverage effect noted 

in the time-varying volatility of observed returns, although this result is not robust to 

changes in the distributional assumptions about implied returns. It is important to note that 

our model does not rely on discrete shifts in the drift rate of dividend growth rates in order 

to generate volatility persistence. Neither incomplete information in a Gaussian setting, 

nor complete information in either Gaussian or stable settings, is able to generate these 

features in implied returns. 
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APPENDIX A 

Stable Distributions and Their Properties 

 This section draws heavily from McCulloch (1996). Stable distributions 

),c,,;x(S δβα are determined by four parameters. The location parameter δ ∈ −∞ ∞( , )  

shifts the distribution to the left or right, while the scale parameter ),0(c ∞∈  expands or 

contracts it about δ , so that  

)0,1,,;c/)x((S),c,,;x(S βαδ−=δβα .     (A1) 

The standard stable distribution function has 1c =  and 0=δ . If a random variable X  has 

a stable distribution, it is represented as X S c~ ( , , , )α β δ . 

The characteristic exponent α ∈( , ]0 2  governs the tail behavior, and therefore the 

degree of leptokurtosis. When α = 2 , the normal distribution results, with variance 2 2c . 

For 2<α , the variance is infinite. When 1>α , δ=)X(E ; but if 1≤α , the mean is 

undefined.  

The skewness parameter β ∈ −[ , ]11  is defined such that β > 0 indicates positive 

skewness. If β = 0 , the distribution is symmetric stable. As 2↑α , β  loses its effect and 

becomes unidentified. 

Stable distributions are defined most concisely in terms of their log-characteristic 

functions: 

  ln exp( ) ( ),E iXt i t ct= +δ ψ α β       (A2) 

where    =απβ+−
≠απαβ−−=ψ

α
βα

1for|)t|ln)t(sign)/2(i1(|t|

1for))2/tan()t(signi1(|t|
)t(,   (A3) 

is the log-characteristic function for )0,1,,(S βα . 
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When 2<α , stable distributions have tails that behave asymptotically like α−x  

and give the stable distributions infinite absolute population moments of order greater than 

or equal to α .  

Let X S c~ ( , , , )α β δ  and a be any real constant. Then (A2) implies: 

  aX S sign a a c a~ ( , ( ) ,| | , )α β δ .      (A4) 

Let ),c,,(~X 1111 δβα  and ),c,,(~X 2222 δβα  be independent drawings from stable 

distributions with a common α . Then ),c,,(S~XXY 21 δβα+= , where 

  c c cα α α= +1 2         (A5) 

  β β βα α α= +( ) /1 1 2 2c c c       (A6) 

 δ
δ δ α
δ δ β β β π α

=
+ ≠
+ + − − =

 1 2

1 2 1 1 1 2 2 2

1

2 1

for

c c c c c c for( ln( ) ln( ) ln( )) / .
  (A7) 

When β β1 2= , β  equals their common value, so that Y has the same shaped distribution 

as X1  and X2 . This is the “stability” property of stable distributions that leads directly to 

their role in the central limit theorem, and makes them particularly useful in financial 

portfolio theory. When β β1 2≠ , β  lies between β1 and β2 . 

 For α < 2  and β > −1, the long upper Paretian tail of X S c~ ( , , , )α β δ  makes 

EeX  infinite. However, when β = −1,  

  ln
sec( / ),

( / ) ln ,
Ee

c

c c
X =

− ≠
+ =

δ πα α
δ π α

α 2 1

2 1
   (A8) 

This formula greatly facilitates asset pricing under log-stable uncertainty.  

See also Zolotarev (1986, p.112) and McCulloch (1996). 
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 APPENDIX B 

Evaluation of Conditional Expectations in the Price-Dividend Ratio 

In this appendix we derive conditions under which the conditional expectation 

terms that appear in Equation (10) in the text are finite. We need to derive conditions 

under which ∞<∏
=

+
i

1j
jtt mE  where ]x)1exp[(m jtjt ++ γ−θ≡ . 

Let γ−=ω 1 . Therefore, ]xexp[m jtjt ++ ωθ= . 

i i

t j t j
j 1 j 1

m exp x+ +
= =

 = θ ω ∏ ∏  ωθ= ∑
=

+
i

1j
jt

i xexp .   (B1) 

From dividend growth rate process in Equation (11a), 

i i i
t j t j t j

j 1 j 1 j 1
x + + +

= = =
= µ + ε∑ ∑ ∑ .      (B2) 

From dividend growth rate process in Equation (11b),     ( )t j t j 1 t j+ + − +µ − µ = ρ µ − µ + η , 

we have 

( )j j 1 j 2 2
t j t t 1 t 2 t j 2 t j 1 t j...− −
+ + + + − + − +µ − µ = ρ µ − µ + ρ η + ρ η + + ρ η + ρη + η . 

           (B3) 

Therefore,  

i 2
t j t t 1 t t 1 t 2

j 1

i i 1 i 2
t t 1 t 2 t i

[ ( ) ] [ ( ) ] ...

... [ ( ) .... ]

+ + + +
=

− −
+ + +

µ = µ + ρ µ − µ + η + µ + ρ µ − µ + ρη + η +∑
+ µ + ρ µ − µ + ρ η + ρ η + + η
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This can be written as: 

ii i i 1
t j t t 1 t 2 t i

j 1

(1 ) 1
i ( ) (1 ) (1 ) ... (1 )

1 1
−

+ + + +
=

 ρ − ρ  µ = µ + µ − µ + − ρ η + − ρ η + + − ρ η∑    − ρ − ρ    

           (B4) 

 Therefore,  ωθ= ∑∏
=

+
=

+
i

1j
jt

i
i

1j
jt xexpm  

{ }

i
t

i i i 1
t 1 t 2 t i

i
t j

j 1

i (1 ) ( )
1

exp (1 ) (1 ) ... (1 )
1

−
+ + +

+
=

  ωρµω + − ρ µ − µ +  − ρ    ω = θ − ρ η + − ρ η + + − ρ η + − ρ    ω ε∑   . 

Define )1(
1

b i
i ρ− ρ−

ρω= . From the iid nature of tε  and tη , we can write: 

[ ] [ ]

{ }

i i
t t j t i t

j 1

i i 1
t t 1 t 2 t i

i
t t j

j 1

E m .exp i .E exp b ( )

E exp (1 ) (1 ) ... (1 ) .
1

E exp

+
=

−
+ + +

+
=

= θ µω µ − µ ⋅∏  ω − ρ η + − ρ η + + − ρ η − ρ  
ω ε∑     

[ ] [ ]

( ) ( ) ( )

i i
t t j t i t

j 1

i i 1
t t 1 t 2 t i

t t 1 t 2 t i

E m .exp i .E exp b ( )

E exp (1 ) exp (1 ) ...exp (1 ) .
1 1 1

E exp exp ...exp

+
=

−
+ + +

+ + +

= θ µω µ − µ ⋅∏            ω ω ω− ρ η ⋅ − ρ η − ρ η           − ρ − ρ − ρ             ωε ⋅ ωε ωε 
           (B5) 
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Since 2
t ~ iid N(0, )ε σ  in Equation (11a), 

( ) ( ) ( )
( ){ } ( ){ } ( ){ }

t t 1 t 2 t i

t t 1 t t 2 t t i

E exp exp ...exp

E exp .E e xp ...E exp

+ + +

+ + +

 ωε ⋅ ωε ωε = 
ωε ωε ωε

 (B6) 

From the moment generating function of normal random variables, we have  

( ){ } ( ){ } ( ){ } 2 2
t t 1 t t 2 t t i

1
E exp E exp ... E exp exp

2+ + +
 ωε = ωε = = ωε = ω σ   .  (B7) 

Since t ~ iidS( , ,c,0)η α β  in Equation (11b), 

i i 1
t t 1 t 2 t i

i i 1
t t 1 t t 2 t

E exp (1 ) exp (1 ) ...exp (1 )
1 1 1

E exp (1 ) E exp (1 ) ...E exp
1 1 1

−
+ + +

−
+ +

           ω ω ω − ρ η ⋅ − ρ η − ρ η           − ρ − ρ − ρ                     ω ω ω   = − ρ η − ρ η         − ρ − ρ −             t i(1 ) +
    − ρ η   ρ    

           (B8) 

Using Equation (A4) from Appendix A: 

i i
i

t 1
1 1

(1 ) ~ S ,sign , c,0
1 1 1+

     ω − ρ − ρ  − ρ η α ω β ω        − ρ − ρ − ρ       . 

Since Equation (11b) also specifies that 1|| <ρ , 

we have 0
1
1 i

> ρ−
ρ−

. Therefore, )(sign
1

1
sign

i
ω=  ρ−

ρ−ω . Hence,  

i
i

t 1
1

(1 ) ~ S ,sign( ) , c,0
1 1+

  ω − ρ − ρ η α ω β ω   − ρ − ρ   .   (B9) 

Similarly, we have: 

i 1
i 1

t 2
1

(1 ) ~ S ,sign( ) , c,0
1 1

−
−

+
  ω − ρ − ρ η α ω β ω   − ρ − ρ     (B10) 

and so forth for all the other 'sη  in Equation (B8).  
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Now, ∞<∏
=

+
i

1j
jtt mE  if the right hand side of Equation (B5) is finite. This 

requires that each of the three conditional expectation terms on the right hand side of 

Equation (B5) be finite. From Equation (B7), the third conditional expectation term on the 

right hand side of Equation (B5) is finite.  

The second conditional expectation term on the right hand side of Equation (B5) is 

finite if each of the conditional expectation terms on the right hand side of Equation (B8) 

is finite. Using Equations (B9), (B10) and (A8), this happens when 1)(sign −=β⋅ω . Or, 

substituting for ω , this happens when 1)1(sign −=γ−β . 

 From Equation (11b), we can solve for t 0µ − µ  as: 

  i
t t i

i 0

∞
−

=
µ − µ = ρ η∑ .       (B11) 

Equation (11b) also specifies that t ~ iidS( , ,c,0)η α β . Then, using Equation (A4) from 

Appendix A and the fact that 0 ≤ ρ , we have ( )i i
t i ~ iidS , , c,0−ρ η α β ρ . 

Using Equations (A5), (A6), and (A7) from Appendix A, we get: 

  

1

i i
t i

i 1 i 0

~ S , , ( ) c,0
∞ ∞ αα

−
= =

  
ρ η α β ρ    ∑ ∑  

With 1|| <ρ  already assumed in Equation (11b), 
α

∞

=

α

ρ−
=∑ ρ

1

1
)(

0i

i .  

Therefore, from Equation (B11),  

  i
t t i 1/

i 0

c
~S , , ,0

[1 ]

∞
− α α

=

 
µ − µ = ρ η α β  − ρ ∑ .    (B12) 
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From the definition of i
ib (1 )

1

 ρ≡ ω − ρ − ρ  , ( )isign(b ) sign= ω .  

Therefore,  

( )
i

i t 1/

b
b ( ) ~ S ,sign( ) , c,0

1
αα

  
µ − µ α ω β  − ρ  .   (B13) 

The unconditional expectation { }i tE exp b ( ) µ − µ   is finite if 

sign( ) sign(1 ) 1ω ⋅β = β − γ = −  from Equation (A8). It follows from the law of iterated 

expectations that the first conditional expectation term on the right hand side of Equation 

(B5) is finite if sign(1 ) 1β − γ = − .  

Therefore, ∞<∏
=

+
i

1j
jtt mE   when  1)1(sign −=γ−β .  
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APPENDIX C 

Derivation of the Tractable Expression for the Price-Dividend Ratio 

 In this appendix we derive the expression for the price dividend ratio tv  given in 

Equation (12). 

Equation (10) gives: ∑  ∏=
∞

= =
+

1i

i

1j
jttt mEv .      (C1) 

From Appendix B, we know that ∞<∏
=

+
i

1j
jtt mE  when 1)1(sign −=γ−β .   

Under 1)1(sign −=γ−β , we get from Equations (B9), (B10), and (A8): 

i
i

t t 1
1

E exp (1 ) exp c sec
1 1 2

α
α

+

     ω − ρ πα    − ρ η = − ω ⋅ ⋅        − ρ − ρ            (C2)  

i 1
i 1

t t 2
1

E exp (1 ) exp c sec
1 1 2

α−
− α

+

     ω − ρ πα    − ρ η = − ω ⋅ ⋅        − ρ − ρ            (C3) 

and so forth for all the other 'sη  in Equation (B8): 

t t i
1

E exp (1 ) exp c sec
1 1 2

α
α

+

      ω − ρ πα    − ρ η = − ω ⋅ ⋅        − ρ − ρ           . (C4) 

Substituting (C2), (C3), and (C4) into (B8) and using 1|| <ρ , we get: 

i i 1
t t 1 t 2 t i

i
j

j 1

E exp (1 ) exp (1 ) ...exp (1 )
1 1 1

exp c sec (1 )
1 2

−
+ + +

α
α α

=

           ω ω ω − ρ η ⋅ − ρ η − ρ η           − ρ − ρ − ρ              ω πα   = − ⋅ ⋅ ⋅ − ρ  − ρ     ∑  (C5) 
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Substituting (C5) and (B7) into (B5) and collecting terms results in: 

{ }
( )

2
2

i
i

t t j t i t i
jj 1

j 1

i (1 ) i 1
2

E m . E exp b ( ) .exp
1

c sec (1 )
1 2

α+
α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∏ ∑  

           (C6) 

recognizing from Appendix B that γ−=ω 1 . 

 Finally, substituting (C6) into (C1) gives: 

{ }
( )

2
2

i
t t i t i

ji 1

j 1

i (1 ) i 1
2

v . E exp b ( ) .exp
1

c sec (1 )
1 2

∞
α

α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∑ ∑  

           (C7) 

where, from Appendix B, we have ( ) i
ib 1 (1 )

1

 ρ= − γ − ρ − ρ  . 
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APPENDIX D 

Proof of Theorem 1 

From Equation (12),  

{ }
( )

2
2

i
t t i t i

ji 1

j 1

i (1 ) i 1
2

v . E exp b ( ) .exp
1

c sec (1 )
1 2

∞
α

α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∑ ∑      (D1) 

or, substituting γ−=ω 1  

{ }

2
2

i
t t i t i

ji 1

j 1

i i
2

v . E exp b ( ) .exp

c sec (1 )
1 2

∞
α

α α=

=

 σµω + ω +   = θ µ − µ      ω πα    − ⋅ − ρ   − ρ       ∑ ∑ .    (D2) 

Let ∑≡
∞

=1i
it zv .         (D3) 

{ }

{ }

i 1

i

i 12 2
i 1 j

t i 1 t
j 1

i2 2
i j

t i t
j 1

z

z

E exp b ( ) .exp (i 1) (i 1) c sec (1 )
2 1 2

E exp b ( ) .exp i i c sec (1 )
2 1 2

+

α +
+ α α

+
=

α
α α

=

=    ω σ ω πα    θ µ − µ + µω + + + − ⋅ ⋅ ⋅ − ρ   − ρ         ω σ ω πα    θ µ − µ µω + + − ⋅ ⋅ ⋅ − ρ   − ρ      ∑∑ 
which on simplifying becomes: 

{ }
{ }

2 2
t i 1 t i 1i 1

i t i t

E exp b ( )z
exp c sec (1 )

z E exp b ( ) 2 1 2

α
+ α + α+

   µ − µ ω σ ω πα    = θ µω + + − ⋅ ⋅ ⋅ − ρ   µ − µ − ρ      
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With 1|| <ρ  specified in Equation (11b), 

{ }
{ }

2 2
t i 1 ti 1

i ii t i t

E exp b ( )z
lim exp c sec . lim

z 2 1 2 E exp b ( )

α
+α+

→∞ →∞

    µ − µω σ ω πα    = θ µω + + − ⋅ ⋅   − ρ µ − µ       . 

  (D4) 

One can easily show that i 1 i
i i
lim b lim b

1+
→∞ →∞

 ω= = ρ − ρ  . Therefore, we have 

{ }
{ }

t i 1 t

i t i t

E exp b ( )
lim 1

E exp b ( )
+

→∞

µ − µ
=

µ − µ
. Using this in (D4), we have: 

2 2
i 1

i i

z
lim exp c sec r

z 2 1 2

α
α+

→∞

   ω σ ω πα    = θ µω + + − ⋅ ⋅ ≡   − ρ        (D5) 

Substituting γ−=ω 1 , we get: 

( ) ( )2 21 1
r exp 1 c sec

2 1 2

α
α

   − γ σ − γ πα    = θ µ − γ + + − ⋅ ⋅   − ρ       .  (D6) 

Proof for convergence of tv  in (D1) for 1r <  now follows from the ratio test 

(see, for instance, Marsden 1974, Theorem 13, p.47).  



 47 

APPENDIX E 

Proof of Theorem 2 

Derivation of Equation (14) 

From Equation (12),  

{ }
( )

2
2

i
t t i t i

ji 1

j 1

i (1 ) i 1
2

v . E exp b ( ) .exp
1

c sec (1 )
1 2

∞
α

α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∑ ∑ .    (E1) 

Therefore, from the law of iterated expectations,  

{ }
( )

2
2

i
t i t i

ji 1

j 1

i (1 ) i 1
2

v . Eexp b ( ) .exp
1

c sec (1 )
1 2

∞
α

α α=

=

 σµ − γ + − γ +   = θ µ − µ      − γ πα    − ⋅ − ρ   − ρ       ∑ ∑      (E2) 

From Equation (B13), we have 

( )
i

i t 1/

b
b ( ) ~ S ,sign( ) , c,0

1
αα

  
µ − µ α ω β  − ρ  . 

Using Equation (A8): 

i t i 1/
c

E[exp{b .( )}] exp | b | sec
2[1 ]

α

α α

   πα    µ − µ = − ⋅     − ρ      (E3) 

Substituting into Equation (E2) gives: 

2
2

i

i
t

ii 1 j

j 1

c
i (1 ) i(1 ) b sec

2 21
E(v ) exp

1
c sec (1 )

1 2

αα
α∞

α
= α α

=

   σ πα   µ − γ + − γ + − ⋅ +     − ρ     = θ    − γ πα    − ⋅ ⋅ ⋅ − ρ   − ρ      ∑ ∑ .  (E4) 
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Proof of convergence of )v(E t  

Let ∑≡
∞

=1i
it z)v(E        (E5) 

Using Equation (E4), one can easily show that: 

{ }

i 1

i i

2 2

i 1 i
i

z
lim

z

c
exp c sec . lim exp sec b b

2 1 2 21

+
→∞

α α α αα
+α→∞

=       ω σ ω πα πα          θ µω + + − ⋅ ⋅ − −        − ρ      − ρ          
Using the definition of r  in Theorem 1,  

{ }i 1
i 1 i

i ii

z c
lim r. lim exp sec b b

z 21

α α α+
+α→∞ →∞

    πα   = − −     − ρ        (E6) 

 Following from the proof of Theorem 1 in Appendix D, it suffices to show that: 

  i 1 i
i

c
lim exp sec b b 1

21

α α α
+α→∞

  πα    − − =       − ρ      

or that, { } 0bblim i1i
i

=− αα
+

∞→
. With 1|| <ρ  specified in Equation (11b), 

α
α

α ρ− ρ−
ργ−= ]1[

1
)1(|b| i

i . Therefore, 

{ } { } 0]1[]1[lim.
1

)1(bblim i1i

i
i1i

i
= ρ−−ρ− ρ−

ργ−=− αα+
∞→

α
αα

+
∞→

. 
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APPENDIX F 

Derivation of the Risk Free Asset Prices 

The price of the risk free asset is given by  ′
′

θ= +
)C(U

)C(U
EP

t

1t
t

f
t . With the utility 

function being of the constant relative risk aversion (CRRA) class and C D=  in the model 

from Section 2, this reduces to: 

γ−
+ θ=
t

1t
t

f
t D

D
EP .       (F1) 

Using )D/Dln(x 1ttt −= , we get )]x[exp(EP 1tt
f
t +γ−θ= . Substituting for 1tx +  

using Equation (11) yields: 

f
t t t t 1 t 1P E [exp{ ( ) }]+ += θ −γµ − γρ µ − µ − γη − γε . 

Using independence of tµ , t 1+ε  and t 1+η , we can rewrite this as: 

f
t t t 1 t t t t 1P exp{ }E [exp{ }]E [exp{ ( )}]E [exp{ }]+ += θ −γµ −γε −γρ µ − µ −γη .  (F2) 

We have assumed that 2
t ~ iid N(0, )ε σ  in Equation (11a). Therefore, using the 

moment generating function for the normal random variable:  

2 2

t t 1E [exp{ }] exp
2+

 γ σ −γε =     .     (F3) 

We have assumed that t ~ iidS( , ,c,0)η α β  in Equation (11b). Therefore, using 

Equation (A4) we can write ( )t 1 ~ iidS ,sign( ) ,| | c,0+−γη α −γ β −γ . Since 0≥γ , 

( )t 1 ~ iidS , , c,0+−γη α −β γ . Since it has been assumed that 1−=β , it follows from 

Equation (A8) that: 
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t t 1E [exp{ }]+−γη = ∞ .      (F4) 

From Equation (B12),  i
t t i 1/

i 0

c
~S , , ,0

[1 ]

∞
− α α

=

 
µ − µ = ρ η α β  − ρ ∑ . Since 0≥γ  and 

0ρ ≥ , it follows from Equation (A4) that ( )t 1/
c

~S , , ,0
[1 ]α α

 γρ−γρ µ − µ α −β  − ρ  . Since it 

has been assumed that 1−=β , it follows from Equation (A8) that: 

t tE [exp{ ( )}]−γρ µ − µ = ∞ .      (F5) 

Equations (F2)-(F5) then imply that ∞=f
tP . Gross equilibrium returns on the risk 

free asset 
f
t

f
t

P

1
R =  are consequently zero. 
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APPENDIX G 

Numerical Implementation of Filtering Equations 

 The Sorenson-Alspach (1971) filter and predictive densities were evaluated at a 

grid of 200 points equally spaced on a truncated portion of the real line. The left 

truncation point was chosen to lie approximately 4.25 standard deviations of the ε  shock 

(6 times the scale parameter) below the minimum observed consumption growth rate and 

the right truncation point 4.25 standard deviations above the maximum observed 

consumption growth rate. The likelihood and the predictive density integrals (Equations 

(17) and (15) respectively) were evaluated numerically by a piecewise cubic quadrature 

technique, as follows: integration between any two interior nodes was performed by fitting 

a piecewise cubic function through the four nearest nodes and approximating the required 

area under the integrand between those nodes by the area under the cubic. The outermost 

intervals employ the same cubics as the adjacent intervals. For equispaced nodes, 8 or 

more in number, this quadrature procedure yields the weights 8/24, 31/24, 20/24, 25/24, 

1, 1, ... , 1, 25/24, 20/24, 31/24, 8/24 for the ordinates. The numerically computed 

predictive density was normalized in order to ensure that it integrated to unity. The 

piecewise linear interpolation and the trapezoidal rule for integration suggested by 

Kitagawa (1987) was not employed. Hodges and Hale (1993) propose an integration by 

parts procedure to speed up the Kitagawa procedure, but this was not employed either. 

 The accuracy of our numerical quadrature can be gauged by a comparison of the 

maximized log-likelihood value for the model in Equations (11) obtained from our 

numerical integration with α  restricted to be 2, with that obtained from the Kalman filter 

(which is optimal in this Gaussian case), for given values of the other hyperparameters. 
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We verified that, with 200 nodes, our numerical approximation gives log-likelihood values 

accurate to four decimal places at the estimated hyperparameters of the Gaussian model. 

In light of this our numerical integration appears to be sufficiently accurate for drawing 

valid inferences from data.  

 In the model given in Equations (11) in the main text, tx  is the observed series,  

2
t t t tp(x | ) N(x ;0, )µ = − µ σ   

and   ( )t t 1 t t 1p( | ) s ( );0, 1,c− α −µ µ = µ − µ − ρ µ − µ − ,  

where 2N(x;0, )σ  and s (x; 0, 1,c)α −  are the probability densities of 2N(0, )σ  and 

( )S , 1,c,0α −  distributions evaluated at x . The filter is initialized by setting the conditional 

mean of ( )1 1p | xµ  equal to 1x  and the conditional scale of ( )1 1p | xµ  equal to the scale 

of 1ε . 

Starting points for hyperparameter estimation are obtained from the Kalman filter 

under normality. 
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Table 1
Parameter Estimates

Panel A: Incomplete Information, Stable Modelρ α c σ Log Likelihood

0.0049 0.6889 1.8564 0.0014 0.0058 755.6100
0.0007 0.1724 0.2500 0.0007 0.0005

Panel B: Incomplete Information, Gaussian Modelρ α ση σ Log Likelihood
0.0050 0.7396 2.0000 0.0022 0.0058 755.4003
0.0007 0.1260 (restricted) 0.0008 0.0004

Panel C: Complete Information, Stable Modelρ α c Log Likelihood
0.0051 0.1343 1.9140 0.0043 755.5771
0.0003 0.0222 0.0545 0.0002

Panel D: Complete Information, Gaussian Modelρ α ση Log Likelihood
0.0050 0.1758 2.0000 0.0066 753.5202
0.0006 0.0674 (restricted) 0.0003

µ

µ

µ

µ

 

 

This table reports the Maximum Likelihood estimates of the model for dividend growth rates, 

t t tx = µ + ε  where 2
t ~ iid N(0, )ε σ  and where the unobserved persistent component tµ  

follows 

 ( )t t 1 t−µ − µ = ρ µ − µ + η , with    0 1≤ ρ <    and     t ~ iidS( , ,c,0)η α β  

The model is calibrated to quarterly real per capita US consumption growth rates on non-durables 
and services from the first quarter of 1952 through the second quarter of 2004. Nominal seasonally 
adjusted per capita consumption data obtained from NIPA tables are deflated using the CPI index.  
Panel A reports estimates for the most general model. Panel B reports estimates for the special case 

where ( )2
t ~ iid N 0, ηη σ . Panels C and D report estimates for the complete information 

counterparts of panels A and B, by setting tε  to zero.  

Conditional densities of the state variable tµ  are obtained by applying the algorithm by Sorenson 

and Alspach (1971) in panel A and a Kalman filter in panel B. The probability density for stable 
distributions is obtained by Fourier inversion of their characteristic function available as an exact 
analytical formula using the Fast Fourier Transform (FFT) methods discussed in Mittnik et al. 
(1999). Standard errors are reported below each parameter estimate. 
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Table 2
Unconditional Moments of Returns

Panel A: Data (1952:1 to 2004:2)

E(R) σ(R)
Real Returns 8.07 16.77

Panel B: Incomplete Information, Stable Modelθ γ E(R) σ(R) E(Vt)
0.98 0.60 3.2901 1.7459 80.599
0.98 0.75 3.5943 1.6466 64.898
0.98 0.90 3.8986 1.555 54.321
0.99 0.60 2.2753 1.7388 406.67
0.99 0.75 2.5511 1.6363 192.95
0.99 0.90 2.8494 1.5417 123.08

Panel C: Incomplete Information, Gaussian Modelθ γ E(R) σ(R) E(Vt)
0.98 0.60 2.95 2.69 115.46
0.98 0.75 3.43 2.30 74.60
0.98 0.90 3.89 1.96 55.57
0.99 0.60 2.24 2.70 605.71
0.99 0.75 2.52 2.30 224.84
0.99 0.90 2.86 1.95 126.26
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Table 2 (Continued)

Panel D: Complete Information, Stable Modelθ γ E(R) σ(R) E(Vt)
0.98 0.60 3.34 1.62 82.89
0.98 0.75 3.65 1.60 65.83
0.98 0.90 3.97 1.57 54.58
0.99 0.60 2.33 1.61 456.90
0.99 0.75 2.61 1.58 201.12
0.99 0.90 2.92 1.56 124.43

Panel E: Complete Information, Gaussian Modelθ γ E(R) σ(R) E(Vt)
0.98 0.60 3.31 1.48 82.07
0.98 0.75 3.63 1.45 65.51
0.98 0.90 3.94 1.42 54.50
0.99 0.60 2.30 1.47 438.09
0.99 0.75 2.58 1.44 198.24
0.99 0.90 2.89 1.41 123.97

 
 
 
Panel A reports unconditional moments of quarterly value-weighted real returns on all 
NYSE, AMEX, and NASDAQ stocks obtained from CRSP dataset for the period going 
from the first quarter of 1952 through the second quarter of 2004. CPI inflation is 
subtracted from nominal returns to obtain real returns, expressed in percent per annum. 
Moments are reported for a range of values for the subjective discount factor θ, and the 
risk-aversion coefficient γ. Panels B-E report the unconditional moments of simulated 
returns obtained from the asset pricing model by feeding simulated consumption growth 
rates data using the estimated parameters from each panel of Table 1. The statistics 
reported in percentage per annum are the mean returns E(R) , standard deviation of 

returns (R)σ , and the mean price-dividend ratio tE(V ) . 
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Table 3
Time-Varying Volatility of Returns

Panel A: Data (1952:1 to 2004:2)

a1 Log Likelihood

Homoskedastic Case 1119.1760 -1035.1148
108.9125

a1 a2 a3 Log Likelihood

GARCH(1,1) 300.7956 0.5814 0.1520 -1031.3912
108.2858 0.1429 0.0769

a1 a2 a3 a4 Log Likelihood
AGARCH(1,1) 432.9833 0.4368 0.0000 374.7812 -1029.3003

186.9916 0.1857 0.0871 193.4094

Panel B: Incomplete Information, Stable Model

a1 Log Likelihood

Homoskedastic Case 2.4188 -7421.9202
0.0527

a1 a2 a3 Log Likelihood

GARCH(1,1) 1.5272 0.2435 0.1121 -7332.3004
0.2240 0.1036 0.0213

a1 a2 a3 a4 Log Likelihood
AGARCH(1,1) 1.3537 0.3291 0.0113 0.3957 -7318.2051

0.2208 0.1060 0.0241 0.0965

Panel C: Incomplete Information, Gaussian Model

a1 Log Likelihood

Homoskedastic Case 3.8410 -8344.1956
0.0867

a1 a2 a3 Log Likelihood

GARCH(1,1) 2.2062 0.4115 0.0141 -8343.9301
1.4994 0.3928 0.0158

a1 a2 a3 a4 Log Likelihood
AGARCH(1,1) 2.3494 0.3740 0.0143 0.0000 -8343.9351

1.5083 0.4765 0.3770 2.0041

Panel D: Complete Information, Stable Model

a1 Log Likelihood

Homoskedastic Case 2.4774 -7469.5978
0.0556

a1 a2 a3 Log Likelihood

GARCH(1,1) 2.4706 0.0000 0.0025 -7468.6021
1.1159 0.4428 0.0023

a1 a2 a3 a4 Log Likelihood
AGARCH(1,1) 2.4736 0.0000 0.0000 0.0069 -7468.1900

1.7834 0.5602 0.4814 1.1496  
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Table 3 (Continued)

Panel E: Complete Information, Gaussian Model

a1 Log Likelihood

Homoskedastic Case 2.0171 -7059.6149
0.0453

a1 a2 a3 Log Likelihood

GARCH(1,1) 1.7768 0.0960 0.0232 -7058.8237
0.6118 0.3061 0.0169

a1 a2 a3 a4 Log Likelihood
AGARCH(1,1) 1.9709 0.0000 0.0140 0.0367 -7058.6692

1.9305 0.9780 0.0361 0.0911
 

 
 
 
Panel A reports the estimates of a homoskedastic model, GARCH(1,1) model and 
AGARCH(1,1) model fitted to quarterly value-weighted real returns on all NYSE, 
AMEX, and NASDAQ stocks obtained from CRSP dataset for the period going from the 
first quarter of 1952 through the second quarter of 2004. The models assume that returns 
are conditionally normally distributed. Thus 

      t 0 t t t t tr a , ~ z , z ~ iid N(0,1)= + ε ε σ  

with volatility given by, respectively: 

                   Homoskedastic : 2t 1aσ =  

                       GARCH(1,1) : 2 2 2
t 1 2 t 1 3 t 1 0a a a | r a |− −σ = + σ + −   

        AGARCH(1,1) : ( )2 2 2 2
t 1 2 t 1 3 t 1 0 4 t 1 t 1 0 t 1a a a | r a | a I | r a / |− − − − −σ = + σ + − + − σ  

                        where t 1 0
t 1

1 if r a 0
I

0 otherwise
−

−
− <

=  . 

The restrictions 1 2 3 4a 0, a 0,a 0, and a 0> ≥ ≥ ≥  are enforced in all models. Panels B-E 

report estimates of the above models with simulated returns obtained from the asset 
pricing model by feeding simulated consumption growth rates data using the estimated 
parameters from each panel of Table 1. A subjective discount factor θ of 0.98 and a risk-
aversion coefficient γ of 0.9 are used to obtain simulated returns since the unconditional 
mean stock returns implied by the incomplete information stable model are closest to their 
sample counterpart for these preference parameter values. Standard errors are reported 
below each volatility parameter estimate. 
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Figure 1. Unconditional Distribution of tµ  
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Figure 1 uses the Maximum Likelihood parameter estimates reported in Panels A and B of 
Table 1 to plot the unconditional distribution of tµ , the persistent component of dividend 

growth rates defined by t t tx = µ + ε  and ( )t t 1 t−µ − µ = ρ µ − µ + η , for both the Stable 

model where t ~ iidS( , ,c,0)η α β  and the Gaussian model where ( )2N 0, ηη σt ~ iid , with 

2
t ~ iid N(0, )ε σ  and 0 1≤ ρ <  . 
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Figure 2. Filtered Probability Densities ( )t 1 2 tp | x , x ,..., xµ  
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Figure 2 plots the filtered conditional probability densities ( )t 1 2 tp | x , x ,..., xµ . Panel A plots the 

densities for the stable case with the densities estimated by using the algorithm by Sorenson and 
Alspach (1971) and the Maximum Likelihood parameter estimates of Panel A in Table 1. Panel B 
plots the densities for the Gaussian case with the densities estimated by using a Kalman filter and 
the Maximum Likelihood parameter estimates of Panel B in Table 1. 
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Figure 3. Filtered Mean ( )t 1 2 tE | x , x ,..., xµ  
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Figure 3 plots the mean of the filtered densities ( )t 1 2 tE | x ,x ,..., xµ , along with the observed 

consumption growth rates tx . Panel A plots the mean of the filtered densities for the stable case 

with the densities (plotted in Figure 2A) estimated by using the algorithm by Sorenson and Alspach 
(1971) and the Maximum Likelihood parameter estimates of Panel A in Table 1. Panel B plots the 
mean of the filtered densities for the Gaussian case with the densities (plotted in Figure 2B) 
estimated by using a Kalman filter and the Maximum Likelihood parameter estimates of Panel B in 
Table 1. 
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Figure 4. Filtered Standard Deviation of ( )t 1 2 tp | x , x ,..., xµ  
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Figure 4 plots the standard deviation of the filtered densities for both the stable and 
Gaussian incomplete information models. The standard deviations of the filtered densities 
are estimated by using the algorithm by Sorenson and Alspach (1971) and the Maximum 
Likelihood parameter estimates of each model. 
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Figure 5. Filtered Standard Deviation of ( )t 1 2 tp | x , x ,..., xµ  

Fluctuating Confidence 
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Figure 5 plots the standard deviation of the filtered densities for the Extreme Value 
incomplete information model. The standard deviations of the filtered densities are 
estimated by using the algorithm by Sorenson and Alspach (1971) and the Maximum 
Likelihood parameter estimates of the Extreme Value model. 
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Figure 6. Filtered Standard Deviation of ( )t 1 2 tp | x , x ,..., xµ  
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Figure 6 plots the standard deviation of the filtered densities for the Pearson Type IV 
incomplete information model. The standard deviations of the filtered densities are 
estimated by using the algorithm by Sorenson and Alspach (1971) and the Maximum 
Likelihood parameter estimates of the Pearson Type IV model. 
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Figure 7. Filtered Standard Deviation of ( )t 1 2 tp | x , x ,..., xµ  
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Figure 7 plots the standard deviation of the filtered densities for the Binomial incomplete 
information model. The standard deviations of the filtered densities are estimated by using 
the algorithm by Sorenson and Alspach (1971) and the Maximum Likelihood parameter 
estimates of the Binomial model. 
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