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ABSTRACT OF THE DISSERTATION 
 

LATTICE BOLTZMANN MODELING OF FLUID FLOW AND SOLUTE 

TRANSPORT IN KARST AQUIFERS 

by 

Shadab Anwar 

Florida International University, 2008 

Miami, Florida 

Professor Michael C. Sukop, Major Professor 

A novel modeling approach is applied to karst hydrology. Long-standing 

problems in karst hydrology and solute transport are addressed using Lattice Boltzmann 

methods (LBMs). These methods contrast with other modeling approaches that have been 

applied to karst hydrology. The motivation of this dissertation is to develop new 

computational models for solving ground water hydraulics and transport problems in 

karst aquifers, which are widespread around the globe. This research tests the viability of 

the LBM as a robust alternative numerical technique for solving large-scale hydrological 

problems. The LB models applied in this research are briefly reviewed and there is a 

discussion of implementation issues. The dissertation focuses on testing the LB models. 

The LBM is tested for two different types of inlet boundary conditions for solute 

transport in finite and effectively semi-infinite domains. The LBM solutions are verified 

against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are 

also simulated and compared against analytical solutions. These results demonstrate the 

LBM’s flexibility as a solute transport solver. 
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The LBM is applied to simulate solute transport and fluid flow in porous media 

traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) 

is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and 

two dimensions are fitted against the available analytical solutions. This provides a 

steady flow model with capabilities routinely found in ground water flow and transport 

models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based 

model retains the ability to solve inertial flows that are characteristic of karst aquifer 

conduits. 

Transient flows in a confined aquifer are solved using two different LBM 

approaches. The analogy between Fick’s second law (diffusion equation) and the 

transient ground water flow equation is used to solve the transient head distribution. An 

altered-velocity flow solver with source/sink term is applied to simulate a drawdown 

curve. Hydraulic parameters like transmissivity and storage coefficient are linked with 

LB parameters. These capabilities complete the LBM’s effective treatment of the types of 

processes that are simulated by standard ground water models. The LB model is verified 

against field data for drawdown in a confined aquifer. 
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1 PREFACE 

The work described in this dissertation was carried out between September 2004 

and April 2008 at the Department of Earth Sciences, Florida International University, 

Miami. The study has been funded by the National Science Foundation (NSF), University 

Graduate School, and the US Geological Survey. As described in the abstract, in this 

dissertation the LBM is established as an alternative, robust numerical scheme for flow 

and solute transport in karst aquifers. The dissertation consists of six chapters. An 

introduction in the first two chapters provides much of the general background about 

solute transport and the LBM. Three chapters are based on papers that are accepted by or 

intended for publication in referred journals. Chapter 6 is to appear in Progress in 

Computational Fluid Dynamics and Chapter 5 is accepted for publication in Ground 

Water. A small portion of Chapter 5 is published in Progress in Computational Fluid 

Dynamics. Chapter 4 is intended for future submission. There is a final summary and 

conclusion which summarizes the essence of the dissertation.  
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2 INTRODUCTION 

The movement of dissolved chemicals in the environment is called solute 

transport. This can include transport in rivers and streams, in the unsaturated zone, and in 

saturated ground water aquifers. Various human activities discharge chemical and 

biological waste to land and water bodies, and the waste can percolate down to ground 

water leading to contamination of ground water resources. Such contamination may 

spread over long distances. 

 

Important factors that characterize ground water contamination are (Schwartz and 

Zhang, 2003): 

• degree of localization (point, non-point source, etc.), 

• loading history (continuous, pulse, etc), and 

• kinds of contaminant present (miscible solute, non-aqueous phase liquid (NAPL) , 

radioactive, etc. ).  

When a contaminant originates from a single location, it is called point source 

contamination. Non-point source contamination is a widespread threat to natural 

resources because it originates from many diffuse sources, mainly runoff from farmland 

or urban areas. Contamination manifests in both surface waters and ground water 

depending upon catchments and geological characteristics. Better understanding of 

contaminant transport in surface and ground water is critical for remediation and 

conservation of large-scale aquifers.  
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Numerous analytical and numerical approaches have been used to simulate solute 

transport and the results depend upon the applied initial and boundary conditions. The 

applied boundary and initial conditions must correspond to the field or laboratory 

situation in order to obtain good simulation results (Kreft and Zuber, 1978). Several 

studies have evaluated the selection of initial and boundary conditions for one-

dimensional laboratory columns (James and Rubin, 1972; Parker, 1984; Novakowski, 

1992).  Proper formulation of the boundary conditions becomes critically important when 

analyzing laboratory displacement experiments involving relatively short columns, as 

well as for interpreting tracer data from laboratory or field profiles exhibiting large 

dispersivities (van Genuchten and Wierenga, 1986). Van Genuchten and Wierenga 

(1986)   compiled analytical solutions of the advection-dispersion equation (ADE) for 

different boundary conditions in finite and semi-infinite domains (Table 1). 

 

The breakthrough behavior of solute (time dependent concentration at a receptor 

is called a breakthrough curve) can determine the intensity and duration of exposure to a 

chemical, which in turn can determine its potential effects on humans in particular or 

ecosystems in general. Breakthrough behavior is a result of the complex interplay 

between diffusion and advection, which is controlled by head gradients and the 

fundamental pore scale of a system, which can range from microscopic pores to conduits 

on the order of 10s of meters. In porous media for example, pores which are not 

interconnected form dead end pore regions which trap contaminants and release them by 

means of diffusion over a long time. Similarly, contaminants that become trapped in 

eddies can only escape via diffusion and this may play a significant role in the flushing of 
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any river or karst aquifer system. These processes, which are not well treated in 

traditional solute transport modeling, represent an area of opportunity for Lattice 

Boltzmann Methods. 

2.1 Objective 

The objectives of this research are to develop and validate lattice Boltzmann 

models as an alternative for flow and solute transport modeling in porous media with 

conduits and caves. A new Lattice Boltzmann model that incorporates a Darcy’s law 

ground water flow solver and an anisotropic solute transport solver, while retaining the 

ability to simulate inertial flows (high Re) and solute transport in conduits, is developed. 

The model is used to explore various types of flow and solute transport problems in 

porous media and the effect of inertial flow conditions with eddy mixing on solute 

transport. This model will also consider contributions from dead-end regions that give 

rise to long-tailed breakthrough curves. The model is also verified for transient ground 

water flow problems in confined aquifers with sources and sinks to simulate physical 

situations that arise in karst aquifers with sinkholes, springs, and wells. This dissertation 

will show several verifications of LBM-based flow and transport models against the 

relevant analytical solutions. In Chapter 3, verification of the macroscopic flow and 

transport models has already been shown in the literature, and the purpose of such re-

verification is to test the particular code developed for this dissertation. Model 

verifications described in Chapters 4, 5 and 6 have not been presented previously 

elsewhere. This dissertation is focused on testing the suitability of the LBM as an 

alternative tool for modeling flow and transport in karst aquifers; hence the research 
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emphasizes linking LBM models described in the literature (although new computer code 

had to be written and tested to implement and link these models) and not the development 

of new LBM algorithms. This research is believed to be the first attempt to link three 

different LBM models to simulate the processes of inertial and Darcy flow, and solute 

transport involving eddy mixing, anisotropic dispersion, and matrix diffusion in karst 

aquifers. 

2.2 Hypothesis 

A model for simulation of complex flow and transport process characteristic of 

karst aquifers can be constructed by joining the Darcy’s law and anisotropic advection-

dispersion equation (AADE) solvers with the normal Navier-Stokes capabilities of the 

LBM. This hypothesis will be tested against appropriate available analytical solutions and 

laboratory or field data. 

2.3 Karst aquifers 

2.3.1 Characteristics of karst aquifers 

Karst aquifers (water bearing rocks) are formed by the dissolution of carbonate 

rock due to water-rock interactions. Karst evolves through dissolution of original 

discontinuities (fractures, joints, bedding planes) in limestone and dolomite “matrix” 

rocks and can become organized into a hierarchical, river-like system. Dissolution of rock 

causes the formation of large open zones (caves and conduits) and large vuggy pores. The 

rock matrix can be characterized as a traditional porous medium. Fractures, springs, sink 

and swallow holes are also likely to be present (White, 2002).  
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Epikarst is the exposed surface region of any karst rock which is in contact with 

soil where intense chemical weathering can occur and large fissures and fracture 

enlargement can develop (Drew, 1995). Carbon dioxide from the atmosphere and in the 

soil combines with infiltrating water to create carbonic acid, which dissolves the rock. 

Beside climatic and biological conditions, the nature of preexisting porosity, the type of 

recharge, and the magnitude and direction of hydraulic gradient are important factors 

which determine conduit or cave patterns at local and regional scales (Palmer, 2000). The 

foremost characteristic that makes karst different from other terrains is its dynamic 

nature, both hydrologically and geologically.  

2.3.2 Flow in karst aquifers 

Karst aquifers can have strongly varying permeability which is a major factor in 

controlling the nature of flow in them. The variation in potentiometric surface in a karst 

aquifer often reflects the variation in permeability. The potentiometric surface does not 

remain smooth when conduit flow becomes more dominant (Smart and Ford, 1986). 

 

Surface water and ground water are often hydraulically connected in a karst 

aquifer. A surface stream may disappear if the karst aquifer lying underneath is 

permeable or they may flow directly into sink or swallow holes. Streams can gain water if 

the karst aquifer’s water table lies above the surface water stage. Karst aquifers help in 

preventing flooding in high precipitation regions by rapidly draining surface streams 

underground. Subsurface streams generally reappear elsewhere in the form of springs 

(White, 2002). 
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Flow in karst takes place through anisotropic pathways (White, 2002) and can be 

explained in terms of conduit and diffuse flow (Field, 1993). A karst system is generally 

composed of porous matrix, fractures, and highly permeable conduit regions. Flow 

patterns are usually assumed to be diffuse (Darcian) in the porous matrix, laminar in 

fractures, and turbulent in conduits. The conduits and fractures are tortuous and head 

gradients may be high, hence the flow may become turbulent.  

 

The Reynolds number (Re) is a dimensionless number that indicates the relative 

balance between inertial and viscous forces and can serve as a measure of the likelihood 

of turbulent flow. Reynolds number is calculated as (Bear, 1972) 

ν

uL
=Re   

(1) 

where u is the average velocity of fluid (LT
-1), L is a characteristic length (L), and ν is the 

kinematic viscosity (L2
T

-1) of fluid. 

 

Widths of karst conduits (characteristic length) could be several meters and 

sometimes they have flow like a free-surface, turbulent river at very high flow rate. For 

example, Florida’s largest spring (Wakulla spring near Tallahassee) has an opening 

approximately 100 m across and a discharge of ~ 10 m3/s (Scott et al. 2002). The 

corresponding Reynolds number is approximately 10 million. Flow in fractures becomes 

turbulent when the Reynolds number exceeds 500 (White, 2002), although eddies can 

form at much lower Reynolds number and exert a strong influence on solute transport. 

When flow reaches the eddy and turbulent regimes the relationship between head loss 
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and discharge becomes non-linear in contrast to the relationship expressed by Darcy’s 

law.  

 

Conduit flow has been described with the Hagen-Poiseuille equation for laminar 

flow or with the Darcy-Weisbach equation in turbulent regimes (Howard and Groves, 

1995; White and White 2005; Birk et. al., 2004; Shoemaker et. al., 2008; Diersch, 2002). 

In the Darcy-Weisbach equation, flow resistance is specified by an empirical friction 

factor which depends upon the Reynolds number in a complex way. White and White 

(2005) showed that the friction factor back-calculated using the Darcy-Weisbach 

equation differs from the friction factor determined from roughness or the Reynolds 

number or both, depending upon the flow regime. This discrepancy shows that the Darcy-

Weisbach equation is not reliable to describe turbulent flow in conduits. 

 

Models of flow in karst systems have generally used analytical expressions that 

depend upon empirical parameters or are founded on Darcy’s Law. Darcy’s law is 

applicable for flow in laminar regime only and does not account for inertial effect which 

can occur in conduit or macropores generally found in karst aquifers. Therefore, a better 

model is needed to study karst hydrology. 

2.3.3 Transport in karst aquifers 

Study of solute transport is important for environmental protection and 

remediation. Chemical contamination may enter karst systems through sinkholes or caves 

and attenuate in a short time or it can get trapped in the epikarstic zone and eventually be 

released into the aquifer (Field, 1993). Different methods have been developed to 
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understand the subsurface transport of solute in different geological media. Traditional 

ground water flow and solute transport modeling are based on Darcy’s law and the 

anisotropic advection-dispersion equation respectively, and are principally applicable to 

porous media like sand. The nature of solute transport in karst systems suggests that they 

have two interrelated features that differentiate them from typical porous media aquifers. 

First, large openings constitute preferential flow paths that interact with the surrounding 

matrix in a complex way. Second, the porous matrix surrounding the preferential flow 

paths has relatively low permeability and interacts with both the flow and transport in the 

preferential paths. Two-region models are an initial mathematical approach to simulating 

this process. Large openings can cause flows at high Reynolds number, which develops 

eddy mixing of solutes with its corresponding complexities. 

2.3.4 Two-region model 

The two-region model is a conceptual model consisting of two domains: a 

“mobile” domain in which transport is solved by advection and dispersion, and an 

“immobile” domain in which flow is assumed negligible. Basically, a source/sink term is 

added in the advection-dispersion equation to link transport in the two flow regions.  The 

transport between mobile (conduit) and immobile (matrix) regions is linked using first 

order mass exchange between the two flow regions. This gives a pair of equations that 

can be solved for mobile and immobile concentrations. Breakthrough curves obtained 

from this type of model for a relatively small mobile fraction show a sudden rising limb 

followed by slow rise towards full breakthrough. For input pulse durations shorter than 1 

pore volume, there is a sudden drop before complete breakthrough, followed by tailing, 

which depends on the mass exchange rate between the two regions. This model is state-
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of-the-art for breakthrough curves obtained from karst aquifers. The drawbacks and 

limitations of this model for prediction of breakthrough curves from karst aquifers are 

shown in Chapter 5. 

2.3.5 Breakthrough curves in karst aquifers 

A significant number of environmental problems, including karst water supply 

and contamination problems, involve fluid flow and solute transport through sub-surface 

fracture/conduits zones. The presence of open fractures or conduits surrounding less 

permeable matrix create systems with advection-dominated flow in the fracture/conduit 

zone and diffusion/dispersion-controlled transport in the matrix zones. This can give rise 

to long-tailed, asymmetric breakthrough curves. The breakthrough curve of a chemical 

from such a medium generally has three characteristic features (as shown in Figure 1): 

sudden rising limb, plateau, and a long tail. The sudden rising limb is due to the conduit 

region and the long-tail is due to slow diffusion from the matrix region. There is an 

additional feature observed in breakthrough curves from karst aquifers that will be 

referred to as “intermediate plateaus”. The presence and width of these plateaus depends 

on the pulse duration and relative permeability of the matrix and conduit regions. 

Intermediate plateaus may not be seen in a breakthrough curve for a pulse of extremely 

short duration.  Intermediate plateaus can be approximated with a two-region-type model 

under certain conditions as described in Chapter 5. For longer pulse duration, multiple 

plateaus may exist depending on the number of discrete permeability regions in a karst 

aquifer. Such systems can produce breakthrough curves too complex to be simulated with 

a two-region-type model. 

  



 
 11 

As shown in the examples below, intermediate plateaus may be common or even 

universal in breakthrough curves from karst aquifers with conduits and significant matrix 

effects. The breakthrough curve shown in Figure 1 was obtained from a Superfund site in 

Tennessee (Field, 1999). It has a single intermediate plateau on the falling limb. 

 

Figure 1. Effluent breakthrough from modified dataset from Superfund site in Tennessee (Field, 

1999). 

 

Figure 2 shows breakthrough curves from a tracer test in the city of Stuttgart, 

Germany (Goldscheider, 2008). The maximum flow velocity was found to be 53-104 

m/day and the average flow velocity was 31-49 m/day. Possible intermediate plateaus can 

be seen on the rising and falling limbs. Such features are observed in LBM simulations as 

described in Chapter 5. 

Falling limb 

Rising limb 

Plateau 

Tail 
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Figure 2. Breakthrough curves from Stuttgart tracer test (modified after Goldscheider, 2008). 

 

An aquifer and tracer test were conducted in the Northwest Well Field (NWWF) 

in Miami-Dade County, Florida (Renken et al, 2008). The NWWF is Florida’s largest 

well field and supplies water from the Biscayne aquifer to over two-million residents of 

south-Florida. The breakthrough curve obtained from the tracer test is shown in Figure 3. 

It shows typical karst aquifer breakthrough features—rapid initial rise, followed by short 

intermediate plateaus near the peak and during the falling limb. The large fraction of the 

injected mass recovered from the tracer experiment indicates that advection through 

conduits and large vugs is the dominant means of transport in the Biscayne aquifer 

(Renken et al, 2008). 

Plateaus? 

Tail 
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Figure 3. Tracer (Rhodamine dye) breakthrough curve observed in the Northwest Well Field 

(NWWF) in Miami-Dade County, Florida (Renken et al., 2008). 

 

Figure 4 shows breakthrough curves for benzene through a packed column of 

pelletized MCM-48 adsorbent (MCM-48 is a large-pore molecular sieve material or 

adsorbent). It was found that the length of the intermediate plateau and time to reach 

complete breakthrough are highly sensitive to the inlet concentrations. The length of the 

plateau was observed to decrease by increasing the inlet concentrations (Shim et al, 

2005). The observed breakthrough is fitted with a two-region type model with modified 

adsorption isotherm. 

 

Plateaus? 
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Figure 4. Laboratory experimental data for breakthrough curves of benzene on MCM-48 (Shim et al. 

2005). 

 

2.4 Alternative approaches 

“Black box” (Empirical) and “distributed” models are the two fundamental 

approaches to modeling karst systems. In the black box model, different techniques like 

recession analysis (separate analysis of recession curve (tailing) as observed in storm 

hydrograph or breakthrough curve from karst aquifers), regression analysis, mixing cell 

models, and kernel/transfer functions are used to simulate karst systems. Some hydraulic 

parameters and a response function of karst systems can be estimated using such methods 

(Sauter, 1993). This method ignores the details of the various processes that determine 

flow and transport in a karst aquifer due to its lumped-parameter nature. The advantages 

of such methods are that data requirements are minimized and simulation is faster. 
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Distributed parameter models were developed to utilize available information 

about variability of hydrological properties in karst aquifers. At least three methods have 

been used to describe flow and transport in karst systems with these models (CGER, 

1996):  

• Equivalent porous medium (EPM),  

• Discrete fracture/conduit, and  

• Multi-continuum and Hybrid approaches. 

 

In a conventional equivalent continuum model or equivalent porous medium 

(EPM) approach, heterogeneity of the fracture network or matrix is modeled by assigning 

variable hydraulic conductivity to the domain and Darcy’s Law is used over the whole 

continuum. Individual fractures or pores are not studied explicitly. The continuum 

approach represents the complicated spatial heterogeneity in a simple mathematical way 

that can easily be applied to numerous problems (CGER, 1996). At what scale the 

application of a continuum model is justified is still unknown (Cortis and Berkowitz, 

2004).  

 

A discrete fracture/conduit model does not consider the effect of the matrix on 

flow and transport and assumes flow is confined to the fracture/conduit regions 

(Barenblatt et al. 1960; Coats and Smith, 1964). Flow in fractures is assumed to behave 

as laminar flow between parallel plates (cubic law) and requires detail about fracture 

apertures, fracture length, orientation, and connectivity. These properties are often 

simulated stochastically because it is difficult to explicitly measure them. The main 
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advantage of this model is that it considers the contribution of every fracture towards the 

overall transmissivity of aquifer and can be applied at any scale. The drawback of this 

model is that statistical information required for parameter estimation may also be 

difficult to obtain. This model may become very complex at field scale and 

computationally intensive too. Turbulent flows in conduits would typically be treated 

with the Darcy-Weisbach equation (CGER, 1996). 

 

The multi-continuum approaches put these two above-mentioned approaches 

together to represent heterogeneity of karst aquifers (For example, Scanlon et al., 2003). 

One drawback of many of these models lies in the assumption that flow through the 

matrix and fractures is laminar and thus that Darcy’s law and the cubic law are always 

applicable for flux calculation. Sharp and Maini (1972) showed a nonlinear flow regime 

in laboratory flow experiments in fractures. Similarly, DiFrenna (2005) and Alvarez 

(2007) found a non-linear relationship between flow and head gradient in karst rocks 

from south Florida. 

 

Modeling ground water flow and solute transport is difficult in karst systems due 

to complicated geometry and complex interaction between diffusion- and advection- 

dominated regions. Some modifications to standard numerical models (e.g., 

MODFLOW) have been proposed in the past to more closely simulate karst conduit 

systems. In MODFLOW a continuous branching network of drain cells with drain 

elevation and conductance is used as an analogue to a karst conduit. The drain cell feature 

is available in MODFLOW to simulate agricultural drains that remove water from an 
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aquifer at a rate proportional to the difference in water level and some fixed drain 

elevation (Quinn and Tomasko, 2000; Quinn et al., 2006). Sun and Painter (2004) linked 

a dual continuum model (DCM) to existing MODFLOW and proposed a new 

MODFLOW-DCM model to simulate turbulent flow in conduits and diffuse flow in the 

matrix. They have demonstrated the success of this model for ground water management 

in the Barton Springs segment of the Edwards aquifer in south-central Texas. 

 

QTRACER is a computer program developed to analyse breakthrough curve data 

obtained from tracer studies in karst and fractured-rock aquifers (Field, 1999). Parameters 

such as the mass of the tracer, mean residence time, mean flow velocity, and longitudinal 

dispersion are estimated based upon the method of moments. Geometrical properties such 

as aquifer volume, cross-sectional area, karst conduit diameter etc., are estimated from 

discharge rate and mean residence time. 

 

White (2002) discussed the widely-accepted triple permeability conceptual model, 

which includes matrix permeability, fracture permeability, and conduit permeability to 

simulate flow in karst aquifers. The flow field is calculated based upon Darcy’s law in the 

matrix region, the cubic law in the fracture region, and the Darcy-Weisbach equation in 

the conduit region. White and White (2005) presented the relative contributions of each 

of the three permeability zones towards the overall ground water flux. This comparison 

justified the elimination of the least permeable zone during model development. A plot of 

discharge rate vs. aperture width on logarithmic scale for different hydraulic gradients, 

indicates that matrix flow is dominant in carbonate aquifers until fracture aperture widens 
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due to dissolution and eventually conduit flow become dominant; however fracture flow 

dominates in an aquifer with low hydraulic gradient.  

2.5 LBM for solute transport 

Lattice Boltzmann methods are becoming established as reliable solute transport 

solvers (Flekkøy, 1993; Grubert, 1997; Stockman et al., 1998; Inamuro et al., 2002; 

Yoshini and Inamuro, 2003; Zhang et al. 2002 a, b; Ginzburg, 2005; Thorne and Sukop, 

2004; Sukop and Thorne, 2006; Camas Serván, 2007; Anwar et al., 2008).  In assessing 

the solute transport capabilities of the LBM, it is convenient to make use of the Peclet 

number (Pe). Pe is a dimensionless number that indicates the relative importance of 

diffusion (or dispersion) and advection in mass transport. It is a ratio between the time 

taken by fluid particles to traverse distance L by diffusion alone (tdiff) and the time taken 

to travel the same distance L by advection (tadv) at average velocity u: 

m

m

advection

diffusion

D

uL

u

L

D

L

t

t
Pe ===

2

. 
(2) 

Analytical solutions of the Advection-Dispersion Equation (ADE) under different 

boundary conditions are appreciably different from each other at small Pe, hence the 

breakthrough curve obtained for different boundary conditions (as shown in Table 1) 

does not converge for small Pe. This provides an opportunity for testing the LBM’s 

solute transport simulation capabilities.  

 

Lattice gas models preceded and are closely related to the LBM. Lattice gas 

models are based upon cellular automata and Boltzmann’s kinetic theory of gases. Lattice 
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gas models are built on the motion of discrete particles on regular lattices. Each lattice 

node has a Boolean variable (nj) to represent the presence or absence of a particle in each 

of a small number of possible lattice directions. The main development marking the 

transition from lattice gas to lattice Boltzmann models is consideration of the dynamics 

of a “group” of particles in discrete directions at every time by replacing the Boolean 

variable nj with a real-valued particle distribution function fi(x, t). The basic mechanism 

of propagation and collision of particles at every time step (ts) remains unchanged.  

 

Several researchers demonstrated the solute transport capabilities of lattice gasses. 

Baudet et al (1989) used a lattice gas model to simulate dispersion between parallel plates 

and the longitudinal dispersion coefficient matched very well with the Taylor-Aris model 

for Peclet numbers ranging from 4.3 to 35.4. Perea-Reeves and Stockman (1997) used a 

lattice gas model to simulate dispersion in alveolated channels (channels with pockets 

along the wall boundary). They considered how buoyancy affects the prediction of 

effective dispersion coefficients for a range of Peclet numbers. Stockman et al. (1998) 

demonstrated the ability of the LBM to successfully simulate dispersion and diffusive 

fingering in rough fractures. 
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3 LATTICE BOLTZMANN METHODS 

In this chapter, an introduction to the particle-based numerical scheme known as 

the Lattice Boltzmann method is presented. Three different LBMs are linked in this 

dissertation to simulate fluid flow and solute transport in porous media. The basic 

framework of the LBM is explained in the next section and subsequent sections describe 

the different models used. A passive scalar model is used to simulate solute transport in 

free-flowing fluid. Then a “macroscopic” or Darcy-scale model is described, which 

allows simulation of large-scale flows in porous media with LBMs. Finally, a LBM-

based anisotropic dispersion solver, which is necessary to solve transport problems in 

macroscopic porous media, is incorporated. This model is verified against analytical 

solutions for flow and transport problems. All of these models are necessary to create a 

LBM simulator that incorporates all of the processes likely to be important in karst 

aquifers. 

 

Lattice Boltzmann methods provide an alternative numerical method for 

simulating hydrodynamic systems governed by the Navier-Stokes equations for 

isothermal compressible fluid flow as shown below.  
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Where ρ is the density of fluid, u is velocity vector, ν is the kinematic viscosity of 

fluid, p is pressure, x, y are spatial coordinate, and t is time.  
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LBMs are based on discrete velocity, time, and lattice space (Figure 5) and are 

proven to recover the Navier-Stokes solution at macroscopic scale (Qian et al., 1992).  
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Figure 5. Lattice structure showing nodes from which groups of particles will stream in discrete 

directions (1-8) at discrete velocities ej. D2Q9 refers to a 2-dimensional model with 9 discrete particle 

groups. 

 

Unlike traditional numerical methods, the LBM does not discretize the governing 

equations at macroscopic scale in space and time; instead it solves the dynamics of 

hypothetical particles represented by particle distribution functions (fj). The behavior of 

these particle distribution functions are governed by the Boltzmann equation. The 

Boltzmann equation governs the time rate of change of the particle distribution function. 

In simple words, this equation states that number of particles in a state is equal to the 

number of particles entering the state minus the number of particles leaving the state 

(Chen et al., 1994). The particle distribution function represents the dynamic state of a 

hypothetical group of particles in terms of its location and momentum at any time.  
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In a system of N molecules where N is on the order of 1023, it is impossible to 

track the velocity of each and every molecule. The particles move around with different 

ranges of velocities, collide, and then their velocities change. The Maxwell-Boltzmann 

distribution theory states that particles conform to a speed distribution at equilibrium. The 

shape of the distribution is a function of temperature as shown in Figure 6. 
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Figure 6. Speed distribution for molecules at equilibrium at different temperatures calculated using 

the Maxwell-Boltzmann theory. 

 

The curves shown in Figure 6 are presented for three different temperatures. The 

area under the curve will always be equal to one, but the distribution of particle speeds 

will change with temperature.  

 

Because of the particle basis of the LBM, there is no large set of simultaneous 

equations to solve as develops in conventional numerical methods (Ginzburg, 2005). 

Also, the LBM is amenable to parallel computation because most of the computational 

work is local and does not require data from remote nodes. 
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The most commonly used classification of the LBM is DiQj, where i represents 

the number of dimensions (1, 2, or 3 for 1, 2, or 3-D) and j represents the number of 

discrete directions (3 for 1-D, 6 or 9 for 2-D and 15, 19, or 24 for 3-D) that are available 

for a group of particles (represented by the particle distribution function, fj, as shown in 

Figure 7) to propagate. A D2Q9-type model is two-dimensional in space and has 9 

discrete groups of particles at every node. Every group of particles is allowed to 

propagate to the nearest neighboring node with discrete velocity (ej). ej is equal to ratio 

between the distance between two nodes in lattice units (lu) in the jth direction and lattice 

time step (ts). There is also a group of particles which is immobile and considered to have 

discrete velocity e0 equals to zero. 

 

Figure 7. Histogram showing direction-dependent particle distribution function for D2Q9 LBM. 

 

 The macroscopic fluid density (ρ) for the D2Q9 model is (Qian et. al., 1992) 
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Equations (5) and (6)  link the particle distribution with the macroscopic density and 

velocity of the fluid.  

 

Key steps in the LBM are streaming and collision of the particles via the 

distribution function. The simplest approach uses the BGK (Bhatnagar-Gross-Krook, 

1954) approximation for collision as described below. Qian et al (1992) developed a local 

equilibrium function as shown below to recover the Navier-Stokes equations at 

macroscopic scale. Groups of particles represented by fj are allowed to stream to 

neighboring nodes in discrete directions (as shown in Figure 5) and undergo collision as 

described below.  

3.1 Navier-Stokes Bhatnagar-Gross-Krook model 

The simplest LBM approximately solves the Navier-Stokes (inertial) equations of 

fluid motion. Inertial flow is expected inside geometrically complex karst conduits at 

moderate flow velocity when the Reynolds number, which expresses the inertial ‘content’ 

of the flow as described later, is greater than approximately 1. The ability to simulate 

such flows is a key advantage of using LBMs in karst aquifers. 

  

The D2Q9 equilibrium distribution function feq is (Qian et. al 1992) 

( ) 
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where the weights t*
j are 1/3 for j = 1, 2, 3, 4, and 1/12 for j = 5, 6, 7, 8 and weight for 

rest particles (j = 0) is (Ginzburg, 2005) 
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where, cs is the speed of sound and c is lattice speed, 1=
∆

∆
=

t

x
c  (Qian et. al., 1992). The 

speed of sound (cs) is a free parameter that can be changed to tune the model. Note that if 

u = 0, the equilibrium fj are simply the weights times the fluid density and sound speed 

squared.  

 

Since the LBM is based upon the discrete Boltzmann equation, the 

velocity/particle distribution function (f) is also discrete in nature. The entire set of 

molecules is distributed among three different speeds ( )0,2,1 . The fraction of particles 

with discrete speeds for the D2Q9 model is shown in Figure 8, which is a discrete analog 

of the continuous particle speed distribution function shown in Figure 6. Figure 8 

represents the equilibrium distribution function (feq) for the D2Q9 model. 



 
 26 

0

1/9

2/9

1/3

4/9

5/9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Speed (lu ts
-1

)

F
ra

c
ti

o
n

 o
f 

M
o

le
c

u
le

s

 

Figure 8. Discrete fractions of molecules shown with their corresponding discrete speeds for the 

D2Q9 model. 

 

The LBM parameters have dimensions of mass units (mu) for mass, lattice units (lu) for 

space, and lattice time steps (ts) for time. The similitude between lattice dimension and 

physical dimension is established using non-dimensional numbers as described in 

subsequent chapters. 

 

Equation (8) represents the time evolution of the particle distribution function: 
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The collision operator is simplified in the Bhatnagar-Gross-Krook (BGK) model by using 

a single relaxation parameterτ (ts) for all directions. τ indicates the rate at which the 
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system approaches equilibrium through collision. The kinematic viscosity ν of the fluid is 

linked with the relaxation parameter (Qian et. al. 1992): 









−=

2

12 τν sc . (9) 

Kinematic viscosity is one of the key fluid properties that controls the flow 

behavior. It is often desired to have low kinematic viscosity to achieve higher Re number 

(inertial flow regime) in flow simulations. Since the relaxation parameter τ can not be 

smaller than 0.5, this limits the LBMs ability to achieve very high Re flow regimes. In 

this dissertation, moderately high Re number in the range of 1000 is achieved to simulate 

inertial flow regime in porous media with conduits. This is thought to be quite high for 

ground water.  

 

In ground water, flow is generally driven by body force (gravity) or hydraulic 

pressure boundary conditions. For the simulations of fluid flow, either periodic, constant 

flux, or pressure boundary conditions are applied. For the pressure and flux boundaries, 

the methods of Zou and He (1997) are adopted, in which incoming fs are computed based 

on the desired pressure or flux and the known fs. The body force is applied by altering the 

macroscopic flow velocity, which is subsequently used to calculate feq.  

3.2 Passive scalar LBM 

Flekkøy (1993) introduced a LBM for isothermal, binary, miscible fluid mixtures, 

which can be used for the simulation of fluid flows with heat or mass transport. In this 

approach, two components, A and B, are assumed and one is a very small fraction of the 

other. Therefore, collision between A-B or B-A is assumed negligible and not included in 
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the computation. Component A will have the same equilibrium function as shown in 

equation (7) (i.e., it will behave as a regular fluid), but component B will evolve towards 

a new equilibrium as expressed by (Inamuro, 2002) 

( )( )AjsBj

eq

Bj ctf uex += 2*ρ . (10) 

 

The equilibrium distribution function represented by (10) recovers the advection-

diffusion governing equation for mass transport in moving fluids. The density 

(concentration) ρΒ for component B is computed following equation (5), and its velocity 

uA is assigned from component A; B is advected as a passive scalar. Hence the solute 

component B is called a passive component.  

 

Component B has mass diffusivity Dm expressed in terms of relaxation time τB: 
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Stockman et. al. (1998) demonstrated the ability of this LB model to simulate 

Taylor dispersion (mixing of solute due to molecular diffusion and non-uniform velocity 

field). Yoshino and Inamuro (2003) showed the ability of this model to simulate flow and 

breakthrough curves in a three-dimensional porous medium at different Reynolds 

numbers, and proposed boundary conditions for solute transport.  

 

In this dissertation, three types of boundary conditions are implemented for solute 

components; the first is constant concentration and the second is zero-concentration- 

gradient, which allows advective flux but prohibits diffusive and dispersive fluxes. Much 
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like the Zou and He (1997) boundaries applied to the flow, the constant concentration 

boundary is based on ensuring that the sum of the unknown, incoming fs, plus the known 

fs, equal the desired concentration (Inamuro et. al., 2002). The zero-concentration- 

gradient boundary requires that the solute fs on each side of the boundary node are 

balanced; Sukop and Thorne (2006) contains more detailed descriptions of these 

boundaries. A mixed or third-type boundary condition for solute transport is also 

formulated for the LBM and explained in the following chapter. The ability of the passive 

scalar transport model to link directly with the BGK flow model of section 3.1 makes the 

simulation of transport in complex inertial flows eddies possible and represents a 

significant advance of flow and transport in karst aquifers. 

3.3 Macroscopic flow model in the LBM 

Flow and transport in porous media can be studied at pore scale, laboratory scale, 

and field scale. With change in scale, dominant processes and macroscopic governing 

equations may also change (Kang et al, 2002). The standard BGK LB model solves the 

flow field at the scale of explicit open space and solids, be it caves, conduits, fractures, 

macropores, or regular pores. Simulation at pore scale becomes too computationally 

intensive when an entire aquifer is under study. Thus an alternative technique is desirable 

that simulates flow at any scale, as Darcy’s law does, and retains the capability of the 

LBM to solve the Navier-Stokes in conduits. 

 

A common method employed to solve such problems is to use macroscopic 

properties, such as permeability and hydraulic conductivity, which consider the overall 
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effect of the porous medium on the flow. Solid particles in a porous medium offer 

resistance to flow and interconnectivity of the pores facilitate the flow through the porous 

medium. Thus Darcy’s Law does not depend directly on the scale of the problem and a 

Darcy-based LBM avoids the scale problem. The nodes in the porous media model 

represent a volume of a porous medium that should be larger than a representative 

elementary volume (REV). Each node represents a volume of porous medium which 

contains numerous pore and solids (Freed, 1998). There are multiple ways to solve the 

Darcy flux at macroscopic scale using the LBM (Gao and Sharma, 1994; Spaid and 

Phelan, 1997; Dardis and McCloskey, 1998 a, b; Freed, 1998; Kang et al, 2002; Walsh 

and Saar, 2008). The most common approach is to introduce an external force by 

dynamically changing the local velocity during the collision step (Gao and Sharma, 1994; 

Spaid and Phelan, 1997; Freed, 1998). 

 

Spaid and Phelan (1997) introduced an LB method to model fluid flow through 

porous media with open channels. This method includes an external dissipative forcing 

term in the macroscopic velocity calculation to compute the flow at porous nodes and a 

regular LB model is used to recover the Navier-Stokes equation in the conduit or open 

regions. This method can not simulate zero permeability (a node with infinite momentum 

sink) and there are stability issues near the interface of a porous and open region. 

 

Martys (2001) introduced a linear body force in the continuous Boltzmann 

equation to incorporate the dissipative force due to the porous medium. Error analysis 

proved that this method is more stable than the method proposed by Spaid and Phelan 
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(1997). Kang et. al. (2002) introduced a unified LB method to model unidirectional, 

steady flow through heterogeneous porous media. In this method, all nodes are porous 

media nodes with a permeability value. Solid walls have zero permeability and no-slip 

conditions are applied, whereas open regions have infinite permeability, and porous 

medium nodes have non-zero permeability. Fluid properties are volume-averaged and 

satisfy the mass and momentum equations. Based on this model, the effect of matrix can 

be neglected when the ratio between the porous matrix permeability and a fracture 

permeability calculated by the cubic law is less than 10-4. 

3.3.1 Partial bounce-back method 

In the LBM, the bounce-back approach is used to enforce no-slip conditions near 

solid nodes. This means that when a group of particles (represented by the particle 

distribution function, fj) streams into a solid node, it bounces back in the opposite 

direction without any loss of momentum, which ensures a no-slip boundary. Dardis and 

McCloskey (1998 a, b) introduced a partial bounce-back scheme to simulate permeability 

in a porous medium. There is a damping factor (ns) at nodes in the LB equation that 

retards the evolution of the particle distribution function in the medium. This is a Partial 

bounce-back approach for simulation of porous media at macroscopic scale. This novel 

model can simulate at large scale without excessive computational effort: As in standard 

ground water models, Darcy’s law is applied and simulation of flow inside individual 

pores is not attempted.  

To implement the Dardis and McCloskey (1998 a, b) LBM for macroscopic 

porous media, there is an additional collision step after streaming and BGK 
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j ∆−∆ , which is denoted by ),( txf
PM

j∆ . The overall collide and 

stream algorithm can be written as  

),(),(),(),( ***
txfttxfttfttf

PM

jj

BGK

jjjj ∆+∆−∆+∆−=∆+ eexx  (12) 

for 0 ≤ j ≤ 8.  

where  

[ ]),(),()(),( 2 ttftfntf jjjs

PM

j ∆−−=∆ + exxxx . (13) 

ns(x) is a parameter called the solid scatter density per lattice node x, where ns(x)∈[0,1]. 

This additional collision term accounts for the effect of the porous medium on the fluid 

and redistributes the particle momentum. The normal fluid flow model can be recovered 

from this model for ns = 0, and for ns = 1, a no-slip (bounce back) boundary condition is 

achieved that effectively makes the medium impermeable. For values of ns between 0 and 

1, bounce back is partial, which makes the medium effectively permeable. This model 

can have a different ns value at each node in the domain. 

3.3.2 Altered-velocity method 

Darcy’s law is used to compute the volumetric flux or Darcian velocity q of fluid 

flowing under a constant head, h or pressure gradient, p∇  across a porous medium of 

permeability k:  

p∇−=
νρ

k
q , (14) 

where ρ is the fluid density and ν  is the kinematic viscosity of the fluid. Darcy’s law is 

applied on the representative elementary volume (REV) scale and above, and gives an 

averaged macroscopic flux for a porous medium. A resistance force R can be related to 

the pressure drop across a porous medium and it could be a tensor to account for 
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direction-dependent properties. Equation (14) can be written in terms of a resistance field 

R (Freed, 1998): 

Rqρ−=∇p  (15) 

This model treats the porous medium as a resistance field and calculates the 

volumetric flux for a given pressure gradient, p∇ . Freed (1998) defined this approach as 

an averaging of steady state Navier-Stokes equations over the local sub-volume in the 

Stokes regime, where viscous forces are replaced by the resistive force as shown in the 

RHS of equation (15).  

 

An LB-based porous media model is an extension of the basic LBM that is 

obtained by altering the local macroscopic velocity during the collision step. Some new 

notation is introduced to define the change in macroscopic velocity: u~ is the pre-collision 

velocity, u’ is the post collision velocity and u is the mean centered velocity. An external 

force F is 

( )uuF ~'−=
τ

ρ
, (16) 

which is equivalent to the term ρR·u, and 

( ) uRuu' ⋅=− ρ
τ

ρ ~ . (17) 

The resistance field is related to the permeability as 

1−= kR ν . (18) 

Mean centered velocity ( )u  should be used as the correct macroscopic velocity, and is 

calculated as  



 
 34 

'
2

1~

2

1
1 uuu

ττ
+








−= , (19) 

where  

uGu ~' ⋅= , (20) 

and (Freed, 1998) 
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The algorithm for the porous media model is (Freed, 1998) 
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where u’ and u  are given by (19) and (20). The resulting macroscopic hydrodynamics 

will be governed by  

0).( =∇+
∂

∂
uρ

ρ

t
 (24) 

and momentum equations at the Navier-Stokes scale 

( ) ( ) ( )[ ]∇+∇⋅∇+⋅−−∇=⋅∇+
∂

∂
uuuRuu

u
ρνρρ

ρ
p

t
, (25) 

where the centered mean velocity, u , is the macroscopic Darcy flux (q). Equation (25) 

recovers Brinkman’s equation when the inertial term is negligible (Freed, 1998). The 

LHS of equation (25) represents the total acceleration of moving fluid: time-dependent 

acceleration and space-dependent convective acceleration. These accelerations become 
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zero for creeping flow as there is no time-dependent change in flow and there is no space-

dependent change in the flow field. The last term on the RHS accounts for the Brinkman 

correction and it becomes negligible for creeping flow in porous media (Kang et. al., 

2002). The only remaining terms are the first two terms on the RHS, which are the same 

as equation (15). Equation (15) can easily be written as equation (14) using equation (18), 

hence the modified Navier-Stokes equation as shown in equation (25) is a form of 

Darcy’s Law in laminar regime. The regular LB model (Eqs (7) and (8)) solves the 

Navier-Stokes equation. Hence the fj
eq (x) is modified to include a resistance term so that 

the LBM solves the modified Navier-Stokes equation represented by equation (25). 

Equation (25) solves the modified Navier-Stokes equation or macroscopic flow field, 

which is also given by equation (14), depending upon the value of R. If the R value is 

zero, the node does not cause any resistance to flow and the equation (25) solves the 

Navier-Stokes equation; when R has a non-zero value, equation (25) solves the Darcy 

equation with permeability at a node given by equation (18). Thus, other than the value of 

R, no explicit changes necessary to switch between the Navier-Stokes equation and 

Darcy equations in different regions of the simulation domain. 

3.3.3 Validation of flow model 

Permeability is a characteristic property of any porous medium. Permeability 

controls the flow rate for any head gradient across the domain, assuming the viscosity 

and density of fluid are constant. Prediction of permeability is an important aspect of 

hydro-geological modeling for the correct estimation of reservoir yield.  
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3.3.3.1 Permeability test 

Flow was simulated through a porous medium (100 lu × 5 lu), with kinematic 

viscosity of fluid 0.0333 lu2
/ts and uniform resistance field R set equal to 0.1 ts-1. The 

permeability predicted using equation (18) is 0.3333 lu2. The left and right boundaries 

were maintained at a pressure of 0.333366 mu-lu
-1

t
-2 and 0.33333 mu-lu

-1
t
-2. The average 

flux (ρu) was computed over the whole domain and used in Darcy’s law as shown in 

equation (14) to compute the permeability (k), which was found to be 0.3333 lu2. After 

scaling by physical size the model is ready to solve real ground water problems (as 

shown in Alvarez (2007), Anwar and Sukop (2008), Variano et. al. 2008 (to be 

submitted)).  

 
A simple test to validate this model is to examine the flux across a porous 

medium for a certain pressure drop. Darcy’s law is valid only for the laminar regime of 

flow at low Re. For higher Re, the inertial term becomes important for flow, and flux can 

not be accurately predicted by Darcy’s law. 

3.3.3.2 Permeability test at varying hydraulic gradients 

Test simulations are conducted on a 100 lu × 5 lu domain for uniform R = 0.1 ts
-1 

and τ = 1 ts. Pressure boundary conditions (Zou and He, 1992) are applied at the left and 

right boundaries and the domain is periodic in the transverse direction. 
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Figure 9. Flux is plotted against the pressure difference across the domain. Deviation from Darcy’s 

Law grows significantly as pressure difference and flux increase. 

 

This is a common test to validate the effect of resistance on the flow exerted by 

porous media. In this case, resistance R has a non-zero value at every node. Flux is 

plotted against pressure difference across the domain in Figure 9. As shown in Figure 9, 

flux linearly increases with increase in pressure gradient but starts to deviate from the 

value predicted by Darcy’s law. This is due to the emergence of inertial effects at higher 

flow rate, which are not considered by Darcy’s Law. Extension of Darcy’s law, for 

example the Darcy-Forchheimer equation, account for the inertial effects and the LBM 

macroscopic flow models are also capable of solving for the inertial effects. See Alvarez 

(2007) for similar results based on explicit pore-solid Navier-Stokes modeling.  
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3.3.3.3 Zero and infinite resistance test 

There is another test for flow between parallel plates for which an analytical 

solution is available. In this case R has zero value over the whole domain except at the 

boundaries in the direction transverse to the flow direction. The analytical solution for 

flow under a pressure gradient between parallel plates is expressed as (Kang et. al. 2002) 




















−

∆
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where a is the width between the parallel plates, y is position in the channel, which varies 

between 0 and a, and µ is dynamic viscosity of fluid. ∆p is the pressure difference across 

the domain of length l. The test simulation is conducted on a 50 lu x 20 lu domain under a 

pressure difference of 0.003 mu-lu
-1

-ts
-2 and τ = 1ts.  
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Figure 10. Poiseuille flow profile between the parallel plates using altered-velocity flow model. 
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The velocity profile obtained from the LBM and compared with the analytical 

solution expressed by equation (26) is shown in Figure 10. The two solutions match very 

well and validate the ability of the LBM-based Darcy’s law solver to simulate no-slip 

conditions on a solid wall where ∞→R  and Poiseuille flow (Navier-Stokes equation) at 

nodes where R = 0. 

3.3.3.4 Filled parallel plate test 

There is another interesting example similar to Figure 10  in which the space 

between parallel plates is filled with homogeneous porous medium with known 

permeability. A domain of 50 lu × 20 lu is also used for this test simulation and the fluid 

has a kinematic viscosity of 0.166 lu2
/ts. Pressure boundaries are maintained on the left 

and right boundaries with a pressure difference of 0.001 mu/lu
1
-ts

2. Unlike Figure 10, 

flow becomes uniform in the porous medium and falls to zero at the wall. Figure 11 

represents the flow between parallel plates filled with porous media of R = 1 ts-1. 
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Figure 11. Flow profile between parallel plates filled with porous media of R=1 ts
-1

. 

 

As shown in Figure 11, there is a uniform flow across the width of the channel depending 

upon the permeability of the region and velocity drops to zero (no-slip) near the solid 

nodes assigned at two boundaries along the flow direction. 

3.4 Anisotropic dispersion solver in the LBM 

The traditional governing equation for mass transport of a solute subjected to 

advection and anisotropic dispersion in porous media is a partial differential equation 

called the Anisotropic Advection-Dispersion Equation (AADE).  

 

CC
t

C
∇•∇=•∇+

∂

∂
Du  (27) 
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where C is solute concentration (ML
-3), nqu =  is mean pore velocity (LT

-1), q is Darcy 

flux (LT
-1), n is porosity, Dij is the dispersion coefficient (L2

T
-1) in the ij direction, x and y 

are spatial coordinates (L), and t is time (T).  

 

Advection and mechanical dispersion are typically the dominant mechanisms for 

transport of solute in granular media. The process of mechanical dispersion is anisotropic 

even if the porous medium is isotropic with respect to grain size and hydraulic 

conductivity, because flow in the longitudinal direction is dominant and that stretches the 

solute plume into an elliptical shape (Freeze and Cherry, 1979). The passive scalar LBM 

for solute transport introduced earlier uses the simplest form of collision mechanism and 

has a single, lumped relaxation time for all directions that gives isotropic diffusion. This 

is appropriate for the simulation of diffusion in free flowing fluids. However dispersion 

in porous media is inherently anisotropic and an anisotropic dispersion solver is needed 

to develop a LBM with capabilities comparable to those of standard porous media solute 

transport solvers.  

 

Zhang et al. (2002 a, b) and Ginzburg (2005) introduced LBMs with direction-

dependent relaxation parameters for the solute component in order to simulate anisotropic 

dispersion in porous media. Here, we apply the model proposed by Zhang et al (2002 a), 

which has four relaxation parameters in nine directions. Conservation of mass is ensured 

by taking a weighted summation of the particle distribution function, jf  so that the 

collision step remains mass invariant (Zhang et al, 2002 a): 
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where wj is the weighting factor in the  j direction and the dispersion tensor in terms of 

relaxation parameters ( )
Bjτ  is (Zhang et al, 2002 a) 
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(29) 

The dispersion coefficients in equation (29) are found using the following equation (Bear 

1972) 

( )
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+

−
++=

αα
δα , (30) 

where δij is Kronecker delta, and αL and αT are dispersivities in the longitudinal 

and transverse directions respectively. i and j represent the Cartesian directions (x or y). 

Dispersivity is a medium property and changes with time and space; however dispersivity 

reaches a asymptotic value after some distance/time. Equation (30) is an empirical 

relationship to approximately quantify the dispersion tensor (Hassanizadeh, 1996). For 

heterogeneous domains, velocity (ux, uy) changes at every node, so the dispersion 

coefficient does too. 

 

The collision step is changed from that for a diffusion model to one that imposes a 

macroscopic anisotropic dispersion model, only for the solute component in the porous 

matrix. This will provide a LBM-based anisotropic dispersion solver comparable to those 
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found in standard ground water model, and LB model also retains the potential to solve 

the Navier-Stokes and advection-diffusion equations in conduits. 

3.4.1 One-dimensional solute transport with anisotropic dispersion model 

This model is verified against the analytical solutions given in StAnMod 

(Simunek et. al. 1999) in one and two-dimensions. A one-dimensional numerical 

experiment is set up in a 400 lu × 4 lu domain with constant flux boundary (0.01 lu/ts) at 

each end. As an initial condition, the domain had a slug of solute over the whole width of 

the domain at 10 lu from the flow boundary. Dispersivity equal to 1 lu is set at every 

node. The spatial breakthrough curve is measured at 10,000 ts and 30,000 ts and shown 

below in Figure 12. The analytical and LBM results show a good match for spatial 

breakthrough. 
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Figure 12. Spatial breakthrough curve for solute transport in one-dimensional flow field with 

uniform dispersivity 1 lu. 
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3.4.2 Two-dimensional solute transport with anisotropic dispersion 

For uniform flow aligned with the x-axis in 2-dimensions, the anisotropic 

advection-dispersion equation can be written as (Bear, 1972) 
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Another verification is established for a domain (200 lu × 20 lu) with anisotropic 

dispersivity. The one-dimensional flow field is set using constant flux (0.01 lu/ts) 

boundaries at the two ends. The dispersivity in the longitudinal (DL) and transverse (DT) 

directions at every node is set equal to 1 lu and 0.1 lu respectively. As an initial 

condition, the domain had a point solute concentration at coordinate (10, 0).  

 

Figure 13. Solute plume for u= 0.01 lu/ts and DL= 1 lu DT = 0.1lu in a 200 lu × 20 lu domain after 5000 

ts. Domain is periodic in vertical direction. Solute was introduced at (10, 0) at time =0. 

 
The spatial breakthrough curve is measured at 5000 ts and compared with the 

analytical solution. The results shown below in Figure 14 demonstrate a good match 

between the analytical and LBM solutions. 
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Figure 14. Spatial breakthrough curve for DL=1 lu and DT = 0.1 lu in a 200 lu × 20 lu domain. 

 

3.4.3 Two-dimensional solute transport with anisotropic dispersion for non-axis-

aligned flow field 

the LBM for solute transport with anisotropic dispersion is tested in a 200 lu × 

100 lu domain with velocity boundary conditions in the longitudinal direction and 

periodic boundaries in the transverse direction. At every node, the fluid component has 

velocity in the x (ux=0.01 lu/ts) and y (uy=0.005 lu/ts) direction, which causes the 

resultant flow to be in a diagonal direction. The resultant velocity is ~ 0.0112 lu/ts along 

an axis inclined at ~ 27˚ (tan-1(1/2)) from the x-axis. This velocity is used as the rate of 

advective solute transport in the analytical solution. The longitudinal dispersivity is set 

equal to 0.5 lu and transverse dispersivity equal to 0.1 lu at every node. The dispersion 

tensor is calculated using equation (30). The solute is introduced at node (10, 10). The 

contour map of solute concentration at 15,000 ts is shown in Figure 15 and shows good 

agreement with the simulated analytical solution.  
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Figure 15. Contour map of solute concentration in flow field unaligned with the LBM coordinates (ux 

= 0.01 lu/ts and uy = 0.005 lu/ts) with DL  = 0.5 lu and DT = 0.1 lu. The LBM solution is shown in red 

and analytical solution is shown in green for comparison. 

 
This verifies the ability of the LBM to simulate anisotropic solute dispersion in a 

flow field that is not aligned with the coordinate axes of the LBM and suggests that the 

model will work in more complex flow fields.  

3.5 LBM on non-uniform grids 

The Boltzmann equation can be written in differential form as follows:  

Ω=∇+
∂

∂
f

t

f
e , (32) 

 
where f is particle distribution function, e is the microscopic velocity of particles, and Ω  

represents the collision term (Wolf-Gladrow, 2000). Equation (8) is a finite difference 

form of equation (32) where the collision term is the simplified Bhatnagar-Gross-Krook 

(BGK)-type with a single rate of relaxation. 

 



 
 47 

Since the particle distribution f in equation (32)(33) is a continuous function in 

both space and time, the LBM can be applied on non-uniform grids. There are several 

models available in the literature for non-uniform meshing in the LBM. The first effort to 

develop lattice Boltzmann models for non-uniform grids was the merging of the lattice 

Boltzmann equation with finite difference or finite volume methods (Succi, 2001). The 

particle distribution function was interpolated to the non-uniform grid using different 

orders of interpolation such as piecewise-constant, linear, or parabolic interpolation over 

space/time. He et al. (1996) proposed an interpolation-supplemented LBM, where the 

particle distribution functions are interpolated to the non-uniform grids at every time step. 

The differential lattice Boltzmann equation is solved on the non-uniform grids using 

coordinate transformation. 

  

Chen (1998) has shown that finite-volume-based LBM can recover conservation 

laws with high accuracy. Chen (1998) solved the discrete lattice Boltzmann equation (8) 

using an upwind scheme, the accuracy of the result depends on the selected numerical 

method. Fillipova and Hänel (1998) applied the concept of hierarchical grid refinement as 

widely used in conventional computational fluid dynamics methods. The computational 

domain is discretized into a coarse grid and a finer grid is superimposed onto the coarse 

grid by adaptation criteria or defined a priori. The time step is also non-uniform over the 

coarse and fine grids. Shu et al. (2001) used Taylor-series and the Runga-Kutta method to 

solve for the particle distribution function over the non-uniform grid using the known 

particle distribution function at the square grid. All these models have been tested for 

benchmark problems such as Poiseuille flow, lid-driven cavity flow, flow around a 
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cylinder, etc. The LB models used in this dissertation could be computed on non-uniform 

meshes in time and space. This could improve results in the complicated geometries 

found in karst aquifers. 

4 BOUNDARY VALUE PROBLEMS IN SOLUTE TRANSPORT  

This chapter presents more elaborate tests of the LBM solute transport algorithm 

and its boundary conditions against established analytical solutions for a variety of 

boundary conditions and domain types. Two different domain types are chosen for the 

tests: finite and semi-infinite. Two different types of solute boundary conditions (constant 

concentration and constant total solute mass flux) are applied at the inlet boundary for 

these two domain types and zero concentration gradient conditions are maintained at the 

exit boundaries. These conditions correspond to four different established analytical 

solutions (Table 1) that differ significantly at low values of a non-dimensional number 

called the Peclet number. The simulated concentration breakthrough curves are compared 

against the analytical solutions. The results of these tests further verifies the LBM’s 

solute transport capabilities and opens a path for its application to more complex 

problems as found in karstic aquifers. 

4.1 Methodology 

Lattice Boltzmann models can be thought of as having their own consistent set of 

dimensional units in terms of lattice units (lu) and lattice time steps (ts), which 

correspond to space (x) and time (t) respectively. To compare any physical system with 

any numerical simulation (e.g., LBM) it is convenient to relate them by non-dimensional 

numbers like the Reynolds number (for fluid flow), the Peclet number (for transport 
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problems), non-dimensional relative concentration (concentration relative to input 

concentration, C/C0), and the number of pore volumes for scaling pulse duration. The 

Peclet number (Pe) (as defined in section 2.5) is a measure of the balance between 

diffusion and advection rate during solute transport as shown in equation (2). This can be 

used to compare simulation results with laboratory or field data. The relative 

concentration is defined as (van Genuchten and Wierenga, 1986) 
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where C0 is the concentration of the applied solution and Ci is the initial concentration, 

which is set here to zero, so C(x,t) = C(x,t)/C0. 

 

A pore volume, T, is the volume of water contained in a porous medium (van 

Genuchten and Wierenga, 1986). For a column with cross-sectional area A and 

volumetric water content θ , the number of pore volumes is calculated by dividing the 

volume of water flushed through the column by the liquid capacity (V0=A θ L) of the 

column. L is the length of porous medium. 
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Both relative concentration and pore volume are dimensionless and can be used to 

present non-dimensional breakthrough curves. Thus, physical and LBM breakthrough 

curves can be compared directly when they are presented this way. 

4.2 Zero-diffusion transport 

Transport of inert solute is generally governed by advection and diffusion. Zero- 

diffusion transport means solute is transported by movement of the solvent only and does 
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not undergo any diffusion. The analytical solution for zero-diffusion breakthrough curves 

in gravity-driven Poiseuille flow in a slit is derived below. Though diffusion is never 

absent in solute transport, it can be infinitesimally small in fast flows such as those that 

can occur in karst aquifers. With its analytical solution, this zero-diffusion problem 

provides an excellent test of the LBM’s ability to solve such high Pe problems. This kind 

of situation can appear in a system of fast moving carrier fluid where the mechanical and 

molecular spreading of solute are low relative to the flow. 

 

Figure 16 shows the fully developed parabolic velocity profile for laminar flow in 

a slit. Because negligible diffusion is assumed, the solute front will have the same shape 

as the velocity profile. Using the equivalence between velocity profile and solute front, 

relative concentration (C/C0) at any cross-section through the slit can be computed and 

the analytical breakthrough curve as a function of time can be computed. 

 

As shown in Figure 16, a is half the width of the slit, and P2 (0, a) represents a 

point lying on the parabolic solute profile at the slit cross-section where solute is 

introduced in to a stable Poiseuille flow. L is the distance from the solute inlet where 

breakthrough is measured. P1 (L, w) is the point lying on the parabolic solute/velocity 

profile at the cross-section where the breakthrough curve is measured, and P0 (xmax, 0) is 

the point lying on the vertex of the parabola. The relative concentration C/C0 at x = L 

will be determined by the half-width w of the solute parabola relative to the half-width of 

the slit a. 
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Figure 16. Parabolic velocity profile in laminar flow. 

 

Equation (35) is a general equation for the parabola shown in Figure 16, where k is some 

constant and xvertex is the distance of the vertex of the parabola from the origin at the inlet: 
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The x coordinate of the vertex at time t is  

tuxvertex 0= , 

where u0 is maximum velocity, which can be determined from the Poiseuille law for a 

gravity-driven flow as (Tritton, 1988) 
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where g is gravity and ν  is kinematic viscosity. Inserting the points P2 (0, a) and P1 (L, 

w) into equation (35) and solving for w yields 
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Finally, the breakthrough curve for pure advection in a slit under Poiseuille flow is given 

by  
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For pipe flow, the concentration at any section will be equal to area of a circular 

disc having a radius equal to half the width of the parabolic section (w in Figure 16). 

Hence, the relative concentration for pipe flow at any cross-section is equal to
2
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 (Taylor, 1954). Again xvertex is the distance of the parabolic front 

from inlet at any time t, tuxvertex 0=  where now u0  is (Tritton, 1988) 
ν4

2

0

ga
u = . Finally, 

the breakthrough curve for pure advective flow in a pipe under gravity-driven Poiseuille 

flow is (Kutilek and Nielsen, 1994) 
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4.3 Diffusion and Taylor dispersion  

Diffusion is an inevitable physical phenomenon observed when solute is 

introduced into fluid. It is a spontaneous process induced by thermal motion of solute and 

fluid molecules. Owing to diffusion, solute moves from zones of higher concentration 

towards lower concentration, which tends to make the distribution of solute concentration 
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uniform in a domain over time. To a first approximation as stated by Fick’s law, the 

diffusive flux of solute is directly proportional to the concentration gradient of solute, and 

can be written as 

x

C
DJ mD

∂

∂
−= , 

(38) 

where Dm is the molecular diffusion coefficient, C is the volume averaged concentration, 

and x is the spatial coordinate.  

 
Taylor (1954) introduced the concept of solute dispersion to explain the 

symmetrical spreading of solute in experiments where a salt is injected into a stream of 

solvent flowing through a tube. Dispersion is the spreading of solute due to the combined 

action of fluid velocity variations and molecular diffusion. Taylor explained that if 

advection is slow and fluid takes a long time to travel through the tube, then solute could 

diffuse appreciably across and along the direction of flow.  If flow is fast and solvent 

travels through the pipe quickly, then solute will not have enough time to diffuse 

significantly.  These end member conditions give bounds for the applicability of Taylor’s 

dispersion equation. These bounds should be satisfied for the prediction of effective 

diffusion (i.e., dispersion) based on molecular diffusion, fluid velocity, and radius of a 

pipe or width of a slit.  

 

Taylor Dispersion is the apparent mixing of solute dissolved in a fluid that flows 

through a slit or tube in accordance with Poiseuille’s equation. It results from a 

combination of velocity variations and diffusion. When the Peclet number is high 

enough, dispersion under these conditions is mainly a result of velocity variations that 
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occur due to no-slip wall boundaries, which lead to Poiseuille flow and a velocity 

gradient transverse to the direction of flow. Dispersion caused by such variations in 

velocity is called mechanical dispersion (Fried and Combarnous, 1971; Bear, 1972; 

Freeze and Cherry, 1979) and occurs at all scales; for example, it also occurs due to 

macroscopic medium heterogeneity in porous media such as meter plus scale layering of 

geological units. Dispersive transport is generally described using the assumption that it 

follows the same Fickian form as Equation (38): 

x

C
DJ hh

∂

∂
−= . (39) 

Dh is the mechanical dispersion coefficient (Bear, 1972) or the apparent diffusion 

coefficient (Aris, 1956). The basic idea is that in a shear (transversely varying) flow, a 

cloud of solute will be longitudinally stretched more in some regions of the flow field 

than in others. The resulting transverse irregularities of the cloud are then smoothed by 

diffusion in the transverse direction. The net result is that the cloud appears to be 

diffusing in the longitudinal direction at a rate that is much faster than what would be 

predicted by molecular diffusion alone. This effect does not occur in a uniform flow field 

in free-flowing fluid, though it does in macroscopically uniform flow in a porous medium 

as discussed previously. Taylor (1954) and Aris (1956) gave the following equation for 

the effective diffusion D in a pipe: 
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DD
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This expression for effective diffusion remains valid for flow in a pipe when the 

following criteria are met (Taylor, 1954): 

48
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Here a is the radius of the pipe, Dm is molecular diffusion, u is average velocity, and L is 

the length of tube over which appreciable changes of concentration occur. Similar bounds 

for effective diffusion for flow in a slit are available (Aris, 1956): 

 
,4/210

4
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mD
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a

L
 (42) 

where 2a is slit width.  

 

These equations are important in that they allow a priori prediction of the 

dispersion coefficient for macroscopically 1-D transport in laminar flow in fracture and 

conduit systems and hence provide a unique case for verification of the LBM solute 

transport model under karst like conditions.  

4.4 Concentration injection and detection modes 

The concentration of solute can be expressed as resident (i.e., volume-averaged) 

concentration Cr (ML-3) in terms of the mass of solute per unit volume of pore fluid. In 

contrast, the flux concentration Cf (
3

2

3

2 −= ML

TL

L
TL

M

) is defined as the flux of solute mass 

per volumetric flux of pore fluid exiting a plane normal to the direction of advective 

transport (Kreft and Zuber, 1978). There is a difference between these concentrations 

when there is a concentration gradient and hence a dispersive or diffusive flux. Such 

concentration gradients will be present at the advancing front and can also occur at the 

inflow boundary when the diffusion or dispersion is high relative to the velocity (i.e., low 

Pe). These two types of concentration modes correspond to two different kinds of 
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injection and detection modes. The transport governing equation remains unchanged for 

different injection modes, but C is best viewed as Cr or Cf depending upon the type of 

injection and detection modes used. 

 

The total mass flux at any cross-section is equal to mass flux due to advection and 

mass flux due to diffusion/dispersion:  

dx

dC
DuCuC r

rf −=  (43) 

uCr represents advective flux and 
x

C
D r

∂

∂
−  represents diffusive/dispersive flux. Solving 

equation (43) for Cf  gives the relationship between the flux and resident concentration 

dx

dC

u

D
CC r

rf −=  (44) 

Equation (44) is necessary only when 0≠D  and 0≠u . When D = 0, which is the case 

of purely advective transport, or when 0=
dx

dCr  (uniform concentration), Cf  = Cr. If u = 

0, there is pure diffusion.  

 

The constant mass flux boundary or third-type boundary condition is implemented 

in the LBM code as follows. A concentration C0 is prescribed for this boundary 

condition. The distribution functions at the boundary are computed the same way as for 

the constant concentration boundary condition (Sukop and Thorne, 2006) except that the 

concentration used to compute them is not C0 but, instead, a Cr computed from the 

condition 
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which can be approximated in terms of concentrations at the boundary (C) and first 

interior nodes (C1) as 
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(46) 

This is equivalent to specifying a constant flux of solute mass at the boundary and differs 

from simply specifying a constant concentration C0 at the boundary as in the Drichlet or 

first-type boundary. 

4.5 Boundary conditions 

The governing equation for advection and diffusion/dispersion in one-dimension 

is: 
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 (47) 

u is the average pore water velocity in the flow direction x. Equation (47) can be applied 

to finite or semi-infinite domains. In this study, two different types of inlet boundary 

conditions in finite and semi-infinite domains are considered: first-type (constant 

concentration) and third-type (constant flux boundary) inlet boundary conditions. A zero 

concentration-gradient boundary is used at the exit boundary.  

 

There are two different methods by which solute could be introduced into a 

domain at its inlet. Either there is some constant concentration (first-type) at the inlet that 

does not undergo any dispersion or diffusion at x = 0, but at x = 0+ (x > 0)it undergoes 

all the physical processes like advection diffusion and dispersion, or the solute is 
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introduced into the domain while undergoing advection as well as dispersion at the inlet. 

This is a constant flux boundary (third-type) similar to Cauchy’s mixed boundary 

condition. 

 

The LBM can simulate constant concentration and constant flux boundary 

conditions for semi-infinite and finite domains. First-type boundary conditions are simple 

constant concentration boundaries. Third-type boundary conditions represent a situation 

where constant mass flux is maintained. These include an advective flux and a 

diffusive/dispersive flux when there is a concentration gradient at the inlet. This 

boundary often represents real situations more closely than a first type boundary 

condition because it is natural to expect some diffusion due to concentration gradients at 

the inlet section when mass is first introduced. It is usually the chemical flux rather than 

the concentration that is held constant when a solution of a particular concentration is 

input into a domain at a constant rate. The boundary condition can be stated as  

constant.=
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Assuming that the resident concentration and its gradient will be zero at infinite distance 

(x→∞ ) from the inlet (x = 0); this leads to the common boundary condition 

0
),(

lim =
∂

∂

∞→ x

txCr

x
. 

(49) 

This boundary condition does not influence concentrations within the domain for a semi-

infinite system. 
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These zero-concentration-gradient boundary conditions are also applied at the exit 

boundaries of finite domains of length L, because concentration is assumed to be 

continuous across the exit for a finite domain and there is no dispersion beyond the exit 

(van Genuchten and Wierenga, 1986): 

0
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=Lx

r

x

tLC
. 

(50) 

These zero-concentration-gradient boundaries allow advective flux of solute but prohibit 

diffusive or dispersive fluxes. When a zero-concentration-gradient boundary condition is 

applied to Equation (44), the resident concentration and flux average concentration 

become equal at the boundary.  

 

An initial condition must be provided to solve the governing equation (47). The 

initial condition represents the distribution of concentration in the domain at t = 0 or at 

the beginning of simulation. Depending upon the physical situation, different initial 

conditions can be designed, e.g. uniform, point, non-point, or solute-free domain. In the 

problem considered below, the medium is assumed free of solute at time t = 0, which can 

be expressed as follows: 

( ) 00,0 =>xC . (51) 

The above expression shows that the medium is solute free except at the boundary at time 

t = 0, because the boundary condition C (0, t>0) = 1 is also implemented at time t = 0. 

4.6 Analytical solutions 

Table 1 shows four analytical solutions for the one-dimensional advection-

dispersion equation (ADE) that correspond to first- and third-type inlet boundary 
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conditions for finite and semi-infinite domains. The LB model is verified against these 

four analytical solutions for diffusion as well as dispersion problems. The four solutions 

differ significantly at small Peclet number reflecting the different boundary conditions 

(van Genuchten and Wierenga, 1986).
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Table 1. Analytical solution of advection-dispersion equation for different boundary condition (van Genuchten and  Wierenga, 1986).



 
 62 

4.7 Results and Discussion 

This section presents validation of LBM simulations of solute transport against 

one- and two-dimensional analytical solutions for the entire range of Peclet numbers. 

This study reiterates the importance of boundary conditions on resultant breakthrough 

curves and demonstrates the ability of the LBM to simulate such boundary value 

problems. The flow in these simulations is always periodic in the longitudinal direction; 

however concentration boundaries are applied at the inlet and exit sections for the solute 

component. A No-slip condition for both fluid and solute is implemented on the solid 

nodes (parallel walls of the slit) using a standard bounce-back approach. 

 

First, the breakthrough curve for zero-diffusion transport in a two-dimensional 

parallel-wall slit is computed using the LBM and compared with the analytical solution. 

Then diffusion at a moving solute front is simulated for the different combination of 

boundary conditions and domain length. Finally, Taylor dispersion problems are 

simulated for the same combinations and compared with the appropriate analytical 

solutions. 

 

For LB simulation of the fracture, conduit and karst systems, the Pe number is 

used to calculate the LBM parameters a priori. In the LBM simulations, the maximum 

velocity u0 ≈ 0.1 lu ts
-1 is often fixed to remain consistent with the low Mach number 

(ratio between the speed of an object and the speed of sound) assumption involved in the 

derivation of the Navier-Stokes equations from the LBM. The kinematic viscosity ν  is 

computed from the relaxation parameter τ  for the solvent component using equation (9). 
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 Similarly a relaxation time τB for the solute component is related to the diffusion 

coefficient as shown in equation (11).  If gravity (body force) is used as a driving force 

for flow, then, after setting the maximum velocity u0 and choosing a viscosity a priori for 

the simulations, calculation of the required body force for flow in a slit of width 2a 

follows from Poiseuille’s law as (Tritton, 1988): 

.
2

2

0

a

u
g

ν
=  

(52) 

The average velocity u in a slit is related to the maximum velocity 0u  as follows: 

0
3

2
uu = . 

(53) 

The desired Peclet number (Pe), molecular diffusion coefficient, and average velocity are 

used to find the distance from the inlet at which the breakthrough curve will be measured 

in the one-dimensional domain: 

u

PeD
L m= . 

(54) 

Note that this Pe is scaled by the length of the transport domain rather than by the pore 

length as is usual in many contexts. 

4.7.1 Zero-diffusion transport 

Breakthrough curves computed for transport in a slit or tube in the absence of 

diffusion using Equations (36) or (37) are fundamentally different from those computed 

with the advection-dispersion model. Due to laminar flow conditions and the absence of 

diffusion/dispersion, the solute front does not spread over the width of the channel, but 

follows the streamlines and creates a parabolic front as shown in Figure 17. 
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Figure 17. Solute front for zero diffusion with uniform flow in a parallel slit (1000 lu × 80 lu). 

  

Under these conditions, there is a sharp rise in the relative concentration when the 

solute front reaches the cross-section where concentration is measured (Figure 18). Then 

the breakthrough curve levels asymptotically and the relative concentration approaches 1 

at infinite pore volumes as expected from (36). LBM simulation of transport with low 

diffusion under Poiseuille flow shows a very good match with the analytical solution for 

zero diffusion transport between a pair of parallel plates. This is a limiting case of solute 

transport at very high Peclet number, which the LBM could successfully simulate. 
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Figure 18. Breakthrough curve for zero diffusion in a slit at distance L=100 lu from inlet. The slit 

width 2a is 80 lu, the average velocity is 0.02 lu-ts
-1

 the kinematic viscosity is 0.1666 lu
2
ts

-1
 and the 

simulation’s diffusion coefficient is 0.000333 lu
2
ts

-1
, leading to a Peclet number Pe = 6667 ( ∞→Pe ). 
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4.7.2 One-dimensional Advection-Diffusion Problem 

This section presents a comparison of four LBM solutions, which employ all 

combinations of the first- and third-type inlet boundary conditions for finite and semi-

infinite domains, with the appropriate analytical solutions from Table 1. For smaller 

Peclet number (<20), the inlet boundary condition has a strong influence on breakthrough 

curves measured in finite and semi-infinite domains.  

 

The LBM simulation is conducted in a 1000 lu × 25 lu domain with uniform flow 

condition that makes the problem effectively one-dimensional. The solute is carried as a 

uniform front subjected to diffusion. The effluent breakthrough curve for resident 

concentration is measured at 25 lu (out of 1000 lu) from inlet boundary to make the 

domain effectively semi-infinite. Two different simulations were made in this domain for 

first- and third-type inlet boundary conditions in the semi-infinite domain corresponding 

to solutions A1 and A2 of Table 1. The longitudinal velocity u is 0.0066 lu ts
-1, the 

diffusion coefficient Dm is 0.1666 lu2
ts

-1, and the kinematic viscosity ν  is 0.1666 lu2
ts

-1. 

The LBM solutions are shown as open symbols and analytical solutions are represented 

as solid lines. The Peclet number is 1 and the analytical solutions A1 and A2 do not 

match each other as shown in Figure 19. Another pair of simulations was run for same 

flow and transport parameters (Pe = 1) in a finite domain (25 lu x 25 lu) and resident 

concentration breakthrough was measured after every 250 ts at 25 lu from the inlet 

section. This gave another pair of breakthrough curves, A3 and A4, as shown in Figure 

19. Again, the breakthrough curves showed a good match with their corresponding 

analytical solutions.  
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Figure 19. Breakthrough curves for four different set of inlet and outlet boundary conditions at Pe = 

1. Cf is flux averaged concentration and Cr is resident concentration. A1, A2, A3, and A4 are defined 

in Table 1. 

 

4.7.3 Taylor-dispersion problem 

The above results were obtained for effectively one-dimensional finite and semi-

infinite domains with first-type and third-type inlet boundaries and zero-concentration-

gradient exit boundaries. In order to simulate the Taylor problem, the flow is pressure 

driven by a density gradient set across the domain. The flow moves between the slit’s 

parallel walls, which impose a Poiseuille velocity profile. The length of domain is 1000 

lu and width is 20 lu and flow and transport parameters are the same as in the one-

dimensional simulations to achieve Pe = 1. The effluent concentration is measured 100 lu 

from the inlet once every 250 ts to produce the breakthrough curve.  Figure 20 shows 

results of the LBM simulations compared against the analytical solutions shown in Table 

1. The LBM solutions (open symbols) show good agreement with the analytical solutions 

(solid line) for first- and third-type inlet boundaries.  
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Figure 20. Breakthrough curve at Pe = 1 for transport in parallel slit for four different combination 

of inlet boundary conditions and domain type.  

 

These results demonstrate that the LBM can simulate Taylor dispersion for 

varying inlet boundary conditions and domain lengths considered by the four one-

dimensional analytical solutions. For higher Peclet number, the breakthrough curve will 

have a significantly different shape as shown in Figure 21. In this simulation, the domain 

is 10000 lu × 32 lu, the molecular diffusion coefficient is 0.005 lu2 
ts

-1, and the effluent 

concentration is measured at 10,000 lu from the inlet section. The average flow velocity u 

= 0.02 lu ts
-1. Thus Pe = 120. The predicted dispersion coefficient following equation 

(40) is 0.349 lu2 
ts

-1, and the fitted dispersion coefficient is 0.376 lu2 
ts

-1. 
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Figure 21. Breakthrough curve for flow in a slit at Pe =120 

 

This has proven the LBM’s ability to simulate solute transport for different inlet 

boundary conditions in finite and semi-infinite domains. Table 1 shows four different sets 

of analytical solutions for effluent breakthrough curves. The sensitivity of effluent 

breakthrough curves to different inlet boundary conditions and domain type is observed 

only at smaller Peclet number (Pe < 20). This was chosen as a robust test for the LBM to 

verify its ability to simulate solute transport controlled by inlet boundary condition for 

solute and the type of domain.  The LBM was able to simulate the apparent dissimilarity 

in breakthrough curves for different inlet types and domain types at smaller Peclet 

number. This shows that solute transport is governed by inlet boundary conditions for 

solute at small Peclet numbers, which can be considered as one extreme of the solute 

transport regime. Another extreme of solute transport regime is considered to be a 

transport process at practically infinite Peclet numbers. There are two different ways to 
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achieve infinite Peclet number: by making the carrier fluid velocity very high or by 

making the diffusive transport extremely small or negligible. The LBM puts a limitation 

on having too high a velocity, so the diffusion coefficient is pushed to near its lower limit 

to achieve near-zero diffusive transport. In a slit, solute follows a parabolic profile 

identical to the velocity profile when there is zero diffusion across the front. The effluent 

breakthrough curve exhibits a sudden rising limb when the front hits the observation 

section and then grows asymptotically towards complete breakthrough. The simulated 

effluent breakthrough curve for zero-diffusion transport showed a good fit to the 

analytical solution. The results of this chapter verify the ability of the LBM to solve 

solute transport in all possible ranges of Peclet number for different boundary conditions. 

Hence, the method is suitable for application to solving physical problems in large-scale 

karst aquifers. 
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5 SOLUTE TRANSPORT IN KARST AQUIFERS 

Modeling flow and transport in karst aquifers is a frontier challenge for ground 

water science. In phreatic karst, the challenges arise from three sources: first, the conduits 

that characterize karst aquifers are exceedingly hard to delineate; second, standard 

Darcy's law-based approaches can not address the inertially-dominated flows and 

resulting eddy mixing that occur in karst conduits; and third, critical transport between 

conduits and surrounding aquifer based on simple capacitance-based 'matrix diffusion' 

models is not adequate for simulation of transport in many circumstances. The ability to 

delineate conduits and quantify their geometry is improving due to advances in 

geophysical techniques. In addition, karst aquifers and their conduits may be amenable to 

geostatistical quantification and good progress has been made in explicit simulation of 

their genesis and evolution (e.g., Birk et al. 2005). This discussion focuses on the second 

and third challenges and introduces relatively new modeling techniques that address 

inertial flows, eddy mixing, and matrix diffusion. The discussion also illustrates potential 

applications of the techniques to karst aquifers by demonstrating capabilities for simple 

problems. Sukop et al. (2008) illustrate some additional applications of the new 

techniques to karst aquifers. Other challenges presented by transient hydraulics (Zhou, 

2007; Anwar and Sukop, 2008; and Chapter 6), partial saturation, and chemical reaction 

(Ginzburg, 2005; Kang. et. al., 2002) might be successfully treated by the new methods 

in the future. 
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Like fractured rock aquifers, karst aquifers are generally viewed as double- or 

triple porosity systems, where a porous matrix of carbonate rock with pores on the order 

of millimeters or less, contains macropores (roughly centimeter-scale), and may be cut by 

conduits ranging in size from tens of centimeters to tens of meters (White, 2002). 

Standard Darcy’s Law-based ground water models such as MODFLOW are reliable tools 

for modeling slow moving (laminar regime) flow in porous media. Efforts to apply such 

models in karst aquifers are numerous and meet varying degrees of success. In some 

instances, an equivalent porous medium (EPM) model of a karst aquifer may be 

adequate. For example, Scanlon et al. (2003) used MODFLOW to simulate groundwater 

hydraulics in the Barton Springs portion of the karstic Edwards Aquifer in Texas. They 

applied MODFLOW with spatially distributed hydraulic conductivity on approximately a 

20-km scale and showed good agreement between measured and simulated discharge at 

Barton springs. This has been referred to as a ‘smeared conduit’ model by Green et al. 

(2006). EPM models are expected to perform better at large scale where the effects of 

many conduits can be integrated (Huntoon, 1995). 

 

A more elaborate approach is to incorporate conduits explicitly (‘embedded 

discrete-feature’ models of Green et al. (2006)). Finite element-based models (e.g., 

FEFLOW) are better able to incorporate discrete features such as conduits in karst 

aquifers. The accuracy of this method depends upon grid resolution, and algorithms for 

grid refinement and grid adaptation are available. Even though it should be feasible to 

solve the Navier-Stokes equations for inertial flow in complex discrete features such as 

conduits with finite-element models, this does not seem to be widely available to the 



 
 72 

ground water community at this time. For example FEFLOW (Diersch, 2002) uses the 

Darcy, Hagen-Poiseuille, or Manning-Strickler laws to simulate flow in discrete 

elements. The first two are strictly applicable for laminar flow and the third is based on 

straight sections of uniformly sloping conduit with simple cross-section and a roughness 

parameter. 

 

In the terminology of Green et al. (2006), the dual-conductivity model (DCM) 

approach is an alternative to single continuum approaches. This method is closely related 

to the fissured rock/double porosity model first developed for fractured rock by 

Barenblatt et al. (1960). In these models, a network of conduits can be coupled to a 

continuum representation of the matrix rock or, if the conduit network is dense, it can 

also be modeled as a separate continuum. Linkage between conduit and matrix is 

achieved through linear exchange coefficients. Sun et al. (2005) presented a dual-

conductivity model called MODFLOW-DCM. The flow regime in the conduits is either 

Darcy (laminar) or Darcy-Weisbach (turbulent) (Sun et al. 2005).  

 

The CAVE (Carbonate Aquifer Void Evolution) model (Clemens et al. 1997) is a 

model where flow in a conduit network is calculated using Kirchhoff’s law together with 

the Darcy-Weisbach equation to relate discharge with head difference. The Colebrook-

White equation is used for estimation of the friction factor. The CAVE model also 

predicts the dissolution enlargement of pores or conduits. Birk et al. (2005) integrated the 

equilibrium and non-equilibrium (two-region) Advection-Dispersion Equation (ADE) 

with CAVE and compared field spring discharge and tracer breakthrough data with 
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model predictions. The two-region model fit observed breakthrough better than the 

advection-dispersion model, but both models failed to capture the long tailing.  

 

Shoemaker et al. (2008) added a module called Conduit Flow Process Mode 2 

(CFPM2) to MODFLOW to simulate inertial flow in karst aquifers. The ground water 

flow equation is solved and the laminar hydraulic conductivity is replaced by turbulent 

hydraulic conductivity when the head difference between cells (computed by 

MODFLOW) exceeds a critical head difference. Laminar and turbulent hydraulic 

conductivity are linked by an empirical factor, which is a function of the square root of 

the ratio between critical head difference and actual head difference. This develops a non-

linear relation between discharge and hydraulic gradient under turbulent conditions. 

Turbulent flow was thought to be widespread in preferential flow layers of the Biscayne 

aquifer. This type of flow modeling approach in conduit/matrix systems may estimate the 

discharge rate to some acceptable agreement, but the local characteristics of inertial flow 

like eddies can not be accounted for. Solute transport is strongly influenced by such 

eddies on some time scales. Solute is trapped in vortices and slowly diffused back out to 

the surrounding flow system.  

 

Two-region models have been applied in the past to predict tracer breakthrough in 

karst aquifers. QTRACER (Field, 1999) is an inverse modeling program used to estimate 

hydraulic and transport parameters from tracer breakthrough curves. Hydraulic properties 

and transport parameters are estimated from the shape of the breakthrough curve using 

the method of moments. Aquifer geometric properties are estimated by evaluating 
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discharge with respect to residence time. Solute transport capabilities of this model are 

based on the two-region approach. Field and Pinsky (2000) applied the two-region model 

to simulate skewness of breakthrough curves obtained from karst aquifers. The two-

region model was found to fit the strong tailing effect better than the advection-dispersion 

model. Inability to estimate some model parameters a priori can make model parameter 

sets non-unique. Massei et al. (2006) compared QTRACER and a linear graphical method 

to simulate the tracer breakthrough obtained from a karstic aquifer. Birk et al. (2005) 

compared the moment analysis method, two analytical models (one two-region based), 

and a numerical model to interpret tracer breakthrough curves in carbonate aquifers. The 

two-region model was found to be better at fitting long tails than all other models. Geyer 

et al. (2007) used the two-region model in CXTFIT (Toride et. al., 1999) to calibrate the 

tracer data obtained from a large-scale multi-tracer test in a karst aquifer. The 

conservative tracer data were evaluated to estimate model parameters subsequently used 

for reactive tracer transport. The authors concluded that this method removed ambiguity 

in parameter set identification, though the model failed to predict tailing behavior. The 

model was found to be insensitive to dispersion and mass transfer coefficients. Bai et al. 

(1999) extended the 1-D two-region model to a semi-analytical, two-dimensional 

capacitance model for solute transport. This model was found to be useful for modeling 

anisotropic dispersion in heterogeneous porous media with two-region effects. 

 

The Lattice Boltzmann Method has been under development by the physics 

community for the last several decades but applications to ground water science are in 

their infancy. Their potential for simulation of flow and transport in karst aquifers has 
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been recognized for some time. For example, Watson et al. (2003) applied a LBM model 

to simulate the flow field obtained from a laboratory-scale dye tracer test. The model 

successfully simulated distinct recirculation zones observed in the laboratory karst 

analogue system. In part, the slow transference of LBMs to ground water applications is 

due to the variety of processes and scales that a viable ground water flow and transport 

model—especially one that simulates inertial flows and eddy mixing—must incorporate 

and address. LBMs for these purposes continue to improve rapidly and it is expected that 

fully-functional models comparable to FEFLOW and MODFLOW/MT3D may be 

available within five years or less. A key advantage of this next generation of the LBM 

models is that they will retain the ability to solve inertial flows and eddy mixing needed 

for karst aquifers and do it at field scales. 

5.1 Example applications to karst flow and transport processes 

The results of LB simulations relevant to processes expected in karst aquifers are 

summarized in this section. The LB model is applied to simulate two-region type 

breakthrough, transport in heterogeneous porous media, and transport in a heterogeneous 

porous media traversed by a conduit with inertial flow. 

5.2 Two-region solute transport model 

Quantification of flow and transport parameters is essential for accurate prediction 

of solute breakthrough in karst aquifers. Several continuum (or equivalent porous 

medium approach) and discrete models are available to model flow in fractured and karst 

aquifers. Flow patterns in karst aquifers follow preferential pathways and laboratory 

experiments show that the breakthrough curve from such a medium generally has three 
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characteristic features: a sudden rising limb, a central plateau, and a long tail (van 

Genuchten and Wierenga, 1986). The sudden rising limb is due to the conduit region and 

the long-tail is due to slow diffusion from the matrix region. 

 

Coats and Smith (1964) proposed a mobile-immobile (dual-domain or two-

region) model to simulate transport with preferential pathways, which was later applied 

to laboratory column experiment data (van Genuchten and Wierenga, 1986) and field 

data (Brown and Ford 1971; Atkinson et al. 1973; Mull et al. 1988; Toride and Leji 1996; 

Field and Pinsky 2000; Maloszweski et al. 2002; Massei et al. 2006; Geyer et al. 2007; 

Göppert and Goldshceider 2008), and incorporated into standard solute transport codes 

such as the popular MT3D (Zheng, 2006). These multi-region or mobile-immobile water 

models are predicated on the notion of solute in mobile fluid in a fracture or conduit 

interacting with an immobile fluid phase in the surrounding porous matrix according to a 

first-order kinetic rate constant and a concentration difference. Such ‘matrix diffusion’ 

models are intuitively appealing, analytically tractable, and adequate for certain purposes, 

but suffer from the limitation that the matrix region is not explicitly considered but is 

simply a capacitance.   

 

Advection and dispersion are the dominant mechanisms of transport in the mobile 

zone, whereas water in the immobile zone is linked to water in the mobile zone by 

diffusive transport only. The non-dimensional form of governing equations for such a 

two-region non-reactive transport model is (Field and Pinsky, 2000) 
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where Cm and Cim are solute concentration (ML
-3) in the mobile and immobile zones 

respectively, D (L
2
T

-1) is the dispersion coefficient in the mobile region, and λ (Τ−1) is a 

first-order rate constant that controls the exchange of solute between the mobile and 

immobile zones. Darcy flux is represented as, q = vθ = vmθm, whereθ is the volumetric 

water content and θm is volumetric mobile water content. θ can vary between 0 and 1 and 

θm varies between 0 and θ. Τ is pore volume. There are essentially three parameters in the 

dimensionless two-region model: Peclet number, fractional mobile region (β) for 

conservative solute, and ω, which controls the mass exchange between the mobile and 

immobile regions. Significant efforts have been made to independently estimate these 

parameters, but this has remained elusive. In reality and in the LBM, matrix invasion by 

solute will depend upon the thickness of the matrix and the diffusion coefficient of solute 

therein. 

 

In this section, LBM breakthrough simulations from a simple conduit/matrix 

system, representing an analytically-tractable prototype of what might be found in a karst 
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aquifer, are fitted with two-region and standard advection-dispersion models. The solute 

transport simulation is set up in a 50 lu long and 25 lu wide domain with periodic flow 

boundaries on all sides as shown in Figure 22.  

 

 

Figure 22. Schematic diagram of two-region model. 

 

The domain has a mobile (fracture) region of thickness 5 lu in the center with an 

adjoining immobile (matrix) region.  The LBM had to be constrained to match the two-

region assumptions by turning off the LBM flow model and explicitly setting zero and 

non-zero fluxes in the immobile and mobile regions respectively. In the two-region 

model, the immobile region (matrix) is effectively infinitely thin so that solute could 

instantly fill and continue to diffuse from the fracture (mobile) into the matrix (immobile) 

without regard for a reduced diffusive gradient in the matrix as the concentration in the 

matrix grows. 

 

C = C0 5 lu 
u = 0.01 lu/ts 

D = 0.00166 lu2/ts 

D = 0.00166 lu2/ts 
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∂
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Advection and diffusion drive solute movement in the mobile region. A constant 

concentration boundary is set only at the entrance of mobile region and a zero-

concentration-gradient boundary is set over the whole width of the domain on the 

opposite boundary. A uniform flux of u = 0.01 lu/ts is set in the mobile region.  

 

Figure 23 shows effluent breakthrough curves from LBM simulations that have 

typical two-region characteristics. The two simulation results for the same Peclet number 

and ω but different mobile fractions β (= 0.2 and 0.4) are shown in Figure 23.  

Breakthrough curves are fitted to the two-region model with two fitting parameters: 

dispersion coefficient and mass exchange rate between the mobile and immobile regions. 

The known flux and β are kept fixed during the fitting. The fixed flux is equal to β (0.2 or 

0.4) times the actual flux (0.01 lu/ts) in the mobile region because it represents a 

macroscopic flux from the entire domain. The dimensionless rate constant ω is probably 

related to the diffusion coefficient D for thin matrix zones and or short input pulses, but 

its physical meaning is less clear when the matrix zone is thick or the pulse is long. 
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Figure 23. LB simulation fitted with two-region model and advection-dispersion (ADE) model for 

ββββ=0.2 and ββββ=0.4. 

 

The fitted diffusion coefficient is of same order as provided in the simulation and 

showed low correlation (-0.151) with the mass exchange rate (ω) indicating 

independence of the fitting parameters and uniqueness of the fits. The coefficient of 

determination (R2) is above 99.9% for each case. The breakthrough curve shows a poor 

fit with the standard advection-dispersion (ADE) model, having R2 = 85 % for β=0.2 and 

0.4. These results are obtained using a constrained approach where velocity fields are 

explicitly set in the matrix and conduit regions.  
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Parameters u (lu/ts) ω Dm (lu
2
/ts) R-square  

LBM 0.004 Not applicable 0.00166 not applicable 

Two-region 

model fit 

0.004 0.411 0.00212 99.96 

ADE fit 0.004 Not applicable 0.0739 85.21 

Table 2. Model parameters for ββββ=0.4. 

 

Martin and Screaton (2001) asserted that karst aquifers can not be considered to 

have purely diffusive or purely conduit flow but rather a mixture of two types of flow. 

They believed flow in matrix region is laminar whereas flow in conduit is turbulent and 

solute transport is directly influenced by the flow conditions in matrix and conduits. 

Younger carbonate aquifers such as Tertiary carbonate platform of Florida, Yucatán, and 

many ocean islands have high matrix porosity and permeability (Martin and Screaton, 

2001). They cited several examples from the literature where significant exchange 

between conduit and matrix is observed. Hence, better understanding of exchange 

between matrix and conduit regions is necessary for water resource management and 

aquifer remediation approaches in carbonate aquifers. 

 

An example of matrix-conduit interaction in a system of such relatively high 

matrix permeability is presented below, where velocity fields are solved in the conduit 

with standard Navier-Stokes LBM, and in the matrix using the LBM-based, macroscopic 

Darcy flow solver. The domain is similar to the one shown in Figure 22: 40 lu wide and 

20 lu long with a 10 lu wide conduit in the center. The flow is pressure driven with a 
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pressure difference of 3.333×10-5 mu/lu1-ts2 between the left and right boundaries. The 

relaxation parameters for fluid and solute components are 0.51 ts. The solute 

breakthrough curve shown in Figure 24 is measured at the end of the domain, 20 lu from 

the inlet boundary. A constant concentration boundary across the whole width (40 lu) is 

applied at the inlet boundary (left side) and a zero-concentration-gradient boundary is 

applied at the exit boundary (right side). This is in contrast to the preceding two-region 

LBM model where the concentration boundary is applied only at the fracture opening. 

Similarly, the driving force (pressure boundary condition) is also applied over the whole 

(left and right boundaries) to cause flow in the matrix as well as the fracture region. 

Nodes in the matrix region have R = 0.1 ts-1 and nodes in fracture region have R = 0. The 

permeability of each region in lattice units (lu) can be calculated using equation (18). For 

solute transport, the diffusion or dispersion equation is solved in the conduit and matrix 

regions respectively. The dispersivity in the matrix region is set equal to 0.81 lu. 
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Figure 24. Solute breakthrough curve measured at the end of 20 × 40 lu domain with conduit (10 lu) 

in the center. The breakthrough curve (open circles) obtained from the LBM is fitted with advection-

dispersion equation (ADE) (solid line) and two-region (broken line) models. 

 

The breakthrough curves in Figure 23 and Figure 24 are substantially different 

due to contributions from explicit simulation of the matrix region. The rise in 

concentration after the plateau at C/C0 = 30%-40% is due to direct contribution to the 

effluent from the matrix at the discharge face, which is not possible in the two-region 

paradigms; a similar trend is shown by the falling limb. The qualitative nature of the 

breakthrough curve from the LBM as shown in Figure 23 is similar to breakthrough 

curves from karst aquifers observed in field or laboratory settings (Figure 1, Figure 2 and 

Figure 3). It is shown in Figure 24 that neither analytical model was able to capture the 

complexity of the breakthrough, though the two-region model was better at fitting the 

rapid rise and fall. Hence, the LBM could be a potential approach to simulate 

breakthrough curves in karst aquifers. 
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5.3 Transport in heterogeneous porous media 

Porous media normally exhibit heterogeneous permeability (Bear, 1972; Cortis 

and Berkowitz, 2004; Berkowitz et. al., 2006). Combining the LBMs for heterogeneous 

porous media and anisotropic dispersion allows solute transport simulation of effluent 

breakthrough curves from such heterogeneous porous media. We illustrate this in a 

domain that is 81 lu × 81 lu with resistance (R) that varies from 0 to 0.05 ts-1 as shown by 

gray scale in Figure 25, which represents the permeability field following equation (18). 

Each node in this image is assumed to represent 10’s to 100’s of meters of scale 

depending upon the desired non-dimensional Darcy number, k/L
2, where L is a 

characteristic length. 

                                                                  
(a)                                    (b)       (c) 

Figure 25. (a) Heterogeneous permeability field in grey scale. Lighter grey represents higher 

permeability. Red color is tracer and white is fluid (b) Snapshots of solute front before breakthrough 

and (c) during flushing of domain shown in (a). The units are in lu. 

 

A pressure boundary condition (Zou and He, 1997) is applied on the left (P = 

0.333666 mu/lu-ts
2) and right boundaries (P = 0.33333 mu/lu-ts

2), and forces flow from 

left to right. Solute enters the domain from the left boundary after 6,000 ts and the solute 

pulse lasts for 280,000 ts. The relaxation parameter (τ) for the fluid is 0.501 ts and τΒ = 
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0.51 ts for the solute component. A zero-concentration-gradient boundary is applied to 

the solute component at the right boundary. Top and bottom boundaries are periodic for 

both the fluid and solute components. Longitudinal and transverse dispersivities are set 

equal to 1.1 lu and 0.41 lu respectively at every node. The average flow velocity is 

0.000474 lu/ts.  
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Figure 26. Effluent breakthrough for heterogeneous domain as shown in Figure 25. 

 
A snapshot of the solute front is shown at 67,200 ts after the solute enters the 

domain and 75,200 ts after flushing of the domain begins (Figure 25). The advected and 

diffused front is non-uniform due to the varying permeability field, which causes regions 

of fast and slow moving solute. The high permeability region (brighter color in Figure 25 

a) allows quick invasion by the solute front whereas it takes much longer to cross the low 

permeability region (darker color in Figure 25 a). Effluent breakthrough is measured at 

the exit section of the domain and is shown in Figure 26. The effluent breakthrough curve 

is fitted to the advection-dispersion model with the flux measured as the average over the 

whole domain in the LBM simulation. The solute is allowed to undergo both advection 
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and dispersion in porous media (matrix) contrary to traditional models which consider 

solute as completely immobile in matriz region; only first-order mass exchange is 

assumed between matrix and conduit zone. 

5.4 Solute transport for inertial flow in a conduit 

Flow in a planar channel or pipe is function of third order of radius of pipe and 

this is important in karst aquifers as conduit diameter ranges from few cm’s to meters. 

Hence, the flow can get rapid and exhibit inertial features like eddies and voritices. The 

damping effects normally imposed on the fluid flow by small pores (say less than 1 cm) 

that characterize many porous media usually eliminate the inertial (eddy and turbulent) 

aspects of flow, but, in karst aquifers, porous media are routinely traversed by large-

diameter conduits and this allows flow to become inertial. The widths of karst conduits 

(characteristic length) could be tens of meters or more, and sometimes flow within them 

is comparable to a free surface, turbulent river at very high flow rate. Flow in fractures 

becomes turbulent when the Reynolds number exceeds 500 (White, 2002), although 

eddies can form at much lower Reynolds number and exert a strong influence on solute 

transport. Flows that contain eddies are referred as ‘inertial’. When flow reaches the 

inertial and turbulent regimes the relationship between head loss and discharge becomes 

non-linear and solute transport becomes more difficult to simulate due to eddy mixing, 

entrapment in eddies, and slow diffusion out of the eddies. 

 

Figure 27a shows an 81 lu × 81 lu heterogeneous porous background with a 

conduit. Background permeability varies between 0.0 to 0.0068 lu
2. Background 
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permeability varies as shown in grey scale. The model solves Navier-Stokes-based flow 

(equation (4))in the conduit region, while in the porous region, it solves Darcy flux. For 

solute transport, anisotropic dispersion (DL = 0.81 lu and DT = 0.27 lu) is solved in the 

porous region and the advection-diffusion equation is solved in the conduit. The 

relaxation parameters τ for fluid and solute are 0.501 ts and 0.51 ts respectively. The flow 

is gravity driven at g = 1×10-5 lu/ts
2 and the maximum velocity in the conduit is 0.051 

lu/ts. For solute, zero concentration gradient conditions are set on the top, bottom, and 

right boundaries. Figure 27 b and c shows eddy mixing of solute in the conduit due to 

highly inertial flow. These snapshots are at 3000 ts after solute entered the domain from 

the left boundary and 10,000 ts after flushing of the domain begins. The pulse duration 

for solute is 495,000 ts. The time step (ts) can be readily converted into non-dimensional 

pore volumes using volume average flux (0.003471 lu/ts) and domain length (81 lu). 

               
                   (a)                                             (b)           (c) 

Figure 27. (a) Heterogeneous porous background with conduit. (b) Simulated snapshot of solute in 

domain soon after initial solute injection and (c) during flushing of domain. The units are in lu. 

 

Effluent breakthrough is measured at the end of the domain and normalized with 

respect to inlet concentration. Figure 28 shows breakthrough at the end of the domain 

simulated using the LBM. The sudden rise is due to the rapid arrival of effluent from the 
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conduit and a plateau is formed as solute takes much longer to travel through the 

background porous media. Heterogeneity in the porous medium causes early 

breakthrough in some regions and after that, concentration rises slowly. Behavior during 

flushing is similar to during loading of the domain. Flushing causes a sudden drop in the 

breakthrough curve as the conduit rapidly flushes out. Long tailing is observed as the 

solute is slowly flushed from the porous region. This type of effluent breakthrough curve 

is generally observed in karst-type aquifers with two distinct flow region: conduit and 

matrix.  
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Figure 28. Effluent breakthrough curve simulated with the LBM and fitted two-region and 

advection-dispersion equation (ADE) for inertial flow conditions (Re= 900) in domain of Figure 27. 

 
In Figure 28 the effluent breakthrough curve is fitted with the advection-

dispersion equation and two-region models shown as solid and broken lines respectively. 

Limitations of the advection-dispersion equation for fitting such results are apparent. The 

two-region model could more successfully fit the peak and tailing of the breakthrough 
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curve, at least for short pulse duration as shown here, which is  smaller than required for 

complete breakthrough from the porous medium; a longer injection period would have 

lead to a more complex curve like that shown in Figure 24. Conversely, the pulse 

duration is very long relative to the time scale of transport and eddy mixing in the 

conduit; these would have prominent influences on the breakthrough only for much 

shorter pulses. 
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6 TRANSIENT GROUNDWATER FLOW SIMULATION IN CONFINED 

AQUIFERS 

Investigation of aquifer response to a pumping well is a common hydrological 

task and forms the basis of techniques for measuring the aquifer parameters, 

transmissivity (T) and storativity (S). In the simplest case, the well is assumed to 

penetrate through the full thickness of a homogeneous and isotropic aquifer and flow to 

the well is horizontal, so that equipotential (equal head) surfaces are vertical. Pumping a 

well causes a decrease in head/potential in the neighboring region as shown in Figure 35 

and develops cylindrical equipotential surfaces concentric on the well. Flow lines are 

radially inwards towards the pumping well. Head measurements from observation wells 

at different radii from the pumping well will be unique (Bear, 1972). This is naturally a 

cylindrical coordinate problem, but numerically it is solved in the Cartesian coordinate 

system.  

 

In the groundwater flow equation, an injection (source) or pumping (sink) well 

can be considered as a point source/sink and be represented by a node. The change in 

head (s), at any distance r, from the pumping well, compared to the original water level is 

drawdown and drawdown plotted against time is a drawdown curve. Any change in the 

head causes changes in storage for both confined and unconfined aquifers. The discharge, 

Q coming from the well must be equal to the aquifer yield, which is equal to product of 

storage coefficient S and rate at which head declines, integrated over the effective surface 

area of aquifer.  
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The storativity or storage coefficient (S) has a strong influence on the drawdown 

curve. It indicates a combined effect of the elasticity of the rock and the compressibility 

of the water. In the LB model, the storage coefficient is equal to the relaxation time τ, 

hence S should always be greater than 0.5. This does not correspond to storage 

coefficients observed in the real world, which are typically 10−1 to 10−7 for confined 

aquifers. Thus, a non-dimensional number ξ (as explained below) must always be used to 

scale hydraulic parameters and time. 

 

Transient change in ground water potential, as a response to localized change in 

head due to pumping or recharge is an interesting problem in groundwater reservoir 

management. The transmissivity of an aquifer represents the volumetric flow rate Q per 

unit width of aquifer W under a unit hydraulic gradient h∇ . Volumetric flux is computed 

using the transmissivity (T = Kb) of aquifer of saturated thickness b and hydraulic 

conductivity K, as  

hTWQ ∇= . (58) 

Ground water head distribution follows the transient ground water flow equation 

as shown below 

h
S

T

t

h 2∇=
∂

∂
, 

(59) 

where h is the head (hydraulic potential) of water at any time t in an aquifer of 

transmissivity T and storage coefficient S. The storage coefficient, S indicates the volume 

of yield per unit change in head per unit surface area of aquifer. This is a non-

dimensional parameter. Since LB simulations are not conducted in physical units we need 

to use non-dimensional numbers to enforce similarity between simulations and physical 
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problems. Because the transient ground water equation as shown in equation (59) is 

analogous to the diffusion equation, we can use the idea of diffusion length to relate 

physical time with lattice time steps (ts).  

 

Diffusion length, LD is defined as the distance traveled by means of diffusion 

alone for time t by a particle in solution with diffusion coefficient De 

2

D

e

L

tD
=ξ , (60) 

where ξ is a non-dimensional number. For ground water problems, De is the hydraulic 

diffusivity (T/S).  

 

Darcy’s law is applicable only for the Stokes flow regime on the representative 

elementary volume (REV) scale and above, and gives an averaged macroscopic flux for a 

porous medium. Following application of the conservation of mass (or volume for 

incompressible flow) to a porous medium above the REV, Darcy’s law is the constitutive 

equation used to derive the transient groundwater flow equation (59), which is 

completely analogous to the well-known heat equation (e.g., Narasimhan (1999)) and can 

be written with (equation (59)) and without (equation (61)) a source/sink term.  

6.1  Transient groundwater flow equations 

In the absence of source/sink terms, groundwater head distribution follows the 

transient ground water flow equation as shown above in equation (59). The transient 

groundwater flow equation for a domain with a pumping well (i.e., a source or sink) in a 

confined aquifer is (Wang and Anderson, 1982):  



 
 93 

S

q
h

S

T

t

h
+∇=

∂

∂ 2  
(61) 

These two equations have very important differences. In equation (59), only the 

ratio of hydraulic diffusivity (T/S) is important and the two hydraulic parameters can not 

be separated. The presence of a source/sink term in equation (61) allows distinct 

contributions from the hydraulic parameters, S and T.  

 
In equations (59) and (61) , the coefficient on the gradient term on the RHS 

represents the hydraulic diffusivity of the aquifer, analogous to the coefficient of 

molecular diffusion in the diffusion equation and the thermal diffusivity in the heat 

equation. As noted by Ginzburg (2005), the LB-based diffusion model represents another 

strategy for solving the transient ground water flow equation. Recently Camas Serván 

(2007) solved the Henry problem (Henry, 1964) using an LB-based diffusion model. 

The diffusion coefficient controls the mixing of tracer with background fluid. Similarly, 

hydraulic diffusivity (D = T/S) for an aquifer controls the change in head across the 

aquifer over time. The analogy between the diffusion equation and the transient flow 

equation can be used to solve head distribution over the aquifer using the lattice 

Boltzmann model for the diffusion problem by setting uA = 0 in equation (10)  and 

equating the head with the density of the solute component, as head and density both are 

scalar properties. 

6.2 Boundary value problem in a confined aquifer without source/sink 

Wang and Anderson (1982) present a transient groundwater flow problem in 

which an aquifer responds to a sudden change in one of the boundary conditions. The 
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aquifer is assumed one-dimensional and is confined by impermeable layers on top and 

bottom as shown in Figure 29. In this case, there is no source/sink and the transient 

ground water flow equation (59) 1-D becomes in  

.
2
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h
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T

t

h

∂

∂
=

∂

∂
 (62) 

 

 

Figure 29. Schematic representation of confined aquifer with boundary conditions. 

 

The aquifer is connected by reservoirs at x = 0 and x = 100 m. Initially the aquifer 

has uniform head equal to 16 m. The aquifer parameters are T = 0.02 m2/min and S = 

0.002; at t = 0+ the reservoir boundary on the right instantly falls to h = 11 m. The aquifer 

responds to this sudden change in head by ultimately reaching a steady-state, linear head 

distribution between the reservoirs.  Since the transient ground water equation in equation 

(59) and (62) is analogous to the diffusion equation, the idea of diffusion length as shown 

in equation (60) can be used to relate the physical time with the lattice time step (ts). 

ξ is a non-dimensional number, which will be identical in physical and lattice units. 

h(0)=16 m Confined aquifer 

Confining layer 

Confining layer 

T=0.02 m2/min     
S=0.002 

Confining layer 

x = 0 x = 100 m 

h(100)=11 m 
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6.3 LB-based diffusion model 

First the transient reservoir problem shown in Figure 29 is solved with the LB-

based diffusion model. LB and physical parameters are related using a non-dimensional 

number ξ. To achieve the same ξ value, we use the LB model of domain size 100 lu × 10 

lu and the model relaxation time parameter is τB = 0.8 ts, which leads to D = 0.1 lu2/ts 

according to equation (11). The diffusivity in the LB model is reduced by 100 times and 

the time step is increased by 100 times compared to the physical values to keep ξ the 

same as in the physical problem at each simulated time (Table 3). 

Tphysical Sphysical Dphysical tphysical LDphysical ξ LDLBM DLBM τB tLBM 

m
2
/min  M

2
/min min m  lu lu

2
/ts  ts 

0.02 0.002 10 10 100 0.01 100 0.1 0.8 1000 

0.02 0.002 10 100 100 0.1 100 0.1 0.8 10000 

0.02 0.002 10 400 100 0.4 100 0.1 0.8 40000 

Table 3. Parameters in physical and lattice units as used in LB-based diffusion model for reservoir 

problem of Figure 29. 

 

The results are plotted in Figure 30 for 1000 ts (10 min), 10000 ts (100 min) and 40000 ts 

(400 min). This demonstrates that the LB-based diffusion model can solve the transient 

ground water head distribution.  

 

Without a source/sink, the only parameter we can change in this model is 

hydraulic diffusivity via the relaxation time τB. Thus, it is not possible to simulate 

groundwater problems governed by equation (61) and characterized by the potential for 
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independent variation of S and T with this model in its current form; source/sink terms 

would have to be added to the LB model. 

6.4 Altered-velocity flow model 

It is also possible to solve transient groundwater flow problems using the LB-

based altered-velocity flow model described in section 3.3.2. We simulate the same 

boundary value problem as shown above in Figure 29 using the altered-velocity flow 

model here. First we need to resolve the relationships between the hydraulic parameters T 

and S and the LB parameters. Transmissivity depends on the hydraulic conductivity, 

which is a function of permeability and fluid viscosity. Permeability is linked with the LB 

parameter R and the kinematic viscosity following equation (18); hence transmissivity 

(T) will be associated with R, and dependence on τ, which controls kinematic viscosity, 

is also expected. The storage coefficient is a hydraulic parameter that controls the 

transient behavior of a confined aquifer, and τ is an LB parameter that controls the time 

evolution of particle dynamics. Hence, S is expected to be closely linked with τ. Based on 

testing of LB simulations against the analytical Theis solution described below for 

different values of R and τ, transmissivity T is associated with resistance field R as 

3

1−

=
Rτ

T  (63) 

 

and the storage coefficient S was observed to be equal to the relaxation time τ. 

 

The parameters used in the altered-velocity model of the transient ground water 

flow problem of Figure 29 without source/sink are shown in Table 4. 
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tphysical τ R TLBM SLBM DLBM ξ LD tLBM 

min ts ts
-1

 lu
2
/ts   -- lu

2
/ts   -- lu ts 

10 0.96 1 0.32 0.96 1/3 0.01 100 300 

100 0.96 1 0.32 0.96 1/3 0.1 100 3000 

400 0.96 1 0.32 0.96 1/3 0.4 100 12000 

Table 4. Parameters used in altered-velocity model. 

 

The following procedure was adopted to obtain agreement between ξ in physical 

and LBM units. First, resistance and relaxation time parameters were arbitrarily selected 

as R = 1 ts-1 and τ = S = 0.96, and the length scale was fixed to 1 m = 1 lu. The 

transmissivity (T) of the aquifer was then 0.32 lu2
/ts and the storage coefficient was equal 

to 0.96; hence, the hydraulic diffusivity (T/S) is 1/3 lu2/ts. Diffusion length as expressed 

in equation (60) is used to scale time steps between physical units and lattice units as 

shown in Table 4.  
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Figure 30. Transient change in head as a response to a sudden change in head at right boundary for 

two different solutions techniques vs. analytical results. 

 

The LB solution shows an excellent match with the analytical solution (Figure 

30). This demonstrates the ability of the LB-based altered-velocity flow model to 

simulate an initial value problem from the groundwater discipline. 

6.5 Source/Sink in groundwater flow model 

In the LBM, source/sink nodes can be implemented by adding and removing the 

desired mass flux (ρ×q) at the source and sink nodes respectively. To assess the accuracy 

of this approach, one-and two-dimensional simulations are conducted. To demonstrate 

conservation of mass, the mass flux across any appropriate section for one-and two-

dimensional cases can be computed. 
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A 50 lu × 10 lu domain (Figure 31), bounded at left and right boundaries, is used 

to simulate one-dimensional flow with source and sink nodes. The initial fluid density is 

uniform (1mu/lu
2) all over the domain. A line source and sink are set at 3 lu from the left 

and right boundaries respectively.  As shown in Figure 31, the black line is the boundary 

at each end, the dark line near the left boundary indicates the source region and white line 

near the right boundary indicates the sink region. 

 

A constant discharge of 0.0051 mu/ts (a small value is chosen to avoid 

compressibility effect) is set to be added and removed at each node at the line source and 

sink. The computed flux across any section is found to be 0.0051 mu/ts.  

 

Figure 31. 50 lu × 10 lu domain to simulate 1-D flow with line source and sink nodes. Black lines at 

two ends represent solid boundaries (wall). The dark blue vertical line near the left end represents 

line of source nodes (density higher than neighboring nodes) and the white vertical line near the right 

end represents line of sink (density lower than neighboring nodes). A pressure gradient is created 

between source and sink due to imposed density difference. 

 

This verifies that conservation of mass is honored in one-dimensional simulation 

of source and sinks nodes in a homogeneous porous medium using the LBM.  

 

To test the source/sink node in a 2-D flow field, 51 lu x 51 lu domain with source 

(26, 17) and sink node (26, 34) is chosen as shown in Figure 31. The domain has uniform 

R equal to 0.1 ts-1. 
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Source 

Sink 

51 lu 
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Figure 32. 51 lu × 51 lu domain with source and sink nodes with porous media in background. 

 

The pressure difference between source and sink drives the flow in two 

dimensions from source to sink. The flow field is solved for two different kinds of 

boundary conditions; one is no-flow and another is constant pressure on all four 

boundaries. The initial density over the whole domain is set equal to 1 mu/lu
2. 
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Figure 33. Quiver plot (velocity vector) with pressure contour lines for domain with walls on all four 

sides. 

 

Since the flow occurs orthogonal to the lines of constant pressure, total flux is equal to 

the sum of flux measured across all the nodes falling on lines of constant pressure. The 

flux is measured at a section drawn parallel to the x-axis in the middle of domain. The 

measured flux is found to be equal to 0.068 mu/ts against the flux equal to 0.068 mu/ts set 

at the source/sink nodes. 

 

Figure 34 shows a velocity vectors or flow field (quiver plot) for a 2-D flow field 

with constant pressure conditions on all four boundaries. Solid lines are pressure 

contours. Pressure differences between the source and the boundary closer to the source 

node will cause a flow directed towards the boundary, whereas flow will be from the 
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boundary to the sink near the sink node. Hence, the total mass flow is not direct from 

source to sink; instead only half of the mass is directed from the source towards the sink, 

due to the symmetric arrangement of the source/sink nodes in the domain. 

 

The flux is measured at a cross-section parallel to x-axis in the middle of domain. 

The measured flux is found to be equal to 0.034 mu/ts against the flux equal to 0.068 

mu/ts set at source/sink nodes. The flux computed along the cross-section is half the flux 

set at the source/sink. 

 

 

Figure 34. Quiver plot (velocity vector) with pressure contour lines for domain with fixed pressure 

boundary on all four sides. 
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6.6 Transient ground water flow problem with source/sink 

Due to injection or pumping, there is a change (rise or drop) in head/water-table 

in the vicinity of the well. This change in head (s), at any distance ‘r’ from the pumping 

well, compared to the original potentiometric surface or water table is called the cone of 

depression as shown in Figure 35. Any change in head causes changes in storage for both 

confined and unconfined aquifers. The well is assumed to penetrate through the full 

thickness of aquifer and flow is horizontal, so that equipotential lines are vertical. Hence, 

the observation from observation wells at different radii from a pumping or injection well 

will be unique (Bear, 1972). 

 

Figure 35. Schematic representation of drawdown in a confined aquifer for a constant pumping rate 

(Q). 

 

The volumetric rate of flux is fixed at the sink node and the drawdown curve is 

observed in the neighboring region. The discharge, Q coming from the well must be 
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equal to the aquifer yield, which is equal to product of storage coefficient (S) and rate at 

which head declines, integrated over the effective surface area of aquifer (Osiensky et. al. 

2000) 

t

h
drSrddQ

∂

∂
−= θ . (64) 

The aquifer is assumed homogeneous in angular direction (θ ), hence flow (Q) will 

depend only on r: 

( )
dr
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∫
∞
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∂
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,
2)( π  (65) 

 The differential form of the transient ground water flow equation in cylindrical 

coordinates is  
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Theis (1935) derived an analytical solution for equation (66) for the following boundary 

and initial conditions 
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(67) 

h0 is initial head. The Theis solution for drawdown (s) is 

∫
∞ −

=
u

u

du
u

e

T

Q
s

π4
 (68) 

where 
Tt

Sr
u

4

2

= and u is a dummy integration variable, which determines the radius of the 

cone of depression. Transmissivity T controls the overall shape and extent of the cone, 

and storage coefficient S controls the volume V of the cone of depression in a confined 

aquifer, which can be written as (Osiensky et. al., 2000) 
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t
S

Q
V = . (69) 

 The drawdown curve is different for confined and unconfined aquifers because in an 

unconfined aquifer the saturated thickness changes with pumping. The saturated 

thickness remains constant for confined aquifers. Hence, confined aquifers are simpler to 

study and model compared to unconfined aquifers.  

 

The confined aquifer is simulated as a 500 lu × 500 lu domain with pressure 

boundaries on all four sides and a point sink node of strength equal to 0.051 mu/ts at the 

geometric center (250, 250) of the domain. Initially, there is uniform density of 1 mu/lu
2 

over the whole domain; this corresponds to an initial drawdown of zero. The drawdown 

(s) is observed at r = 4 lu from the sink node. In drawdown simulations, it is important to 

observe the effect of boundaries on the transient solution and necessary to consider the 

propagation of drawdown out to the boundaries (Anderson and Woessner, 1992). In the 

Theis solution, drawdown is due to pumping alone; the boundaries are at infinite distance 

and the constant pressure boundary condition in the model should not influence the 

transient change in head. Hence, the drawdown is observed until the effect of pumping 

reaches the boundary, which gives the result of an effectively infinite domain.  

 

The resistance tensor R is set equal to 1 ts-1, hence the transmissivity is 1/3 lu2
/ts 

and storage coefficient (S) is to be equal to the relaxation parameter (τ = 1 ts) of the fluid. 

The simulated drawdown is compared against the Theis solution (Theis, 1935). The result 

shows an excellent match to the drawdown curve as shown in Figure 36. The open circles 
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are LB results of drawdown after every 180 ts and the solid line represents the analytical 

solution. The fitted storage coefficient is 1 and the transmissivity is 1/3 lu2
/ts.  
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Figure 36. Drawdown curve at observation well in a confined aquifer compared against the Theis 

solution. 

 

Results for different storage coefficients are shown in Figure 37. The drawdown 

curve is drawn for a node at 4 lu from the pumping well for different values of storage 

coefficient (S), while keeping the hydraulic diffusivity (D) constant. R is equal to 1, D 

equals 1/3 lu2/ts, and the pumping rate is equal to 0.051 mu/ts. The LB results are plotted 

after every 150 ts as shown by open symbols and the analytical solutions are shown by 

solid lines. There is some departure from the analytical solution as S or τ gets closer to 

0.5. In this model, the hydraulic parameters T and S are treated separately, unlike in the 
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LB-based diffusion model without a source/sink, where these parameters are lumped into 

one as hydraulic diffusivity. 
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Figure 37. Theis curve for constant hydraulic diffusivity (D) and different storage coefficient (S). 

 

6.7 Validation of LB model with field data for drawdown data in a confined 

aquifer 

The altered-velocity LBM for transient ground water flow modeling is verified 

against field-scale pumping well data (Lohman, 1972) for drawdown (s) in a confined 

aquifer. These drawdown data are obtained from a well pumping at a constant rate equal 

to 96, 000 ft3/d. The drawdown is measured at r = 400 ft and 200 ft from the pumping 

well. Hydraulic parameters T and S are found using the curve fitting method. 
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The hydraulic diffusivity D = T/S in metric units is equal to 6.84 × 106 m2/d. L is 

a characteristic length chosen equal to r = 400 ft or 122 m. In the LBM, τ  = 1 ts and R = 

1/3 ts-1; hence T = 1 lu2
/ts and S = 1; consequently, hydraulic diffusivity, D = 1. To scale 

discharge rate, a non-dimensional parameter is used as follows:  Q/TL = (2929.688 

m
3
/d)/(1367.188 m2

/d×120 m) = 0.0178, which must be the same  in the physical and 

LBM simulations. Assuming, 1 lu = 30.5 m; hence rLBM = 4 lu. Then QLBM = 

(Q/TL)(LLBM)TLBM = 0.01784 × 4 = 0.07136 lu2
/ts. So, a sink node is set in the center of 

domain having a pumping rate equal to 0.07136 mu/ts. The drawdown in lu can be 

converted into SI units using 1 lu = 30.5 m. Figure 38 shows a comparison between LB 

simulations and field data for drawdown curves measured at 122 m and 244 m from the 

pumping well. It shows a good match between the field and model data. 
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Figure 38. Validation of LB model against the field data for drawdown curve. 
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This validation of LB models against field data shows the potential for application 

of this method for more complicated flow in heterogeneous media such as karst aquifers. 

Field data for the recovery curve after a pumping test in Miami (well G-3839) and West 

Palm Beach (well PB-1545) were collected by Reese and Wacker (2007). Wells G-3839 

and PB-1545 are open to the Biscayne aquifer. The drawdown curves for the two 

pumping wells, PB-1545 and G-3839, are shown in Figure 39. The inertial effect on the 

drawdown curve is apparent in these two curves in the form of water level overshoots and 

oscillations.  
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Figure 39. Field recovery data for an aquifer test in Biscayne aquifer. Well PB 1545 is located in 

West Palm Beach and well G3839 is located in Miami (Reese and Wacker, 2007). 

 
This and similar datasets are suitable for testing for LB models, the simulation of 

inertial effects during recovery in a karst aquifer. A qualitative comparison for such 

oscillating drawdown is made using altered-velocity lattice Boltzmann method as 

follows. 
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Figure 40. Prototype karst aquifer with circular sinkhole (black) surrounded by porous media (grey). 

Pumping well is shown in blue and observation well is shown in red. 

 

Figure 40 shows a prototype karst aquifer (100 lu × 100 lu) with a circular 

sinkhole (black) and surrounding homogeneous porous media (grey). The pumping well 

is represented by a blue node (50, 50) and observation well is represented by a red node 

(70, 50). Initially, the aquifer is set at uniform head equal to 1 lu. The pumping well is 

simulated by enforcing a sink node at the centre of domain having a fixed pumping rate 

equal to 0.051 lu2
/ts. Boundaries are periodic and the kinematic viscosity of fluid is 

0.1666 lu2
/ts. The simulated drawdown is measured at 20 lu from the pumping well. 
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Figure 41. Simulated time-series drawdown in prototype karst aquifer (Figure 40) using altered-

velocity LBM. 

 

The drawdown at observation well is measured by subtracting initial head (1 lu) 

from head at any time step. The simulated drawdown in the prototype karst aquifer (as 

shown in Figure 40) is shown in Figure 41. The drawdown exhibits oscillation as 

observed in karst aquifers in Florida. The prototype karst aquifer is pumped for 700 ts at 

a constant rate and then pumping is stopped. The inertial effect of flow in the karst 

aquifer causes oscillation in drawdown that dies down to a stable drawdown after 1500 ts 

after pumping is stopped.  

7 SUMMARY AND CONCLUSIONS 

Solute transport is a complex process in karst aquifers and depends on geological 

and hydrological characteristic of the domain. Various analytical and numerical models 

are available for prediction of solute transport. The advection-dispersion equation is the 
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most commonly used model for the prediction of breakthrough in porous media and it has 

been found to have strong dependence on the inlet boundary and geometrical conditions. 

Four different analytical solutions are available for first- and third-type inlet boundary 

conditions in finite and semi-infinite domains, which show the effect of inlet boundary 

conditions on the effluent breakthrough curves. The Peclet number is a dimensionless 

number widely used to characterize solute transport problems and develop a similitude 

between two different systems of units. For smaller Peclet number (Pe < 20) 

breakthrough curves are found to be different for similar transport parameters due to 

different inlet boundary conditions or type of domain. The LBM is applied to simulate 

these analytical solutions in one-and two-dimensions. Resident (Cr) and flux 

concentrations (Cf) are computed at the effluent section for finite and semi-infinite 

domains. The LBM simulations match accurately with the analytical solutions. 

 

The LBM is further applied to solve a zero-diffusion problem ( ∞→Pe ) under 

Poiseuille flow, which is another extreme of possible solute transport regimes that could 

be encountered in karst aquifers. The LBM showed a good match with the analytical 

solution for zero-diffusion transport in a slit together with the low Pe results this verifies 

the ability of the LBM to simulate boundary value problems in solute transport for the 

entire range of Peclet numbers. 

 

The advection-dispersion equation has been modified to fit “anomalous transport” 

observed due to heterogeneity, dead-end pores, fractured porous media or porous media 

cut by conduits as characteristic of karst aquifers. The two-region model was developed 
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from the advection-dispersion equation and is commonly applied to predict long-tailing 

and the sudden rise in breakthrough curves observed in many situations. A sink term is 

added in the advection-dispersion equation to link the mobile and immobile regions in 

porous media and solute in the mobile and immobile regions is linked by an exchange 

coefficient. This model is very restrictive in approach and limited in mimicking the actual 

physical process. The LBM is applied in a constrained way to satisfy the inherent 

assumptions in two-region model and successfully simulate breakthrough curves for two 

different fractional mobile regions (β). The fitted value of flux is close to the expected 

value and the coefficient of mass exchange showed low correlation with the diffusion 

coefficient, indicating independence of these parameters. Transport simulation in a more 

realistic conduit/matrix geometry gave a breakthrough curve with the classic features of 

rapid initial rise, plateau, and gradual rise towards the maximum concentration. In this 

circumstance, the two-region model provided an incrementally better fit than the 

advection-dispersion model, but the limitations of these models for such complex curves 

were apparent and similar limitations are expected in karst aquifers.  

 

A LBM-based heterogeneous porous media flow model was linked with a LBM 

anisotropic dispersion solver to simulate solute transport in large-scale heterogeneous 

porous media. This is necessary for regional-scale karst aquifer simulation. LBM 

simulation of solute transport in a non-axis-aligned flow field in a homogeneous domain 

fit the analytical solution of the two-dimensional advection-dispersion equation, building 

confidence in the model. The same model simulated solute transport in a heterogeneous 

porous medium. The effluent breakthrough curve could be fitted with the one-
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dimensional advection-dispersion model. Finally, breakthrough from a karst-like system 

consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared 

with the advection-dispersion model and the two-region model. Flow in the conduit 

region had a high Reynolds number (Re = 900), causing eddy mixing of the solute. The 

two-region analytical solution fit the effluent breakthrough curve reasonably well, but the 

curve could not be fitted with the advection-dispersion model. The relative success of the 

two-region model in this case is attributed to the time scale being smaller than required 

for complete breakthrough from the porous medium; a longer injection period would 

have lead to a more complex curve. Conversely, short pulse durations relative to the time 

scale for transport through the porous medium make transport and eddy mixing in the 

conduit the dominant influence on breakthrough. 

 

Two different kinds of LB-based models are used to solve transient groundwater 

flow problems. Application of the LBM to this problem is new and critical to a complete, 

non-steady karst hydraulics model. The analogy between the diffusion coefficient in the 

diffusion equation and hydraulic diffusivity in the groundwater flow equation is used to 

implement an LB-based diffusion model to solve the transient groundwater flow 

equation. The LB-based diffusion model, as currently configured without source/sink 

capability is found to have limited applicability due to the inherent lumping of two 

hydraulic parameters (T and S) into one parameter hydraulic diffusivity (D). The LB-

based altered-velocity flow model is more flexible and able to solve transient problems 

with or without source/sink terms in its current form. The hydraulic parameters are 

treated separately in this model. T is linked with the resistance field (R) and relaxation 
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parameter τ. The storage coefficient is found to be equal toτ. A non-dimensional number 

(ξ) is used to scale time and hydraulic diffusivity between LB units and physical units. 

The results from LB-based models showed good agreement with available analytical 

solutions. 

8 FUTURE WORK 

Many interesting possibilities are open to explore using the LBM because it is a 

comparatively new scheme and has not been widely applied to environmental hydraulics. 

In brief, the following are some major topics that deserve further effort: 

1. Implementation of a robust multi-relaxation time (MRT)-based LB model to 

simulate high Peclet number and high Reynolds number systems of flow and 

transport in karst aquifers. 

2. Test higher anisotropy ratios for permeability and dispersivity in LB models. 

3. Include a reaction model linked with the flow model to simulate dissolution of 

karst aquifers.  

4. Test LB aquifer hydraulics model to simulate and ultimately fit aquifer and slug 

tests conducted in the inertial flow regime in karstic aquifers. 

 

This research is believed to be the first attempt to establish the LBM as an 

alternative model to simultaneously solve fluid flow and solute transport in karst aquifers. 

Three LB methods are linked to solve inertial flow and consequent eddy mixing in karst 

aquifers. The LB model results compare well to the analytical solution for the zero-

diffusion problem in the laminar flow regime. When the low-diffusion problem is applied 
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to high Reynolds number flow however, error in transport estimation increases. This 

indicates a need for the development of better transport models for high flow/small 

diffusion problems. There are probably more robust LB methods available (Ginzburg, 

2005), which are better capable of solving low-diffusion transport at high flow rates. 

Application of such models will open a much broader range of flow and transport 

regimes as required in karst aquifers.  

 

The anisotropy ratio for hydraulic conductivity or dispersivity is 10 or 100 in real 

physical situations. The LB model applied in this research is not stable for higher 

dispersivity coefficient anisotropy ratios. Ginzburg (2005) and Camas Serván (2007) 

have proposed LB models for higher dispersivity anisotropy ratios. Also, rigorous testing 

is required to explore the stability limits of the macroscopic flow model for different 

ratios of anisotropic hydraulic conductivity.   

 

Since carbonate aquifers undergo dissolution during flow and the rate of 

dissolution also depends upon the rate of flow, a reaction model should be linked with the 

existing flow and transport LB model to simulate the growth of karst under different 

hydraulic conditions.  

The models proposed for solving hydraulic potential in karst aquifers require 

testing for drawdown estimation in aquifers with high likelihood of significant inertial 

flow.  
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